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Prof. Dr. İsa Navruz
Electrical and Electronics Engineering, Ankara University

Date: 06.09.2021



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Sıddık Süleyman Kahraman

Signature :

iv



ABSTRACT

ENHANCING THE RESOLUTION OF MULTIMODE FIBER BASED
SPECTROMETERS

Kahraman, Sıddık Süleyman

M.S., Department of Physics

Supervisor: Assoc. Prof. Dr. Emre Yüce

September 2021, 70 pages

Speckle-based spectrometers are shown to reach resolving powers that exceed the

state-of-the-art grating spectrometers. These spectrometers offer high-resolution by

relying on a complex spectral to spatial mapping. Multimode fibers (MMFs) reduce

losses that occur from scattering of light and can also provide spectral to spatial map-

ping. The resolution of a MMF based spectrometer can be increased using longer

fibers that in return makes them susceptible to environmental changes. This study

introduces techniques based on wavefront shaping (WFS) to enhance the spectral res-

olution without changing the fiber parameters. The methods introduced here manage

to enhance the spectral resolution of a MMF based spectrometer by nearly twice and

demonstrate down to 5 pm resolution reaching a record resolution in the telecom

range.

Keywords: Multimode fiber, spectrometer, wavefront shaping
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ÖZ

ÇOK MODLU FİBER TABANLI SPEKTROMETRELERİN
ÇÖZÜNÜRLÜĞÜNÜN ARTIRILMASI

Kahraman, Sıddık Süleyman

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Doç. Dr. Emre Yüce

Eylül 2021 , 70 sayfa

Saçılım tabanlı spektrometreler, son teknoloji kırınım ızgarası temelli spektrometre-

lerin sahip olduğu çözme gücüne erişebilmektedirler. Bu tip spektrometrelerin sun-

duğu yüksek çözünürlükler karmaşık spektral-uzaysal eşleştirmeye dayanmaktadır.

Çok modlu fiberler ışığın saçılımından dolayı oluşan kayıpları azaltırlar ve spekt-

ral bilgiyi uzaysal konuma eşleştirmede de kullanılabilirler. Çok modlu fiber tabanlı

spektrometrelerin çözünürlükleri daha uzun fiberler kullanılarak artırılabilir fakat bu

durum onları çevresel değişimlere karşı daha duyarlı hale getirir. Bu tez çalışması fi-

ber parametrelerini değiştirmeden spektral çözünürlüğü artırmaya yarayan dalgaönü

şekillendirme tabanlı yeni teknikler sunmaktadır. Sunulan metotlar çok modlu fiber

tabanlı bir spektrometrenin spektral çözünürlüğünü yaklaşık iki kat artırıp 5 pm değe-

rine kadar gelişerek telekom dalgaboylarında rekor seviyede çözünürlük sunmaktadır.

Anahtar Kelimeler: Çok modlu fiber, spektrometre, dalga önü şekillendirme
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CHAPTER 1

INTRODUCTION

1.1 Spectral Analysis

Most common spectrometers utilize a diffraction grating which maps each wave-

length to a different coordinate in space. A sensor placed on the range of coordinates

can measure the intensity at of the incoming light. Due to the one-to-one spectral-

to-spatial mapping, each sensor measures the intensity of a different wavelength [1].

Fig. 1.1 shows illustrations of prism based (a) and grating based (b) conventional

spectrometers. Each wavelength is oriented at a separate direction, and multiple sen-

sors are placed at different positions after some distance.

While these spectrometers have a wide range of bandwidth, the spectral resolution is

often too low. The limiting factor is usually the physical size of the spectrometer. In

order to overcome this issue, one of the alternatives is to create a more complicated

spectral-to-spatial mapping. Various scattering media, such as a diffuser, can be used

for this purpose. However, the downside of spectrometers using scattering media

is the energy loss. A large portion of the incoming beam do not reach the sensors.

Multimode fiber based spectrometers solve this issue since the energy loss is very low

and a complex spectral-to-spatial mapping can still be achieved [2].

1.2 Multimode Fiber Based Spectrometers

Scattering medium-based spectrometers can be compact and provide much higher

spectral resolution than conventional spectrometers [3–6]. However, scattering from

rough surfaces introduce high loss. Instead, multi-mode fiber (MMF) based spec-
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Figure 1.1: (a) An illustration of a prism based conventional spectrometer. (b) An

illustration of a grating based conventional spectrometer.

trometers, and equivalently multi-mode waveguides offer high-resolution, low loss,

and compact solutions for spectral reconstruction [7–16].

When a light beam is coupled into a multimode fiber, the output of the fiber is usually

a speckle pattern as illustrated in Fig. 1.2. MMF’s have different propagating modes

of electromagnetic waves which travel at slightly different speeds along the axis of

the fiber. This difference creates a time delay at the end of the fiber and all the modes

interfere with seemingly random phases. The total interference creates these speckle

patterns which allow complex spectral-to-spatial mapping [17].

First discovered in 1980’s [18], MMF spectrometers have been studied intensively

in the literature [2, 9–11, 15, 16]. The sensitivity of the propagation constants and

thus the interference on the incoming wavelength assures that these spectrometers

have very high spectral resolution. While depending on several factors, the spectral

resolution is proportional to the length of the fiber [9]. Since the energy loss of
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Figure 1.2: An illustration of the output speckle patterns created by a MMF at differ-

ent wavelengths.

commercially available fibers is very low, it is convenient to simply increase the fiber

length for higher resolution. However, the output speckle patterns are very susceptible

to environmental factors such as temperature, humidity, and acoustic vibrations [2,

19]. These factors are enhanced when the fiber is longer. Therefore, it is desirable to

increase the spectral resolution without increasing the fiber length.

Here, we report techniques using wavefront shaping (WFS) to increase the spectral

resolution of MMF-based spectrometers. While the speckle phenomena have been

known for a long time [19], only recent improvements of WFS technologies allowed

a variety of applications [20–23]. Some of these applications include strong control

over speckle patterns with focusing and imaging through strongly scattering media

like MMF’s using feedback based [24–28], transmission matrix based [27, 29–38],

and deep learning based [39–44] techniques. Furthermore, multi-core MMF’s have

been used for hyperspectral imaging exploiting the fact that the spectrum can be re-

constructed from a single speckle pattern [45,46]. In these applications the structural

properties of scattering media is characterized using SLM’s [47] but MMF-based

spectrometers are yet to utilize WFS techniques. Similar to techniques used in mi-
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croscopy studies such as structured illumination microscopy [48] the additional de-

gree of spatial control provided by SLMs can be utilized to gain additional control in

the frequency domain.

1.3 Contributions and Novelties

The recent developments regarding Spatial Light Modulators are promising for spec-

trometer design as well as many other fields. In this thesis, we use an SLM to shape

the wavefront of the beam coupled into the fiber. This changes the energy distribution

among the fiber modes as well as the output speckle patterns. The output speckle

patterns are then processed to create a spectrometer that has a higher spectral reso-

lution. Our techniques allow the use of a shorter MMF without any compromise in

the bandwidth at an increased spectral resolution. We predict that the methodology

that we introduce here will pave the way for increased spectral resolution using even

more advanced processing methods.

Our contribution is in obtaining MMF spectrometers with record level high spectral

resolutions. Our novelty is in modifying the spectral behaviour through spatial mod-

ulation of a spatial-spectral coupled optical system.

1.4 The Outline of the Thesis

In this thesis, MMF physics will be explained and illustrated in the Theory and Sim-

ulation chapter. The experimental setups used will be explained in the Experimental

Setups chapter. Then, some of the methods attempted by the author will be listed

and explained, and their results will be shared in Methods and Results chapter. Final

results, and potential future work will be discussed in the Conclusion chapter.
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CHAPTER 2

THEORY AND SIMULATION

2.1 Physics of Multimode Fibers

The fibers used in this study are all cylindrical step-index fibers. The Maxwell’s

equations can be simplified into Eq. 2.1 and 2.2 in homogeneous and lossless dielec-

tric [17]. These assumptions can be made for the fibers used here. In homogeneous

and lossless dielectric media [17], the Maxwell’s equations can be simplified into

∇× E = −µ∂H
∂t

, (2.1)

∇×H = ε
∂E

∂t
. (2.2)

These assumptions can be made for the cylindrical step-index fibers used in this study.

At this point, the direction of the fields should be chosen. Transverse electric, trans-

verse magnetic and hybrid modes are the fundamental alternatives which result in

different solutions. There is a different convention that encapsulates all solutions

called Linearly Polarized (LP) modes which work under the weak guiding assump-

tion, ncore − nclad << ncore [17]. LP modes are superposition of the different alter-

native solutions and have fields with a fixed direction and polarization. Generating

LP modes in the experiments is practical because a simple laser or a polarizer can

ensure a linear polarization. Assuming the solutions of interest are linearly polarized

electromagnetic waves propagating in the +ẑ direction, they can be written in the
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form

E = E (r, θ) ei(ωt−βz), (2.3)

H = H (r, θ) ei(ωt−βz), (2.4)

where, β is the wavevector and ω is the laser frequency. Since the electric and mag-

netic field solutions are similar, it is sufficient to solve only the electric field. Using all

the previous equations, the differential equation for the electric field can be reduced

to the Helmholtz Equation

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ k2

0n
2

)
E (r, θ) = β2E (r, θ) . (2.5)

Using separation of variables, E (r, θ) = Er (r)Eθ(θ), the solutions can be separated

into radial and azimuthal parts. The azimuthal solution would be

Eθ (θ) = cos (mθ + φ), (2.6)

where, m is a non-negative integer due to azimuthal boundary conditions. The radial

solution can be written as

Er,mp(r) =

Jm
(
U r
a

)
, if r < a,

Km

(
W r

a

)
, otherwise.

