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Mechanical Engineering, METU

Assoc. Prof. Dr. Hüsnü Dal
Mechanical Engineering, METU

Assoc. Prof. Dr. Sezer Özerinç
Mechanical Engineering, METU

Assoc. Prof. Dr. Ercan Gürses
Aerospace Engineering, METU

Assist. Prof. Dr. Omer Music
Mechanical Engineering, TED University

Date : 23.08.2021



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Alp Kağan Açan

Signature :

iv



ABSTRACT

A COMPARATIVE STUDY OF ANISOTROPIC HYPERELASTIC MODELS
OF BIOLOGICAL SOFT TISSUES

Açan, Alp Kağan

M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

August 2021, 82 pages

In the last two decades, there has been significant growth of interest in the mechan-

ical behavior of biological soft tissues approached from the continuum mechanical

perspective. A plenty of constitutive models have been proposed that represent the

anisotropic hyperelastic behavior of biological soft tissues. Generally, invariant and

fiber dispersion-based models are two main categories considered during the model-

ing steps. Among the anisotropic models, fiber dispersion-based constitutive models

are known to have high performance for capturing the anisotropic behavior of tissues

over invariant-based models. The type of the biological soft tissues and the number of

available experimental data set under different loading cases play an important role in

choosing the appropriate model. With the increasing number of hyperelastic models,

a comparison among the models and choosing a proper one becomes a crucial factor

for researchers in the field. In this study, the fitting performance of 9 anisotropic hy-

perelastic models has been investigated for three different tissues, abdominal aortic

aneurysm tissue, linea alba, and rectus sheath. In order to obtain the parameters of

each constitutive model, a genetic algorithm has been utilized. Further improvement

of the results is achieved through the fmincon utility of MATLAB. Equibiaxial dataset
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for abdominal aortic aneurysm tissue, uniaxial dataset for linea alba, and uniaxial ten-

sion dataset for rectus sheath have been considered during parameter optimization.

Keywords: hyperelasticity, soft tissue, fiber dispersion, parameter optimization
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ÖZ

BİYOLOJİK YUMUŞAK DOKULARIN ANİZOTROPİK HİPERELASTİK
YAPISAL MODELLERİNİN KARŞILAŞTIRMALI BİR ÇALIŞMASI

Açan, Alp Kağan

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Ağustos 2021 , 82 sayfa

Son yirmi yılda, biyolojik yumuşak dokuların mekanik davranışına süreklilik meka-

nik perspektifinden yaklaşılan ilgide önemli bir artış olmuştur. Birçok araştırmacı, bi-

yolojik yumuşak dokuların anizotropik hiperelastik davranışını temsil etmek için çe-

şitli yapısal modeller geliştirmiştir. Genel olarak, değişmez ve fiber dağılımına dayalı

modeller, modelleme adımları sırasında dikkate alınan iki ana kategoridir. Anizot-

ropik modeller arasında, fiber dağılımına dayalı yapısal modellerin, değişmez tabanlı

modellere göre dokuların anizotropik davranışını yakalamak için yüksek performansa

sahip olduğu bilinmektedir. Biyolojik yumuşak dokuların tipi ve farklı yükleme du-

rumları altında mevcut deneysel veri setlerinin sayısı, uygun modelin seçilmesinde

önemli bir rol oynamaktadır. Hiperelastik modellerin sayısının artması ile modeller

arasında karşılaştırma yapmak ve uygun olanı seçmek bu alandaki araştırmacılar için

çok önemli bir faktör haline gelmektedir. Bu çalışmada 9 anizotropik hiperelastik mo-

delin uyum performansı sunulmuştur. Yapısal modellerin parametreleri, genetik bir

algoritma kullanılarak bulunmuştur. MATLAB bünyesindeki fmincon yardımcı prog-

ramı kullanılarak sonuçların daha da iyileştirilmesi gerçekleştirilmiştir. Parametre op-
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timizasyonu sırasında tek eksenli ve eş-çift eksenli yükleme modları için iyi bilinen

veri setleri göz önünde bulundurulmuştur.

Anahtar Kelimeler: hiperelastisite, yumuşak doku, lif dağılımı, parametre optimizas-

yonu

viii



To my family

ix



ACKNOWLEDGMENTS

First of all, I would like to express my deepest thanks to my advisor Assoc. Prof. Dr.

Hüsnü Dal for his support and guidance throughout my thesis study. I want to thank

Ciara Durcan from Swansea University for supplying experimental data used in this

thesis. I would also like to thank Kemal Açıkgöz for his suggestions and comments

during my research. Last but not least, I would like to express my sincere gratitude to

my parents Ali Açan and Dudu Açan, and my sister Eda Aybüke Açan.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mechanical behavior of soft tissues . . . . . . . . . . . . . . . . . . 3

1.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Experimental studies . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Constitutive modelling . . . . . . . . . . . . . . . . . . . . . 8

1.3 Scope and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Fundamental maps and governing equations of motion . . . . . . . . 15

2.1.1 Geometric mappings and the field variables . . . . . . . . . . 15

2.1.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



2.1.2 Principal stretches and invariants . . . . . . . . . . . . . . . . 17

2.1.3 Free energy function . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Stress expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Invariant formulations . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Fiber dispersion formulation . . . . . . . . . . . . . . . . . . 21

2.2.2.1 Generalized structure tensor formulation . . . . . . . . 21

2.2.2.2 Angular integration formulations . . . . . . . . . . . . 23

2.2.3 Stresses under homogeneous deformations . . . . . . . . . . . 24

3 HYPERELASTIC MATERIAL MODELS . . . . . . . . . . . . . . . . . . 27

3.1 Invariant based models . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 neo-Hookean model . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Newman-Yin (NY) model . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Holzapfel-Gasser-Ogden (HGO) model . . . . . . . . . . . . 29

3.1.4 Holzapfel-Sommer-Gasser-Regitnig (HSGR) model . . . . . . 29

3.1.5 Ogden-Saccomandi (OS) model . . . . . . . . . . . . . . . . 30

3.2 Fiber dispersion based models . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Driessen-Bouten-Baaijens (DBB) model . . . . . . . . . . . . 31

3.2.2 Gasser-Ogden-Holzapfel (GOH) model . . . . . . . . . . . . 32

3.2.3 Alastrué-Martinez-Doblaré-Menzel (AMDM) model . . . . . 33

3.2.4 Alastrué-Saéz-Martinez-Doblaré (ASMD) model . . . . . . . 36

3.2.5 Holzapfel-Niestrawska-Ogden-Reinisch-Schriefl (HNORS) model 36

4 PARAMETER OPTIMIZATION AND COMPARISON OF MODELS . . . 41

4.1 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii



4.2 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Comparison of hyperelastic models . . . . . . . . . . . . . . . . . . 45

5 RESULTS AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 51

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDICES

A TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR
METRICS BASED ON NIESTRAWSKA’S ET DATA . . . . . . . . . . . . 71

B TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR
METRICS BASED ON COONEY’S UT DATA . . . . . . . . . . . . . . . 75

C TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR
METRICS BASED ON MARTIN’S UT DATA . . . . . . . . . . . . . . . . 79

xiii



LIST OF TABLES

TABLES

Table 1.1 Overview of main continuum models listed in chronological order

of apperance. The colomn ’formulation’ describes the approach presented

in the cited article (GST, generalized structure tensor; AI, angular integra-

tion); the column ’tissue type’ name the tissue to which the cited model

has been originally applied. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 5.1 Models sorted based on the quality of fit to ET dataset for AAA

tissue [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.2 Models sorted based on the quality of fit to UT dataset for linea alba

[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 5.3 Models sorted based on the quality of fit to UT dataset for rectus

sheath [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table A.1 Identified parameters and error bounds for AMDM model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table A.2 Identified parameters and error bounds for DBB model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table A.3 Identified parameters and error bounds for ASMD model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table A.4 Identified parameters and error bounds for HNORS model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



Table A.5 Identified parameters and error bounds for GOH model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table A.6 Identified parameters and error bounds for HGO model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table A.7 Identified parameters and error bounds for NY model based on AAA

tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table A.8 Identified parameters and error bounds for HSGR model based on

AAA tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table A.9 Identified parameters and error bounds for OS model based on AAA

tissue dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table B.1 Identified parameters and error bounds for AMDM model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table B.2 Identified parameters and error bounds for ASMD model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table B.3 Identified parameters and error bounds for GOH model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table B.4 Identified parameters and error bounds for HNORS model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table B.5 Identified parameters and error bounds for HSGR model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table B.6 Identified parameters and error bounds for HGO model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table B.7 Identified parameters and error bounds for OS model based on linea

alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table B.8 Identified parameters and error bounds for NY model based on linea

alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xv



Table B.9 Identified parameters and error bounds for DBB model based on

linea alba dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table C.1 Identified parameters and error bounds for AMDM model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table C.2 Identified parameters and error bounds for ASMD model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table C.3 Identified parameters and error bounds for GOH model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table C.4 Identified parameters and error bounds for HNORS model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table C.5 Identified parameters and error bounds for HSGR model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table C.6 Identified parameters and error bounds for HGO model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table C.7 Identified parameters and error bounds for NY model based on rec-

tus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table C.8 Identified parameters and error bounds for OS model based on rec-

tus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table C.9 Identified parameters and error bounds for DBB model based on

rectus sheath dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xvi



LIST OF FIGURES

FIGURES

Figure 1.1 Main fiber directions of linea alba, adopted from [5]. . . . . . . . 2

Figure 1.2 Idealized histological structure of human healthy artery. An ar-

terial wall has 3 three layers: intima (I), media (M), adventitia (A);

adopted from [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Typical non-linear tension behavior of soft tissue, adopted from

[32]. In region I, fibers do not actively contibute to the mechanical

response; in region II, fibers are straightened, and their contribution

to mechanical response can be observed; in region III, fibers are fully

straightened, and their mechanical contribution is the dominant factor. . 4

Figure 1.4 The experimental setup of the uniaxial testing machine (a) and

close ups of a transverse sample undering various stages of tension (b)

including before loading (i), during loading (ii) and at maximum stretch

of the test, modified from Cooney et al. [14]. . . . . . . . . . . . . . . . 6

Figure 2.1 Three fundamental maps of a continuum: (a) The deformation

gradientF as a mapping of an infinitesimal line element, (b) its cofactor

cof[F ] as an area map, and (c) and its determinant det[F ] as a volume

map; adopted from [17]. . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 The invariants (a) I1(C) = λ2
1 + λ2

2 + λ2
3 as sum of squares of

the principal stretches, (b) I2(C) = ν2
1 + ν2

2 + ν2
3 as sum of squares of

principal areal stretches where νi = J/λi and (c) I3 = J2 = λ2
1λ

2
2λ

2
3 as

square of volumetric stretch; adopted from [17]. . . . . . . . . . . . . . 17

xvii



Figure 2.3 The unit micro-sphere and the arbitrary fiber orientation vector

r = r1e1 + r2e2 + r3e3 where r1 = cos Φ sin Θ, r2 = sin Φ sin Θ

and r3 = cos Θ in terms of spherical coordinates {Φ,Θ}, respectively;

adopted from [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4 Deformation modes - a) uniaxial tension in e1, b) uniaxial ten-

sion in in e2, c) equibiaxial tension; updated from [17] . . . . . . . . . 24

Figure 3.1 Polar plots for normal distribution function for DBB model [22]. 32

Figure 3.2 Relation between the dispersion parameter κ and the concentra-

tion parameter of von Mises distribution. . . . . . . . . . . . . . . . . . 32

Figure 3.3 Polar plots for von Mises distribution function for GOH model

[28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.4 Representation of von-Mises distribution function for different

parameter set; (a) b = 0, Θ = 0◦, Φ = 0◦ (isotropic case) (b) b = 3,

Θ = 90◦, Φ = 45◦, (c) b = 3, Θ = 0◦, Φ = 0◦, (d) b = 10, Θ = 90◦,

Φ = 60◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.5 Polar plots for von Mises distribution function for AMDM model

[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.6 Representation of Bingham distribution function for various pa-

rameter set showing different shapes of distribution; (a) higher distri-

bution in e2 direction, (b) isotropic case, (c) rotationally symmetric in

e1 − e2 plane, (d) von-Mises distribution with e1 mean direction. . . . . 37

Figure 3.7 a) Relation between the dispersion parameter κop and the out-

of-plane concentration parameter of von Mises distribution,b and b) re-

lation between the dispersion parameter κip and the in-plane concentra-

tion parameter of von Mises distribution, a . . . . . . . . . . . . . . . . 38

Figure 3.8 Polar plots for bivariate von Mises distribution function for HNORS

model [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xviii



Figure 5.1 AMDM model’s [1] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.2 ASMD model’s [3] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.3 HNORS model’s [35] predictions for i) ET dataset for AAA

tissue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.4 GOH model’s [28] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.5 HSGR model’s [39] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.6 DBB model’s [22] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.7 HGO model’s [34] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.8 NY model’s [51] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.9 OS model’s [53] predictions for i) ET dataset for AAA tis-

sue [52], ii) UT dataset for linea alba [14], iii) UT dataset for rectus

sheath [50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xix



LIST OF ABBREVIATIONS

AAA Abdominal Aortic Aneurysm

ET Equibiaxial Tension

UT Uniaxial Tension

AI Angular Integration

GST Generalized Structure Tensor

PDF Probability Distribution Function

NOP Number of Parameters

QOF Quality of Fit

NY Newman-Yin

HGO Holzapfel-Gasser-Ogden

HSGR Holzapfel-Sommer-Gasser-Regitnig

OS Ogden-Saccomandi

DBB Driessen-Bouten-Baaijens

GOH Gasser-Ogden-Holzapfel

AMDM Alastrué-Martinez-Doblaré-Menzel

ASMD Alastrué-Saéz-Martinez-Doblaré

HNORS Holzapfel-Niestrawska-Ogden-Reinisch-Schriefl

xx



CHAPTER 1

INTRODUCTION

Biological tissues may be classified into two categories based on their histological

nature - hard or soft. Bone or tooth has high mineral concentration and is considered

as hard tissue. All other tissues can be considered soft tissues such as arterial walls,

skin, muscles, and other organs. Soft tissues are composed of cells, of extracellular

matrix. The cellular part of soft tissues includes fibrocytes cells which produce tissue

protein fibers such as collagen, elastin [56]. Extracellular matrix consists of fibers

of collagen, elastin, reticulum, and ground substance which is a hydrophilic gel [26].

