
INTEGRATING NEAR AND LONG-RANGE EVIDENCE FOR VISUAL
DETECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NERMİN SAMET

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

SEPTEMBER 2021

Approval of the thesis:

INTEGRATING NEAR AND LONG-RANGE EVIDENCE FOR VISUAL
DETECTION

submitted by NERMİN SAMET in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbaş
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering, METU

Prof. Dr. Pinar Duygulu Şahin
Computer Engineering, Hacettepe University

Assoc. Prof. Dr. Erkut Erdem
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Gökberk Cinbiş
Computer Engineering, METU

Date:08.09.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Nermin Samet

Signature :

iv

ABSTRACT

INTEGRATING NEAR AND LONG-RANGE EVIDENCE FOR VISUAL
DETECTION

Samet, Nermin
Ph.D., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

September 2021, 124 pages

This thesis presents HoughNet, a one-stage, anchor-free, voting-based, bottom-up

object detection method. Inspired by the Generalized Hough Transform, HoughNet

determines the presence of an object at a certain location by the sum of the votes

cast on that location. Votes are collected from both near and long-distance locations

based on a log-polar vote field. Thanks to this voting mechanism, HoughNet is able to

integrate both near and long-range, class-conditional evidence for visual recognition,

thereby generalizing and enhancing current object detection methodology, which typ-

ically relies on only local evidence. On the COCO dataset, HoughNet’s best model

achieves 46.4 AP (and 65.1 AP50), performing on par with the state-of-the-art in

bottom-up object detection and outperforming most major one-stage and two-stage

methods. We further validate the effectiveness of our proposal in other visual detec-

tion tasks, namely, video object detection, instance segmentation, 3D object detection,

keypoint detection for human pose estimation and whole-body human pose estima-

tion, face detection and an additional “labels to photo” image generation task, where

the integration of our voting module consistently improves performance in all cases.

In order to show the effectiveness of our proposal on whole-body human pose estima-

v

tion task, we developed a bottom-up, one-stage method called HPRNet. In HPRNet,

we build a hierarchical regression mechanism, where we define each of the whole-

body keypoints with a relative location (i.e. offset) to a specific point on the person

box.

In the context of this thesis we also propose a one-stage, anchor-free object detector,

PPDet, which integrates short-range interactions through voting. PPDet sum-pools

predictions stemming from individual features into a single prediction which allows

the model to reduce the contributions of non-discriminatory features during training.

Keywords: Object detection, voting, bottom-up recognition, Hough Transform, video

object detection, instance segmentation, 3D object detection, human pose estima-

tion, whole-body human pose estimation, face detection, image-to-image translation,

label-to-image translation

vi

ÖZ

GÖRSEL TANIMA PROBLEMLERİNE YAKIN VE UZUN MESAFELİ
KANITLARIN ENTEGRE EDİLMESİ

Samet, Nermin
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Eylül 2021 , 124 sayfa

Bu tez, tek-aşamalı, sınırlayıcı kutu içermeyen, oylamaya dayalı, aşağıdan-yukarıya

nesne tanıma yöntemi olan HoughNet’i sunar. Genelleştirilmiş Hough Dönüşümü’nden

esinlenen HoughNet, belirli bir konumdaki bir nesnenin varlığını, o konuma verilen

oyların toplamına göre belirler. Oylar, log-polar oy alanına dayalı olarak hem yakın

hem de uzak mesafelerden toplanır. Bu oylama mekanizması sayesinde, HoughNet

görsel tanıma için hem yakın hem de uzun mesafelı, sınıf koşullu kanıtları entegre

edebilir, böylece tipik olarak yalnızca yerel kanıtlara dayanan mevcut nesne algılama

metodolojisini genelleştirir ve geliştirir. COCO veri kümesinde, HoughNet’in en iyi

modeli 46.4 AP (ve 65.1 AP50) elde ederek aşağıdan-yukarıya nesne tanıma yöntem-

leri ile benzer seviyede başarım göstermiş ve bir çok ana tek-aşamalı ve iki-aşamalı

nesne tanıma yöntemlerini geride bırakmıştır. Önerdiğimiz yöntemin etkinliğini di-

ğer görsel tanıma problemlerinde, yani videolarda nesnesi tanıma, nesne bölütleme,

3B nesne tanıma, insan pozisyon kestirimi, tüm-vücut insan pozisyon kestirimi, yüz

tanıma ve ek olarak "etiketten fotoğrafa" görüntü oluşturma probleminde doğruladık.

Buna göre, oylama modülümüz entegre edildiği her durumda performansı sürekli ola-

vii

rak iyileştirmiştir.

Önerimizin tüm-vücut insan pozisyon kestirimi için etkinliğini göstermek için HPR-

Net adını verdiğimiz aşağıdan-yukarıya tek-aşamalı bir yöntem geliştirdik. HPR-

Net’te, tüm-vücut ana noktalarının her birini, insan sınırlayıcı kutu üzerindeki belirli

noktalara göreli bir konumla tanımladığımız hiyerarşik bir regresyon mekanizması

oluşturuyoruz.

Bu tez bağlamında ayrıca, oylama yoluyla kısa mesafeli etkileşimleri entegre eden,

tek-aşamalı, sınırlayıcı kutu içermeyen bir nesne tanıma yöntemi olan PPDet’i öne-

riyoruz. PPDet, tekil özniteliklerden elde edilen tahminleri tek bir tahminde toplar,

bu sayede eğitim sırasında ayırt edici olmayan özniteliklerin katkılarının azaltmasına

olanak tanır.

Anahtar Kelimeler: Nesne tanıma, oylama, aşağıdan-yukarıya nesne tanıma, Hough

Dönüşümü, videolarda nesne tanıma, nesne bölütleme, 3B nesne tanıma, insan pozis-

yon kestirimi, tüm-vücut insan pozisyon kestirimi, yüz tanıma, görüntüden görüntüye

çeviri, etiketten görüntüye çeviri

viii

This thesis is dedicated to Mustafa Kemal ATATÜRK.

ix

ACKNOWLEDGMENTS

This thesis is being written during the tail end of the COVID19 pandemic with the

support of the great people in my life.

I cannot thank my supervisor Assist. Prof. Dr. Emre Akbas enough for all of his

guidance, knowledge, help and support over the years. I have learned so much from

him. His acute insight brought my research to a higher level.

I would like to thank my doctoral thesis monitoring committee members, Assoc. Prof.

Dr. Sinan Kalkan and Assoc. Prof. Dr. Erkut Erdem, for their valuable discussions

and feedback throughout my studies.

I would also like to thank my thesis defense jury members, Prof. Dr. Pinar Duygulu

and Assist. Prof. Dr. Gokberk Cinbis for accepting to review my thesis.

My warmest thanks also go to Prof. Dr. Fatos Yarman Vural and my labmates at

METU ImageLab for the joyful moments we had in the lab.

Finally, my most sincere thanks go out to my family, my friends - Hunlar, and lastly

but not least, to Samet, my best friend and love who shared every moment of struggle,

fail, success and excitement with me on this journey.

This work was supported by the Scientific and Technological Research Council of

Turkey (TÜBİTAK) through the project titled “Object Detection in Videos with Deep

Neural Networks" (grant #117E054). The numerical calculations reported in this

paper were partially performed at TÜBİTAK ULAKBİM, High Performance and Grid

Computing Center (TRUBA resources). I also gratefully acknowledge the support of

the AWS Cloud Credits for Research program.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition and Scope of the Thesis 1

1.1.1 Prediction Pooling Detector 4

1.1.2 Hierarchical Point Regression for Whole-Body Human Pose
Estimation . 5

1.2 Contributions . 6

1.3 The Outline of the Thesis . 6

2 RELATED WORK . 9

2.1 Generalized Hough Transform . 9

2.2 Non-deep, Voting-based Object Detection Methods 10

xi

2.3 Deep, Voting-based Object Detection Methods 12

2.4 Bottom-up Object Detection Methods 13

2.5 Methods using Log-polar Fields and Representations 13

2.6 Context Modeling in Object Detection 14

2.6.1 Detection with Scene Level Context 14

2.6.2 Detection with Instance Level Context 15

3 HOUGHNET: MODELS AND METHOD 19

3.1 The Log-polar “Vote Field” . 19

3.2 Voting Module . 20

3.3 Network Architecture . 22

3.4 Spatio-temporal Voting . 23

4 EXPERIMENTAL ANALYSIS OF HOUGH VOTING ON DIFFERENT
VISION PROBLEMS . 25

4.1 COCO minitrain . 26

4.2 Hough Voting for Object Detection 28

4.2.1 Ablation Experiments . 28

4.2.1.1 Angle Bins . 28

4.2.1.2 Effects of Center and Periphery 29

4.2.1.3 Ring Count . 30

4.2.1.4 Voting Module vs. Dilated Convolution 30

4.2.2 Comparison with Baseline 31

4.2.3 Comparison with the State-of-the-art 32

4.2.4 Analysis . 35

xii

4.2.4.1 Error Sources . 35

4.2.4.2 Interaction among Object Classes 36

4.2.5 A Scalable Approach to Voting (independent of number of
classes) . 37

4.3 Hough Voting for Other Visual Detection Tasks 39

4.3.1 Video Object Detection . 39

4.3.2 Instance Segmentation . 40

4.3.3 3D Object Detection . 42

4.3.4 2D Human Pose Estimation 43

4.3.5 2D Whole-body Human Pose Estimation 46

4.3.6 Face Detection . 46

4.4 Hough Voting for an Image Generation Task 47

4.5 Comparing HoughNet with Context Models 49

5 REDUCING LABEL NOISE IN ANCHOR-FREE OBJECT DETECTION . 51

5.1 Introduction . 51

5.2 Related Work . 53

5.3 Methods . 55

5.3.1 Labeling Strategy and Training 55

5.3.2 Inference . 56

5.3.3 Network Architecture . 58

5.4 Experiments . 58

5.4.1 Implementation Details . 58

5.4.2 Ablation Experiments . 59

xiii

5.4.2.1 Size of the “Positive Area” 59

5.4.2.2 Regression Loss Weight 59

5.4.2.3 Improvements . 60

5.4.2.4 Class Imbalance . 60

5.4.3 State-of-the-art Comparison 61

5.5 Conclusion . 64

6 HIERARCHICAL POINT REGRESSION FOR WHOLE-BODY HUMAN
POSE ESTIMATION . 67

6.1 Introduction . 67

6.2 Related Work . 70

6.2.1 Human Body Pose Estimation 70

6.2.2 Whole-body Pose Estimation 71

6.3 Model . 72

6.3.1 Hierarchical Regression of Whole-Body Keypoints 73

6.3.2 Regression of Foot Keypoints 75

6.3.3 Network Architecture . 75

6.3.4 Objective Functions . 77

6.4 Experiments . 78

6.4.1 Implementation Details . 79

6.4.2 Hierarchical Model-I vs Hierarchical Model-II 79

6.4.3 Comparison with Baseline 80

6.4.4 Comparison with the State-of-the-art 80

6.4.5 Runtime Analysis . 81

xiv

6.4.6 Face Detection from Keypoints 82

6.5 Conclusion . 84

7 CONCLUSION . 85

7.1 Limitations and Future Work . 86

REFERENCES . 89

A A STEP-BY-STEP ANIMATION OF THE VOTING PROCESS. 107

B COCO MINITRAIN STATISTICS . 109

C MORE VISUAL RESULTS ON OBJECT DETECTION 119

D INTERACTION AMONG OBJECT CLASSES 123

xv

LIST OF TABLES

TABLES

Table 4.1 Object Detector performances trained on minitrain vs train2017.