(2.7)

Here, U and W , called normalized wavenumbers, are defined as

U = a
√
k2

0n
2
core − β2, (2.8)

W = a
√
β2−k2

0n
2
clad. (2.9)
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The exact solutions to Eq. 2.7 are determined from the boundary conditions at r = a.

These boundary conditions can be written as

Er
(
a+
)

= Er
(
a−
)
, (2.10)

∂Er (a+)

∂r
=
∂Er (a−)

∂r
. (2.11)

When boundary conditions are applied to Eq. 2.7, the characteristic equation can be

obtained,

Cm (β) = U
Jm+1 (U)

Jm (U)
−WKm+1 (W )

Km (W )
= 0. (2.12)

This characteristic equation cannot be solved analytically. In order to further analyze

the system, it is much more convenient to insert numerical values for the relevant

parameters and solve the characteristic equation through numerical analysis. The

solutions to the characteristic equation can be represented as βmp where p is a positive

integer. Using Eq. 2.6 to Eq. 2.9, the solution involving βmp will be

Emp(r, θ) =

Jm
(
r
√
k2

0n
2
core − β2

mp

)
cos (mθ + φ), if r < a,

Km

(
r
√
β2
mp−k2

0n
2
clad

)
cos (mθ + φ), otherwise.

(2.13)

The final solution in Eq. 2.3 involving the z-dependence can be rewritten as

Emp =

Jm
(
r
√
k2

0n
2
core − β2

mp

)
cos (mθ + φ)ei(ωt−βz), if r < a,

Km

(
r
√
β2
mp−k2

0n
2
clad

)
cos (mθ + φ)ei(ωt−βz), otherwise.

(2.14)

The actual solution is the summation of all the particular solutions. The solutions can

also be separated as even and odd. Thus, the complete should be written as

Etotal = Eeven + Eodd (2.15)
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where, Eeven and Eodd are

Eeven =


∑
mp

ceven
mp Jm

(
r
√
k2

0n
2
core − β2

mp

)
cos (mθ)ei(ωt−βmpz), if r < a∑

mp

ceven
mp Km

(
r
√
β2
mp−k2

0n
2
clad

)
cos (mθ)ei(ωt−βmpz), if r ≥ a

(2.16)

Eodd =


∑
mp

codd
mpJm

(
r
√
k2

0n
2
core − β2

mp

)
sin (mθ)ei(ωt−βmpz), if r < a∑

mp

codd
mpKm

(
r
√
β2
mp−k2

0n
2
clad

)
sin (mθ)ei(ωt−βmpz), if r ≥ a

(2.17)

Here, the coefficient of each LP mode, cmp, is represented by two different variables

for even and odd modes. These coefficients are related to the energy transferred in a

particular mode which is proportional to |cmp|2.

In a realistic scenario, the mode coefficients at the input and the output would be

different from each other. In an experimental environment, the MMF will not be

as ideal as it is in the theoretical approach, both in terms of geometry and material

imperfections. Therefore, the energies transferred in different modes will couple into

each other. Thus, it is necessary to define a different set of coefficients representing

the energy distribution at the output. Let cin be a vector representing all the codd
mp and

ceven
mp values at the input. Similarly, let the vector cout represent all the mode coefficients

at the fiber output. Depending on the specific position, time, temperature, humidity,

material imperfections etc. there will be a matrix which will give the relation between

cin and cin. This matrix, T, is called the mode-to-mode transmission matrix (TM).

Using this TM, the output coefficients can be calculated from the input coefficients as

cout = Tcin (2.18)

where the size of cin and cout are Nmodex1 and the size of T is NmodexNmode. This is

true in the linear relationship case. In simulations, this TM can be set to practically

any value. However, in experiments, it should be calculated beforehand in order to

utilize it.
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2.2 Numerical Simulation of a Multimode Fiber

The simulations are consulted when the analytical approaches become inconvenient

such as for the characteristic equation. In order to find all the solutions, the βmp

values for which Cm (β) is very close to 0 should be found. Numerical analysis,

here, is straightforward, Cm (β) is calculated for the range of possible β values for

each m value. The indices at which the equation converts from a positive value to a

negative value contains the solution. Unfortunately, the precision of the solutions will

only be as fine as the step size. However, the precision is improved by inserting the

range and the characteristic equation into a built-in MATLAB function called fzero

that uses an optimization algorithm [49]. Fig. 2.1 illustrates an example of such a

procedure. For a = 7.5µm, a/λ = 15 and m = 0, solutions with 4 different β values

are found. The MATLAB codes written by [49,50] which find the LP modes and their

spatial distributions are useful for the results in the first two figures. All other results

involving LP mode summations, z dependence, wavelength dependence, transmission

matrix etc. require further implementations as developed here.

Figure 2.1: Numerical calculation of the characteristic equation.
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If the step size of the discrete β values is chosen too large, there can be two solu-

tions within two consecutive points. In such intervals, the algorithm will under-count

the number of LP modes. It is possible to test the accuracy of the results by trying

smaller step sizes and observing when the found number of modes starts to con-

verge. Another test is to compare the number of modes found by the simulation to

the number of modes estimated by the "V number" of the fiber, Nmodes ≈ V 2/2 where

V = 2πaNA/λ. In this study, the step size is justified using these two methods.

The actual field distributions can be calculated from the βmp solution values using Eq.

2.16 and 2.17. Fig. 2.2 visualizes two LP modes for z = 0 and t = 0.

Figure 2.2: Intensity and phase distribution for two example LP modes. The upper

one is for even m = 0, p = 3. The lower one is for odd m = 4, p = 2. (a) Intensity

of the even mode of m = 0, p = 3. (b) Phase of the even mode of m = 0, p = 3. (c)

Intensity of the odd mode of m = 4, p = 2. (d) Phase of the odd mode of m = 4,

p = 2.

At the output of the fiber, the LP modes will obtain a phase shift due to the propaga-

tion. At an arbitrary coordinate z, the LP mode will still have the same intensity as
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long as it is the only mode excited. Fig. 2.3 illustrates the intensity distribution of a

single LP mode along the z = 0, z = 3µm and x = 0 planes. Since the LP mode

obtains a phase shift as it propagates, the real part of the complex field will alternate

as shown in Fig. 2.4 for the same planes.

Figure 2.3: Intensity of the LP mode of m = 0 and p = 3 along the z = 0, z = 3µm

and x = 0 planes.

A random speckle pattern can be generated using random excitation levels for each LP

mode. This is programmed by generating randomly each cmp as a complex normal

random variable. Fig. 2.5 illustrates the intensity distribution of a random speckle

pattern along the z = 0, z = 1mm and x = 0 planes. If a camera is placed at the

end of a 1mm MMF, the image should be similar to the distribution in the z = 1mm

plane. Similarly, Fig. 2.6 shows the phase of the speckle pattern in the same planes.
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Figure 2.4: Real part of the LP mode field of m = 0 and p = 3 along the z = 0,

z = 3µm and x = 0 planes.

Figure 2.5: Intensity of a random speckle pattern along the z = 0, z = 1mm and

x = 0 planes.
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Figure 2.6: Phase of a random speckle pattern along the z = 0, z = 1mm and x = 0

planes.

In the real experiments, the coefficients cmp are not random numbers. The values

are determined by the coupling at the input of the fiber which is why the spatial

distribution of the field at the fiber input is critical. If a beam is focused in a circular

region within the fiber, the coupled field will be an approximation to that field as a

summation of the LP modes. Fig. 2.7 shows an example of a field coupling into the

fiber. Fig. 2.7(a) shows the field distribution arranged right before the fiber input.

Fig. 2.7(b) shows the coupled field inside the fiber which should propagate without

energy loss. Fig. 2.7(c,d) show the field intensities after propagating 1mm and 1m in

the fiber, where the energy starts to spread around within the core.

If a different MMF with more number of modes was used instead of the MMF used

in Fig. 2.7 which has 34 modes, the field which couples into the MMF would be

much similar to the field provided just before the fiber entrance. Fig. 2.8 shows the

same field coupling and propagation for a fiber with 557 modes. Even though the

propagation distances are similar in Fig. 2.7 and Fig. 2.8, the intensity distributions

are much different due to the difference in the fiber parameters which are given in the

captions.
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Figure 2.7: Coupling of a field into and propagating within the MMF described earlier

which supports 34 modes with the parameters of a = 7.5µm, λ = 500nm, NA = 0.12.

(a) The incoming field intensity distribution. The field intensity distribution within

the fiber at (b) z = 0, (c) z = 1mm, and (d) z = 1m.

