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Abstract: The general method for identifying the partial discharge type in a power transformer is based on their fingerprints in
the form of phase-resolved discharge patterns. In the case of multiple defects, traditional clustering methods can be applied for
separation of active sources. However, such an approach is impractical for online real-time monitoring due to the very large data
size. In this paper a new method using stream clustering is introduced. The method separates the active sources by processing
the signal once it is captured, then only a synopsis of the discharge data is stored. Two stream clustering algorithms: Density
Grids and DenStream are employed. Through measurements obtained from laboratory experimental setups (corona, surface
discharge, transformer defect model) performance of the proposed algorithms are evaluated. It is shown that stream clustering
method is able to separate the constituent components involved in the stream of a multi-source discharge signal without the
need to store a large amount of information. The performance of the Density Grids method depends on a limited number of
features that it can accommodate. In comparison, the DenStream method can capture more features which enable better

separation of active sources at the expense of longer processing time.

1 Introduction

Condition monitoring of power system equipment improves plant
economy, increases availability and service life [1]. Being able to
perform condition monitoring online provides the opportunity for
continuous operation service, early detection of problems and
possible remedial action and so increases the lifetime expectancy
of power transformer [2].

Partial discharge (PD) measurement is an effective method for
insulation condition assessment and ensure the reliability of power
transformer. The advantage of online monitoring of in-service
power transformer is that insulation condition is assessed with the
transformer operating under both normal working conditions and
abnormal variations related to changes in electrical, thermal, and
mechanical operational stresses.

In general, PD does not cause immediate failure of in-service
power apparatus. However, if the PD is not properly detected and
the source identified, it might eventually lead to complete
insulation breakdown. Knowledge of the PD characteristic (e.g.
corona, surface, internal discharges) can be obtained from the
detected PD signal and this can help to estimate its damaging
impact [3].

The general method for identifying the PD type is based on the
phase-resolved PD (PRPD) patterns which plot the PD events in
terms of their magnitude and phase position. However, more than
one PD source may exist due to multiple defects in the test object.
The general method for separation of multi-source PD is based on
characteristic features extracted from PD pulse waveforms and
applied to some signal separation process [4-8]. Traditional
clustering methods like k-means [9, 10], fuzzy c-means [11],
hierarchical clustering [12], density-based spatial clustering of
applications with noise (DBSCAN) [13, 14], affinity propagation
[15] and stochastic neighbour embedding (SNE) [16] have been
used for PD source separation. However, these standard algorithms
need access to all the data points and typically iterate over the data
set multiple times. This requirement makes these algorithms
unsuitable for online monitoring.

Under online PD monitoring, the recorded data is no longer
viewed as a static collection. Furthermore, it is potentially a very
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large set of dynamic data or stream of captured PD pulses that
requires the development of stream clustering algorithms for its
analysis.

This paper presents a method for clustering the stream of PD
pulses. Traditional clustering methods store the PD data at the first
step and the data is then analysed. Since the data size under online
measurement can be extremely high, its storage and processing can
become a very difficult task. In contrast, stream clustering methods
access and process the data once (data will not be saved) and only a
synopsis of the data is stored (consequently it will not face any
storage shortage).

The remaining of the paper is organised as follows. Section 2
presents the experimental setup used for verification of the
proposed method on stream clustering of PD pulses. In Section 3,
practical issues of online PD signal processing are discussed. In
Section 4, the general concept and structure of stream clustering
methods are introduced and two methods, namely density grids and
DenStream, are described. Their advantages and drawbacks are
examined in Section 5 through a case study. Section 6 concludes
and summarises the findings.

2 Experimental test setup

The experimental setup is shown in Fig. 1. The AC test voltage is
generated by a 50 Hz, 5kVA, 100kV transformer. A 10 MQ
resistor is used as a current limiter and a 300 pF capacitor as a
coupling capacitor. PD current pulses and the related phase angle
of their occurrences are captured via measuring impedance in
series with the coupling capacitor.

