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ABSTRACT

ATTENTION MECHANISMS FOR SEMANTIC FEW-SHOT LEARNING

Baran, Orhun Buğra

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

Co-Supervisor: Assoc. Prof. Dr. Nazlı İkizler-Cinbiş

September 2021, 37 pages

One of the fundamental difficulties in contemporary supervised learning approaches

is the dependency on labelled examples. Most state-of-the-art deep architectures, in

particular, tend to perform poorly in the absence of large-scale annotated training sets.

In many practical problems, however, it is not feasible to construct sufficiently large

training sets, especially in problems involving sensitive information or consisting of a

large set of fine-grained classes. One of the main topics in machine learning research

that aims to address such limitations is few-shot learning where only few labeled

samples are made available for each novel class of interest.

An inherent difficulty in few-shot learning is the various ambiguities resulting from

having only few training samples per class. To tackle this fundamental challenge

in few-shot learning, in this thesis, we propose an approach that aims to guide the

meta-learner via semantic priors. To this end, we build meta-learning models that can

benefit from prior knowledge based semantic representations of classes of interest

when synthesizing target classifiers. We propose semantically-conditioned feature

attention and sample attention mechanisms that estimate and utilize the importance
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of representation dimensions and training instances. In sample attention, we aim to

weigh each individual training example based on its representativeness for the related

class. We, then, use the information extracted from each example proportional to its

individual weight. In feature attention, we aim to weigh each visual feature dimension

based on the semantic embedding vectors we obtain for each class. We also study

the problem of sample noise in few-shot learning, where some training examples are

irrelevant due to annotation or data collection errors, which can be the case for various

real-world problems. Our experimental results demonstrate the effectiveness of the

proposed semantic few-shot learning model with and without sample noise.

Keywords: few-shot learning, semantic few-shot learning, meta learning, metric learn-

ing, attention
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ÖZ

ANLAMSAL AZ ÖRNEKLE ÖĞRENME İÇİN ODAKLANMA
MEKANİZMALARI

Baran, Orhun Buğra

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ortak Tez Yöneticisi: Doç. Dr. Nazlı İkizler-Cinbiş

Eylül 2021 , 37 sayfa

Çağdaş denetimli öğrenme yaklaşımlarındaki en temel zorluklardan biri etiketli ör-

neklere olan bağımlılıktır. Özellikle modern yaklaşımlar geniş çaplı etiketli eğitim

kümeleri olmadan düşük performans göstermektedir. Ancak gizlilik açısından hassas

veri gerektiren, ayrıntılı sınıflandırma içeren ve benzeri çoğu pratik problemde ge-

niş çaplı eğitim kümesi oluşturmak çoğu zaman mümkün olmamaktadır. Makine öğ-

renmesi alanında, bu zorluğa çözüm arayan çalışma konularından biri de az örnekle

öğrenmedir. Az örnekle öğrenmedeki temel amaç, az sayıda etiketli örnek üzerinden

yeni sınıfları modelleyebilmektir.

Az örnekle öğrenmedeki ana zorluklardan biri, sınıflara yönelik eğitim verisindeki

azlıktan dolayı ortaya çıkan muğlaklıktır. Bu tezde, az örnekle öğrenme problemin-

deki temel muğlaklık sorunun aşılmasına yönelik olarak, meta modelin anlamsal bil-

gilerle yönlendirilmesi hedeflenmektedir. Bu noktada hedef sınıflandırıcıların oluştu-

rulmasında sınıfların anlamsal gösterimlerinden faydalanan meta öğrenme modelleri

oluşturmaktayız. Eğitim örneklerinin ve gösterim boyutlarının önemini tahmin eden
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ve kullanan anlamsal bilgiyle koşullandırılmış öznitelik ve örnek odaklanması meka-

nizmaları önermekteyiz. Örnek odaklanmasındaki amacımız her bir eğitim örneğinin

ait olduğu sınıf için temsil edilebilirliği ölçüsünde ağırlıklandırılmasıdır. Daha sonra

her bir örnekten çıkarılan bilgi bu ağırlıklar doğrultusunda kullanılmaktadır. Öznite-

lik odaklanmasında her bir sınıfa ait anlamsal öznitelik vektörünü baz alarak görsel

öznitelik vektörünün boyutlarının ağırlık hesabı amaçlanmaktadır. Ayrıca, az örnekle

öğrenme probleminde örnek gürültüsü problemini de ele almaktayız. Yanlış etiket-

leme veya veri toplamadaki hatalardan kaynaklanan örneklerde gürültü varlığı, gerçek

dünya uygulamalarında olası bir senaryodur. Deneysel sonuçlarımız hem gürültülü

örnek varlığında hem de yokluğunda önerdiğimiz modelin başarısını göstermektedir.

Anahtar Kelimeler: az örnekle öğrenme, anlamsal az örnekle öğrenme, meta öğrenme,

metrik öğrenme, odaklanma
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CHAPTER 1

INTRODUCTION

Contemporary supervised learning approaches combined with large training datasets

yield excellent results on a variety of recognition problems. A major challenge,

however, is learning to model concepts with limited samples. Few-shot learning

(FSL) [1, 2, 3, 4] techniques aim to tackle this problem, by learning to synthesize

effective models based on few examples.

In few-shot learning we are given a set of base classes with many examples that

belong to those classes. Then at test time we are given another set of classes, called

novel classes, with few examples, called support examples, that we use to obtain set

of parameters that can be used to classify query examples of novel classes. A setting

where n-classes with k-examples for each of those n classes is called an n-way k-shot

classification. The name of that setting is called an FSL task. One or more such tasks

are called an episode. Altough FSL approaches differ in how they treat the base class

examples, at test time most of the approaches use episodes and perform n-way k-shot

classification with the exception being the Meta-Dataset [5] where variable shot/way

classification is done. An example FSL task is provided in Figure 1.1.