Up to here, all MMF outputs assumed that the LP modes do not transfer energy

amongst themselves along the way. This would be true in an idealistic scenario where

the materials are perfect and the fiber geometry is completely straight just like the

cylindrical geometry used in the theory. To simulate more realistic situations, the

mode-to-mode TM, T, described in Eq. 2.18 can be altered to a non-identity matrix.

All calculations up to here assumed an identity TM. Fig. 2.9 illustrates the difference

at the output if a completely random TM was used instead of an identity TM. The

speckle patterns for the identity TM and a random TM are clearly different as it can

be seen in the figure.

All the calculations until here can be used in most studies involving MMF’s and CW

lasers. However, in order to study fiber spectrometers, we are interested in the spectral

dynamics of a MMF. In order to calculate the output at a slightly different wavelength,
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Figure 2.8: Coupling of a field into and propagating within a MMF which supports

557 modes with the parameters of a = 52.5µm, λ = 1550nm, NA = 0.22. (a) The

incoming field intensity distribution. The field intensity distribution within the fiber

at (b) z = 0, (c) z = 1mm, and (d) z = 1m.

all the calculations starting from the characteristic equation should be done again. Just

to plot a graph with wavelength as the independent variable, too many calculations

are required which becomes computationally too expensive. This issue can be pushed

aside under the assumption that the wavelength range is very small, ∆λ� λ0 where

λ0 is the central wavelength and ∆λ is the bandwidth of interest. Let λ be an arbitrary

wavelength within the range λ0 − ∆λ/2 < λ < λ0 + ∆λ/2. The bandwidth can be

sufficiently small if the following are true:

• Number of LP modes is constant within the range, N (λ) = N(λ0)

• Spatial profiles of the LP modes are constant, Emp (r, θ;λ) = Emp (r, θ;λ0)

• Mode-to-mode TM is constant, T (λ) = T (λ0)
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Figure 2.9: The speckle patterns at the output under different TM’s for the MMF sup-

porting 34 modes. (a) Identity mode-to-mode TM. (b) The field intensity distribution

at z = 1m corresponding to the TM given in (a). (c) Random mode-to-mode TM

where each element is a complex normal random variable. (d) The field intensity

distribution at z = 1m corresponding to the TM given in (c).

Under these circumstances, the only difference while calculating the whole field in

the MMF, comes from the phase term in Emp. At t = 0, the difference can be written

as

Emp(λ) = |Emp(λ0)|ei arg (Emp(λ0))
λ0
λ . (2.19)

Using this new technique is very convenient for computational resources. Fig. 2.10

shows the spectral dependence of the speckle patterns using a random TM for a 34-

mode MMF. Fig. 2.11 shows the same figure for a 557-mode MMF which is closer

to the MMF used in our experiments: a = 52.5µm, NA = 0.22, L = 20m.

The idea of MMF based spectrometer comes here. Since the speckle patterns change
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Figure 2.10: Spectral dependence of the speckle intensity patterns for the MMF with

34 modes.

Figure 2.11: Spectral dependence of the speckle intensity patterns for the MMF with

557 modes.
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as the wavelength changes, as it can be seen in Fig. 2.11, it is possible to construct

a spectrometer. The similarity between two speckle patterns can be calculated using

the Pearson correlation. Fig. 2.12 shows three different speckle patterns at different

wavelengths. The Pearson correlation between (a) and (b) is around 0.95 while the

correlation between (a) and (c) is around 0.22. Clearly, as the wavelength changes,

the correlation drops.

Figure 2.12: Speckle field intensities at the output of 20m long 557 mode MMF with

a random TM at different wavelengths of (a) λ = 1550.00nm, (b) λ = 1550.001nm

and (c) λ = 1550.010nm.

The correlation drop as the wavelength is changed can be visualized better with a cor-

relation versus wavelength variation graph. The speckle patterns at different wave-

lengths are used to calculate the curves in Fig. 2.13. If a spectrometer was constructed

using this MMF, the spectral resolution of that spectrometer would be close to the full

width at half prominence (FWHP) value of this curve. The FWHP is similar to full

width at half maximum (FWHM) but the prominence accounts for the situation that

the curve never reaches zero. FWHP uses the peak value and the zero-slope value

where the peak ends to calculate the full width of the peak. If FWHM was calcu-

lated from the curves in the graph, the width would be larger than expected because

the curves never decrease down to zero. Fig. 2.13 illustrates the speckle correlation

curves for the identity TM case and random mode-to-mode TM case. The FWHP for

the random TM is smaller which is an indication of the dependence of the resolution

on the TM.
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Figure 2.13: Speckle correlation values averaged over lambda for identity and random

TM cases. The FWHP of the curves are given in the legend.
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CHAPTER 3

EXPERIMENTAL SETUPS

3.1 Phase-only Modulation Setup

The experimental setup for phase-only modulation can be seen in Fig. 3.1. A step-

index MMF with a 105 µm core diameter, and NA=0.22 is used. Two different lenghts

of MMF’s are used at different stages, a 2m fiber and a 20m fiber. The 20m MMF

provides a direct comparison with the pioneering study in [9]. The MMF was laid

on the optical table and kept as stable as possible without the use of any additional

stabilization mechanisms. A wavelength selectable laser (SANTEC WSL-100) that

operates at the telecom range, 1550 nm, was used throughout the experiments. The

laser output is coupled into a polarization maintaining fiber which ensures that the

incoming spatial beam profile is fixed. Then, the beam is coupled to free space and

expanded for phase modulation using a phase only SLM which functions properly

with linear polarization (Holoeye Pluto-Telco). A blazed grating is always added

to the intended phase pattern to eliminate 0th diffraction order. After the SLM, the

beam is focused by a lens (L1 in the schematic) and the 0th order is filtered by an

aperture. Only the 1st order couples into the MMF after a second lens (L2) and a fiber

port collimator that contains a third lens (Input Coupler) with a small focal length of

8.12mm. The output of the MMF is recorded using a InGaAs monochrome camera

(Allied Vision Goldeye SWIR-TEC). A typical speckle pattern can be seen in the top

right corner of Fig. 3.1.

This setup is verified to function properly by obtaining a focal point within the speckle

pattern using a feedback based iterative algorithm. The results show that a focal point

at the end of the fiber can be obtained through such algorithms which validates that
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the phase modulation is able to shape the wavefront of the beam and the impact on

the speckle pattern can be observed.

Figure 3.1: Phase-only modulation setup. A typical speckle pattern obtained from the

setup is also shown.

3.1.1 Wavefront Shaping Through a Multimode Fiber

In order to focus the light at a specific point within the speckle pattern, the algorithm

developed in [26] is adapted. The algorithm is a feedback based iterative optimization

of the target region intensity. This algorithm changes the value of all pixels on the

SLM in each iteration and therefore the effect of the new modification is much more

apparent compared to pixel based algorithms. Also, as reported in [26], the optimiza-

tion is faster compared to exhaustive-type algorithms. For the setup constructed here,

a visible focal point can be obtained with around 1000 trials. The corresponding time

required is dependent on the SLM speed.

The flow of the algorithm is shown in Fig. 3.2. Let the phase displayed on the SLM

in the nth iteration be Φn. In order to find the phase for the next iteration, a temporary

phase, Φtemp, is calculated as

Φtemp(x, y) = arg [(1− ξ)eiΦn(x,y) + ξei(kx cosα+ky sinα+θ)] (3.1)

where x and y are the coordinates of the SLM pixels, and all other variables are

uniform random variables generated again at each trial. ξ is generated from the range
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Figure 3.2: Algorithm flow of the focal point optimization.

[0, 1/2]. α and θ are random phases in the range [0, 2π). k is generated from the

interval [0, kmax] where kmax depends on the setup parameters as explained in [26].

The temporary phase is assigned to the next iteration phase, Φn+1(x, y) = Φtemp, if

the target intensity is higher, I target
temp > I target

n than the previous intensity. Otherwise,

no assignment is made and the Φtemp is generated again with new random values.

Fig. 3.3 illustrates the optimization process with the SLM phase patterns and the

corresponding speckle patterns at different iterations.
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Figure 3.3: Optimization of the target intensity. (a1-4) The phase distributions on

the SLM at various iterations. (b1-4) The corresponding speckle patterns which are

progressively more focused in the targets spot.
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3.2 Amplitude and Phase Modulation Setup

Since the SLM works as a phase-only modulator, modulating the amplitude and phase

independently requires a special technique [51]. In order to modulate the complete

complex field, certain modifications in the setup are required as in Fig. 3.4. The same

MMF, SLM, laser, and camera are used while the 4-f system after the SLM filters

out the high spatial frequencies and assures amplitude and phase modulation. The

amplitude modulation of this setup is verified using a temporary setup shown in Fig.

3.5. An extra lens (16mm) is used in this setup to ensure that the field modulated by

the SLM itself and not its Fourier (focused version) enters the fiber.

Figure 3.4: Amplitude and phase modulation setup.

3.2.1 Super-pixel Technique

The SLM used here is phase-only which means that the field amplitude is not altered

whatever the SLM pixel value is chosen. In order to independently control both the

amplitude and phase distribution, a super-pixel technique is used [51]. There are

several techniques used in different situations in the literature [51–55]. The most

appropriate technique [51], and used for MMF studies in [56] is adapted here. This

section is written to develop an intuitive understanding of the technique.
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Figure 3.5: Amplitude and phase modulation verification setup.

