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ABSTRACT

STATIC MALWARE DETECTION USING STACKED BI-DIRECTIONAL
LSTM

Demirci, Deniz
M.S., Department of Cyber Security

Supervisor: Assoc. Prof. Dr. Cengiz Acartürk

August 2021, 63 pages

The recent proliferation in the use of the Internet and personal computers has made it
easier for cybercriminals to expose Internet users to widespread and damaging threats.
In order protect the end users against such threats, a security system must be proac-
tive. It needs to detect malicious files or executables before reaching the end-user. To
create an efficient and low-cost malware detection mechanism, in the present study,
we propose stacked bidirectional long short-term memory (Stacked BiLSTM) based
deep learning (DL) language model for detecting malicious code. We developed lan-
guage models using assembly instructions from .text sections of malicious and benign
Portable Executable (PE) files. We created our first dataset from assembly instructions
obtained from static analysis of the PE files. The dataset was composed of text docu-
ments, and it was used in Document Level Analysis Model (DLAM). By splitting the
first dataset into single instructions, we obtained the second dataset, which was then
used in a Sentence Level Analysis Model (SLAM). We treated each instruction as a
sentence, and .text sections as documents. We labeled each document and sentence
by their corresponding malicious and benign tags. The experiments showed that the
Document Level Analysis Model (DLAM), and the Sentence Level Analysis Model
(SLAM) achieved 98,3% and 70.4% F1 scores, respectively.

Keywords: Malware Detection, static analysis, opcode, Stacked BiLSTM, NLP
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ÖZ

YIĞINLANMIŞ ÇİFT YÖNLÜ UZUN-KISA SÜRELİ BELLEK
KULLANARAK ZARARLI YAZILIM TESPİTİ

Demirci, Deniz
Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Doç. Dr. Cengiz Acartürk

Ağustos 2021 , 63 sayfa

İnternetin ve kişisel bilgisayarların son zamanlarda yaygınlaşması, siber suçluların
İnternet kullanıcılarını yaygın ve zarar verici tehditlere maruz bırakmasını kolaylaş-
tırdı. Son kullanıcıları bu tür tehditlere maruz bırakmamak için kullanılan güvenlik
sistemlerinin proaktif olması, zaralı yazılımları ve çalıştırılabilir dosyaları son kul-
lanıcıya ulaşmadan önce algılaması beklenir. Verimli ve düşük maliyetli bir zararlı
yazılım algılama mekanizması oluşturmak için, bu çalışmada, yığınlanmış çift yönlü
uzun kısa süreli bellek (Yığınlanmış BiLSTM) tabanlı derin öğrenme (DL) dil mo-
deli öneriyoruz. Zararlı ve zararsız çalıştırılabilir dosyalardan elde ettiğimiz assembly
talimatlarını kullanarak modeller geliştirdik. Bu modellerde, assembly talimatlarını
cümle, kod bölümlerini ise belge olarak ele aldık. Yapılan denemeler, Belge Düze-
yinde Analiz Modelinin (DLAM) ve Cümle Düzeyinde Analiz Modelinin (SLAM)
sırasıyla 98,3% ve 70.4% F1 doğruluk puanına ulaştığını gösterdi.

Anahtar Kelimeler: Zararlı Yazılım Tespit, statik analiz, opcode, yığınlanmış BiLSTM,

NLP
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CHAPTER 1

INTRODUCTION

The recent increase in Internet usage and personal computers has made it easier for
cybercriminals to expose Internet users to widespread and damaging cyber threats.
The exposition of the users has led cybercriminals to make profits or create damage on
a massive scale. Users have faced viruses, worms, spyware, adware, and ransomware,
constituting subclasses of malicious software. Those threats compromise the user
systems using various attack vectors, including email phishing, software vulnerabili-
ties, freeware, email attachments. Antiviruses, antimalware, host-based intrusion de-
tection systems (HIDS), and network-based intrusion detection systems (NIDS) are
widely deployed malware mitigation techniques (Moon et al., 2014). However, due
to malware’s dynamic nature and growing sophistication, mitigations are usually in-
sufficient to provide sustainable protection. "Proactive protection", which means to
detect malicious files or executables before reaching the end-user, may be a solution
to prevent infection stemmed from malicious files in IT systems. In daily settings, we
frequently use the term ’malware’ to address files that perform malicious activities.
Those activities include violations of security policies of use, such as unauthorized
access or authentication, privilege escalation, and unauthorized disclosure of infor-
mation about the target machine, its users, or components (Elisan, 2012). Despite the
general conceptualization of the term ’malware’ as malicious files, malicious code
pieces are usually parts of a file rather than the file itself. In other words, malware
code pieces are typically wrapped into executable files (Scarfone & Souppaya, 2013),
namely payloads. From a system-level perspective, malicious lines of a software code
are basic units that run a series of instructions at the machine level. In other words,
malware refers to the commands that run instructions for malicious purposes. These
instructions may perform system calls for input-output functions and a set of functions
that operate computer memory and file systems. Accordingly, the foremost challenge
in malware detection is identifying pieces of code in a file so that the suspected file
that includes the malware has malicious functionality. In practice, malware detection
methods rely on signature databases and YARA1 rules. The signature databases are
used to match against a signature generated from a newly encountered executable.
Nevertheless, the malware’s self-modifying abilities limit the detection capabilities
of these methods so as not to confuse it for a benign file. In order not to miss mali-
cious activities, it is crucial to focus on lines of codes which are the parts that express
more functionality in the suspected files. However, since source codes for executable
files are not usually available in compiled form, the assembly instructions are the
best candidate to unveil malicious functionality in a suspected file. Researchers and
practitioners have proposed various techniques that may be classified into three major

1 YARA: https://virustotal.github.io/yara/ (retrieved on 19 Mar 2019)
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groups to address such threats: static, dynamic, and hybrid analysis (Vinayakumar et
al., 2021). Dynamic analysis executes the file for malware detection, while static anal-
ysis aims to detect malware by scanning the entire file without running the executable.
Static analysis has some drawbacks against dynamic analysis (Acarturk et al., 2021)
in resisting malicious deformation techniques such as obfuscation and dynamic code
loading. However, it consumes fewer resources, identifies malware efficiently, and
mitigates it before reaching end-users or servers. Moreover, static analysis is scal-
able and usable when facing batch unknown malware detection and may traverse all
possible execution paths of the executable file. With the maturity of machine learn-
ing, Natural Language Processing (NLP) practices, and open-source software, tools
have been developed and made accessible (e.g., TensorFlow2 , OpenAI3 , Gensim4 ,
NLTK5 , and OpenNLP6 ). Those tools may help malware researchers use and con-
figure NLP techniques in malware detection. Briefly, NLP refers to analyzing texts
by automated means. Thus, in the present study, we propose using NLP techniques,
particularly document and sentence level polarity detection on assembly instruction7

sequences with a deep learning model using stacked bidirectional long short-term
memory (BiLSTM) to detect malicious files.

1.1 Motivation and Problem Definition

Technological advances have provided a suitable environment for cybercriminals to
devise new malware functionalities, types, and increasing effects in daily life. The
creation and distribution of intelligent and sophisticated malware have become eas-
ier through Smartphones, IoT devices, and, more generally, connected devices on
the Internet. Nowadays, users come across malware and ransomware with malicious
purposes, such as consuming the victims’ computing power to mine crypto-coins or
locking all the files on the infected system for ransom (Richardson & North, 2017).
To reduce the risks due to malware, antimalware developers and researchers have to
keep up with the development speed and expansion of malware propagation. For this,
researchers have been building detection systems that do not rely only on the experts’
knowledge of the malware domain (cf. signature-based systems) but also adaptive
learning systems that rely on Machine Learning (ML) techniques. Since machine
learning created a profound shift in many areas, including cybersecurity (Salloum et
al., 2020), AI-powered antimalware tools have a high potential to detect modern mal-
ware types and attacks, improve scanning engines, reinforce overall cybersecurity,
and create proactive systems (Gibert et al., 2020). A proactive system that will im-
pede an infection before it reaches end-users must identify the threats, then mitigate
them efficiently. To achieve this goal, we considered using NLP techniques in the de-
tection phase of malware mitigation. In the present study, since malicious and benign
executables contain the same grammar, semantics, syntax, and vocabulary to express
their intentions, we treat malware detection as a polarity detection problem in terms

2 Tensorflow: https://www.tensorflow.org/ (retrieved on 19 Mar 2019)
3 OpenAI: https://openai.com/(retrievedon19Mar2019)
4 Gensim: https://github.com/RaRe-Technologies/gensim (retrieved on 19 Mar 2019)
5 NLTK: https://www.nltk.org/ (retrieved on 19 Mar 2019)
6 OpenNLP: https://opennlp.apache.org/ (retrieved on 19 Mar 2019)
7 An assembly instruction is human readable(mnemonic) format of binary opcode and operands in assembly

language. Such as cmp ebx, eax
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of sentiment analysis in NLP. With the help of Bidirectional wrapper over LSTM, we
aim to create a language model using assembly instructions. This model is designed
to effectively learn and extract the features and characteristics of assembly language
and may be used to classify files. Overall, language models in NLP have numerous
applications in use, including speech recognition, machine translation, tagging, opti-
cal character recognition, and sentiment analysis (Torfi et al., 2020). In a sentiment
analysis or sentiment classification task, the goal is to resolve a judgment’s polarity in
a document, sentence, or feature/aspect level, whether positive, negative, or neutral.
Similarly, we disassembled both benign and malicious files in the same routine, and
both shared the exact instructions. We treat benign and malicious files as if they are
written in the same language though with different intentions, as in sentiment anal-
ysis. We statically gathered assembly instructions in the present study and used text
processing methods to extract assembly language features and characteristics. Since
BiLSTM is more advantageous in multiple ways, such as resolving issues relevant
to vanishing gradients and exploding gradients (Sherstinsky, 2018a), (Pascanu et al.,
2012), we chose it over LSTM and RNN (Recurrent Neural Network) systems to cre-
ate an assembly language model. We then used the language model to classify files
and sentences as malicious or benign.

1.2 Research Questions

The major research question of the present study is to investigate the potential of
deep learning language models for the identification of malicious code. For this, we
statically collected assembly instructions from malicious and benign (Portable Exe-
cutable) PE files. The goal of the models is to identify the intention of the code both
at the instruction (sentence) level and the file (document) level. More specifically,
our goal is to investigate the effects of instruction-level and document-level datasets
in terms of the models’ malware detection performance.

1.3 Structure of the Thesis

Our study consists of five chapters. We present the background to shed light on the
concepts associated with our research. We offer the pertinent findings in malware
detection and language modeling in Chapter 2 (p. 5),. Then, we propose our malware
detection pipeline and architecture in Chapter 3 (p. 21). Later we report our results
in Chapter 4 (p. 45), and finally, we report the limitations of our research and present
our conclusion in Chapter 5 (p. 53).
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CHAPTER 2

BACKGROUND AND RELEVANT WORK

This chapter first presents the methods applied in preparing text content for machine
learning, such as text vectorization and word embedding. Then, we describe the tasks
performed using NLP, for example, text classification and sentiment analysis. After
that, we give a brief description of RNN, LSTM, and BiLSTM. Lastly, we summarize
the approaches developed for detecting malware.

2.1 Text Vectorization

Machine learning models operate on numeric features by taking vectors (arrays of
numbers) as input. In this array, rows contain instances, and columns contain fea-
tures. To apply machine learning algorithms to assembly instructions, we need to
transform our assembly code into vector representations. The transforming process
is the feature extraction step (Lewis, 2000), and it is essential for creating a language
model. The text used to form a language model may be a set of documents(corpus),
a single document, or words of different lengths. The feature is each property of the
vector representation (John, 2017). For the present study, features represent assem-
bly instructions and the relation between the opcode and operands. To extract the
features, we applied text analysis and text preprocessing techniques to our raw data.
Hence, our input assembly code features define a feature space specific to the assem-
bly language model on which we later apply machine learning methods. There are
alternative ways to represent text in numeric form. We examine one-hot encoding,
count vectorizer, TF-IDF vectorizer, hash vectorizer, word2vec and TextVectorization
in the Keras1.