1.1 Few-shot learning motivation

A major source of motivation for studying FSL is the observation that humans, start-

ing at young ages, can learn new concepts with limited examples [6], [7], [8]. In

addition, in most real-world classification problems, such as object recognition [9],

class distributions can be heavily long-tailed [10]. FSL research can be seen as the fo-

cused study of learning to recognize in the low-data regime, which can play a central
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Class 
A

Class 
B

Class 
C

FSL 
Approach

3-way 
5-shot 

Classifier

Support Examples

Figure 1.1: 3-way 5-shot episode that is fed into an FSL approach to obtain classifi-

cation parameters.

role in building semantically comprehensive and rich models.

A variety of FSL approaches have been introduced in recent years. Most of the re-

cent work can be summarized as follows: metric learning [11, 12, 13, 14], statistical

generative models [15, 16, 17, 18, 19, 20, 21] and other techniques for data aug-

mentation [22, 23], feed-forward classifier synthesis [24, 25, 26], model initialization

for few-shot adaptation [27, 28, 29], learning-to-optimize for FSL [30] and memory-

based approaches [31, 32]. In addition, recent work has highlighted the importance

of implementations details in improving and evaluating FSL models, including batch

normalization details [33], feature extraction backbones [34] and pretraining strate-

gies [35]. Variations of FSL, such as cross-domain [36, 37, 38, 39, 40] and variable-

shot [5] learning have also been introduced.

1.2 Difficulties in few-shot learning

An inherent difficulty in FSL, independent of the method being used, is the ambiguity

resulting from having few training samples per class. Particularly, it is difficult to fig-
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(a) Spurious back-

ground.

(b) Misleading rela-

tions.

(c) Feature ambiguity. (d) Prototypicali-

ty/noise.

Figure 1.2: (a) All dog instances appear in a misleadingly consistent beach back-

ground context. (b) Spuriously consistent background-foreground relation may cause

FSL models to ignore other salient features of classes. (c) It is difficult to understand

when a consistent foreground texture is informative or misleading, e.g., the Dalma-

tian texture is distinctive for the Dalmatian dog class but otherwise misleading for the

generic dog class. (d) Some examples can be more prototypical than the others. A

closely related problem is having sample noise in the training set.

ure out whether a cue that appears consistently in the limited set of examples is truly

indicative. For example, few-shot samples may contain misleadingly similar con-

textual information, spurious foreground-background relationships, or suspiciously

consistent foreground features. Similarly, some samples might actually be less pro-

totypical [41] than the others or completely noisy, due to number of factors, such as

background clutter, viewpoint, occlusions, overall representativeness or sample noise.

Hence, FSL model may overfit to incorrect features, misleading or noisy samples, or

under-utilize distinctive cues, due to the fundamental difficulty of disambiguating

spurious cues from the informative ones purely based on few examples.

Most of these aforementioned difficulties are visualized in Figure 1.2. In Figure 1.2a

we see that shore background consistently appears in dog images which can mislead

the FSL approaches to incorrectly classify shore images that dont involve dogs as

dog class. In Figure 1.2b consistent appearence of foreground and background may

mislead the network to have a bias for such relations where the approach can be more

interested in black and white textures more than the actual cues of cat class. It can also

be the case that some sub-classes of a class may be too prevalent in few examples that

the approach may struggle to classify super-class when query examples are not from
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that sub-class. In Figure 1.2c if Dalmatian dog images are used as support images for

generic dog class then these images may not be too representative when an African

wild dog is given as a test example. Finally, an object in a support image may not be

prototypical enough that it can be used to correctly represent a class. In Figure 1.2d

we see that some bike images that are prototypical and not prototypical. Images on

the top row are not the best ones due to factors such as bad camera angle, crowded

background, bikes not being the main focus of the image on and so on. But on the

bottom row we see clean shots of bikes with all their distinctive parts shown clearly.

1.3 Semantic few-shot learning

To tackle these fundamental challenges in FSL, we aim to guide the meta-learner via

semantic priors, which we call semantic few-shot learning. To this end, we build

meta-learning models that can benefit from text-based semantic representations of

classes of interest when synthesizing target classifiers. For this purpose, we focus on

one of the most popular metric based few-shot learners Prototypical Networks [11]

(PNs). In the context of PN formulation, we introduce semantically-conditioned fea-

ture attention and sample attention mechanisms, towards reducing the risk of over-

fitting to misleading features or samples and improving the data efficiency in few-shot

learning.

The use of semantic vector-space representations of classes, i.e., class embeddings, is

prominent in zero-shot learning (ZSL). Most mainstream ZSL approaches learn to es-

timate the degree of relation between a given input (image) and a class embedding, so

that previously unseen classes can be recognized purely based on class embeddings,

e.g., [42, 43, 44, 45, 19, 46, 47, 48]. In ZSL, class embeddings can be interpreted

as class summaries from which valuable discriminative or generative knowledge can

be extracted. In our work, instead of relying purely on class embeddings for building

classification models, we aim to benefit from them in improving sample efficiency in

FSL.

The idea of jointly benefiting from class semantics in FSL has received attention only

recently. In [36], semantics-based class prototype priors are estimated and adaptively
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combined with the data-driven class prototypes. [37] extends this model to multiple

semantic information sources. [38] aims to obtain augmented feature representations

based on the encoding of the image features to semantic space and then decoding the

sampled semantic features to obtain new samples for training purposes. [40] proposes

to reformulate the loss of [11] based on task dependent similarities measured from

semantic priors to regulate the margin between classes in a task.

1.4 Our aproach to semantic few-shot learning

The prior work most related to ours is the AM3 model [36], which we use as our

starting point. While AM3 makes an important step forward by defining class seman-

tics based models priors, the approach does not leverage prior semantic knowledge in

knowledge accumulation. To this end, we explore the uses of semantic class knowl-

edge in a deeper way in the following two main ways. First, we aim to estimate

the importance of provided few-shot samples for each class by evaluating the con-

sistency across samples and semantics. Second, we estimate per-dimension feature

importance factors for the data-driven class prototypes based on prior knowledge. We

additionally tackle the sample noise problem in FSL, which we consider as an over-

looked problem in real-world FSL settings, e.g., when recognition models are built in

an automated way by retrieving samples based on their meta-data.