Imagine there is a complex electric field distribution EIntended(x, y) = A(x, y)eiψ(x,y)

intended to be displayed at the fiber input face where A(x, y) is the field amplitude

and ψ(x, y) is the field phase. For now, assume the intended amplitude has the shape

of the capital character "A" as shown in Fig. 3.6(a) and the phase has the shape of the

capital character "B" as shown in Fig. 3.6(b).

Figure 3.6: (a) Amplitude and (b) phase of the intended field.

The important step of this technique is to create a super-pixel consisting of 2x2 pixels

for each pixel in the complex field as drawn in Fig. 3.7. This doubles the required

number of pixels for the same resolution but it allows for complete control over the

amplitude and phase independently. The phase values φ1(x, y) and φ2(x, y) to be

written on a single super-pixel are determined from the intended amplitude A(x, y)
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and phase ψ(x, y) as

ϕ1(x, y) = ψ(x, y)− arccos(A(x, y)/2), (3.2)

ϕ2(x, y) = ψ(x, y) + arccos(A(x, y)/2). (3.3)

Figure 3.7: A sketch representing the formation of a super-pixel. A single pixel in the

complex field distribution corresponds to a region of 2x2 region after the formation.

Since a low pass filter will basically sum these fields within the super-pixel the final

field will be E(x, y) = eiϕ1 + eiϕ2 which can be simplified to E(x, y) = Aeiψ.

Therefore, low pass filtering the field is essential in obtaining the desired amplitude

and phase modulation. When the super-pixels are created for the intended complex

field in Fig. 3.6, the phase array to be displayed on the SLM is calculated as shown

in Fig. 3.8(b). The amplitude distribution after the phase-only SLM is as uniform as

the beam, shown in Fig. 3.8(a).

In fact, the traces of the "A" and "B" patterns can probably be seen on the phase

distribution depending on paper print quality of this thesis or the monitor resolution

displaying the digital version of this thesis. Under the right scale, my monitor aver-

ages out neighbouring pixels resulting in a natural filter before the reader’s eyes. In

the lab, to low-pass filter the field, a Fourier transformation is necessary. The Fourier

of an optical field can be taken using a single lens [57]. The electric field at the post

focal plane is the Fourier of the electric field at the prior focal plane. Using this prop-
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Figure 3.8: (a) Amplitude and (b) phase of the field right after the SLM.

erty, the f = 1 m lens in Fig. 3.5 takes the Fourier of the phase-only modulated

field because the distances between the SLM, lens and iris/aperture are all 1 m. For

the sake of this section, the Fourier of the intended field is taken using Fast-Fourier

Transform numerically on MATLAB. The results obtained after taking the Fourier

transform are depicted in Fig. 3.9: (a) the logarithm of field amplitude at the focal

plane, (b) the phase of the same field, (c) the spatial filter that an aperture of that par-

ticular size would create, (d) the logarithm of the field amplitude after the filter. The

phase of the filtered field is the same as the phase of the field before filtering because

the filter is a binary amplitude filter.

The second lens in Fig. 3.5 takes another Fourier transform which can be considered

as an inverse Fourier (except for a flip). The field at the post focal plane of the second

lens will be the filtered field which is expected to be similar to the intended complex

field. Fig. 3.10 shows the amplitude (a) and phase (b) of the obtained field at the post

focal plane of the second lens.

The cut-off of the low pass filter, or in the experiments, the aperture size, should be

arranged such that there is a clear and sharp intensity distribution. Fig. 3.11 shows

the amplitude and phase of the obtained field under various aperture size situations.

The aperture should be small enough to filter out the high frequency corresponding

to a period of two pixels which comes from the super-pixel division and large enough

to generate a clear and sharp image. Just as important as the aperture size, is the

aperture position whose effect is shown in Fig. 3.12. The obtained fields for the

slightly displaced aperture positions show the importance of the aperture alignment.
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Figure 3.9: (a) Amplitude and (b) phase of the field at focal plane, (c) the low-pass

filter shape and (d) the filtered amplitude of the field. The phase of the image is

unaltered with this binary amplitude filter.

Figure 3.10: (a) Amplitude and (b) phase of the obtained field.

The super-pixel technique explained in this section allows for independent amplitude

and phase modulation using the phase-only SLM. This technique is used in the later

sections to generate the field distributions of LP modes of the MMF in use.

The figures in this section are generated numerically on MATLAB but the same pro-

cedure is followed experimentally. At all points in this study, the phase array to be

displayed on the SLM is added with a blazed grating which just shifts the Fourier

image to the 1st order of the grating. Also, in the experiments, instead of using a 2x2
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Figure 3.11: Different aperture sizes (a1-4) and the amplitude (b1-4) and phase (c1-4)

of the corresponding obtained field.
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Figure 3.12: Different aperture positions (a1-4) and the amplitude (b1-4) and phase

(c1-4) of the corresponding obtained field.
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super-pixel, a 6x6 super-pixel is created with 4 regions in a similar manner because it

is found to be the optimal case in a previous study [56].

There is another critical point when aligning the experimental setup. It is very im-

portant that the fiber input plane is exactly at the post focal plane of the last lens

(f = 16mm) in Fig. 3.4. Otherwise, an unintended field distribution will enter the

fiber. To avoid such an issue, the following alignment procedure is applied. Two am-

plitude and phase modulated fields are generated as shown in Fig. 3.13. Fig. 3.13(a)

is an amplitude distribution where the inner region is illuminated and the outer region

is dark. In this case, the majority of the beam should enter the fiber. Fig. 3.13(b) is

an amplitude distribution where the outer region is illuminated and the inner region

is dark. In this situation almost no beam should enter the fiber. The size of the fiber

core in SLM pixel units can be calculated using the magnification of the laser beam

after all four lenses in the setup, the fiber core size and the SLM pixel size.

Figure 3.13: Field amplitudes used for fiber alignment. (a) Inner region has a non-

zero amplitude while the outer region has a zero amplitude. For this input, the coupled

power should be maximum. (b) Outer region has a non-zero amplitude while the inner

region has a zero amplitude. For this input, the coupled power should be minimum.

When aligning the x-y position of the fiber input, it is sufficient to either maximize the

first field’s coupled power, or minimize the second field’s coupled power. However,

if the z position of the fiber is not optimal (at exactly the post focal plane of the

last lens), it would not be possible to maximize the first and minimize the second

simultaneously. So, the z position and the x-y position should be adjusted until both

situations are optimized simultaneously, the first field having a high coupled power

and the second field having a low coupled power.

If the super-pixel technique was not adopted and amplitude modulation was not pos-
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sible, it would be harder to align the fiber in a 4-lens setup. An alignment procedure

similar to the one explained should be developed. The pixels in the inner region

should affect the speckles while the outer region pixels have no effect. Patterns dis-

played on the SLM should somehow reflect this effectiveness of the inner and outer

regions.

3.3 Phase Conjugation Setup

Phase conjugation is widely used in the MMF studies [31, 35, 36, 56, 58–60] because

with the phase information, the input-output correspondence can be estimated with a

linear relationship in small fibers. The phase conjugation setup shown in Fig. 3.14

is an interferometric measurement of the speckle patterns. There is an external ad-

ditional optical path from which unmodified laser beam reaches the camera. This

external reference beam interferes with the output of the fiber. The phase delays are

given by the SLM on top of the intended complex input field.

Figure 3.14: Phase-only modulation setup.

A single shot measurement leads to an intensity-only measurement. In order to mea-

sure the complex field, an interferometric measurement is required. For the interfero-

metric measurement, phase delays of α ∈ {0, π/2, π, 3π/2} are given and the output
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intensity patterns are measured. The intensity at the camera can be calculated as

Iα = |Eref + Efibere
iα|2 (3.4)

where Efiber = Aeiθ is the field coming from the fiber output and Eref = A0 is the

field coming from the reference path. The reference field also defines the reference

phase which is why the beam should be as clean and uniform as possible. α is the

additional phase given by the SLM intentionally. After recording the intensity under

different phase delays, the complex field can be calculated by

Ecomplex =
∑
α

Iαe
−iα = 8A0Ae

iθ = 8ErefEfiber. (3.5)

It can be seen that the final calculation is only proportional to the desired field if the

reference field is uniform. Fig. 3.15 shows the intensities at four different delays and

the calculated summation which should be proportional to the desired complex field.

The final field qualitatively looks like any other speckle pattern which is an indication

of the phase measurement accuracy.
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Figure 3.15: The camera images recorded with different phase delays of (a) 0, (b)

π/2, (c) π, and (d) 3π/2. The (e) amplitude and (f) phase of the calculated fiber

output.
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CHAPTER 4

METHODS AND RESULTS

Before this study was conducted, MMF based spectrometers were already known in

the literature [7–16]. The first findings of this study verify the results in the literature.