2.1.1 One Hot Encoding

One-hot encoding creates a vector representation of the words used in the text without
ordering.Since the ordering is highly related with context, the loss of order causes the
context to vanish. The vector representation created by one-hot encoding consists of
binary values. To illustrate, we used a simple function prologue2 and represented the
one-hot encoding form of it. The typical function prologue created by Gnu Compiler

1 The Keras: https://keras.io (retrieved on 19 Mar 2019)
2 Function Prologue: https://en.wikipedia.org/wiki/Function_prologue (retrieved on 20 May 2020)
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Collection (GCC3) in assembly language consists of a sequence of ’mov ebp, esp.
push ebp. sub esp 0xd’. To create one-hot encoding we need each word in a sentence,
so, we tokenize the instruction and get an array of words, like [’0xd’, ’ebp’, ’esp’,
’mov’, ’push’, ’sub’]. Then we assign each word an integer value, to create integer
encoded representation. For example, in American Standard Code for Information
Interchange (ASCII4) order of words, we may assign 0 for 0xffff, 1 for ebp, etc. The
final integer encoded form of our input becomes, [3, 1, 2, 4, 1, 5, 2, 0]. Since one-hot
encoding is a sparse representation, and there are eight words, and the total unique
word count is six, we create a two-dimensional array with eight rows and six columns.
We represent this table in Table 2.1. There are two significant points to deduce from

Table 2.1: One-Hot Encoding Sample

words 0xd ebp esp mov push sub

words Index 0 1 2 3 4 5

mov 0 0 0 0 1 0 0

ebp 1 0 1 0 0 0 0

esp 2 0 0 1 0 0 0

push 3 0 0 0 0 1 0

ebp 4 0 1 0 0 0 0

sub 5 0 0 0 0 0 1

esp 6 0 0 1 0 0 0

0xd 7 1 0 0 0 0 0

the table 2.1. First, the sparse representation may be used to construct the assembly
sequence from top to bottom. Therefore, using one-hot encoding, it is possible to
represent sentences or documents. Second, each word may be represented as an array
of integers. Such as, mov opcode becomes, [0, 0, 0, 1, 0, 0] and ebp operand becomes
[0, 1, 0, 0, 0, 0]. We created the samples in this subsection using the code5 in github
repository.

2.1.2 Count Vectorizer

Count vectorizer is another way to represent a group of text documents and build
a vocabulary of known words. As in one-hot encoding, a column represents each
word, a row represents each text from the document, in the vector representation.
The number of occurrences of a word is represented in each cell in the matrix. As

3 GCC: https://gcc.gnu.org (retrieved on 20 May 2020)
4 ASCII: https://en.wikipedia.org/wiki/ASCII (retrieved on 20 May 2020))
5 one_hot_encoding.py: https://github.com/d\protect\discretionary{\char\hyphenchar\font}{}{}demirci/

binary_classification/blob/master/one_hot_encoding.py
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in one-hot encoding, the words in the text are not stored as strings; each word is
given a particular index value. Hence, in Table 2.2 below, it is possible to say that
File1 contains two push, one mov, one sub opcode with two ebp, two esp, and a 0xd
operand. But because the ordering and other semantic information are lost, it is not
always true to assert that File1 consists of ’mov ebp, esp. push ebp. sub esp 0xd’.
This representation is also known as a sparse matrix.

Table 2.2: Count Vectorizer Sample

words 0xd ebp esp mov push sub

words
Integer

Encoding
0 1 2 3 4 5

File1 0 1 2 2 1 1 1

File2 1 0 1 1 1 0 0

Although vector size increases, the usage of n-grams in count-vectorizer, as in Table
2.3, provides the necessary baseline to predict the next word, hence understanding the
context.

Table 2.3: Count Vectorizer with n-grams Sample

mov ebp ebp esp esp push push ebp ebp sub sub esp esp 0xd

Int.Enc. 0 1 2 3 4 5 6

File1 0 1 1 0 1 0 1 1

File2 1 1 1 0 0 0 0 0

With the help of Table 2.3, it is possible to infer that File1 contains opcode sequence
like ’mov ebp, esp. push ebp. sub esp 0x’, and File2 contains ’mov ebp, esp’ using
chaining method. Nevertheless, the inability to identify more critical or less essential
words, considering the words plenteous in a corpus as the most statistically meaning-
ful word, and the failure to identify relationships among words are the downsides of
count-vectorizers. We created the samples in this subsection using the code6 in github
repository.

6 count_vectorizer.py: https://github.com/d-demirci/binary_classification/blob/master/count_vectorizer.py
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2.1.3 TF-IDF Vectorizer

Term Frequency - Inverse Document Frequency (TF-IDF) is a statistic calculated us-
ing the number of occurrences of a word in the corpus with a numerical exemplifi-
cation of the significance of a word. Unlike Count Vectorizers, the TF-IDF focuses
on the frequency of words and keeps the importance of the terms. This way, TF-IDF
helps us decide which words are less important during our analysis and what to ignore.
Hence, TF-IDF makes models less resource-demanding by reducing the dimensions
of input. TF-IDF scores the words according to the statistics calculated. TF-IDF gives
low scores to the terms that are abundant or too rare so the importance of the words
in a corpus is not related to the abundance or the rareness of the word. A higher
value of TF-IDF means higher importance of the words in the corpus, while lower
values are of lesser extent. While the efficiency of TF-IDF compared to other vec-
torizaton methods depends on multiple factors, the comparative study ,(Shahmirzadi
et al., 2018), claims that TF-IDF is well suited for the text similarity detection tasks
with its efficiency and managable aspects. The next subsection describes our pre-
ferred method, Keras TextVectorization, which also includes TF-IDF implementation
to represent document in the present study.

2.1.4 Keras TextVectorization

The Keras TextVectorization class has options to manage text in a deep learning model
constructed using the Keras framework. It facilitates the transformation of a batch of
strings into a list of token indices or a dense representation. To create a vocabulary list
using the set of strings, we may use the adapt method in TextVectorization class. This
method analyzes the input and calculates the frequency of individual string values
also, it uses the number of unique values while creating vocabulary set. But, if the
dataset contains more unique values than the maximum vocabulary size parameter,
unlike TF-IDF, by default, it uses the most frequent terms to create vocabulary. It
is also configurable with parameters to use TF-IDF to create vector space models of
the documents. By employing TextVectorizaiton class, it is possible to process each
sample for standardization purposes applying the following steps.

• Standardize each sample generally by lowercasing and stripping the punctua-
tion,

• Split each sample into words using whitespace characters unless told otherwise,

• Recombine the words into tokens by using n-grams,

• Create a unique integer value for each token and associate with it,

• Transform each sample using this integer value, index, to a vector representa-
tion consisting of integer values or to a dense float vector.

Briefly, the standard methods needed to to preprocess text in a corpus are compactly
provided by this class.
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2.1.5 Word Embedding

Word embeddings in text analysis mean a vector representation of words. It differs
from previous vectorization methods by addressing semantic relations between words
based on their distributional properties. The closeness of words forms the basis of this
technique. In 2003, researchers used the term word embeddings initially and trained
word embeddings in a neural language model. Since then, word embeddings have
become widely used in NLP tasks such as the sentiment analysis process. The neural
language model proposed by Bengio(Bengio et al., 2000) consisted of the layers such
as embedding layer, intermediate layer, and SoftMax layer, as in Figure 2.1.

Figure 2.1: WordEmbedding, redrawn based on (Bengio et al., 2000).

The SoftMax layer, which outputs a probability distribution over all unique words
in corpus and since the number of words may be millions, was the main bottleneck
of the model. Therefore, in 2008, Collobert and Weston(Collobert & Weston, 2008)
showed that word embeddings trained on a large dataset could hold syntactic and
semantic meaning and contribute to performance gains on NLP tasks. Their solution
to the expensive SoftMax calculation was to use an alternative objective function
instead of cross-entropy. This way, given the previous words, they maximized the
accuracy in predicting the next term. The next subsection gives a brief description
about Word2Vec, which we use to create the sentence level analysis model.

2.1.6 Word2Vec

By definition, a Word Vector is a layered artificial neural network that is capable
of learning how to represent each word with a real number vector by conserving its
semantic features, thus allowing similar words to group into a single vector (Rong,
2014). Word2Vec offers a range of models to represent words in an n-dimensional
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space. The original paper of Word2Vec (Mikolov et al., 2013) describes the ap-
proaches for creating Word2Vec representations of a text corpus. Those methods
are CBOW (Continuous Bag of Words) and Skip Grams. In the simplest form of
Bag-Of-Words (BOW), a text (document, sentence, or assembly instructions) is rep-
resented as the multiset of its words without considering grammar and word order.
With the Bag-of-words model, the term frequency, explicitly, the number of times an
expression appears in the corpus, total unique expression may calculated. In CBOW,
to represent the continuity of relationships among the words, the window size is uti-
lized to use both the (n) words before and after the target word to predict it, the center
word, as shown in Figure 2.2. The second approach in Word2Vec, to create word
embedding, is Skip Grams (Figure 2.2). On the contrary to CBOW, which focus on
the surrounding terms to predict the center word, Skip Gram focuses on the central
word to predict surrounding words.

Figure 2.2: CBOW & SkipGrams in Word2Vec

One of the main contributions of Word2Vec is the simplicity of reducing or increas-
ing the dimension of feature vectors. Since the primary purpose of feature selection
is to collect the most practical features rather than redundant or irrelevant features,
Word2Vec offers some parameters to select feature dimensions in advance and be
adjusted accordingly. Although considering its architecture, researchers argue about
whether Word2Vec is genuinely deep learning or not (Rong, 2014), it is still one of the
most frequently used word embedding techniques in the literature. To illustrate the
usage of word2vec with one of the smallest samples of assembly code in our study,
such as, "[’push ebp’, ’mov ebp,esp’, ’sub esp,addr’]", we used the following param-
eters. Two for the window size, so that each word will be related to one word before
and one word after. Because our sample is too small, we didn’t want to downsam-
ple this eight-word set, so we provided one for the minimum count. With a total of
six unique words, we created the embeddings. Then, we calculated the most seman-

10



tically similar word to mov by using most_similar function provided in wordvector
model, w2v_model.wv.most_similar(mov, topn=1), we understand that push opcode
is the most similar with a distance of 0.990742564201355 to mov opcode. We created
the samples in this subsection using the code7 in github repository. Recently, strong
alternatives to word2vec and similar methods have started to emerge. One of them is
transformers. It is claimed to be superior to other vectors, mainly in short sentences.
In essence, transformers work with the attention mechanism and treat all inputs at
the byte level. It works by marking the beginning of the sentence, the beginning of
the word, the end of the sentence with its own token logic. Although in this study
we treated assembly instructions as sentences, after creating the word vectors with
textvectorization and word2vec, we examined the model success by using transform-
ers, in particular DistilBERT (Sanh et al., 2019) in our sentence level analysis.

2.1.7 Document Vectorization

The approaches employed for transforming words or sentences are also used on en-
tire documents to extract features and represent them as n-dimensional vectors. Those
vectors may be used to detect similar documents, distinguish the topics of the docu-
ments and context. One of the methods applied to documents for vectorization pur-
poses is the n-gram model. n-grams are contiguous sequences of predefined (n) items
from a given series of text. We mentioned 2-grams on assembly instruction in the
Count Vectorization subsection. When applied to an entire document or a corpus
rather than to the sentences as in our example, each tuple of ’n’ grams, either char-
acters or words, is represented by a unique bit in a bit vector. When aggregated for a
body of text, those bits form a sparse vectorized representation of the text in n-gram
occurrences. The TF-IDF, which is also used word-level, creates vector representa-
tion of the document to calculate document similarity. On the other hand, Doc2Vec
(Le & Mikolov, 2014), an extension of the Word2vec, learns the representation of
documents through two models, namely Distributed Bag of Words (DBOW), which
is equivalent to Skip-Gram in Word2vec, and Distributed Memory (DM), which is
equivalent to CBOW. For vector representation of a document, Distributed Bag of
Words (DBOW) method needs an identifier or label, such as a topic. Then, DBOW
randomly predicts a probability distribution of words in a document resulting in an
n-dimensional vector using the document’s identifier. The order of words is lost in
DBOW. During training, the document vector and word weights are randomly ini-
tialized and updated using stochastic gradient descent (SGD). The second model,
namely, Paragraph Vector—Distributed Memory (PV-DM), unlike DBOW, predicts
a word from the context of the document. It takes a set of words of a paragraph
randomly and a document identifier as input and tries to predict a central word.

