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ABSTRACT

CANCER DRIVER SUBNETWORK IDENTIFICATION BY NETWORK
DISMANTLING METHODS

Kasapoğlu, Fatma Ülkem

M.Sc., Department of Bioinformatics

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ

September 2021, 92 pages

Tissue-specific protein protein interaction networks(TSPPI) are important for study-
ing tissue-based cellular processes and protein functions. As the functions of tissues
are various, the proteins they contain and the functions of these proteins also different
than each other. Thus, these networks may help clinical studies both in tissue-specific
cancer prediction by identification of the important groups in TSPPI. In this study,
we aim to detect driver subnetworks in various TSPPIs and to understand effective-
ness of the driver subnetworks. We performed iterative centrality attacks, Generalized
Network Dismantling(GND), GND with Reinsertion(GNDR) on breast, liver, lymph
node, ovary, and peripheral nerve TSPPIs from TissueNet v2 database. After the com-
parison by using driver gene information of each TSPPI from the Cancer Genome
Interpreter and cBioPortal databases, we applied Personalized PageRank to each re-
sulting TSPPI subnetworks to get more compact and robust subnetworks. Finally, we
performed enrichment analysis for the proposed driver subnetworks. We found that
genes in final subnetworks were enriched in both common and tissue-based cancer
related pathways. As a result, we found that there was not optimal attack strategy for
all TSPPIs. However, it is possible to obtain promising results for the cancer research
by the comparison of these strategies.

Keywords: Tissue-Specific Protein Protein Interaction Networks, Subnetwork Identi-
fication, Network Attacks, Network Dismantling
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ÖZ

AĞ SÖKME YÖNTEMLERİNİ KULLANARAK KANSER SÜRÜCÜSÜ ALT
AĞ TANIMLAMA

Kasapoğlu, Fatma Ülkem

Yüksek Lisans, Biyoenformatik Bölümü

Tez Yöneticisi: Doç. Dr. Nurcan Tunçbağ

Eylül 2021 , 92 sayfa

Dokuya özgü protein protein etkileşim ağları (TSPPI), doku bazlı hücresel süreçleri
ve protein fonksiyonlarını incelemek için önemlidir. Dokuların işlevleri çeşitli olduğu
için içerdikleri proteinler ve bu proteinlerin işlevleri de birbirinden farklıdır. Böylece
bu ağlar, TSPPI’deki önemli grupları tanımlayarak hem dokuya özgü kanser tahmi-
ninde klinik çalışmalara yardımcı olabilir. Bu çalışmada, çeşitli TSPPI’lerdeki sürücü
alt ağlarını tespit etmeyi ve sürücü alt ağlarının etkinliğini anlamayı amaçlıyoruz. Tis-
sueNet v2 veritabanından meme, karaciğer, lenf düğümü, yumurtalık ve periferik sinir
TSPPI’lerinde yinelemeli merkezilik saldırıları, Genelleştirilmiş Ağ Dağıtma (GND),
Yeniden Yerleştirmeli GND (GNDR) gerçekleştirdik. Cancer Genome Interpreter ve
cBioPortal veritabanlarından alınan her TSPPI’nin sürücü gen bilgilerini kullanarak
karşılaştırmadan sonra, daha kompakt ve sağlam alt ağlar elde etmek için ortaya çı-
kan her TSPPI alt ağına Kişiselleştirilmiş PageRank uyguladık. Son olarak, önerilen
sürücü alt ağları için zenginleştirme analizi gerçekleştirdik. Nihai alt ağlardaki gen-
lerin hem yaygın hem de doku bazlı kanserle ilgili yollarda zenginleştiğini bulduk.
Sonuç olarak, tüm TSPPI’ler için optimal saldırı stratejisi olmadığını bulduk. Ancak
bu stratejilerin karşılaştırılması ile kanser araştırmaları için umut verici sonuçlar elde
etmek mümkündür.

Anahtar Kelimeler: Dokuya Özgü Protein Protein Etkileşim Ağları, Alt Ağ Tanım-

lama, Ağ Saldırıları, Ağ Sökülmesi
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Special thanks to Hikmet Baş for always being by my side and never letting me down.
I also had great pleasure of being friends with Eda Tosun, Burak Kızıl, Pınar Arıkoğlu,
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CHAPTER 1

INTRODUCTION

Protein-protein interactions (PPIs) are to perform almost all molecular mechanisms
in cell such signaling pathways, cell to cell communication, replication, transcription
etc.; therefore, understanding PPIs is crucial to understanding cell dynamics. It may
also be considered to predict and understand the possible effects of drugs on the cell
(Mabonga & Kappo, 2019). Recent developments in biotechnology have resulted in
PPI data created with different perspectives. Modeling PPI networks (PPINs) with
simple graphs enables us to understand the basic components of cell physiology and
from the organizational network level. Many public databases have been created to
ensure that researchers can easily access this information. In addition to the standard
guidelines to store PPI data, many primary and meta-databases have been created by
The International Molecular Exchange consortium (IMEx) (Orchard et al., 2012).

Recently, it has gained popularity that biological networks can contribute to cancer
studies by deciphering biological mechanisms. It has been shown to be very useful
for the prediction therapeutic responses at both the molecular and systems levels.
Biological networks are generally scale-free, meaning that a few nodes have huge
number of links, called hub nodes, and the remaining nodes have only one or few
links (Barabási & Bonabeau, 2003). Hub genes/proteins in biological networks tend
to be essential (Goymer, 2008).

PPINs represent physical contacts between proteins. Tissue-specific PPI network
(TSPPI) may be defined as a subnetwork of a PPIN that includes proteins expressed
in a particular tissue (Bossi & Lehner, 2009). To generate a TSPPI, a PPIN is needed
as a template and expression data for each protein. Since an expression dataset pro-
vides protein expression data for multiple tissues, multiple TSPPIs can be generated,
one per tissue for the PPIN and the expression dataset.

Cancer types show behavioral changes from tissue to tissue. Likewise, TSPPIs are
quite different in terms of both hub genes, also called ’driver genes’, and topological
features (Stratton, Campbell, & Futreal, 2009). Different structures produce different
results as a result of network attacks e.g. mutations for a PPIN.

In network science, dismantling a network by attacking minimum number of nodes
is a crucial problem. The adapted version of the problem for TSPPIs is that when a
gene or a set of genes is mutated, a pathway that can lead to cancer may be disrupted.
In this case, the problem evolves to find cancer driver genes in the TSPPI or genes
that interact with them. This is called "driver subnetwork". It should be noted that

1



finding driver subnetworks is an NP-hard problem (Hormozdiari, Salari, Bafna, &
Sahinalp, 2010). Thus, there is not any optimal solution for this problem. In this
thesis, we compared several approaches to extract the best subnetworks for various
TSPPIs. We tried to attack the nodes with the highest betweenness, closeness, degree,
or eigenvector centralities first in each iteration. As another method, we implemented
various ways of the weight function of Generalized Network Dismantling (GND)
(Ren, Gleinig, Helbing, & Antulov-Fantulin, 2019), which was created using the node
degrees of the network, by replacing it with these centrality measures. Then, we
reinserted the nodes that are unnecessarily removed from the GND algorithm. Finally,
we evaluated our results by using 5 different TSPPIs consisting of breast, liver, lymph
node, peripheral nerve and ovary. We used driver node information from the Cancer
Genome Interpreter (Tamborero et al., 2018) and cBioPortal (Gao et al., 2013) in
the method evaluation phase. After determining the best attack strategy for each
TSPPI seperately according to their resulting subnetworks and driver node counts,
we applied Personalized PageRank (Jeh & Widom, 2003) to resulting subnetworks,
produced by selected strategy, in order to extract a smaller, meaningful, and compact
subnetwork for each tissue. We conducted functional enrichment analysis to show
the resulting proposed subnetworks include both tissue-related and common cancer
pathways.

In Chapter 2, we present a detailed literature review on the subject, starting with the
knowledge of the data sources used. After introducing network centrality measures,
we review network dismantling algorithms, biomarker identification and driver sub-
network construction algorithms.

In Chapter 3, we present our step-by-step methodology. First of all, we explain how
we obtain and process data on TSPPI and driver gene information for each TSPPI.
After that, we introduce details about the algorithms in our pipeline. We clarify how
we conduct the functional enrichment analysis on these results.

In Chapter 4, we start by giving the dataset statistics. We show that the TSPPIs
are quite different from each other. Then, we present all results seperately for each
TSPPI. We present method evaluation results to find best subnetwork to continue
with. We visualize Personalized PageRank result statistics and resulting networks.
Finally, we infer final functional enrichment results.

As a conclusion, we interpret our results while giving an overview of our pipeline.
Finally, we discuss our resulting networks. Through this study, we have shown that
there is no single optimal attack strategy and that even though TSPPIs are generated
from the same interactome, the impact of each of these strategies is quite different, as
there are great topological differences between them.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review available tissue-specific data sources, network dismantling
algorithms, and biomarker and driver subnetwork identification studies in the litera-
ture. Also, we refer to the topological features of a network and databases used in
this study.

2.1 Tissue-Specific PPI Data Sources

2.1.1 Tissue-specific Gene Expression and Regulation (TIGER) Database

TIGER (http://bioinfo.wilmer.jhu.edu/tiger/) is a publicly available relational database
that accommodates broad information on tissue-specific gene regulation regarding
both expression and regulatory data which include tissue-specific expression profiles,
combinatorial editing for interacting transcription factor (TF) pairs, and cis-regulatory
modules (CRM) for tissue-specific genes. (Liu, Yu, Zack, Zhu, & Qian, 2008)

2.1.2 SPECTRA

SPECTRA (http://alpha.dmi.unict.it/spectra) integrates 13 authoritative sources in-
cluding Protein Atlas (Uhlén et al., 2005), ArrayExpress (Brazma et al., 2003), The
Gene Expression Omnibus (GEO) (Barrett et al., 2007) and The Cancer Genome
Atlas (TCGA)(Weinstein et al., 2013), then combines human PPIs with gene expres-
sions. This resulting database contains protein-coding genes and gene interactions
(GIs) and tissue-specific gene expression data entries.

2.1.3 Integrated Interaction Database (IID)

IID (http://ophid.utoronto.ca/iid) is a database that contains 6 living species including
yeast, worm, fly, rat, mouse, and human. There is a maximum of 30 tissue per organ-
ism. It consists of experimentally and computationally predicted PPIs. Users query
IID by giving a set of proteins or interactions, and tissues of interest from either of
these organisms. (Kotlyar, Pastrello, Sheahan, & Jurisica, 2016)
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2.1.4 TissueNet v.2

TissueNet was one of the first databases to enable tissue-sensitive views of PPIs.
TissueNet provided comprehensive views of 16 major human tissues by integrating
gene and protein expression profiles of human tissues into a combined expression
dataset. Importantly, in the output network, TissueNet implemented tissue-specific or
global proteins and presented with it an informative view of TSPPIs. The TissueNet
database establishes the link between PPIs and tissues (Barshir et al., 2013).

TissueNet v.2 (http://netbio.bgu.ac.il/tissuenet) is an improved version of the first ver-
sion. It includes 40 TSPPIs which are profiled through RNA sequencing or protein
based assay. By the updates to TissueNet, users can dynamically change the resulting
network and enhance the appearance of the tissue specificity of the proteins, by the
flexibility to interactively select the source of expression for tissue associations and
adjust the expression threshold(Basha et al., 2017).

2.2 Cancer Genome Interpreter(CGI)

The Cancer Genome Interpreter (http://www.cancergenomeinterpreter.org), is used to
interpret the probability of a mutation being a driver mutation and its treatment auto-
matically. The results are arranged at different levels of evidence based on the avail-
able information that may support a wide variety of oncology use cases (Tamborero
et al., 2018).