Models are evaluated on val2017. 27

Table 4.2 Object Detector performances. Models are trained on minitrain

and evaluated on val2017. 27

Table 4.3 Ablation experiments for the vote field. 29

Table 4.4 Comparing our voting module to an equivalent dilated convolution

filter. 31

Table 4.5 HoughNet results on COCO val2017 set for different training

setups. 31

Table 4.6 Comparison of object detection with baseline (OAP) on val2017. . 32

Table 4.7 Comparison with the state-of-the-art on COCO test-dev. 33

Table 4.8 Effect of voting module on three major error types. 36

Table 4.9 Ablation experiments for the scalable voting module. 38

Table 4.10 Results of video object detection on ImageNet VID validation set. . 40

Table 4.11 Effect of voting module for the instance segmentation task 42

Table 4.12 Effect of voting module for the 3D object detection task. 43

Table 4.13 Comparing our voting module with baseline for 2D human pose

estimation . 44

xvi

Table 4.14 Comparing our voting module with baseline model (HPRNet) for

2D whole-body human pose estimation. 46

Table 4.15 Comparing our voting module with baseline for face detection. . . . 47

Table 4.16 Comparison of FCN and LPIPS Scores for the “Labels to Photo”

Task on the Cityscapes Dataset [1]. 47

Table 4.17 Comparison with context models. 49

Table 5.1 Experiments to determine the best shrink factor. 59

Table 5.2 Experiments on regression loss (RL) weight. 60

Table 5.3 Experiments on improvements. 61

Table 5.4 Detection performances on COCO test-dev set. 62

Table 6.1 Comparison of Hierarchical Model-I and Hierarchical Model-II . . . 79

Table 6.2 Comparing HPRNet with the baseline model. 80

Table 6.3 Comparison with the state-of-the-art on COCO WholeBody valida-

tion set. 81

Table 6.4 Face detection results. 83

xvii

LIST OF FIGURES

FIGURES

Figure 1.1 A sample “mouse” detection by HoughNet and its vote map. . . 2

Figure 1.2 A sample “baseball bat” detection by HoughNet and its vote map. 3

Figure 2.1 A line in the image space corresponds to a point in the Hough

space. 10

Figure 2.2 An example result of a Hough transform on a raster image con-

taining two lines. 11

Figure 2.3 A shape defined by its boundary points and a reference point. . . 12

Figure 3.1 Overview of the processing pipeline of HoughNet. Image is

taken from our ECCV’20 paper [2]. 19

Figure 3.2 A log-polar “vote field” used in the voting module of HoughNet. 20

Figure 3.3 Voting process for a single class. 21

Figure 3.4 Processing pipeline of HoughNet for video object detection . . . 23

Figure 4.1 Performance validation for COCO minitrain. 26

Figure 4.2 Sample detections of HoughNet and their vote maps. 34

Figure 4.3 Object detection voting activity map. 37

Figure 4.4 A scalable variant of our voting process. 38

Figure 4.5 Baseline model for instance segmentation. 41

xviii

Figure 4.6 HoughNet for instance segmentation. 41

Figure 4.7 Sample car detections of HoughNet from KITTI dataset. 43

Figure 4.8 Sample keypoint detections of HoughNet and their vote maps. . . 45

Figure 4.9 Sample qualitative results for the “labels to photo” task. 48

Figure 5.1 Sample detections by PPDet. 52

Figure 5.2 Prediction pooling during training of PPDet 56

Figure 5.3 PPDet’s inference pipeline. 57

Figure 5.4 Feature locations that are responsible for detection. 64

Figure 6.1 Whole-body keypoints in the COCO WholeBody dataset. 68

Figure 6.2 HPRNet architecture for whole-body keypoint detection. 73

Figure 6.3 All regressed keypoints in HPRNet. 74

Figure 6.4 Hierarchical representations of whole-body keypoints. 76

Figure 6.5 Sample whole-body keypoint detection results of HPRNet. . . . 82

Figure 6.6 Runtime analysis of ZoomNet and HPRNet. 83

Figure A.1 A step-by-step animation of the voting process. 108

Figure B.1 (Top) Total annotations (i.e. object instances) normalized with

total image counts in the dataset. (Bottom) Person annotations normal-

ized with total image counts in the dataset. 110

Figure B.2 (Top) Total annotations normalized with total annotation counts

in the dataset. (Bottom) Person annotations normalized with total an-

notation counts in the dataset. 111

xix

Figure B.3 (Top) Small annotations normalized with total image counts in

the dataset. (Bottom) Small Person annotations normalized with total

image counts in the dataset. 112

Figure B.4 (Top) Small annotations normalized with total annotation counts

in the dataset. (Bottom) Small Person annotations normalized with total

annotation counts in the dataset. 113

Figure B.5 (Top) Medium annotations normalized with total image counts

in the dataset. (Bottom) Medium Person annotations normalized with

total image counts in the dataset. 114

Figure B.6 (Top) Medium annotations normalized with total annotation counts

in the dataset. (Bottom) Medium Person annotations normalized with

total annotation counts in the dataset. 115

Figure B.7 (Top) Large annotations normalized with total image counts in

the dataset. (Bottom) Large Person annotations normalized with total

image counts in the dataset. 116

Figure B.8 (Top) Large annotations normalized with total annotation counts

in the dataset. (Bottom) Large Person annotations normalized with total

annotation counts in the dataset. 117

Figure C.1 Fire hydrant detection gets strong votes from cars, person, build-

ings and road. 120

Figure C.2 Tennis racket detection gets strong votes from person. 120

Figure C.3 Ski detection gets strong votes from other ski, ski baton and person.120

Figure C.4 Kite detection gets strong votes from person and sky. 121

Figure C.5 Sports ball detection gets strong votes from person. 121

Figure C.6 Television detection gets strong votes from common things in a

living room such as paintings at the wall and books in the shelf. 121

xx

Figure C.7 Remote detection gets strong votes from television and chair

objects. 122

Figure C.8 Television detection gets strong votes from things in a living

room such as lamp (is not among 80 classes of COCO dataset), chair

and couch. 122

Figure C.9 Television detection gets strong votes from things in a kitchen

such as lamp (is not among 80 classes of COCO dataset), and couch. . . 122

Figure D.1 We present the 80 × 80 matrix to visualize voting relations

between classes on the COCO dataset. Matrix rows are vote-getters

classes and columns are voters. 124

xxi

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AOS Average Orientation Score

AP Average Precision

BEV Bird-eye-view Bounding Box

BKH Body Keypoint Heatmap

CNN Convolutional Neural Network

DLA Deep Layer Aggregation

FCN Fully Convolutional Networks

FL Focal Loss

FN False Negative

FP False Positive

FPN Feature Pyramid Network

FPS Frame per Second

GHT Generalized Hough Transform

GT Ground-truth

HG Hourglass-104

HM-I Hierarchical Model-I

HM-II Hierarchical Model-II

HPRNet Hierarchical Point Regression Network

IoU Intersection over Union

ISM Implicit Shape Model

LPIPS Learned Perceptual Image Patch Similarity

xxii

LRP Localization Recall Precision

mAP Mean Average Precision

moLRP Mean Optimal LRP

MS Multi-scale

NLNN Non-local Neural Networks

NMS Non-maximum Supression

OAP Objects as Points

PAF Part Affinity Fields

PCH Person Center Heatmap

PPDet Prediction Pooling Detector

RL Regression Loss

RN Relation Networks

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SN Single Network

SOTA State-of-the-art

SS Single-scale

VEP Visual Evidence Prediction

xxiii

xxiv

CHAPTER 1

INTRODUCTION

This chapter is adopted from our ECCV’20 paper [2] and its extension [3].

Deep learning has brought on remarkable improvements in object detection. Perfor-

mance on widely used benchmark datasets, as measured by mean average-precision

(mAP), has at least doubled (from 0.33 mAP [4] [5] to 0.80 mAP on PASCAL

VOC [6]; and from 0.2 mAP [7] to around 0.5 mAP on COCO [8]) in comparison to

the pre-deep-learning, shallow methods. Current state-of-the-art, deep learning based

object detectors [9, 10, 11, 8] predominantly follow a top-down approach where ob-

jects are detected holistically via rectangular region classification. This was not the

case with the pre-deep-learning methods. The bottom-up approach was a major re-

search focus as exemplified by the prominent voting-based (the Implicit Shape Model

[12]) and part-based (the Deformable Parts Model [13]) methods. However, today,

among deep learning based object detectors, the bottom-up approach has not been

sufficiently explored with a few exceptions (e.g. CornerNet [14], ExtremeNet [15]).

1.1 Problem Definition and Scope of the Thesis

In this thesis, we propose HoughNet, a one-stage, anchor-free, voting-based, bottom-

up object detection method. HoughNet is based on the idea of voting, inspired by the

Generalized Hough Transform [16, 17]. In its most generic form, the goal of GHT

is to detect a whole shape based on its parts. Each part produces a hypothesis, i.e.

casts its vote, regarding the location of the whole shape. Then, the location with the

most votes is selected as the result. Similarly, in HoughNet, the presence of an object

belonging to a certain class at a particular location is determined by the sum of the

1

Figure 1.1: (Left) A sample “mouse” detection, shown with yellow bounding box,

by HoughNet. (Right) The locations that vote for this detection. Colors indicate vote

strength. In addition to the local votes originating from the mouse itself, there are

strong votes from nearby “keyboard” objects, which shows that HoughNet is able to

utilize both short and long-range evidence for detection. More examples can be seen

in Figure 4.2. Image is taken from our ECCV’20 paper [2].

class-conditional votes cast on that location (Figure 1.1). HoughNet processes the

input image using a convolutional neural network to produce an intermediate score

map per class. Scores in these maps indicate the presence of visual structures that

would support the detection of an object instance. These structures could be object

parts, partial objects or patterns belonging to the same or other classes. We name

these score maps as “visual evidence” maps. Each spatial location in a visual evi-

dence map votes for target areas that are likely to contain objects. Target areas are

determined by placing a log-polar grid, which we call the “vote field,” centered at

the voter location. The purpose of using a log-polar vote field is to reduce the spatial

precision of the vote as the distance between voter location and target area increases.