2.1.8 Sentiment Analysis and Text Classification

Language: with its structure, semantics, and phonetics is a widely studied structured
system of communication using symbols. With those symbols, human beings express

7 word2vec_sample.py: https://github.com/d\protect\discretionary{\char\hyphenchar\font}{}{}demirci/
binary_classification/blob/master/word2vec_sample.py
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themselves. Linguistics, a scientific study, mainly focuses on structure, semantics,
morphology, and phonetics of grammar in human languages. Computational linguis-
tics, a subcategory of linguistics, deals with human languages using a computational
perspective to formulate those grammatical aspects. Additionally, it is concerned with
the computational modeling of natural language. On the other hand, NLP focuses on
understanding natural languages utilizing computers. Understanding is to accurately
extract information and insights contained in the documents and categorize or or-
ganize the documents. Although recently NLP and Computational Linguistics are
used interchangeably, Natural language processing may be summarized as the set of
methods for making human languages accessible to computers.(Eisenstein, 2019) .
The development of fast computers and the emergence of big data made it possible to
process previously unhandled documents. Also, the processing power of today’s com-
puters made it possible to expose unknown or hidden information from documents.
Such as hidden meanings and intentions from those documents. One of the problem
domains in natural language processing is sentiment analysis. Sentiment Analysis
(SA), Opinion Mining(OM) or Polarity Detection aims to distinguish positive or neg-
ative sentiment in each text; hence may be considered as a classification process. It is
a computational study of people’s opinions, attitudes, and emotions toward events and
even towards individuals. There are three classification levels in SA: document-level,
sentence-level, and aspect-level SA. Document-level SA is to categorize a document
as articulating a positive or negative opinion or emotion. It studies the whole compo-
sition as a basic block of information. Sentence-level SA aims to classify sentiment
expressed in each sentence. Since each sentence may be considered as a short docu-
ment, the categorization of text at document-level or sentence-level may not differ in
the matter of preprocessing. Aspect-level SA, known as word level, is the most con-
cise classification since both positive and negative sentiments may be expressed for
the same entity. Various types of SA models focus on different aspects of an entity,
such as polarity, feelings, emotions, and intentions. The polarity-focused SA includes
categories like very optimistic, positive, neutral, negative, and very damaging. Some
studies refer to this kind of classification as fine-grained sentiment analysis (Zirn et
al., 2011), such as 5-star rating reviews (Sharma et al., 2015). Detecting emotions
like happiness, frustration, anger, sadness is another focus of SA. These SA models
take advantage of lexicons or complex machine learning algorithms. Since natural
language is flexible and people express emotions in various ways, the downside of
using lexicons8 originates from using the same word to demonstrate both anger and
happiness. In the present study we focused on polarity detection in sentence-level and
document-level assembly instructions to classify PE files as malicious or benign.

2.1.9 RNN, LSTM vs BiLSTM

The Recurrent Neural Networks (RNNs), based on (Rumelhart et al., 1986), is an
extended version of the conventional Feed-Forward neural networks to work with
variable-length sequence inputs. The extension lies in new gates added to store the
previous inputs and leverage sequential information from the RNNs model’s previous
inputs. Those gates increase RNNs memory and give the RNNs the ability to predict
what input to expect in the input data sequence (Figure 2.3). Although RNNs seem

8 lexicon: https://en.wikipedia.org/wiki/Lexicon (retrieved on 20 Jul 2021)
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to leverage preceding sequential information for long series, due to RNNs’ memory
limitations, the size of the sequential information is reduced to a few stages back.
This drawback is known as "vanishing gradients". This problem makes it difficult for
RNNs to capture the long-term dependencies, and as such, the training of RNNs will
be highly challenging. Another problem that makes RNNs hard to train is known as
"exploding gradients,"

Figure 2.3: RNN Basic Architecture, redrawn based on (Donahue et al., 2014)

The LSTM (Hochreiter & Schmidhuber, 1997) model, (Figure 2.4), extends the RNNs
model by increasing RNNs’ memory to store and learn long-term dependencies of in-
puts to address the vanishing gradient problem (Sherstinsky, 2018b). This memory
extension, "gated" cell, gives RNNs Models the ability to recall information and de-
cide whether to store or discard the information. During the training process, the
weight values assigned to the information affect this decision. Hence LSTM models
store data for a longer time than RNNs Models. The weights make an LSTM model
learn what information deserves to be preserved or removed.

The bidirectional LSTMs (Figure 2.5) are an extension of the described LSTM models
in which two LSTMs are applied to the input data. In the first phase, the forward layer,
the input sequence is fed into the LSTM model. In the second round, the backward
layer, an LSTM model is applied to the reverse form of the input sequence. This
approach improves learning long-term dependencies, makes the model know what
words immediately follow and precede a word in a sentence, and thus enhances the
model’s accuracy.

RNN, LSTM, and BiLSTM Networks are used for learning and analyzing the patterns
across time in a long sequence of data. These networks infer short- and long-term
dependencies or time-based variances.
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Figure 2.4: LSTM Basic Architecture, redrawn based on (Graves & Jaitly, 2014).

2.2 Malware Detection Methods

Malware detection methods rely on analysis techniques applied to malicious PE exe-
cutables. Those techniques may be classified as static analysis and dynamic analysis
techniques. Static analysis is a type of analysis that is performed using the static in-
formation acquired from the target executable. Such as headers, imported libraries,
strings, hash values. Dynamic analysis, on the other hand, is based on monitoring
the malware in question by running it in a controlled environment. Analysts employ
those techniques to extract features from executable to identify it.

2.2.1 Signature-Based Detection Methods

Signature-based detection methods rely on storing previously generated signatures of
known malware samples and matching these stored signatures with a signature gen-
erated from a newly encountered executable. A signature consists of a sequence of
bytes that are uniquely present in the malware. Therefore, signatures are malware-
specific and detect only known malware samples. On the other hand, some signa-
tures are created using the specific content to families or variants of malware. Such
signatures are called generic signatures. Since signature extraction is done chiefly
manually, the experts analyze the malware and determine the signature; it is natu-
rally time-consuming. However, some automatic signature extraction systems have
been developed successfully to speed up the signature extraction process (Griffin et
al., 2009). Due to its simplicity, signature-based detection is a widely used method,
not only on the end-user side but also in perimeter defense. While antiviruses, anti-
malwares, and host-based intrusion detection systems use signatures in the end-user
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Figure 2.5: BiLSTM Basic Architecture, redrawn based on (Cornegruta et al., 2016).

domain, network-based intrusion detection systems (NIDS), next-generation firewalls
(Next-GEN FW) with IDS capability use signatures in the network domain (Khraisat
et al., 2019; Souri & Hosseini, 2018). The significant disadvantages of signature-
based malware detection methods may be listed as the inability to recognize newly
produced malware, the troublesome signature generation and distribution processes,
and the unmanageable growth of signature databases.

2.2.2 Behavior-Based Detection Methods

Behavior-based detection methods focus on the activities of malware on an infected
system. These activities may be system calls, file activities, registry activities, API
calls, communications between the infected system and a remote server, or a decryp-
tion loop in an assembly code. To identify the activities, behavior-based methods use
both dynamic and static analysis of malware. Statically performed behavior-based
detection involves using a template to identify behavioral traits such as detecting a
decryption loop in polymorphic malware, or a loop to search for email addresses
in directories without running malware (Christodorescu et al., 2005). On the other
hand, in the dynamic behavior-based detection method, the malware is executed in a
controlled environment, and its behavior is monitored. For example, system calls con-
stitute malware behavior monitored dynamically and subsequently used for malware
detection (Lin et al., 2014). The execution of malware and monitoring those activ-
ities contributes to malware detection rate of behavior-based mechanisms. On the
other hand, when malware runs in virtual machines or sandboxes, it is possible that
malware is environment-sensible, so detects the environment and may evade the sand-
boxes. Additionally it takes time to run, and the needed resources may be intensive.
Moreover, false positives are often a concern due to the misclassification of benign
software because benign executables may exhibit behavior like malware.(Mosli et al.,
2017)
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2.2.3 Machine Learning and Deep Learning Based Detection Methods

The increase in the number of novel malware variants requires automation of mal-
ware detection as they may no longer be detected by resources primarily depending
on analysts. Therefore, there is a need for automated detection methods for malware
with little or no human intervention. For this reason, the recent studies in malware
detection have evolved from signature-based and behavior-based detection methods
to machine learning-based detection methods. In machine learning-based methods,
there are two stages, such as feature extraction and identification. In the feature ex-
traction phase, various data collected from malicious files are used. These data types
include opcode sequences, API Calls, system Calls, Control Flow Graphs (CFGs)
(Gibert et al., 2020). Malware detection methods based on machine learning re-
quire human control over feature extraction and feature selection. Thus, in those
approaches, supervised learning is employed at the feature selection phase. The su-
pervised learning models may require certain levels of expertise to extract and select
features accurately. So, the algorithms that eliminate the need for knowledge dur-
ing feature selection, feature engineering, dimension reduction, or feature reduction
(Yan et al., 2013) processes could also be used before supervised learning algorithms.
Those algorithms aim to make a better representation of the extracted features. Some
examples of unsupervised feature selection methods used are Laplacian Score (X. He
et al., 2005), Nonnegative Discriminative Feature Selection (NDFS)(Li et al., 2012),
and clustering-guided sparse structural learning (CGSSL)(Li et al., 2014). In the sec-
ond stage, the collected features are fed into a supervised learning or classification
algorithm. The same classification algorithm may be used to detect malicious files as
in binary classification problems or to distinguish malware families. Some examples
of such machine learning classification algorithms used to detect malware in aca-
demic studies primarily include Logistic Regression, Naive Bayes Classifier, Support
Vector Machine, Decision Trees, Boosted Trees, and Random Forest (Gibert et al.,
2020). The clustering algorithms are related to the natural grouping of data and found
labels associated with each group. In the malware detection studies focusing on ma-
chine learning clustering, the k-means clustering algorithm is the most used machine
learning clustering algorithm. Since training supervised learning models requires too
much time, effort, and domain expertise in extracting and selecting essential features
(Rathore et al., 2019) and also suffer from human errors; Deep Learning-based tech-
niques are starting to attract a lot of attention to malware detection. Deep learning
techniques, in other words, neural networks, come in because they may learn from
data without feature extraction by humans. Malware detection studies using deep
learning techniques have various approaches. Those approaches may be summarized
as the training of recurrent neural networks (RNN) and convolutional neural networks
(CNN) and, lastly, attention mechanisms (Vaswani et al., 2017). CNN’s are mainly
used for image recognition tasks, in malware detection domain, it employs feature ex-
traction by converting malware into images. However, RNNs are mostly preferred for
text classification tasks since they show better performance on sequential data. So, the
data collected from malware are put into a sequential format to use on RNNs. Atten-
tion mechanisms allow the modeling of dependencies without regard to their distance
in the input or output sequences. As in machine learning studies, the data collected
from malicious files, including API calls, system calls, opcodes, opcode graphs, and
many other features, are used to train a neural network detecting malware. Hence, the
effectiveness of these methods highly depend on the features extracted from the sam-
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ples in datasets. The studies employed deep learning techniques, which generally are
close to becoming automatic with reducing human intervention, show better results
in some cases, showing similar performances with machine learning classification
techniques in some other. We are exploring those studies in the upcoming section.

2.3 Learning Methods in Malware Detection

Any portable executable has common aspects, such as included libraries, strings, and
code patterns. Thus, researchers generally use the extracted features using those as-
pects in malware analysis and malware detection, whether the method is signature-
based, behavior-based, machine learning-based, and deep learning-based. However,
determining those identifying features is not always an easy task because malware
developers constantly update their methodology and create new types of malwares.
Therefore, artificial intelligence and machine learning integration aim to develop end-
to-end malware detection systems with high accuracy, low false-positive rates, less
human intervention, and best performance. One of the successful sub-fields of this
integration is deep learning. However, as in machine learning techniques, the effec-
tiveness of the deep learning methods is affected by the input features extracted from
the dataset. The features generally consist of API calls, opcodes, opcode graphs,
and many other aspects in executable files. We also examine assembly instructions
obtained from disassembled PE (Portable Executable) files.

ML classification algorithms require a methodological approach that contains mainly
two steps which are feature related and classification related. Feature related step
consists of feature extraction, feature selection and reduction processes. Classifica-
tion related step includes deciding the best algorithm that may classify or detect the
family of executable. The researchers in (El Merabet & Hajraoui, 2019) compared
the steps required for machine learning-based malware detection, including feature
extraction, selection, and reduction. By applying different feature extraction tech-
niques, they observed the effects of signatures, dll functions, binary string, and pe
headers. Then they compared principal component analysis(PCA) and random forest
algorithms for feature reduction. Finally, they discussed three algorithms, support
vector machine(SVM), random forest, and artificial neural network, and compared
feature selection and accuracy based on those algorithms. Feature selection methods
may depend on the researchers approach to the problem. For example; Bilar (Bilar,
2007) stated that the difference between malware files and benign files was statisti-
cally significant in opcode frequency distributions. Furthermore, they used rare op-
codes as a predictor for malware detection. Santos et al. (Santos et al., 2010) studied
the incidence of opcode sequences. They investigated the relationships among the
opcodes and used statistical information to detect variants of known malware fam-
ilies. Later, the method in the study (Santos et al., 2011) was based on analyzing
the appearance of frequency of opcode sequences to create semi-supervised machine
learning classifier using a set of labeled and unlabeled data to detect novel malware.
On the other hand, in (Anderson & Roth, 2018), Anderson et al., used an extensive
dataset contained nine hundred thousand malicious data. They divided the dataset into
training set, validation set, and testing set, and each includes three thousand malicious
data which later they open sourced, known as the EMBER dataset. They used a cross
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platform library (LIEF9) to parse malicious and benign executables in their dataset to
extract features. The features consisted of eight groups of information. Five of them
were the output of LIEF such as general file information, header information, section
information, imported and exported function in json format. The other three features
obtained from raw file were byte histogram, byte-entropy histogram, and string infor-
mation. They employed LightGBM10 on the obtained features with a detection rate
of 98.2%.
Although the study (Raff et al., 2018) claimed that byte n-grams technique leads to
overfitting and overestimating the accuracy in the malware detection domain, undeni-
ably, byte n-gramming is a technique commonly used in malware classifiers since it
expects none or less domain knowledge. For example, (Moskovitch et al., 2008) used
n-gram of the opcodes as a feature vector for the classification process. In their study,
they detect unknown malware based on the text categorization they applied. Their
methodology was successful than byte sequence n-gram representation, and their re-
sults indicated 99% accuracy using a training set with a malicious file percentage
lower than 15%. Besides n-gram, some studies, (Shabtai et al., 2012), applied TF and
TF-IDF representations for each opcode n-grams with an accuracy rate of 95.6% to
detect malware.