Collagen fibers are the largest fibers in size and are more important for the aspect

of mechanical modeling since collagen is the main structural element that provides

strength and structural integrity to soft tissues. Tissues have different collagenous

structures depending on their functions and integrities. Depending on the orientation

of fibers, the mechanical behavior of the tissue varies.

For dense connective tissues whose primary function is carrying tension loads, such

as tendons and ligaments, collagen fibers have parallel alignment with subjected load

direction. In linea alba, for instance, the architecture of collagen fibers has variable

formation, see Figure 1.1. For an arterial wall, the architecture of collagen fibers is

much more complex. In the arterial wall, histological evidence shows that collagen

fibers helically bind the outer and inner layer of the arterial wall, while they bind

circumferentially the middle layer [8], see Figure 1.2. Increasing our understanding

of the microstructure and mechanical behavior of soft tissues is crucial for devel-

oping medical engineering applications and assisting tissue engineering. There are

important clinical problems that require an understanding of biomechanics. One of

the common examples is the treatment of coronary artery disease. Only by develop-

ing accurate mechanical models, improved interventional devices (eg., intravascular
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stents, balloon catheters used in angioplasty, atherectomy devices) can be designed.

Assisting tissue engineering is also another purpose of studies on the mechanical be-

havior of soft tissues. With this understanding, in the last two decades, interest in

constitutive modeling of soft tissues increased extensively. The various hyperelastic

constitutive model was developed to represent mechanical behavior of soft tissue, see

the review of Chagnon et al. [11].

Hyperelastic modeling is not enough to capture the time-dependent mechanical be-

havior of soft tissue. For instance, Cansız et al. [10] proposed an orthotropic vis-

coelastic material model for passive myocardium. In another study, Cansız et al. [9]

described the active behavior of the myocardium using an electro-visco-elasticity

model. Dal et al. [18] proposed a finite element algorithm for the bidomain-based

approach to cardiac electromechanics. In the above examples, the soft tissue was

modeled by the viscoelastic or electro-visco-elastic model. However, hyperelastic

models were used as a ground model to represent the base elastic behavior of soft

tissues.

Figure 1.1: Main fiber directions of linea alba, adopted from [5].
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Figure 1.2: Idealized histological structure of human healthy artery. An arterial wall

has 3 three layers: intima (I), media (M), adventitia (A); adopted from [28]

1.1 Mechanical behavior of soft tissues

Since the histological structures of each soft tissue are various, they have unique

behavior, however, general characteristics are common to many tissues. Modeling bi-

ological soft tissues is challenging due to the anisotropic nature and highly non-linear

mechanical behavior. Anisotropic behavior occurs since tissues are natural composite

materials in which collagen, elastin, and reticular fibers are embedded into cells and

extra-cellular ground substances. The ground substance mainly contains tissue fluids

and water, therefore, soft tissues behave as a fully/quasi incompressible material. Un-

like conventional composite materials, the fibers in soft tissues are presented in the

wavy form in unloaded mode, they straighten when subjected to tension load. Thus,

many researchers assume that collagen fibers do not support a compressive load, and

they exclude fibers under compression [1, 3, 24, 35, 36, 55]. Typically, the non-linear

tensile behavior of soft tissue has a J-shaped form, as shown in Figure 1.3. The me-

chanical behavior of soft tissues depends on time and dissipates energy, nevertheless,
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the elastic behavior dominates and they show asymptotic behavior when dissipation

goes to zero. For this reason, most of the tissue were discussed in the context of

hyperelasticity [11].

Figure 1.3: Typical non-linear tension behavior of soft tissue, adopted from [32].

In region I, fibers do not actively contibute to the mechanical response; in region II,

fibers are straightened, and their contribution to mechanical response can be observed;

in region III, fibers are fully straightened, and their mechanical contribution is the

dominant factor.

1.2 Literature overview

1.2.1 Experimental studies

A variety of experimental loading modes can be used to characterise soft biologi-

cal tissues. Amongst the most popular are uniaxial tension, biaxial tension and pure

shear. This section outlines these test conditions in the context of tensile loading,

and provides a collection of experimental results from literature which investigate the

mechanical behaviour of soft tissues. The experimental proceedure for each different

loading mode is explained and the final data is described.

Uniaxial tension, as the name suggests, is when elongation occurs in only one direc-

tion. Samples much greater in length than width, typically with a ratio of at least 4:1
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(length : width), are stretched along the axis parallel to its length, as seen in Figure

2.4. The length to width ratio allows the assumption that tensile stresses within the

sample other than those present along the axis of loading are zero. To experimen-

tally investigate anisotropy, samples are usually cut and tested along both the e1- and

e2-directions, as seen in Figure 2.4, with the assumption that no anisotropy derives

from the e3-direction. As the reference axis can change depending on the samples

being tested, all following discussion will take place in the context of the e1-direction

samples, with the understanding that the same principles can be easily adapted by

the reader for the e2-direction samples. Typically for uniaxial tension tests of metals

or polymers, dogbone samples are employed to reduce the influence of end effects,

and encourage fracture within the middle of the specimen and not at the grip location.

However, for soft biological tissues, rectangular samples are often used instead due to

the soft and delicate nature of the material making the punching of precise dogbone

samples very difficult. The first study selected to present uniaxial tension data on soft

biological tissues was by Cooney et al. [14], who investigated the uniaxial and equibi-

axial tensile behaviour of the human linea alba. Cooney et al. [14] obtained 13 freshly

frozen human cadaveric abdominal walls for their study and from these extracted the

linea alba for their experiments. The linea alba is a collagenous part of the ventral

abdominal wall whose collagen fibres are known to be anisotropically arranged. Prior

to sample extraction, the human cadaveric abdominal walls were allowed to defrost

for 36 hours at 4◦C. The linea alba were then extracted from each abdominal wall and

stored in phosphate-buffered saline solution until testing. For the uniaxial tension

tests, 14 rectangular samples in total were obtained from 7 of the linea alba spec-

imens. Seven samples were cut in both the longitudinal and transverse directions,

with longitudinal and transverse referring to their respective anatomical axes. The

length to width ratio of the rectangular samples was as close to the unaxial test condi-

tion as possible for the size of available tissue, with this equalling approximately 2:1

(length : width) for both directions. Prior to testing, samples were mounted in grips

lined with emery paper to reduce any slippage during loading. The grips were tight-

ened using a 0.2 Nm torque wrench to prevent over-tightening of the grips damaging

the tissue. Six black dots were applied to the surface of the samples, as seen in Figure

1.4, before securing the samples in the modular mechanical testing machine seen in

Figure 1.4a which was fitted with a 300 N load cell. During testing, a high definition
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camera was used to collect images at a rate of 2 Hz. The post-processing of these

images allowed for the calculation of sample strains by analysing the deformation

of each black dot throughout stretching. A pre-stress of 0.1MPa was applied to all

samples to remove any slack present. The tests were conducted at a quasi-static strain

rate of 28.5% min−1, and were stopped when either the load was greater than 90 N or

if tearing had started to occur at the grips or along the length of the sample.

The transverse direction was found to be much stiffer than the longitudinal direction,

Figure 1.4: The experimental setup of the uniaxial testing machine (a) and close ups

of a transverse sample undering various stages of tension (b) including before loading

(i), during loading (ii) and at maximum stretch of the test, modified from Cooney et

al. [14].

displaying the anisotropy of the tissue. Cooney et al. [14] found the slope of the most

linear section of the curve to be approximately 72 MPa in the transverse direction and

8 MPa in the longitudinal direction.

The second study selected was uniaxial tension data by Martins et al. [50], who in-

vestigated uniaxial tensile behavior of human anterior rectus sheath. Martins et al.

harvested the tissue samples from 12 fresh female cadavers. 6 rectangular samples

were cut along both the direction of fibers and transverse to the direction of fibers.

The thickness of samples was 1.00 mm with a 1:4 length to width ratio. The tests

were conducted at a rate of 5 mm/min at room temperature. The tensile behavior was

observed to be nonlinear in both the fiber direction and transverse to the fiber direc-

tion. Equibiaxial tension is defined as equal and simultaneous elongation along two

orthogonal directions. It is used in the characterisation of soft biological tissues as it
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is often considered to be more representative of the stresses experienced in vivo [14].

Square samples are used for the tests and the samples are equally loaded under tension

on all four sides, as seen in Figure 2.4c. Due to this, the principal stretch in the e1-

and e2-directions is equal to the experimental stretch, i.e. λ1 = λ2 = λ, leaving the

e3-direction the only one unconstrained. If the material is considered incompressible,

and due to the assumption of symmetry, λ3 = λ−2. The equibiaxial tension study

selected was an investigation by Niestrawska et al. [52] on human abdominal aortas.

They conducted equibiaxial tension experiments on both healthy and aneurysmatic

abdominal aortas. The data used here was extracted from the experimental results

on the abdominal aortic aneurysms which were obtained through surgical procedures

conducted at the Department of Vascular Surgery, Medical University Graz, Austria.

Aneurysms are defined as irreversible, localised dilatation of a vessel, which can in

some cases lead to complete wall rupture. Eleven wall samples in total were collected

from open aneurysm repair at the anterior side. The samples were stored at 4◦C in

Dublecco’s modified Eagle’s medium prior to testing. To prepare for testing, 20 ×
20 mm patches were cut from the aneurysmatic abdominal aorta walls. Some were

large enough for two test specimens to be prepared from a single extracted sample.

The specimens were tested with their layers intact as the authors found a clear sep-

aration of layers of the aneurysms to be impossible. At this point, the thickness of

the specimens were measured. A scatter pattern of black dots was then applied to

the surface of the specimens using a spray to allow the displacements to be optically

measured. To mount the specimens in the biaxial testing mechaine, hooked surgi-

cal sutures were used. The specimens were then submerged in a 0.9% physiological

saline bath which was heated up to 37 ± 0.1◦C. The tests were conducted using a

stretch-driven protocol, starting at 2.5% deformation and increasing in 0.025 stretch

steps until rupture. This was carried out at a quasi-static strain rate of 3 mm·min−1,

and with a stretch ratio of λaxial : λcirc = 1 : 1, where λaxial is the stretch in the axial

direction and λcirc is the stretch in the circumferential direction. Four precondition-

ing cycles were conducted after each increase in step, with the fifth recorded for data

analysis. The results presented in the study by Niestrawska et al. [52] included the

Cauchy stress-stretch data in both the axial and circumferential directions of 12 patch

specimens. The results displayed large variability in mechanical response. However,

despite the variability, when comparing the Cauchy stress at 1.15 stretch, the stresses
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in the circumferential direction were consistently higher than the axial direction. The

experimental data chosen here was from the specimen with the behaviour that was

approximately median out of all the specimens (specimen AAA-1.2).

1.2.2 Constitutive modelling

The studies on modeling the mechanical behavior of biological soft tissues go back to

the 19th century. In 1847, M.G. Wortheim presented force-elongation data of femoral

arteries and saphenous vein, he noticed that force and elongation are not linearly

dependent as Young suggested. Wertheim proposed a constitutive relation of the form

ε = aσ2 + bσ (1.1)

where a and b are material parameters and ε and σ are strain and stress, respectively

[43]. In 1909, Osborne [54] was studied on the urinary bladder and had noticed that

the bladder presents a non-linear stiffening under large strain. He recorded that the

bladder has a web of elastic fibers, it might be the first work that highlighted the

anisotropic fibrous nature of soft tissues. In 1926, Wohlisch had found that collagens

shrink with induced heat similar to that in rubberlike materials [30, 43]. Karrer [46]

also noticed similarities between soft tissues and rubber-like materials, he tried to find

a kinetic theory for a muscle contraction based on a thermo-mechanical analysis of

long-chained molecules.