This is inspired by foveated vision systems found in nature, where the spatial reso-

lution rapidly decreases from the fovea towards the periphery [18]. Once all visual

evidence is processed through voting, the accumulated votes are recorded in object

presence maps, where the peaks indicate the presence of object instances.

Current state-of-the-art object detectors rely on local or short-range visual evidence

to decide whether there is an object at that location (as in top-down methods) or

an important keypoint such as a corner (as in bottom-up methods). On the other

hand, HoughNet is able to integrate both short and long-range visual evidence at

2

Figure 1.2: (Left) A sample “baseball bat” detection, shown with yellow bounding

box, by HoughNet. (Right) The locations that vote for this detection. Colors indicate

vote strength. A ball on the right-edge of the image is voting for the baseball bat on

the left-edge. Image is taken from our ECCV’20 paper [2].

the same time through voting. An example is illustrated in Figure 1.1, where the

detected mouse gets strong votes from two keyboards, one of which is literally at the

other side of the image. In another example (Figure 1.2), a ball on the right-edge

of the image is voting for the baseball bat on the left-edge. On the COCO dataset,

HoughNet achieves comparable results with the state-of-the-art bottom-up detector

CenterNet [19], while being the fastest among bottom-up detectors. It outperforms

prominent one-stage (RetinaNet [8]) and two-stage detectors (Faster RCNN [9], Mask

RCNN [20]). Within the scope of this study, we published the following paper:

• N. Samet, S. Hicsonmez, E. Akbas, "HoughNet: Integrating near and long-

range evidence for bottom-up object detection", European Conference on Com-

puter Vision (ECCV), 2020.

During model development of HoughNet to deal with the large number of training

experiments and ablation studies, we curated “COCO minitrain”, a mini training

set for COCO. We validated COCO minitrain in two ways by (i) showing that

the COCO val2017 performance of a model trained on COCO minitrain is

strongly positively correlated with the performance of the same model trained on

COCO train2017, and (ii) showing that COCO minitrain set preserves the

object instance statististics.

We showed that our Hough voting module is effective not only in object detection but

3

also in other visual detection tasks as well: video object detection (Sections 3.4 and

4.3.1), instance segmentation (Section 4.3.2), human pose estimation, i.e. keypoint

detection (Section 4.3.4), whole-body human pose estimation (Section 4.3.5), 3D ob-

ject detection (Section 4.3.3) and face detection (Section 4.3.6). For video object

detection we extended voting in spatial domain to the temporal domain by develop-

ing a new method, which takes the difference of features from two frames, and applies

spatial and temporal voting using our “temporal voting module” to detect objects. We

showed the effectiveness of this method in video object detection (Sections 4.3.1). We

also developed a “scalable” variant of HoughNet where the number of voting opera-

tions does not depend on the number of object classes (Section 4.2.5) and showed that

it dramatically improves inference speed with a slight drop in accuracy. Furthermore,

we examined the relations between vote-giver and vote-getter classes (Section 4.2.4),

and evaluated HoughNet’s performance using localisation, recall, precision (LRP)

metrics [21, 22] to identify and compare the source of errors. Our extended work on

HoughNet is currently under review at a reputable journal.

1.1.1 Prediction Pooling Detector

While working on HoughNet, we also developed another object detection model,

PPDet, which integrates only short-range interactions through voting (Chapter 5).

PPDet effectively reduces the label noise during training. Current anchor-free object

detectors label all the features that spatially fall inside a predefined central region of a

ground-truth box as positive. This approach causes label noise during training, since

some of these positively labeled features may be on the background or an occluder

object, or they are simply not discriminative features. In PPDet, we propose a new

labeling strategy aimed to reduce the label noise in anchor-free detectors. We sum-

pool predictions stemming from individual features into a single prediction. This

allows the model to reduce the contributions of non-discriminatory features during

training. We develop a new one-stage, anchor-free object detector, PPDet, to employ

this labeling strategy during training and a similar prediction pooling method dur-

ing inference. On the COCO dataset, PPDet achieves the best performance among

anchor-free top-down detectors and performs on-par with the other state-of-the-art

methods. It also outperforms all major one-stage and two-stage methods in small ob-

4

ject detection (APS 31.4). Within the scope of this study, we published the following

paper:

• N. Samet, S. Hicsonmez, E. Akbas, "Reducing Label Noise in Anchor-Free

Object Detection", British Machine Vision Conference (BMVC), 2020.

In both HoughNet (ECCV’20) and PPDet (BMVC’20) publications, there was a third

author: Samet Hicsonmez, who is a PhD candidate at the Department of Computer

Engineering, Hacettepe University. He was responsible for preparing visual results

and managing experimental runs, in both publications.

1.1.2 Hierarchical Point Regression for Whole-Body Human Pose Estimation

One task we show the effectiveness of our voting module is whole-body pose esti-

mation. Whole-body pose estimation task is a very recent task [23]. Even though

existing two-stage methods obtains state-of-the-art results, their run time increases as

the number of person instances increase, and existing one-stage methods performs

poorly. Based on this fact, we first developed HPRNet (Chapter 6). In HPRNet, we

present a new bottom-up one-stage method for whole-body pose estimation, which

we call “hierarchical point regression,” or HPRNet for short. In standard body pose

estimation, the locations of ∼ 17 major joints on the human body are estimated. Dif-

ferently, in whole-body pose estimation, the locations of fine-grained keypoints (68

on face, 21 on each hand and 3 on each foot) are estimated as well, which creates

a scale variance problem that needs to be addressed. To handle the scale variance

among different body parts, we build a hierarchical point representation of body parts

and jointly regress them. The relative locations of fine-grained keypoints in each part

(e.g. face) are regressed in reference to the center of that part, whose location itself

is estimated relative to the person center. In addition, unlike the existing two-stage

methods, our method predicts whole-body pose in a constant time independent of the

number of people in an image. On the COCO WholeBody dataset, HPRNet signif-

icantly outperforms all previous bottom-up methods on the keypoint detection of all

whole-body parts (i.e. body, foot, face and hand); it also achieves state-of-the-art re-

sults on face (75.4 AP) and hand (50.4 AP) keypoint detection. Within the scope of

5

this study, we published the following paper:

• Nermin Samet, Emre Akbas, "HPRNet: Hierarchical point regression for whole-

body human pose estimation", Image and Vision Computing, Volume 115,

2021, 104285, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2021.104285.

1.2 Contributions

Our contributions in this thesis are as follows:

• We developed HoughNet, a novel voting-based detection method that is able to

integrate near and long-range evidence.

• We extended HoughNet and showed that the voting mechanism of HoughNet

is effective for other visual detection tasks as well: instance segmentation, 3D

object detection, keypoint detection for human pose estimation and whole-body

human pose estimation, face detection and “labels to photo” image generation

task.

• We developed a spatio-temporal voting module and showed its effectiveness on

video object detection task.

• We developed a novel object detection model PPDet and showed its effective-

ness on reducing label noise in top-down anchor-free object detection.

• We developed a bottom-up one stage whole-body human pose estimation model

called HPRNet.

1.3 The Outline of the Thesis

Chapter 2 explains Generalized Hough Transform and presents the previous works

related to non-deep voting-based object detection methods, deep voting-based object

detection methods, bottom-up object detection methods, log-polar fields/representa-

tions and context modeling in object detection. In Chapter 3, we describe our method

6

and explain the details of the log-polar “vote field”, voting module, our network ar-

chitecture, spatio-temporal voting process. In Chapter 4, we show the effectiveness

of our proposed method on object detection and other visual detection tasks, namely,

video object detection, instance segmentation, 3D object detection, keypoint detec-

tion for 2D human pose estimation and 2D whole-body human pose estimation, and

face detection. We mostly focus on object detection and include (i) ablation exper-

iments through which we studied how different parameters of the vote field affect

the performance, (ii) comparison with baseline, (iii) comparison with state-of-the-art,

(iii) an analysis section and (iv) a scalable voting approach where the number of “vi-

sual evidence tensors” does not depend on the number of object classes. We also

include an image generation task in the context of “label-to-photo” translation at the

end. Chapter 5 describe PPDet and Chapter 6 presents HPRNet in detail. Finally,

Chapter 7 concludes the thesis.

Chapter 1, Chapter 2, Chapter 3 and Chapter 4 are adopted from our ECCV’20 pa-

per [2] and its extension [3]. Chapter 6 is based on our BMVC’20 paper [24] and

Chapter 6 is based on our IMAVIS journal paper [25].

7

8

CHAPTER 2

RELATED WORK

This chapter is adopted from our ECCV’20 paper [2] and its extension [3].

2.1 Generalized Hough Transform

Hough transformation is a voting scheme that was first developed to detect analytical

features such as lines, circles, ellipses [16]. For this purpose, parameter space is

discretized into boxes. Each feature of the image, votes for the boxes in the parameter

space that likely to create itself. A line in the image space corresponds to a point in

the Hough space (see Figure 2.1). Since the values that the parameters can get are not

limited in the Cartesian space and the vertical lines are faced with the infinite slope

problem, the votes are collected in the polar coordinate system in the Hough space.

Figure 2.2 shows the collected votes from the points on two lines in the Hough space.

The regions that did not get any votes are black, while the points that collected the

most votes are observed as bright.

The Hough Transformation was later expanded to the generalized Hough Transform

(GHT) [17] to be used for the detection of arbitrary shapes. Generalized Hough Trans-

form is essentially a method for object recognition and consists of the following steps;

1) a reference point is selected on the object, 2) the displacement vectors between the

selected reference point and the points on the boundary of the object, and the angle θ

(gradient direction) are calculated (see Figure 2.3), 3) in the last step, the calculated

displacement vectors are indexed with the angle θ and stored in a table. With the help

of this table, we switch to the Hough space.