Our contributions, therefore, can be summarized as follows: (i) we propose semantics-

driven feature and sample attention mechanisms to improve FSL data efficiency in a

principled way. (ii) We study the problem of sample noise in FSL and define an exper-

imental protocol for this scenario. (iii) We present a detailed experimental analysis to-

wards understanding the effects and dynamics of the proposed attention mechanisms.

Our quantitative and qualitative experimental results demonstrate the effectiveness of

the proposed semantic FSL model both in clean and noisy settings.

In the rest of this thesis, chapter 2 provides an overview on the most relevant few-shot

learning, semantic few-shot learning, and zero-shot learning approaches. In chap-

ter 3 we explain our approach together with the closely related approaches such as

Prototypical Networks [11] and AM3 [36]. Chapter 4 explains the experiments and
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validates our approach with comparisons against other state-of-the-art works and ab-

lative studies. In chapter 5 we conclude the thesis with a brief discussion on our

approach and state the future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we first present an overview of mainstream few-shot learning ap-

proaches. We then present an overview of works on the recently emerging topic of

semantic FSL. Finally, we briefly discuss zero-shot learning and its relation to our

work.

2.1 Few-shot learning

The most related mainstream FSL approaches can be summarized within initialization

based, metric learning based and generative model based groups. Initialization based

FSL methods aim to learn the ideal initial model such that the model can perform well

even when fine-tuned using just few examples. MAML [27] is arguably the most

well-known example of this category. In MAML, the main idea is to learn the initial

model that minimizes the loss of validation samples when the initial model is fine-

tuned using one or few gradient-based updates. Several other related and follow-up

works exist, such as [28, 29, 49, 30].

In metric learning based FSL, the goal is to learn a metric space where the similar-

ity of feature representations of sample pairs can be used to classify pairs as same

class/different class pairs. One of the most well-known examples of this category is

Prototypical Networks [11], which we also use as the basis of our approach (see Chap-

ter 3). Due to its simplicity and high FSL performance, many other metric learning

FSL approaches have also been introduced, e.g., [12, 13, 24, 25].

Despite these explorations, recent works show that a carefully tuned Prototypical Net-
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work can yield state-of-the-art few-shot learning results [35, 34, 50, 51]. These papers

mainly focus on obtaining better representations with their respective feature extrac-

tors so that when novel classes are being used better features, which improves the

FSL accuracy, is obtained. Chen et al. [35] mainly obtains a feature extractor trained

with all base classes as a normal classification task. Afterwards the authors train the

feature extractor with episodes using cosine distance to further adapt to FSL tasks.

Similarly, Chen et al. [34] also trains the feature extractor with base classes however,

in the second stage the authors only train the single classification layer to adapt to

novel classes. In Tian et al. [50] the goal is not so different than [34, 35] but the au-

thors introduce a self distillation scheme to further improve the feature extractor after

base class training. In Ye et al. [51] the approach is again learning a feature extractor

with base classes using standard classification approach however, the authors select

the model that performs best on 16-way 1-shot tasks on validation set without any

additional training of feature extractor. We adapt the modernized PN implementation

of [51] as the non-semantic FSL baseline in the construction of our models.

Generative modeling based FSL approaches aim to learn a sample-synthesizing model,

which can be used for augmenting a few-shot training set. For example, Hariharan

et al. [15] learns a mapping that can be used to transform existing training samples

into new ones, [52, 17] propose GAN [53] based models generative models towards

synthesizing novel examples. In Zhang et al. [52] a meta-learning based GAN gener-

ator and discriminator is learned on base classes to both classify classes in FSL tasks

and produce additional synthetic data around the manifold of real data distribution.

This way the discriminator not only benefits from the real data but also uses synthetic

data to obtain a better decision boundary which is required in FSL classifiers. In a

different approach Gao et al. [17] aims to produce synthetic data for novel classes

that can be used in a FSL classifier. The method uses cosine similarity to determine

how close base classes and novel classes are, by using their respective features, and

tries to obtain novel class data that has covariance similar to base class data using an

additional loss function.

Sample noise in FSL is largely an overlooked problem. To the best of our knowledge,

the only directly relevant work is the few-shot text classification approach of [54],

which looks into noisy annotations for few-shot relation classification. [54] defines
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query-to-support sentence and support samples driven feature-level attention mecha-

nisms. Our work and focus fundamentally differs as we (i) leverage prior knowledge

for building conditional attention mechanisms, (ii) estimate sample importance in a

query-agnostic way, and (iii) define an experimental protocol for studying the sample

noise problem on the mainstream FSL image classification benchmarks MiniIma-

geNet [13] and TieredImageNet [55].

2.2 Semantics based few-shot learning

Semantic FSL refers to the problem variant where supplementary a class-wise knowl-

edge source is made available. Since such additional knowledge often comes from a

new data modality, semantic FSL is also sometimes referred as multi-modal FSL.

There exists only few and recent works on semantic FSL.

In a pioneering work, [36] proposes to define class prototypes as convex combinations

of average visual features and transformed semantic priors. The approach is an end-

to-end approach meaning that both the feature extractor and the semantic embedding

modules are learned within single stage learning. The approach transform semantic

embeddings into the visual feature space and combine these two to perform PN based

metric learning. Schwartz et al. [37] extends the approach of [36], mainly by intro-

ducing multiple semantic priors (label, description or attribute) jointly to obtain richer

semantic information. Starting from visual embeddings every semantic embedding is

added on top of previous combined embedding as a convex combination.

In Fu et al. [38], visual features are mapped into a semantic space via an encoder,

where semantic features, belonging to same class, can be sampled to augment visual

features via a decoder model. The approach augment different semantic features ei-

ther with adding random Gaussian noise or with neighboring of semantic features

of different classes. The approach then performs classification by using both real

and augmented features. Similarly, Schonfeld et al. [19] aims to learn aligned auto-

encoders with reconstruction losses across modalities. In a more recent work, Li et

al. [40] uses semantic prior information with a similarity function to obtain margin

scores that are used as an additional term in a distance based loss such as [11]. The se-
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mantic information is used to determine how similar each class in a few-shot episode

and obtains a pairwise margin score that is used in the loss function. Peng et al. [56]

uses semantic priors in addition to visual features to obtain two different classifica-

tion weights for a class. This work obtains visual feature based classification weights

by l2-normalizing support image features, averaging them per-class and learning a

semantic embedding vector that can be used as a classifier weight maximizing the

inner product between the support image based classification weights. Ji et al. [57]

proposes a model that re-weights support samples according to a generic weighting

function and an auto-encoder that can use either class embeddings or gaussian noise

vectors for encoding regularization. While nearly all others can be considered as com-

plimentary to ours, instead of being alternatives, we provide empirical comparisons

to semantic FSL works in Chapter 4.

