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Kemal University

Examining Committee Members:

Assist. Prof. Dr. Meltem Gölgeli
Department of Mathematics,
TOBB University of Economics and Technology

Prof. Dr. Ömür Uğur
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ABSTRACT

A DATA DRIVEN EPIDEMIC MODEL TO ANALYZE AND FORECAST THE
DYNAMICS OF COVID-19

Hasanli, Rza
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Res. Assist. Dr. Cansu Evcin

August 2021, 52 pages

Due to recent evolution of the COVID-19 outbreak, accurate mathematical modelling
to capture the dynamics of disease transmission is of vital importance. Since the
availability and quality of data differs from region to region, it is very difficult to de-
velop an accurate model from the global perspective. Nevertheless, local predictive
models can be developed by collecting data from certain regions. In this thesis, a
modified version of Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) differ-
ential model is proposed for the analysis and forecast of COVID-19 spread. Parameter
estimation of the model is the first step of analysis which is carried out by fitting the
model to available data as good as possible in the sense of least squares. In second
step of analysis, simulations are performed by using the optimal values of parameters.
Through numerical simulations, the effects of public measures, such as isolation, so-
cial distancing on the dynamics of COVID-19 outbreak are observed. The model is
applied for the COVID-19 outbreak in Turkey, Italy, and Spain. Time to reach the
peak, total infected, recovered and dead cases are compared with real data and found
to be in good agreement for all the countries.

Keywords: corona virus, parameter estimation, nonlinear regression, mathematical
epidemic model, reproduction number
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ÖZ

COVID-19 DİNAMİKLERİNİ ANALİZ VE TAHMİN ETMEK İÇİN VERİYE
DAYALI EPİDEMİK MODELİ

Hasanli, Rza
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Arş. Gör. Dr. Cansu Evcin

Ağustos 2021, 52 sayfa

COVID-19 salgınının son zamanlardaki gelişimi nedeniyle, hastalık bulaşma dina-
miklerini yakalamak için doğru matematiksel modelleme hayati önem taşımaktadır.
Verilerin mevcudiyeti ve kalitesi bölgeden bölgeye farklılık gösterdiğinden, küresel
perspektiften doğru bir model geliştirmek çok zordur. Buna rağmen, belirli bölge-
lerden veri toplanarak yerel tahmin modelleri geliştirilebilir. Bu tezde, COVID-19
yayılımının analizi ve tahmini için Duyarlı-Maruz Kalmış, Bulaşıcı-Kurtarılmış-Ölü
(SEIRD) diferansiyel modelinin modifiye edilmiş bir versiyonu önerilmektedir. Pa-
rametre tahmini, modelin mevcut verilere en küçük kareler anlamında en iyi şe-
kilde uydurulmasıyla gerçekleştirilen analizin ilk adımıdır. Analizin ikinci adımında,
parametrelerin optimal değerleri kullanılarak simülasyonlar gerçekleştirilmektedir.
Sayısal simülasyonlar aracılığıyla izolasyon, sosyal mesafe gibi kamusal önlemle-
rin COVID-19 salgınının dinamikleri üzerindeki etkileri gözlemlenmektedir. Model,
Türkiye, İtalya ve İspanya’daki COVID-19 salgını için uygulanmaktadır. Zirveye
ulaşma süresi, toplam enfekte, iyileşen ve ölü vakalar gerçek verilerle karşılaştırıl-
makta ve tüm ülkeler için iyi bir uyum içinde olduğu bulunmaktadır.

Anahtar Kelimeler: korona virüs, parametre tahmini, doğrusal olmayan regresyon,
matematiksel epidemik modeli, bulaştırma katsayısı
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CHAPTER 1

INTRODUCTION

COVID-19 is an infectious disease caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) [1, 20]. The first case of the disease was reported in

Wuhan, the capital of Hubei Province in the People’s Republic of China in Decem-

ber 2019 [38]. Due to its rapid progress, COVID-19 disease is declared as a Global

Pandemic by the World Health Organization on March 11, 2020 [2] resulting in more

than 17 million active cases and 4 million deaths in the world, by 20th of August,

2021 [6].

The recent diffusion of COVID-19 disease has increased the interest of scientific com-

munity in the epidemic models. Since then researchers are making efforts for devel-

oping new refined mathematical models to analyze the current situation and predict

the future scenarios. Modelling the dynamics of COVID-19 pandemic is important

for creating short-term and long-term strategy for controlling the outbreak. There are

several kinds of models that have been proposed to analyze the spread of epidemics,

which can be divided into two categories: collective models and networked models.

Collective models use a limited number of variables and parameters to describe the

evolution of epidemics. They generally include growth models, Richards models,

logistic models, and compartmental models such as Susceptible-Infected-Recovered

(SIR) models and Susceptible-Exposed-Infectious-Removed (SEIR) models.

In the literature several epidemiological models have been proposed to analyze and

forecast the COVID-19 outbreak in different countries. The SIR model and its mod-

ified versions, such as SEIR model have been commonly used in the modelling of

epidemics. In his paper Khajanchi et al. [22] applied an extended version of SEIR
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model to investigate the transmission dynamics of COVID-19 and perform short-term

forecasts on the data of India. A discrete-time SIR model including dead compart-

ment was studied by Anastassopoulou et al. [7]. Wu et al. [35] applied a SEIR model

to study human-human transmission dynamics of COVID-19 based on the data from

Wuhan, China. A stochastic transmission model was also proposed by Kucharski et

al. [23] to investigate the dynamics of COVID-19. Fanelli et al. extended the SIR

model by adding dead compartments to analyze and forecast COVID-19 outbreak in

China, Italy and France [19]. Calafiore et al. proposed a modified version of the

SIR model to describe total infected individuals [11]. Piccolomini et al. developed a

variant of the SEIRD model by introducing a time-dependent transmitting rate [30].

In this thesis, we propose a data driven epidemic model from a modified version of

SEIRD incorporating the public measures through time-dependent parameters. First,

the model parameters are estimated by fitting the model to actual data. Then, these

optimal values of parameters are used in simulation for prediction. In addition, model

parameters, such as dynamic reproduction number is investigated to provide insights

in the analysis of COVID-19. With this thesis, we aim at answering the following

questions:

• How do the public measures affect the COVID-19 outbreak?

• How do the model parameters, such as the transmission rate and effective daily

reproduction number behave after implementation of the public measures?

• How is the performance of proposed model for describing COVID-19 epidemic

with the local data of Italy, Turkey, and Spain?

The rest of the thesis is organized as follows: In Chapter 2, we give a theoretical infor-

mation about the existing compartmental models. In Chapter 3, differential equation

solver and optimization algorithms for parameter estimation of epidemic models are

briefly discussed. In Chapter 4, we make a numerical experiment with classical SEIR

model on COVID-19 data of Turkey to describe the evolution of epidemic. Then, we

extend it by introducing time-dependent parameters to formulate the proposed model.