9

Figure 2.1: A line in the image space corresponds to a point in the Hough space.

Image source: https://towardsdatascience.com/lines-detection

-with-hough-transform-84020b3b1549

The GHT model is noise tolerant and robust to partial or slightly deformed shapes

(i.e., robust to recognition under occlusion). The Hough transform is also robust to

scale variations and rotations.

2.2 Non-deep, Voting-based Object Detection Methods

In the pre-deep learning era, Generalized Hough Transform (GHT) based voting

methods have been used for object detection. The most influential work was the

Implicit Shape Model (ISM) [12]. In ISM, Leibe et al. [12] applied GHT for object

detection/recognition and segmentation. During the training of the ISM, first, inter-

est points are extracted and then a visual codebook (i.e. dictionary) is created using

an unsupervised clustering algorithm applied on the patches extracted around inter-

est points. Next, the algorithm matches the patches around each interest point to the

visual word with the smallest distance. In the last step, the positions of the patches

relative to the center of the object are associated with the corresponding visual words

and stored in a table. During inference, patches extracted around interest points are

matched to closest visual words. Each matched visual word casts votes for the object

center. In the last stage, the location that has the most votes is identified, and object

detection is performed using the patches that vote for this location. Later, ISM was

further extended with discriminative frameworks [26, 27, 28, 29, 30]. Okada [26]

ensembled randomized trees using image patches as voting elements. Similarly, Gall

10

https://towardsdatascience.com/lines-detection-with-hough-transform-84020b3b1549
https://towardsdatascience.com/lines-detection-with-hough-transform-84020b3b1549

Figure 2.2: An example result of a Hough transform on a raster image containing two

lines. Image source: https://scikit-image.org/docs/0.11.x/aut

o_examples/plot_line_hough_transform.html

and Lempitsky [27] proposed to learn a mapping between image patches and votes

using random forests. In order to fix the accumulation of inconsistent votes of ISM,

Razavi et al. [28] augmented the Hough space with latent variables to enforce consis-

tency between votes. In Max-margin Hough Transform [29], Maji and Malik showed

the importance of learning visual words in a discriminative max-margin framework.

Barinova et al. [30] detected multiple objects using energy optimization instead of

non-maxima suppression peak selection of ISM.

HoughNet is similar to ISM and its variants described above only at the idea level as

all are voting based methods. There are two major differences: (i) HoughNet uses

deep neural networks for part/feature (i.e. visual evidence) estimation, whereas ISM

uses hand-crafted features; (ii) ISM uses a discrete set of visual words (obtained by

unsupervised clustering) and each word’s vote is exactly known (stored in a table)

after training. In HoughNet, however, there is not a discrete set of words and vote is

carried through a log-polar vote field which takes into account the location precision

as a function of target area.

11

https://scikit-image.org/docs/0.11.x/auto_examples/plot_line_hough_transform.html
https://scikit-image.org/docs/0.11.x/auto_examples/plot_line_hough_transform.html

Figure 2.3: A shape defined by its boundary points and a reference point. For each

point p on the boundary, we compute the displacement vector as a function of gradient

orientation θ. Image source: https://slideplayer.com/slide/531031

4/

2.3 Deep, Voting-based Object Detection Methods

Qi et al. [31] apply Hough voting for 3D object detection in point clouds. Sheshkus et

al. [32] utilize Hough transform for vanishing points detection in the documents. For

automatic pedestrian and car detection, Gabriel et al. [33] proposed using discrim-

inative generalized Hough transform for proposal generation in edge images, later

to further refine the boxes, they fed these proposals to deep networks. In the deep

learning era, we are not the first to use a log-polar vote field in a voting-based model.

Lifshitz et al. [34] used a log-polar map to estimate keypoints for single person human

pose estimation. Apart from the fact that they are tackling a different problem (human

pose estimation), there are several subtle differences. First, they prepare ground truth

voting maps for each keypoint such that keypoints vote for every other one depending

on its relative position in the log polar map. This requires manually creating static

voting maps. Specifically, their model learns H ×W ×R× C voting map, where R

is the number of bins and C is the augmented keypoints. In order to produce keypoint

heatmaps, they perform vote agregation at test phase. Second, this design restricts the

model to learn only the keypoint locations as voters. When we consider the object

detection task and its complexity, it is not trivial to decide on vote-giving locations for

objects or prepare ground-truth voting maps as in human pose estimation. Moreover,

this design limits the voters to reside only inside of the object (e.g. person), whereas

in our approach an object could get votes from far away regions. To overcome these

issues, unlike their model we apply vote aggregation during training (they perform

12

https://slideplayer.com/slide/5310314/
https://slideplayer.com/slide/5310314/

vote agregation only at test phase). This allows us to expose the latent patterns be-

tween objects and voters for each class. In this way, our voting module is able to get

votes from non-labeled objects (e.g. “candle”, which is not a COCO class, voting for

dining table; see the last row of Figure 4.2). To the best of our knowledge, we are the

first to use a log-polar vote field in a voting-based deep learning model to integrate

the long range interactions for object detection.

2.4 Bottom-up Object Detection Methods

Apart from the classical one-stage [10, 35, 36, 37, 8] vs. two-stage [9, 20] catego-

rization of object detectors, we can also categorize the current approaches into two:

top-down and bottom-up. In the top-down approach [10, 35, 8, 9], a near-exhaustive

list of object hypotheses in the form of rectangular boxes are generated and objects

are predicted in a holistic manner based on these boxes. Designing the hypotheses

space (e.g. parameters of anchor boxes) is a problem by itself [38]. Typically, a sin-

gle template is responsible for the detection of the whole object. In this sense, recent

anchor-free methods [39, 40] are also top-down. On the other hand, in the bottom-up

approach, objects emerge from the detection of parts or sub-object structures. For

example, in CornerNet [14], top-left and bottom-right corners of objects are detected

first, and then, they are paired to form whole objects. Following CornerNet, Ex-

tremeNet [15] groups extreme points (e.g. left-most, etc.) and center points to form

objects. Together with corner pairs of CornerNet [14], CenterNet [19] adds center

point to model each object as a triplet. HoughNet follows the bottom-up approach

based on a voting strategy: object presence score is voted (aggregated) from a wide

area covering short and long-range evidence.

2.5 Methods using Log-polar Fields and Representations

Many biological systems have foveated vision where the spatial resolution decreases

from the fovea (point of fixation) towards the periphery. Inspired by this phenomenon,

computer vision researchers have used log-polar fields for many different purposes in-

cluding shape description [41], feature extraction [42] and foveated sampling/imaging

13

[43].

2.6 Context Modeling in Object Detection

Context has long been part of object detection and explored to improve object detec-

tion performance. Context modeling has many aspects such as scene-level features,

object-to-scene relations and object-to-object relations. Even though, HoughNet is

not a proper context model, it is relevant to the object-to-object relations aspect.

In context modeling, there are two common approaches based on the source of con-

text: detection with scene level context and detection with instance-level object to

object/scene relations.

2.6.1 Detection with Scene Level Context

In literature, scene level context works are divided into two; using local context and

using global context. Local context refers to the context around the object. It is

known that local context improves the detection performance. Today the success of

most of the object detectors relies on the implicit use of local context. Further, in

order to use local context effectively, the deep learning-based object detectors enlarge

the receptive field of network, use a larger size of object proposals, and/or directly use

proposal regions as context [44, 45, 46, 47, 48, 49, 50]. For example, Kim et al. [51]

propose a context model that uses manually picked regions as context.

Before deep learning era, global context expressed as a statistical summary of the

image that represents the scene like Gist [52]. In deep learning methods, in order to

integrate global context, large receptive fields [53] and global pooling operations [54,

55] are used. As a different approach, Bell et al. [56] use RNNs to extract contextual

information from an image.

14

2.6.2 Detection with Instance Level Context

Some recent works aim to exploit context by using the relationship between individual

objects [5, 57, 58, 59, 60]. Chen and Gupta [59] use a memory module on Fast

R-CNN to represent object-to-object relationships. Hu et. a [60] propose elation

networks module to be integrated into a two-stage detector. Relation networks define

multiple relations between each proposal so that each proposal can send messages to

others. Thus, relation networks models object-object relations explicitly for proposal-

based two-stage detectors. Similarly, Arbel et al. [61] extend Fast R-CNN to refine the

score of the final proposal by using other proposals. Chen et al. [62] selects important

context regions based on IoU criteria between proposal and the other regions.

The other popular approach is to use the dependencies between objects and scenes [63,

64]. Liu et al. [64] integrate Structure Inference Network (SIN) into Faster-RCNN.

Their method uses both scene-level and instance-level context so that it combines

the features of both objects and scene. Chu and Cai [65] attempt to improve per-

formance of Faster-RCNN by refining proposal scores based on object relations and

global scene context. Li et al. [55] use both local and global context. They use dis-

criminative parts as local context to infer object classes. They claim that not all global

regions are useful for object detection. Based on this assumption they extract positive

global context using an attention model.

There are also studies work on the analysis of the importance of context [66, 67, 68].

Dvornik et al. [66]. analyze the effect of context by using a context-driven data

augmentation method. The improved results using context-driven data augmenta-

tion prove that CNN based detectors implicitly use contextual information. They also

show that when objects are detached from their context and randomly placed perfor-

mance of object detector decreases. Mottaghi et al. [67], analysis role of context both

for object detection and segmentation on PASCAL VOC 2010 dataset. They also

purpose a novel deformable part-based model that considers global context and local

context around candidate object regions. The proposed model especially effective

for tiny objects and improves overall detection performance as well. Qiao et al. [68]

approach the context differently. Instead of using contextual information for object

detection, they predict missing scene context using category, shape and position in-

15

formation of standalone objects. Ignoring the fine details, their model reconstructs

the realistic scenes from given objects.

Compared to HoughNet, (i) current context studies mostly developed to be integrated

into two-stage object detectors as an extension which lead to more complex object

detection models, and (ii) one-stage context modeling object detectors relies on net-

works with large receptive fields to capture context information at larger scales. How-

ever, Luo et al. [69] introduces the concept of “Effective Receptive Field” and showed

that not all pixels in the receptive field contribute equally to the output unit’s response

(i.e. effect of the receptive field on output looks like Gaussian distribution not uniform

distribution).

In contrast to CNN features that ignores object pose, Capsule Networks [70] learn

to pay attention to object’s pose and its other aspects as well. In Capsule Networks,

groups of neurons encode spatial information and also they predict the probability

of an object being present. Capsule networks look at an image and predict what

the instantiation parameters for objects are. Capsule Networks use dynamic routing

algorithms to estimate features of object poses such as position, size, orientation, de-

formation, velocity, hue, texture etc. At that level of idea, it is similar to HoughNet.