Three artificial PD models used in this study are shown in
Fig. 1. The corona model is constructed by a needle-plane
electrode system. Surface discharge is simulated using a sphere-
plane electrode setup with one layer of insulating paper in between.
These two external sources are usually observed in power
transformers and always a disturbing factor in the PD
measurement. The internal discharge is simulated from a void
created in a single-phase transformer model. More detail about this
transformer model can be found in [17].
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Fig. 2 Data size versus number of PD pulses (over time) for the two
storage methods

The three PD models are combined together in parallel to
simulate multi-source PD. Measurements are performed under the
application of an AC voltage which is increased slowly in small
steps. When the applied voltage exceeds the highest PD inception
voltage of the defects involved in the combined model, PD will
occur in all three sources.

The PD signals and voltages were recorded using a 600 MHz
bandwidth digital oscilloscope. Each PD signal was captured over
duration of 10 pus at a sampling frequency of 100 MHz, and the
relevant phase angle (¢) data are acquired through the oscilloscope.

3 Online PD signal processing

Due to the following reasons the PD data size can increase
dramatically:

* Noise: all pulses present must be first recorded with the
assumption that they are PD pulses. During online measurement,
the noise level is high which raises the number of saved pulses
significantly.

* PD generation rate: different PD sources have a different PD
generation rate. The measurement time should be long enough
to obtain sufficient information about the PD with the lowest
generation rate which makes the PD recording time high.

* Feature extraction: under multi-source condition (the most
common situation is online PD measurement), the appropriate
number of features must be extracted for PD source clustering.
This causes the size of data multiplied.

The streaming nature of online PD data (stream data) has posed
challenges to both database management and data mining methods.
One method to address the problem when facing a large amount of
data under online PD monitoring is to use the PRPD matrix instead
of storing each ¢—¢q data point. To do this, PRPD matrix is first
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initialised as a 128 X 128 zero matrix and subsequently updated for
each new PD pulse as below:

= |2
i= [ £ % 128] (1)
j:[ 9 = Guin ><128]
Ginax ~ Gmin

PRPD(i, j) = PRPD(i, j) + 1

where p and ¢ are the PD phase angle and charge, respectively.
¢n, and g, denote the minimum and maximum charges,
respectively. [.] represents the ceiling function for rounding to the
nearest integer in the direction of positive infinity. Since the PRPD
data is recorded in terms of the above matrix elements, its size does
not change with time, and its data size does not increase. Fig. 2
shows how the data size changes when one of the two storage
methods is employed. As demonstrated in Fig. 2, if every PD pulse
(p—q) is stored, the size of data is linearly increasing with the
number of PD pulses. However, when PRPD matrix is used, the
size of data stored is limited and independent of the number of PD
pulses.

If the PRPD matrix method is used to store PD data in the
presence of multi-source PDs, the information interpretation
becomes extremely difficult. Consequently, the multi-source
recognition process involves the following steps. Firstly, the PD
sources are separated within the PD pulse feature space, using a
clustering method. Next, using an identification algorithm, the sub-
PRPD patterns of step one are identified. To apply this general
method to the online mode process, the clustering algorithm must
satisfy the following requirements [18-21]:

* One-pass constraints: each PD pulse must be analysed only
once.

o Limited memory: due to memory size limitations, all the raw
data cannot be stored. Thus, clustering methods that require the
entire data set cannot be used.

* Real-time: the algorithm has to process PD data points on
average at least as fast as the PD pulse is arriving.

e Number of clusters: the number of active sources (clusters) is
unknown. Furthermore, in an evolving PD pulse stream, the
number of active PD sources is often changing. So no
assumption can be made on the number of clusters.

* Clusters shape: the shape of the cluster in the feature space is
unknown and can have an arbitrary shape that depends on the
PD source and feature type.

* Ability to handle outliers: in the PD stream scenario, due to
various factors, some random noise may appear occasionally.

A general method for clustering of stream data, which can meet

the above requirements, is called ‘stream clustering’.
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4 Stream clustering of PD signals

A stream clustering algorithm consists of two basic phases [22—
24]:

1. Online phase: which processes the incoming stream data
points to summarise them into microclusters. Microclusters
should include sufficient temporal and spatial information such
as cluster centres and additional statistics such as weight
(density) and dispersion (variance), to facilitate cluster
formation.

2. Offline phase: which generates clusters from the microclusters,
either periodically or on demand by the user.

The cluster partitions, on evolving data streams, are basically
computed over a set of certain time intervals (or windows). There
are three well-known window models: landmark window, sliding
window and damped window. In the landmark window model, all
arrived data until now are used for clustering. In the sliding
window model, a specified amount of recently arrived data is
considered for processing. In the damped window model, the
recent data are given higher importance than older ones. Fading is
usually implemented by assigning weights to the instances so that
most recent data possesses higher weights [25].