However, in the NLP domain, although it was shown that the TF-IDF is a richer and
more successful representation for the retrieval and categorization purposes (Salton
et al., 1975) in malware domain the results varied. As in (Moskovitch et al., 2008) and
(Shabtai et al., 2012), they found out that the scarce vector representation of opcodes
created by TF-IDF led to poor results concerning accuracy compared to n-grams.
The usage of n-gram is not limited to detection of malware, it is also used to classify
malware. In (Zhang et al., 2019), the researchers used five different machine learning
classification algorithms to detect and classify ransomware families using extracted
features from n-gram opcode sequences. Moreover, the highest accuracy rate in this
study was 91.43%.

Since machine learning depends on the extracted features selected by analysts or ex-
perts to identify malware, that may cause losses of robustness and miss out on mal-
wares never seen before. On the other hand, the DL approaches have the advantage of
learning patterns in data by themselves. Thus, it provides adapting to the changes and
makes them robust and easy to maintain. Deep learning methods extract valuable in-
formation about semantic source code, binary code, opcodes, and assembly code may
be used as features, mapped with different word embedding techniques to word vec-
tors. For instance, the study, (Krcál et al., 2018) treated an executable as a sequence
of bytes and applied CNN for malware detection. Their CNN model contained four
convolutional layers and four fully connected layers. Instead of a global max-pooling
layer, they used a global mean pooling layer after the convolutional layers. And their
best afford was 97.1% accuracy. There are several recent studies focus on assembly
code and detect malicious software employing deep learning techniques. In (Khan et
al., 2019), investigated GoogleNet (Szegedy et al., 2015) and five different ResNet(K.
He et al., 2015) models using images produced from opcodes of binary files. They
applied Histogram standardization enlargement and disintegration techniques to aug-
ment images. With this technique it became easier to distinguish between malicious

9 LIEF: https://lief.quarkslab.com (retrieved on :17 Feb 2021)
10 LightGBM: https://github.com/microsoft/LightGBM (retrieved on : 17 Feb 2020)
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and benign opcode using images. The accuracy rate of GoogleNet was 74.5%, and the
best accuracy rate among ResNet models was 88.36%. In (Kumar et al., 2018), also
employed CNN to classify malware opcode images. The accuracy rate of correctly
classified binary files was 98%.

Instruction2Vec (Lee et al., 2019) work uses both opcode and operand information
to classify malwares. They used a nine-dimensional feature vector to resemble reg-
isters, and addresses. They split instructions and encoded each token as unique in-
dex numbers. In their setup, an opcode takes one token, a memory operand takes
up to four tokens, including base register, index register, scale, and displacement.
This approach represents information about opcode and operands. The researchers in
(Lu, 2019) also used opcodes and operands as features. They extracted opcode and
operand from their dataset which consists of 969 malware samples and 123 benign
samples. Later, they applied different word embedding techniques to word vectors,
and used resulted vectors to feed into their models based on LSTM. Their model at-
tained accuracy of 97.87% for malware detection, while for classification, the model
achieved an accuracy of 94.51%.

2.4 Summary

We presented background information about malware analysis, neural networks, nat-
ural language processing, and the relevant studies conducted by researchers on mal-
ware detection. We aim to detect malware using NLP techniques, so we put forward
certain aspects of NLP. Furthermore, we explained the various methods to convert
human-readable strings to machine-ready formats. We also mentioned how NLP is
used to identify topics, subjects, and polarity of opinions with sentiment analysis
methods. In natural language processing, the major challenge is understanding the
patterns in the data sequence. Then using this pattern, we analyze the text to pre-
dict the next character, word, sentence or the main idea of a corpus. We explained
that RNN, LSTM, and BiLSTM are well suited for forecasting the future using cur-
rent and previous data. Therefore, those models have been widely preferred for se-
quential structures like time series and natural languages. We shared the applica-
ble works associated with malware detection, involving earlier statistical approaches
and machine learning-based and deep learning-based methods. In the scope of this
study, we investigated NLP techniques and procedures for applying to assembly lan-
guage. Purposely, we collected Windows executable files and obtained assembly in-
structions to form our dataset. Then, we performed data preprocessing methods and
text-preprocessing techniques to create a machine-ready representation of assembly
instructions. As the second part, we built the detection model consisting of differ-
ent layers, including BiLSTM. In the next section, we present the particulars of our
methodology.
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CHAPTER 3

METHODOLOGY

In this chapter, first, we present our approach to malware detection. Then we describe
our dataset and the process that we acquire assembly instructions from our dataset and
the formats that we prepare our dataset to feed our architecture. Finally, we present
the design that we use to construct the language model.

3.1 The Approach

Methods for detecting malware are usually classified into three basic approaches:
static, dynamic, and hybrid. While dynamic analysis and hybrid analysis depends on
running the executable file in a controlled environment or in a sandbox to inspect and
identify the behavior, static analysis deals with the statically obtained information and
features from the executable files. Therefore, static analysis methods do not need the
execution of binary. While conducting malware detection with static analysis, a fun-
damental approach will be to utilize the sections, imported DLLs, exported functions,
resources, URLs, compilers, packers, and human-readable strings. The traditional
method to detect malicious files depends on creating signatures that may be used in
security systems. These signatures identify a single file or a family of malicious exe-
cutables. New signatures should be created and delivered using the necessary means
for each new malicious file. Although automated signature builders exist, there is still
a need for human involvement in creating signatures (Griffin et al., 2009). Thus, it
cannot detect zero-day attacks since there is no corresponding signature stored in the
repository. Additionally, repositories of signatures cannot keep up with the evolu-
tion rate of new malware, or the databases swell quickly. One of the cornerstones of
cutting-edge deep networks is the approach of end-to-end learning, or equivalently,
automatic characteristic extraction where only the labels and uncooked statistics are
introduced to the network with no handmade elements provided and close to no pre-
processing. Our study extracts assembly code using an open-source disassembler to
create an opcode sequence as output. We used the output as our raw data to create a
language model assisted with word embedding, just like processing natural language.
Using this language model, we aim to adopt polarity detection methods to identify the
intention of an executable file using the labels as malicious and benign. Hence, we
plan to detect whether it is malicious or benign with our proposed language model.
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3.2 Data Collection and Formatting

Our dataset consists of benign and malicious executables in Portable Executable(PE)1

format. The PE is a complicated structure, based on COFF (Common Object File
Format)2 specification, with its standard headers, optional headers, sections of various
types, resources, and relocation tables. Typical COFF sections encompass code or
data that linkers and Microsoft Win32 loaders do not need information about the area
contents. The contents apply entirely to the software that is being linked or executed.
However, some COFF sections have special meanings when found in executable files.
Due to the special flags set in the section header, these sections are easily recognized
by tools and loaders. The table A.1 in Appendix A includes the descriptions for the
section types that are stored within executables and the section types that incorporate
metadata for extensions.

In the present study, we use the .text section (referred to as code section throughout
our study) contents of executables found in our collection. Our collection contains
Win32 PE files from Windows operating systems3, and Commando VM v-2.04, and
malicious x86 executables from the sorel-20m (Harang & Rudd, 2020) database web-
site. Since we aim at detecting malware, we randomly chose the malicious samples,
including various types of malwares, such as viruses, worms, and trojan. We chose
Commando VM over the rest of the versions of Windows OS, because it contains
executables compiled using different compilers, such as Cygwin5 and MinGW6.

We focused on assembly instructions obtained statically from the collected executa-
bles. The first step of our proposed methodology is to disassemble each benign/mali-
cious file to get assembly instructions contained in the code section. Next, the outputs
are saved in plain text files, namely "Document Level Analysis Model" (viz. DLAM).
Then, the first dataset is processed and a second dataset with one instruction per docu-
ment is obtained. We call this model "Sentence Level Analysis Model" (viz. SLAM).
Finally, we feed our bidirectional LSTM language modeling architecture with our
datasets. The overall processing pipeline is presented in Figure 3.1.

3.2.1 Obtaining Assembly Instructions

We first converted the executables into assembly language instructions using a slightly
modified version of bin2op.py7. The code8 used in this process is running objdump
on binary and extracting assembly instructions in the code section from the output. In
our version, we obtain instructions as a list. We treat each instruction as a sentence,

1 PE Format: https //docs.microsoft.com/en-us/windows/win32/debug/pe-format (retrieved on 21 Feb 2020)
2 COFF: https //docs.microsoft.com/en-us/windows/win32/debug/pe-format (retrieved on 21 Feb 2020)
3 Microsoft Windows 8.1 Pro (OS Build 9600), Microsoft Windows 10 Pro 19.09 (OS Build 18363.418),
4 Commando VM: https\protect\leavevmode@ifvmode\kern+.2222em\relax//github.com/fireeye/

commando-vm (retrieved on 19 Mar 2019)
5 Cygwin: https //www.cygwin.com (retrieved on 19 Mar 2019)
6 MinGW: http://mingw-w64.org (retrieved on 19 Mar 2019)
7 bin2oppy: https://github.com/d-demirci/binary_classification/blob/master/bin2op.py (retrieved on 17 Apr

2019)
8 create_dlam_dataset.py: https://github.com/d-demirci/binary_classification/blob/master/create_dlam_

dataset.py
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Figure 3.1: Language Modeling Pipeline.

each opcode or operand as a word, and the complete code section as a document. We
present a view of samples from our dataset for the DLAM model in Figure 3.2.

On the other hand for creating word2vec and DistilBERT vector representations for
the SLAM, we processed9 the files in the DLAM dataset for the second time. We
merged the files in train/malw folder in train/malicious.txt and the files in train/b-
ngn folder in traing/benign.txt. Using these files we created pandas.DataFrame with
columns content and category as seen in Table 3.1.

3.2.2 Standardization and Tokenization

To prepare the dataset for feeding our architecture, we standardize, tokenize, and vec-
torize the data using TextVectorization layer in the Keras. As we mentioned in the
background section, Standardization refers to preprocessing the assembly, typically
to remove punctuation to simplify the dataset. Tokenization means splitting strings
into tokens, in our case, splitting an assembly instruction using whitespace and com-
mas into individual words. Vectorization means converting tokens into numbers so
they can be used to train a neural network. Since we extracted assembly code from
executable files, our dataset consists of subsequent assembly instructions. We wrote a

9 merge_files.py: https://github.com/d-demirci/binary_classification/blob/master/merge_files.py
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Figure 3.2: Sample Document from DLAM Dataset.

custom standardization10 function to clean our data. For this process, first, we cleaned
some irrelevant opcodes from sequences such as align, bad, int3. Then we replaced
some variants of opcodes with basic opcodes, such as replacing movb, movw, movl,
movq with mov instructions. This process is like replacing synonyms of a word in
a corpus with a word to augment data in natural language processing. But in our
case, to keep the relation between opcode and operand, we did the opposite. Also, we
replaced the hex representation of addresses with string addr. We preprocessed the
assembly instructions in both datasets, the overall process applied in DLAM may be
depicted as in Figure 3.3.

Figure 3.3: Text Processing for the DLAM.

10 custom_standarization: https://github.com/d-demirci/binary_classification/blob/master/custom_
standardization.py
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Table 3.1: Sample from the SLAM Dataset

id content category

0 dec ebp malicious

1 pop edx malicious

2 nop malicious

3 add BYTE PTR [ebx],al malicious

4 add BYTE PTR [eax],al malicious

... ... ...

7432620 push es benign

7432621 cmp BYTE PTR [eax+0xff876ae],dh benign

7432622 (bad) benign

7432623 and BYTE PTR [edi+0x6d9207a0],al benign

7432624 mov edi,0xaa2da6 benign

Also for single line instructions, the text-processing is applied as shown in Figure 3.4.