In the early 20th century, advances in rubberlike materials and tissue mechanics have

been recorded concurrently. The main reason for the similarity between rubber and

soft tissue is that they are each composed of macromolecules. The interested reader is

referred to [33] for a detailed explanation of similarities between rubberlike materials

and biological soft tissues. Many isotropic models of soft tissues come from rubber-

like material studies. However, constitutive models for rubber-like materials are cre-

ated to model strain-hardening of the material and captured S-shape stress-strain be-

havior. Fung [25] noted that the stress-strain relation of soft tissue is exponential. Fol-

lowing the evidence of Fung, many isotropic constitutive models were developed in

exponential form, also called Fung-form or Fung-type [4, 6, 19, 21, 31, 57, 64, 66, 70].

More accurate constitutive models were proposed by describing anisotropic nature of
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tissues. There are three main approaches to describe the anisotropic mechanical be-

havior of soft tissue. The first one is based on Green-Lagrange strain components, the

second one is based on strain invariants, and the third one is based on fiber dispersion.

Tong and Fung [67] proposed the first model using the Green-Lagrange strain compo-

nents. Three years later, Fung [27] introduced a more generic form, and Chuong and

Fung [13] extended this generic form to the three-dimensional setting. However, the

model of Chuong and Fung was not including shear strain components. Humphrey

[42] included shear strain components and global formulation of generic Fung-type

strain energy function formed. Choi et al. [12], Kasyanov et al. [47], Costa et al. [16]

and Rajagopal et al. [58] proposed Fung-type exponential functions based on Green-

Lagrange strain components to model soft tissues. There are also presented constitu-

tive models based on Green-Lagrange strain components but do not have Fung-type

exponential form [58, 65, 67, 69]. The main obstacle of constitutive models based

on Green-Lagrange strain components is that they have a large number of material

parameters. For example, the model of Chuong and Fung [13] has 6, the model of

Humphrey [42] has 9 material parameters. Furthermore, these material parameters

have no physical meaning and are difficult to identify. Additionally, as Holzapfel et

al. [34] indicated in their review, for some parameter sets of Fung model [27], the

strain energy is not polyconvex and have a stability issue. Another weak point of

constitutive models of tissue based on strain components is that they do not consider

tissue histology, this approach is fully phenomenological.

The strain invariant approach on the other hand considers tissue histology. The

direction of fibers is included in the analysis via anisotropic strain invariants. In

this approach, it is assumed that fibers are perfectly aligned into the ground sub-

stance. Humphrey [45] formulated constitutive relation of cardiac tissue based on

strain invariants, he additively decomposed free energy function into isotropic and

anisotropic parts. The isotropic ground behavior was represented with the model pro-

posed by Demiray [20]. The proposed anisotropic model was based on the square

root of the fourth invariant which basically represents the stretch of fiber. Three

years later, Humphrey [44] proposed a series form of constitutive relation for pas-

sive myocardium based on the first invariant and the square root of the fourth in-

variant similar to Rivlin’s series which is used for isotropic hyperelasticity. Weiss

et al. [71] had introduced three dimensional incompressible, transversely isotropic,
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hyperelastic constitutive model to describe general biological soft tissues. Mooney-

Rivlin model was employed to represent ground material, and the exponential form

of the fourth invariant was used to describe the anisotropic part. Newman et al. [51]

proposed a constitutive model for the mitral valve, anterior valve, and posterior tis-

sue. The proposed free energy function was analogous to the model of Fung [27].

Instead of using an exponential function of the Green-Lagrange strain component,

the exponential of a quadratic function of strain invariants was used. Holzapfel et

al. [34] introduced a constitutive model passive mechanical response of arterial wall.

The artery was modeled elastic circular tube composed of two layers, and each layer

had been treated as a composite material with two families of fibers symmetrically

disposed of with the circumferential direction of the artery. Isotropic response of

each layer had been determined by neo-Hookean model of Treloar [68]. In order to

capture the J-form of stress-strain behavior, an exponential function was used to de-

scribe collagen fibers. The model was able to describe the behavior of adventitia and

media of arterial wall. Holzapfel et al. [39] extended previously proposed constitu-

tive model [34] to represent each layer of coronary arteries with nonatherosclerotic

intimal thickening. A scalar parameter to represent the measure of anisotropy had

been introduced. The measure of dispersion parameter is able to calibrate the model

between the case of isotropy and transversely isotropy. The model successfully cap-

tured the uniaxial strip test data of each layer of a human coronary artery. Alastrue

et al. [2] proposed a polynomial potential to model the passive mechanical behavior

of the ovine infrarenal vena cava tissue, they also compared the proposed model with

the model of Holzapfel et al. [34] and the model of Lin and Yin [49]. Although the

model of Lin and Yin [49] showed a better fit, it was not convex. Even the model

of Holzapfel et al. [34] was originally proposed to represent the behavior of arterial

wall, it accurately described the behavior of vena cava tissue. Ogden and Saccomandi

[53] developed a constitutive model for arterial tissue in which the extensibility limit

of both collagen fibers and isotropic ground substance is regarded. To describe the

isotropic ground material’s behavior, Gent model [29] was used. Gent model is one

of the simplest phenomenological models of hyperelastic behavior of rubber-like ma-

terial in which polymer chain extensibility is limited by a material parameter. For

the anisotropic part, Ogden and Saccomandi adopted the transversely isotropic model

of Horgan and Saccomandi [41] for two families of fibers. The majority of constitu-
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tive laws of biological soft tissue are based on strain invariants. Aforementioned the

strain invariant approach assumes that fibers are perfectly aligned, however, collagen

fibers exist in a dispersed form in the tissue. Fiber dispersion-based models consider

tissue histology in a more realistic situation. There are two approaches for describing

fiber dispersion [38], (i) angular integration approach and (ii) generalized structure

tensor approach. The first fiber dispersion model was presented by Lanir [48]. He

proposed a continuum framework to model flat biological tissues, using the angular

integration approach and described the distribution of collagen and elastin fibers with

Gaussian distribution function. Starting from the study of Lanir, the researchers had

extensive effort over modelling the fiber dispersed material with the angular integra-

tion approach. Sacks et al. [59] utilized the angular integration approach with beta

distribution function to characterize anisotropic behavior of planar collagenous tissue.

Zulliger et al. [73] investigated rat carodids and described the dispersion of collagen

fibers with log-logistic distribution function. Following the study of Lanir, Billiar

et al. [7] and Driessen et al. [22] studied soft tissues containes distributed collagen

fibers with Gaussion distribution function. Alasture et al. [1] investigated human ar-

terial wall with von Mises distribution function; they were also conducted the same

invesitagation using the Bingham distribution [3]. The generalized structure tensor

formulation was introduced by Gasser et al. [28]. The model of Gasser et al. [28] was

originally proposed to model arterial walls assuming the out-of-plane distribution of

the fibers. Holzapfel et al. [35] extended the model of Gasser et al. [28], and took into

account the in-plane dispersion in a more generic form.

As the number of models increased, a need to compare the models became vital.

Cortes et al. [15] had compared the AI approach and GST approach for connective

tissue. For comparison, free energy function of Holzapfel et al. [34] and von Mises

distribution function used by Gasser et al. [28] was selected. It was observed that

both formulations have similar performance in terms of describing material behav-

ior. Similar comparisons were also made by Holzapfel and Ogden [37] for human

arterial tissue. The result was the same, they concluded that GST and AI approaches

are equivalent in terms of fitting performance to experimental tension data. However,

they stated that the AI approach is expensive in CPU time since numerical integration

is required for every stretch level. On contrary, once the preferred fiber direction and

distribution of fibers are known, the generalized structure tensor is obtained and no
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further integration is needed.

A summary of the main continuum models discussed above is listed in Table 1.1.

Table 1.1: Overview of main continuum models listed in chronological order of ap-

perance. The colomn ’formulation’ describes the approach presented in the cited ar-

ticle (GST, generalized structure tensor; AI, angular integration); the column ’tissue

type’ name the tissue to which the cited model has been originally applied.

year model name formulation tissue type

1998 NY model [51] invariant mitral valve

2000 HGO model [34] invariant arterial wall

2005 HSGR [39] invariant arterial wall

2005 DBB model [22] AI arterial wall-aortic valve

2006 GOH model [28] GST arterial wall

2007 OS model [53] invariant arterial wall

2009 AMDM model [1] AI blood vessel

2010 ASDM model [3] AI blood vessel

2015 HNORS model [35] GST arterial wall

1.3 Scope and outline

In literature, two types of deformation modes are more common for mechanical char-

acterization of biological soft tissue specimens, namely uniaxial tension (UT) and

equibiaxial tension (ET). The UT experiments are carried out in two orthotropic di-

rections in a straightforward manner via universal testing machines [14, 35, 39, 72].

The ET experiments are conducted with the biaxial testing machines with displace-

ment controlled testing protocol [50, 51, 52]. In literature, usually, animal tissues

are the subject of experimental studies due to easy access, however, animal tissues

and human tissues, in general, have different hyperelastic responses due to differ-

ences in collagen orientation [23]. Therefore, using a dataset for human tissue is a

good choice to assist human clinical studies. On the other hand, mechanical experi-

ments on human tissues are quite rare, and in some datasets, stretch-stress response
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in at least two directions is not available, which is a must for identifying anisotropic

response. Therefore, considering the above criteria, we have selected the datasets

of Niestrawska et al. [52], Cooney et al. [14], and Martins et al. [50]. These three

datasets contain stretch-stress responses for different parts of the human body; the

dataset of Niestrawska et al. [52] is for an abdominal aortic aneurysm (AAA) tissue,

the dataset of Cooney et al. [14] is for linea alba, and the dataset of Martins et al. [50]

is for rectus sheath. AAA is a pathological condition of the abdominal aorta which

results in local bulging. Linea alba and rectus sheath are parts of the abdominal wall.

The motivation of studies on AAA and the abdominal wall is that these tissues are

often subjected to surgical treatment. An accurate representation of the mechanical

response of these tissues leads to run successful simulations of surgical procedures

and designing proper medical devices.

In this study,

(i) we have outlined 9 hyperelastic models briefly and derive the close-form stress

expessions for uniaxial and equibiaxial tension deformation states based on the

incompressibility assumption,

(ii) we have implemented 9 hyperelastic constitutive models into hybrid genetic-

gradient search algorithm in MATLAB in the sense of Dal et al. [17],

(iii) we have identified the material parameters of each model (i) with respect to ET

dataset for AAA tissue [52], (ii) UT dataset for linea alba [14], (iii) UT dataset

for rectus sheath [50],

(iv) we have sorted all models with respect to an objective quality of fit metric

according to their fitting performance to AAA tissue dataset [52], linea alba

dataset [14], and rectus sheath dataset [50], respectively.

(v) The identified parameters and the quality of fit values of each constitutive model

have been presented in tabular form. The stress-strain curves for each constitu-

tive model have been provided in seperate graphs.

The thesis is organized as follows: Mathematical preliminaries for kinematics of in-

compressible anisotropic hyperelastic solid are presented in Chapter 2. In Chapter 3,
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9 anisotropic hyperelastic constitutive models for biological soft tissue are summa-

rized. Chapter 1.2.1 outlines the experimental observations for biological soft tissues.

In Chapter 4, the parameter optimization procedure is presented. The result of the

study and conluding remarks is given in Chapter 5.
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CHAPTER 2

THEORY

2.1 Fundamental maps and governing equations of motion

In this section, the field equations and corresponding state variables will be the subject

of investigation for a hyperelastic tissue in general anisotropic form, with two families

of fiber orientations. The theoretical premise and kinematics of the deformations and

constitutive equations will be laid.

2.1.1 Geometric mappings and the field variables

2.1.1.1 Kinematics

The deformation of a solid body is driven by the deformation mapϕ(X, t) represents

deformation field which maps the reference/Lagrangian configuration X ∈ B0 of

material point onto the current/Eulerian configuration of material points x = ϕt(X)

at time t ∈ T ⊂ R+. The deformation gradient

F : TXB0 → TxB; F :=
∂ϕt(X)

∂X
(2.1)

maps the unit tangent of reference configuration onto the spatial counterpart in the

current configuration where TXB0 and TxB denote the tangent spaces in the ref-

erence and current configuration. Additionally, let the co-tangent spaces in the the

reference and current manifolds are represented as T ∗XB0 and T ∗x B, respectively. If

the cofactor of the deformation gradient is weighted by the volume map/Jacobian

det[F ], a normal map per unit reference volume can be obtained between the unit
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normals in the undeformed and deformed configurations

F−T : T ∗XB0 → T ∗x B; n = F−TN (2.2)

where n is the unit normal vector in reference configuration andN is the unit normal

vector in current configuration. In sequel, let line, area, and volume elements in the

Lagrangian configurations to be denoted as dX , dA, dV , respectively. The Eulerian

counterparts of these elements are mapped through the deformation gradient F , its

cofactor cof[F ] = det[F ]F−T and its Jacobian J := det[F ] > 0

(a) (b) (c)

X XXX

dX dA

dV

Figure 2.1: Three fundamental maps of a continuum: (a) The deformation gradient F

as a mapping of an infinitesimal line element, (b) its cofactor cof[F ] as an area map,

and (c) and its determinant det[F ] as a volume map; adopted from [17].

dx = F dX , da = cof[F ]dA , dv = det[F ]dV , (2.3)

see also Figure 2.1. Having J := det[F ] > 0 guarantees the interpenetration of mat-

ter to be excluded from the deformation map ϕ. To define the mappings between the

co and contravariant objects in the Lagrangian an Eulerian manifolds, the manifolds

in the undeformed B0 and deformed B configurations are locally equipped with co-

variant G and current g metric tensors in the neighborhoods NX of X and Nx of x,

respectively. In the sequel, the right Cauchy Green tensor and the inverse of the left

Cauchy Green tensors are defined

C = F TgF and c = F−TGF−1 (2.4)

as the pull back of the current metric g and push-forward of the Lagrangian metric

G, respectively.The inverse of the left Cauchy Green Tensor is commonly known as

the Finger tensor and represented as b = c−1.