We validate the model on COVID-19 data of Italy and make a specific analysis for

Turkey and Spain, in Chapter 5. Finally, we give a short summary and concluding

2



remarks in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Introduction

Mathematical models have an important role to describe a diverse range of infectious

diseases. The models provide meaningful quantitative outcomes such as basic repro-

duction numbers, thresholds, and contact numbers. Among these mathematical mod-

els, deterministic and stochastic approaches are very popular. Additionally, among

the deterministic models, compartmental epidemic models are the most used for the

study of diseases by the researchers. The models are widely used to describe the epi-

demics both in time and space and gain information about the transmission dynamics.

Epidemic modelling also helps to clarify the trends and make general forecasts. Their

importance can be summarized as below:

• Epidemic models can estimate parameters which are important for insights of

the transmission mechanisms of epidemic.

• Epidemic models can provide more insights about the thresholds properties.

• Epidemic models can help to model and simulate outbreaks, and find out the

effectiveness of the control strategies.

The main objective of this chapter is to provide theoretical information about existing

compartmental epidemic models, such as the SIR model and its extended versions.
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2.2 Existing Models

Compartmental models simplify the mathematical modelling of diseases. The popu-

lation is divided into compartments with labels. The order of the labels usually shows

the flow pattern between the compartments. A few existing models from which the

proposed model is derived are described here. The first simplest model that is used to

predict the disease spread is the SIR model.

2.2.1 The SIR Model

In the classic SIR model proposed by Kermack and McKendrick [21], a population

is divided into susceptible, infected, and recovered compartments and considered as

closed. It initially considers only a small fraction of the population as infected. This

small portion of the population infects others as the time passes.

Let S = S(t) be the susceptibles those who can acquire the disease, but presently do

not have it, I = I(t) be the infectives those who have the disease and can transmit it

to the susceptibles, and R = R(t) be the removed class those who had the disease,

are now recovered at time t. The SIR model can then be described as
dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI,

(2.1)

where β is the transmission rate of the infection, γ is the rate of recovery, and N is

the total number of population. The interpretation of the SIR model is as follows:

• The number of susceptible individuals decrease in proportion to their number

multiplied by the average proportion of infected individuals I/N .

• The number of infected individuals therefore increases at the same rate adjusted

by γI for the fact that some of them are recovering.

• The number of those who recovered increases due to the decrease in the number

of infected individuals.
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If we add the expressions in (2.1), then

dS

dt
+
dI

dt
+
dR

dt
= 0. (2.2)

This implies

S(t) + I(t) +R(t) = constant = N. (2.3)

Therefore, S, I , and R are bounded by N . A flow chart for the model is generally

given as in Figure 2.1.

Figure 2.1: The SIR Model.

The classic SIR model is a very simple model. It does not consider any incubation

period and even counts dead individuals as a compartment ofR. Therefore, the model

may not be suitable for describing many diseases.

2.2.2 The SEIR Model

As mentioned above, the SIR model is not capable of capturing the incubation period,

i.e., the time elapsed before developing symptoms. This leads to SEIR model [13]

which considers a transition from susceptible to exposed individuals, denoted byE =

E(t). The SEIR model can be described as

dS

dt
= −βSI

N
,

dE

dt
= β

SI

N
− αE,

dI

dt
= αE − γI,

dR

dt
= γI,

(2.4)

where, additionally, α is the incubation rate (transition rate from E to I). The flow

chart of the SEIR model is given in Figure 2.2.

7



Figure 2.2: The SEIR Model.

2.2.3 The SIRD Model

For deadly diseases, adding another compartment, namely Deaths (D), to the SIR

model, we get the simplest SIRD model which can be described as follows:

dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI − δI,

dR

dt
= γI,

dD

dt
= δI,

(2.5)

where, additionally, δ is the death rate. The flow chart of the SIRD model can be seen

in Figure 2.3.

Figure 2.3: The SIRD Model.

Many extensions of these models which include extra compartments, such as vac-

cinated individuals (V ), cross-immune individuals (C), quarantined individuals (Q),

hospitalized individuals (H) [14, 12], etc. have been proposed. Most of the studies

consider the SEIR model with a deterministic approach by fixing the parameters to

8



delineate the spread of diseases [36, 29].

2.3 The Basic Reproduction Number

The basic reproduction numberR0 is the number of secondary infections that one in-

fected person would produce in a fully susceptible population. It provides a threshold

condition for the stability of the disease-free equilibrium (DFE). When R0 < 1, the

DFE is stable meaning that the disease dies out. On the other hand, the DFE is un-

stable when R0 > 1 causing an epidemic. Thus, R0 = 1 acts as a threshold between

the disease dying out or causing an epidemic. It is a dimensionless number that can

be expressed as,

R0 =

number of contacts
per unit time

×
probability of transmission

per contact


×

duration of
infection

 . (2.6)

For SIR model, an epidemic occurs if the number of infected individual increases,

that is, when
dI

dt
> 0. Equivalently, when

βSI

N
− γI > 0, (2.7)

or

βS

γN
> 1 (2.8)

holds. Substituting S ≈ N considering nearly everyone is susceptible at the outset of

the epidemic, we get

R0 =
β

γ
> 1. (2.9)

Reproduction number for disease models can be calculated in a more formal ap-

proach. In their paper van den Driessche and Watmough [34], give a way of de-

termining R0 for a compartmental model by using the next generation matrix. Let

9



x = (x1, x2, . . . , xn)T , with each xi ≥ 0 be the number of individuals in each com-

partment, where the first m < n compartments contain infected individuals. Assume

also that DFE x0 exists and is stable in the absence of disease. In this setting, Fi
is the rate of new infections in compartment i, and Vi is the rate of the transfers of

infections from one compartment to another. Under the assumptions in [34], the next

generation matrix G is defined as G = FV −1, where

F =
(
∂Fi(x0)
∂xj

)
, and V =

(
∂Vi(x0)
∂xj

)
, 1 ≤ i, j ≤ m. (2.10)

Then,R0 is determined as the spectral radius of the matrix G = FV −1.

As an example, let us consider the classic SEIRD model. To calculate the next gener-

ation matrix for the SEIRD model, we need to specify the number of ways that new

infections can arise and move between compartments. Firstly, we extract the infected

parts of this model. These are:

dE

dt
= β

SI

N
− αE,

dI

dt
= αE − γI − δI.

(2.11)

The DFE of the SEIRD model is given by: (S∗, E∗, I∗, R∗, D∗) = (N, 0, 0, 0, 0).