2.3 cBioPortal

cBioPortal is a publicly available platform for exploratory analysis and interactive
visualization of large-scale cancer genomics datasets. cBioPortal gives the advan-
tage of integration of multiple analysis tools such as mutual exclusivity calculation,
survival analysis, mutated gene identification from clinical data, sample comparison
of different groups. It is freely available at https://www.cbioportal.org/ (Gao et al.,
2013).

2.4 BioMart

BioMart provides an integrated searching on many biological data sources. BioMart
is extended through integration with various commonly used tools such as BioCon-
ductor (Gentleman et al., 2004), Galaxy (Giardine et al., 2005), Cytoscape (Shannon
et al., 2003), Taverna (Oinn et al., 2004). BioMart is an convenient and universal sys-
tem and an integral part of big data sources such as Ensembl (Hubbard et al., 2002),
UniProt (Apweiler et al., 2004), HapMap (Gibbs et al., 2003), Wormbase (Stein,
Sternberg, Durbin, Thierry-Mieg, & Spieth, 2001), Gramene (Ware et al., 2002),
Dictybase (Chisholm et al., 2006), the proteomics identifications database (PRIDE)
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(Martens et al., 2005) and Reactome (Joshi-Tope et al., 2005). BioMart is freely
accessible at http://www.biomart.org (Smedley et al., 2009).

2.5 Topological Features of a Network

The molecular causes of diseases are investigated by many different techniques such
as the study of their driver genes, disruption of related pathways, and various other
external influences. Disruption of certain genes in a biological process affects the
organism more than other genes. Likewise, critical areas in a network mean a lot to
network connectivity. The scientific field that tries to address this coupling is bio-
logical networks. For example, there are several applications on PPINs (Jeong, Ma-
son, Barabási, & Oltvai, 2001) (Fraser, Hirsh, Steinmetz, Scharfe, & Feldman, 2002)
(Eisenberg & Levanon, 2003) (Saeed & Deane, 2006) (Jordan, Wolf, & Koonin, 2003)
(Wachi, Yoneda, & Wu, 2005) (Xu & Li, 2006).

Network topology is the element structure of a network. Network centrality assigns
different node rankings within a network according to their localization. For example,
identification of the most influential person(s) in a social network (Zhao, Liu, Wang,
Li, et al., 2017), super-spreaders of diseases and brain networks(van den Heuvel &
Sporns, 2013) (Saberi, Khosrowabadi, Khatibi, Misic, & Jafari, 2021) are some ap-
plications. There are various network centrality metrics in the literature.

Degree centrality (Bell, Atkinson, & Carlson, 1999) is the simplest network centrality
measure that means ratio of number of edges connected to a node to the number of
all edges in undirected graphs. Corresponding centralities are calculated by dividing
them into the total number of edges.

Closeness centrality (Freeman, 1978) is the inverse of the average shortest path dis-
tance to that a node over all accessible nodes. Larger closeness centrality indicates a
less central node while a smaller closeness centrality score indicates a more central
node.

Betweenness centrality (Freeman, 1977) measures the influence of a node on the
information flow in a graph. Thus, it is often used to find important nodes connecting
two parts of a graph. It is calculated with respect to the number of times a node is
located on the shortest paths between any pair of nodes using the Brandes algorithm
(Brandes, 2001).

Percolation centrality (Piraveenan, Prokopenko, & Hossain, 2013) is the distribution
of ‘percolated paths’ through a node. The percolation states are values in the range
0.0 to 1.0.

Eigenvector centrality (Ruhnau, 2000) is another measure of the impact of a node.
According to this metric, connections to high scoring nodes give more to that node’s
score than connections with lower scores, relative scores depend on the impact of
their neighbors. PageRank (Langville & Meyer, 2011) and the Katz centrality (Katz,
1953) are modifications of this measure.
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2.6 Network Dismantling

Network Dismantling is a key challenge in complex networks to find a minimum col-
lection of vertices where removal of this collection results in subnetworks which may
be the most comprehensive and robust connected sub-components available. There
is no solution in polynomial time because of its NP-complete complexity due to the
presence of non-trivial connectivity patterns (Braunstein, Dall’Asta, Semerjian, &
Zdeborová, 2016).

One of the most focused issues regarding the dismantling of the network has been the
decision of its ability to continue with its expected function after a major collapse.
Thus, the links between these vertices was affected by the removal of nodes, as a
result of random or targeted processes. Then, the problem of identifying the most
effective strategies to disrupt a network arose. Primarily, it makes move from evalua-
tion to resilience building by predicting where a clever attacker might attack and thus
determining where should be conserved at first glance. Second, there are situations
where it is needed to disrupt a network, such as stopping the spread of a computer
virus or transmission of a disease (Wandelt, Sun, Feng, Zanin, & Havlin, 2018).

A common practice in identifying the best attack is to use measures of degree, be-
tweenness, closeness, and eigenvector node centrality or special network removal
techniques such as Min-Sum (Braunstein et al., 2016), articulation points (Tian, Bashan,
Shi, & Liu, 2017), and the Laplacian operator (Ren et al., 2019).

Network topology based network dismantling methods propose attacking nodes with
respect to their topological features, i.e. different centrality measures and degree-
based weight calculations. According to the Girvan-Newman method (Girvan &
Newman, 2002), based on the edge betweenness, a network is gradually reduced by
discarding edges having the highest betweenness centralities until the required num-
ber of subnetworks is reached. Another method based on centrality (Holme, Kim,
Yoon, & Han, 2002) introduces a dynamic iterative calculation by taking into ac-
count the changes in both degree and betweenness centralities of nodes after each
attack. Coreness (Kitsak et al., 2010) is a measure that can help identify strongly
connected groups within a network. K-shell iteration factor (Wang, Zhao, Xi, & Du,
2016) is another topological measure that is based on the node coreness. The k-
shell iteration algorithm integrates shell decomposition to iterative node removal to
use variations in the neighborhood. CoreHD attacks (Zdeborová, Zhang, & Zhou,
2016) is a modified version of k-shell iteration algorithm to achieve a dismantled
network (Altarelli, Braunstein, Dall’Asta, & Zecchina, 2013a) (Altarelli, Braunstein,
Dall’Asta, & Zecchina, 2013b). The highest degree node with the 2-core graphs is it-
eratively removed until there are no 2-core graphs left. Then, the algorithm continues
with processing the remaining part by tree breaking. Influence Maximization through
optimal percolation (Morone & Makse, 2015), is a method using topological features,
designed for determining the optimal structural node set onto optimal percolation in
random networks. It considers the neighbors at a pre-determined distance.

The Articulation Points Targeted Attack (Tian et al., 2017) is one of the special net-
work removal techniques established in the literature. An articulation point (AP) re-
moval breaks down the network connectivity. All APs can be identified by performing
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a linear-time algorithm based on depth-first search. From the community perspective,
community-based attacks (Requião da Cunha, González-Avella, & Gonçalves, 2015)
rely on identifying the communities that compose a network based on the concept of
modularity. Louvain method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) is
used to extract communities. After a community structure is extracted from the net-
work, inter-community links are determined and removed iteratively by calculating
the betweenness centrality of the nodes. For the resulting subnetworks, the nodes are
ordered by their degree ranks. Another algorithm, specifically designed for disman-
tling problem, is Network Dismantling (ND) (Braunstein et al., 2016). There is an
assumption in ND algorithm that the problem of dismantling a network is related to
decycling. A three-stage Min-Sum algorithm consisting of decycling, tree breaking
and loop closure is proposed. First, there is a variant of the Min-Sum message-passing
algorithm for decycling, which is the most important part of the algorithm. After
loops have been broken, some tree components may not satisfy the desired thresh-
old. These subnetworks are subdivided into smaller subnetworks, eliminating some
of the nodes lost. Finally, loops are greedily closed to increase the efficiency. Gen-
eralized network removal (GND) (Ren et al., 2019) is separated from ND via "node-
specific costs". When cost for each node is calculated as unit cost, GND turns into
the standard ND algorithm. GND uses a spectral approximation by a power laplacian
operator. This process is called "node-weighted spectral cut" and it is implemented
recursively until the network consists of smaller subnetworks.

2.7 Identification of Biomarkers and Driver Subnetworks in Biological Net-
works

Large-scale cancer catalogs of genomic alterations such as Cancer Genome Project
(CGP) (Dickson, 1999), TCGA (Weinstein et al., 2013), International Cancer Genome
Consortium (ICGC) (J. Zhang et al., 2011), and The Catalogue of Somatic Mutations
in Cancer (COSMIC) database (Forbes et al., 2010) address molecular disruptions
in different types of cancer. There are two important problems to be solved in these
studies. The first is to identify mutations in driver genes, which are usually important
biomarkers, and the second is the identification of biological pathways that are often
disrupted in tumor cells and cause the acquisition of tumorigenic features (Weinberg
& Hanahan, 2000).

The simplest method for predicting driver nodes in a biological network is to rank
all genes according to a particular local topological feature (e.g affinity centrality,
PageRank centrality, degree centrality). On the other hand, biological networks are
very complex and therefore the application of the methods using only one or more
local topological features is insufficient (Cámara, 2017).

To identify cancer-associated genes is the combination of different types of data about
types of tumors (Cheng, Zhao, & Zhao, 2016). If there are consistent changes in gene
expression, or DNA as a mutation occurs, it is likely that this mutation is associ-
ated with cancer. Several studies have used changes in copy number, expression, or
methylation of the mutated gene to identify new cancer-associated mutations (Leary
et al., 2008; Ding et al., 2008; Frattini et al., 2013). Recently, novel algorithms
and frameworks have been developed by the data integration perspective to find op-
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timal set of driver genes. DriverNet (Bashashati et al., 2012) is a framework created
to identify possible driver mutations through their effects on mRNA expression net-
works. CONEXIC (Akavia et al., 2010) is a computational scheme that combines
expression and chromosomal copy number data to detect abnormality that favor can-
cer. AMARETTO (Gevaert, Villalobos, Sikic, & Plevritis, 2013) is an algorithm that
initially models the relationship between genomic data and disease-specific gene ex-
pression and then involves building a network of modules to link cancer drivers to
downstream targets. OncoIMPACT (Bertrand et al., 2015) identifies patient-specific
driver genes by integrating structural and copy number mutations and resulting dis-
ruptions in transcriptional process.

Networks may often be easily divided into modules or subnetworks by cutting them
at their weakly-connected edges (Newman, 2006). Subnetwork construction usually
starts with an exploration with one or more genes and expansion to their neighbors.
This process continues until a specific threshold is reached. The resulting subnet-
works may contribute in diseases or drug treatments by revealing disease effects or
therapeutic responses. There are different perspectives to solve the driver subnetwork
construction/identification problem.

First approach to identify driver subnetworks is to define a reduced number of candi-
date subnetworks and select the high-scoring subnetworks based on node scores. jAc-
tiveModules (Ideker, Ozier, Schwikowski, & Siegel, 2002) method proposes to com-
bine a proper statistical measure to rank subnetworks with a search algorithm to iden-
tify high-scoring subnetworks. BioNet (Beisser, Klau, Dandekar, Müller, & Dittrich,
2010) is an R package that integrates multiple P-values from various experiments,
assign rankings to nodes with a modular scoring function, calculates optimal and
nonoptimal solutions, calculates high-scoring solutions, and finally visualizes these
solutions in both 2 dimensions and 3 dimensions. Another example of functional
module identification on PPINs (Dittrich, Klau, Rosenwald, Dandekar, & Müller,
2008) represents a method which is a combination of integer programming and prize-
collecting Steiner tree with a novel scoring function. Omics Integrator (Tuncbag et
al., 2013) uses omics data to reconstruct multiple paths changed under a given condi-
tion by solving a prize-collecting Steiner forest problem. MUFFINN (MUtations For
Functional Impact on Network Neighbors) (Cho et al., 2016) combines gene muta-
tions and the neighbors of these genes in functionally-associated networks.