To prevent train/serving skew, we included the TextVectorization layer directly in-
side our model; hence we preprocess the data using the same methods at train and
test time. We give in the upcoming chapters. We used the default split function,
which splits the sentence using the whitespace character, and the custom standardiza-
tion function we defined above. We determined the variables for the model, like an
explicit maximum sequence_length, which will cause our TextVectorization layer to
pad or truncate sequences to exactly sequence_length values. We tried with differ-
ent sequence length in training and testing phase for creating vector representation of
our assembly code. In the sample vector representation in the Appendix B.1 with a
sequence_length of 400 chosen randomly, we see that each token has been replaced
by an integer as in Appendix B.1. In our dataset, on feature selection phase, we used
the get_vocabulary() function of TextVectorization layer, and we saw that a total of
1122 unique vocabulary, with the most frequent ones such as addr, eax, dword, byte,
mov, add, esi, al, edi, ecx, ebp, push, ebx, edx, ds, esp, pop, inc, es, dec, and, call.
Our dataset for the DLAM model consists of 810 malicious samples and 681 benign
samples with a total of 1,491 files. On the other hand, the dataset we prepare for the
SLAM model consists of 7,339,294 instructions. 4,036,612 from the malicious files
and 3,302,682 from the benign files as shown in Table 3.2.
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Figure 3.4: Text Processing for the SLAM.

Table 3.2: Total Number of Samples for models

Dataset for Malicious Benign Total

SLAM 4,036,612 3,302,682 7,339,294

DLAM 810 681 1491

3.2.3 Splitting data into the training set, testing set, and validation set

To split the dataset into three, train, validation, and test is recently a best practice
while constructing a machine learning model. Since we use text_dataset_from_directory
method from the Keras library, we arranged the directory as in Figure 3.5

To use in DLAM model, we arranged the directory structure for training and test-
ing. The directory structure used for training and testing contains the class labels as
directory names. There are two directories as malicious and benign for binary classifi-
cation. This directory contains extracted assembly instructions from the executables.
The number of samples in this directory used for training is 1,309. We used 719 sam-
ples from malware samples, and for benign samples, 590. Since we needed files that
will never be used in the training phase to test our proposed model’s accuracy, we put
the test samples in the test directory, which contains two directories: malicious and
benign. The number of total test files is 182. We subsampled the validation set from
training samples, with a ratio of 80:20. With the help of validation_split parameter
of keras.preprocessing.text_dataset_from_directory. Therefore we created validation
data set with 261 files. To use in SLAM model, we used the documents in the DLAM
model. We than split11 those documents into sentences (assembly instructions) to

11 prepare_slam_data.py: https://github.com/d-demirci/binary_classification/blob/master/prepare_slam_data.
py
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Figure 3.5: Directory Structure for Dataset

create the second dataset. As we did in the DLAM, we created two directories as
malicious and benign, in both train and test directories. Those directories contain
files that consist of single assembly instruction per file. The number of samples in the
training directory was 6,442,918. We used 3,543,605 malware instruction samples
and 2,899,913 benign instruction samples for training. While applying deep learning
algorithms, the test dataset is never introduced to the model to simulate real-world
scenario. Therefore, we put the test samples in the test directory, which contains
two directories: malicious and benign. The number of total test files was 896,376.
Since we already divided our dataset into training and testing set, we subsampled the
validation set from the training set, using an 80:20 split ratio with the help of val-
idation_split parameter of keras.preprocessing.text_dataset_from_directory. Hence,
our initial model used 5,154,335 instructions for training, 1,288,583 instructions for
validation, and 896,376 instructions for testing. We depict the sizes of training, val-
idation, and test datasets for both SLAM and DLAM models as the following Table
3.3.

Table 3.3: Dataset Sizes for training, validation and testing

Model Training Validation Testing

SLAM 5,154,335 1,288,583 896,376

DLAM 1129 261 182
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3.3 The Proposed Model

This section introduces the technical details of our study, including the training and
testing environment setup, used libraries and modules, and the training and testing
pipeline elements. Before giving the details about the technical parts of our study,
We briefly explain why we prefer to use BiLSTM over other neural network archi-
tectures such as RNN, LSTM. Among the neural network architectures, especially
LSTM, are preferred for Natural Language Processing (NLP) tasks since they show
better performance than other neural network architectures like RNN and CNN. RNN
has a short memory to remember the previous situations, which causes performance
problems while processing long sequences. There are also vanishing and exploding
gradient issues in the standard RNN architecture. LSTM, a special kind of RNN ar-
chitecture, solves the gradient problems and improves standard RNN by modifying
the cell structure. On the other hand, according to the study (Siami-Namini et al.,
2019) the given input data is utilized in both backward and forward layers for training
in BiLSTM models, and this causes a reduce in error rates by 37.78% compared to
LSTM models.

3.3.1 Setup Environment

We trained and tested our document level analysis model and the initial model of the
sentence level analysis model on a machine with a 6-Core Intel Core i9 processor with
2.9 GHz speed and 32 GB Memory. For the training of Word2Vec and DistilBERT to
create the sentence level analysis model, we used kaggle12 draft session with a 13 GB
ram and GPU with 16 GB Ram. Also, we implemented and ran our models in Python
programming language with version 3.7.9. In the Python environment, we used the
libraries with their specified versions in Table 3.4

3.3.2 Imported Libraries and Modules

This section will give a brief explanation of the python libraries and modules used in
our study’s scope.

• from tensorflow.keras.layers import Embedding, LSTM, Bidirectional, Dense,
Dropout, GlobalMaxPool1D
Embedding, LSTM, Bidirectional, Dense, GlobalMaxPooling1D, and Dropout
modules from the tensorflow.Keras library are used to add each of those layers
into our layered architecture in the neural network.

• from tensorflow.keras.loses import BinaryCrossEntropy
BinaryCrossEntropy is used to compute the cross-entropy loss between true
labels and predicted labels.

12 Kaggle: https://kaggle.com
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Table 3.4: Required Python libraries

Library Version

TensorFlow 2.4.0

tensorflow-datasets 4.1.0

tensorflow-estimator 2.4.0

tensorflow-model-optimization 0.5.0

tensorflow-text 2.4.2

scikit-learn 0.24.0

scipy 1.5.4

seaborn 0.11.1

numpy 1.19.4

Keras 2.4.3

Keras-Preprocessing 1.1.2

hyperas 0.4.1

matplotlib 3.3.3

• from tensorflow.math import confusion_matrix
confusion_matrix module is used to create the confusion matrix of the given
test set.

• from matplotlib import pyplot
We use the module named Pyplot to plot the loss and accuracy graphs of the
training phase.

• import seaborn
The Seaborn library is used to create confusion matrix that has graphical com-
ponents.

• from tensorflow.keras import callbacks
callbacks from TensorFlow.keras is used to prevent overfitting of our proposed
model.

• from gensim.models import Word2Vec
Word2Vec used to create vector representation and calculate weights for in-
structions in SLAM model, Doc2Vec used to create vector representation of
documents in DLAM model.

• import re
re used for regular expressions used for cleaning data, and removing irrelevant
opcodes from dataset.
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3.3.3 Training and Testing Pipeline

Our study designed a pipeline to take the dataset, preprocess the data for modeling,
and train and test the neural network. To create the pipeline, first, we used the Dataset
model found in TensorFlow to get batches of texts from the subdirectories malicious
and benign, with labels 0 and 1 (0 corresponds to malicious and 1 corresponds to
benign). This module requires a directory structure as in Figure 3.5.

Hence, as discussed earlier in the datasets section, we created directories to store ma-
licious and benign assembly instructions. Using this module, we generate a dataset
from directories with minimum memory usage. With the help of the cache() method
provided by the Dataset class, we could keep data in memory after it’s loaded off
disk. That way, we make sure that our dataset does not become a bottleneck while
training our model. Furthermore, we took advantage of this method to create a per-
formant on-disk cache, which is more efficient to read than reading many files. As a
result of the first step in the pipeline, we obtained text files, which contain assembly
instructions extracted from executables. We applied text preprocessing techniques
to assembly instructions in the dataset to create opcode sequences at the next step.
We cleaned and tokenized our opcode sequences and applied TextVectorization class
to create a vector representation of our input for this process. The sequences in the
dataset are in different length so we specified a maximum sequence length. If a se-
quence is longer than the maximum sequence length, its first part is taken up until
the maximum sequence length and the remaining part is discarded. If a sequence
is smaller than the maximum sequence length, the padding operation is performed
to complete the maximum sequence length. In the padding operation, the required
amount of zero integer value is added to the end of the sequence. As a result, we ob-
tain the vector representation of fixed-length sequences consisting of integer values.
Since the dataset used for SLAM contained sentences with a maximum of 30 words
(after tokenization), we saw that this method created sparse vectors filled with zeros
if we increase the sequence length.

After we created the vector representation of our input data, we separated the dataset
into three splits named training, validation, and testing for use during the training
and testing. Then, we divided our dataset into two as 80% and 20%. We set 20%
portions aside to use during the test phase. Then we divide the 80% portion into
two again as 75% and 25%. We used the more extensive set for training and the
latter for validation purposes. This way, we allot 60% of the dataset for training,
20% for testing, and 20% for validation. We built our initial classifier by stacking
the layers sequentially as follows. Embedding layer is the first layer, which takes the
integer-encoded opcode sequences and looks up an embedding vector for each word
index. These vectors add a dimension to the output array, and during the training, the
model learns the features represented by vectors. The resulting dimensions of the first
layer are batch, sequence, and embedding. Since we want our model to learn features
related to malicious and benign executables in the sequential form, we use BiLSTM as
the next layer. After, BiLSTM layer we added Dropout Layer with a dropout rate for
starting point 0.1. Next, a GlobalAveragePooling layer to return a fixed-length output
vector for each example by averaging the sequence dimension.Then we feed, a fully
connected (Dense) layer with 128 hidden units, with this fixed-length output vector.
The last layer is a densely connected layer with a single output node. To calculate

30



weights during the training, every deep learning model needs a loss function and an
optimizer. As we focus on classifying samples in two categories and the output of
our model is a probability (a single-unit layer with a sigmoid activation), we used
the BinaryCrossentropy loss function. Lastly, we configured the model to use an
optimizer and a loss function. We preferred Adaptive Moment Estimation (Adam)
(Kingma & Ba, 2017) optimizer. Since this model is our initial model with the help of
hyperparameter tuning we give the details of shaping our final model with upcoming
subsection, parameters and tuning.

3.3.4 Parameters and Tuning

Hyper-parameter tuning constitutes a crucial step in building neural networks. We
chose the parameters in the present study in accordance with previous studies and
popular trends in similar research. Additionally, we evaluated the performance of the
different parameters on the effect of validation loss. Therefore, starting from one BiL-
STM layer, we added one layer at a time and observed the performance of the model
until it reached the optimum point. Other than the BiLSTM layer depth, there were
other hyper-parameters such as batch size, number of epochs, filter size, optimization
algorithm, dropout rate etc. A trial-and-error method may not seem a viable method
for tuning the model because of the many combinations that occur using those param-
eters. To overcome this complexity, we employed HParams13 library which works as
a plugin of tensorboard. With the suggestions provided by HParams dashboard, au-
tomated hyperparameter optimization was possible. We manually experimented on
some of the values HParams suggested with more epochs and data, to see how the
models evolve and react to those parameters. we built the sentence level and docu-
ment level neural network language models using the parameters that were optimum
in terms of validation loss.

3.3.4.1 Dropout and Regularization Methods

To make our training noisy , we trained four neural networks with dropout layers.
We decided on the dropout and alternative regularization methods by examining the
studies on this subject. The study in (Srivastava et al., 2014), states that dropout may
break up the incorrect situations that the previous layers adapt by ignoring some of the
outputs of preceding layer. On the other hand, according to the study (Yoder, 2018),
there may be no optimal dropout rate parameter that may prevent overfitting neural
network architectures. And it also stated that the dataset size may affect the dropout
rate, the smaller datasets mean the lower the dropout rate, and vice versa. On the
other hand, researchers suggested employing Variational RNN (Gal & Ghahramani,
2016) technique especially in LSTM models. Moreover, they showed the effects to
the neural network model for sentiment analysis and text classification tasks as an
alternative to dropout.