Therefore, the corresponding F and V matrices are formulated as

F =

0 β

0 0

 , V =

 α 0

−α γ + δ

 . (2.12)

Then, the next generation matrix is

G = FV −1 =

 β
γ+δ

β
γ+δ

0 0

 , (2.13)

and the basic reproduction number is the dominant eigenvalue of G, which is

R0 =
β

γ + δ
. (2.14)

It should be noted that, the basic reproduction number of the epidemic models without

vital dynamics is constant over time.
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In order to detect changes in disease transmission, estimation of the effective repro-

duction number,Re(t), is important. The effective reproduction number, on the other

hand, is the number of secondary infections that one infected person would produce

through the entire duration of disease. Typically, it is product of the basic reproduc-

tion number and the proportion of susceptible population. It can be expressed in terms

ofR0 as below:

Re(t) = R0 ×

 proportion of

susceptiple population

 . (2.15)

It should be noted that Re(t) changes over time in the epidemic models described so

far and also indicates whether the disease is dying out or increasing over time. For

the SIR model,Re(t) can be written as

Re(t) =
βS(t)

γN(t)
. (2.16)
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CHAPTER 3

PARAMETER ESTIMATION FOR EPIDEMIC MODELS

3.1 Introduction

In epidemic models, the transition from one compartment to another compartment is

expressed as a derivative with respect to time. Therefore, the compartmental type of

epidemic models, like SIR, SEIR, and SIRD are governed by a system of nonlinear

differential equations. These models are initiated from the physical feature of infec-

tious diseases and then used to determine the unknown parameters of the model using

the available data. Every model is described by the epidemic parameters. The values

of epidemic parameters sometimes can be determined from the characteristic of the

disease or the demographic information. However, there are numerous parameters

that can not be estimated directly from this information. Hence, such model parame-

ters are needed to be estimated by fitting the model predictions to the available data.

In the spread of diseases, generally, the parameters appearing in their respective mod-

els are not constants, but time-dependent. In the literature, Saikia et al. considers the

time-dependent parameters to describe the first phase of the COVID-19 pandemic in

India studying the SEIR model [31]. The model proposed by de León et al. [15] also

includes transmission, recovery, and death rates as functions of time to describe the

spread of COVID-19 in Mexico by extending the SEIR model. They calibrate the

model parameters to the available data by minimizing the sum of squared errors.

We observe that tuning the unknown parameters in compartmental models is one of

the main challenges. The emphasis of this thesis is to determine these parameters

from the data. For this reason, an efficient nonlinear differential equation solver with

13



an optimization approach is essential. There are a number of algorithms for nonlinear

optimization in the literature and they are mostly based on deterministic methods

and stochastic methods. Deterministic models are usually gradient based and fast

in computing. The main drawback of gradient based is that the optimal values of

unknown parameters are highly dependent upon initial conditions. On the other hand,

stochastic methods requires long computational running time for searching the global

optima [25].

The main object of this chapter is to a give brief information about the differential

equation solver and optimization algorithms for parameter estimation of epidemic

models.

3.2 Differential Equation Solver

For the parameter estimation problem in epidemic models, the differential equation

solver is very important. There are many methods in the literature to solve the dif-

ferential equations with given initial conditions. Among them, Runge-Kutta methods

are very accurate and have better convergence compared to other methods at the same

step size.

3.2.1 Runge-Kutta Methods

Runge-Kutta methods are the most popular methods to solve differential equations.

Among them, the fourth-order Runge-Kutta method is the most widely used method,

but higher order Runge-Kutta methods also exist. For the purpose of this thesis, we

use the fifth-order Runge-Kutta (RK45) method which is provided by SciPy. This

method uses the Dormand-Prince pair of formulas [18] with 6 stages. For the steps,

the fifth-order accurate formula is used, but the error is controlled by the fourth-order

accuracy method.

If we consider the given initial value problem as

ẏ = f(t, y, x), y(t0) = y0 (3.1)
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where y is the state vector depending on time t and the vector of parameters x. Let

a21, a31, a32, . . . , a51, a52, . . . , a54, b1, b2, . . . , b5, c1, c2, . . . , c5 be the real coefficients.

Then the fifth-order Runge-Kutta method with 6 stages for this problem can be ex-

pressed as

yn+1 = yn + h
6∑
i=1

biki, (3.2)

where h is the step size and

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + a21hk1),

...

k6 = f(tn + c6h, yn + a61hk1 + a62hk2 + · · ·+ a65hk5).

(3.3)

Dormand-Prince method [18] is the most popular member of the Runge-Kutta family

for solving ordinary differential equations. This method uses the coefficients for the

fifth-order solution. The values of coefficients for the Dormand-Prince method with

6 stages are given in Table 3.1.

Table 3.1: Dormand-Prince method tableau.
ci aij bi b∗i
0 5179

57600
35
384

1
5

1
5

0 0
3
10

3
40

9
40

7571
16695

500
1113

4
5

44
45

−56
15

32
9

393
640

125
192

8
9

19372
6561

−25360
2187

64448
6561

−212
729

− 92097
339200

−2187
6784

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

187
2100

11
84

where b∗i are the coefficients that are used in error correction which can be defined for

6 stages as

εn+1 = yn+1 − y∗n+1 = h

6∑
i=1

(bi − b∗i )ki (3.4)
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3.3 Optimization Algortihms

In this section, different constrained optimization algorithms are briefly discussed to

estimate the parameter values of epidemic models.

Let (t1, y1), (t2, y2), . . . , (tn, yn) be the n set of observations and f(t, x) be the objec-

tive function, where x = (θ1, θ2, . . . , θn) is the vector of unknown parameters. Then,

the parameter estimation can be stated as

x∗ = argmin
x≥0

f(x), (3.5)

where x∗ is the vector of parameters that minimizes the objective function f .

SciPy Optimization Toolbox provides many methods to minimize objective functions

subject to constraints [4]. For the purpose of this thesis, we use L-BFGS-B, TNC,

Trust-Region Constrained, and Trust Region Reflective algorithms.

3.3.1 The L-BFGS-B Algorithm

The L-BFGS-B algorithm is an extension of L-BFGS (Limited-Memory Broyden-

Fletcher-Goldfarb-Shanno) algorithm to handle bound constrained problems [10, 37].

It uses the trust region techniques while updating Hessian and line search algorithms

by BFGS method. The working principle of the L-BFGS-B algorithm for one iteration

is as follows:

1. Estimate the Cauchy point for

Φ(λ) = m(xk − λgk), (3.6)

where λ is the steplength and m(x) being quadratic form as

m(x) = f(xk) + gT
k (x− xk) + (x− xk)TBk(x− xk)/2, (3.7)

where gk is the gradient at point xk and Bk is the approximate Hessian of f(x)

at iteration k. Identify active set A(x) and inactive set I(x).