2.3 Zero-shot learning

Zero shot learning aims to build recognition models that can handle classes with no

training examples, purely based on prior class semantic knowledge. Mainstream ZSL

approaches include learning mappings between the space of visual features and the

semantic class representations [42, 43, 44], and, semantics conditional generative

models [45, 19, 46, 47, 48]. In our work, we use class semantics to build attention

mechanisms in the presence of few training examples, instead of aiming to remove

the need for training samples completely as in zero-shot learning.
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CHAPTER 3

SEMANTICS-DRIVEN FEATURE AND SAMPLE ATTENTION FOR

FEW-SHOT LEARNING

In this chapter, we first provide a formal definition of semantics-driven few-shot learn-

ing and summarize the episodic training framework, which we embrace in our ap-

proach. We then provide a summary of Prototypical Networks (PN) model [11] for

few-shot learning and adaptive cross-modal few-shot learning (AM3) [36] model that

extends PNs by utilizing semantic knowledge to construct model priors. Finally, we

present our feature-attention and sample-attention mechanisms and explain how we

integrate them into the PN and AM3 models.

3.1 Problem definition and training framework

In this thesis, we focus on few-shot learning of image classification models. The goal

is to estimate a new classification model, for a set of target classes (C = {c1, ..., cn}),
based on a limited set of labeled training examples. In our discussion, an n-way clas-

sifier is expressed in terms of a scoring function f(x; θ) that maps the input x ∈ X
to an n-dimensional vector, according to the model parameters θ. In a standard su-

pervised training problem, a typical way to estimate θ is to find the model parameters

minimizing some regularized empirical loss function on the train set.

In the case of few-shot learning, however, the main challenge is to estimate a success-

ful classification model based on a few training samples per class. In most practical

cases, it is fundamentally difficult to achieve generalization based on few examples,

and, therefore, a model learned by minimizing a generic empirical loss function is un-

likely to perform well on novel (test) data. To tackle this problem, the main interest in
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meta-learning based FSL is to learn a meta-learner ξ(D; β) that can take a new lim-

ited setD of training examples and synthesize the corresponding classification model

parameters.

3.2 Episodic training

A popular approach for training meta-learning models is episodic training [13]. The

main idea is to construct a set or series of few-shot learning tasks and update the meta-

learning model based on the regularized empirical loss of meta-learned classification

models. More specifically, at each iteration, a new task T is created by sampling

a subset CT of training classes, and then sampling training Ds
T and validation Dq

T

samples from the whole training set. Each Ds
T consists of few-shot training samples

of classes CT and is commonly referred to as the support set. Similarly, each Dq
T

consists of task-specific validation samples and is commonly referred to as the query

set. The meta-learning, then, is achieved by minimizing the expected empirical loss

of meta-learned models over the pairs of support and query sets:

min
β

ET
[
E(x,y)∼Dq

T
[l(f(x; θ = ξ(Ds

T ; β)), y)]
]

(3.1)

where l(·, y) is a classification loss function for label y. No regularization term is

shown for brevity.

3.3 Semantic FSL

Arguably, the main premise of meta-learning is to learn domain-specific inductive

biases better than what can be provided by general-purpose supervised learning for-

mulations. However, small-sized training sets can be inherently misleading and/or

ambiguous due to spurious patterns, as previously illustrated in Figure 1.2. In this

respect, prior knowledge about classes can be a crucial source of information towards

overcoming the limitations of few-shot training sets. In our work, we presume that

semantic knowledge about each class c is a de-dimensional vector, represented by ψc.

The meta-learner can access to semantic class embeddings during both training and

testing.
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3.3.1 Semantics-driven Attention Mechanisms

We build our semantics-driven attention mechanisms on top of the pioneering seman-

tic few-shot learning model AM3, which is based on prototypical networks. Below

we first summarize the AM3 model and then present our approach in its context.

3.3.2 Prototypical networks and AM3

The core idea in PN is to estimate class prototypes based on train samples provided

in a task and then perform classification based on query-to-prototype similarities. In

PNs, a class prototype θPN for a class c is obtained by averaging the support sample

representations:

θPN(c) = EDs,c [φ(x)] (3.2)

where φ(x) is the feature embedding function parameterized by (a subset of) β that

is being trained as part of the PN model. φ(x) is ResNet12 in our experiments (see

Section 4). Ds,c refers to the subset of examples belonging to class c within a given

support set. In the de facto standard PN formulation, the classification score f for

class c is given by the negative Euclidean distance between the feature-space embed-

ding of the input and the corresponding class prototype:

[f(x)]c = −‖φ(x)− θ
PN(c)‖2. (3.3)

The parameters β are estimated by minimizing cross entropy loss of query samples

over the episodes.

The AM3 model aims to improve the PN model by using semantic knowledge about

classes as prototype priors. More specifically, AM3 redefines a class prototype θPrior

as the weighted combination of transformed class semantic embeddings and feature

averages:

θPrior(c) = αθPN(c) + (1− α)τPrior(ψc) (3.4)

where τPrior is a trainable transformation that maps the semantic class embeddings to

the space of class prototypes. α is the cross-validated hyperparameter that controls

the weight between the original PN prototypes and class semantics based prototypes.

τPrior is parameterized by β.
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The AM3 model, therefore, can be interpreted as a way to build classification model

priors in the PN formulation. Consistent with the experimental results, such a prior is

particularly valuable in the case of one-shot learning, where the training data size is at

its extreme minimum. We propose and explore two novel ways to leverage semantic

information in a more expressive way towards tackling the inherent difficulties in

few-shot learning: (i) sample attention, (ii) feature attention. Below we provide the

details of the proposed mechanisms.