The authors of [9] use fibers with core diameter 105µm, or a = 52.5µm, NA = 0.22

and L = 20m in the telecom range. Here, the same MMF have been used. Also, it

is shown that the spectral resolution scales linearly with the fiber length [9]. Thus, a

MMF with the same parameters but L = 2m is also used. In order to calculate the

spectral resolution, Pearson correlation is used in this study and Pearson correlation

is very similar to a custom definition used by Redding et. al. in [9]. Both correlation

definitions can be seen to give similar results in Fig. 4.1, where the correlation curves

for 2m and 20m fibers can be seen.

Figure 4.1: Correlation curves for the original spectrometers. (a) For the 20 m long

fiber, the Pearson correlation curve, in blue, and the Redding correlation curve, in red.

The FWHM of Redding is 8.63 pm and the FWHP of Pearson is 9.73 pm. (b) For

the 2 m long fiber, the Pearson correlation curve, in blue, and the Redding correlation

curve, in red. The FWHM of Redding is 70 pm and the FWHP of Pearson is 63.9 pm.
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In this study, the Redding correlation becomes incalculable after certain procedures.

But Pearson correlation is still useful in those cases. As a result, the Pearson corre-

lation will be used in the upcoming analyses. Also, to calculate the resolution from

the Redding correlation curve, normally, the zero-crossing point and/or FWHM is

used [9]. However, to calculate the width of the Pearson correlation curve, FWHM

is not appropriate because it never reaches zero. An alternative definition is the full

width at half prominence (FWHP) which can be calculated using the built-in function

findpeaks on MATLAB. FWHP calculation uses the zero-slope points instead of

zero-crossing points. It can be seen from Fig. 4.1 that both definitions are very simi-

lar. The resolutions are summarized in Table 4.1.

Table 4.1: Spectral resolution values of the original spectrometers.

FWHM of Redding Corr. FWHP of Pearson Corr. Literature

2 m 63.9 pm 70 pm -

20 m 8.63 pm 9.73 pm 10 pm [9]

100 m - - 1.5 pm [10]

4.1 Fiber Spectroscopy Using Orthogonal Input Wavefronts

Unlike conventional MMF-based spectrometers where the wavefront of the incoming

beam is kept fixed [9, 10, 13–15], in the following methods, it is phase-modulated

before entering the MMF using the setup given in Fig. 3.1 with the objective of

enhancing the resolution. For each incoming spectrum to be analyzed by the spec-

trometer, multiple snapshots of the output speckle pattern are recorded under various

phase modulations via the SLM, each taking milliseconds depending on the speed of

the SLM and camera. As a result, we obtain additional frequency dependent degree

of control that leads to increased resolution. Although this gives a wider range of

information, it does not directly enhance the resolution of the spectrometer. The new

information is used in two different, simple yet fast, processing steps to create images

that are more sensitive to changes in the spectrum, explained in the following subsec-

tions. The SLM patterns are selected from an orthogonal basis, for which, vectors are
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drawn from a Hadamard basis [27, 29]. In fact, the speckle patterns at the output of

a MMF are shown to be sparse even if the input images are not selected from a ran-

dom basis [61]. As long as the inputs result in sufficiently different speckle patterns

as if they could have been the outputs of different fibers, they can be used. For this

reason, any choice of SLM patterns (other than Hadamard based patterns) might be

appropriate if the speckle patterns are not similar.

A one-dimensional vector drawn from a Hadamard matrix is reshaped as a square.

Then, this square matrix is resized to have the same size as the SLM screen. Four

of these patterns obtained from four different Hadamard vectors are displayed on

the SLM and the corresponding output speckle patterns are recorded for a range of

wavelengths. An example set of Hadamard-based SLM patterns and corresponding

speckle patterns obtained for a single wavelength are shown in Fig. 4.2(a) and Fig.

4.2(b), respectively. In our measurements, we observe that four structured SLM pat-

terns are sufficient to nearly double the resolution that only takes 16.6x4=66.4 ms

with our equipment, which is much faster than a scanning grating that is employed in

a conventional spectrometer.

Figure 4.2: An illustration of the spatial filtering method. (a) The patterns displayed

on the SLM for phase modulation. Each pattern is created using a vector drawn

from the Hadamard matrix. The black regions represent 0 phase modulation while

white regions represent π modulation. (b) The speckle patterns obtained at a single

wavelength for the corresponding SLM patterns.
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4.1.1 Spatial Filtering

The first method for post-processing, spatial filtering for this section, is implemented

after recording the speckle patterns for a number of different SLM patterns at all

wavelengths of interest. This filtering method is visualized in Fig. 4.3(c-d). After

adding all the speckle patterns obtained for different vectors, the image is filtered

using a band-pass filter. The cut-off frequencies of the filter are varied and the best

set of parameters are chosen in the end. An example image for a single wavelength

after such a procedure is shown in Fig. 4.3(d). After the filter, the image includes

speckle grains within a certain range of size (determined by the cut-offs). Intuitively,

the filtering affects the decorrelation length because of the underlying LP mode struc-

tures. LP modes with naturally smaller individual speckles are left in the image. The

wavevector, β, values of these LP modes will be more dominant after the filtering. In

fact, there are more lobes/structures in the LP modes with high (m, p) values. These

LP modes usually have smaller βmp values. So, spatial filtering, indirectly, modifies

the effective βmp values within the speckle pattern.

Figure 4.3: An illustration of the spatial filtering method. (a) The patterns displayed

on the SLM for phase modulation. Each pattern is created using a vector drawn from

the Hadamard matrix. The black regions represent 0 phase modulation while white

regions represent π modulation. (b) The speckle patterns obtained at a single wave-

length for the corresponding SLM patterns. (c) The obtained images are summed.

Afterwards, this summed image is filtered using a band-pass filter. (d) The filtered

output speckle image at a single wavelength.

To express the technique analytically, let I raw
n (λ;x, y) be the raw output speckle pat-
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tern without any filtering obtained for the nth Hadamard vector at λ. The summed

image can be expressed as

I sum
m (λ;x, y) =

m∑
n=1

I raw
n (λ;x, y) (4.1)

where,m is a positive integer. Next, the summed image is filtered through a band-pass

filter which can be expressed as

Ifiltered
m (λ;x, y) = F−1{F{I sum

m (λ;x, y)}H(kx, ky)} (4.2)

where F is 2D Fourier Transform and F−1 is its inverse. H(kx, ky) is the frequency

response of the band-pass filter which can be defined as

H(kx, ky) =


0, if

√
k2
x + k2

y < klow

1, if klow ≤
√
k2
x + k2

y < khigh

0, if khigh ≤
√
k2
x + k2

y

(4.3)

This filtering is performed for a whole range of klow and khigh values. Fig. 4.4 shows

how this parameter scan is completed for the m = 4 case as defined in Eq. 4.1. After

choosing the parameters, a spectrometer using the filtered images is created and the

full width at half prominence (FWHP) of the correlation curves are calculated, shown

in Fig. 4.4(a). The calculation of correlation curves is explained later. Similarly,

the reconstruction error for the spectrometer is calculated as the root mean square

error (RMSE), shown in Fig. 4.4(b). After obtaining the array of RMSE, the set of

parameters that lead to the smallest reconstruction error can be found, as indicated by

the red cross in Fig. 4.4(a,b), the band-pass filter shape for this point is shown in Fig.

4.4(c). An example of a filtered speckle pattern can also be seen in Fig. 4.4(d) for a

specific wavelength. In (a,b), the x axis is the higher cut-off (spatial) frequency, khigh,

and the y axis is the lower cut-off (spatial) frequency, klow. Since khigh ≥ klow, these

scan arrays are triangular. Each axis is normalized by 2π/a where a is the core radius

of the fiber. As an example, k = 20 corresponds to signals with a period of a/20.

The filter shape shown in (c) has |klow| = 13.125(x2π/a) and |khigh| = 17.5(x2π/a),

which means the signals with period between a/17.5 and a/13.125 are left in the

image. So, the speckle grains within this range of sizes are in the filtered image as

shown in (d).
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Figure 4.4: Figure showing the parameter scan for the cut-off values of the band-pass

filter. (a) The FWHP of the correlation curve after filtering with the given cut-off

values. (b) The RMSE of the reconstructed spectra using the filtered images with the

given cut-off’s. In (a,b), the x axis is the higher cut-off (spatial) frequency, khigh, and

the y axis is the lower cut-off (spatial) frequency, klow. (c) The shape of the optimal

filter that gives the minimum RMSE shown with a red ’x’ in the scan figures. The x

and y axis in graph are the wavevectors, kx and ky normalized by 2π/a. The filter

shape has a klow = 13.125(x2π/a) and khigh = 17.5(x2π/a), which means the signals

with period between a/17.5 and a/13.125 are left in the image. (d) The amplitude of

the filtered image for the optimal case at λ = 1550nm. The speckle grain sizes in this

image should be between a/17.5 and a/13.125.
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The speckle patterns decorrelate as the incoming wavelength is changed. For the

original spectrometer, the decorrelation is measured to be around 8pm for a MMF de-

scribed in the experimental setup [9]. In this study, we use filtered images instead of

the raw speckle patterns to increase the resolution. Since the filtered images are com-

plex, the inner product is calculated between the filtered images obtained at different

wavelengths and then averaged over λ similar to the correlation definition in [9]. In-

ner product is the same as Pearson correlation as long as the images are real, as in the

case of the raw images. This calculation can be written as

Cm (∆λ) =
〈
Ifiltered
m (λ+ ∆λ;x, y) · Ifiltered

m (λ;x, y)
〉
λ

(4.4)

where, A · B denotes the inner product between A and B, and 〈. . .〉λ is an average

over λ. Fig. 4.5 shows the inner product for the original non-filtered and filtered

images with different m. The inset plots the full-width-at-half-prominence (FWHP),

δλ, which quantifies the spectral resolution of the system. The results show that for

higher m values, lower FWHP values are obtained which is an enhancement in the

resolution. For the purpose of the inset plot, the original spectrometer FWHP value

is visualized at m = 0 since only m ≥ 1 correspond to new results.