2. Minimize the function in (3.7) for the unconstrained variables to find a search

direction.
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3. Perform a line search along the new search direction to minimize f(x).

4. Use the L-BFGS method to update the Hessian [27] and check the convergence.

The L-BFGS-B method is affordable for solving large scale problems. It requires

roughly (12 + 2m)N memory where m is the number of BFGS updates and N is the

size of the model. Generally, m = 5 is a typical choice.

There are three different terminating criteria for L-BFGS-B algorithm. The method

stops when the maximum number of iterations is reached or the objective function

becomes smaller than the tolerance or the norm of the projected gradient is smaller

than the threshold value.

3.3.2 TNC Algorithm

TNC method uses a truncated Newton algorithm [26, 28] to minimize a function sub-

ject to bound constraints. This algorithm also called Newton Conjugate-Gradient and

uses the gradient information. Newton-CG method implements conjugate gradient

algorithm to invert the local Hessian. It is based on fitting the function in a quadratic

form:

f(x) ≈ f(x0) +∇f(x0)(x− x0) +
1

2
(x− x0)TH(x0)(x− x0), (3.8)

where H(x0) is the Hessian. If the Hessian is positive definite, then the optimal

solution can be found by equating the gradient of the quadratic form to zero, resulting

in

xopt = x0 −H−1∇f. (3.9)

TNC method differs from the Newton-CG method by allowing each variable to be

given upper and lower bounds.

3.3.3 Trust-Region Constrained Algorithm

Trust-Constrained method uses a trust-region algorithm for constrained optimization.

If we consider the trust-region subproblem, then the objective function can be approx-

17



imated by using the quadratic model given as

minmk(p) = fk + gTk p+
1

2
pTBkp,

s.t. ||p|| ≤ ∆k,

(3.10)

where ∆k is the trust region radius, gk is the gradient, and Bk is the Hessian at the

point xk. The critical issue is to update the size of the trust-region radius at every iter-

ation. In this case, the ratio ρk between the actual reduction and predicted reduction

guides us in determining the radius of trust-region.

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
. (3.11)

Depending on the constraints, it switches between two implementations. It is the most

versatile algorithm for constrained minimization and the most suitable for large scale

problems. It implements Byrd-Omojokun Trust-Region SQP method [24] for equality

constraints, and switches to trust-region interior point method [9] for inequality con-

straints. This interior point algorithm solves inequality constraints by adding slack

variables and solving a series of equality-constrained barrier problems with progres-

sively smaller values of the barrier parameter.

3.3.4 Trust Region Reflective Algorithm

Trust Region Reflective Algorithm uses the first order necessary conditions for bound

constrained optimization problem [8]. If we consider the minimization problem stated

as

min f(x), x ∈ F = {x | l ≤ x ≤ u} (3.12)

where l and u are the lower and upper bounds, respectively. Then the first order

necessary conditions for x∗ to be a local minimum are:

g(x∗)i = 0, if li < xi < ui,

g(x∗)i ≤ 0, ifxi = ui,

g(x∗)i ≥ 0, ifxi = li,

(3.13)
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where g(x) is the gradient of f . Now, define a vector v(x) as follows:

v(x)i =


ui − xi, if gi < 0 andui <∞,

xi − li, if gi > 0 and li > −∞,

1, otherwise.

(3.14)

Next, define a matrix D = diag(v(x)1/2), then the first order optimality can be ex-

pressed as D(x∗)
2g(x∗) = 0. Introducing the change of variables in the original

trust-region subproblem as x = Dx̂, the equivalent trust-region problem becomes as

minm(p) =
1

2
pTBp+ gTp, s.t. ||D−1p|| ≤ ∆. (3.15)

Therefore, Trust Region Reflective algorithm solves the trust-region subproblem with

a special diagonal matrix. The trust-region shape is determined by the distance from

the bounds and the direction of the gradient. The algorithm is quite robust for un-

bounded and bounded problems.
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CHAPTER 4

MODEL FORMULATION AND METHODS

The main object of this chapter is to simulate the classical SEIR model and evaluate

its performance on COVID-19 data of Turkey, and then extend it to propose a new

model for describing the current COVID-19 transmission dynamics.

4.1 Data Requirements and Format

The dataset is obtained from the repository of DataHub [3]. It lists the confirmed

cases, reported recoveries and deaths of COVID-19 time series disaggregated by

country. In order to include the infected cases, we subtract recovered and dead cases

from the confirmed cases for each day. A snapshot of the data that is being used is

shown in Figure 4.1:

Figure 4.1: COVID-19 data of Turkey.

21



4.2 Numerical Experiment with the SEIR Model

We set the parameters manually focusing on available data [3]. Assuming the illness

lasts an average of 14 days (at least as long as the mild form lasts, which accounts

for up to 80% of the cases), we find the value of γ = 1/14 = 0.0714. Taking into

account the average duration of the incubation period as 3 days, we find the value of

β = 3/14 = 0.2143 and α = 1/3 = 0.33. Let us also take the population of Turkey

to be equal to 82×106. We use the data on Turkey as of March 20, 2020 for the initial

conditions:

S0 = 82× 106 − 355,

I0 = 355,

E0 = 20I0.

We take the value of E0 arbitrarily, without loss of generality. As a result of mod-

elling by fifth-order Runge-Kutta method (RK45) provided by SciPy with given initial

conditions from March 20 to April 18, we get the following graph in Figure 4.2.

Figure 4.2: The SEIR model simulation with "historical" parameters on COVID-19
data of Turkey.

It can be observed that the results do not fit the data with these "historical" parameters

and here the optimization methods come to our aid.
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4.3 Optimizing the SEIR Model

Optimization methods are the algorithms that allow you to find the minimum of an

objective function. In this case, we face with a nonlinear regression problem: how to

choose the vector of parameters x = (β, α, γ, q)T of the differential equations so that

the set of points for solving the differential equations is as close as possible to the set

of observations, where we introduce parameter q to make assumption for the initial

condition of exposed individuals as E0 = qI0. We use the weighted sum of squares

as a measure of the model error. Then, the objective function takes the form as

f(x) = w1

M∑
j=1

(Cj − Cj)2 + w2

M∑
j=1

(Ij − Ij)2 + w3

M∑
j=1

(Rj −Rj)
2, (4.1)

subject to

x = (β, α, γ, q)T ≥ 0.

where w1, w2, and w3 are the weights, Cj and Ci are estimated and exact cumulative

confirmed cases, Ij and Ij are estimated and exact infected cases, and Rj andRj are

estimated and exact recovered cases, respectively. Recalling the SEIR model in (2.4),

Cj , Ij and Rj are the model estimates for I + R, I and R, respectively, at time j. By

fitting the model to the actual data using equal weights, we get the solution shown in

Figure 4.3.