3.3.3 Sample attention

We observe that, in the original PN model, each class prototype is defined as a plain

average of support examples. However, the information content of samples can vary

greatly due to a number of factors, including background clutter, viewpoint and oc-

clusion. Towards estimating the prototypicality of training samples, we introduce a

sample attention mechanism into the final model. Ultimately, we aim to build a model

that can estimate the importance of each sample based on the compatibility of sam-

ples and prior semantic information. Therefore, we define sample attention module

ηSampleAtt(x, c) as a function that computes the normalized attention scores of a sample

x ∈ Ds,c in the context of support sample set Ds,c, conditioned on the class semantic

embedding ψc:

ηSampleAtt(φ(x), c) =
exp(γvis(φ(x))

>γsem(ψc))∑
x′∈Ds,c exp(γvis(φ(x′))>γsem(ψc))

(3.5)

where γvis and γsem are trainable models that are used to obtain visual and semantic

feature embeddings. In our experiments, γvis and γsem are implemented as MLPs that

takes φ(x) and ψc respectively and returns embeddings whose dot products yields

the attention scores. We note that ηSampleAtt defines a distribution over the support

samples, which we use to re-define a class prototype:

θSampleAtt(c) = EηSampleAtt(x,c) [φ(x)] , (3.6)

which amounts to computing the attention-weighted average of sample features. This

sample attention mechanism also naturally handles potential sample noise in FSL,

which we explore in Chapter 4.

14



Sample
Attention

Feature
Attention

⨀

Few-shot training 
samples

(black footed albatros)

Class 
embedding

Semantic 
Prior

Weighted 
sum

Class 
prototype

Query 
Example

(black footed 
albatros)

Class
score

⨀

Figure 3.1: Summary of the method, illustrating the process of a new class prototype

estimation in 5-shot learning setting. Arrows indicate the input dependencies across

model components.

3.3.4 Feature attention

The motivation in feature attention is to tackle the problems resulting from having too

few examples. Overall, the goal is enhance or attenuate certain prototype dimensions

as a function of semantic class embeddings. For this purpose, we introduce the feature

attention function ηFeatAtt and re-define the class prototype as follows:

θFeatAtt(c) = ηFeatAtt(ψc)� θ0(c) (3.7)

where θ0(c) refers to averaging based class prototypes, which can either be the vanilla

PN prototype (θPN) or the sample attention based prototype (θSampleAtt). Here, the

trainable feature attention function scales prototype vectors, based on its predictions

as a function of class embeddings. Similarly, the feature attention is also applied to

the query input, resulting in the following scoring function:

[f(x)]FeatAtt
c = −‖φ(x)� θ0(c)− θFeatAtt(c)‖2. (3.8)
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3.3.5 The final model

We build our final model by integrating our semantic-driven sample and feature at-

tention mechanisms into the semantics FSL framework defined by the AM3 model.

More specifically, in the final combined attention model, we first estimate sample at-

tention based class prototypes θSampleAtt and then update them into θFeatAtt using the

feature attention model. We obtain the final class prototypes, which we call θCombined,

by computing the α-weighted combination of the attention-driven prototypes and the

pure semantic embedding based prototypes given by τPrior(ψc):

θCombined(c) = αηFeatAtt(ψc)� θSampleAtt(c) + (1− α)τPrior(ψc). (3.9)

The combined attention model is summarized and illustrated in Figure 3.1. The figure

represents what happens in our model when a new episode comes. On the top left

corner you see support images and that are fed into feature extractor network. Sample

attention module extracts softmax probabilities for each training image to determine

how improtant each of the individual feature vectors for each class. Then by using

class embedding feature attention vectors for each class is obtained to determine how

relevant each feature dimension is. Then hadamard product between sample attention

and feature attention vectors is applied. Finally semantic prior is transformed into

feature space to obtain combined representation that is called a class prototype. This

procedure is repeated for each class in the episode. In the bottom it can be seen that

when a query image comes its visual feature vector is obtained by using same feature

extractor. Then feature attention is applied by using class embeddings and the final

representation for the query image is obtained. 1

1 Note that since we actually don’t know the correct class of a query image we apply feature attention vectors
of each class seperately and compare those representations with class prototypes.
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CHAPTER 4

EXPERIMENTS

In this chapter, we first present our experimental setup and our implementation details.

We then present our experimental results, comparisons and analyses.

4.1 Experimental setup

It is known that implementation details can make a great impact on few-shot learning

results, therefore, in most cases, comparing models with different implementation

details, such as (batch) normalization schemes, backbones, hyper-parameter tuning

strategies and data augmentation schemes, can be greatly misleading [34, 33, 35].

Therefore, we systematically tune the hyper-parameters, including learning rates,

number of iterations, and dropout rates on the validation sets for all results that we

report based on our own implementation. Below we provide additional details regard-

ing our experimental setup and our efforts to make fair comparisons.

4.1.1 Datasets

We evaluate our model on the MiniImageNet [13] and TieredImageNet [55] datasets.

The MiniImageNet dataset is a subset of ImageNet dataset [58] with 100 classes and

600 images per each class. We use the split of [30] for MiniImagenet where the 64, 16

and 20 classes are used as the train, validation and test subsets, respectively. Tiered-

ImageNet is a separate benchmark based on [58], with 351, 97, 160 classes for train-

ing, validation and testing, respectively. In all our experiments, we use Glove [59]

vectors of class names to extract semantic embeddings. Following [36], we use the
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Common Crawl version trained on 840B tokens with 300 dimensional embeddings.

4.1.2 Evaluation

We report our test set results over 10000 random tasks and report the average accuracy

and 95% confidence interval scores in every table. In all k-shot experiments, we use

15 query examples for each of the n classes in an episode. We execute all of our

experiments using the same batch structure for consistency across the experiments.

4.1.3 Backbone architecture

In all models we use the same ResNet-12 architecture as the feature extraction back-

bone. We use Batch Normalization [60] only in backbone layers, using the eval

mode [61] for meta-testing 1 to avoid accidental transductive setting, which is known

to potentially result in misleadingly better few-shot learning results [33].