16



2.1.2 Principal stretches and invariants

For principals of material objectivity and frame indifference to be satisfied, the energy

stored in the hyperelastic material should be a function of either principal stretches or

invariants of the right Cauchy Green tensor. By writing the spectral decomposition of

right Cauchy-Green tensor C and cof[C] we would obtain the following

C :=
3∑

a=1

λ2
aN

a ⊗N a and cof[C] :=
3∑

a=1

ν2
aN

a ⊗N a , (2.5)

where

νi = J/λi with ν1 = λ2λ3 , ν2 = λ3λ1 , ν3 = λ1λ2 , (2.6)

are the principal areal stretches andN a represent the principal directions, see Figure

2.2. Moreover, the three isotropic invariants of the right Cauchy Green tensor are

N 1
N 1

N 2
N 2N 3 N 3

λ 1
a 0

λ 1
a 0

λ2a0
λ2a0

λ3a0λ3a0

ν 1
a
2 0

ν2a
2
0

ν3a
2
0

λr0

Figure 2.2: The invariants (a) I1(C) = λ2
1 +λ2

2 +λ2
3 as sum of squares of the principal

stretches, (b) I2(C) = ν2
1 +ν2

2 +ν2
3 as sum of squares of principal areal stretches where

νi = J/λi and (c) I3 = J2 = λ2
1λ

2
2λ

2
3 as square of volumetric stretch; adopted from

[17].

I1 := tr[C], I2 := tr[cof[C]], and I3 := det[C] . (2.7)

The principal stretches and the invariants of the right Cauchy Green stretch tensor are

related as through

I1 = λ2
1 + λ2

2 + λ2
3, I2 = ν2

1 + ν2
2 + ν2

3 , I3 = J2 = λ2
1λ

2
2λ

2
3 . (2.8)
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If a material point is depicted by an infinitesimal cubic element, the squares of its

linear, areal, and volumetric stretches are associated with the three isotropic invariants

of the right Cauchy Green stretch tensor. In describing the anisotropic behavior of

soft tissues, four additional invariants are typically defined to take into account the

contribution of the preferential initial fiber alignment

I4 := M 1.CM 1 and I5 := M 1.C
2M 1 ,

I6 := M 2.CM 2 and I7 := M 2.C
2M 2 ,

(2.9)

where M 1 and M 2 are the unit fiber orientation vectors of the first family of fibers

and the second family of ribers in reference configuration, respectively.
√
I4 and

√
I6

represents the stretch of fibers in the directionM 1 andM 2, respectively, however I5

and I7 have no similar physical representation. In sequel, orientation vectors of two

families of fibers, symmetrically disposed in the e1−e2 plane in current configuration

are

m1 = FM 1 and m2 = FM 2 . (2.10)

Morover, the second order structural tensor can be defined as

A1 = M 1 ⊗M 1 and A2 = M 2 ⊗M 2 . (2.11)

The second order structural tensor can be expressed in current configuration as fol-

lows

a1 = m1 ⊗m1 and a2 = m2 ⊗m2 . (2.12)

2.1.3 Free energy function

Hyperelasticity is the term to define material which produces no entropy. In other

words, hyperelastic material dissipates not energy, therefore, their material response

is governed by a single energy function which describes the stored energy by the

material; this energy function is known as Helmholtz free energy function, or strain

energy density function. Since some materials behave differently in bulk deformation

and shear deformation, it is common practice to split the deformation into a volume-

changing and an volume-preserving part according to

F = F volF̄ with F vol := J1/31 . (2.13)
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The corresponding strain measure reads

C = (J2/31)C̄ with C̄ = F̄
T
F̄ . (2.14)

Based on 2.13 and 2.14, the free energy function is expressed as

ψ = U(J) + ψ̄(F̄ ,A1,A2) (2.15)

where U(J) and ψ̄(F̄ ,A1,A2) represent volumetric and isochoric response of mate-

rial, respectively. Further decomposition of isochoric free energy function was sug-

gested by Holzapfel and Weizsacker [40]. They proposed decomposition of free en-

ergy function into isotropic and anisotropic parts,

ψ̄(F̄ ,A1,A2) = ψ̄iso(F̄ ) + ψ̄ani(F̄ ,A1,A2) . (2.16)

The wavy collagen fibers do not store energy at low pressures, hence, isotropic ground

matrix is active with ψ̄iso at low stresses. In contrary, the collagen fibers dominate the

overall behavior at large stresses and this is governed by ψ̄ani.

2.2 Stress expressions

Assuming zero dissipation in hyperelastic solids leads to the canonical relation be-

tween the Lagrangian/Eulerian stresses and the free energy function in the sense

S = 2∂Cψ̂(C,A1,A2) and τ = 2∂gψ̃(g,F ,A1,A2) . (2.17)

Herein, S and τ are the second Piola-Kirchhoff and the Kirchhoff stresses, respec-

tively.

2.2.1 Invariant formulations

For the case of anisotropic elasticity, for the case of invariant-based free energy func-

tion, by applying the chain rule we will obtain the Lagrangian and Eulerian stress

descriptions as

S = 2∂Cψ = 2
7∑
i=1

∂ψ

∂Ii

∂Ii
∂C

, (2.18)
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τ = 2∂gψ = 2
7∑
i=1

∂ψ

∂Ii

∂Ii
∂g

. (2.19)

The closed form expressions for the Lagrangian and Eulerian stress tensors in (2.18)

and (2.19) require the following derivatives

∂CI1 = 1 , ∂CI2 = I11−C , ∂CJ = 1
2
JC−1 ,

∂CI4 = A1 , ∂CI5 = M 1 ⊗CM 1 +M 1C ⊗M 1 ,

∂CI6 = A2 , ∂CI7 = M 2 ⊗CM 2 +M 2C ⊗M 2 .

(2.20)

The derivatives with respect to the spatial metric g follows from the push-forward

operation of (2.20), i.e.

∂gI1 = b , ∂gI2 = I1b− b2 , ∂gJ = 1
2
Jg−1 ,

∂gI4 = a1 , ∂gI5 = m1 ⊗ bm1 +m1b⊗m1 ,

∂gI6 = a2 , ∂gI7 = m2 ⊗ bm2 +m2b⊗m2 .

(2.21)

Substitution of (2.20) and (2.21) into (2.18) and (2.19), then rearranging the terms

finally gives the invariant based representation of stresses for anisotropic hyperelastic

solid

S = 2(c1 + I1c2)1− 2c2C + 2c3A1 + 2c4(M 1 ⊗CM 1 +M 1C ⊗M 1)

+ 2c5A2 + 2c6(M 2 ⊗CM 2 +M 2C ⊗M 2)− pC−1 ,

(2.22)

τ = 2(c1 + I1c2) b− 2c2b
2 + 2c3a1 + 2c4(m1 ⊗ bm1 +m1b⊗m1)

+ 2c5a2 + 2c6(m2 ⊗ bm2 +m2b⊗m2)− pg−1 .

(2.23)

with

c1 =
∂ψ

∂I1

, c2 =
∂ψ

∂I2

, c3 =
∂ψ

∂I4

,

c4 =
∂ψ

∂I5

, c5 =
∂ψ

∂I6

, c6 =
∂ψ

∂I7

, p = −J∂Jψ .
(2.24)

20



The stress expressions given in (2.22) and (2.23) can be expressed in terms of index

notation for principal directions ,

Si = 2(c1 + I1c2)− 2c2λ
2
i + 2c3M

2
1i

+ 4c4M
2
1i
λ2
i

+ 2c5M
2
2i

+ 4c6M
2
2i
λ2
i −

1

λ2
i

p ,

τi = 2(c1 + I1c2)λ2
i − 2c2λ

4
i + 2c3m

2
1i
λ2
i + 4c4m

2
1i
λ4
i

+ 2c5m
2
2i
λ2
i + 4c6m

2
2i
λ4
i − p .

(2.25)

2.2.2 Fiber dispersion formulation

Fiber dispersion based modelling approaches utilize probability density function con-

cept to represent fiber architecture of tissues. If arbitrary unit fiber direction is r in

undeformed configuration, the probability of finding fibers in r direction is expressed

with ρ(r), then the free energy of fibers in r direction is given by ψf . The arbitrary

fiber orientation vector can be expressed in spherical coordinates as follows

r = sinΘcosΦe1 + sinΘsinΦe2 + cosΘe3 . (2.26)

The Eulerian counterpart of r is computed with push forward operation t = Fr, and

expressed in spherical coordinates as follows

t = λ1sinΘcosΦe1 + λ2sinΘsinΦe2 + λ3cosΘe3 . (2.27)

As aforementioned, two different approaches can be used to model the hyperelas-

tic behavior of soft tissues,(i) the generalized structure tensor approach, and (ii) the

angular integration approach.

2.2.2.1 Generalized structure tensor formulation

Generalized structure tensor is defined as

H =
1

4π

∫
Ω

ρ(r)r ⊗ rdΩ (2.28)

with trH = 1, resulted from normalization condition. The generalized structure ten-

sor is an average of individual structure tensor r⊗r. For the case of generalized struc-

ture tensor formulations, by applying the chain rule we will obtain the Lagrangian and
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e1
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Φ

Θ
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Ω

Figure 2.3: The unit micro-sphere and the arbitrary fiber orientation vector r = r1e1+

r2e2 + r3e3 where r1 = cos Φ sin Θ, r2 = sin Φ sin Θ and r3 = cos Θ in terms of

spherical coordinates {Φ,Θ}, respectively; adopted from [17]

Eulerian stress descriptions as

S = 2∂Cψ = 2

[
∂ψiso
∂I1

∂I1

∂C
+
∂ψiso
∂J

∂J

∂C
+
∂ψani
∂E

∂E

∂C

]
, (2.29)

τ = 2∂gψ = 2

[
∂ψiso
∂I1

∂I1

∂g
+
∂ψiso
∂J

∂J

∂g
+
∂ψani
∂E

∂E

∂g

]
, (2.30)

whereE = H : C−1. The closed form expressions for the Lagrangian and Eulerian

stress tensor require following derivative

∂CE = H . (2.31)

The push forward operation of (2.31) follows

∂gE = h. (2.32)

Substituting of (2.20), (2.21), (2.31), and (2.32) into (2.29) and (2.30) and rearranging

the terms finally gives the generalized structure tensor based representation of stresses

for anisotropic hyperelastic solid

S = 2c11 + 2ψ′fH − pC−1 , (2.33)

τ = 2c1b+ 2ψ′fh− pg−1 . (2.34)
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with

ψ′f =
∂ψani
∂E

. (2.35)

In principle directions, (2.33) and (2.34) can be written in terms of principal stretches,

Si = 2c1 + 2ψ′fHi −
1

λ2
i

p , (2.36)

τi = 2c1λ
2
i + 2ψ′fhi − p . (2.37)

2.2.2.2 Angular integration formulations

The total free energy of fibers is calculated by

Ψani =
1

4π

∫
Ω

ρ(r)ψfdΩ (2.38)

where Ω represents a unit sphere. Starting with the free energy (2.38), Eulerian stress

tensor follows by the application of chain rule

τ = 2

[
∂ψani
∂λf

∂λf
∂g

+
∂ψiso
∂J

∂J

∂g
+
∂ψiso
∂I1

∂I1

∂g

]
. (2.39)

Insertion of (2.20), (2.21) and 2∂gλf = λ−1
f t⊗t into (2.39) gives the Kirchhoff stress

expression

τ = n

∫
Ω

ρ(r)λ−1
f ψ

′

ft⊗ tdΩ + 2c1b− pg−1 . (2.40)

The general form of Kirchhoff stress for based on angular integration formulation is

given in (2.40). In principle directions, (2.40) can be written in terms of principal

stretches,
τ1 = nλ2

1

∫
Ω
ρ(r)λ−1

f ψ
′

fcos2Φsin3ΘdΘdΦ

+ 2c1λ
2
1 − p ,

(2.41)

τ2 = nλ2
2

∫
Ω
ρ(r)λ−1

f ψ
′

fsin2Φsin3ΘdΘdΦ

+ 2c1λ
2
2 − p ,

(2.42)

τ3 = nλ2
3

∫
Ω
ρ(r)λ−1

f ψ
′

fcos2ΘsinΦdΘdΦ

+ 2c1λ
2
3 − p .