In order to test the spectrometer, an unknown spectrum needs to be reconstructed. The

reconstruction algorithm as developed in [9], requires the measurement of a calibra-

tion data. This calibration data consists of the speckle pattern images for monochrome

inputs scanning the whole bandwidth. Each speckle image is reshaped as a vector,

then these vectors are used to construct the spectral reconstruction matrix as in [9].

The pseudo-inverse of this can be used for unknown speckle images. Let the speckle

image measured at λ be represented as I(x, y, λ) with Npixel number of pixels in the

image. The 2D image is reshaped into a vector as I(r, λ) of size Npixelx1. After this

procedure, each vector is added as a column into a reconstruction matrix M . If the

number of different wavelengths measured is Nλ the size of the matrix, M , would be

NpixelxNλ. Let Iunknown(x, y) be an image whose spectrum is unknown. In order to

reconstruct the spectrum for this image, after reshaping it to, Iunknown(r), a vector of

size Npixelx1, it is multiplied by the inverse matrix M−1 as

Sunknown(λ) = M−1 · Iunknown(r) (4.5)
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Figure 4.5: Correlation versus wavelength variation. As the wavelength is changed,

the speckle patterns differentiate and the similarity decreases. For larger m, the fil-

tered images result in steeper decorrelation which corresponds to a better spectral

resolution overall. (Inset) FWHP versus m. The negative slope shows that the fil-

tered images have better resolution.
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where the size of M−1 is NλxNpixel and thus the size of the reconstructed spectrum

vector, Sunknown(λ), is Nλx1. The values in the spectrum vector Sunknown(λ) tells the

fraction of energy at each wavelength λ. As long as, the columns ofM are orthogonal

to each other, successful reconstruction should be possible. The columns would be

orthogonal to each other if the inner product is small. Since the inner product for

real valued images is proportional to the Pearson correlation, orthogonality can be

evaluated using Pearson correlation.

Fig. 4.6(a) illustrates the reconstruction of a number of different spectra. Monochrome

inputs within the whole range of bandwidth can be reconstructed accurately. An input

spectrum which has two peaks separated by only 4 pm can be distinguished as shown

in Fig. 4.6(b). We know from the FWHP value that the spectral resolution is around

5 pm which is sufficient to reconstruct two peaks that are separated by only 4 pm.

Figure 4.6: Spectral reconstruction for the minimum RMSE of 0.05 which has a reso-

lution of around 5 pm. (a) 12 different reconstructed spectra for monochrome inputs

that are equally spaced within the bandwidth shown. (b) Spectral reconstruction of

an input which has two monochrome beams separated by only 4 pm. Two peaks are

clearly distinguishable indicating that the 5 pm de-correlation width is sufficient to

reconstruct spectrum with 2 pm steps as in the figure.

The chosen point on the parameter space in Fig. 4.4 is not the only choice that could

be made. If another point with a smaller FWHP but a higher RMSE was chosen, the

results would have been different. Fig. 4.7 shows the reconstruction for such a point

with klow = 18.375(x2π/a) and khigh = 23.625(x2π/a). The peaks are distinguish-

able since the FWHP is 2 pm however the peak values are less than 1 showing that the

reconstruction is worse as expected from the high error of RMSE = 0.10. However,

the calculated spectral resolution is better as it is seen in Table 4.2.
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Figure 4.7: Spectral reconstruction for a different point with 1.8 pm FWHP and

RMSE around 0.11 which is higher than minimum. (a) 12 different reconstructed

spectra for monochrome inputs that are equally spaced within the bandwidth shown.

(b) Spectral reconstruction of an input which has two monochrome beams separated

by only 4 pm. Two peaks are clearly distinguishable however the y value is not 1

which is why the reconstruction is not optimal.

Table 4.2: Spatial filtering with different cut-off frequencies.

Filter Choice klow(x2π/a) khigh(x2π/a) FWHP RMSE (au)

Fig. 4.6 13.125 17.5 5 pm 0.05

Fig. 4.7 19.25 23.625 1.8 pm 0.11

In this study, we report a technique which we call "structured illumination spec-

troscopy", because of the control on the input wavefronts applied to MMF spectrome-

ter. The wavefront control employed here does not require any complicated procedure

such as phase conjugation, speckle optimization, machine learning, or transmission

matrix measurement. It is sufficient to measure the intensity speckle patterns for a

few phase modulations which can be created using a Hadamard matrix within mil-

liseconds. The speckle patterns are spatially filtered to create an image that is more

sensitive to variations in the spectrum. The modulated speckle patterns can be consid-

ered as uncorrelated images where each modulation introduces different wavelength

dependencies.

The spectral resolution with the smallest reconstruction error reported in this study is

around 5pm while the original spectrometer without WFS or spatial filtering was 8pm

[9] for the same MMF. A record resolution of 1.5pm has been reported previously
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using 100m MMF [10]. If the same MMF was used here, a record of sub-picometer

spectral resolution would be expected since the resolution increases linearly with the

fiber length [9]. The wavelength selectable laser used in this study has a minimum

1pm step-size which prevents the measurement of sub-picometer spectral resolutions.

Even though this technique is applied on MMF spectrometers here, it can be applied

in spectrometers based on a photonic chip [11] where an enhancement in spectral res-

olution could be much more difficult to achieve. Furthermore, the results of this study

raises questions on what WFS can achieve in multimode systems. Utilizing WFS to

manipulate the spectral activity can be crucial in various other studies. In general,

spatial WFS can play a significant role where the spatial and spectral dynamics are

coupled, and this study provides a solid output in this direction.

4.1.2 Activation Function

The second method developed for post-processing involves the activation function

which will be explained in this section. This processing is implemented after record-

ing the speckle patterns for a number of different SLM patterns at all wavelengths

of interest. This process is visualized in Fig. 4.8(c). The speckles obtained for dif-

ferent vectors are subtracted from each other and passed through a ramp function

(alternatively, a rectified linear unit) which is the activation function. Hence, after the

subtraction, if the value of a pixel is negative, it is set to zero. An example of the re-

sulting images for a single wavelength are shown in Fig. 4.8(d). As more speckles are

subtracted, more pixels in the processed images become zero. This processing step

can be thought of as extracting the intensities that are unique to the speckles obtained

from only one Hadamard vector.

To express the technique analytically, let Irawn (λ;x, y) be the raw output speckle pat-

tern without any processing obtained for the nth Hadamard vector at λ. The processed

image can be expressed as

Iprocessedm (λ;x, y) = max

(
0, Iraw1 (λ;x, y)−

m∑
k=2

Irawk (λ;x, y)

)
(4.6)
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Figure 4.8: An illustration of the processing method. (a) The patterns displayed on

the SLM for phase modulation. Each pattern is created using a vector drawn from

the Hadamard matrix. The black regions represent 0 phase modulation while white

regions represent π modulation. (b) The speckle patterns obtained at a single wave-

length for the corresponding SLM patterns. (c) The obtained images are subtracted

from each other. Afterwards, the total image is passed through a ramp function. (d)

The final output images at a single wavelength for different m values.

where, m is a positive integer while m = 1 can be simplified to Iprocessed1 = Iraw1 ,

which is what the ordinary speckle spectrometers use [1]. Asm increases, eventually,

all pixels will become zero in the processed image and no information will be left.

However, there is a convenient range of m values where this operation will extract

unique information from various wavefront-shaped speckle patterns that provide an

additional frequency dependence for increasing resolution.

The non-processed, raw speckle patterns decorrelate as the incoming wavelength is

changed as shown in Fig. 4.9 withm = 1. The decorrelation is measured to be around

8pm for a MMF described in the experimental setup. Since the processed image for

m = 1 is exactly equal to the raw speckle pattern, we observe the same resolution

reported in [9].

The spectral dependence for raw and processed speckle patterns can be evaluated

using Pearson correlation which is calculated between the images obtained at different

wavelengths and then averaged over λ. This calculation can be described as

Cm (∆λ) =
〈
r
(
Iprocessed
m (λ+ ∆λ;x, y) , Iprocessed

m (λ;x, y)
)〉

λ
(4.7)
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where, r (A,B) denotes the Pearson correlation between A and B, and 〈. . .〉λ is an

average over λ. Fig. 4.9(a) shows Cm (∆λ) with different m. The full-width-at-half-

prominence (FWHP) denoted by δλ of the curves in 4.9(a) is plotted in Fig. 4.9(b).

The results show that for higher m values, lower FWHP values and hence higher

resolutions are obtained.