4.1.4 Backbone pretraining

Following [51] we use supervised pretraining for ResNet-12 backbone and the exact

details can be found in [51]. After the pretraining we employ two staged training. In

the first stage we train everything except the backbone with learning rate 0.1, momen-

tum 0.9 and weight decay of 0.0005 for 200 epochs for MiniImageNet and 50 epochs

for TieredImageNet where an epoch contains 100 episodes. After every epoch we val-

idate our results by using 600 episodes for both MiniImageNet and TieredImageNet.

After we complete the 200 epochs and 50 epochs for MiniImageNet and TieredIma-

geNet respectively we train whole model end to end for another 200 epochs. In the

second stage the learning rate for backbone is selected to be 0.002 and 0.02 for the

rest of the network. After every 40 epoch we halve the learning rates. We use SGD

as optimizer for every model and experiment.

1 meta-testing is the name for testing phase for meta learning based approaches.
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4.1.5 PN implementation

Our code base is built upon the PN implementation of [51]. For a fair comparison,

therefore, we report the results that we obtain for PN and [51] using the publicly

available official source codes for [51]. Similar to [62], we use distance scaling and

found that it is better to divide the distances by 32 for MiniImageNet and 16 for

TieredImageNet based on the validation results.

4.1.6 AM3 implementation

In our re-implementation of AM3 [36], we have found 0.4 is the best dropout rate for

the fully-connected (FC) layers, on the MiniImageNet and TieredImageNet datasets.

In our model we use 2 FC layers for encoding of visual and semantic information for

sample attention module. These FC layers have the structure of FC-Dropout-ReLU-

FC and the dimensions are reduced to 32. The dropout probabilities are selected to

be 0.2 and 0.6 for visual and semantic branches respectively by using the validation

sets. For feature attention module we use 2-layer FC module with the structure of

FC-Softmax-FC and the dimensionality is first reduced to 32 and then increased to the

feature dimensionality, which is 640 for ResNet-12. Finally, we also add the semantic

prototype branch of AM3 [36] exactly as it is with the only difference of keeping the

α a fixed hyper-parameter based on the validation set instead of predicting it from the

semantic prior. We utilize the same Euclidean scaling in AM3 as in PN to obtain fair

results. Overall, our implementation clearly improves the performance of the baseline

AM3 model, compared to the scores originally reported in [36].

4.2 Main results

Below, we first present our main results and ablative studies. We then present our

comparisons to the state-of-the-art.
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Table 4.1: Evaluation of our sample-attention, feature-attention and combined-

attention models with comparisons to our implementations of PN and AM3, in 5-way

classification setting.

Model MiniImageNet TieredImageNet

1-Shot 5-Shot 1-Shot 5-Shot

Results from [36] (ResNet-12 backbone)

PN [11] 56.52 ± 0.45 74.28 ± 0.20 58.47 ± 0.64 78.41 ± 0.41

AM3 [36] 65.21 ± 0.30 75.20 ± 0.27 67.23 ± 0.34 78.95 ± 0.22

Our implementation (ResNet-12 backbone)

PN [11] 63.62 ± 0.23 78.37 ± 0.21 67.58 ± 0.22 84.71 ± 0.17

AM3 [36] 67.55 ± 0.24 80.22 ± 0.18 72.60 ± 0.21 84.59 ± 0.18

Sample attention (ours) 67.55 ± 0.24 79.93 ± 0.17 72.60 ± 0.21 85.02 ± 0.16

Feature attention (ours) 69.76 ± 0.21 79.84 ± 0.15 72.69 ± 0.20 84.24 ± 0.16

Combined (ours) 69.76 ± 0.21 81.19 ± 0.18 72.69 ± 0.20 85.29 ± 0.17

4.2.1 Baselines

Table 4.1 presents our main results for 1-shot or 5-shot, 5-way classification, includ-

ing baselines that are carefully tuned in the same way to make fair comparisons. First

of all, we validate our PN and AM3 baselines. For this purpose, we compare our PN

and AM3 results (lower part) to the results reported in the original AM3 work [36]

(upper part of Table 4.1). Overall, our results for both baselines are clearly better than

the originally reported ones. Noticeably, our PN results on MiniImageNet are higher

for nearly 7 and 4 points in 1-shot and 5-shot cases, respectively. Similarly, our AM3

results are higher for nearly 4 and 5 points in 1-shot and 5-shot cases, respectively.

We observe even larger improvements for both baselines on TieredImageNet. These

results re-highlight the importance of implementation details in FSL and validate the

strength of our main baselines. A major factor in obtaining strong baselines is back-

bone pretraining, for which we present additional results in the context of our work

later in this chapter.
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4.2.2 Main results and ablative experiments

The very last row of Table 4.1 contains our main results using the final combined

attention models. The preceding lines presents the results for the ablated versions of

the model with only sample attention or only feature attention based AM3 extensions.

We note that in the case of 1-shot learning, sample attention has no difference by

definition. From the results, first, we observe that sample attention in the case of

5-shot learning slightly degrades by 0.3 points on MiniImageNet but improves on

TieredImageNet by nearly 0.5 points. Second, feature attention improves the AM3

model by approximately 2 points for 1-shot and slightly degrades by 0.5 points for

5-shot on MiniImageNet. We observe similar patterns on TieredImageNet.

Looking into the final combined attention model results in Table 4.1, we observe con-

sistent improvements in all cases. The proposed combined attention improves 1-shot

learning from 63.62 (PN) and 67.55 (AM3) to 69.76 on MiniImageNet. Similarly,

5-shot results improve from 78.37 (PN) and 80.22 (AM3) to 81.19. We observe sim-

ilar improvements on TieredImageNet: 1-shot results improve from 67.58 (PN) and

72.60 (AM3) to 72.69, and 5-shot results improve from 84.71 (PN) and 84.59 (AM3)

to 85.29.

Noticeably for 5-shot learning on TieredImageNet, the performance gap between PN

versus AM3 and our semantic FSL models are relatively smaller. This can be due

to the fact that the backbone is pretrained with more diverse classes and this ulti-

mately can give better feature representations with less challenging tasks, therefore

reducing the need for semantic priors. Consistently, we also observe that FSL mod-

els typically yield higher results on the test set of TieredImageNet, in comparison to

MiniImageNet.