HoughNet also learns the evidences to verify the existence of an object. Capsule Net-

works focus on the orientation of parts and build hierarchical relationships to identify

images. For example, let’s consider that we have five low-level features and the pre-

dictions of these five low-level features indicate the same orientation and ‘car’ object,

then the ‘car’ representation will be the “high-level" feature. However, in HoughNet

we do not build hierarchical representations of object poses to detect objects. Hough-

Net integrates high-level short and long-range evidences through voting and the im-

portance of the votes are determined based on log-polar vote-field. Morover, even

though Capsule Networks obtained state of the art performance on simple datasets

such as MNIST, it struggles on more complex data such as Imagenet.

Similar to HoughNet, Non-local neural networks (NLNN) [71] integrate long-range

features. As a fundamental difference, in NLNN, the relative displacement between

interacting features is not taken into account. However, HoughNet uses this informa-

tion encoded through the regions of the log-polar vote field.

16

Concurrently with HoughNet [72], several object detectors have been introduced [73,

74, 75]. Among them, the transformer-based DETR [73], in particular, shares with

HoughNet the idea of using both short and long range interactions. In DETR, features

at a specific location are updated through interactions with features at other locations

using encoder-decoder based transformers [76]. Although locations of features are

taken into account using positional encoding, DETR models all possible pairs of fea-

tures. Unlike DETR, HoughNet explicitly takes into account the spatial precision

of the vote depending on the relative displacement between voter location and tar-

get (voted) area. Although attention-based neural networks and HoughNet share the

idea of using long-range interactions, an in-depth comparison is beyond the scope of

this work. Briefly; there are a variety of ways to encode location in attention-based

neural networks: (i) simply no encoding – location, whether absolute or relative, is

ignored [71], (ii) using sine and cosine functions with varying frequencies [73, 76],

(iii) using a general function [77]. It is not trivial to compare these encodings to the

explicit encoding of relative location using a log-polar field in HoughNet. Another

fundamental difference is that transformers operate at the feature level by modifying

features through interactions with other features, whereas HoughNet operates at the

detection score level.

17

18

CHAPTER 3

HOUGHNET: MODELS AND METHOD

This chapter is taken from our ECCV’20 paper [2] and its extension [3].

Brief overview. In HoughNet, the input image first passes through a backbone con-

volutional neural network (CNN), the output of which is connected to three different

branches carrying out the predictions of (i) visual evidence scores, (ii) objects’ bound-

ing box dimensions (width and height), and (iii) objects’ center location offsets. The

first branch is where the voting occurs. Before we describe our voting mechanism

in detail, we first introduce the log-polar vote field below. The overall processing

pipeline of HoughNet is illustrated in Figure 3.1.

3.1 The Log-polar “Vote Field”

We use the set of regions in a standard log-polar coordinate system to define the

regions through which votes are collected. A log-polar coordinate system is defined

by the number and radii of eccentricity bins (or rings) and the number of angle bins.

We call the set of cells or regions formed in such a coordinate system as the “vote

Visual Evidence
Prediction

Width & Height
Prediction

Center Offset
Prediction

Backbone
CNN

3x3 conv ReLU 1x1 conv:
Voting module

Visual Evidence Tensors Object Presence Maps

sta
ck

vote field

Input Image

Figure 3.1: Overview of the processing pipeline of HoughNet. Image is taken from

our ECCV’20 paper [2].

19

13

12

11

10

9

8
7

6

5
4

3

2
1

Figure 3.2: A log-polar “vote field” used in the voting module of HoughNet. Numbers

indicate region ids. A vote field is parametrized by the number of angle bins, and the

number and radii of eccentricity bins, or rings. In this particular vote field, there are

a total of 13 regions, 6 angle bins and 3 rings. The radii of the rings are 2, 8 and 16,

respectively. Image is taken from our ECCV’20 paper [2].

field” (Figure 3.2). In our experiments, we used different vote fields with different

parameters (number of angle bins, etc.) as explained in Chapter 4. In the following,

R denotes the number of regions in the vote field and Kr is the number of pixels in

a particular region r. ∆r(i) denotes the relative spatial coordinates of the ith pixel in

the rth region, with respect to the center of the field. We implement the vote field as a

fixed-weight (non-learnable) transposed-convolution filter as further explained below.

3.2 Voting Module

After the input image is passed through the backbone network and the “visual evi-

dence” branch, the voting module of HoughNet receives C tensors E1,E2, . . . ,EC ,

each of size H ×W × R, where C is the number of classes, H and W are spatial

dimensions and R is the number of regions in the vote field. Each of these tensors

contains class-conditional (i.e. for a specific class) “visual evidence” scores. The job

of the voting module is to produce C “object presence” maps O1,O2, . . . ,OC , each

of size H ×W . Then, peaks in these maps will indicate the presence of object in-

stances. The voting process, which converts the visual evidence tensors (e.g. Ec) to

20

Voting
+VEP

H

W R

(i,j)

Visual Evidence Tensor

Object Presence Map

Vote
Accumulation

Vote Field

Figure 3.3: Voting process for a single class. Visual evidence prediction (VEP) branch

outputs H×W ×R dimensional visual evidence tensor for the class. Here the voting

process is illustrated for just a single location (i, j) and for 3 regions of the vote field

shown with yellow, green and blue colors. The values at (i, j) corresponding to these

3 regions are added as votes to the appropriate locations in the Object Presence Map

tensor. These locations are determined by the vote field shown at top left. Votes from

all locations are similarly accumulated in the Object Presence Map. Image is taken

from our ECCV’20 paper extension [3].

object presence maps (e.g. Oc), works as described below.

The voting process is best explained using an example. Suppose we are to process

the visual evidence at the ith row, jth column and the rth channel of a visual evi-

dence tensor E. We first place our vote field (Figure 3.2) centered at (i, j) on the rth

channel, which is a 2D map. The region r of the vote field marks the target area to

be voted on, whose coordinates can be calculated by adding the coordinate offsets

∆r(·) to (i, j). Then, we add the visual evidence score E(i, j, r) to the target area

of the object presence map. Note that this operation can be efficiently implemented

using the “transposed convolution” (or “deconvolution”) operation. Visual evidence

scores from locations other than (i, j) are processed in the same way and the scores

are accumulated in the object presence map. We formally define this procedure in

Algorithm 1, which takes in a visual evidence tensor as input and produces an object

presence map1. Figure 3.3 also illustrates the defined voting process on a single class.

1 We provide a step-by-step animation of the voting process in Appendix A.

21

Algorithm 1 Voting process.
Require: Visual evidence tensor Ec, Vote field relative coordinates ∆

Ensure: Object presence map Oc

Initialize Oc with all zeros

for each pixel (i, j, r) in Ec do

/* Kr: number of pixels in the vote field region r */

for k = 1 to Kr do

(y, x)← (i, j) + ∆r(k)

Oc(y, x)← Oc(y, x) + 1
Kr

Ec(i, j, r)

end for

end for

3.3 Network Architecture

Our network architecture design follows that of “Objects as Points” (OAP) [40].

HoughNet consists of a backbone and three subsequent branches which predict (i)

visual evidence scores, (ii) bounding box widths and heights, and (iii) center offsets.

Our voting module is attached to the visual evidence branch (Figure 3.1).

The output of the backbone network is a feature map of size H ×W × D, which is

the result of an input image of size 4H × 4W × 3. The backbone’s output is fed to all

three branches. Each branch has one convolutional layer with 3×3 filters followed by

a ReLU layer and another convolutional layer with 1× 1 filters. The visual evidence

branch outputs H × W × C × R sized output where C and R correspond to the

number of classes and vote field regions, respectively. The width & height prediction

branch outputs H ×W × 2 sized output which predicts heights and widths for each

object center. Finally, the center offset branch predicts relative displacement of center

locations across the spatial axes. These offsets help recover the lost precision of the

center points due to down-sampling operations through the network. Both the width

& height branch and the center offset branch are class-agnostic.

Objective functions. For the optimization of the visual evidence branch, we use

the modified focal loss [8] introduced in CornerNet [14] (also used in [15, 40]). We

optimize the center offset branch using the L1 loss as the other bottom-up detec-

22

tors [14, 15, 40] do. Finally, for the width & height prediction branch, we use L1 loss

by scaling the loss by 0.1 as proposed in OAP [40]. The overall loss is the sum of the

losses from all branches.

3.4 Spatio-temporal Voting

Unlike static images, videos have rich temporal information. In order to benefit from

the temporal clues in videos, researchers developed several methods to aggregate

information locally and globally using two or more frames [78, 79, 80, 81]. Similarly,

we extend HoughNet with a new temporal voting module to incorporate temporal

information using an additional (auxiliary) frame.

Before describing the temporal voting process, we first explain the temporal log-

polar vote field. The temporal vote field has 4 regions, 90◦ angle bin and a single

ring with radii 8. Each region of the temporal vote field stands for a motion direction.

For example, the temporal vote-field region with id 1 in Figure 3.4, corresponds to

relative motion in +x and +y direction. When the temporal voting field is centered

at a voter location, it votes for the locations in the target area depending on relative

motion direction between frames.

Visual Evidence
Prediction

Backbone
CNN

Temporal Evidence
Prediction

sta
ck

Spatio-Temporal
Voting Module

1

23

4

Figure 3.4: (Top) Overall processing pipeline of HoughNet for video object detection.

(Bottom) Temporal vote field. Image is taken from our ECCV’20 paper extension [3].

We show the general processing pipeline for video object detection in Figure 3.4.

In addition to the reference frame at time t, we choose a random auxiliary frame

within δ time interval around the reference frame. First, both frames pass through

the backbone and we obtain feature maps of size H ×W × D for each. Then, we

23

calculate motion features between these frames by subtracting the feature map of the

auxiliary frame from the feature map of the reference frame. Bertasius et al.showed

that using motion features is effective for pose detection in videos [82]. They interpret

these features as discriminative motion features, where the network learns to ignore

uninformative motion regions while focusing on discriminative motion cues.

Later, relative motion features are fed to the temporal evidence branch. Finally, visual

and temporal evidence tensors are stacked and forwarded to the spatio-temporal vot-

ing module to outputH×W×C dimensional object presence maps. Spatio-temporal

voting aggregates votes in the same way as described in Section 3.2. Temporal evi-

dence branch has the same architecture as the visual evidence branch.