(2.43)
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Figure 2.4: Deformation modes - a) uniaxial tension in e1, b) uniaxial tension in in

e2, c) equibiaxial tension; updated from [17]

2.2.3 Stresses under homogeneous deformations

The deformation gradient and the nominal stress expression under homogeneous uni-

axial, equibiaxial pure shear deformations can be expressed as follows

F =


F11 0 0

0 F22 0

0 0 F33

 and P =


P1 0 0

0 P2 0

0 0 P3

 . (2.44)

Uniaxial tension: For an incompressible anisotropic hyperelastic solid, the deforma-

tion and stress states under uniaxial tension are

F =


λ1 0 0

0 λ2 0

0 0 λ−1
1 λ−1

2

 and P =


P1 0 0

0 0 0

0 0 0

 (2.45)

see Figure 2.4(a),(b).

Deformation gradient tensor of anisotropic materials cannot be expressed straight-

forward manner as can be done for isotropic materials, since the amount of contrac-

tion in the transverse direction depends on the anisotropic fiber structure. Therefore,

the deformation gradient tensor should be obtained iteratively to satisfy equilibrium

conditions, P22 = P33 = 0. However, if the mean fiber direction coincides with a

principle direction, the deformation gradient tensor used for the isotropic case can

be utilized, since the fibers are assumed not to support the compressive load. The

deformation gradient tensor for the anisotropic soft tissue which has preferred fiber
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direction coincided with principal axes can be written as

F =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 . (2.46)

The first two invariants under uniaxial deformation read

I1 = λ2
1 + λ2

2 + (λ1 + λ2)−2 and I2 = λ2
1(λ2

2 +
1

λ2
2

) . (2.47)

For symmetrically orthotropic fibers, I4 = I6 and I5 = I7 read

I4 = I6 = λ2
1cos2ϕ+ λ2

2sin2ϕ and I5 = I7 = λ4
1cos2ϕ+ λ4

2sin2ϕ (2.48)

where ϕ is the angle between the fiber and e2 direction.

The nominal stress P = F−Tτ expression under uniaxial loading for invariant, gen-

eralized structure tensor and angular integration based formulations read

(UT) Invariant : P1 = 2(c1 + I1c2)λ− 2c2λ
3 + 2c3m

2
11
λ+ 4c4m

2
11
λ3

+ 2c5m
2
21
λ+ 4c6m

2
21
λ3 − 1

λ
p ,

(UT) GST : P1 = 2c1λ+ 2ψ′fH1λ−
1

λ
p ,

(UT) AI : P1 = nλ
∫

Ω
ρ(r)λ−1

f ψ
′

fcos2Φsin3ΘdΘdΦ

+ 2c1λ−
1

λ
p ,

(2.49)

Equibiaxial tension: For an incompressible hyperelastic solid, the deformation and

stress states under equibiaxial tension are

F =


λ 0 0

0 λ 0

0 0 λ−2

 and P =


P1 0 0

0 P2 0

0 0 0

 . (2.50)

see Figure 2.4(c).

The first two invariants under equibiaxial deformation read

I1 = 2λ2 +
1

λ4
, I2 = λ4 +

2

λ2
. (2.51)
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The invariants related with anisotropy are

I4 = I6 = λ2cos2ϕ+ λ2sin2ϕ and I5 = I7 = λ4cos2ϕ+ λ4sin2ϕ . (2.52)

The nominal stress under equibiaxial loading for invariant, generalized structure ten-

sor and angular integration based formulations read

(ET) Invariant : P1 = 2(c1 + I1c2)λ− 2c2λ
3 + 2c3m

2
11
λ+ 4c4m

2
11
λ3

+ 2c5m
2
21
λ+ 4c6m

2
21
λ3 − 1

λ
p ,

P2 = 2(c1 + I1c2)λ− 2c2λ
3 + 2c3m

2
21
λ+ 4c4m

2
21
λ3

+ 2c5m
2
22
λ+ 4c6m

2
22
λ3 − 1

λ
p ,

(ET) GST : P1 = 2c1λ+ 2ψ′fH1λ−
1

λ
p ,

P2 = 2c1λ+ 2ψ′fH2λ−
1

λ
p ,

(ET) AI : P1 = nλ
∫

Ω
ρ(r)λ−1

f ψ
′

fcos2Φsin3ΘdΘdΦ

+ 2c1λ−
1

λ
p ,

P2 = nλ
∫

Ω
ρ(r)λ−1

f ψ
′

fsin2Φsin3ΘdΘdΦ

+ 2c1λ−
1

λ
p .

(2.53)
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CHAPTER 3

HYPERELASTIC MATERIAL MODELS

In sequel we will review a common isotropic model and 9 anisotropic hyperelastic

model under two main catergories: (i) strain-invariant based models, and (ii) fiber

dispersion based models. The free erngy functions and necessary derivatives for stress

expressions are outlined.

3.1 Invariant based models

The invariant based models assume perfect alligment of fibers embedded into isotropic

ground matrix. Models have been presented for symmetrically disposed two families

of fibers.

3.1.1 neo-Hookean model

The neo-Hookean model is the most fundamental model for hyperelastic constitutive

models. Many researchers represent the isotropic ground matrix of soft tissues by

neo-Hookean model [1, 3, 34, 39, 71]. Therefore, it deserves a seperate description.

Based on Wall’s treatment of elasticity of a molecular network, Treloar [68] proposed

following free energy function

ψ =
1

2
nkBθ

(
λ2

1 + λ2
2 + λ2

3 − 3
)

(3.1)

in order to describe the homogeneous deformation of rubber. In 3.1, n is the volume

specific chain density, kB is the Boltzmann constant and θ is the absolute temperature.
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Notice that, with shear modulus µ = nkBθ, the model can be written as

ψ =
µ

2
(I1 − 3) . (3.2)

The nonzero derivative of ψ with respect to the invariants is

c1 :=
∂ψ

∂I1

=
µ

2
. (3.3)

3.1.2 Newman-Yin (NY) model

Newman and Yin [51] proposed a exponential free energy form analogous to pro-

posed by Fung et al. [27] to describe hyperelastic behavior of mitral valve tissue.

They assumed that the material is transversely isotropic and the free energy function

depends on the first and the fourth invariants. They observed that for constant I4, both
∂ψ

∂I1

and
∂ψ

∂I4

increase nonlinearly. Therefore, Newman and Yin proposed,

ψ = k0(exp(Q)− 1) (3.4)

where Q is the quadratic function of invariants

Q = (k1(I1 − 3)2 + k2(
√
I4 − 1)4) . (3.5)

In order to have a strain energy increases with increasing I4, k0 should be positive.

Also, if the tissue is not able to support compressive load, k2 should be positive. The

original model was proposed for the material with one family of fiber. However, we

have extended the formulation considering two families of fibers,

Q = (k1(I1 − 3)2 + k2(
√
I4 − 1)4 + k2(

√
I6 − 1)4) . (3.6)

The nonzeros derivatives of ψ with respect to invariants are

c1 = 2k0k1(I1 − 3)exp(Q) ,

c3 = 2k0k2exp(Q)
1√
I4

(
√
I4 − 1)3 ,

c6 = 2k0k2exp(Q)
1√
I6

(
√
I6 − 1)3 .

(3.7)
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3.1.3 Holzapfel-Gasser-Ogden (HGO) model

Holzapfel et al. [34] proposed a constitutive model for model artery. They additively

split to isochoric free energy function into isotropic and anisotropic part,

ψ = ψiso(I1) + ψani(I4, I6) . (3.8)

They utilized neo-Hookean model for isotropic part since collagen fibers do not con-

tribute to mechanical behavior of the tissue at low pressures. The free energy stored

by two families of collagen fibers described as

ψani(I4, I6) =
k1

2k2

∑
i=4,6

(
exp[k2(Ii − 1)2]− 1

)
(3.9)

where k1 > 0 is a stress-like parameter and k2 > 0 is a dimensionless parameter.

The collagen fibers do not support compressive stresses due to their wavy nature.

Therefore, the anisotropic free energy do not included to total free energy when I4

and I6 are less than 1. The nonzeros derivatives of ψ with respect to invariants are

c1 =
c

2

c3 = 2k1(I4 − 1)exp (k2(I4 − 1)2 − 1)

c5 = 2k1(I6 − 1)exp (k2(I6 − 1)2 − 1) .

(3.10)

3.1.4 Holzapfel-Sommer-Gasser-Regitnig (HSGR) model

Holzapfel et al. [39] proposed a free energy function of the formψ(I1, I4) = ψiso(I1)+

ψani(I1, I4). They used classical neo-Hookean model as isotropic part of free energy

function. The proposed free energy function is

ψ = µ(I1 − 3) +
k1

k2

(
exp{k2[(1− p)(I1 − 3)2 + p(I4 − 1)2]} − 1

)
, (3.11)

where k1 > 0 is stresslike parameter and k2 > is dimensionless parameter. Even the

model 3.11 is classified as an invariant based model, the model accounts for the fiber

dispersion phenomenologically by dimensionless parameter p ∈ [0, 1]. p is measure

of anisotropy. If p = 1, the model reduces to HGO model. If p = 0, the fiber related

terms drop and the model reduces to an isotropic model. The nonzero derivatives of
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the free energy function are

c1 = µ+ 2k1(1− p)(I1 − 3)exp{k2[(1− p)(I1 − 3)2 + p(I4 − 1)2]}

c3 = 2
k1

k2

p(I4 − 1)exp{k2[(1− p)(I1 − 3)2 + p(I4 − 1)2]} .
(3.12)

3.1.5 Ogden-Saccomandi (OS) model

Ogden and Saccomandi [53] proposed a logarithmic constitutive law for arterial tissue

in which the fiber extension is limited. They additively decomposed the free energy

function into isotropic and anisotropic parts,

ψ = ψiso(I1) + ψani(I4, I6) . (3.13)

To model the isotropic behavior of the tissue, they adopted well known rubber elastic-

ity model of Gent [29] which limits the chain extensibility. The free energy function

of Gent model is

ψiso = −1

2
µJmlog

(
1− I1 − 3

Jm

)
, (3.14)

where µ is shear modulus. Jm is the parameter that account of limiting polymeric

chain extensibility which anologously used in the context of soft tissue. Jm limits the

extensibility by limiting the value of I1−3, and mathematically the logarithm in 3.14

can be defined if the deformation satisfies the constraint,

I1 < 3 + Jm . (3.15)

If Jm → ∞, 3.14 reduces to neo-Hookean model. Similar model of 3.14 was pro-

posed by Horgan and Saccomandi [41] for transversely isotropic material. Instead

of limiting polymer chain extensibility, model of Horgan and Saccomandi limits the

extensibility of fibers. Ogden and Saccomandi adopted the model of Horgan and Sac-

comandi for arterial tissue with two families of fibers. The anisotropic free energy

used by Ogden and Saccomandi is

ψani = −k1

2
Jf
∑
α=4,6

log
(

1− (Iα − 1)2

Jf

)
, (3.16)

where k1 is the stresslike parameter, and Jf is the limiting parameter of extensibility

of collagen fibers. The counterpart of contraint 3.15 should be satisfied,

Iα <
√
Jf + 1 , α = 4, 6 . (3.17)
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The nonzero derivatives of free energy function are

c1 =
µ

2

(
Jm

Jm − I1 + 3

)
,

c3 = k1Jf

(
(I4 − 1)

Jf − (I4 − 1)2

)
,

c5 = k1Jf

(
(I6 − 1)

Jf − (I6 − 1)2

)
.

(3.18)

3.2 Fiber dispersion based models

Fiber dispersion-based models utilize a probability distribution function to model the

histological structure of tissues. The models which have angular integration approach

and generalized structure tensor approach are outlined in this section.

3.2.1 Driessen-Bouten-Baaijens (DBB) model

Driessen et al. [22] presented an extented version of model of Holzapfel et al. [34]

with a fiber volume fraction. They applied the rule of mixtures and express the iso-

choric Kirchhoff stress for multiple fiber direction as follows

τ = τ̂ +
N∑
i=1

φif (τ
i
f − t.τ̂ .t)t⊗ t (3.19)

where τ̂ is the isotropic matrix stress, φif is the volume fraction of fibers and τ if is the

fiber stress. The isotropic matrix material is modelled as Neo-Hookean material with

shear modulus G. The stress expressions for the isotropic matrix and fibers are

τ̂ = G(b− 1) and τ if = k1λ̄
2
[
k2exp

(
λ̄2 − 1

)
− 1
]
. (3.20)

They used normal distribution function for the fiber contents. The distribution func-

tion is

φif (Φ
i) = A exp[

−(Φi − ϑ)2

2σ2
] (3.21)

where ϑ is mean value, σ is standard deviation and A is the normalization constant

which defined as

A =
φtot∑N

i=1 exp[
−(Φi − ϑ)2

2σ2
]

(3.22)
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with φtot is total amount of fibers. The shape of PDF for DBB model is given in

Figure 3.1.
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Figure 3.1: Polar plots for normal distribution function for DBB model [22].