Figure 4.3: The SEIR model fitting on COVID-19 data of Turkey.

At first glance, it can be observed that everything seems to be fine. The optimal values
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of the parameters obtained by L-BFGS-B algorithm are:

β = 9.99× 10−1,

α = 8.63× 10−3,

γ = 1.06× 10−2,

q = 4.19× 102,

and the value of exposed individuals is E0 = 419I0 = 148745 which is dubious with

355 registered cases on March 20. We also find that the average time for transition to

the active phase of the disease is equal to 1/α ≈ 115 days which does not reflect the

real scenario.

Why is it so? Everything becomes clear if we analyze the shape of the solution

curve on a longer period of time. To do this, we take the SEIR model with these

optimal values of parameters and simulate over 6 months in order to predict the future.

Solution curves for the total confirmed and infected cases are shown in Figure 4.4:

Figure 4.4: The SEIR model simulation with optimized parameters on COVID-19
data of Turkey.

It can be seen that the curves for confirmed and infected cases increase exponentially

at the beginning of lockdown, then start to decrease exponentially with a low rate on

July. In addition to that, the forecast with optimal parameters is terrifying - almost

97% of the country’s population will be infected by October at the same year.
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In Figure 4.5, three European countries are compared with Turkey in terms of the

number of cases. It can be seen that the development rate of the epidemic for Turkey

is lagging about a month, and the growth in the total number of cases is almost linear

in all countries, in contrast to the results obtained in the SEIR model. This raises three

questions:

1. If the growth of the epidemic is linear, why can’t we still predict anything with

confidence for a month or a year ahead?

2. Why does the growth rate of the epidemic slows down to linear?

3. How should we change the classical SEIR model to be more relevant?

Figure 4.5: Cumulative Confirmed COVID-19 cases [5].

We start by answering the first question. When we predict something, we face with

an unpleasant task: the data on which we build the model is not ideal, and the model

built on its basis does not reflect the future. Moreover, the model that reflects the real

situation is also very limited. The sudden development of an epidemic in a new big

city, the use of a more effective method of treatment, a change in the way of collecting

information - all these can introduce so many errors that a long-term forecast will be

absolutely far from reality in the data.
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4.4 Modifying the SEIR model

Let us try to answer the question why the growth of the epidemic slows down to lin-

ear. With the same number of infected people, the scale of the population starts to

play a significant role associated with the limited social interaction. More precisely,

remember that the number of cases in the SEIR model is directly proportional to the

average number of cases I/N in the population. The model works well in small

populations, where everyone can communicate with each other, and the infected in-

dividuals are evenly distributed. In reality, especially on a large scale population, if

you take two accidental infected people, it turns out that they have never talked or

seen each other, and in general, they live in different cities. All that unites them is the

social connections leading to the transmission of the virus.

We make a geometric interpretation to prove the linear epidemic growth theorem in

a large population. Let the graph of social connections be represented in the form of

d dimensional lattice. In reality, with an average number of 20 social contacts daily

[16], the dimension can be roughly estimated as d ≈ 4. Each carrier n of the infection

generates a d dimensional hypercube growing around it from secondary infected. The

edge of the cube has a length of n
1
d , and if the contact with an infected person leads

to illness with probability of P , then every day each edge is lengthened on average

by 2P . Thus, we obtain a growth model expressed by the recurrence relation as

nk+1 = (n
1
d
k + 2P )d. (4.2)

Imagine n as a function of time and denote nk = n(tk), nk+1 = n(tk+1), . . . . Differ-

entiating the previous expression with respect to time, we get:

n′k+1 = n′k

(
1 +

2P

n
1/d
k

)d−1

. (4.3)

It can be seen that for large values of nk derivatives n′k+1 ≈ n′k are approximately

equal, hence the growth is linear.

Turning to the world statistics on the epidemic shown in Figure 4.6, the same thing

can be seen: after exponential growth over a short period of time, the growth of

the epidemic is linear starting from April, despite the fact that the classical models

promise us a continuation of the exponential rise in the number of cases.
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Figure 4.6: Total Confirmed COVID-19 cases [5].

Now let us modify the classical SEIR model. It can be immediately seen that the SEIR

model is not very suitable for describing COVID-19, because the hidden carriers of

the infection E are not contagious in this model. This shortage can be corrected

by introducing an additional parameter θ characterizing the ratio of the transmission

ability of the exposed to the infected compartments [32]. The corresponding parts of

the model can then be expressed as:

dS

dt
= −βS(I + θE)

N
,

dE

dt
= β

S(I + θE)

N
− αE.

(4.4)

When θ = 0, the infection ability of the patients in the latent period is ignored. When

θ = 1, it implies that the infection ability of the exposed individuals is the same

as the infected individuals. Additionally, in order to incorporate public measures

and restrictions, we assume that the model parameters have exponentially decreasing

behaviour. Therefore, we express the model parameters with these natural conditions:

β(t) = β0e
−µt, 0 < β0 < 1 and 0 ≤ µ,

θ(t) = θ0e
−ξt, 0 < θ0 < 1 and 0 ≤ ξ,

α(t) = α0e
−σt, 0 < α0 < 1 and 0 ≤ σ,

γ(t) = γ0e
−ηt, 0 < γ0 < 1 and 0 ≤ η,

δ(t) = δ0e
−ρt, 0 < δ0 < 1 and 0 ≤ ρ,

(4.5)

where β0, µ, θ0, ξ, α0, σ, γ0, η, δ0, and ρ are the parameters that can be obtained by
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fitting the model to the observations. Including the dead (D) compartment in the mod-

ified SEIR model and replacing the constant model parameters by time-dependent pa-

rameters in (4.5), we propose a modified version of the SEIRD model for the current

COVID-19 epidemic which can be expressed as:

dS

dt
= −β(t)

S(I + θ(t)E)

N
,

dE

dt
= β(t)

S(I + θ(t)E)

N
− α(t)E,

dI

dt
= α(t)E − γ(t)I − δ(t)I,

dR

dt
= γ(t)I,

dD

dt
= δ(t)I,

(4.6)

with initial conditions (S(t0), E(t0), I(t0), R(t0), D(t0)) = (S0, E0, I0, R0, D0) for

some initial time t0. Furthermore, as the initial condition for the E compartment is

unavailable, we assume that

E0 = qI0, 0 ≤ q, (4.7)

holds true for some parameter q to be optimized later. The flowchart of the modified

SEIRD model is given in Figure 4.7. While developing the proposed model, we also

make the following assumptions:

1. Total population (N) is constant throughout the simulation of the model.

2. Zoonitic transmission is not considered.

3. The proposed model assumes the continuation of existing control measures

such as lockdown and quarantines and does not consider a scenario of the sec-

ond surge of the epidemic.