In addition to the first approach that defines subnetworks via node scores, in the sec-
ond approach, network topology is also included in the subnetwork scoring in the lit-
erature. For example, in a study, a tool is presented that can conduct protein function
predictions by extracting the shortest paths calculated with the new metric between
each protein pair, with Diffusion state distance, which is designed to grab subtle sep-
arations in proximity for the transmission of functional descriptions in PPINs (Cao
et al., 2013). NetWalker (Komurov, Dursun, Erdin, & Ram, 2012) is an integrated
platform designed for comparative interpretations of genomic data by using a number
of comprehensive data integration methods. It presents a random walk-based novel
method that gives analysis capabilities to evaluate data distributions and connectivity
to compute priorities of subnetworks. HotNet (Vandin, Upfal, & Raphael, 2011) uses
an undirected heat diffusion process. TieDIE (Paull et al., 2013) uses manually cu-
rated differentially expressed genes and mutated genes to find driver subnetworks by
using a directed heat diffusion strategy. HotNet2 (Leiserson et al., 2015) is an algo-
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rithm based on an isolated heat diffusion kernel algorithm to find altered subnetworks
using both the heats of the genes and the PPIN topology.

By linking additional information to node scores and network topology information,
another approach is applied to biological networks. PARADIGM (Vaske et al., 2010)
proposes an algorithm by modelling each gene with a factor graph of expression vari-
ables and known activity of a gene and gene products, allowing for the inclusion
of omics data. MEMo (Ciriello, Cerami, Sander, & Schultz, 2012) uses correlation
and statistical analysis by determining genes that have mutually exclusive alterations
across a set of tumor samples from the same biological process.

9



10



CHAPTER 3

MATERIALS AND METHODS

In this section, we explain the general structure, from the acquisition of TSPPI and
driver node information data to the use of different methods, namely algorithms using
topological features and the GND method.

3.1 Overview of the Pipeline

In this study, we first download TSPPIs from TissueNet v.2 (Basha et al., 2017),
compare different algorithms and weight functions on TSPPIs and analyze them to
determine the best method for each tissue. To analyze it, we first need to get the
nodes of the network that may be drivers. For this reason, we extract tissue-specific
biomarkers and common biomarkers from CGI (Tamborero et al., 2018). Then, in
order to find out the occurrence frequency of the common biomarkers play the role
of driver gene in this cancer, we remove the genes with 0% frequency but marked
as biomarkers from the driver gene list by reaching the incidence in patients through
cBioPortal (Gao et al., 2013). We use the biomarker information to determine the
optimal subnetwork among the dismantled networks and to determine the driver sub-
networks for each tissue in the initial large networks by applying the Personalized
PageRank algorithm starting from the driver nodes on the selected subnetworks. Fi-
nally, we evaluated our results by functional enrichment analysis via DAVID (Dennis
et al., 2003).
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Figure 3.1: Summary of our methodology

3.2 Dataset

3.2.1 Data from TissueNet v2

The TSPPI data in TissueNet v2 are located in the "Download" Section of its website.
There are tissues belongs to Homo sapiens profiled via RNA-sequencing or protein-
based assays. Data from RNA-sequencing were obtained by Human Proteome Atlas
(HPA) (Uhlén et al., 2005) or Genotype-Tissue Expression (GTEx) (Consortium et
al., 2015). We downloaded TSPPI data generated by using HPA protein-based assays.
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The downloaded zip folder contains 47 tab-seperated values (tsv) files. Each of these
files is the edgelist of the tissue written in the name of the file. TSPPI information
representation consists of Ensembl Gene IDs.

3.2.2 Data from CGI

The cancer biomarkers in CGI are manually-curated. This database is provided through
two tsv files. In the cgi_biomarkers.tsv, variants that constitute the biomarkers of the
same type of response to the same drug in a certain cancer type are grouped in the
same order. In the cgi_biomarkers_per_variant.tsv, each variant is written in a sepa-
rate row. In addition to the first file, genomic and protein coordinates of variants are
included in Strand, Region, Info, cDNA, and gDNA columns.

Firstly, we downloaded these two files from https://www.cancergenomeinterpreter.org/biomarkers.
The materials in this page is shown in the Figure 3.2.

Figure 3.2: The dataset page of the Cancer Biomarkers database.

Since cgi_biomarkers.tsv file is enough to extract driver nodes for selected TSPPI
networks, we get only the data from "Gene" and "Primary Tumor type full name"
columns from this file. Keywords used to find driver genes for the related TSPPI
are shown in Table 3.1. Values in the ’Gene’ column is represented in HUGO Gene
Nomenclature Committee (HGNC) symbol.
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Table 3.1: Tissue Related Tumor Type Search Keywords in CGI

Tissue Primary Tumor Type
Breast Breast Adenocarcinoma & Any Cancer Type
Liver Hepatic Carcinoma & Any Cancer Type

Lymph Node Lymphoma & Any Cancer Type
Ovary Ovary & Any Cancer Type

Peripheral Nerve Malignant Peripheral Nerve Sheat & Any Cancer Type

3.2.3 Data from cBioPortal

cBioPortal provides information on each gene frequency of the given gene list ap-
pears in the samples in the selected study. In this study, we determined how often
genes associated with tissue-related cancer type and any cancer type from CGI were
mutated in clinical datasets in cBioPortal. Then, we select the final driver gene set,
accordingly.

Figure 3.3: Search Query Page of cBioPortal Web Interface.
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Figure 3.4: Study Selection for Breast Carcinoma

Figure 3.5: Query construction for driver nodes of breast carcinoma retrieved from
CGI.

We query all driver gene information to check whether mutations related with these
genes occur frequently. The studies to find frequency information are given in Table
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3.2

Table 3.2: Related Studies from cBioPortal.

Tissue Study Subject Study
Breast Breast Carcinoma METABRIC,

Nature 2012 and Nat Commun 2016
Liver Hepatocellular Carcinoma TCGA,

Firehose Legacy
Lymph Node Lymphoma Cell Lines Memorial Sloan-Kettering

Cancer Center,2020
Peripheral Nerve Malignant Peripheral Nerve Sheath Tumor Memorial Sloan-Kettering

Cancer Center, Nat Genet 2014
Ovary Ovarian Serous Cystadenocarcinoma TCGA,

Firehose Legacy

3.3 Cross-referencing between Ensembl Gene IDs and HGNC Symbols

While nodes from TSPPI edgelist are represented in Ensembl Gene ID format, driver
nodes from both CGI and cBioPortal are denoted by HGNC symbols. Then, we make
a cross-reference between them via BioMart. The results shown in Figure 4.1b are
exported with 67128 genes as a tsv file. After downloading data, we delete the NULL
values. There are 43841 Ensembl Gene ID-HGNC Symbol pairs left after this step.

(a) Search Query Information

(b) Search Results

Figure 3.6: Cross-referencing between Ensembl Gene ID and HGNC symbols via
BioMart
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3.4 Network Similarity Measurement

In this study, we used Jaccard Similarity Index to compare similarities and differences
of each TSPPI. In fact, this method was created for sets and it may be applied sepa-
rately to the sets of nodes and edges of the networks. Given G(VX , EX) and H(VY ,
EY ) are two networks with VX vertices and EX edges, VY vertices and EY edges,
respectively. Node similarity between G(VX , EX) and H(VY , EY ) is calculated as
(31) while edge similarity is calculated as (32).

J(VX , VY ) =
| VX ∩ VY |
| VX ∪ VY |

(31)

J(EX , EY ) =
| EX ∩ EY |
| EX ∪ EY |

(32)

3.5 Network Dismantling of TSPPIs

In this part, different attack strategies by using network centrality and GND with
different cost functions are introduced.

3.5.1 Network Dismantling by Using Network Centrality

Network centrality predicts the impact of a node. The following centrality calcula-
tions are done iteratively for each method. In each iteration, we remove the node with
highest centrality score.

3.5.1.1 Degree Centrality

The node v has a degree of the number of links of this node. To obtain degree cen-
trality, the following formula is applied.

CD(i) =
d(i)

n− 1
(33)

where CD(i) is the degree centrality, d(i) is the degree of node i, n-1 is the number of
nodes in the network without node i.

3.5.1.2 Closeness Centrality

Closeness of the node vx to node vy is the shortest path between them. Closeness
centrality of a node is calculated by taking the inverse of the shortest distances from

17



this node to each other node as the formula below.

CC(vi) =

(
γ∑
φ=1

δ(vi, vφ)

)−1
(34)

where CC(vi) denotes the closeness centrality of vi while δ(vi, vφ) is the shortest path

3.5.1.3 Betweenness Centrality

Betweenness centrality of a node is a metric calculated by counting the number of
shortest paths including the node.

CB(vi) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

(35)

where CB(v) is the betweenness centrality of the node v, V is the set of nodes, σ(s, t)
is the number of shortest paths, and σ(s, t|v) is the path count passing on the node v.

3.5.1.4 Eigenvector Centrality

Eigenvector centrality gives a transitive impact of a node in a graph, rather than only
taking into account its direct impact. Both the number of edges and the importance
of the nodes of these links are important while calculating this measure. Let A=(av,t)
be the adjacency matrix of a graph G

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈G

av,txt (36)

where xv is the relative centrality score of vertex v.

3.5.2 Network Dismantling by GND

GND attempts to locate a set of nodes that removal of these nodes results in network
fragmentation into subnetworks at minimal cost. Let G(V, E) be a network with nodes
V and edges E. When a set S of nodes are removed from the network, if the giant
connected component (GCC) of a network contains a maximum of C nodes, then S
is the C-dismantling set. The weight-cost wi represents the removal cost of node i
where wi is a non-negative value.