24

CHAPTER 4

EXPERIMENTAL ANALYSIS OF HOUGH VOTING ON DIFFERENT

VISION PROBLEMS

This chapter is adopted from our ECCV’20 paper [2] and its extension [3].

In this chapter, we show the effectiveness of our proposed method on object detection

and other visual detection tasks, namely, video object detection, instance segmenta-

tion, 3D object detection, keypoint detection for 2D human pose estimation and 2D

whole-body human pose estimation, and face detection. Since we mostly focus on

object detection, the object detection section is more detailed compared to others. It

includes (i) ablation experiments through which we studied how different parameters

of the vote field affect the performance, (ii) comparison with baseline, (iii) compari-

son with state-of-the-art, (iii) an analysis section and (iv) a scalable voting approach

where the number of “visual evidence tensors” does not depend on the number of ob-

ject classes. The sections for other tasks mostly contain comparisons with baseline.

We also include an image generation task in the context of “label-to-photo” transla-

tion at the end. In order to handle a large volume of ablation experiments, we created

a small training set for COCO, called “COCO minitrain”, which is described first

in the following.

We ran our experiments on 4 V100 GPUs. For training, we used 512×512 images un-

less stated otherwise. The training setup is not uniform across different experiments,

mainly due to different backbones. However, the inference pipeline is common for

all HoughNet models. We extract center locations by applying a 3 × 3 max pooling

operation on object presence heatmaps and pick the highest scoring 100 points as

detections. Then, we adjust these points using the predicted center offset values. Fi-

nal bounding boxes are generated using the predicted width & height values on these

25

detections.

4.1 COCO minitrain

To facilitate model development and faster analysis in ablation experiments, we care-

fully curated a mini training set for COCO, dubbed “COCO minitrain”. It is a

subset of the COCO train2017 dataset, containing 25K images (about 20% of

train2017) and around 184K objects across 80 object categories. We randomly

sampled these images from the full set while preserving the following three quantities

as much as possible: (i) proportion of object instances from each class, (ii) overall ra-

tios of small, medium and large objects, (iii) per class ratios of small, medium and

large objects.

22 24 26 28 3034

35

36

37

38

39

40

41 AP

40 42 44 46 4848 5053

54

55

56

57

58

59

60 AP50

minitrain

tra
in

20
17

ExtremeNet
CornerNet
Mask R-CNN
Faster R-CNN
RetinaNet
BaseModel

Figure 4.1: Performance validation for COCO minitrain. The x-axis is the

val2017 performance (AP on the left, AP50 on the right) of a model when it is

trained on minitrain. The y-axis is the performance of the model when it is

trained on the full COCO training set, train2017. Fitted lines with Pearson corre-

lation coefficients 0.74 and 0.92, respectively for AP and AP50, show strong positive

correlation. This figure is based on Table 4.1. Image is taken from our ECCV’20

paper extension [3].

To validate COCO minitrain, we computed the correlation between the val2017

26

performance of a model when it is trained on minitrain with the same as when

it is trained on train2017. Over six different object detectors (Faster R-CNN,

Mask R-CNN, RetinaNet, CornerNet, ExtremeNet and HoughNet), the Pearson cor-

relation coefficients turned out to be 0.74 and 0.92 for AP and AP50, respectively

(Figure 4.1), which indicate strong positive correlation. Figure 4.1 is based on the

results in Table 4.1. Table 4.2 presents the full results obtained on COCO val2017

performances when models are trained on COCO minitrain. Further details on

minitrain and the dataset itself can be found in Appendix B.

Table 4.1: Object Detector performances trained on minitrain vs train2017.

Models are evaluated on val2017.

Method Backbone Scale
minitrain train2017

AP AP50 AP75 AP AP50 AP75

Two-stage detectors:

Faster R-CNN ResNet-50 w FPN 800 27.7 48.8 28.4 36.7 58.4 39.6

Mask R-CNN ResNet-50 w FPN 800 28.5 49.5 29.4 37.7 59.2 40.9

One-stage detectors:

RetinaNet ResNet-50 w FPN 800 25.7 43.1 26.8 35.7 54.7 38.5

CornerNet Hourglass-104 511 28.4 41.8 29.5 38.4 53.8 40.9

ExtremeNet Hourglass-104 511 27.3 39.4 28.9 40.3 55.1 43.7

HoughNet (ours) ResNet-101 512 23.4 40.1 23.6 34.3 53.6 36.6

Table 4.2: Object Detector performances. Models are trained on minitrain and

evaluated on val2017.

Method BackBone Scale AP AP50 AP75 APS APM APL

Two-stage detectors:

Faster-R-50-FPN ResNet-50 w FPN 800 27.7 48.8 28.4 14.7 29.8 36.4

Mask-R-50-FPN ResNet-50 w FPN 800 28.5 49.5 29.4 14.7 30.7 37.6

One-stage detectors:

RetinaNet-R-50-FPN ResNet-50 w FPN 800 25.7 43.1 26.8 12.1 28.6 34.2

CornerNet Hourglass-104 511 28.4 41.8 29.5 11.3 29.6 39.2

ExtremeNet Hourglass-104 511 35.8 49.9 38.8 17.2 38.6 49.0

27

4.2 Hough Voting for Object Detection

In the evaluation of object detection models, we follow the other bottom-up meth-

ods [15, 40, 14] and use two modes: (i) single-scale, horizontal-flip testing (SS test-

ing mode), and (ii) multi-scale, horizontal-flip testing (MS testing mode). In MS, we

use the following scale values, 0.6, 1.0, 1.2, 1.5, 1.8. To merge augmented test results,

we use Soft-NMS [83], and keep the top 100 detections. All tests are performed on a

single V100 GPU.

4.2.1 Ablation Experiments

Here we analyze the effects of the number of angle and ring bins of the vote field on

performance. Models are trained on COCO minitrain and evaluated on val2017

set with SS testing mode. The backbone is Resnet-101 [6]. In order to get higher res-

olution feature maps, we add three deconvolution layers on top of the default Resnet-

101 network, similar to [84]. We add 3 × 3 convolution filters before each 4 × 4

deconvolution layer, and put batchnorm and ReLU layers after convolution and de-

convolution filters. We trained the network with a batch size of 44 for 140 epochs

with Adam optimizer [85]. Initial learning rate 1.75 × 10−4 was divided by 10 at

epochs 90 and 120.

4.2.1.1 Angle Bins

We started with a large, 65 by 65, vote field with 5 rings. We set the radius of these

rings from the most inner one to the most outer one as 2, 8, 16, 32 and 64 pixels,

respectively. We experimented with 60◦, 90◦, 180◦ and 360◦ bins. We do not split

the center ring (i.e. region with id 1 in Figure 3.2) into further regions. Results are

presented in Table 4.3a. For the 180◦ experiment, we divide the vote field horizontally.

90◦ yields the best performance considering both AP and AP50. We used this setting

in the rest of the experiments.

28

Table 4.3: Ablation experiments for the vote field. (a) Effect of angle bins on perfor-

mance. Vote field with 90◦ has the best performance (considering AP and AP50). (b)

Effect of central and peripheral regions. Here, the angle bin is 90◦ and the ring count

is four. Disabling any of center or periphery hurts performance, cf. (a). (c) Effect of

number of rings. Angle is 90◦ and vote field size is updated according to the radius

of the last ring. Using 3 rings yields the best result. It is also the fastest model.

Model AP AP50 AP75 APS APM APL FPS

60◦ 24.6 41.3 25.0 8.2 27.7 36.2 3.4

90◦ 24.6 41.5 25.0 8.2 27.7 36.2 3.5

180◦ 24.5 41.1 24.8 8.1 27.7 36.3 3.5

360◦ 24.6 41.1 25.1 8.0 27.8 36.3 3.5

(a) Varying the Number of Angle Bins

Only Center 23.8 39.5 24.5 7.9 26.8 34.7 3.5

No Center 24.4 40.9 24.9 7.4 27.6 37.1 3.3

Only Context 23.6 39.7 24.2 7.4 26.4 35.9 3.4

(b) Effectiveness of Votes from Center or Periphery

5 Rings 24.6 41.5 25.0 8.2 27.7 36.2 3.5

4 Rings 24.5 41.1 25.3 8.2 27.8 36.1 7.8

3 Rings 24.8 41.3 25.6 8.4 27.6 37.5 15.6

(c) Varying Ring Counts

4.2.1.2 Effects of Center and Periphery

We conducted experiments to analyze the importance of votes coming from different

rings of the vote field. Results are presented in Table 4.3b. In the Only Center case,

we only keep the center ring and disable the rest. In this way, we only aggregate

votes from features of the object center directly, which corresponds to a traditional

object detector where only local (short-range) evidence is used. This experiment

shows that votes from outer rings help improve performance. For the No Center case,

we only disable the center ring. We observe that there is only 0.2 decrease in AP.

This suggests that the evidence for successful detection is embedded mostly around

the object center not directly inside the object center. In order to observe the power

29

of long-range votes, we conducted another experiment called “Only Context,” where

we disabled the two most inner rings and used only the three outer rings for vote

aggregation. This model reduced AP by 1.0 point compared to the full model.

4.2.1.3 Ring Count

To find out how far an object should get votes from, we discard outer ring layers

one by one as presented in Table 4.3c. The models with 5 rings, 4 rings and 3 rings

have 17, 13 and 9 voting regions and 65, 33 and 17 vote field sizes, respectively.

The model with 3 rings yields the best performance on AP metric and is the fastest

one at the same time. On the other hand, the model with 5 rings yields 0.2 AP50

improvement over the model with 3 rings.

From all these ablation experiments, we decided to use the model with 5 rings and

90◦ as our Base Model. Considering both speed and accuracy, we decided to use the

model with 3 rings and 90◦ as our Light Model.

4.2.1.4 Voting Module vs. Dilated Convolution

Dilated convolution [86], which can include long-range features, could be considered

as an alternative to our voting module. To compare performance, we trained models

on train2017 and evaluated them on val2017 using the SS testing mode.

Baseline: We consider OAP with ResNet-101-DCN backbone as baseline. The last

1 × 1 convolution layer of center prediction branch in OAP, receives H × W × D

tensor and outputs object center heatmaps with a tensor of size H ×W × C.

Baseline + Voting Module: We first adapt the last layer of center prediction branch in

baseline to output H ×W × C × R tensor, then attach our voting module on top of

the center prediction branch. Adding the voting module increases parameters of the

layer by R times. The log-polar vote field is 65 × 65, and has 5 rings (90◦). With 5

rings and 90◦ we end up with R = 17 regions.