The parameters of the modified SEIRD model are determined by solving the non lin-

ear least square problem with positive constraint. In this model, we define the state

variables as u(t) = (S(t), E(t), I(t), R(t), D(t)) depending on the vector of param-

eters x = (β0, µ, θ0, ξ, α0, σ, γ0, η, δ0, ρ, q)
T , and the observed data given at times

ti, i = 1, 2, . . . , n as the vector yi = (Ii,Ri,Di) composed of infected, recovered,
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Figure 4.7: Flowchart of the modified SEIRD model.

and dead cases, respectively. Let Fi(u,x) = (Ii, Ri, Di) be the function computing

the numerical solution u of the system of differential equations (4.6) for infected, re-

covered, and dead cases at time i, then the objective function of our model with the

weights w1, w2, and w3 takes the form as:

min f(x) = w1

n∑
i=1

(Ii − Ii)2 + w2

n∑
i=1

(Ri −Ri)
2 + w3

n∑
i=1

(Di −Di)2, (4.8)

where n is the number of observations.

4.5 Computation of the Daily Reproduction Number of the Proposed Model

The basic reproduction number R0 is the most important parameter to determine dy-

namics of COVID-19. In real world scenarios, with development of the epidemic,

more and more public measures are taken to control the spread which gradually re-

duces the reproduction number. Thus, we try to give a formulation of R0 for the

modified SEIRD model. Firstly, we assume that all parameters in the system are con-

stant and we apply the results of Diekmann, Heesterbeek and Metz [17] and Van den

Driessche and Watmough [34]. The disease-free equilibrium of the modified SEIRD

model is (S∗, E∗, I∗, R∗, D∗) = (N, 0, 0, 0, 0) and the infectious part of the system is

determined by the following equations:

dE

dt
= β

S(I + θE)

N
− αE,

dI

dt
= αE − γI − δI.

(4.9)
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Then, the next generation matrix G is determined as

G = FV −1 =

 β

γ + θ
+
βθ

α

β

δ + γ

0 0

 , (4.10)

where

F =

βθ β

0 0

 , and V =

 α 0

−α γ + δ

 . (4.11)

As a result, R0, the basic reproduction number, is given by the dominant eigenvalue

of G as

R0 =
β

γ + δ
+
βθ

α
. (4.12)

Here, the first term represents the contributions from the infectious compartment I

as in the classical SEIRD model, wheras the second term represents the contributions

from the mildly infectious E compartment in the modified SEIRD model, which re-

sults in an increase in the value ofR0.

After deriving the R0 of the proposed model, we follow the works of de León et

al. [15] and Tang et al. [33], and we replace the constant parameters of the model

with the time-dependent versions of them given in Equation (4.5). Then, we define

Rd(t) =
β(t)

γ(t) + δ(t)
+
β(t)θ(t)

α(t)
(4.13)

as the effective daily reproduction ratio, to measure the ‘daily reproduction number’,

the number of new infections produced by a single infected individual per day.

We plot Rd(t) vs t for some sets of parameters given in Figure 4.8. As expected, it

decreases exponentially behaving similar to time-dependent transmission rate given

in the same figure.
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Figure 4.8: Rd(t) vs t and β(t) vs t for β0 = 0.5, µ = 0.05, θ0 = 0.6, ξ = 0.,
α0 = 0.33, σ = 0., γ0 = 0.05, η = 0.001, δ0 = 0.02, and ρ = 0.02.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, we present the results obtained by a simulation of the proposed model.

All the model parameters are estimated from fitting of the model to the available

data. We use equal weights to minimize the objective function throughout the sim-

ulation. The governing differential equations are solved by RK45 method provided

by SciPy with given initial conditions. It is observed that the prediction results are

highly dependent on number of priori dataset. For this reason, different subsets of

measurements on COVID-19 data of Italy are fitted to the modified SEIRD model for

identification of the model parameters. Then, we simulate the model with optimal

values of parameters up to days when daily confirmed cases decline significantly. We

also test the model for other countries to collect some useful information about the

parameters, the evolutions of active and confirmed cases, the peak values of infected

cases, and the estimation of the effective daily reproduction ratio. The flowchart of

the procedure is given in Figure 5.1.

Figure 5.1: Flowchart of the research process.
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Evaluation metrics are very important to understand the performance of a model.

There are many different evaluation metrics, however, for the purpose of this thesis,

we use only Root-Mean-Square Error (RMSE) and R-Square.

RMSE is the standard deviation of the prediction errors and a measure of the goodness

of fit. It is commonly used in regression problems to verify the experimental results.

Mathematically, it is expressed as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2,

where yi is the ith observed value in the dataset, ŷi is the ith predicted value from the

model, and N is the number of observations in the dataset.

R-Square is another metric to calculate the relative error. It is a statistical measure

that represents the proportion of the variance for a dependent variable that can be

explained by the model. Mathematically,

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

,

where ȳ is the average value of the observed data.

5.1 Validation Against COVID-19 Data of Italy

It is important to validate the model with real data before applying for prediction of

an epidemic evolution. For this reason, validation is carried out by using the modified

SEIRD model and taking different subsets of measurements from March 1 to May 9

of the year 2020:

• S1 30 days measurements: 01/03/2020-30/03/2020

• S2 40 days measurements: 01/03/2020-09/04/2020

• S3 50 days measurements: 01/03/2020-19/04/2020

As of May 9, the daily confirmed cases declined significantly, so we set it as ending

point of our model.
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L-BFGS-B, TNC, Trust-Region Constrained, and Trust Region Reflective (TRF) op-

timization algorithms are used to fit the model to the observation data. RMSE values

for different cases using three subsets of measurements are given in Table 5.1.

Table 5.1: RMSE values for different cases in Italy.
RMSE

Algorithms Infected Recovered Dead
L-BFGS-B 806.37 280.73 110.35

TNC 673.56 323.77 2854.93
Trust-Constr 1153.68 221.64 84.56

TRF 659.16 227.85 105.47
(a) 30 days fitting.

RMSE
Algorithms Infected Recovered Dead
L-BFGS-B 734.50 292.62 279.30

TNC 893.56 555.86 3023.35
Trust-Constr 797.47 289.73 295.78

TRF 860.40 295.26 289.60
(b) 40 days fitting.

RMSE
Algorithms Infected Recovered Dead
L-BFGS-B 1264.49 512.65 385.68

TNC 1722.65 1193.72 4427.96
Trust-Constr 1130.55 512.27 363.65

TRF 1223.02 511.56 372.94
(c) 50 days fitting.