4.2.3 Comparison to the state-of-the-art

Comparing results with different implementations is particularly problematic in few-

shot learning, and, our main motivation is to explore and evaluate the feature-attention

and sample-attention mechanisms in the context of PN and AM3 models. Despite

this, it is clearly of interest to show how our results compare to those of other state-
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Table 4.2: Few-shot classification accuracy on the test set of MiniImageNet for uni-

modal (non-semantic) and multi-modal FSL approaches. * indicates our own imple-

mentation.

Model Backbone Test Accuracy

1-Shot 5-Shot

Uni-modal few-shot learning baselines

Prototypical Networks* [11] Resnet-12 63.62 ± 0.23 78.37 ± 0.21

Matching Networks [13] ResNet-18 52.91 ± 0.91 68.88 ± 0.69

Relation Net [63] ResNet-18 52.48 ± 0.86 69.83 ± 0.68

MAML [27] ResNet-18 49.61 ± 0.92 65.72 ± 0.77

LogReg [34] ResNet-18 51.75 ± 0.80 74.27 ± 0.63

LogReg Cosine [34] ResNet-18 51.87 ± 0.77 75.68 ± 0.63

TADAM [62] ResNet-12 58.56 ± 0.39 76.65 ± 0.35

SimpleShot [64] ResNet-18 62.85 ± 0.20 80.02 ± 0.14

MetaOptNet [65] ResNet-12 62.64 ± 0.61 78.63 ± 0.46

LEO [29] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12

FEAT* [51] ResNet-12 65.38 ± 0.20 77.79 ± 0.15

Multi-modal few-shot learning baselines

KTN [56] Conv-128 64.42 ± 0.72 74.16 ± 0.56

RIN [57] ResNet-12 56.92 ± 0.81 75.62 ± 0.62

TriNet [38] ResNet-18 58.12 ± 1.37 76.92 ± 0.69

ACAM [66] ResNet-12 66.43 ± 0.57 75.74 ± 0.48

Baby steps [37] ResNet-10 67.2 74.8

AM3 + TRAML [40] ResNet-12 67.10 ± 0.52 79.54 ± 0.60

AM3* [36] ResNet-12 67.55 ± 0.24 80.22 ± 0.18

Ours ResNet-12 69.76 ± 0.21 81.19 ± 0.18
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Table 4.3: Few-shot classification accuracy on the test set of TieredImageNet for

uni-modal (non-semantic) and multi-modal FSL approaches. * indicates our own

implementation.

Model Backbone Test Accuracy

1-Shot 5-Shot

Uni-modal few-shot learning baselines

Prototypical Networks* [11] Resnet-12 67.58 ± 0.22 84.71 ± 0.19

Relation Net [63] ResNet-12 54.48 ± 0.93 71.32 ± 0.78

MAML [27] ResNet-12 51.67 ± 1.81 70.30 ± 0.08

MetaOptNet [65] ResNet-12 65.99 ± 0.72 81.56 ± 0.63

SimpleShot [64] ResNet-18 69.09 ± 0.22 84.58 ± 0.16

LEO [29] ResNet-12 66.33 ± 0.05 81.44 ± 0.09

FEAT* [51] ResNet-12 70.53 ± 0.22 84.71 ± 0.15

Multi-modal few-shot learning baselines

ACAM [66] ResNet-12 67.89 ± 0.69 79.23 ± 0.52

AM3* [36] ResNet-12 72.60 ± 0.21 84.59 ± 0.15

Ours ResNet-12 72.69 ± 0.21 85.24 ± 0.16

of-the-art methods. Table 4.2 and Table 4.3 present the results of FSL methods (upper

half) and semantic FSL methods (lower half), on MiniImageNet and TieredImageNet

datasets respectively. First, we observe that our modernized PN baselines are very

strong baselines, outperforming the results of many other more recent works. Sec-

ond, our final model outperforms all methods in FSL and semantic FSL categories

on both MiniImageNet and TieredImageNet datasets. Not surprisingly, best improve-

ments are in the 1-shot settings on both datasets against the uni-modal (non-semantic)

approaches since a single training sample is often insufficient and semantic prior be-

comes most valuable in this setting. Overall, the results highlight the value of seman-

tic priming for few-shot learning.

23



Table 4.4: Evaluation of sample attention for handling noisy support samples.

Method 5-way 5-Shot Acc.

PN [11] 62.61 +- 0.22

PN + Sample Attention 70.48 +- 0.20

4.2.4 Few-shot learning with noisy samples

As discussed in Section 1, we believe that the problem of having sample noise in FSL

is an insufficiently studied yet practically important problem. This problem also pro-

vides a challenging scenario for understanding the effectiveness of semantics driven

sample attention. For this purpose, we artificially introduce noisy support batches

during training and testing phases. More specifically, for the 5-shot 5-way setting on

MiniImageNet, we create episodes with classes that may consist of support examples

that belong to other classes in that episode. We note that such within-task noise is

most challenging and practically more relevant as FSL models are likely to be con-

structed among similar classes. For each class in a task, we guarantee the existence of

at least 3 correctly labeled support examples. We then randomly permute the classes

to mix up the correct support-class pairs and we add 2 more instances to complete 5

support examples. To study sample attention in an isolated manner, here we excep-

tionally use sample attention directly on top of PN. We report the results in the Table

4.4, where we observe a very clear performance gap, i.e., 62.61 (PN) versus 70.48

(sample attention). This strongly suggests the ability of sample attention to utilize

semantic priors for selecting the most informative support samples.

4.3 Analysis

In the paragraphs that follow, we present additional analyses on the importance of

backbone pretraining, sample attention in the cases of noisy and clean support sam-

ples, and larger-way (10-way and 15-way) FSL.
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Table 4.5: Comparison of PN and Our approach with and without pretraining of the

ResNet-12 backbone for MiniImageNet.