3.2.2 Gasser-Ogden-Holzapfel (GOH) model

concentration parameter, b

κ

2015105
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0
0

Figure 3.2: Relation between the dispersion parameter κ and the concentration pa-

rameter of von Mises distribution.

Gasser et al. [28] assumed that the fibers are distributed rotationally symmetric around

a mean direction M. They utilized π-periodic von-Mises distribution function. The
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von-Mises distribution function is a one-dimensional probability distribution which is

a function of Θ and concentration parameter b. The standard von-Mises distribution

function is

ρ̄(Θ) =
exp[b(cos(2Θ))

2πI0(b)
(3.23)

where I0(b) is modified Bessel function of the first kind of order zero according to

I0(b) =
1

π

∫ π

0

exp(b cos Θ)dΘ. (3.24)

Applying the normalization condsition to 3.23 give the relation

I ≡
∫ π

0

ρ̄(Θ)sinΘdΘ ≡ exp(−b)
2
√

2πb

erfi(
√

2b

I0(b)
. (3.25)

Finally, the normalized version of von-Mises distribution is

ρ(Θ) = ρ̄(Θ)/I = 4

√
b

4π

exp (bcos(2Θ) + 1)

erfi
√

2b
(3.26)

By introducing to von-Mises distribution function to 2.28, the generalized structure

tensor can be written as

H = κ1 + (1− 3κ)M ⊗M with κ =
1

4

∫ π

0

ρ(Θ) sin3 ΘdΘ. (3.27)

κ is the intergal measure of fiber dispersion. Figure 3.2 shows a plot of κ as a function

of concentration parameter b.

Gasser et al. applied the structure tensor formulation to HGO model. They write the

free energy function of anisotropic part

Ψfi(C,H i) =
k1

2k2

[exp(k2Ē
2
i )− 1] , i = 1, 2 (3.28)

where Ēi = Hi : C−1. For isotropic part, they utilized classical neo-Hookean model.

The nonzero derivatives of ψ are

c1 = µ , ψ
′

fi = k1Eiexp(k2E
2
i ) . (3.29)

The shape of PDF for GOH model is given in Figure 3.3.

3.2.3 Alastrué-Martinez-Doblaré-Menzel (AMDM) model

Alastrue et al. [1] suggested a constitutive model with rotationally symmetric fiber

dispersion based on the micro sphere model. They utilized von Mises distribution
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Figure 3.3: Polar plots for von Mises distribution function for GOH model [28].
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Figure 3.4: Representation of von-Mises distribution function for different parameter

set; (a) b = 0, Θ = 0◦, Φ = 0◦ (isotropic case) (b) b = 3, Θ = 90◦, Φ = 45◦, (c)

b = 3, Θ = 0◦, Φ = 0◦, (d) b = 10, Θ = 90◦, Φ = 60◦.
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Figure 3.5: Polar plots for von Mises distribution function for AMDM model [1].

function given in 3.26. r is the unit orientation vector of a micro-fiber and t := Fr is

the Eulerian counterpart of the Lagrengian fiber vector. The affine-stretch of a single

fiber in the orientation directiron r reads

λ̄ :=
√
t[ · t , where t[ := gt . (3.30)

The macroscopic free energy corresponding to one family of fibers with the mean

directionM and with n fibers per unit volume is defined as

Ψf =
n∑
i=1

ρ(ri;M)ψif (3.31)

where ψif is the ith fiber’s free energy in the direction of ri. This expression can be

expanded in order to account for N mean directions M I related to different families

of fibers as follows

Ψani =
N∑
I=1

ψIf . (3.32)

For the affine micro-sphere model, macroscopic free energy of a family of fibers is

linked to microscopic free energies of individual fibers

ΨI
f =

〈
nρIψf (λ̄)

〉
=

1

4π

∫
Ω

nρIψf (λ̄)dA . (3.33)

The continuous average in 3.33 is approximated by

〈(•)
〉

=
1

4π

∫
Ω

(•)dA ≈
m∑
i=1

wi (•)i (3.34)
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where wii=1,...,m are weight factors. For isotropic ground matrix, they utilized neo-

Hookean free energy function. The anisotropic free energy function is

ψif =


0, if λ̄i < 1

k1

2k2

[exp(k2[λ̄2
i − 1]2)− 1], if λ̄i ≥ 1 .

(3.35)

The contribution of each family of fibers to macroscopic isochoric Kirchhoff stresses

can be expressed as continuous average including orientation distribution function,

namely

τ If =
〈
nρIψ

′
f λ̄
−1t⊗ t

〉
(3.36)

where ψ′f is the first derivative of ψf with respect to λ̄,

n[ψif ]
′ = 2k1λ̄i[λ̄

2
i − 1]exp(k2[λ̄2

i − 1]2) . (3.37)

The shape of PDF for AMDM model is given in Figure 3.5.

3.2.4 Alastrué-Saéz-Martinez-Doblaré (ASMD) model

As an extension of their previous model, Alastrué al. [3] included Bingham distribu-

tion in their constitutive model. This distribution function exhibits andipodal symme-

try and is expressed as

ρ(r; Z,Q)
dA
4π

= [F0000(Z)]−1etr(Z.Qt.r.rt.Q)
dA
4π

(3.38)

where etr(•) ≡ exp(tr(•)), Z is a diagonal matrix with eigenvalues [κ1, κ2, κ3], Q is

orthogonal orientation matrix such that A = Q.Z.QT and F0000(Z) is defined as

F0000(Z) = [4π]−1

∫
Ω

(etr(Z.r.rt)dA = 1F1(
1

2
;
2

3
; Z) (3.39)

where 1F1 is a confluent hypergeometric function of matrix argument. The shape of

the distribution is controlled by κ1, κ2, and κ3. In Figure 3.6, the different shape of

PDF can be seen on a micro-sphere.

3.2.5 Holzapfel-Niestrawska-Ogden-Reinisch-Schriefl (HNORS) model

Holzapfel et al. [35] take into account in-plane dispersion of fibers based on the ob-

servations of Schriefl et al. [60, 61, 62, 63]. Schriefl et al. recorded that the fibers
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(c) (d)

Figure 3.6: Representation of Bingham distribution function for various parameter

set showing different shapes of distribution; (a) higher distribution in e2 direction, (b)

isotropic case, (c) rotationally symmetric in e1−e2 plane, (d) von-Mises distribution

with e1 mean direction.

are dispersed both in-plane and out-of-plane, however, they did not observe any cor-

relation between in-plane dispersion and out-of-plane dispersion. Following this ev-

idence, Holzapfel et al. multicatively decomposed the probability density function

according to

ρ(r) = ρip(Φ)ρop(Θ). (3.40)

For in-plane distribution, they considered basic von Mises distribution

ρip(Θ) =
exp[a(cos(2Θ))

I0(a)
(3.41)
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Figure 3.7: a) Relation between the dispersion parameter κop and the out-of-plane

concentration parameter of von Mises distribution,b and b) relation between the dis-

persion parameter κip and the in-plane concentration parameter of von Mises distri-

bution, a .

where a is the concentration parameter and I0(a) is the modified Bessel function of

the first kind of order 0

I0(a) =
1

π

∫ π

0

exp(x cosα)dα. (3.42)

The out-of-plane distribution is in the form

ρop(Θ) = 2

√
2b

π

exp[b(cos(2Θ))− 1]

erf(
√

2b)
. (3.43)

The measures of dispersion in-plane and out-of-plane directions read

κip =
1

π

∫ π

0

ρip(Φ) sin2 ΦdΦ , κop =

∫ π/2

0

ρ(Θ) sin3 ΘdΘ (3.44)

respectively. The structure tensor H4 and H6 has the form

Hi = A1 +BMi ⊗Mi + (1− 3A−B)Mn ⊗Mn , i = 4, 6 (3.45)

where M is unit vector in-plane mean fibre direction, Mn is unit out-of-plane vector,

while A = κipκop and B = 2κop(1− 2κip).

The free energy formulations are same with the model of Gasser et al. [28] which are

3.28, 3.29. The shape of PDF for HNORS model is given in Figure 3.8.
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model [35].
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CHAPTER 4

PARAMETER OPTIMIZATION AND COMPARISON OF MODELS

4.1 Parameter optimization

The parameter optimization procedure introduced by Dal et al. [17] has been adopted

for anisotropic soft tissues. The parameter identification process is conducted based

on error expressions for uniaxial tension experiment in e1-direction, uniaxial tension

experiment in e2-direction, and equibiaxial tension experiment in e1 − e2 directions,

EUT1(ζ) =

nUT1∑
i=1

(P11(ζ, λi)− P exp
11 (λi))

2 , (4.1)

EUT2(ζ) =

nUT2∑
i=1

(P22(ζ, λi)− P exp
22 (λi))

2 , (4.2)

EET (ζ) =

nET∑
i=1

(P11(ζ, λi)− P exp
11 (λi))

2 , (4.3)

EET (ζ) =

nET∑
i=1

(P22(ζ, λi)− P exp
22 (λi))

2 , (4.4)

respectively. P11 is the fist Piola-Kirchhoff stress. nUT1 , nUT2 , nET are number of

data points for UT in e1, UT in e2, and ET experiments, respectively. The total cost

function for UT tests and ET test are

EUTTOT (ζ,w) = w1EUT1(ζ) + w2EUT2(ζ) , (4.5)

EETTOT (ζ,w) = w1EET1(ζ) + w2EET2(ζ) . (4.6)

The total cost functions are presented for UT tests and ET tests individually since

there is a lack of UT and ET test data that belong exactly the same tissue. The pa-

rameters extended with including the weights in 4.6, ξ := {ζ,w} which is obtained
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from the minimization principle

ξ = Arg
{

inf
ξ∈W
ETOT(ξ)

}
. (4.7)

Following constraint domain is applied to the optimization process,

W = {ζ | ζ ∈ D ∧ w | wi ∈ [0, 1]} , (4.8)

withw1+w2 = 1. The domainD is the physically meaningful domain for the material

parameters ζ . The gradient type optimization is conducted by Fmincon function in

Matlab where the extended cost function

L(ξ,λeq,λine) = ETOT(ξ) +
∑
i

λine
i g

i(ξ) +
∑
i

λeq
i h

i(ξ) (4.9)

is applied to equality constraints hi(ξ) and inequality constraints gi(ξ), respectively.

To obtain an optimum solution, the variation of cost functions with respect to ex-

tended parameters requires

∇ξL(ξ,λeq,λine) = 0 , (4.10)

inclusive of the Karush-Kuhn-Tucker optimality conditions for inequality constraints

λine
i ≥ 0 gi(ξ) ≤ 0 λine

i g
i(ξ) = 0 , (4.11)

where λinei are the Lagrange multipliers for inequality constraint. The penalty param-

eters λeqi enforce the equality constraint,

hi(ξ) = 0 . (4.12)

Fmincon function in Matlab

ξ = FMINCON(E , ξ0,A, b,Aeq, beq) (4.13)

is used to minimize E , subject to the linear equalityAeqξ = beq and inequalityAξ ≤
b. Therein, Aeq is coefficient matrix for equality constraint, beq is the vector for

equality constraint, A is coefficient matrix for inequality constraints, b is the vector

for inequality constraint, and ξ0 are initial points.
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4.2 Genetic algorithm

The genetic algorithm introduced by Dal et al. [17] has been adopted in this study. In

this section, the genetic algorithm to minimize the error function is outlined.

The genetic algorithm is a search algorithm that utilizes Charles Darwin’s theory of

natural selection. Analogically, a parameter of a model, a parameter set of a model,

and N numbers of possible parameter sets are treated as a gene, a chromosome, and

a population of persons with a single chromosome, respectively. Here, our solution

is the chromosome. Firstly, the algorithm forms the initial population, and then finds

optimal chromosome by operations of mutation, cross-over, and selection.

A gene on a chromosome Aj = {a1j, a2j, . . . , anj} at location i is denoted by aij .

Therein, n is the number of genes on a chromosome. The models have constraints to

have physically meaningful parameters. These constraints are defined over a chromo-

some for each gene,

aij ∈ {ci | ci ∈ [mini,maxi]} ∀i ∈ [1, n− 2) (4.14)

and the constraints on the weights read

aij ∈ {wi | wi ∈ [0, 1]} ∀i ∈ [n− 2, n]. (4.15)

Here, the chromosome is the counterpart of the extended parameter set mentioned in

4.1. A decomposition of Aj can be utilized to split these parts as

Lj = {a1j, a2j, . . . , a(n−3)j} , Rj = {a(n−2)j, a(n−1)j, anj}, (4.16)

with Aj = Lj ∪Rj . where Lj and Rj represents jth chromosome’s material parame-

ters and weights, respectively. The genetic algorithm operates on the same definition

of error functions,

EGA(Lj, Rj) = |R1j|EUT1(Lj)+ |R2j|EUT2(Lj)

EGA(Lj, Rj) = |R1j|EET1(Lj)+ |R2j|EET2(Lj)

(4.17)

The tuple

A∗t = min({EGA(< Lj, Rj >t), ∀j ∈ [0, n]}) (4.18)

represents the chromosome at iteration t. The optimal chromosome is found by a

stochastic operation known as a mutation, cross-over, and selection. Firstly, the chro-
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mosome is mutated with mutation operator, can be expressed as

MUT(Ak, s) := αrand(0, 1)ask + rand(0, 1)(ask + β) (4.19)

where, α := rand(0, α) is mutation amplitude, β := rand(0, β) is a severe direct

mutation, and s ∈ [1, n]. A chromosome is mutated multiple times with multiple

mutation operators,

MMUT(Ak, r) :=


MUT(Ak, s1)

MUT(Ak, s1)

. . .