Let a set of nodes M ⊆ V be disconnected from the nodes from the complementary
set M . The node value vi of a vector v represents whether the node i is in set M or
not. vi is 1 if i ∈ M ; otherwise, it is equal to 0. Therefore, if two nodes are from the
same cluster, vivj equals to 1. In contrast, if one of them is from M and the other is
from M , vivj equals to -1.
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The goal of the classical spectral bisection is to remove minimum number of edges
between the clusters M and M . GND introduces a node–weighted spectral cut objec-
tive function. The function declares that the cost of breaking a link between i and j is
equal to the deletion of nodes i and j. If the link (i, j) attaches nodes from different
clusters, the cost is wi + wj − 1 . There is a constant term -1 in this cost formula to
have a refined notation. Let B be a matrix with elements Bi,j = Ai,j (wi + wj − 1)
where the matrix A denotes the adjacency matrix of the network. Then, matrix B can
be written as B = AW +WA − A where W is a diagonal matrix with the weight
wii of node i. In this study, we create the W matrix by calculating the wi values sepa-
rately for the degree, betweenness, closeness, and eigenvector centralities of the node
i. These centrality scores are rescaled from the range (0,1) to (1,255). In addition, the
node-weighted Laplacian of the matrix is represented by Lw = DB −B where DB is
a diagonal matrix with elements (DB)ii =

∑n
j=1Bij . According to Courant-Fischer

theorem (Fiedler, 1973), the solution of this bisection problem is the second smallest
eigenvector of the node–weighted Laplacian λ2v(2) = Lwv

(2). If a node i has a corre-
sponding element in the second smallest eigenvector is non-negative v(2)i ≥ 0 and its
neighbor j with a negative element v(2)i < 0, their removal will result in two subnet-
works M and M . 0 =≤ λ1 ≤ λ2 ≤ ... ≤ λn are real eigenvalues corresponding to
eigenvectors v1, v2, ..., vn of the node-weighted Laplacian Lw.
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‖Babsv‖1 ≤ ‖A‖1 ‖W‖1 ‖v‖1 + ‖W‖1 ‖A‖1 ‖v‖1 + ‖A‖1 ‖v‖1 ≤ 2dmax(wmax + 1)
(37)

where Babs denotes the matrix consists of absolute values of B, ‖X‖1 denotes L1-
norm of any matrix X , dmax is the maximal centrality of any node of the network,
and wmax is the largest cost in diagonal cost matrix.

|λn| ≤ max‖v‖1=1 ‖(DB −B)v‖1

= max‖v‖1=1

n∑
i=1

|vi
n∑
j=1

Bij −
n∑
j=1

vjBij|

≤ max‖v‖1=1

n∑
i=1

n∑
j=1

|viBij|+
n∑
i=1

n∑
j=1

|vjBij|

= max‖v‖1=1 ‖Babsv‖1 + ‖Babsv‖1 ≤ 4dmax(wmax + 1)

(38)

Since 4dmax(wmax + 1) = 4d2max + 4dmax ≤ 4d2max + 2d2max, GND method uses
λn ≤ 6d2max when wmax = dmax for the sake of simplicity.

To compute second smallest eigenvector v(2), the matrix L = 6d2maxI − Lw which
has the same eigenvectors with Lw may be considered. According to the algorithm,
we start with a random vector v uniformly drawn from the unit sphere Sn. After that,
we force it to be perpendicular to the largest eigenvector v1 = c.(1, ..., 1)T by setting
v = v− vT1 v

vT1 v1
.v1. Then, we have v = ϕ2v2+...+ϕnvn and Lv = λ2ϕ2v2+...+λnϕnvn.

By setting v(k) = L
k
v, we get the following equation that converges with exponential

speed to some eigenvector of L with eigenvalue λ2.

v(k)

‖v(k)‖
=

λ2
k
ϕ2v2 + ...+ λn

k
ϕnvn∥∥∥λ2kϕ2v2 + ...+ λn
k
ϕnvn

∥∥∥
=

ϕ2v2 +
(
λ3
λ2

)k
ϕ3v3 + ...+

(
λn
λ2

)k
ϕnvn∥∥∥∥ϕ2v2 +

(
λ3
λ2

)k
ϕ3v3 + ...+

(
λn
λ2

)k
ϕnvn

∥∥∥∥
(39)

The last step of this method is fine tuning of the spectral approximation. To find
a set of nodes from the solution set which covers all of the edges, GND method
adopted a linear-time approximation algorithm for the weighted vertex cover problem
(Bar-Yehuda & Even, 1981) which is a greedy algorithm that reduces costs in each
iteration, and constructs a cover as a result.
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Figure 3.7: GND pipeline. First step is the construction of adjacency matrix and
weight matrices. Then, the cost-weighted network B and node-weighted Laplacian
matrix Lw are constructed. After that, second smallest eigenvector is found. Lastly, a
weighted cover of the suggested nodes is constructed.

3.5.2.1 GND with Reinsertion (GNDR)

After application of GND method, GNDR proposes a reinsertion step which reduces
costs from earlier stages to optimize network attacks. This step ensures that the nodes
which do not affect the process from the initial GCC to the resulting GCC are removed
from the list of the deleted nodes (Zdeborová et al., 2016). It comprises adding back
the removed nodes to the subnetworks that have not reached the given number of
nodes. If removed node is from a subnetwork with the maximum number of nodes, it
is not added to this subnetwork.

There are two perspectives of algorithm. The first strategy follows the steps below.

1. Reverse the removed node list.

2. In each iteration,

I Select the next node for one TSPPI
II Connect the node to its neighbors left in the result of GND.

III If the size of the component to which it is added is smaller than the given
threshold, delete the node from the removed node list.
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The difference of the second strategy from the first strategy is that it starts from the
beginning of the deleted nodes, not the end. Step by step explanation is below.

1. Get the removed node list.

2. In each iteration,

I Select the next node
II Connect the node to its neighbors left in the result of GND.

III If the size of the component to which it is added is smaller than the re-
maining GCC as a result of GND, delete the node from the removed node
list.

After running the GND algorithm until the number of components are greater than or
equal to the 20% of the initial GCC size, we implemented the first strategy to resulting
subnetworks from GND to start reinserting with the nodes with higher centrality. In
this study, the threshold value is the size of the resulting GCC obtained from GND.

3.6 Method Selection

To select the most suitable method for driver subnetwork identification, we need to
select a method that results in a network which has features that satisfy the following
criteria;

• Enough driver nodes in large connected components to be able to initiate ran-
dom walks

• The GCC with enough nodes to continue random walks

• Sufficiently fragmented subnetworks

After all methods are applied to each TSPPI and the results are obtained, we create 2
metrics to understand which method is more suitable for which TSPPI. Let GCCres
be number of nodes in the resulting GCC, GCCfirst be number of nodes in the initial
GCC, DGCC be the number of driver nodes in the GCC, Dres be the number of driver
nodes in the resulting network, Dtotal be the number of driver nodes in the GCC of
the initial network, and N be the number of all nodes in the initial TSPPI network.

M 1 =

DGCC
Dtotal

GCCres
GCCfirst

(310)

M 2 =

DGCC
Dres

GCCres
N

(311)
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3.7 Personalized PageRank

PageRank is an algorithm for measuring the relative importance of a network by as-
signing weights to its nodes (Page, Brin, Motwani, & Winograd, 1999). This al-
gorithm is based on random walks on graphs. Stationary distribution consisting of
random steps with a probability of p gives PageRank weights associated with each
node. Personalized PageRank is a specialized version of PageRank (Jeh & Widom,
2003). The only difference is that each random step is made to the same source node.
In this way, the algorithm is biased towards the given set of nodes.

3.8 Functional Enrichment Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a
way to analyze functional enrichments of a given list of nodes (Dennis et al., 2003).
Since there are many components to analyze, we utilized the DAVID API services to
automate this process.

Gene Ontology (GO) terms creates a controlled vocabulary for biomolecular features
for functional annotation analysis. GO terms are categorized into three parts: biolog-
ical process, cellular component and molecular function (Ashburner et al., 2000).

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) and
Reactome (Joshi-Tope et al., 2005) provide pathway information of signaling, genetic
and metabolic processes.

In order to obtain significant functional enrichments in each subnetwork, we used
DAVID API to display the most enriched GO biological processes, and pathways in
KEGG and Reactome.
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CHAPTER 4

RESULTS

4.1 Dataset

In this study, we used breast, liver, ovary, peripheral nerve, and lymph node TSPPIs
from TissueNet v.2. Initially, there were nodes with self-edges in these networks. The
number of nodes and edges, before/after self edges were removed, are given in the
Table 4.1.

Table 4.1: Summary of the TSPPI Dataset

Tissue Number of Nodes Number of Edges Number of Nodes Number of Edges
with Self-Edges with Self-Edges without Self-Edges without Self-Edges

Breast 8855 104719 8838 103231

Liver 7847 78428 7823 77117

Lymph Node 7677 85759 7645 84367

Ovary 6389 65935 6369 64775

Peripheral Nerve 5026 43002 5006 42075

After deletion of self-edges, the degree distributions of these networks are given in
Figure 4.1
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(a) Degree Distribution of Breast TSPPI (b) Degree Distribution of Liver TSPPI

(c) Degree Distribution of Lymph Node TSPPI (d) Degree Distribution of Ovary TSPPI

(e) Degree Distribution of Peripheral Nerve TSPPI

Figure 4.1: Degree distributions of the TSPPI networks

As can be seen from the Figure 4.1, while there are small numbers of highly connected
nodes, the remaining nodes have very small degrees. These distributions lead us to
power-law distribution (Pdeg(k) ∝ k−γ) which is a common property of the scale-free
networks (Figure 4.2).
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(a) Power-Law Distribution of Breast TSPPI (b) Power-Law Distribution of Liver TSPPI

(c) Power-Law Distribution of Lymph Node TSPPI (d) Power-Law Distribution of Ovary TSPPI

(e) Power-Law Distribution of Peripheral Nerve
TSPPI

Figure 4.2: Power-Law Distribution of the TSPPI networks

We obtained driver node information from CGI. Firstly, we extracted "Gene"-"Primary
Tumor type full name" pairs to find tissue-specific driver genes. Then, we converted
given HGNC symbols to Ensembl Gene IDs. The detailed driver gene information is
shown in Table 4.2
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Table 4.2: Driver Gene Information from CGI Biomarkers Database

Number of Genes Number of Genes Number of
Tissue Related Cancer Associated only with Associated with Total

the Related Cancer Any Cancer Type Driver Genes

Breast Breast adenocarcinoma 20 55 75

Liver Hepatic carcinoma 2 55 57

Lymph Node Lymphoma 6 55 61

Ovary Ovary 7 55 62

Peripheral Nerve Malignant peripheral 1 55 56
nerve sheat tumor

After the retrieval of the information in Table 4.2, we searched them in the corre-
sponding TSPPIs.

Table 4.3: Driver Gene Counts in TSPPIs

Tissue Number of Driver Genes in the Largest Component Number of Driver Genes in the TSPPI

Breast 56 56

Liver 37 37

Lymph Node 43 43

Ovary 35 35

Peripheral Nerve 19 19

We used the cBioPortal web interface to get the frequency of the driver node list
retrieved from CGI in different cancer samples. Then, we filtered driver genes in
Table 4.4 via their occurrences in the dataset obtained from cBioPortal. Any node
with 0 occurrence removed from driver gene list. Therefore, only genes related to
the certain types of cancer remained in the list. Query result of breast TSPPI from
cBioPortal is shown in 4.3. Results of liver, lymph node, ovary, and peripheral nerve
is in Appendix B.

Table 4.4: Final Driver Gene Counts in TSPPIs

Tissue Number of Driver Genes in the Largest Component Number of Driver Genes in the TSPPI

Breast 56 56

Liver 37 37

Lymph Node 34 34

Ovary 23 23

Peripheral Nerve 5 5

28



Figure 4.3: Breast TSPPI Driver Gene Search Result in cBioPortal
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4.1.1 Centrality Rankings of Driver Nodes

We expect driver nodes to be at the top of the centrality rankings with the highest
centrality scores. Although few driver nodes may have lower centrality scores, it is
also necessary to consider that these nodes may be in critical positions between the
hubs of the connected components. The relationships between centrality rankings of
breast TSPPI are given in 4.4. The other pair-plots of previously given tissues, namely
liver, lymph node, ovary, and peripheral nerve, are given in Appendix A. In addition,
the relationship between node rankings and mutation frequencies is given in Figure
4.5.

Figure 4.4: Pair-plots of Breast TSPPI.Darker colors indicate higher number of nodes
within the corresponding ranks. Most driver nodes have higher centrality scores and
higher rankings according to different centrality criteria. Diagonal plots represent the
marginal distribution of the data for each ranking measure.
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Figure 4.5: Node rankings of breast TSPPI with mutation frequency information in
patients obtained from cBioPortal. Different colors indicate different genes and point
sizes express the magnitude of frequency. Plots show that rankings are correlated
with frequency of occurence in samples.