13 HParams: https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/hparams (retrieved
on: 17 May 2020)
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3.3.4.2 Optimizers and loss functions

Also, we trained on several known optimizers with their default configurations such
as Adam, Adagrad (Duchi et al., 2011), RMSProp (Hinton & Swersky, 2012), and
ADADELTA (Zeiler, 2012) while fixing other parameters. We found that Adam and
RMSprop achieved similar results as it is also claimed in (Ruder, 2017). We preferred
to use Adam since it showed slightly better performance than RMSprop in both mod-
els. By employing optimizers, we expected a decrease in the training loss with each
epoch and an increase in training accuracy since, on every iteration, the optimization
method is used to minimize the loss. However, we saw that this is not true for every
experiment. Because of the usage of regularization methods the validation loss fluc-
tuated slightly in some trials we believe that means the model is adjusting parameters
accordingly.

3.3.4.3 Pooling Layer

For the pooling layer we chose between Global Average Pooling and Global Max
Pooling strategy. Since there isn’t much study related to pooling methods on LSTM
networks, except (Kao et al., 2020) (at the time of the present study), we tried both
methods in a mutually exclusive way. Moreover, we decided the output number of the
LSTM layer by modeling with different numbers of hidden cells and comparing the
loss and accuracy rates of their results. With the 32 output nodes, the model loss was
seriously higher than others. Using 128 and 256 output nodes did not cause LSTM
Output Nodes for SLAM and DLAM a severe decrease in loss, so we chose 64 as the
output nodes of both models, as the lesser parameter lets faster training.

3.3.4.4 Overcoming The Overfitting

After we trained the models with our data, we tested it on the dataset which is pre-
viously unseen. We did this to see if the models generalize well enough to simulate
real world scenario. If the model generalized well enough it means that the model
performs well enough with new data. But if the models perform well while training
but not with test data it means that the model overfits. This means that in fact it mem-
orized the input data not learning the general features of it. Nevertheless, if the model
performs bad in both with training and test data it means the model underfits. Accord-
ing to the study (Ruizendaal, 2017), the solutions against overfitting could be listed
as early stopping, adding more data or augmenting existing data, generalizable data
collection and inclusion to the model, building a simple model and regularization.
Those were taken into consideration during the model building process.

3.4 The Document Level Analysis Model (The DLAM)

We created a simple initial model for DLAM, starting with one BiLSTM layer. We
created the summarization of DLAM using visualization utilities provided by the
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Keras. Those utilities give a review about layers and trainable/non-trainable parame-
ters as in Table 3.5 below.

Table 3.5: Model summary for the initial DLAM.

Layer (type) Output Shape Param

embedding_1 (Embedding) (None, None, 64) 64064

bidirectional_1 (Bidirectional (None, None, 128) 66048

dropout_3 (Dropout) (None, None, 128) 0

global_average_pooling1d (Glob (None, 128) 0

dropout_4 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 128) 16512

dropout_5 (Dropout) (None, 128) 0

dense_3 (Dense) (None, 1) 129

Total params : 146,753

Trainable params : 146,753

Non-trainable params : 0

We added one-layer BiLSTM at a time and observed the performance of the model
until it reached the optimum point. Other than the BiLSTM layer depth, there were
other hyper-parameters such as batch size, number of epochs, filter size, optimization
algorithm, dropout rate etc. To decide the values for those parameters, we experi-
mented with several different values (Table 3.6). We employed EarlyStopping14 from
Keras with a patience of 3 to fine-tune those hyperparameters in the language model-
ing task. The best values for the parameters are shown bold in Table 3.6

We also used history object observe the training and validation loss for comparison,
as well as the training and validation accuracy. By the help of history object, we
observed the change in those parameters in each epoch. Moreover, the metrics stored
in history object were also effective to use while plotting.

Impact of the number of BiLSTM Layers
Initially, we experimented with the numbers of stacked BiLSTM layers. We fixed
the hidden layer cells to 64 and, maximum sentence length to 100K, using 4 grams.
We planned to increase the number of BiLSTM layers starting with one. We observed
that the prediction loss decreases when the number of LSTM layers is more. Table 3.7
shows the evaluation loss values and the total parameters of the DLAM. Increasing the
number of stacked BiLSTM layers makes the DLAM deeper; hence the model learns
more features from the dataset, thus starts to decrease loss but increasing training
time. Also, the more the BiLSTM layers mean, the more overfitting, so we used 2
stacked BiLSTM layers with the following parameters.

14 Early Stopping: https://keras.io/api/callbacks/early_stopping/ (retrieved on 18 Mar 2020)

33

https://keras.io/api/callbacks/early_stopping/


Table 3.6: Parameters For The DLAM

Parameter Name Value1 Value2 Value3 Value4

Embedding Dimensions 64 128 256 1024

Max Sequence Length 50K 100K 150K 200K

Sequence Length 256 512 1024 -

Dropout Rate 0.01 0.1 0.2 0.5

Optimizer Adam RMSprop Adagrad SGD

Number of LSTM Hidden Cells 64 128 256 512

Number of BiLSTM Layers 1 2 3

Max Features 1000

Table 3.7: The effects of BiLSTM Layers on Validation Loss Change

BiLSTM Layers Loss Trainable Parameters

1 0.0414 437,249

2 0.0319 536,065

3 0.0206 634,881

In following experiments we used 2 stacked BiLSTM layers, with both have 64 hid-
den cells and decreased the number of epochs to 7 for each parameter.

Impact of maximum sentence length
We trained DLAM with the sentence lengths of 10K, 25K, 50K, and 100K, again
fixing other parameters. With 10K, 25K, and 50K, we saw that the model loss did
not reduce. Therefore, we understood that the sentences with a length of 100K was
enough to represent the full document. Since, the longer the sequence length means
the longer the training time and overfitting, we did not try sentence length higher than
100K, and fixed this value to 100K in DLAM.

Impact of Regularization and Normalization
To make our training noisy , we trained neural network with dropout rates 0.01, 0.1,
0.2, and 0.5 to find the best one for our data by keeping other parameters fixed. Since
the Keras supports Variational RNNs we used 0.5 for recurrent_dropout parameter
for each BiLSTM layers. And with a dropout rate of 0.2. After we added dropout rate
parameters in BiLSTM layers, we removed the initially added dropout layers follow-
ing each BiLSTM layers. Together with Variational RNN technique and a dropout
rate of 0.2 we observed late convergence of losses and accuracies as in Figure 3.7a,
Figure 3.7b, we show the results for DLAM in Figures 3.6a and 3.6b below.
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Table 3.8: The effects of Sentence Length on Validation Losses

Sentence Length Loss Accuracy

10K 0.0526 0.9780

25K 0.0371 0.9835

50K 0.0301 0.9835

100K 0.0277 0.9862

(a) Convergence of Accuracies (b) Convergence of Losses

Figure 3.6: Convergence Without Variational RNN in the DLAM

As we see in Figures 3.7a, 3.7b above, the training losses are higher than validation
losses. Although we expect the otherwise, according to the Keras documentation 15, it
may be observed with the usage of Regularization Mechanisms such as Dropout and
L1/L2 weight regularization, since those mechanisms are turned off during testing pe-
riod. We checked our initial loss before applying regularization methods as suggested
in (Karpathy, 2019). Since our training and validation sets are divided as 80:20, for
binary classification problem we expect the value as the result of the calculation.

−0.2ln(0.5)− 0.8ln(0.5) = 0.693147

The initial loss of the DLAM model outputs as 0.6425, with the values so close at
hand, it implies that the DLAM starts learning process randomly as expected.

Impact of Optimizers
15 Losses : https://keras.io/getting_started/faq/#why-is-my-training-loss-much-higher-than-my-testing-loss

(retrieved on: 20 Mar 2020)
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(a) Convergence of Accuracies (b) Convergence of Losses

Figure 3.7: Convergence With Variational RNN in the DLAM

Also, we trained on different optimizers with their default configurations. We found
that Adam and RMSprop achieved similar results. We preferred to use Adam since it
showed slightly better performance than RMSprop.

Impact of n-grams
We observed the increase in n-grams affects in a positive way, such that the loss
decreases and accuracy increases as seen in Table 3.9.

Table 3.9: The effects of n-grams on Validation Losses

n-grams Loss Accuracy

2 0.1833 0.9683

3 0.1179 0.9770

4 0.0301 0.9890

Impact of Pooling Methods
For the pooling layer we chose between Global Average Pooling and Global Max
Pooling strategy. We observed that the Global Max Pooling outperformed the Global
Average Pooling.

Impact of the number of LSTM Hidden Cells
Moreover, we decided the output number of the LSTM layer by modeling with dif-
ferent numbers of output nodes and comparing the loss and accuracy rates of their
results. With the 256 output nodes, the model loss was higher than others and the
convergence was early in terms of epoch numbers. But did not cause a significant
loss cause compared to 128, so we chose 128 as the output nodes of the DLAM
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layer, as the lesser parameter allows for faster training. We also used different output
modes provided by TextVectorization in the Keras, such as TF-IDF. However, with
the number of 1000 maximum features, TF-IDF performed poorly and we increased
the maximum features up to 10K. Increasing the maximum features significantly in-
creased the training time and trainable parameters close to 16M. Since 4-grams are
more effective in training time we preferred n-grams. We used the change of losses
as a sign for the parameters to be the most suitable for the DLAM and prepared it
accordingly. The proposed neural network model may be depicted as in Table 3.10.

Table 3.10: Model summary for the proposed DLAM.

Layer (type) Output Shape Param

embedding (Embedding) (None, None, 256) 256256

bidirectional_1 (Bidirectional (None, None, 256) 394240

bidirectional_2 (Bidirectional (None, None, 256) 394240

dropout_1 (Dropout) (None, None, 256) 0

global_max_pooling1d (Global (None, 256) 0

dropout_1 (Dropout) (None, 256) 0

dense_1 (Dense) (None, 128) 32896

dropout_2 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 1) 129

Total params : 1,077,761

Trainable params : 1,077,761

Non-trainable params : 0

After deciding the parameters we trained our model for different number of epochs to
understand how our model performs.

Impact of number of epochs Although we employed dropout and Variational RNNs
we experienced overfitting with 15 epochs. Validation accuracy seems to reach the
highest accuracy before the training accuracy. As we see on Figure 3.8, the training
and validation accuracies and losses converges close to the sixth epoch. After seven
epochs we see that our model is adapting itself according to the test set.

37



For this case, to prevent overfitting we stopped the training when the validation loss
was no longer decreasing. Then we trained and tested our model with five epochs to
obtain maximum accuracy and minimum loss.

(a) Validation Loss Change with Epochs (b) Accuracy Change with epochs

Figure 3.8: Overfitting Sample on the DLAM
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3.5 The Sentence Level Analysis Model (The SLAM)

We began with examining dataset for the SLAM. For maximum sentence length we
selected the group that represents 95% of the dataset. When we visualize the dataset
as in Figure 3.9, we decided to use 16, 25, and 30 for the maximum sentence length.

Figure 3.9: Sentence Length Distribution for the SLAM

Using the model we created in the DLAM we experimented with the values in Table
3.11 and with maximum feature count 1122 ( unique word count). We started with 2
BiLSTM layers.

Table 3.12 shows the summarization of SLAM created by the Keras with a total of
834,177 trainable parameters.
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Table 3.11: Parameter Values for The SLAM

Parameter Name Value1 Value2 Value3 Value4

Embedding Dimensions 128 256

Max Sequence Length 8 16 32

Sequence Length 16 -

Dropout Rate 0.01 0.1 0.2 0.5

Optimizer Adam RMSprop Adagrad SGD

Number of LSTM Output Node 128 256 512 1024

Number of BiLSTM Layers 1 2 3

Max Features 1122

Impact of maximum sentence length
We trained SLAM with the sentence lengths of 9, 16 and 25. The losses are shown in
Table 3.13 below.

Impact of Optimizers
Also, we trained on several known optimizers with their default configurations such
as Adam, RMSProp, Adagrad , Stochastic Gradient Descent (SGD) , and SGD with
momentum , fixing other parameters. We found that Adam and RMSprop achieved
similar results.

Impact of Embedding Dimension Length
With the values of 128 and 256, the SLAM didn’t show any significant improvement
in terms of loss as shown in Table 3.14.

Impact of n-grams
The validation losses regarding to n-gram values for 2, 3, and 4 are in shown in Table
3.15.

The most important thing that we may infer from the outputs above is that the model’s
hyperparameters do not significantly affect the validation loss. Hence, the sentence-
level representation of assembly instructions with the TextVectorization class may not
be sufficient for this task. With this finding, for the vectorization layer, we employed
different methods. Considering the assembly lengths, we examined the effectiveness
of methods in Word2Vec and DistilBERT.

With experiments related to word2vec to create the vector representations of assembly
instructions, we employed CBOW and Skip-Gram implementations. We fixed the
value for min_count parameter as 10 to ignore the assembly instructions that does
not occur more than 10. We used different parameters for window (looking back
and forward for number of window size words), and size. Using the values in Table
3.16, we trained word2vec for 8 times for 5 epochs. We fed the embedding layer in
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Table 3.12: Model summary for the initial SLAM.