MUT(Ak, sr) .

 (4.20)

For a chromosome k, genes are sorted with partitioning operation

Ak|m− := {a1k, a2k, . . . , a(m−1)k} ,
Ak|m+ := {amk, a(m+1)k, . . . , ank}.

(4.21)

The chromosome of a person of the population is cross-linked via crossover operator

CO is defined as

CO(Ak, Al,m
±) := cat(MMUT(perm(Ak, Al))) (4.22)

where, cat(·, ·) is concatenation of two ordered lists, perm(Ak|m± , Al|m±) is one of

the two possible choromosome, namely < Ak|m+ , Al|m− > and < Ak|m− , Al|m+ >.

Finally, the optimum chromosome is discovered by the selection operator,

SEL(Pt, o) := sort(EGA(Pt))|o− (4.23)

where Pt = {Atj | ∀j ∈ [1, N ]} is population at iteration t, and o represent the per-

centage of surviving chromosomal crossover in the population for the next iteration.

The optimum chromosome is selected by taking the first percent o of the chromosome

crossing based on the error values in ascending order.
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4.3 Comparison of hyperelastic models

The quality of fit metric (χ2) is used to compare the fitting performance of models.

The quality of fit parameter for a uniaxial dataset of Cooney and Martins is

χ2 =
nUT1∑
i=1

(PUT1
11 (λi)−P

exp,UT1
11 (λi))

2

P
exp,UT1
11 (λi)

+
nUT2∑
i=1

(PUT2
22 (λi)−P

exp,UT2
22 (λi))

2

P
exp,UT2
22 (λi)

,

(4.24)

where nUT1 and nUT2 are the number of data points and PUT1
11 and PUT2

22 are the first

and the second Piola-Kirchhoff stresses for UT test in e1 and UT test in e2 direc-

tions. Similarly, for the equibiaxial loading case, the quality of fit parameter for

fitting dataset of Niestrawska is

χ2 =
nET1∑
i=1

(PET
11 (λi)−P

exp,ET1
11 (λi))

2

P
exp,ET1
11 (λi)

+
nET∑
i=1

(PET2
22 (λi)−P

exp,ET2
22 (λi))

2

P
exp,ET2
22 (λi)

,
(4.25)

where nET1 and nET2 are the number of data points and PET1
11 and PET2

22 are the first

and the second Piola-Kirchhoff stresses for ET test in e1 − e2 directions.

The quality of fit metric of each model has been presented in three regions based on

the stretch ranges,
region1 := λ ∈ [1, 1/3λmax],

region2 := λ ∈ [1, 2/3λmax],

region3 := λ ∈ [1, λmax] .

(4.26)
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CHAPTER 5

RESULTS AND CONCLUSION

In this section, we will discuss the performance of the 9 hyperelastic models reviewed

in Chapter 3. The procedure for the parameter identification is outlined in Chapter 4.

5.1 Results and discussion

Table 5.1: Models sorted based on the quality of fit to ET dataset for AAA tissue [52]

simultaneous fit sorting results for ET dataset

rank model name χ2 nop

1 HNORS model [35] 2.4368 6

2 HSGR model [39] 2.4734 5

3 AMDM model [1] 2.8541 5

4 GOH model [28] 3.3643 5

5 ASMD model [3] 3.7984 6

6 NY model [51] 11.0814 4

7 DBB model [22] 30.5514 6

8 HGO model [34] 47.4992 4

9 OS model [53] 86.1323 5

The models are compared based on their quality of fit metric using ET dataset for

AAA tissue [52], UT dataset for linea alba [14], and UT dataset for rectus sheath

[50]. Figures 5.1–5.9 represent simultaneous fit results of models to ET dataset for

AAA tissue [52], UT dataset for linea alba [14], and UT dataset for rectus sheath [50].

In the parameter optimization procedure, we have adherent to histological informa-

47



Table 5.2: Models sorted based on the quality of fit to UT dataset for linea alba [14]

simultaneous fit sorting results for UT dataset

rank model name χ2 nop

1 GOH model [28] 0.7905 5

2 HSGR [39] 0.8311 5

3 AMDM model [1] 0.9163 5

4 HNORS model [35] 0.9711 6

5 OS model [53] 1.1294 5

6 ASMD model [3] 1.2527 6

7 HGO model [34] 1.2529 4

8 NY model [51] 11.3349 4

9 DBB model [22] 19.6485 6

Table 5.3: Models sorted based on the quality of fit to UT dataset for rectus sheath

[50]

simultaneous fit sorting results for UT dataset

rank model name χ2 nop

1 NY model [51] 0.0949 4

2 GOH model [28] 0.4049 5

3 HNORS model [35] 0.4492 6

4 HSGR model [39] 0.5021 5

5 AMDM model [1] 0.5563 5

6 ASMD model [3] 0.6011 6

7 DBB model [22] 2.4414 6

8 HGO model [34] 3.2678 4

9 OS model [53] 3.3823 5

tion provided by Niestrawska et al. [52], Cooney et al. [14], and Martins et al. [50];

for each model, we have imposed the same fiber directions. However, because of

the lack of distributed data, we decided to treat distribution parameters as model pa-

rameters, and we have obtained them from the optimization procedure. In the ideal
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case, the distribution parameters should have been obtained by fitting the probability

distribution function to the distribution data of fibers.

Using ET dataset for AAA tissue [52], the models are sorted regarding the quality of

fit metric, and results are listed in Table 5.1. ET dataset for AAA tissue was obtained

from an arterial wall specimen with two families of fibers. The first 5 models showed

the remarkable fitting performance to ET dataset of AAA tissue [1, 3, 28, 35, 39]. The

common point of these models is taking into account the fiber dispersion. In these

models, except HSGR model [39], the histological structure of tissues is represented

by a probability distribution function. HSGR model [39] uses a phenomenological

parameter to represent a measure of dispersion, however, since the limits of this pa-

rameter are well defined, it is easy to identify. The best model according to fitting per-

formance to ET dataset of AAA tissue is the HNORS model [35] with 6 parameters.

The HNORS model is the only model that considers the out-of-plane distribution of

fibers. The best model with 5 parameters is the HSGR model, and with 4 parameters

is the NY model [51]. AMDM model [1] and GOH model [28] also showed excellent

fitting performance; these two models consider fiber dispersion with the same von-

Mises distribution function and uses equivalent free energy function. The only differ-

ence between these models is the formulation approach. AMDM model [1] uses the

angular integration approach, while GOH model [28] uses the generalized structure

tensor. Their fitting performance is almost equivalent, however, the computational

effort of GOH model [28] is significantly low compared to AMDM model [1]; our

observation for the comparison of AI formulation and GST formulation is in line with

Holzapfel and Ogden [37].

The comparison result of models based on UT dataset for linea alba is listed in Table

5.2. UT dataset for linea alba does not show highly nonlinear stretch-stress behavior.

In line with the comparison on dataset for AAA tissue, fiber dispersion models have

better fitting performance on linea alba dataset compare to invariant-based models,

however, the HNORS model [35] is not the best model according to fitting perfor-

mance on linea alba dataset. This is particularly due to the dispersion of fibers of

human linea alba; in linea alba, collagen fibers have a less sophisticated distribution

than collagen distribution of arterial wall. Thus, using higher-order distribution func-

tions to represent fiber distributions loses importance and increases computational

complexity. GOH model [28] has the best fitting performance on linea alba dataset
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with 5 parameters.

The quality of fit metrics of each model for dataset of rectus sheath is listed in Table

5.3. It can be observed that in both directions, the stretch-stress response of the rectus

sheath tissue is nonlinear. NY model [51] has the best fitting performance on rectus

sheath dataset [50]. Besides the other 8 models, the NY model [51] is the only model

which does not decompose free energy function into the isotropic part and anisotropic

part. Thus, even the experiment data presents stretch-stress information in the trans-

verse direction to the fibers, the NY model [51] considers this data as fibrous data.

Therefore, although the NY model [51] does not represent the histological structure

accurately, it is able to capture stretch-stress response mathematically. However, the

disadvantage of not decomposing free energy function can be seen when the fitting

performance of NY model [51] on UT dataset for linea alba. In linea alba dataset [14],

the data presented in transverse to fiber direction is almost linear, and the NY model

[51] cannot fit this data. The next best 5 models for rectus sheath dataset are fiber

dispersion-based models. This is particularly due to the highly dispersed fiber struc-

ture of the rectus sheath; even in transverse to the fiber direction, the experimental

data shows J-shape response. Transversely isotropic models such as the HGO model

cannot capture this mechanical response, since the non-fibrous part of the tissue is

modeled by the neo-Hookean model. However, another transversely isotropic model,

the OS model [53] is able to show better fitting performance than the HGO model.

Similar to the case of the NY model, the performance of the OS model is not due to

the accurate representation of the histological structure of the tissue. The reason is

that OS model uses the Gent model [29] for the non-fibrous part of a tissue, which is

a non-linear model.

The discussed invariant-based models in this study do not contain I2 term. I2 term

represent areal stretch and accurate identification of parameters related with I2 term

requires ET experiment. Since, in general, datasets in literature contains only UT ex-

periment, excluding I2 term is a good option from the parameter identification aspect.

All in all, the comparison results demonstrate that fiber dispersion-based models are

superior fitting performance over the strain invariant-based models. Since the fiber

dispersion-based models are capable to represent the histological structure of differ-

ent types of tissues, fiber dispersion models can be used in a more generic way to

model soft tissues.
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5.2 Concluding remarks

In this thesis, material parameters of 9 anisotropic hyperelastic models have been

optimized for equibiaxial tension data of an arterial wall, uniaxial tension data of hu-

man linea alba, and uniaxial tension data of human rectus sheath. A hybrid genetic

algorithm-gradient type optimization technique have been utilized to obtain parame-

ters of each model. Fitting performance of each model have been compared according

to their quality of fit metric.

A brief literature study have been given in Chapter 1. In Chapter 2, the basis of con-

tinuum mechanics and preliminary derivations for hyperelastic response of biological

soft tissue under different loading conditions has been expressed. In Chapter 3, 9

anisotropic hyperelastic constitutive models have been investigated by considering

two categories, (i) strain-invariant based models, and (ii) fiber-dispersion based mod-

els. Experimental studies in literature is outlined in Chapter 1.2.1; the type of the

data selected to be used in this study is given in this section. In Chapter 4, parameter

identification procedure and genetic algorithm is presented. Multi-objective func-

tions have been compounded in a single objective function by considering weights

and minimized. Fitting performance result of models have been considered in Chap-

ter 5. Plots for ET data of AAA tissue [52], UT data of linea alba [14], and UT data

of rectus sheath [50] have been presented.

Overall, it would appear that fiber-dispersion based models have superior perfor-

mance compare to strain-invariant based models. Although, GST formulation and

AI formulation have shown similar performance to represent mechanical response of

biological soft tissues, since any numerical intergration is not needed for GST for-

mulation, GST formulation has higher computational efficiency. The present findings

confirm that von-Mises PDF describe the dispersion of fibers of soft tissue succes-

fully.