Figure 4.9: (a) Correlation curve as the wavelength is varied for different m. (b) The

FWHP of correlation curves vs m. (c) The FWHP of correlation curves vs m in a

simulation environment.

The developed technique has also been verified in a numerical MMF simulation and

the FWHP results are shown in 4.9(c). The simulation is carried out using the MAT-

LAB which developed in the earlier chapters. Here, each element of the mode-to-

mode TM is taken as a normal random variable and the amplitude of the incoming

beam has a 2D Gaussian shape. The wavelength dependent calculations include the

assumptions made earlier that the bandwidth is much smaller than the central wave-

length. Experimental and simulation plots agree that further processing (higher m

values) decrease the FWHP. The small difference between the simulation and experi-

ment results can be neglected considering the assumptions in modeling the simulation

and the environmental conditions in the experiment. Nevertheless, both curves have

a decreasing trend which shows the advantage of utilizing WFS and the proposed

processing algorithm for spectrometer design.
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While the codes developed in earlier sections are used in the simulation, this is an

appropriate point to illustrate all the steps altogether in Fig. 4.10. This figure shows

two example LP mode amplitudes (a,b), the amplitude of the TM (c), the amplitude

(d,e,f) and phase (g,h,i) of the input field right before the MMF (d,g), the field right

after coupling into the MMF (e,h) and the output field right after the MMF (f,i), and

the processed speckle images for 2 ≤ m ≤ 4 (j,k,l).

Figure 4.10: Simulation results are shown in the figure. (a,b) Two example LP mode

amplitudes. (c) The amplitude of the TM. The intensity (d) and phase (g) of the input

field right before the MMF. The intensity (e) and phase (h) of the field right after

coupling into the MMF. The intensity (f) and phase (i) the output field after the MMF.

(j,k,l) The processed images for 2 ≤ m ≤ 4.

The procedure described in Eq. 4.6 can be generalized by introducing a new threshold

50



parameter, ITh, as

Iprocessed
m (λ;x, y) = max

(
ITh , I

raw
1 (λ;x, y)−

m∑
k=2

I raw
k (λ;x, y)

)
(4.8)

The specific case ITh = 0 is equivalent to Eq. 4.6. The FWHP for different ITh is

plotted in Fig. 4.11(a) up to m ≤ 5. At ITh = 0, m = 5 cannot be seen because

for this value of ITh, there are speckle patterns with all pixel values equal to ITh.

This situation hinders the correlation measurement as well as spectral reconstruction.

Hence, for each m value, there is a range of ITh which causes an enhanced resolution

as well as a range that has a feasible spectral reconstruction.

Fig. 4.11 shows the FWHP (a) and mean-squared error (b) for spectrometers con-

structed using different threshold values. The spectra of a number of monochro-

matic speckle patterns within the bandwidth are reconstructed, and the average mean-

squared error is plotted in this graph. The m = 4 case at ITh = 0 seems to have both

a high resolution and a low reconstruction error which makes it a good spectrometer.

Figure 4.11: The FWHP (a) and MSE (b) of the spectrometer vs the threshold value.

The reconstruction method outlined in [9] is implemented here on the processed im-

ages instead of the raw speckle patterns. Although in [9], only a fraction of all the

pixels are used during reconstruction, all pixels are used in this study because the

processed images have less non-zero pixels. If the chosen pixels were all zero, by co-
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incidence, around a certain wavelength, reconstruction would fail around that wave-

length. This is observed for sufficiently high ITh values for all m values.

Fig. 4.12 shows the reconstructions for different spectra with different processed

images. A step size of 1 pm is used for all cases. Fig. 4.12(a,c) show the recon-

structed spectra for different monochromatic inputs for the original case, m = 1, and

for the m = 4 case, respectively. The difference is small but the m = 4 case has

narrower peaks than the original m = 1 case which is an indication of the resolution

enhancement. Fig. 4.12(b,d) show the reconstruction for a spectrum that has two

monochromatic lights separated by only ∆λ = 3pm for the original case, m = 1, and

for the m = 4 case, respectively. The m = 4 case, unfortunately, cannot distinguish

these two peaks. The reason for this is the non-linearity of the processing used in this

section which is caused by the ramp function in the processing step.

Figure 4.12: Reconstructed monochrome spectra (a,c) and reconstructed double-peak

spectrum (b,d) for the original (a,b) and processed (c,d) spectrometers.

Since the spectrometer constructed in this section can reconstruct monochrome in-

puts but cannot reconstruct arbitrary spectra, this is a wavelength-meter rather than

a spectrometer. Since this is only a wavelength-meter, the input speckle image can

be normalized before applying any algorithm on it. This normalization will allow the

spectral monochrome peak to be around 1 whatever the incoming laser power is. The

enhancement in the spectral resolution is still valid for this wavelength-meter which

is around 3 pm.
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In Fig. 4.12, threshold values resulting in minimum MSE are chosen. Alternatively,

threshold values resulting in minimum FWHP could have been chosen. Fig. 4.13

shows the reconstruction for both situations for 1 ≤ m ≤ 4. The spectra in (b1-4)

are for low FWHP, high MSE however the pre-normalization on the speckle image

ensures all peaks are near 1. For this wavelength-meter, even though the MSE is

high is some cases, the monochrome spectrum can be reconstructed thanks to the

normalization. The FWHP and MSE values for all cases are summarized in Table

4.3.

Figure 4.13: Reconstructed monochrome spectra for 1 ≤ m ≤ 4 for low RMSE

(a1-4) and for low FWHP (b1-4).
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Table 4.3: Activation function processing with different thresholds.

m Choice ITh/〈I〉 FWHP MSE (au)

1 Low MSE 1 7.7 pm 0.040

2 Low MSE 1 5.9 pm 0.032

3 Low MSE 0.25 6.1 pm 0.028

4 Low MSE -1 5.4 pm 0.015

1 Low FWHP 3 3.7 pm 0.781

2 Low FWHP 2 4.0 pm 0.091

3 Low FWHP 1.25 4.0 pm 0.080

4 Low FWHP 0 3.2 pm 0.032

4.2 Mode Filtering

The previous section highlights how speckle pattern processing can enhance the spec-

tral resolution. In order to further understand the underlying physics, the LP modes

and their wavevector values βmp should be considered. Each LP mode field alternates

as the wavelength is varied. In simulations, certain assumptions also valid in the ex-

periments, lead to Eq. 2.19 which shows how the phase of an LP mode depends on

the wavelength. Each LP mode should obtain a phase of

φmp = βmpL =
2π

λ
bmpL (4.9)

where nclad < bmp < ncore is the normalized wavevector and L is the fiber length. An

analysis in [9] considers only the maximum and minimum βmp values, βmax and βmin,

for an approximation of the expected resolution. This gives the relationship between
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resolution and fiber parameters such as the length, NA etc. Although it is unimportant

for their results due to the proportionality, the analysis ignores the effect of LP modes

with intermediate βmp values. It might be possible to create an energy distribution

between the LP modes and enhance the spectral resolution with a trade-off on the

bandwidth. For example, if only two LP modes with βmax and βmin carry energy while

the other modes do not, the resolution would be better than the situation where all LP

modes carry the same amount of energy. Of course, if only two modes are excited,

the bandwidth would be considerably smaller because the speckle intensity would

simply alternate between the same patterns. Nevertheless, it is meaningful to use the

underlying fiber physics to cleverly choose the excited LP modes and enhance the

resolution.

Therefore, in this section, LP mode distributions are used to "mode filter" the speckle

patterns before constructing the spectrometer. To obtain the coefficients, cmp, the

speckle pattern should be measured as a complex field. For this purpose, the phase

conjugation setup in Fig. 3.14 is used. Also, the input is chosen to be the lowest LP

mode of (0, 1) and sent into the fiber using amplitude and phase modulation. (It could

have been wiser to send other input field distributions but that should also be chosen

cleverly.) An example of a speckle pattern whose amplitude and phase are measured

is shown in Fig. 4.14(a,b). The LP mode coefficients within this speckle pattern are

calculated by taking the inner product with the given LP mode field. Afterwards, the

total field is re-constructed using the coefficients and the mode field distributions. The

field reconstructed using the LP modes is also shown in Fig. 4.14(c,d). The intensity

distributions are clearly very similar which is an indication that the speckle pattern is

in fact a linear summation of the LP modes used here.

The information of LP mode excitation levels could be useful in understanding the

system further. First, Fig. 4.15(a) shows the mode coefficient amplitudes averaged

over all the measured wavelengths. The wavevector values are normalized by βmp/k0

where k0 = 2π/λ. Clearly, there is a trend in depending on βmp. Lower (m, p)

modes (that is higher βmp), have higher coefficients which is an indication that these

modes are easier to couple into. Fig. 4.15(b,c) show the amplitude and phase of the

coefficients of three different modes over the wavelength range.
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Figure 4.14: Complex field intensity (a) and phase (b) of a typical speckle pattern.

Complex field intensity (c) and phase (d) of the same field reconstructed using LP

modes.