4.1 Online phase

Online phase maintains statistical information about the data
locality in terms of microclusters. These microclusters are obtained
using extracted features from PD pulses. The online
microclustering component requires a very efficient process for
storage of appropriate summary statistics in a fast PD data stream
[22].

The aim of online phase is to maintain statistics at a sufficiently
high level of granularity so that it can be effectively used by the
offline phase. In the following, two density-based stream data
clustering methods for online phase are introduced. The Density
Grids method is a simple scheme that can be very useful for
understanding stream clustering of PD pulses, and DenStream is an
advanced method for discovering clusters of arbitrary shape.

4.1.1 Density grids: This method is based on partitioning the
multi-dimensional data space into many density grids, and
assigning a PRPD matrix to each grid (i.e. micro PRPD). It
continuously reads new data record, places the multi-dimensional
data into the corresponding discretised density grid in the multi-
dimensional space, and updates the micro-PRPD according to (1).
Thus, we do not need to retain the raw data and only need to update
and analyse the micro PRPD. This concept is schematically
illustrated in Fig. 3.

Assuming the existence of two features such as f,, f,, then
four parameters: f,, f,, ¢ and g, are calculated for each PD pulse.
Using these two features, the PRPD matrix to be updated is
computed and updated using ¢ and ¢:

o= [ Ll @
= [ff T ’"]

k=k+()k-1)xn

PRPD,(i, j) = PRPD;(i, j) + 1
where f, . and f,,.. are minimum and maximum values of the first
feature, and f,,, and f,,, are minimum and maximum values of
the second feature. The first and second features are divided into n
and m parts. k is the number of grids and PRPD; denotes the
corresponding PRPD matrix. i and j are obtained from (1).

As the number of features increases, the number of micro-
PRPD can be significantly increased. For example, if each feature
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Fig. 3 Density grids method concept
(a) Density grid of two feature (colour indicates the density of points), (5) Micro-
PRPD of each grid

is divided into 10 grids then there would be 100 PRPD matrices for
2 features and 1000 PRPD matrices for 3 features. For this reason,
this method can only be implemented for 2 or 3 features at most.
Each feature is divided into several sections, depending on their
importance. The more important the feature, the more divisions are
needed. To use this method, there should be proper information
about the features, including minimum and maximum values and
their importance. In reality, most micro PRPDs are empty or only
contain few PD pulses.

4.1.2 DenStream: The second method used in the online phase is
DenStream. This is a density-based stream clustering method [26].
DenStream uses the damped window model for stream data
clustering in which the weight of each data point decreases
exponentially with time ¢ via a fading function f(z):

foy=e* ©)

where 1 > 0. The most recent data will have higher weights.
Note that with increasing value of A, the importance of the
historical data compared to the more recent data will decrease.

A core microcluster or c-micro-cluster, at time ¢ for a group of

close points p;, pis---» Py With time stamps Tj, Tp, ..., Ty, is
defined as {CF‘, CF, w}, where
n

w= Y ft—Ty 4)

J=1

CF' = 2 S =Tippij

J=1

CF = Y f(t—Typi;

J=1

These three parameters are calculated and updated at each time
step. If after 6t seconds, a new point (p) is merged to a

microcluster then its parameter will be {CFl +p, CF + pz, w+ 1}.
Otherwise, it is given by {2‘*"’ .CF',27%" . CF,27%" . w}. Two
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important parameters of microclusters, centre (c) and radius (r),
are calculated as below:

c=— (5)

=

— ——\2
CF _(CF
{5
where 7 <e. This microcluster is divided into two groups for
handling the outliers. If w > a the microcluster is a potential
microcluster (PMC), and if w < a the microcluster is considered an
outlier microcluster (OMC). The procedure for merging each new
point to the nearest PMC or OMC is shown in Fig. 4.

To avoid increasing the number of microclusters, the weight of
each PMC and OMC is checked at every T, time period

7, = [s10e(- 25| ©)

If the weight of each PMC is less than a and the weight of each
OMC is less than f= 20T 1)/ P~ 1) (1, is the
creation time of the corresponding OMC), this microcluster will be
deleted. By doing this, the number of PMC and OMC will always
be limited [26].