As expected, RMSE values increase as we add more data points for training. TNC

method shows poor performance and does not converge to solution. RMSE values

obtained for infected, recovered and dead cases using L-BFGS-B, Trust-Region Con-

strained and Trust Region Reflective methods are comparable. But, we prefer to

use L-BFGS-B method for the rest of numerical simulations, since it converges to

solution faster and uses less memory than Trust-Region Constrained method. Addi-

tionally, the optimal values of parameters obtained by L-BFGS-B method are more

meaningful than the values obtained by Trust-Region Constrained and Trust Region

Reflective methods.

By updating our model dynamically using different subsets of measurements, we
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make predictions until the ending point of our model. The simulation and prediction

results of the modified SEIRD model using L-BFGS-B algorithm are illustrated in

Figure 5.2.

(a) Simulations for confirmed, infected, recovered
and dead cases using 30 days training data.

(b) Simulations for daily confirmed and dead
cases using 30 days training data.

(c) Simulations for confirmed, infected, recovered
and dead cases using 40 days training data.

(d) Simulations for daily confirmed and dead
cases using 40 days training data.

(e) Simulations for confirmed, infected, recovered
and dead cases using 50 days training data.

(f) Simulations for daily confirmed and dead
cases using 50 days training data.

Figure 5.2: Simulation and prediction results for different cases in Italy.

As can be seen, the model perfectly fits three different subsets of measurements for
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trained data, but the predictions slightly differ. The model predicted on 30 March

slightly overestimates the confirmed cases. In the second subsets of measurements,

the model underestimates the cases, since the infected cases show a sudden increase

at the prediction date. However, the model trained at the late stage of the epidemic

is capable of fitting on previous data and also predict the development of epidemic

accurately. The evolutions of cumulative confirmed and infected cases for the model

trained at this stage are compared in Table 5.2.

Table 5.2: Comparison of cumulative confirmed and infected cases for Italy using 50
days trained data.

Confirmed cases Infected cases
Days Actual data modSEIRD Actual data modSEIRD

1 1694 1694 1577 1577
10 10149 11867 8794 10041
20 47021 47644 38549 38134
30 101739 100153 75528 74511
40 143626 146111 96877 98960
50 178972 175664 108257 106321
60 203591 191674 104657 102267
70 218268 199591 84842 93116

The turning point of the model trained at the late stage is March 27. Beginning on

March 1, Italian government implemented extensive shutdown measures, which were

imposed to all of Italy on March 10. These measures started to reduce the number of

reported daily cases approximately 3 weeks later. The model exactly estimates time

to reach the peak of infected cases. According to the model, the infected cases show

a peak on April 19 with about 106321 infected person while the true value is 108257.

RMSE and R-Square values of confirmed, infected, recovered, and dead cases for 20

days predictions are given in Table 5.3.

Table 5.3: RMSE and R-Square values of confirmed, infected, recovered, and dead
cases for 20 days predictions using the model trained at the late stage of the epidemic
in Italy.

Cases RMSE R-Square % Error
Confirmed 12759.21 -0.30 <8.55

Infected 3144.71 0.79 <9.75
Recovered 13895.38 0.21 <26.

Dead 105.69 0.99 <0.52
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From the table, it can be seen that the model can not predict the confirmed cases

accurately, since there is a sudden increase in recovered cases. Overall, the model

learned at this stage is capable of predicting the infected and dead cases fairly close

to the real scenario.

The values of optimized parameters of the model are given in Table 5.4. The parame-

ters learned at this stage can accurately reflect dynamics of COVID-19. It can be seen

that the incubation rate is found to be constant by the optimizer.

Table 5.4: Optimized parameters for Italy.
Parameter Value

β0 4.49×10−1

µ 6.45×10−2

θ0 1.91×10−1

ξ 8.12×10−1

α0 8.21×10−1

σ 0.
γ0 1.84×10−2

η 3.37×10−3

δ0 2.92×10−2

ρ 3.83×10−2

q 6.65×10−8

Next, we simulate the time-dependent transmission, death and effective daily repro-

duction ratio for 70 days in order to collect some meaningful quantitative information

about the dynamics of COVID-19. The illustration of time-dependent transmission

and death rate for Italy is given in Figure 5.3

(a) (b)

Figure 5.3: Estimation of the (a) transmission rate and (b) death rate for Italy.
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The infection rate and death rate at the beginning of restrictions are found to be

β(0) = 0.449 and δ(0) = 0.029, respectively. At the end of the time period, the

infection and death rate reduce significantly because of the strong public measures

taken by Italian government. If we look at the effective daily reproduction ratio esti-

mation given in Figure 5.4, it can be observed that Rd(t) is 9.51 at the beginning of

epidemic. It exponentially decreases to below 1 after 47 days.

Figure 5.4: Estimation ofRd(t) for Italy.

We plot Rd(t) vs t for different intensities of the transmission rate by taking other

parameters to be optimal values. If we consider the parameter µ as the intensity rate

of the public measures, we can see the importance of this value in the evolution of

epidemic for Italy in Figure 5.5.

Figure 5.5: Rd(t) estimation for different values of µ in Italy by taking other param-
eter values of the model to be optimal.
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From the figure, it can be seen that by increasing the rate of restrictions twice, the

effective daily reproduction ratio can be reduced to below 1 about 4 weeks earlier for

Italy. Otherwise, softening these restrictions would cause an increment in daily cases,

and the epidemic would die too late.

5.2 The Modified SEIRD Model for Turkey

Since the government of Turkey started to take public measures starting from mid-

March, we set 20 March as an initial point of our model. As of 3 May, the daily

confirmed cases reduced significantly, we set this as the ending point of our model.

We train our model at the late stage of epidemic using 35 days observation data.

The simulation and prediction results using L-BFGS-B optimization algorithm are

illustrated in Figure 5.6 and Figure 5.7.

Figure 5.6: Simulation and prediction results for confirmed, infected, recovered and
dead cases using 35 days training data in Turkey.

The model interpolates well to the training data. If we look at RMSE and R-Square

values for different cases given in Table 5.5, it can be observed that RMSE values for

different cases are reduced and R-Square is improved significantly compared to the

classical SEIR model with constant coefficients.

From the Figure 5.7, it can be seen that the turning point of the model is 13 April.

Beginning on March 16, the government of Turkey started to make partial shutdowns,

which were extended to all of country on March 23. These measures started to reduce

40



Figure 5.7: Simulation and prediction results for daily confirmed and dead cases using
35 days training data in Turkey.

Table 5.5: RMSE and R-Square values of confirmed, infected, recovered, and dead
cases for 35 days fitting in Turkey.

Cases RMSE R-Square
Confirmed 1203.08 0.99

Infected 711.00 0.99
Recovered 1222.97 0.94

Dead 46.39 0.99

daily reported cases about 4 weeks later. The model overestimates time to the out-

break peak. Since there is a sudden change in the number of infected and recovered

individuals, the model is not capable of predicting the development of these cases

accurately. RMSE and R-Square values of different cases for 10 days predictions can

be seen in Table 5.6.