Model MiniImageNet

1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN w/o Pretraining [11] 43.43 ± 0.67 43.70 ± 0.24 71.90 ± 0.66 69.67 ± 0.22

Ours w/o Pretraining 64.55 ± 0.70 61.57 ± 0.23 72.46 ± 0.68 68.78 ± 0.19

PN with Pretraining [11] 68.73 ± 0.68 63.62 ± 0.20 80.88 ± 0.67 78.37 ± 0.22

Ours with Pretraining 76.44 ± 0.65 69.76 ± 0.21 85.02 ± 0.65 81.19 ± 0.18

4.3.1 Importance of backbone pretraining

In Table 4.5 we inspect how pretraining and backbone quality affects the few-shot

learning performance. Here we use both PN and our approach to see the effect in

both uni-modal and multi-modal approaches. Models without pretraining are models

that are trained end-to-end. In order to create a fair comparison, we train the models

by using the same number of epochs in both cases. All of the models are trained for

400 epochs and the results reported based on best validation score. As can be seen

from Table 4.5, model pretraining improves both approaches clearly, and is crucial

for achieving state-of-the-art performance. An interesting result is the comparison

of PN and our approach for 1-shot setting without pretraining since it highlights the

significance of semantic information when the backbone quality/visual feature quality

is low. As the backbone becomes better with pretraining the gap becomes smaller.

4.3.2 Analysis of sample attention

To further understand the behavior of sample attention, we provide qualitative results

both with and without noise in support samples, in Figure 4.1. Each image 5-tuple

corresponds to a 5-shot support set of a class. The examples on the left correspond

to clean setting and the examples on the right come from sample noise experiments,

where dashed borders indicate noisy samples. The numbers indicate the resulting

attention values. In the top-left example, we observe that the model puts higher

weights to support examples where the target lion is most recognizable. Similarly
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Figure 4.1: Sample attention examples for clean (left) and noisy (right) support sam-

ple settings. Yellow dashed lines represent the noisy samples. Numbers indicate

attention scores.

in the bottom-left example, we observe that the model attends to samples where the

target ant is more recognizable. The example on the top-right shows that the model

puts low weight to noisy and cluttered inputs. The bottom-right example, however,

shows an example where the weight of the noisy sample dalmatian dog is comparable

to the others, due to similarity across the target class and noisy samples, highlighting

a limitation of the model.

Additionally, Figure 4.2 provides a histogram of sample attention weights over 100

5-way, 5-shot tasks on the test set of MiniImageNet. The figure shows that the model

estimates sample attention weights with a unimodal distribution centered around 0.2

weight with values as low as 0.125 and as high as 2.8. Noting that this is the result of

purely meta-learned model in a 5-shot setting, the distribution suggest that we obtain

a healthy and effective sample importance estimator.

4.3.3 10-way and 15-way few-shot learning

In Table 4.6 and 4.7 we compare our model with PN and AM3 for the more chal-

lenging 10-way and 15-way settings respectively. As expected, the performances of

all models decrease as the way count increases. Our model outperforms both PN

and AM3 for the 1-shot setting, in both 10-way and 15-way experiments and the per-

formance margin between those models increases. For 5-shot settings, although our

approach obtains nearly 1% better accuracy on validation sets it falls 0.5 points behind

of AM3 in test sets. This points to a less than ideal correlation between the validation
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Figure 4.2: Histogram of sample attention weights for 100 5-way, 5-shot tasks on the

test set of MiniImageNet.

Table 4.6: Evaluation of 10-way FSL on MiniImageNet.

Method 10-way

1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN [11] 53.61 ± 0.60 46.04 ± 0.13 70.30 ± 0.39 66.03 ± 0.10

AM3 [36] 61.46 ± 0.55 51.37 ± 0.12 72.92 ± 0.43 67.51 ± 0.10

Ours 62.63 ± 0.50 52.22 ± 0.12 73.76 ± 0.41 67.36 ± 0.10

and test set performances, which is likely to degrade as the way count increases while

test set size remaining constant.
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Table 4.7: Evaluation of 15-way FSL on MiniImageNet.

Method 15-way

1-Shot Val 1-Shot Test 5-Shot Val 5-Shot Test

PN [11] 45.64 ± 0.43 37.42 ± 0.10 63.47 ± 0.28 58.40 ± 0.08

AM3 [36] 49.23 ± 0.44 39.10 ± 0.10 66.06 ± 0.30 60.27 ± 0.08

Ours 55.24 ± 0.35 43.54 ± 0.09 66.91 ± 0.28 59.72 ±0.08
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CHAPTER 5

CONCLUSION

In this thesis, we propose a method for semantic FSL. Although state-of-the-art FSL

approaches perform surprisingly well even at the extreme cases like 1-shot learning

the need for a supplementary semantic side information is undeniable. Especially

considering the sophisticated big architectures like ResNets are commonly used and

requires a lot of data to train. The main motivation of our approach is to utilize

semantic prior knowledge about classes to estimate importance of support samples

and representation dimensions.

In Chapter 3 we show that how we can use semantic side information to weigh limited

support images so that we will benefit from the most useful ones compared to previous

approaches where they simply take the mean of those support image features. In

addition, we are also trying to select most useful feature dimensions for each class to

boost the classification accuracy. Finally, we point out another potential problem that

we call sample noise and suggest that sample attention is very helpful in reducing the

effects of irrelevant images.

Our method performs well against not only the approaches that use only visual data

but also the ones that use additional semantic information. The performance gains

are more prominent in lower shot settings where model’s need for auxiliary semantic

information is higher. In addition, when the FSL tasks get harder and more classes

are being involved in a single episode our approach shows more promise than other

works. We also study the case of sample noise in support sets.

While we focus on a single semantic modality, we believe that incorporating multiple

modalities, as in [37], and combining with a generative model based approach, as in
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[38], can be important future work directions. Additionally, having better semantic

side information or incorporating that side information in a better way may be another

cruical direction that can be explored in the future.

5.1 Limitations

This work clearly benefits from the usage of semantic side information to obtain bet-

ter few-shot learning results. However, side informations may also negatively affect

the classification performance, especially if the semantic side information itself is

misleading and/or noisy. In addition, we may not be able to find semantic side in-

formation for certain datasets or those side information may not be sufficient to find

useful attention weights.
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