This method has three unknown parameters that need to be
specified:

¢ ¢: radius of each microcluster. If selected too small, the number
of microcluster will increase; if selected too large, clusters will
merge.

* a: weight for discriminating between PMC and OMC (handling
outlier). If selected too small, every microcluster will be PMC;
if selected too large, every microcluster will be OMC.

» J: extent of importance of historical data.

As mentioned, each microcluster is determined by three

parameters {@, CFZ,W}. These parameters are calculated and

updated with features obtained from the current PD signals. In
addition to current signal features, which are used to separate
active sources, the charge magnitude and phase position of each
PD should be known for further analysis. Because of this, the
PRPD matrix as the fourth parameter is added to each microcluster
and updated according to (1).
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The number of PRPD matrices is equal to the number of
microclusters. In a similar manner, for microclusters there are two
types of micro PRPD: p-PRPD and o-PRPD associated with PMC
and OMC, respectively.

Each time a call is made, p-PRPD is given to the user as output,
and these matrices are then converted to zero but other information
about PMC is not changed.

4.2 Offline phase

The PRPD matrices (or micro-PRPD images) generated in the
online phase can be called either periodically or on demand by the
user. The obtained PRPD matrices are usually much larger than the
number of active sources. For this reason, the number of PRPD
matrices is reduced to the number of active sources in the oftline
phase using clustering method. Since the offline part is usually not
‘time-critical’, traditional clustering algorithms can be used.

In this phase, those PRPD matrices whose number of PD pulses
is <2000 are removed. Such a number of PDs is considered
inadequate to form the PRPD matrix and does not have enough
information about the source of PD. This may result in the removal
of PD sources with low rate of occurrence, and the solution to this
shortcoming is to increase the call time.

The remaining matrices are clustered based on their correlation.
To do this, PRPD matrices are first considered as grayscale images
and proper features are then extracted from these images. The
histogram of oriented gradient method has been shown to retain
excellent performance for extracting features from PRPD images.
Each image divided into 4 x4 cells and 9 orientation histogram
bins results in a feature vector with a length of 324 [27]. The
correlation coefficient between two images is calculated using the
obtained features:

e v xy—(Xx)(Xy) e
W(ZX) = (ZVEY) - (T

where x and y are the feature vectors of PRPD greyscale images, v
is the length of the feature vector and r is the correlation
coefficient.

Agglomerative hierarchical clustering is used to cluster the
PRPD images based on their correlation coefficient [28]. In this
clustering method, a cluster is first assigned to each image, then the
similarity parameter () between different clusters is computed and
two most similar clusters are joined. This process is repeated until
only one single cluster is left.

5 Case study

Experiments are carried out to evaluate the effectiveness of the
proposed stream clustering methods. The setup is shown in Fig. 1
which includes the high voltage source, PD measurement circuit,
and the transformer model with internal PD connected in parallel
with external PD sources (corona and surface discharge). The PD
measurements are performed under application of a stepwise
varying ac voltage.

To perform the feature extraction, six bandpass filters with
centre frequencies of 0.5, 2, 5, 8, 12 and 15 MHz are used. The
bandwidth of each filter is 650 kHz. Using these bandpass filters,
six features are extracted for each PD pulse

=195 49795 95+ 95 956 (®)

The obtained features are normalised against the feature obtained
through the first filter

polaras ;If4 ass qre| ©
f1

As previously stated, the presence of noise, the difference in PD
rates, and the extraction of features for the separation of multi-
sources will increase the amount of data to be stored in online
monitoring. In this particular case study, the three PD sources and
the test voltage level are such that the discharge rate of the corona
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and surface discharge in air (these two sources also can be
considered as noise) is far more than the discharge rate in the
cavity. In order to obtain an adequate number of pulses from the
cavity discharge for the analysis, a very large number of discharge
pulses generated by these three sources should be stored. Storing
and analysing this large amount of data is very difficult. Therefore,
the two stream clustering methods (density grids and DenStream)
are used to address this issue.

5.1 Density grids clustering method

The first two features, namely F, and F,, are used to implement
stream clustering on the PD pulses. In the first step, the minimum
and the maximum of these features are determined. Realising that
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the first feature preserves more information for the separation of
sources than the second feature; the first feature was divided into
20 grids and the second feature was divided into 10 grids. Hence,
the total number of microclusters or micro PRPD is 200. In the
online phase, for each PD pulse, the respective micro PRPD is
selected using features and updated using p—q data.