4.1.2 Similarity between Different TSPPIs

We used Jaccard Similarity index to show how much each TSPPI differs from tissue
to tissue.
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(a) Jaccard Edge Similarity Indices Between
TSPPIs. The most similar network pair is
Breast-Lymph Node with a Jaccard Similarity
Index of 0.423.

(b) Jaccard Node Similarity Indices Between
TSPPIs. The most similar network pairs are
Breast-Lymph Node and Breast-Liver tissue
pairs with a Jaccard Similarity Index of 0.702.

Figure 4.6: Network Similarities with respect to Jaccard Indices. Light colors indicate
closer networks.

Table 4.5: Jaccard Node and Edge Similarity Indices between Each Tissue Pair

Tissue Tissue Jaccard Edge Similarity Jaccard Node Similarity
Breast Lymph Node 0.423 0.702

Lymph Node Ovary 0.417 0.615
Breast Liver 0.414 0.702
Liver Ovary 0.395 0.592
Liver Lymph Node 0.390 0.629
Breast Ovary 0.385 0.633
Ovary Peripheral Nerve 0.324 0.516
Liver Peripheral Nerve 0.289 0.479

Lymph Node Peripheral Nerve 0.275 0.493
Breast Peripheral Nerve 0.258 0.504

As shown in the Table 4.5 and 4.6, Jaccard Similarity Index results of nodes are higher
than edges. Although there are many commonalities in the gene lists of tissues, the
interactions between these genes are distinctive on a tissue basis.

4.2 Network Dismantling Results

4.2.1 Network Dismantling by Different Centrality Metrics

After deletion of the node with the highest centrality value in each iteration, initial
network is divided into several subcomponents. This process is shown in Figure 4.7,
Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11
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Figure 4.7: Line plots of the number of components, component sizes, and driver
gene counts in breast TSPPI.

33



Figure 4.8: Line plots of the number of components, component sizes, and driver
gene counts in liver TSPPI.
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Figure 4.9: Line plots of the number of components, component sizes, and driver
gene counts in lymph node TSPPI.

35



Figure 4.10: Line plots of the number of components, component sizes, and driver
gene counts in ovary TSPPI.

36



Figure 4.11: Line plots of the number of components, component sizes, and driver
gene counts in peripheral nerve TSPPI.
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In these scale-free networks, as the nodes are deleted at the beginning, the largest
component size and number of components progress linearly, while after a certain
point they decrease exponentially. It indicates that when the nodes in the hubs of the
network are deleted, they begin to resemble the random network structure. In other
words, when enough critical nodes in a biological network are deleted, we may see
that the structure of this network is completely decomposed.

Although network centrality gives good results in dismantling the network, it takes
a lot of time to calculate the centralities of all nodes in each iteration to split the
network. Let k be number of iterations, n denote the number of nodes and m denote
edges in a network. Computational complexities of this iterative algorithm with these
metrics are as follows:

• Betweenness Centrality: O(k(nm+n2logn)) time complexity (Brandes, 2001)

• Closeness Centrality: O(knm) time complexity

• Degree Centrality: O(kn2) time complexity

• Eigenvector Centrality: O(kn3) time complexity

4.2.2 Network Dismantling by GND with Different Weights

Another approach to dismantle a network is GND. In this study, we modified the orig-
inal GND algorithm by different weight functions by using different network central-
ity metrics. GND not only reduces computational complexity, but also gives results
close to iterative algorithms where nodes are deleted just by looking at the centrality
results in each iteration.
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Figure 4.12: Line plots of the number of components, component sizes, and driver
gene counts in breast TSPPI.
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Figure 4.13: Line plots of the number of components, component sizes, and driver
gene counts in liver TSPPI.
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Figure 4.14: Line plots of the number of components, component sizes, and driver
gene counts in lymph node TSPPI.
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Figure 4.15: Line plots of the number of components, component sizes, and driver
gene counts in ovary TSPPI.
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Figure 4.16: Line plots of the number of components, component sizes, and driver
gene counts in peripheral nerve TSPPI.
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The biggest contribution of the GND algorithm is to reduce computational complexity
by using spectral approximation. Let k be number of iterations of iterative centrality
algorithms, n be the number of nodes and m be the number of edges in a network.
Firstly, GND constructs a Laplacian matrix with respect to centrality weights. Then,
the computational complexity cost comes from the centrality measure. After this cal-
culation, multiple nodes are deleted in each iteration by using spectral approximation
(Pothen, Simon, & Liou, 1990) and minimum weighted vertex cover (Feige, Haji-
aghayi, & Lee, 2008) algorithms. In this case, the k value is lower than the previously
explained iterative network dismantling method. GND reduces the computation time.
Spectral approximation algorithm has a computational complexity of O(nlog2+ε(n))
while minimum weighted vertex cover algorithm has a linear time complexity. We
may summarize these costs as follows:

• GND with Betweenness Centrality: O(log(k)(nm+n2logn)) time complexity

• GND with Closeness Centrality: O(log(k)nm) time complexity

• GND with Degree Centrality: O(log(k)n2) time complexity

• GND with Eigenvector Centrality: O(log(k)n3) time complexity

4.2.3 Network Dismantling by GNDR with Different Weights

After the application of GND algorithm to all TSPPIs of interest, reinsertion is em-
ployed to reduce the removed nodes to have larger subnetworks. This process lasts
until all removed nodes are tried to be reinserted.
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Figure 4.17: Line plots of the number of components, component sizes, and driver
gene counts in breast TSPPI.
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Figure 4.18: Line plots of the number of components, component sizes, and driver
gene counts in liver TSPPI.
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Figure 4.19: Line plots of the number of components, component sizes, and driver
gene counts in lymph node TSPPI.
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Figure 4.20: Line plots of the number of components, component sizes, and driver
gene counts in ovary TSPPI.
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Figure 4.21: Line plots of the number of components, component sizes, and driver
gene counts in peripheral nerve TSPPI.
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Let k be the number of iterations, r be the number of removed nodes, n denote the
number of nodes and m denote the number of edges in a network. Since we repeat the
reinsertion for all nodes, the number of iterations is equal to the number of nodes, that
is k = r. Since node addition cost has O(r) time complexity, O(rn) time complexity
is added to the GND time complexities.

4.3 Comparison Between Network Dismantling Results

Usually, there are driver nodes in the hubs that hold the driver subnetworks together.
For this reason, some of the drivers in the initial network should remain while the
remaining driver nodes in the fragile parts of it should be deleted. In this case, the
desired resulting subnetworks contain both driver nodes and non-driver nodes. The
resulting networks are in Table C.1. In Table 4.6, Table 4.7, Table ??, Table ??, and
Table ??, we show only method comparison for each largest connected component.

Table 4.6: Method Comparison of Breast TSPPI

Method LCC Size Driver Node Count in LCC
Betweenness Centrality 830 2

GND with Betweenness Centrality 1052 7
GNDR with Betweenness Centrality 1052 7

Closeness Centrality 1898 6

GND with Closeness Centrality 3297 18
GNDR with Closeness Centrality 3297 18

Degree Centrality 839 0

GND with Degree Centrality 1053 3
GNDR with Degree Centrality 1053 4

Eigenvector Centrality 473 1

GND with Eigenvector Centrality 780 3
GNDR with Eigenvector Centrality 780 3
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Table 4.7: Method Comparison of Liver TSPPI

Method LCC Size Driver Node Count in LCC
Betweenness Centrality 1405 4

GND with Betweenness Centrality 1613 8
GNDR with Betweenness Centrality 1613 8

Closeness Centrality 1590 3

GND with Closeness Centrality 3088 12
GNDR with Closeness Centrality 3088 12

Degree Centrality 1694 1

GND with Degree Centrality 1704 4
GNDR with Degree Centrality 1704 4

Eigenvector Centrality 2343 7

GND with Eigenvector Centrality 2348 3
GNDR with Eigenvector Centrality 2348 10

Table 4.8: Method Comparison of Lymph Node TSPPI

Method LCC Size Driver Node Count in LCC
Betweenness Centrality 778 3

GND with Betweenness Centrality 873 5
GNDR with Betweenness Centrality 873 5

Closeness Centrality 1619 5

GND with Closeness Centrality 2626 7
GNDR with Closeness Centrality 2626 7

Degree Centrality 2303 5

GND with Degree Centrality 2306 10
GNDR with Degree Centrality 2306 10

Eigenvector Centrality 1353 4

GND with Eigenvector Centrality 1527 10
GND with Eigenvector Centrality 1527 10
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Table 4.9: Method Comparison of Ovary TSPPI

Method LCC Size Driver Node Count in LCC
Betweenness Centrality 306 19

GND with Betweenness Centrality 386 7
GNDR with Betweenness Centrality 386 7

Closeness Centrality 414 18

GND with Closeness Centrality 469 9
GNDR with Closeness Centrality 469 9

Degree Centrality 617 11

GND with Degree Centrality 676 11
GNDR with Degree Centrality 676 11

Eigenvector Centrality 204 17

GND with Eigenvector Centrality 273 7
GNDR with Eigenvector Centrality 273 7

Table 4.10: Method Comparison of Peripheral Nerve TSPPI

Method LCC Size Driver Node Count in LCC
Betweenness Centrality 583 1

GND with Betweenness Centrality 693 1
GNDR with Betweenness Centrality 693 2

Closeness Centrality 1110 1

GND with Closeness Centrality 2166 1
GNDR with Closeness Centrality 2166 1

Degree Centrality 1315 1

GND with Degree Centrality 1322 0
GNDR with Degree Centrality 1322 0

Eigenvector Centrality 1497 5

GND with Eigenvector Centrality 1509 1
GND with Eigenvector Centrality 1509 1

These results show that network dismantling by iterative centrality calculations per-
forms more targeted attacks, makes dismantling of the network faster. On the other
hand, it destroys the starting points for finding driver subnetworks by deleting drivers
earlier. When the GND results are examined, the networks reach about the same
largest component size by deleting much more nodes than methods based only on
centrality. When the implementation of the reinsertion algorithm is added to GND,
bringing the largest component to the specified size is achieved with less number of
removals. In addition, node reinsertion from top to bottom of the removal list allows
driver nodes to be reinserted to the network, while deleting them does not affect the
dismantling of the largest component.
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Table 4.11: Method Evaluation Results by Formula 310. Each value written in italic
is the highest value of the row it is in. Each value written in bold is the highest value
among the values that are calculated for a tissue.

Method Iterative Centrality
Centrality Metric Betweenness Closeness Degree Eigenvector

Breast 0.380 0.499 0 0.334
Liver 0.602 0.399 0.125 0.632

Lymph Node 0.867 0.694 0.488 0.665
Peripheral Nerve 1.717 0.902 0.761 3.344

Ovary 17.194 12.0397 4.937 23.076
Method GND

Centrality Metric Betweenness Closeness Degree Eigenvector
Breast 1.050 0.862 0.599 0.607
Liver 1.049 0.822 0.496 0.270

Lymph Node 1.288 0.599 0.975 1.473
Peripheral Nerve 2.889 0.462 0 0.663

Ovary 5.022 5.314 4.505 7.100

Method GNDR
Centrality Metric Betweenness Closeness Degree Eigenvector

Breast 1.050 0.862 0.599 0.607
Liver 1.049 0.822 0.496 0.270

Lymph Node 1.288 0.599 0.975 1.473
Peripheral Nerve 2.889 0.462 0 0.663

Ovary 5.022 5.314 4.505 7.100

Table 4.12: Method Evaluation Results by Formula 311. Each value written in italic
is the highest value of the row it is in. Each value written in bold is the highest value
among the values that are calculated for a tissue.