Baseline + Dilated Convolution: We use dilated convolution with kernel size 4 × 4

30

Table 4.4: Comparing our voting module to an equivalent dilated convolution filter,

in terms of number of parameters and the spatial filter size, on COCO val2017 set.

Models are trained on COCO train2017 and results are presented on SS testing

mode.

Method AP AP50 AP75 APS APM APL

Baseline 36.2 54.8 38.7 16.3 41.6 52.3

+ Dilated Conv. 36.6 56.1 39.2 16.7 42.0 53.6

+ Voting Module 37.3 56.6 39.9 16.8 42.6 55.2

Table 4.5: HoughNet results on COCO val2017 set for different training setups.
† indicates initialization with CornerNet weights, ∗ indicates initialization with Ex-

tremeNet weights. Results are given for SS and MS testing modes, respectively.

Models Backbone AP AP50 AP75 APS APM APL FPS

Base R-101 36.0 / 40.7 55.2 / 60.6 38.4 / 43.9 16.2 / 22.5 41.7 / 44.2 52.0 / 55.7 3.5 / 0.5

Base R-101-DCN 37.3 / 41.6 56.6 / 61.2 39.9 / 44.9 16.8 / 22.6 42.6 / 44.8 55.2 / 58.8 3.3 / 0.4

Light R-101-DCN 37.2 / 41.5 56.5 / 61.5 39.6 / 44.5 16.8 / 22.5 42.5 / 44.8 54.9 / 58.4 14.3 / 2.1

Light HG-104 40.9 / 43.7 59.2 / 61.9 44.1 / 47.3 23.8 / 27.5 45.3 / 45.9 52.6 / 56.2 6.1 / 0.8

Light HG-104† 41.7 / 44.7 60.5 / 63.2 45.6 / 48.9 23.9 / 28.0 45.7 / 47.0 54.6 / 58.1 5.9 / 0.8

Light HG-104∗ 43.0 / 46.1 62.2 / 64.6 46.9 / 50.3 25.5 / 30.0 47.6 / 48.8 55.8 / 59.7 5.7 / 0.8

and dilation rate 22 for the last layer of the center prediction branch in baseline. Using

4× 4 kernel increases parameters 16 times which is approximately equal to R in the

Baseline + Voting Module. Using dilation rate 22, the filter size becomes 67 × 67

which is close to 65× 65 log-polar vote field.

For a fair comparison with Baseline, both Baseline + Voting Module and the Baseline

+ Dilated Convolution use ResNet-101-DCN backbone. Our voting module outper-

forms dilated convolution in all cases (Table 4.4).

4.2.2 Comparison with Baseline

In Table 4.5, we present the performance of HoughNet for different backbone net-

works, initializations and our base-vs-light model, on the val2017 set. There is a

31

Table 4.6: Comparison of object detection with baseline (OAP) on val2017. Re-

sults are given for SS and MS test modes, respectively.

Method AP AP50 AP75 APS APM APL moLRP ↓

Baseline w R-101-DCN 36.2 / 39.2 54.8 / 58.6 38.7 / 41.9 16.3 / 20.5 41.6 / 42.6 52.3 / 56.2 71.1 / 68.3

+ Voting Module 37.2 / 41.5 56.5 / 61.5 39.6 / 44.5 16.8 / 22.5 42.5 / 44.8 54.9 / 58.4 69.9 / 66.6

Baseline w HG-104 42.2 / 45.1 61.1 / 63.5 46.0 / 49.3 25.2 / 27.8 46.4 / 47.7 55.2 / 60.3 66.1 / 63.9

+ Voting Module 43.0 / 46.1 62.2 / 64.6 46.9 / 50.3 25.5 / 30.0 47.6 / 48.8 55.8 / 59.7 65.6 / 63.1

significant speed difference between Base and Light models. Our light model with R-

101-DCN backbone is the second fastest one (14.3 FPS) achieving 37.2 AP and 56.5

AP50. We observe that initializing the backbone with a pretrained model improves the

detection performance. In Table 4.6, we compare HoughNet’s performance with its

baseline OAP [40] for two different backbones. HoughNet is especially effective for

small objects, it improves the baseline by 2.1 and 2.2 AP points for R-101-DCN and

HG-104 backbones, respectively. We also provide results for the recently introduced

moLRP [21] metric, which combines localization, precision and recall in a single

metric. Lower values are better.

4.2.3 Comparison with the State-of-the-art

For comparison with the state-of-the-art, we use Hourglass-104 [14] backbone. We

train Hourglass model with a batch size of 36 for 100 epochs using the Adam opti-

mizer [85]. We set the initial learning rate to 2.5× 10−4 and divided it by 10 at epoch

90. Table 4.7 presents performances of HoughNet and several established state-of-

the-art detectors. First, we compare HoughNet with OAP [40] since it is the model on

which we built HoughNet. In OAP, they did not present any results for “from scratch”

training. Instead they fine-tuned their model from ExtremeNet weights. When we do

the same (i.e. initialize HoughNet with ExtremeNet weights), we obtain better results

than OAP. However as expected, HoughNet is slower than OAP. Among the one-

stage bottom-up object detectors, HoughNet performs on-par with the best bottom-up

object detector by achieving 46.4 AP against 47.0 AP of CenterNet [19]. Hough-

Net outperforms CenterNet on AP50 (65.1 AP50 vs. 64.5 AP50). Note that, since our

32

Table 4.7: Comparison with the state-of-the-art on COCO test-dev. The methods

are divided into three groups: two-stage, one-stage top-down and one-st age bottom-

up. The best results are boldfaced separately for each group. Backbone names are

shortened: R is ResNet, X is ResNeXt, F is FPN and HG is HourGlass.∗ indicates that

the FPS values were obtained on the same AWS machine with a V100 GPU using the

official repos in SS setup. The rest of the FPS are from their corresponding papers. F.

R-CNN is Faster R-CNN.

Method Backbone Initialize Train size Test size AP AP50 AP75 APS APM APL FPS

Two-stage detectors:

R-FCN [87] R-101 ImageNet 800×800 600×600 29.9 51.9 - 10.8 32.8 45.0 5.9

CoupleNet [49] R-101 ImageNet ori. ori. 34.4 54.8 37.2 13.4 38.1 50.8 -

F. R-CNN+++ [6] R-101 ImageNet 1000×600 1000×600 34.9 55.7 37.4 15.6 38.7 50.9 -

F. R-CNN [88] R-101-F ImageNet 1000×600 1000×600 36.2 59.1 39.0 18.2 39.0 48.2 5.0

Mask R-CNN [20] X-101-F ImageNet 1300×800 1300×800 39.8 62.3 43.4 22.1 43.2 51.2 11.0

Cascade R-CNN [89] R-101 ImageNet - - 42.8 62.1 46.3 23.7 45.5 55.2 12.0

PANet [90] X-101 ImageNet 1400×840 1400×840 47.4 67.2 51.8 30.1 51.7 60.0 -

One-stage detectors:

Top Down:

SSD [10] VGG-16 ImageNet 512×512 512×512 28.8 48.5 30.3 10.9 31.8 43.5 -

YOLOv3 [35] Darknet ImageNet 608×608 608×608 33.0 57.9 34.4 18.3 35.4 41.9 20.0

DSSD513 [36] R-101 ImageNet 513×513 513×513 33.2 53.3 35.2 13.0 35.4 51.1 -

RefineDet (SS) [91] R-101 ImageNet 512×512 512×512 36.4 57.5 39.5 16.6 39.9 51.4 -

RetinaNet [8] X-101-F ImageNet 1300×800 1300×800 40.8 61.1 44.1 24.1 44.2 51.2 5.4

RefineDet (MS) [91] R-101 ImageNet 512×512 ≤2.25× 41.8 62.9 45.7 25.6 45.1 54.1 -

OAP (SS) [40] HG-104 ExtremeNet 512×512 ori. 42.1 61.1 45.9 24.1 45.5 52.8 9.6∗

FSAF (SS) [92] X-101 ImageNet 1300×800 1300×800 42.9 63.8 46.3 26.6 46.2 52.7 2.7

FSAF (MS) [92] X-101 ImageNet 1300×800 ∼≤2.0× 44.6 65.2 48.6 29.7 47.1 54.6 -

FCOS [39] X-101-F ImageNet 1300×800 1300×800 44.7 64.1 48.4 27.6 47.5 55.6 7.0∗

FreeAnchor (SS) [93] X-101-F ImageNet 1300×960 1300×960 44.9 64.3 48.5 26.8 48.3 55.9 -

OAP (MS) [40] HG-104 ExtremeNet 512×512 ≤1.5× 45.1 63.9 49.3 26.6 47.1 57.7 -

FreeAnchor (MS) [93] X-101-F ImageNet 1300×960 ∼≤2.0× 47.3 66.3 51.5 30.6 50.4 59.0 -

Bottom Up:

ExtremeNet (SS) [15] HG-104 - 511×511 ori. 40.2 55.5 43.2 20.4 43.2 53.1 3.0∗

CornerNet (SS) [14] HG-104 - 511×511 ori. 40.5 56.5 43.1 19.4 42.7 53.9 5.2∗

CornerNet (MS) [14] HG-104 - 511×511 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7 -

ExtremeNet (MS) [15] HG-104 - 511×511 ≤1.5× 43.7 60.5 47.0 24.1 46.9 57.6 -

CenterNet (SS) [19] HG-104 - 511×511 ori. 44.9 62.4 48.1 25.6 47.4 57.4 4.8∗

CenterNet (MS) [19] HG-104 - 511×511 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9 -

HoughNet (SS) HG-104 - 512×512 ori. 40.8 59.1 44.2 22.9 44.4 51.1 6.4∗

HoughNet (MS) HG-104 - 512×512 ≤1.8× 44.0 62.4 47.7 26.4 45.4 55.2 -

HoughNet (SS) HG-104 ExtremeNet 512×512 ori. 43.1 62.2 46.8 24.6 47.0 54.4 6.4∗

HoughNet (MS) HG-104 ExtremeNet 512×512 ≤1.8× 46.4 65.1 50.7 29.1 48.5 58.1 -

33

Detection Voters Detection Voters Detection Voters

Figure 4.2: Sample detections of HoughNet and their vote maps. In the “detection”

columns, we show a correctly detected object, marked with a yellow bounding box.