The corresponding density grid map related to this case study is
shown in Fig. 5. As can be seen in the figure, many microclusters
are either empty or have very few PD pulses. Also, the sources are
not completely separated which makes it difficult to categorise
them in the offline phase.

In the offline phase, by first inspecting the micro-PRPDs and
realising that the number of PD pulses is <2000, they are discarded
and the remaining 62 micro-PRPDs are clustered using the
agglomerative hierarchical clustering method. Fig. 6 shows the
clustering result, where the vertical axis is (1 — ). As can be seen,
three clusters can be identified from which the three sub-PRPDs
are shown in Fig. 7, obtained based on the correlation value of 0.2.
As seen in Fig. 7, the patterns are not completely separate; the
corona pattern can be seen in all three sub-PRPD patterns, and the
void and surface patterns are overlapped (Figs. 7a and ¢).

This method is simple and very fast. It can process PD pulse
data at least as fast as the PD pulse is arriving and can be easily
implemented for practical application. However, the performance
of this method is dependent on the effectiveness of a limited
number of features (2 or 3 features) in the separation of PD
sources.

5.2 DenStream clustering method

To use this method, only three parameters (e, @, 1) need to be
determined. In this study, according to the features, the values of
these parameters are € = 0.2, « = 15 and A = 0.25. According to
(6), the weight of PMC and OMC is checked at each T, time
period of 5s. Fig. 8 shows the number of PMCs and OMCs over
duration of 20 min. Initially, the number of PMCs is increasing
rapidly, but it is gradually stabilised. However, the number of
OMCs goes up and down over time. The total number of
microclusters (PMC + OMC) is always <160. Fig. 9 shows the
location of the PMC and OMC, in the space of the first two
features, over the durations of 1 and 20 min.

Fig. 10 shows the clustering result of p-PRPD, where the
vertical axis is (1 — r). As can be seen, three distinct clusters can
be identified in this figure. Their sub-PRPDs are shown in Fig. 11
which demonstrates the excellent performance of this algorithm in
clustering active sources without storing a large amount of
information.

Since this method can use a large number of features without
increasing volume, it can perform well in the separation of active
sources. However, the problem with this method is that the
computation time increases with increasing number of PMC and
OMC. This method may fail to process PD data fast enough to
keep up with the new incoming PD data stream.

Fig. 12 shows how the data size changes for the three possible
methods. If all PD data are saved and then analysed, the data
volume increases linearly. If the density grids method is used, the
data volume is constant over time. For the DenStream method, the
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Fig. 9 Online phase: distribution of PMC and OMC
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volume of data shows a small change over time, but its volume is
always smaller than the density grids method. In this case study,
after 20 min, the volume of stored raw data is 225,000 times
greater than the volume of density grids method and 350,000 times
the volume of DenStream method. Also, it is easier to separate and
identify multi-sources in the DenStream method as compared to the
density grids method.

6 Conclusion

A new method for clustering of online PD signals of transformer is
presented in this paper. For evaluating the effectiveness of the
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proposed stream clustering methods, a void defect in a transformer
model, a corona source and a surface discharge source in air (as
external noise) are connected in parallel to form a multi-source of
PD with very different discharging rates.

The stream clustering algorithm consists of an online and an
offline phase. The online phase maintains statistical information
about the data locality in terms of micro-clusters whilst the offline
phase generates clusters from the microclusters. Two stream
clustering methods are used for separating the active sources
without saving raw PD data and only with one access to PD
signals.

The density grids method is very efficient, which is able to
process PD pulse data at least as fast as the PD pulse is arriving.
However, the performance of this method in the separation of PD
internal sources from external sources is highly dependent on the
ability of a limited number of features. On the other hand, the
DenStream method can handle a large number of features and can
perform very well in the separation of active sources. However, its
computation time depends on the number of PMC and OMC and it
may fail to process the PD signal fast enough.

In the case study presented in this paper, it is shown that the
size of stored raw data is 350,000 times the size of data stored
when the DenStream method employed. And this is after only 20
min recording PD data. The stream clustering method proves very
useful for separating active sources (separating internal PD source
from external noises) under online PD measurement without
requirement of saving a large amount of data. This will make
online PD diagnosis feasible.
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