Method Iterative Centrality
Centrality Metric Betweenness Closeness Degree Eigenvector

Breast 1.071 1.309 0 1.056
Liver 1.562 0.871 0.349 1.486

Lymph Node 3.692 2.206 2.062 2.372
Peripheral Nerve 1.826 0.958 0.996 3.509

Ovary 13.033 9.080 6.587 18.039
Method GND

Centrality Metric Betweenness Closeness Degree Eigenvector
Breast 2.091 1.228 1.312 1.699
Liver 2.092 1.143 1.908 0.913

Lymph Node 2.372 2.339 1.690 1.544
Peripheral Nerve 4.457 2.195 N/A 2.630

Ovary 4.908 5.518 3.759 7.497

Method GNDR
Centrality Metric Betweenness Closeness Degree Eigenvector

Breast 3.059 1.351 1.938 1.728
Liver 2.437 1.187 1.422 1.527

Lymph Node 3.514 1.654 1.799 2.441
Peripheral Nerve 3.129 2.308 0 2.908

Ovary 5.259 5.631 3.987 8.160

53



We evaluate these results by Formula 310 for model evaluation since our primary
concern is to get a driver subnetwork of the cancer related with the tissue. However,
since the size of the last largest component is equal in the GND and GNDR results,
the calculations of Formula 310 are equal as well. At this point, we use Formula
311, considering that driver subnetworks may be generated from other components
by counting in the remaining driver nodes in other components.

• Breast TSPPI: According to Formula 310, GND with Betweenness Centrality
and GNDR with Betweenness Centrality gives the best result which is around
1.05. Since these two results are equal, Formula 311 is employed in the eval-
uation of GND and GNDR, and GNDR Betweenness Centrality is chosen for
Breast TSPPI since GNDR with Betweenness Centrality had a higher value.

• Liver TSPPI: There is a similar situation with Breast TSPPI in the liver TSPPI.
For this reason, GNDR with Betweenness Centrality is chosen based on the
Formula 311 result.

• Lymph Node TSPPI: For the lymph node TSPPI, there is a different situation
from the above situations. According to Formula 310, GND and GNDR with
Eigenvector Centrality have the best results, while according to Formula 311
Iterative Betweenness Centrality has the best result. However, as mentioned
in the evaluation phase, we choose GNDR with Eigenvector Centrality because
we use Formula 310 as a priority and evaluate the methods with the same values
according to its results according to Formula 311.

• Peripheral Nerve TSPPI: Iterative Eigenvector Centrality performs best for Pe-
ripheral Nerve.

• Ovary TSPPI: Iterative Eigenvector Centrality has the best result.

It can be deduced that GNDR applications are effective in networks with more than
7000 nodes, while it is more appropriate to dismantle networks with less than 7000
nodes by applying iterative centrality algorithms.
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4.4 Driver Subnetwork Collection by Personalized PageRank

Personalized PageRank algorithm is biased for a given set of nodes. In this algorithm,
random walks start and end in this set. In this study, we marked driver gene set as
the given set. While assigning 0 to other nodes, we assigned 1 to these nodes to start
and end random walks in this set. We applied Personalized PageRank algorithm to
obtained subnetworks which have driver nodes and more than 20 nodes in them. We
selected nodes with greater than Personalized PageRank ranking score of 0.01. The
results are detailed in the Table 4.13.

Table 4.13: Personalized PageRank Result

Tissue Subnetwork Size Before Driver Node Count Resulting Subnetwork Size
Personalized PageRank

Breast 1052 7 90
Breast 1052 1 41
Liver 1613 8 122

Lymph Node 1527 10 223
Lymph Node 260 1 36

Ovary 204 17 155
Peripheral Nerve 1497 5 84

Figure 4.22: The First Driver Subnetwork of Breast TSPPI. Driver nodes are illus-
trated in red color, normal nodes are illustrated in blue color. Node sizes vary accord-
ing to the mutation frequency information obtained from the cBioPortal. The larger
the nodes, the more frequently they appear to be mutated in cancer. In this figure,
only the driver nodes, the most frequent nodes, their first-order neighbors, and the
nodes that form a bridge between them are visualized for simplicity.
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Figure 4.23: The Second Driver Subnetwork of Breast TSPPI. Driver nodes are il-
lustrated in red color, normal nodes are illustrated in blue color. Node sizes vary
according to the mutation frequency information obtained from the cBioPortal. The
larger the nodes, the more frequently they appear to be mutated in cancer. In this
figure, only the driver nodes, the most frequent nodes, their first-order neighbors, and
the nodes that form a bridge between them are visualized for simplicity.

Figure 4.24: Driver Subnetwork of Liver TSPPI. Driver nodes are illustrated in red
color, normal nodes are illustrated in blue color. Node sizes vary according to the
mutation frequency information obtained from the cBioPortal. The larger the nodes,
the more frequently they appear to be mutated in cancer.
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Figure 4.25: The First Driver Subnetwork of Lymph Node TSPPI. Driver nodes are
illustrated in red color, normal nodes are illustrated in blue color. Node sizes vary
according to the mutation frequency information obtained from the cBioPortal. The
larger the nodes, the more frequently they appear to be mutated in cancer. In this
figure, only the driver nodes, the most frequent nodes, their first-order neighbors, and
the nodes that form a bridge between them are visualized for simplicity.

Figure 4.26: The Second Driver Subnetwork of Lymph Node TSPPI. Driver nodes
are illustrated in red color, normal nodes are illustrated in blue color. Node sizes vary
according to the mutation frequency information obtained from the cBioPortal. The
larger the nodes, the more frequently they appear to be mutated in cancer.
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Figure 4.27: Driver Subnetwork of Peripheral Nerve TSPPI. Driver nodes are illus-
trated in red color, normal nodes are illustrated in blue color. Node sizes vary accord-
ing to the mutation frequency information obtained from the cBioPortal. The larger
the nodes, the more frequently they appear to be mutated in cancer.

Figure 4.28: Driver Subnetwork of Ovary TSPPI. Driver nodes are illustrated in red
color, normal nodes are illustrated in blue color. Node sizes vary according to the
mutation frequency information obtained from the cBioPortal. The larger the nodes,
the more frequently they appear to be mutated in cancer.
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4.5 Functional Enrichment Analysis of the Proposed Driver Subnetworks

Functional enrichment analysis is a method that determines overrepresented genes
and proteins and their pathways from given gene and protein sets. After specifying p-
value cutoff as 0.02, the remaining number of pathways related to the proposed driver
subnetworks are shown in the Table 4.14.

Table 4.14: Functional Enrichment Result Counts

Tissue Number of Pathways Number of Pathways
Before Filtering After Filtering

Breast 41 17
Breast 113 58
Liver 172 69

Lymph Node 437 222
Lymph Node 17 10

Peripheral Nerve 54 23
Ovary 242 125

After obtaining these results, we repeated the functional enrichment analysis by re-
moving the driver genes to show the effect of the driver genes on the results. Table
4.15 shows driver nodes do not actually affect count of the significant pathways in the
results.

Table 4.15: Functional Enrichment Analysis Result Counts when Driver Nodes are
Excluded

Tissue Number of Pathways Number of Pathways
Before Filtering After Filtering

Breast 36 15
Breast 100 55
Liver 139 65

Lymph Node 424 220
Lymph Node 10 7

Peripheral Nerve 48 22
Ovary 166 103

As a result of the comparison, it was observed that the number of significant func-
tional enrichment results did not decrease much. Table 4.16, Table 4.17, Table 4.18,
Table 4.19, Table 4.20, Table 4.21, and Table 4.22 show functional enrichment results
of all nodes in each subnetwork.

In Table 4.16, first result of functional enrichment analysis is transmembrane receptor
protein tyrosine kinase signaling pathway which participates in various downstream
signaling pathways such as MAPK, PI3K/Akt and JAK/STAT (Butti et al., 2018).
SCF/cKIT signaling pathway leads autophosphorylation and initiation of signal trans-
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duction (Lennartsson & Rönnstrand, 2012). There are pathways related with the roles
of neurotrophins. Neurotrophins ensure inhibition of breast cancer cell survival, pro-
liferation and invasion while Interleukin-3, Interleukin-5 and GM-CSF participates
in the activation of the MAP kinase pathway (Kannan et al., 2000). GPVI supports
tumor cell extravasation and metastasis in breast cancer cells (Mammadova-Bach et
al., 2020).

Table 4.16: Functional Enrichment Analysis Results of the First Proposed Driver
Subnetwork of Breast TSPPI

Pathway P-Value
GO:0007169 transmembrane receptor protein tyrosine kinase 2 x 10−6

signaling pathway
Signaling by SCF-cKIT 0.000191

GO:0018108 peptidyl-tyrosine phosphorylation 0.000346
GO:0008284 positive regulation of cell proliferation 0.000495
Interleukin-3, Interleukin-5 and GM-CSF signaling 0.00243

GO:0038179 neurotrophin signaling pathway 0.004402
GO:0009967 positive regulation of signal transduction 0.007967

hsa04722:Neurotrophin signaling pathway 0.00802
GO:0032981 mitochondrial respiratory chain complex I assembly 0.008479

GO:0038165 oncostatin-M-mediated signaling pathway 0.008785
GO:0042490 mechanoreceptor differentiation 0.008785

GO:0033138 positive regulation of peptidyl-serine phosphorylation 0.010384
GO:0070120 ciliary neurotrophic factor-mediated signaling pathway 0.01097

Complex I biogenesis 0.012325
GPVI-mediated activation cascade 0.012757

hsa04630:Jak-STAT signaling pathway 0.013425
GO:0032057 negative regulation of translational initiation 0.015325

in response to stress

The second proposed subnetwork of breast TSPPI comprises very important signaling
pathways, pathways related to viral infection effects and cell functionality in breast
cancer. Pathways such as cell proliferation, TP53 regulation, chromatin remodeling
etc. are common in most cancer types. However, in these results of the subnetwork,
there are pathways which are not usual for all cancer types, as well. For instance,
Fanconi Anemia Pathway (Fang, Wu, Zhang, Liu, & Zhang, 2020) includes many
genes from the breast cancer driver genes and breast cancer mutations may be affected
by fanconi anemia. HIV (Brandão et al., 2021), insulin signaling pathway (Yang &
Yee, 2012), and Circadian Clock (Cadenas et al., 2014) are the other examples.
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Table 4.17: The Most Significant Functional Enrichment Analysis Results of the Sec-
ond Proposed Driver Subnetwork of Breast TSPPI

Pathway P-Value
GO:0006366 transcription from RNA polymerase II promoter 1x10−5

GO:0006367 transcription initiation and from RNA polymerase II promoter 1.2x10−5

GO:0010941 regulation of cell death 2x10−5

GO:0048013 ephrin receptor signaling pathway 7.4x10−5

GO:0006368 transcription from RNA polymerase II promoter 7.4x10−5

GO:0036297 interstrand cross-link repair 0.000109
Fanconi Anemia Pathway 0.000141

HIV Transcription Initiation 0.000244
RNA Polymerase II HIV Promoter Escape 0.000244

RNA Polymerase II Promoter Escape 0.000244
RNA Polymerase I Transcription Initiation 0.000266

Circadian Clock 0.000312
GO:1901796 regulation of signal transduction by p53 class mediator 0.000414

RORA activates gene expression 0.000754
GO:0048096 chromatin-mediated maintenance of transcription 0.000891

GO:0006338 chromatin remodeling 0.000947
GO:0045893 positive regulation of transcription, DNA-templated 0.001165

RMTs methylate histone arginines 0.001734
RNA Polymerase II Pre-transcription Events 0.001818

hsa05168:Herpes simplex infection 0.002175
GO:0048009 insulin-like growth factor receptor signaling pathway 0.002215