Figure 4.15: (a) LP mode coefficient amplitudes averaged over the wavelength. Am-

plitude (b) and phase (c) of three different LP mode coefficients with respect to the

wavelength.
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These cmp(λ) plots are not very informative as they are, but the auto-correlation

should be more meaningful. Fig. 4.16(a) shows the auto-correlation amplitude,

|Rmp(∆λ)|, of three example LP mode coefficients. Fig. 4.16(b) is the auto-correlation

amplitude of all the LP modes with respect to βmp.

Figure 4.16: (a) Normalized auto-correlation amplitude of three LP mode coeffi-

cients. The x axis is the wavelength variation related to the auto-correlation mea-

surement and the y axis is the normalized auto-correlation value. (b) Normalized

auto-correlation amplitude of all LP mode coefficients with respect to wavevector

values. The x axis is the wavevector value of the LP mode, y axis is the wavelength

variation related to the auto-correlation measurement, and the color scale represents

the normalized auto-correlation value.

The auto-correlation amplitude curves show how self similar the coefficients are with

respect to the wavelength. The FWHP of these curves should be informative because

these values will effectively determine the spectral resolution of the speckle spec-

trometer. Fig. 4.17 shows the FWHP of the auto-correlation amplitudes for each LP

mode with respect to βmp.

Clearly, there is a trend in the FWHP with respect to βmp. This shows that the

wavevector value has major impact on how self similar the coefficients they are which

will affect the spectral resolution. If the LP modes with low βmp values and thus lower

FWHP values carry more energy within the speckle, the spectral resolution should be

higher. Then, a band-pass or band-stop filter can be implemented with cut-off values

of β1 and β2. In this technique with β1 < β2, the new filtered coefficients can be
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Figure 4.17: FWHP of the auto-correlation amplitudes of LP mode coefficients.

calculated as

cfiltered
mp =

cmp, if β1 < βmp < β2

0, otherwise
(4.10)

where cfiltered
mp is the final mode coefficient values used to reconstruct the complex

speckle fields for the spectrometer. Similarly, if β2 < β1, a band-stop filter can be

applied as

cfiltered
mp =

0, if β2 < βmp < β1

cmp, otherwise
(4.11)

This mode filtering technique is still linear because it can be represented by three

consecutively applied matrices on the measured complex field. The first matrix of size

NmodexNpixel calculates the mode coefficients. The second matrix of sizeNmodexNmode

represents the chosen "mode filter". The third matrix of sizeNpixelxNmode converts the

filtered coefficients to a 2D image. Therefore the whole procedure is linear and, as a

consequence, arbitrary spectra can still be reconstructed.

Different "mode filters" are tried by scanning a range of β1 and β2 values. The FWHP

and RMSE values for the corresponding spectrometer are shown in Fig. 4.18.
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Figure 4.18: The FWHP (a) and RMSE (b) results obtained from different mode

filters for different pairs of cut-off values.

It is important to choose a set of parameters that result in a low FWHP and RMSE.

So, a plot showing both results, as shown in Fig. 4.19(a), can be useful. Each point on

this plot corresponds to a different pair of cut-off values that was tried. A point shown

with an arrow in the figure is qualitatively chosen because it has a low FWHP as well

as a low RMSE. For the chosen point, the filtered mode excitation’s are plotted in Fig.

4.19(b). It can be seen that the filter is basically a low-pass filter which makes sense

when the auto-correlation FWHP values in Fig. 4.17 are considered. Even though

a wider range of βmp would result in a higher resolution, a low-pass filter seems

to function with a higher resolution here. The reason for this could be experimental

effects that are unaccounted for in that analysis. Since these modes, have many grains,

are sensitive and harder to couple into, it is possible that experimental imperfections

lead to a unexpected but welcome wavelength dependence. So, maybe the cmp for

these modes still effectively depend on the same βhigh = 2πncore/λ.

The corresponding spectrometer is constructed, and has a typical speckle pattern as

shown in Fig. 4.20(a). In Fig. 4.20(b) is the correlation curve of the spectrometer

which is calculated using the inner product of complex fields. The FWHP is calcu-

lated around δλ = 61pm which is better than the original value of around δλ = 80pm.

The spectrometer is also used to reconstruct different spectra. In Fig. 4.20(c) is the

reconstructed spectra for various monochrome input beams. In Fig. 4.20(d) is the

reconstructed spectrum of an input with monochrome peaks that are separated by

only 40pm. The peaks can be distinguished since the spectral resolution is near this

59



Figure 4.19: (a) RMSE vs FWHP of the spectrometers tried in the cut-off scan pro-

cedure. (b) Filtered mode coefficients at the indicated point.

value.

Figure 4.20: (a) Typical field amplitude after mode filtering. (b) Correlation curve

after mode filtering. The FWHP of this curve is around 61pm. (c) Reconstructed

monochrome spectra. (d) Reconstructed spectrum with two peaks separated by 40pm.

Additional to the selected parameters, it is possible to try other parameters that result

in different FWHP and RMSE values. Table 4.4 summarizes the results for a few

different cases. In fact, the third and fifth rows in the table in very similar mode filters

even though the filter types are different. A similar situation is also valid for the

second and fourth rows. Fig. 4.21 show the reconstructions for the second and third
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rows. It can be seen in (a,b) that the spectra cannot reconstructed for this case of 54.3

pm resolution. (c,d) show the low RMSE case which has a reliable reconstruction.

As a result, the intermediate choice, shown in Fig. 4.20, is a very good choice with

low FWHP and RMSE.

Table 4.4: Mode filtering with different parameters.

Filter type Choice β1/k0 β2/k0 FWHP RMSE (au)

Band-stop Intermediate 1.4600 1.4451 60.9 pm 0.031

Band-stop Low FWHP 1.4600 1.4434 54.3 pm 0.189

Band-stop Low RMSE 1.4600 1.4525 69.4 pm 0.014

Band-pass Low FWHP 1.4440 1.4445 59.7 pm 0.136

Band-pass Low RMSE 1.4434 1.4525 69.4 pm 0.014

Figure 4.21: (a) Reconstructed monochrome spectra for the second row in Table 4.4.

(b) Reconstructed spectrum with two peaks separated by 40pm for the second row in

Table 4.4. (c) Reconstructed monochrome spectra for the third row in Table 4.4. (d)

Reconstructed spectrum with two peaks separated by 40pm for the third row in Table

4.4.
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4.3 Discussion

In the previous sections, different processing techniques were applied on the output

of the fiber. Even though the input beam was modulated, it was not chosen to couple

directly into specific LP modes. The next step could be to send an input such that

the laser directly couples into a set of desired LP modes instead of filtering the output

field. Since this would only determine the input energy distribution, the output energy

distribution would not be directly affected. In order to couple into a desired set of LP

modes at the output of the MMF, it is necessary to measure the mode-to-mode TM of

the MMF. After obtaining the TM, the mode energies could be chosen such that the

spectral resolution is increased similar to the mode filtering technique.

Since the setups constructed here can modulate the amplitude and phase for the in-

put and measure the complex field at the output, it is straightforward to try a TM

measurement. This measurement was attempted with the 2 m long 557 mode fiber.

The results were not successful because the output speckle pattern was not similar

to the target speckle pattern even when the inverse TM was used to tolerate for the

mode mixing. The same calculation has been attempted with another 2 m long fiber

which only has 6 LP modes. However the results were unsuccessful again. Hence,

the results are not added to this thesis.

The main reason why mode-to-mode TM measurement was not successful is because

2 m is too long. In the literature, complete mode-to-mode TM measurements are done

with fibers that are only a few centimeters long [56]. The longest fibers used are usu-

ally a few tens of centimeters [58] and these are not mode-to-mode but pixel-to-pixel

TM studies. As a result, it is not surprising that mode-to-mode TM measurements

were not successful. Nevertheless, the experimental and numerical methods devel-

oped here might be sufficient to measure the TM of a much shorter MMF.

Although TM measurement was not successful, the techniques explained in this chap-

ter are capable of constructing MMF spectrometers with enhanced resolution using

WFS on the input beam and post-processing on the output speckle patterns.
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CHAPTER 5

CONCLUSION

In this study, WFS based techniques are used to enhance the spectral resolution of

MMF based spectrometers. Three separate methods are developed. One of the meth-

ods reduce the device into a wavelength-meter due to its non-linearity however the

other two methods are linear and function as a spectrometer. All methods involve the

measurement of multiple speckle patterns under different input beam modulations.

One of the methods also require the measurement of the complex field at the output

and the numerical calculation of the LP modes.

As a result, in this thesis, the theory of MMF based spectrometers is explained. Nu-

merical calculations of LP modes and spectral analysis for MMF based spectrometers

are implemented. Experimental data of the speckle patterns are acquired using dif-

ferent setups under various input wavefront modulations. The experimental data have

been analyzed and processed using three different methods so that the spectral reso-

lution of the spectrometer is enhanced without changing the fiber.

To conclude, the methods developed here can be used with the same fibers used in

the literature to obtain record level sub-picometer spectral resolutions. Also, the idea

developed here, is to utilize spatial WFS in order to modify the spectral behaviour of

a spatial-spectral coupled optical system.

In addition, the spectrometer that we develop here can be used to spectrally resolve

the emission from quantum sources. Moreover, the speckle patterns can be analyzed

to spatially, spectrally characterize quantum sources that are especially fabricated on

2D surfaces.
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