Model: Initial SLAM

Layer (type) Output Shape Param

embedding_1 (Embedding) (None, None, 128) 143744

bidirectional_2 (Bidirectional (None, None, 256) 263168

bidirectional_3 (Bidirectional (None, None, 256) 394240

dropout_3 (Dropout) (None, None, 256) 0

global_average_pooling1d (Glob (None, 256) 0

dropout_4 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 128) 32896

dense_3 (Dense) (None, 1) 129

Total params : 834,177

Trainable params : 834,177

Non-trainable params : 0

Table 3.13: The effects of Maximum Sentence Lengths on Validation Losses

Sentence Lengths Losses

9 0.6646

16 0.6584

25 0.6530

the SLAM with the resulting vectors. Since word2vec creates and trains the word
vectors, we set trainable parameter of the embedding layer to false.

After we fed the embedding layer of the SLAM with word2vec weights, using the
values in the first column of Table 3.16, we had a deep neural network model as in
3.17.

We may infer from Table 3.17, that the network has more than 1M parameters but
866K parameters are trainable because of no training occurred in embedding layer.
We observed that with the CBOW implementation of word2vec and when window
size is 25, the loss decreased to the lowest and the accuracy increased to the high-
est among the other parameters.On the other hand with our setup environment, the
training time doubled in time, such as one epoch took nearly three hours. We pre-
sented Table 3.18 below, which shows the effectiveness of the algorithms regarding
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Table 3.14: The effects of Embedding Dimensions on Losses

Embedding Dimensions Losses

128 0.6462

256 0.6610

Table 3.15: Best Results for TextVectorization parameters on the SLAM

n-grams Loss Accuracy %

2 0.6425 56,1

3 0.6673 54,1

4 0.6898 53,7

to validation losses and validation accuracies.

Table 3.18: Effects of Word2Vec parameters on the SLAM

Algorithm Window Size size Loss Accuracy (%)

Cbow 25 300 0.554 61.69

Skipgram 10 300 0.538 63.72

For the third vectorization method, we employed transformers, using DistilBERT
on the same dataset. We used a pre-trained base model, distilbert-base-uncased, to
create the embeddings for the SLAM. Since DistilBERT outputs a tuple where the first
element is the last_hidden_state of the model’s last layer. We first fed the BiLSTM
layer using the hidden state from outputs. The model with DistilBERT embeddings
is shown in Table 3.19. We used 5000 for the batch size and 25 for the maximum
length. With two stacked BiLSTM layers, it took about six hours to train for one
epoch. With DistilBERT, the total parameters are 67,708,673. Since we did not
train the DistilBERT layers for the first experiment, the total trainable parameters
are 1,345,793. 3.20 After six epochs, the model achieved 70.4% accuracy with a
validation loss of 0.4340.
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Table 3.16: Word2Vec Parameters for the SLAM

Parameters Value 1 Value 2

Algorithm CBOW Skip Gram

Window Size 10 25

Size 100 300

Table 3.17: Model summary for the initial SLAM with Word2Vec.

Model: Initial SLAM with Word2Vec

Layer (type) Output Shape Param

embedding_1 (Embedding) (None, 10, 300) 144900

bidirectional_2 (Bidirectional (None, 10, 256) 439296

bidirectional_3 (Bidirectional (None, 256) 394240

dropout_3 (Dropout (None, 256) 0

dense_5 (Dense) (None, 128) 32896

dropout_6 (Dropout) (None, 128) 0

dense_6 (Dense) (None, 2) 258

Total params : 1,011,590

Trainable params : 866,690

Non-trainable params : 144,900

3.6 Summary

In this section, we presented the details of our methodology. We detailed the dataset
collection process, explained the different dataset formats, the environment we used
to train our neural network models, the required libraries and modules, the modeling
pipeline, and the parameters used in the modeling process. Briefly, we used language
modeling techniques in natural language processing (NLP) then we built the malware
detection model using assembly code. To instrument our methodology, we used mod-
ules from Tensorflow and Keras libraries on Python programming language and mod-
ules from the numpy, and Matplotlib libraries. For hyperparameter tuning we used
HParams and we presented the values we experimented on the parameters required
in the training and testing process. Lastly, to create features of short texts, assembly
instructions, we employed different vectorization methods such as TextVectorization,
Word2Vec and DistilBERT.
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Table 3.19: Model summary for the SLAM.

Model: SLAM with BERT

Layer (type) Output Shape Params

input_ids (InputLayer) [(None, 25)] 0

input_attention (InputLayer) [(None, 25)] 0

tf_distil_bert_model (TFDistilB ((None, 25, 768) 66362880

bidirectional_2 (Bidirectional (None, 25, 256) 918528

bidirectional_3 (Bidirectional (None, 25, 256) 394240

dropout_3 (Dropout) (None, 25, 256) 0

global_max_pooling1d (Glob (None, 256) 0

dropout_4 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 128) 32896

dropout_4 (Dropout) (None, 128) 0

dense_3 (Dense) (None, 1) 129

Total params : 67,708,673

Trainable params : 1,345,793

Non-trainable params : 66,362,880

Table 3.20: Effects of DistilBERT parameters on the SLAM

Trainable Parameters learning rate Loss Accuracy %

1,345,793 5e-5 0.484 68,36

67,708,673 2e-5 0.434 70,4
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CHAPTER 4

RESULTS

This section presents the results of the two models, namely the SLAM and the DLAM.

4.1 Evaluation Criteria

We evaluated the performances of the models based on the F1 score. F1 score con-
sists of precision and recall values which in themselves are performance evaluation
metrics. Precision measures the ratio of correctly identified positive cases against all
positive predicted cases. It is formulated as :

Precision =
TruePositive

(TruePositive+ FalsePositive)

Recall measures the ratio of correctly identified positive cases from all the actual
positive cases. It is summarized as:

Recall =
TruePositive

(TruePositive+ FalseNegative)

Based on those two metrics, the F1 score is calculated. The calculation based on Pre-
cision and Recall demonstrates the harmonic mean of those metrics and is accepted
as a more accurate value for model evaluation. F1 score formulated as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

F1 =
2 ∗ TruePositive

2 ∗ TruePositive+ FalsePositive+ FalseNegative

The TP, FP, FN, and TN values used for calculation of F1 score are visualized in
matrix created by sklearn.metrics package. Those values are selected according to
Table 4.1 below.
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Figure 4.1: The Confusion Matrix for reference.

4.2 SLAM (Sentence Level Analysis Model)

We conducted a total of 24 experiments for the SLAM, by manipulating the param-
eters listed in Table 3.11 and Table 3.16. We show the resulting number of correctly
and incorrectly classified samples in the confusion matrix 4.2.

Figure 4.2: The SLAM Confusion Matrix.

The confusion matrix of the test set from the evaluation process of SLAM shows
the number of true negatives (TN), the number of false negatives (FN), the number
of false positives (FP), and the number of true positives (TP). Hence, TN refers to
correctly recognized instructions as benign instructions. In contrast, TP refers to
correctly identified instructions as malicious instructions. Also, FP shows harmless
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instructions recognized as malicious, whereas the number of FN shows malicious
instructions recognized as benign. Using the values from confusion matix we may
calculate precision, recall and F1 score of the SLAM in Table 4.1.

Table 4.1: F1 Score Calculation of The SLAM

Term Definition Calculation

Precision TP
TP+FP

337202
337202+118649

= 0.739

Recall TP
TP+FN

337202
337202+155805

= 0.683

F1 2∗Precision∗Recall
Precision+Recall

2∗0.739∗0.683
0.739+0.683

= 0.704

4.3 DLAM (Document Level Analysis Model)

We conducted a total of 15 experiments for the DLAM, by manipulating the param-
eters listed in Table 3.6. We show the resulting number of correctly and incorrectly
classified samples in a confusion matrix 4.3.

Figure 4.3: The DLAM Confusion Matrix.

The confusion matrix of the test set from the evaluation process of DLAM shows
the number of true negatives (TN), the number of false negatives (FN), the number
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of false positives (FP), and the number of true positives (TP). Hence, TN refers to
correctly recognized documents as benign documents. In contrast, TP refers to the
correctly identified document as malicious documents. Also, FP shows harmless doc-
uments recognized as malicious, whereas the number of FN shows malicious docu-
ments recognized as benign. Using the values from confusion matix we may calculate
precision, recall and F1 score of the DLAM in Table 4.2.

Table 4.2: F1 Score Calculation of The DLAM

Term Definition Calculation

Precision TP
TP+FP

91
91+2

= 0.978

Recall TP
TP+FN

91
91+1

= 0.989

F1 2∗Precision∗Recall
Precision+Recall

2∗0.978∗0.989
0.978+0.989

= 0.983

4.4 Comparison

The findings of the models are shown in Table 4.3.

Table 4.3: Performances of The Models

Model Precision (%) Recall (%) F1 (%)

SLAM 73.9 68.3 70.4

DLAM 97.8 98.9 98.3

The information that we can deduct from the comparison table is that The DLAM
outperforms the SLAM. To explain why our initial model underperformed, we must
focus primarily on the underlying and processed dataset. Due to the short text form
at most nine assembly instructions used in SLAM, the applied feature selection and
extraction mechanisms did not fully represent the necessary features. Since we la-
beled each assembly instruction as malicious or benign depending on the source, we
also labeled the shared instructions between the classes that made the SLAM less
performant. When the F1 score is considered, we may infer that it includes meaning-
ful information and patterns to achieve a 70.40% F1 score. On the other hand, the
documents of assembly instructions which consist of more than one instruction, are
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contextually related. In addition to the relation of words in an assembly instruction,
there are also relations among the instructions documents-wise. Thus, the documents
with longer and more complex structures include more meaningful information and
more relations than instructions, resulting in the DLAM achieving a 98.30% F1 score.
In summary, the results of the final experiments on the two models suggest that the
Document Level Assembly Analysis Model (DLAM) exhibits a better structure for
Stacked BiLSTM based deep learning language modeling compared to the Sentence
Level Assembly Analysis Model (SLAM).

4.5 Discussion

The evolution of the studies related to malware detection began with the signature
extraction methods applied to executables. The signature databases, distributed over
the internet to the end-users online or offline, grew in time. However, malware devel-
opers used innovative approaches to bypass anti-malware applications. In answering
the methods applied to evade signature-based detection mechanisms, AI-based de-
tection methods became the best candidate. Due to the advancements in artificial
intelligence, studies related to AI-based detection mechanisms emerged. The early
AI-based studies employed Machine learning (ML) classification algorithms to iden-
tify malicious and benign and classify malware families. Among the most studied and
used classification algorithms may be listed as Random Forest (RF), Support Vector
Machine (SVM), and Decision Tree (DT) algorithms. Those classification algorithms
were applied to data obtained from malicious or benign files. ML classification meth-
ods require meaningful extracted and selected features in mathematical representation
from the data as in any computer system. The feature extraction methods to deploy
for ML classification algorithms are cumbersome due to time, domain knowledge,
and effort. So, in recent studies, since deep neural networks have an advantage over
ML in feature selection, extraction, and learning process, the focus was shifted from
ML to DL. Nowadays, deep neural network architectures are widely researched in
academic studies to identify malicious and benign software and classify malicious
files to their corresponding families. Since deep learning isn’t a single approach and
the number of architectures and topologies is wide and varied, researchers proposed
various architectures and methods such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), and attention mechanisms.

There are several recent studies focus on assembly code and detect malicious soft-
ware employing deep learning techniques. Studies employing RNN, LSTM or CNN
models for binary classification and also opcode, operand sequences as binary forms
or word forms. The study (Lu, 2019) used the LSTM network to distinguish ex-
ecutables between malicious or benign with opcode sequences as words. Another
study (Jahromi et al., 2020) used opcode and byte-code sequences with LSTM based
neural network to detect malware in IoT systems. On the other hand, (Kumar et al.,
2018) and (Khan et al., 2019) used binary form of the executables to create the im-
age representations and applied CNN based architectures to their dataset. Since we
aimed to detect sentence-level and document-level assembly sentences as benign and
malicious in this study, the accuracy rates of our proposed methods are in terms of
assembly instruction sequence classification rather than binary file or byte-code se-
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quences classification. Also, not all the studies employ the same processes regarding
feature extraction methods; some use byte-code, some used opcode, while others used
complete binary forms of executables. So, even if the meaning of the accuracy of the
methods and our proposed methods are different, we wanted to compare them to eval-
uate the performance/success of our proposed methods. The Table 4.4 below, gives
information about the employed deep learning architectures and the accuracy rate of
those models regarding percentage.