As a future work, polyconvecity requirements can be imposed to the parameter opti-

mization procedure in order to enhance the optimization algorithm. If a data set with

different types of experiments, for instance, UT and ET for the same tissue become

available, a simultaneous fit can be performed on this data set; this leads to conduct

a more extensive comparison of constitutive models. Further that, the prediction ca-

pability of models for ET test data can be investigated using identified parameters by
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fitting UT data.
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Figure 5.1: AMDM model’s [1] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.2: ASMD model’s [3] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.3: HNORS model’s [35] predictions for i) ET dataset for AAA tissue [52],

ii) UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.4: GOH model’s [28] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.5: HSGR model’s [39] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.6: DBB model’s [22] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.7: HGO model’s [34] predictions for i) ET dataset for AAA tissue [52], ii)

UT dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.8: NY model’s [51] predictions for i) ET dataset for AAA tissue [52], ii) UT

dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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Figure 5.9: OS model’s [53] predictions for i) ET dataset for AAA tissue [52], ii) UT

dataset for linea alba [14], iii) UT dataset for rectus sheath [50].
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APPENDIX A

TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR

METRICS BASED ON NIESTRAWSKA’S ET DATA

Table A.1: Identified parameters and error bounds for AMDM model based on AAA

tissue dataset

AMDM model [1]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=0.9337 [MPa] k1=0.9118 [MPa] k2=46.8474

ϕ=28.9◦ b=3.67

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.9000 0.1241 0.0000 1.0682 1.4882

ET-circumferential 0.1000 0.2610 0.3232 0.0000 1.3659

Total 1.0000 0.3851 0.3232 1.0682 2.8541

Table A.2: Identified parameters and error bounds for DBB model based on AAA

tissue dataset

DBB model[22]

Simultaneous fitting (AAA tissue dataset)

Parameters
G=2.0698 [MPa] k1=6.63 [MPa] k2=52.9817

ϕ=28.9◦ σ=0.1173 φtot=0.5

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.9000 1.4248 0.0000 0.5705 3.0220

ET-circumferential 0.1000 4.5103 2.3480 0.0000 27.5295

Total 1.0000 5.9351 2.3480 0.5705 30.5514
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Table A.3: Identified parameters and error bounds for ASMD model based on AAA

tissue dataset

ASMD model[3]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=0.6517 [MPa] k1=3.5475 [MPa] k2=46.4817

κ1=2.3798e− 07 κ2=0.9 κ3=0

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.9000 0.1757 0.0000 1.9907 2.5057

ET-circumferential 0.1000 1.2907 0.0642 0.0000 1.2907

Total 1.0000 2.4010 0.0642 1.9907 3.7984

Table A.4: Identified parameters and error bounds for HNORS model based on AAA

tissue dataset

HNORS model [35]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=1.8517 [MPa] k1=0.6981 [MPa] k2=59.9093

κip=0.7657 κop=0.47 ϕ=28.9◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1000 0.1249 0 1.0843 1.5269

ET-circumferential 0.9000 0.2429 0.2309 0 0.9099

Total 1.0000 0.3675 0.2309 1.0843 2.4368

Table A.5: Identified parameters and error bounds for GOH model based on AAA

tissue dataset

GOH model[28]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=1.7416 [MPa] k1=4.4460 [MPa] k2=161.3920 [MPa]

ϕ=28.9◦ κ=0.2256

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1000 0.1377 0 1.2187 1.6822

ET-circumferential 0.9000 0.3022 0.2795 0 1.6821

Total 1.0000 0.4399 0.2795 1.2187 3.3643
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Table A.6: Identified parameters and error bounds for HGO model based on AAA

tissue dataset

HGO model [34]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=2.6712 [MPa] k1=0.1742 [MPa] k2=55.9001

ϕ=28.9◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1 2.4033 0 7.5929 13.3316

ET-circumferential 0.9000 14.1329 8.7405 0 34.1676

Total 1.0000 16.5362 8.7405 7.5929 47.4992

Table A.7: Identified parameters and error bounds for NY model based on AAA tissue

dataset

NY model[51]

Simultaneous fitting (AAA tissue dataset)

Parameters
k0=0.1148 [MPa] k1=31.1439 k2=1.5230e+ 03

ϕ=28.9◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1665 0.2941 0 7.7801 8.1602

ET-circumferential 0.8335 0.2693 1.5845 0 2.9212

Total 1.0000 0.5634 1.5845 7.7801 11.0814

Table A.8: Identified parameters and error bounds for HSGR model based on AAA

tissue dataset

HSGR model[39]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=0.9347 [MPa] k1=0.2704 [MPa] k2=47.0232

ϕ=28.9◦ p=0.9126

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1 0.1255 0 1.0337 1.4823

ET-circumferential 0.9 0.2524 0.2511 1.0337 0.9911

Total 1.0000 0.3779 0.2511 1.0337 2.4734
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Table A.9: Identified parameters and error bounds for OS model based on AAA tissue

dataset

OS model[53]

Simultaneous fitting (AAA tissue dataset)

Parameters
µ=2.5537 [MPa] k1=3.38107 [MPa] Jh=0.1149

Jm=0.2369 ϕ=28.9◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

ET-axial 0.1 1.3169 0 3.7799 10.4829

ET-circumferential 0.9000 5.7514 16.3691 0 75.6493

Total 1.0000 7.0679 16.3691 3.7799 86.1323
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APPENDIX B

TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR

METRICS BASED ON COONEY’S UT DATA

Table B.1: Identified parameters and error bounds for AMDM model based on linea

alba dataset

AMDM model [1]

Simultaneous fitting (linea alba dataset)

Parameters
µ=0.7418 [MPa] k1=15.3359 [MPa] k2=10.6226

ϕ=0◦ b=2.6374

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0012 0.0800 0.0843 0.0944

UT-transverse 0.9000 0.0170 0.7877 0.8052 0.8219

Total 1.0000 0.0182 0.8677 0.8895 0.9163

Table B.2: Identified parameters and error bounds for ASMD model based on linea

alba dataset

ASMD model [3]

Simultaneous fitting (linea alba dataset)

Parameters
µ=1.1586 [MPa] k1=8.6141 [MPa] k2=11.4239

κ1=0.0000 κ2=26.3508 κ3=0.0000

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1001 0.0079 0.3336 0.4445 0.4892

UT-transverse 0.8999 0.0171 0.7244 0.7390 0.7635

Total 1.0000 0.0250 1.0580 1.1835 1.2527
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Table B.3: Identified parameters and error bounds for GOH model based on linea alba

dataset

GOH model [28]

Simultaneous fitting (linea alba dataset)

Parameters
µ=2.9048 [MPa] k1=219.5002 [MPa] k2=92.8262

ϕ=0◦ κ=0.2755

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0034 0.3233 0.3352 0.3567

UT-transverse 0.9000 0.0101 0.4103 0.4189 0.4338

Total 1.0000 0.0135 0.7336 0.7541 0.7905

Table B.4: Identified parameters and error bounds for HNORS model based on linea

alba dataset

HNORS model [35]

Simultaneous fitting (linea alba dataset)

Parameters
µ=0.9455 [MPa] k1=45.5415 [MPa] k2=51.1415

κip=0.2260 κop=0.47 ϕ=0◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 6.2653e− 04 0.0378 0.0393 0.0457

UT-transverse 0.9000 0.0214 0.8705 0.8925 0.9254

Total 1.0000 0.0220 0.9083 0.9318 0.9711

Table B.5: Identified parameters and error bounds for HSGR model based on linea

alba dataset

HSGR model [39]

Simultaneous fitting (linea alba dataset)

Parameters
µ=0.8718 [MPa] k1=6.3547 [MPa] k2=14.5184

ϕ=0◦ p=0.7110

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 6.8779e− 04 0.0564 0.0580 0.0635

UT-transverse 0.9000 0.0169 0.7309 0.7453 0.7675

Total 1.0000 0.0176 0.7873 0.8033 0.8311
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Table B.6: Identified parameters and error bounds for HGO model based on linea alba

dataset

HGO model [34]

Simultaneous fitting (linea alba dataset)

Parameters
µ=1.1586 [MPa] k1=8.6064 [MPa] k2=11.4196

ϕ=0◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0079 0.3335 0.4445 0.4892

UT-transverse 0.9000 0.0171 0.7246 0.7392 0.7637

Total 1.0000 0.0250 1.0581 1.1837 1.2529

Table B.7: Identified parameters and error bounds for OS model based on linea alba

dataset

OS model[53]

Simultaneous fitting (linea alba dataset)

Parameters
µ=1.7592 [MPa] k1=9.8814 [MPa] Jh=0.2883

Jm=0.0944 ϕ=0◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 8.4265e− 04 0.0709 0.0736 0.0797

UT-transverse 0.9000 0.0245 0.9835 1.0114 1.0496

Total 1.0000 0.0253 1.0544 1.0851 1.1294

Table B.8: Identified parameters and error bounds for NY model based on linea alba

dataset

NY model[51]

Simultaneous fitting (linea alba dataset)

Parameters
k0=2.9076e+ 03 [MPa] k1=0.0028 k2=0.8380

ϕ=0◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0399 0.6616 1.5653 1.7889

UT-transverse 0.9000 0.6957 2.6033 8.3558 9.5460

Total 1.0000 0.7356 3.2648 9.9211 11.3349
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Table B.9: Identified parameters and error bounds for DBB model based on linea alba

dataset

Driessen et al. model [22]

Simultaneous fitting (linea alba dataset)

Parameters
G=0.0310 [MPa] k1=9.2000 [MPa] k2=25.5000

ϕ=0◦ σ=0.0753 φtot=0.5

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.5000 0.0155 0.2835 0.4182 0.5979

UT-transverse 0.5000 2.4052 0.9481 8.1202 19.0506

Total 1.0000 2.4207 1.2316 8.5385 19.6485
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APPENDIX C

TABLES SUMMARIZING MATERIAL PARAMETERS AND ERROR

METRICS BASED ON MARTIN’S UT DATA

Table C.1: Identified parameters and error bounds for AMDM model based on rectus

sheath dataset

AMDM model [1]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=1.8478e− 05 [MPa] k1=3.1303 [MPa] k2=9.3118

ϕ=90◦ b=0.2620

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.9000 0.0065 .4221 0.4869 0.5097

UT-transverse 0.1000 9.1167e− 04 0.1763 0.2386 0.2466

Total 1.0000 7.41167e− 03 0.5984 0.7254 0.5563

Table C.2: Identified parameters and error bounds for ASMD model based on rectus

sheath dataset

ASMD model [3]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=1.7732e− 05 [MPa] k1=1.5144 [MPa] k2=8.2137

κ1=9.9874 κ2=9.4921 κ3=0

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.9000 0.0057 0.7742 0.8907 0.9278

UT-transverse 0.1000 8.8347e− 04 0.1661 0.2195 0.2289

Total 1.0000 0.0066 0.9403 0.1.1102 0.1567
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Table C.3: Identified parameters and error bounds for GOH model based on rectus

sheath dataset

GOH model [28]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=0.2593 [MPa] k1=85.3960 [MPa] k2=202.9680

ϕ=90◦ κ=0.3277

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.8998 0.0023 0.2770 0.3731 0.3789

UT-transverse 0.1002 2.9878e− 04 0.0156 0.0195 0.0261

Total 1.0000 0.0026 0.2926 0.3926 0.4049

Table C.4: Identified parameters and error bounds for HNORS model based on rectus

sheath dataset

HNORS model [35]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=1.1528e− 04 [MPa] k1=18.4005 [MPa] k2=135.4433

κip=0.5219 κop=0.39 ϕ=90◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.8998 0.0047 0.2551 0.3010 0.3186

UT-transverse 0.1002 5.6306e− 04 0.0769 0.1277 0.1306

Total 1.0000 5.26306e− 03 0.3321 0.4288 0.4492

Table C.5: Identified parameters and error bounds for HSGR model based on rectus

sheath dataset

HSGR model [39]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=0.1317 [MPa] k1=4.1568 [MPa] k2=31.8087

ϕ=90◦ p=0.0553

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.8998 0.0046 0.3804 0.4662 0.4732

UT-transverse 0.1002 3.9869− 04 0.0153 0.0200 0.0289

Total 1.0000 4.99869e− 03 0.3957 0.4863 0.5021
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Table C.6: Identified parameters and error bounds for HGO model based on rectus

sheath dataset

HGO model [34]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=0.0700 [MPa] k1=0.4498 [MPa] k2=7.4510

ϕ=90◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0063 0.5038 0.5833 0.6004

UT-transverse 0.9000 0.0122 0.4693 0 2.6674

Total 1.0000 0.0985 0.5161 1.0527 3.2678

Table C.7: Identified parameters and error bounds for NY model based on rectus

sheath dataset

NY model [51]

Simultaneous fitting (rectus sheath dataset)

Parameters
k0=0.8366 [MPa] k1=6.3492 k2=25.7852

ϕ=90◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1015 2.7021e− 04 0.0252 0.0279 0.0287

UT-transverse 0.8985 6.8242e− 04 0.0275 0.0557 0.0663

Total 1.0000 9.5263e− 04 0.0526 0.0836 0.0949

Table C.8: Identified parameters and error bounds for OS model based on rectus

sheath dataset

OS model [53]

Simultaneous fitting (rectus sheath dataset)

Parameters
µ=0.6971 [MPa] k1=0.3315 [MPa] Jh=0.1381

Jm=0.3263 ϕ=90◦

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.9000 0.0173 2.2566 2.6379 2.7472

UT-transverse 0.1000 0.0021 0.4551 0.6240 0.6351

Total 1.0000 0.0194 2.7117 3.2618 3.3823
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Table C.9: Identified parameters and error bounds for DBB model based on rectus

sheath dataset

DBB model [22]

Simultaneous fitting (rectus sheath dataset)

Parameters
G=0.1258 [MPa] k1=3.3666 [MPa] k2=7.7372

ϕ=90◦ σ=0.7854 φtot=0.5

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT-longitudinal 0.1000 0.0312 1.1734 1.4943 1.7456

UT-transverse 0.9000 0.0223 1.1101 0.1550 0.6958

Total 1.0000 0.0535 1.2835 1.6493 2.4414
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