Table 5.6: RMSE and R-Square values of different cases for 10 days predictions in
Turkey.

Cases RMSE R-Square % Error
Confirmed 3167.90 0.78 <3.61

Infected 18921.71 -6.46 <52.03
Recovered 22169.57 -1.69 <56.64

Dead 162.62 0.60 <7.39

The model predicts the confirmed cases with less than 3.61% error compared to the

actual numbers. However, the model overestimates the infected cases and underesti-

mates the recovered cases which results in high percent error with the actual numbers.
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The values of optimized parameters of the model trained at this stage of epidemic are

given in Table 5.7:

Table 5.7: Optimized parameters for Turkey.
Parameter Value

β0 5.89×10−1

µ 8.40×10−2

θ0 9.99×10−1

ξ 4.39×10−1

α0 8.96×10−1

σ 0.
γ0 1.34×10−2

η 0.
δ0 5.32×10−3

ρ 3.70×10−2

q 5.56×10−1

From the table, it can be seen that the incubation and recovery rate are found to be

constant by the optimizer. At the beginning of lockdown, the transmission and death

rate for Turkey are found to be β(0) = 0.589 and δ(0) = 0.0053, respectively. The

illustrations of the transmission and death rate for 45 days are shown in Figure 5.8.

(a) (b)

Figure 5.8: Estimation of the (a) transmission rate and (b) death rate for Turkey.

In Figure 5.9, the effective daily reproduction ratio estimation for Turkey is shown.

At the beginning of the containment phase of an outbreak, the effective daily repro-

duction ratio is found to be 32.04. This is much higher than the daily reproduction

numbers obtained for Italy and Spain. The model predicts that this value is reduced
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Figure 5.9: Estimation ofRd(t) for Turkey.

to below 1 after 44 days by implementing public measures at the same intensity.

5.3 The Modified SEIRD Model for Spain

We set March 10 as the initial point of our model. As of May 18, the daily reported

cases declined to single digits, so we set it as the ending point of our model. We

train the model using 50 days training data by taking into account the late stage of

epidemic. The simulation and prediction results for different cases can be seen in

Figure 5.10 and Figure 5.11.

Figure 5.10: Simulation and prediction results for confirmed, infected, recovered and
dead cases using 50 days training data in Spain.

From the Figure 5.10, it can be seen that there is a sudden development and decline
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Figure 5.11: Simulation and prediction results for daily confirmed and dead cases
using 50 days training data in Spain.

in the numbers of the infected and recovered cases which makes data noisy. How-

ever, the model tries to fit the training data accurately by minimizing this error. This

can also be observed from RMSE and R-square values for different cases given in

Table 5.8.

Table 5.8: RMSE and R-Square values of confirmed, infected, recovered, and dead
cases for 50 days fitting in Spain.

Cases RMSE R-Square
Confirmed 3159.53 0.99

Infected 3622.32 0.98
Recovered 2527.68 0.99

Dead 383.78 0.99

From the Figure 5.11, it can be observed that the turning point of the model is March

29. Beginning on March 10, the Spanish government implemented partial lockdown

measures which were extended to all country on March 14. These measures took

effect in a daily reports about 2 weeks later. The model estimates peak infected cases

on April 16 with an error of 7% compared with the real number. Since the data is too

noisy, the model is not capable of predicting the epidemic development accurately.

The performance of the model for 20 days predictions is described in Table 5.9.

The model predicts the infected cases poorly, since there is sudden change that is very

difficult to describe its variability. But, the predicted values of confirmed cases are

less than an error of 0.62% compared to the actual numbers.
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Table 5.9: RMSE and R-Square values of different cases for 20 days predictions in
Spain.

Cases RMSE R-Square % Error
Confirmed 2129.95 0.87 <0.62

Infected 9217.76 -0.46 <20.52
Recovered 7694.12 0.62 <7.57

Dead 701.22 0.57 <3.73

Optimized parameter values of the model using 50 days training data are given in

Table 5.10.

Table 5.10: Optimized parameters for Spain.
Parameter Value

β0 9.99×10−1

µ 8.32×10−2

θ0 2.91×10−1

ξ 9.95×10−1

α0 4.54×10−1

σ 7.07×10−2

γ0 5.23×10−2

η 1.35×10−2

δ0 3.22×10−2

ρ 4.86×10−2

q 8.29×10−5

Transmission rate of the infection for Spain is much higher than the rates of previous

two countries at the beginning of quarantine measures. The mortality rate is found

to be δ(0) = 0.032 which is slightly higher than the value obtained for Italy. In

Figure 5.12, we plot the time-dependent transmission and death rate estimations for

Spain.

Figure 5.13 shows the estimated effective daily reproduction ratio for Spain. At the

beginning of lockdown, the daily reproduction number is 12.46 which is higher than

the value obtained for Italy. According to the model, this ratio is efficiently reduced

to below 1 after 40 days. This implies that Spanish government implemented public

measures, like isolation, quarantine, and public closings too early and extensively for

the first wave of COVID-19 epidemic.
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(a) (b)

Figure 5.12: Estimation of the (a) transmission rate and (b) death rate for Spain.

Figure 5.13: Estimation ofRd(t) for Spain.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

We have proposed a fully new modified version of the SEIRD model to predict

COVID-19 epidemic evolution in particular countries. Our model takes into account

the exposed individuals as contagious and incorporates government and social dis-

tancing measures through the time-dependent parameters. We consider the closed

population in our model, and the birth, mortality and others are not taken into account.

Overall, our proposed model tries to capture the COVID-19 transmission dynamics

accurately. The model can be predictive when the implementation of social measures

begins to ameliorate the epidemic. During this phase, we use time-dependent param-

eters to model these measures. If these measures are taken too early and extensively,

then the epidemics can pass the turning point and result in a subsequent reduction

in daily reported cases. On the other hand, if the countries reduce these measures

too early, the cumulative reported cases may not flatten but instead continue growing

linearly at a low rate. In this case, our model should be updated with new optimized

parameters in order to predict the next surge of the epidemic.

Another limitation of this thesis is the untimely analysis, which is an analysis based

on data retrieved up to the late stage of epidemic. If we look at the current data, the

trend of COVID-19 cases is slightly different from the predictions made in this paper.

However, the results of this thesis show that the country-specific characteristics of

a transmission rate of the infection and effective daily reproduction number which

depends on time.

As a future scope, population density instead of homogenous population can be con-

sidered to develop the model. Hospitalization rates, use of intensive care units (ICUs),
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unreported cases and others can be included to get more detailed analysis of COVID-

19. Additionally, all the parameters can be thought as time and compartment depen-

dent functions to get more accurate results.
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