Table 4.4: Comparison of Models Used to Detect Malware

Study Architecture Accuracy

(Kumar et al., 2018) CNN 97.1

(Khan et al., 2019) ResNet 88.36

(Khan et al., 2019) GoogleNet 74.5

(Lu, 2019) LSTM 97,26

(Jahromi et al., 2020) LSTM 99,01 (AUC)

The SLAM BiLSTM 70.4

The DLAM BiLSTM 98.3

4.6 Open Problems

While studying the recent articles, and during our study we have noticed that some
points may be considered as open problems in malware detection domain. The first
problem is the datasets used in the researchs. Since the studies related to malware
domain doesn’t have a common or benchmark datasets, each research tried to create
their own dataset as we described in Section 2.3 like (Anderson & Roth, 2018; Ha-
rang & Rudd, 2020). This leads to the inability of making general comparisons of
the generated models and the models’ performances. For this reason, the topics that
researchers should avoid in methods using deep learning have become more evident
recently. Problems such as collecting datasets by researchers, making them accessi-
ble, and creating datasets that everyone may use come to the fore more. Besides, it is
seen that it is possible to generalize the deep learning models only with big data or a
common dataset. Therefore, it is not recommended to generalize research made with
limited resources. The issues that need special attention are briefly summarized in
the recently published article (Lones, 2021) on this aspect. Following the guidelines
provided by the article (Lones, 2021), we shared our dataset, which we used within
the scope of our study, in our Github repository1, including hash values and also the
DLAM architecture as python notebook. Furthermore, in our experiments, we tried to
ensure that our models produce healthy and comparable results by changing the ratios

1 Repository: https://github.com/d-demirci/binary_classification
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and places of the training set, test set, and validation sets (without data leakage among
them) and by using the data sets, we obtained from different sources. For example,
when we change the validation set to be used as test dataset and the test dataset as
validation dataset we saw that the model accuracy changed %0.5 in a positive way as
shown in files 2, 3. Another problem in deep learning-based models is randomly split-
ting the dataset into training, validation, and test sets. The studies rely on the provided
algorithms by libraries such as scikit-learn and the Keras. In this study, to overcome
this problem, and since it uses np.random.RandomState(seed), we preferred to use the
method, (tf.keras.preprocessing.text_dataset_from_directory), provided by the Keras
library, among the other methods. While using this library, it is critical to use the same
seed value when separating the dataset. This way,according to the numpy documen-
tation4 the generated random value5 is ensured to be the same every time, hence the
focus may be on developing the model. Otherwise, the change of random number in
each run will effect the consistency of the model. Especially after the model matures,
we ran the model with different seed values. This approach made the model consume
different samples in the dataset as training and validation sets. We experimented with
5 different values (24,49,63,75,82) for seed value and inspect the change in the ac-
curacy of the DLAM as in table 4.5. Another method to calculate the performance
of the DLAM may be as the mean of the accuracies in the table. Namely, we may
calculate the sum of accuracy rates and divide it by the number of runs. The result is
given in table ??. Besides, we calculated False Positive Rate of different runs. The
false positive rate is calculated as FP/FP+TN, where FP is the number of false posi-
tives and TN is the number of true negatives. It means the probability of a false alarm
and in the scope of the present study, it means that a benign file will be detected as
malware. And also this is another open problem in the models created using deep
learning since there are many ways to express the accuracy or the performance of the
models. The choice of which one/ones to use depends on the concerns of the studies6.
Some studies like (Jahromi et al., 2020) use AUC and some studies like (Vasan et al.,
2020) use F1 Score and some studies use the accuracy rates (Kumar et al., 2018; Lu,
2019) calculated using confusion matrix. In the present study we sticked with the F1
Score as we explained in Section 4.1.

2 Validation Set in fit method : https://github.com/d-demirci/binary_classification/blob/master/00_last_text_
classification_dlam_sorel_test_for_val.html

3 Testing Set in fit method: https://github.com/d-demirci/binary_classification/blob/master/00_last_text_
classification_dlam_sorel.html

4 NumpyPRNG:https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html#numpy.random.
PCG64 Retrieved on : 5 Sep 2021

5 Random Value Generation: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/
preprocessing/dataset_utils.py#L123 Retrieved on: 5 Sep 2021

6 Binary Classification Metrics: https://neptune.ai/blog/evaluation-metrics-binary-classification Retrieved on:
5 Sep 2021
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Table 4.5: Seed Value Effect on Performance

run # seed value accuracy (%) FP FN TP TN F1 Score (%) FPR

1 24 98,3 3 0 87 92 98,3050847 0,0315

2 49 99,4 0 1 89 92 99,4413408 0

3 63 99,4 1 0 90 91 99,4475138 0,0108

4 75 98,9 0 2 88 92 98,8764045 0

5 82 98,9 0 2 88 92 98,8764045 0

Mean Acc:98,98 Mean F1:98,989
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Malware detection methods have been studied since the early days of information sys-
tems. We first see a malware variant in 1971, namely Creeper System1. Creeper Sys-
tem caused the creation of its opponent, which is another malware, namely Reaper2,
and the need for a systematical approach to detect malware instead of deploying an-
other malware to remove existing malware. Since then, the sheer increase in usage of
the Internet and personal computers has made it easier for cybercriminals to expose
Internet users to widespread and damaging threats. The early detection mechanisms
relied on signatures identifying malware. However, techniques developed by mal-
ware authors to bypass antimalware applications increased the need for innovative
and fully automated malware detection methods. In the light of those needs, AI-based
detection methods became the best candidate due to the advancements in the artifi-
cial intelligence area. The early AI-based studies employed Machine learning (ML)
classification algorithms to classify the data obtained from malicious and benign soft-
ware. Since ML classification algorithms require time and effort for feature selection
and extraction, they do not provide fully automated methods. So, in recent studies, the
focus was shifted to deep learning (DL) based methods since deep neural networks
simulated the learning process better and provided smarter and faster agents. Nowa-
days, deep neural network architectures, particularly convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), are widely employed in academic
studies to classify malicious and benign software. The present research found that
malware detection by using assembly instructions with a Stacked BiLSTM based DL
Language Model is feasible. We found that incorporating techniques from natural
language processing (NLP), specifically, document-level analysis with word embed-
ding and bidirectional LSTMs (BiLSTM), dramatically improves the performance.
We also discovered that we could obtain even better performance by including a Vari-
ational RNN technique in our model. The DLAM model was able to detect files with
an average accuracy of over 98%. We conjecture that the context obtained from as-
sembly instructions in DLAM is the key to getting this strong performance. On the
other hand, the SLAM, our sentence-level analysis model performed poorly, due to
the short text nature of assembly instructions.

1 Creeper: http://virus.wikidot.com/creeper (retrieved on: 15 Jun 2021)
2 Reaper: http://virus.wikidot.com/nematode (retrieved on: 15 Jun 2021)
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5.2 Limitations and Future Work

The dataset consisted of the malware and benign files used in the present study is
limited to a few hundred files. Future research should address using improvements
of the data processing pipeline, developing a service of API for extracting assembly
instructions to collect them automatically for a given PE file. On the other hand, the
feature selection method used in the present study depends on the number of unique
words in assembly instructions. The number may be increased with a different sized
dataset to represent assembly instructions in a more general form. Moreover, word
embedding methods are limited to TF-IDF and n-grams provided by the TextVector-
ization module from Keras. Since deep-learning architectures are highly dependent
on computational power and the environment we experimented on is relatively weak,
we also did not increase the embedding dimensions. Due to the short text form at
most nine assembly instructions used in SLAM, the applied feature selection and ex-
traction mechanisms did not fully represent the necessary features. For future work,
since the DLAM model could detect files with an average accuracy above 98%; more
can be done to investigate why applying NLP techniques is effective in detecting
malware with regard to document-level analysis. The usage of an automatic hyper-
parameter tuning improved our model’s overall accuracy, and the use of Variational
RNN as a reqularization technique prevented early overfitting on DLAM. Apart from
the parameters, other methods can be considered—for example, experiments involv-
ing different word embedding algorithms (e.g., GloVe3 , BERT4 ) and using extensive
malware databases such as EMBER to create statically ready and more general em-
bedding representations, like the ones5 used in NLP tasks. Additionally, Positional
Embedding methods used in Generative Pre-Train Transformers (GPT-2) would be
worthwhile to research to increase the accuracy of the SLAM. Since attention-based
mechanisms (Vaswani et al., 2017) deployed in GPT-2 (Radford & Narasimhan, 2018;
Radford et al., 2019) architecture is claimed better in dealing with short texts. Further
research into the possible benefits of stacked BiLSTM and applying different embed-
ding methods in this problem domain would be of great interest. Finally, we believe
that it is essential to determine the steps and comparison methods of deep learning-
based studies as a scientific study methodology in the academic environment. To
conclude, it is evident that publishing the benchmark datasets to be used on a domain
basis and ensuring that all parties implement the steps specified in the article (Lones,
2021) will significantly contribute to the quality and re-creation of the future studies.

3 GloVe: https://nlp.stanford.edu/projects/glove/ (retrieved on: 21 Jan 2021)
4 BERT: https://github.com/google-research/bert (retrieved on:10 Feb 2021 )
5 Embedding Repository: http://vectors.nlpl.eu/repository/ (retrieved on: 27 July 2021)
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Appendix A

RESERVED SECTIONS IN PE

Table A.1: Reserved Sections in PE Header

Section Name Content

.bss Uninitialized data (free format)

.data Initialized data (free format)

.edata Export tables

.idata Import tables

.pdata Exception information

.rdata Read-only initialized data

.reloc Image relocations

.rsrc Resource directory

.text Executable code (free format)

Note. Additionally debug(debug symbols, types), cormeta(managed code), tls(Threadlocal storage),

idlsym (registerd seh).
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Appendix B

TEXT VECTORIZATION

B.1 Sample Text Vector

The output is created using 400 for the sequence_length parameter, and 3-grams in
TextVectorization class.

Vectorized opcode sequence (<tf.Tensor: shape=(1, 400), dtype=int64, numpy= ar-
ray([[ 23, 13, 20, 16, 71, 8, 6, 3, 15, 10, 8, 6, 3, 4, 10, 8, 6, 3, 4, 4, 39, 10, 8, 6, 3, 4,
10, 17, 21, 5, 3, 4, 8, 6, 3, 4, 2, 33, 8, 6, 3, 4, 10, 8, 6, 3, 4, 2, 10, 8, 6, 3, 4, 10, 151,
5, 3, 4, 8, 6, 3, 4, 10, 14, 62, 20, 18, 7, 16, 2, 129, 2, 7, 4, 2, 14, 19, 14, 2, 56, 2, 107,
56, 2, 53, 5, 3, 22, 11, 25, 28, 6, 3, 15, 2, 29, 48, 25, 6, 3, 18, 9, 48, 25, 6, 3, 18, 9,
48, 25, 5, 3, 18, 9, 34, 2, 86, 19, 59, 3, 13, 2, 56, 2, 48, 25, 6, 3, 18, 9, 28, 6, 3, 12, 2,
40, 28, 6, 3, 11, 12, 58, 2, 10, 28, 6, 3, 13, 2, 40, 60, 50, 62, 31, 4, 2, 8, 6, 3, 4, 10, 8,
6, 3, 4, 10, 8, 6, 3, 4, 10, 37, 13, 4, 24, 2, 2, 118, 15, 39, 84, 2, 118, 15, 39, 84, 2, 45,
30, 29, 28, 11, 5, 3, 9, 15, 77, 2, 119, 28, 5, 3, 11, 16, 77, 2, 11, 27, 4, 2, 84, 2, 121,
2, 22, 7, 19, 2, 14, 16, 119, 28, 11, 5, 3, 12, 15, 77, 2, 27, 4, 2, 84, 2, 14, 16, 52, 19,
5, 3, 15, 2, 2, 14, 4, 21, 13, 8, 6, 3, 4, 10, 8, 6, 3, 4, 10, 8, 4, 5, 3, 4, 8, 5, 3, 11, 4, 68,
2, 9, 8, 6, 3, 4, 10, 8, 6, 3, 4, 10, 8, 10, 29, 8, 6, 3, 11, 32, 8, 5, 3, 15, 12, 8, 5, 3, 18, 2,
4, 8, 6, 3, 4, 40, 8, 5, 3, 4, 2, 8, 6, 3, 4, 10, 8, 6, 3, 4, 10, 8, 6, 3, 4, 41, 8, 6, 3, 4, 10,
8, 6, 3, 4, 41, 8, 6, 3, 4, 10, 8, 6, 3, 4, 2, 10, 21, 4, 8, 6, 3, 4, 10, 45, 6, 3, 4, 10, 8, 6,
3, 4, 10, 8, 10, 6, 3, 4, 8, 6, 3, 4, 4, 39, 10, 8, 6, 3, 4, 10, 8, 6, 3, 4, 10, 8, 6, 3, 4, 10,
8, 10, 2, 8, 6, 3, 4, 10, 8, 6, 3]])>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
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