GO:0042127 regulation of cell proliferation 0.002476
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 0.00339

GO:0010971 positive regulation of G2/M transition of mitotic cell cycle 0.003676
GO:0018105 peptidyl-serine phosphorylation 0.003723

GO:0006977 DNA damage response, signal transduction by p53 class mediator 0.003818
resulting in cell cycle arrest
GO:0016032 viral process 0.004087

GO:0006974 cellular response to DNA damage stimulus 0.004089
hsa03460:Fanconi anemia pathway 0.00693
GO:0009314 response to radiation 0.008788

GO:0042149 cellular response to glucose starvation 0.009409
GO:0000077 DNA damage checkpoint 0.010048

hsa04062:Chemokine signaling pathway 0.01176
GO:0071456 cellular response to hypoxia 0.012756

GO:0006352 DNA-templated transcription, initiation 0.01427
GO:0032682 negative regulation of chemokine production 0.01511

YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.016059
hsa04015:Rap1 signaling pathway 0.019013

GO:0043966 histone H3 acetylation 0.019993
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Table 4.18: The Most Significant Functional Enrichment Analysis Results of the Pro-
posed Driver Subnetwork of Liver TSPPI

Pathway P-Value
GO:0010628 positive regulation of gene expression 1.2x10−5

hsa04722:Neurotrophin signaling pathway 1.7x10−5

GO:0006357 regulation of transcription from RNA polymerase II promoter 4.6x10−5

hsa04015:Rap1 signaling pathway 0.000158
GO:0006468 protein phosphorylation 0.000273

GO:0008630 intrinsic apoptotic signaling pathway in response to DNA damage 0.000287
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 0.000326

GO:0008284 positive regulation of cell proliferation 0.000329
GO:0045892 negative regulation of transcription, DNA-templated 0.000584

GO:0006367 transcription initiation from RNA polymerase II promoter 0.000595
hsa04010:MAPK signaling pathway 0.000631

GO:0007049 cell cycle 0.000698
GO:0000187 activation of MAPK activity 0.00081

GO:0016032 viral process 0.000991
Negative feedback regulation of MAPK pathway 0.00107

hsa05200:Pathways in cancer 0.001146
GO:0010332 response to gamma radiation 0.001193

GO:0007265 Ras protein signal transduction 0.001309
hsa04151:PI3K-Akt signaling pathway 0.001512

GO:0097192 extrinsic apoptotic signaling pathway in absence of ligand 0.001564
GO:2000146 negative regulation of cell motility 0.001594

hsa04068:FoxO signaling pathway 0.001703
GO:0010629 negative regulation of gene expression 0.002423

GO:0006338 chromatin remodeling 0.002789
hsa05205:Proteoglycans in cancer 0.00288
GO:0097320 membrane tubulation 0.002884

hsa04620:Toll-like receptor signaling pathway 0.003352
hsa04668:TNF signaling pathway 0.00349

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 0.003566
GO:0001525 angiogenesis 0.004161

GO:0006915 apoptotic process 0.005231

Also, the subnetwork of liver TSPPI have common in almost all cancer types among
them as well as abundant pathways. Examples of special pathways are the Toll-
like receptor signaling pathway (French, Oliva, French, Li, & Bardag-Gorce, 2010),
angiogenesis (Fernández et al., 2009) and the TNF signaling pathway (Liedtke &
Trautwein, 2012).

As in the previous tables, there are many networks related with mRNA, DNA and
other elements of cell division in Table 4.19. However, there are unique pathways for
lymphoma. For example, Epstein-Barr virus infection (Brady, MacArthur, & Farrell,
2008) causes a subtype of lymphoma, called Burkitt lymphoma.

62



Table 4.19: The Most Significant Functional Enrichment Analysis Results of the First
Proposed Driver Subnetwork of Lymph Node TSPPI

Pathway P-Value
GO:0000398 mRNA splicing, via spliceosome 2.19x10−33

GO:0006338 chromatin remodeling 2.61x10−17

GO:0043044 ATP-dependent chromatin remodeling 1.29x10−15

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 3.68x10−14

GO:0006351 transcription, DNA-templated 1.17x10−13

GO:0006397 mRNA processing 1.38x10−13

GO:1901796 regulation of signal transduction by p53 class mediator 4.46x10−12

mRNA Splicing - Minor Pathway 8.01x10−12

GO:0045892 negative regulation of transcription, DNA-templated 8.46x10−12

GO:0016925 protein sumoylation 2.34x10−12

GO:0016032 viral process 3.78x10−11

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 1.56x10−10

GO:0016575 histone deacetylation 2.50x10−10

GO:0010467 gene expression 3.93x10−10

GO:0000245 spliceosomal complex assembly 7.83x10−10

Processing of Capped Intron-Containing Pre-mRNA 9.74x10−10

GO:0006281 DNA repair 8.95x10−9

GO:0016569 covalent chromatin modification 2.15x10−8

GO:0006396 RNA processing 4.25x10−8

RMTs methylate histone arginines 1.75x10−7

GO:0045893 positive regulation of transcription, DNA-templated 1.88x10−7

GO:0048511 rhythmic process 3.84x10−7

GO:1900034 regulation of cellular response to heat 4.54x10−7

GO:0006364 rRNA processing 6.48x107

hsa05203:Viral carcinogenesis 1.45x10−6

SUMOylation of DNA damage response and repair proteins 1.60x10−6

GO:0006337 nucleosome disassembly 1.75x10−6

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 2.91x10−6

GO:0008285 negative regulation of cell proliferation 3.37x10−6

GO:0006357 regulation of transcription from RNA polymerase II promoter 3.89x10−6

GO:0006260 DNA replication 4.85x10−6

GO:0070932 histone H3 deacetylation 5.53x10−6

Regulation of HSF1-mediated heat shock response 5.88x10−6

hsa04550:Signaling pathways regulating pluripotency of stem cells 1.26x10−5

GO:0006974 cellular response to DNA damage stimulus 1.49x10−5

hsa05169:Epstein-Barr virus infection 1.82x10−5

GO:0032508 DNA duplex unwinding 1.88x10−5

Table 4.20 contains chemical pathways of lymphoma such as chloride transmembrane
transport, ion transport, and potassium ion transmembrane transport (Comes et al.,
2015).
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Table 4.20: Functional Enrichment Analysis Results of Second Proposed Driver Sub-
network of Lymph Node TSPPI

Pathway P-Value
GO:1902476 chloride transmembrane transport 1x10−6

GO:0071805 potassium ion transmembrane transport 6.1x10−5

GO:0006811 ion transport 7.3x10−5

Cation-coupled Chloride cotransporters 7.8x10−5

GO:0033138 positive regulation of peptidyl-serine phosphorylation 0.00026
GO:0007268 chemical synaptic transmission 0.000833
GO:0038179 neurotrophin signaling pathway 0.00357
GO:0042490 mechanoreceptor differentiation 0.007128

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 0.012679
GO:0006884 cell volume homeostasis 0.017727

Table 4.21: The Most Significant Functional Enrichment Analysis Results of the Pro-
posed Driver Subnetwork of Ovary TSPPI

Pathway P-Value
MAP2K and MAPK activation 1x10−8

hsa04722:Neurotrophin signaling pathway 1.8x10−7

hsa04068:FoxO signaling pathway 4.56x10−6

hsa04150:mTOR signaling pathway 5.72x10−6

GO:0048013 ephrin receptor signaling pathway 9x10−6

GO:0006397 mRNA processing 2.41x10−5

hsa04151:PI3K-Akt signaling pathway 6.32x10−5

GO:0006336 DNA replication-independent nucleosome assembly 6.69x10−5

hsa04014:Ras signaling pathway 8.47x10−5

GO:0008285 negative regulation of cell proliferation 0.00015799
hsa04015:Rap1 signaling pathway 0.00021779
TP53 Regulates Metabolic Genes 0.00043384
hsa04012:ErbB signaling pathway 0.00063508

hsa05230:Central carbon metabolism in cancer 0.00104368
hsa05231:Choline metabolism in cancer 0.00139167

hsa04370:VEGF signaling pathway 0.00636568
hsa04660:T cell receptor signaling pathway 0.0073232

hsa05200:Pathways in cancer 0.00789311
hsa04664:Fc epsilon RI signaling pathway 0.00931554

hsa04024:cAMP signaling pathway 0.01027012
hsa05205:Proteoglycans in cancer 0.01081811

hsa04071:Sphingolipid signaling pathway 0.01535084
hsa04650:Natural killer cell mediated cytotoxicity 0.01638564

hsa04152:AMPK signaling pathway 0.0169201

There are important pathways such as FoxO (De Brachène & Demoulin, 2016), mTOR
(Mabuchi, Hisamatsu, & Kimura, 2011), ephrin receptor (Herath et al., 2006), insulin
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(Lukanova et al., 2002), PI3K-Akt (Mazzoletti & Broggini, 2010), Ras (Sheppard et
al., 2013), Rap1 (Y.-L. Zhang, Wang, Cheng, Ring, & Su, 2017), VEGF (Luo, Jiang,
King, & Chen, 2008), and Sphingolipid (Kreitzburg, van Waardenburg, & Yoon,
2018) signaling pathways in Table 4.21. Pathways such as cell proliferation, TP53
regulation, cyclin D events, central carbon mechanism in cancer are common in most
cancer types.

Table 4.22: The Most Significant Functional Enrichment Analysis Results of the Pro-
posed Driver Subnetwork of Peripheral Nerve TSPPI

Pathway P-Value

EPH-Ephrin signaling 9x10−6

hsa04360:Axon guidance 9.3x10−5

Nuclear Receptor transcription pathway 0.002278
GO:0043401 steroid hormone mediated signaling pathway 0.002356

GO:0007265 Ras protein signal transduction 0.004221
GO:0043044 ATP-dependent chromatin remodeling 0.005059

TNFs bind their physiological receptors 0.007301
GO:0006351 transcription, DNA-templated 0.007498

hsa04015:Rap1 signaling pathway 0.007746
GO:0007399 nervous system development 0.010783

GO:0050919 negative chemotaxis 0.010854
GO:0034605 cellular response to heat 0.01277

GO:0030522 intracellular receptor signaling pathway 0.01344
GO:0043525 positive regulation of neuron apoptotic process 0.017008

GO:0033209 tumor necrosis factor-mediated signaling pathway 0.017567
GO:0044772 mitotic cell cycle phase transition 0.018453

GO:0046578 regulation of Ras protein signal transduction 0.027553
GO:0051965 positive regulation of synapse assembly 0.033662

GO:0043087 regulation of GTPase activity 0.036699
GO:0048096 chromatin-mediated maintenance of transcription 0.041047
GO:2000573 positive regulation of DNA biosynthetic process 0.058752

GO:0044030 regulation of DNA methylation 0.063127
GO:0070507 regulation of microtubule cytoskeleton organization 0.071818

GO:0051893 regulation of focal adhesion assembly 0.076134
GO:0031290 retinal ganglion cell axon guidance 0.084706

GO:0001525 angiogenesis 0.085347

In Table 4.22, ephrin signaling, axon guidance, nervous system development, retinal
ganglion cell axon guidance, and positive regulation of neuron apoptotic process are
related with the elements of nervous system.
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CHAPTER 5

DISCUSSION

Finding important submodules and candidate driver genes is a very critical task in
bioinformatics. Many studies in the literature have tried to find important parts in a
biological network using network centrality (Patil & Nielsen, 2005; Guo et al., 2007;
Ma, Schadt, Kaplan, & Zhao, 2011; Chin et al., 2014; Zhuang, Jiang, He, Zhou, &
Yue, 2015; Frainay & Jourdan, 2017; Reyna, Leiserson, & Raphael, 2018; Li, Li, Wu,
Pan, & Wang, 2018; Li et al., 2018; Jiang et al., 2021). Some of these studies have
tried to identify critical submodules of tissues or tissue-related diseases, including
breast cancer (Zhuang et al., 2015), osteoporosis (Jiang et al., 2021) and colorectal
cancer (Nibbe, Koyutürk, & Chance, 2010). In this thesis, we aim to extract various
cancer-driver subnetworks, which are smaller and more meaningful parts of a net-
work, by dismantling 5 different TSPPIs by using driver genes. While previous stud-
ies apply several methods for either the reconstruction of a TSPPI (Wong, Krishnan,
& Troyanskaya, 2018; Bossi & Lehner, 2009; Liu et al., 2008) or the identification of
a cancer driver subnetwork and/or cancer biomarker from a TSPPI (Ideker et al., 2002;
Akavia et al., 2010; Beisser et al., 2010; Gevaert et al., 2013; Bertrand et al., 2015;
Cho et al., 2016), we offer a more comprehensive pipeline using different methods
with different weights using different TSPPIs and various centrality measures. For
this reason, we present a methodology to interpret the results of several methods to
dismantle the TSPPIs we selected, namely breast, liver, lymph node, ovary, and pe-
ripheral nerve, by using various centrality metrics as weight functions. First of all,
before starting the analysis, we retrieved the networks corresponding to the selected
tissues from the TissueNet v.2 database. In order to find out the driver gene counts
in these networks, we separated the data we received from the Cancer Genome In-
terpreter according to the cancer types associated with that tissue. After adding the
driver genes that are important for all cancers to the list of the driver genes for each
tissue, we examined the frequency of the driver genes we obtained from cBioPortal to
cause tumors in these tissues. According to the results we obtained from cBioPortal,
we eliminated the genes that have never been found in clinical studies related to that
tissue from among the driver genes. Since we get tissue-specific mutations, we can
see that the driver genes for one tissue are imported as non-drivers for the other tissue.

To dismantle the TSPPIs, we attacked each of them with 12 different strategies and
got the result we considered optimal for each. We can group these strategies under
3 headings: Iterative Centrality Metrics, GND with different weight functions, and
GNDR with different weight functions. The results we obtained from iterative cen-
trality metrics affected either the driver genes directly or their neighbors. We observed
that the success order of betweenness centrality, closeness centrality, degree central-
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ity and eigenvector centrality changed in each network. These results showed us the
difference between TSPPIs once again. Although iterative centrality algorithms made
successful targeted attacks to split the network, their computational complexities are
very high and deleting most of the driver genes would cause us to exclude important
pathways that driver subnetworks could contain. As an alternative strategy, we calcu-
lated the subnetworks that would be formed as a result of GND with different weight
functions. In each iteration, GND takes the nodes that cover all the edges among a
group of nodes it chooses and deletes them all at once. Therefore, there can be a lot
of unnecessary deleted nodes with respect to the resulting subnetworks. We applied
the reinsertion algorithm to detect these nodes. GND was deleting too many nodes to
allow the network to reach sufficient fragmentation. On the other hand, the GNDR al-
gorithm, significantly improved the GND results. Although GNDR outperforms iter-
ative centrality algorithms in terms of both fragmentation rate and remaining number
of driver nodes in networks with more nodes and edges, iterative centrality algorithms
have been more successful in nerve TSPPI and ovary TSPPI networks that are rela-
tively small networks with the initial node sizes less than 7000. GNDR or iterative
centrality algorithms can be successful when applied to different networks for dif-
ferent purposes. In this case, there is no strategy that we can qualify as the "best"
strategy for all networks because of the NP-hardness of the problem. For instance,
Batra et al. compared 7 different methods to find a gold standard to this problem and
concluded their study by revealing strengths and limitations of these methods (Batra
et al., 2017). After the decision of the best strategy of each network, we used Per-
sonalized PageRank algorithm in order to find the most suitable hub subnetworks for
each TSPPI. In these results, we found that there are nodes that are not in the list of
driver nodes, but that are frequently seen to be mutated in the selected tissue related
cancer. For now, most cancer drivers remain undetected. Since these results may lead
to clinical justification of these nodes, finding a smaller subnetwork from the whole
TSPPI is important. We also saw genes that were not labeled as biomarkers in our
data, but frequently seen in mutations, in our driver subnetwork, which we eventually
proposed. For example, while ARID1A and SMARCA4 mutate quite frequently in a
subtype of lymphoma, in the biomarker data we obtained in our dataset, ARID1A was
labeled as driver gene, while SMARCA4 was non-driver. However, in our results, we
found that SMARCA4 is also a driver gene or a gene that affects driver genes (Love et
al., 2012). Also, we interpreted our results with functional enrichment analysis. As a
result, the pathways we revealed in the results that we consider as significant (p value
< 0.02) contain both mutations that are mutated in tissue-specific cancer and common
mutations in all cancer types. For example, splicing event occurs in all cancer types
while Epstein-Barr virus infection causes only Burkitt lymphoma which is in the re-
sults of Lymph Node subnetwork enrichment analysis. Similarly, there is Ras protein
signal transduction which is important for all tissues while axon guidance and retinal
ganglion cell axon guidance are related to peripheral nerve tissue in the functional
enrichment results of peripheral nerve. In addition, the two subnetworks we found
for breast and lymph node were related to different pathway groups.

Our proposed pipeline may be applied the other tissues including pancreatic cancer,
lung cancer, colorectal cancer etc. The only requirement is a TSPPI belonging to the
tissue and known cancer driver genes of the tissue.
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APPENDIX A

CENTRALITY PAIR PLOTS OF TISSUES

Figure A.1: Pair plots of liver TSPPI.
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Figure A.2: Pair plots of lymph node TSPPI.
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Figure A.3: Pair plots of peripheral nerve TSPPI.
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Figure A.4: Pair plots of Ovary TSPPI
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APPENDIX B

RESULTS FROM CBIOPORTAL

Figure B.1: cBioPortal Result of Liver TSPPI.
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Figure B.2: cBioPortal Result of Lymph Node TSPPI.
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Figure B.3: cBioPortal Result of Ovary TSPPI.

Figure B.4: cBioPortal Result of Peripheral Nerve TSPPI.
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APPENDIX C

NETWORK DISMANTLING RESULTS

Table C.1: Summary of Results

Tissue Method Largest Compo-
nent Size

Number of
Removed
Nodes

Number of
Driver Nodes
in the Largest
Component

Number of
Remaining
Driver Nodes

Breast Betweenness
Centrality

830 2190 2 15

Breast GND with
Betweenness
Centrality

1052 5712 7 10

Breast GNDR with
Betweenness
Centrality

1052 3797 7 11

Breast Closeness
Centrality

1898 2232 6 16

Breast GND with
Closeness
Centrality

3297 3455 18 24

Breast GNDR with
Closeness
Centrality

3297 2915 18 24

Breast Degree
Centrality

839 2418 0 11

Breast GND with
Degree Cen-
trality

1053 6092 3 6

Breast GNDR with
Degree Cen-
trality

1053 4264 4 9

Breast Eigenvector
Centrality

473 2364 1 13

Breast GND with
Eigenvector
Centrality

780 6205 3 6

Breast GNDR with
Eigenvector
Centrality

780 4363 3 10

Liver Betweenness
Centrality

1405 1812 4 11

Continued on next page
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Table C.1 – Continued from previous page
Tissue Method Largest Compo-

nent Size
Number of
Removed
Nodes

Number of
Driver Nodes
in the Largest
Component

Number of
Remaining
Driver Nodes

Liver GND with
Betweenness
Centrality

1613 4473 8 8

Liver GNDR with
Betweenness
Centrality

1613 3425 8 9

Liver Closeness
Centrality

1590 1849 3 13

Liver GND with
Closeness
Centrality

3088 2847 12 17

Liver GNDR with
Closeness
Centrality

3088 2348 12 18

Liver Degree
Centrality

1694 1943 1 10

Liver GND with
Degree Cen-
trality

1704 4596 4 4

Liver GNDR with
Degree Cen-
trality

1704 3607 4 7

Liver Eigenvector
Centrality

2343 1877 7 12

Liver GND with
Eigenvector
Centrality

2348 3560 3 6

Liver GNDR with
Eigenvector
Centrality

2348 2829 10 14

Lymph Node Betweenness
Centrality

778 1932 3 6

Lymph Node GND with
Betweenness
Centrality

873 5226 5 6

Lymph Node GNDR with
Betweenness
Centrality

873 3382 5 7

Lymph Node Closeness
Centrality

1619 1962 5 8

Lymph Node GND with
Closeness
Centrality

2626 3239 7 7

Lymph Node GNDR with
Closeness
Centrality

2626 2714 7 8

Lymph Node Degree
Centrality

2303 1979 5 6

Continued on next page
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Table C.1 – Continued from previous page
Tissue Method Largest Compo-

nent Size
Number of
Removed
Nodes

Number of
Driver Nodes
in the Largest
Component

Number of
Remaining
Driver Nodes

Lymph Node GND with
Degree Cen-
trality

2306 4117 10 10

Lymph Node GNDR with
Degree Cen-
trality

2306 3529 10 10

Lymph Node Eigenvector
Centrality

1353 2061 4 7

Lymph Node GND with
Eigenvector
Centrality

1527 4490 10 10

Lymph Node GND with
Eigenvector
Centrality

1527 3577 10 11

Peripheral
Nerve

Betweenness
Centrality

583 1065 1 5

Peripheral
Nerve

GND with
Betweenness
Centrality

693 3300 1 1

Peripheral
Nerve

GNDR with
Betweenness
Centrality

693 2051 2 4

Peripheral
Nerve

Closeness
Centrality

1110 1074 1 5

Peripheral
Nerve

GND with
Closeness
Centrality

2166 1635 1 1

Peripheral
Nerve

GNDR with
Closeness
Centrality

2166 1389 1 1

Peripheral
Nerve

Degree
Centrality

1315 1151 1 4

Peripheral
Nerve

GND with
Degree Cen-
trality

1322 2564 0 0

Peripheral
Nerve

GNDR with
Degree Cen-
trality

1322 1979 0 1

Peripheral
Nerve

Eigenvector
Centrality

1497 1135 5 5

Peripheral
Nerve

GND with
Eigenvector
Centrality

1509 2420 1 1

Peripheral
Nerve

GND with
Eigenvector
Centrality

1509 2001 1 1

Ovary Betweenness
Centrality

306 828 19 20

Continued on next page
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Table C.1 – Continued from previous page
Tissue Method Largest Compo-

nent Size
Number of
Removed
Nodes

Number of
Driver Nodes
in the Largest
Component

Number of
Remaining
Driver Nodes

Ovary GND with
Betweenness
Centrality

386 2590 7 9

Ovary GNDR with
Betweenness
Centrality

386 2416 7 9

Ovary Closeness
Centrality

414 849 18 20

Ovary GND with
Closeness
Centrality

469 1863 9 11

Ovary GNDR with
Closeness
Centrality

469 1798 9 11

Ovary Degree Cen-
trality

617 962 11 11

Ovary GND with
Degree Cen-
trality

676 2485 11 11

Ovary GNDR with
Degree Cen-
trality

676 2331 11 11

Ovary Eigenvector
Centrality

204 913 17 19

Ovary GND with
Eigenvector
Centrality

273 2687 7 8

Ovary GNDR with
Eigenvector
Centrality

273 2480 7 8
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