In the “voters” columns, the locations that vote for the detection are shown. Colors

indicate vote strength based on the standard “jet” colormap (red is high, blue is low;

Figure 1.1). In the top row, there are three “mouse” detections. In all cases, in

addition to the local votes (that are on the mouse itself), there are strong votes coming

from nearby “keyboard” objects. This voting pattern is justified given that mouse

and keyboard objects frequently co-appear. A similar behavior is observed in the

detections of “baseball bat”, “baseball glove” and “tennis racket” in the second row,

where they get strong votes from “ball” objects that are far-away. Similarly, in the

third row, “vase” detections get strong votes from the flowers. In the first example

of the bottom row, “dining table” detection gets strong votes from the candle object,

probably because they co-occur frequently. Candle is not among the 80 classes of

COCO dataset. Similarly, in the second example in the bottom row, “dining table”

has strong votes from objects and parts of a standard living room. In the last example,

partially occluded bird gets strong votes (stronger than the local votes on the bird

itself) from the tree branch. More visual results could be found in Appendix C. Image

is taken from our ECCV’20 paper [3].

34

model is initialized with ExtremeNet weights, which makes use of the segmentation

masks in its own training, our model effectively uses more data compared to Center-

Net. HoughNet is the fastest among one-stage bottom-up detectors. It is faster than

CenterNet, CornerNet and more than twice as fast as ExtremeNet.

We provide visualization of votes for sample detections of HoughNet for qualitative

visual inspection (Figure 4.2). These detections clearly show that HoughNet is able

to make use of long-range visual evidence.

4.2.4 Analysis

Here we analyse the effect of Hough voting from two aspects. First, we inspect the

error sources of both HoughNet and its baseline, and compare the two. This lets us

understand how the voting module has improved the baseline. Secondly, we collect

votes cast on a large number of images and analyse them to deduce interactions among

object classes

4.2.4.1 Error Sources

Here we use the recently introduced “localisation recall precision” (LRP) metric

[21, 22], which provides us with componentwise errors. These errors and the rel-

ative improvements yielded by the voting module are shown in Table 4.8. The largest

relative improvement (+4.4%) is obtained in the “false negative” (FN) component,

which shows that the voting module increases the recall rate, that is, object instances

normally missed by the baseline are successfully recovered with the integration of

the voting module. This shows the importance of voting. “False positive” (FP) com-

ponent is also improved (+3.3%), which indicates that object instances marked as

background by the baseline are corrected by the voting module. These improvements

come with no degradation in localisation performance.

35

Table 4.8: Effect of voting module on three major error types, namely, localisation

(Loc), false positive (FP) and false negative (FN), as measured by the LRP metric

[21, 22]. Relative improvement is calculated as (B − V)/B where B and V are the

LRP errors of baseline and “baseline+voting module”, respectively. Lower is better.

Largest relative improvement is achieved in the FN component, which indicates that

voting module increases the recall over the baseline.

Model Loc FP FN

Baseline w R-101-DCN 17.1 27.1 50.2

+ Voting Module 17.1 26.2 48.0

Relative Improvement 0% +3.3% +4.4%

4.2.4.2 Interaction among Object Classes

We build a C × C (C is the number of classes) matrix to visualize voting relations

among classes on the COCO dataset using the R-101-DCN backbone of HoughNet. In

this matrix, rows represent vote-getters and columns represent vote-givers. For each

vote-getter class, we first identify center points of detections and find all locations

that vote for these centers. Then, we sum class probabilities of all the voter-giver

locations and obtain a final C dimensional vector that summarizes the votes received

by the vote-getter class. Figure 4.3 shows a 10 × 15 matrix, which we selected from

the full 80× 80 matrix based on the following criterion: we selected the top 10 vote-

getter classes with the maximum total votes. Next, for each vote-getter class, we

selected the top 15 vote-giver classes that have the maximum voting activity. We

provide the full 80× 80 matrix in Appendix D.

This matrix reflects many object co-occurrence relations and it captures object-to-

object context well. For example, mouse class gets votes mostly from mouse, key-

board and laptop classes. toaster objects get votes from kitchen items. As a part of

tableware items, both spoon and knife get votes from each other and other tableware

items like fork and bowl. Potted plant objects get from indoor objects such as chair

and couch.

36

ke
yb

oa
rd

co
uc

h
for

k
lap

to
p

kn
ife

sp
oo

n
din

ing
 ta

ble
ha

nd
ba

g
bo

ok
po

tte
d p

lan
t

bo
ttl

e
ch

air
bo

wl cu
p

pe
rso

n

bowl
book

mouse
knife

potted plant
spoon
bottle

toaster
handbag

cup

Figure 4.3: Object detection voting activity among 10 vote-getter classes (rows) and

15 vote-giver classes (columns) on the COCO dataset. Color decodes voting activity

(red: high, blue: low). Each detection in a vote-getter class might get votes from mul-

tiple object classes. For example, the cup objects (i.e. the “cup” row) get relatively

high votes from cup, person, dining table and bowl classes. The full 80 × 80 matrix

is provided in Appendix D. Image is taken from our ECCV’20 paper extension [3].

4.2.5 A Scalable Approach to Voting (independent of number of classes)

In HoughNet, there is a separate visual evidence tensor per object class (Figure 3.1)

and a voting process is run for each of these (Section 3.2). This linear dependence

on the number of object classes might be problematic when the number of classes

increases dramatically, which is the case for newer datasets such as the 1000-class

LVIS dataset [94]. With this in mind, we designed a scalable variant of our voting

module where, instead of having a separate visual evidence tensor per class, we create

N tensors with N << C (Figure 4.4). In this design, these N tensors contain “visual

evidence” scores that are shared among and common to all classes. As a result, the

voting process is carried out N times instead of C times. We convert the resulting

H ×W × N dimensional voting maps to H ×W × C dimensional object presence

maps using a ReLU layer followed by a convolutional layer with 3 × 3 filters. We

37

3x3 conv ReLU 1x1 conv Voting
Module

ReLU 3x3 conv

Figure 4.4: A scalable variant of our voting process. Instead of having a separate

visual evidence tensor for each of the C classes, we create N (N << C) visual

evidence tensors that are shared and common to all classes. Image is taken from our

ECCV’20 paper extension [3].

illustrate the scalable voting module in Figure 4.4.

Table 4.9: Ablation experiments for the scalable voting module. Models are trained

on COCO minitrain and results are presented on SS testing mode. Using 8 visual

evidence tensors yields the best result for all AP metrics.

N AP AP50 AP75 APS APM APL

4 24.9 40.7 25.9 7.7 27.5 37.5

8 25.9 42.3 26.7 8.5 28.4 39.1

12 24.6 40.6 25.6 7.8 27.0 36.6

16 25.0 41.1 25.8 8.2 27.4 37.9

To analyze the scalable approach, we conducted ablation experiments for differ-

ent values of N . We used the vote field from the Light Model setup with 3 rings

and 90◦ bins, using the ResNet-101-DCN backbone. Models are trained on COCO

minitrain and evaluated on val2017 set in SS testing mode. Results are pre-

sented in Table 4.9. The model with N = 8 performs best among others.

To compare the scalable model with the light model, we trained it on COCO train2017

and obtained results on val2017. The scalable model is almost 2 times faster than

the light model (26.3 FPS vs. 14.3 FPS) in SS testing mode. However, it performs

1 AP point worse than the base and light models with the same backbone, obtaining

36.3 AP.

38

4.3 Hough Voting for Other Visual Detection Tasks

4.3.1 Video Object Detection

We conducted our experiments on the ImageNet VID dataset [95]. ImageNet VID

dataset has 30 object categories. For training and evaluation, we followed widely

adopted protocols [78, 81] and trained our models on 3,862 videos in the training

set and evaluated their performances on 555 videos in the validation set using mean

average precision (mAP) as the evaluation metric. In addition to the overall mAP,

we also present mAP results for slow, medium, and fast groups of videos as done in

previous work [78]. During the training of temporal models, we use a pair of video

frames; a reference frame at time t and a nearby auxiliary frame at time t + δ where

δ is randomly picked from the set {−4, ...,+4}. At inference, we use fixed δ values

and present our results for δ = {−4} and δ = {−4,+4} settings.

First, we obtained single-frame baseline results for our baseline (OAP [40]) and

HoughNet. We trained OAP with 140 epochs using their official repository. For

faster analysis, we trained our models with 80 epochs and divided the initial learning

rate 1.25 × 10−4 by 10 at epoch 50. All models are trained with a batch size of 32.

Results in Table 4.10 show that HoughNet outperforms its baseline (68.8 vs 65.0) in

this setting. Later, we conducted an ablation experiment to compare the performance

of proposed temporal voting with feature aggregation over reference and auxiliary

frames. To this end, both reference and auxiliary frames are passed through the back-

bone, then the output feature maps are concatenated and fed to the visual evidence

prediction branch. This model improved the single-frame baseline result of Hough-

Net by 2.7 mAP points. Next, we experimented with temporal voting using motion

features. Temporal voting improved the performance further by 2.4 points. Using

two auxiliary frames (δ is {−4,+4}), we obtained an even better result achieving

74.9 mAP.

39

Table 4.10: Results of video object detection on ImageNet VID validation set. Results

are obtained without any test time augmentation. δ corresponds to the time offset of

the auxiliary frame during inference.

Method δ mAP mAPF mAPM mAPS

Single-frame models:

Baseline (OAP) - 65.0 41.4 61.9 76.4

+ Voting (HoughNet) - 68.8 45.8 66.1 79.1

Temporal voting models

+ Feat. Agg. -4 71.5 46.6 67.7 82.1

+ Motion Features -4 73.9 50.4 71.5 82.8

+ Motion Features -4,+4 74.9 51.5 72.5 83.6

4.3.2 Instance Segmentation

In order to show the effectiveness of voting for instance segmentation, we first ex-

tended our baseline OAP to perform instance segmentation. Inspired by the re-

cent method BlendMask [96], we added to OAP a new prototype mask prediction

branch to predict category independent, single prototype mask. This branch outputs

a H ×W × 1-dimensional feature map. In order to predict instance specific masks,

we added another attention map prediction branch which outputs H ×W × 196 di-

mensional attention features. These new branches have the same layer structure as

other branches (see Figure 3.1). We provide the network architecture of instance

segmentation for baseline model in Figure 4.5.

During training, we first get the instance specific local prototypes for each instance

by cropping them from the prototype mask according to their location and box size.

Next, we extract 1 × 196 instance specific attention maps using the center points of

instances, from the predicted attention map. Later we obtain 14×14 instance specific

attention maps by reshaping the attention features. We apply sigmoid normalization

for both instance specific local prototypes and attention maps, and finally blend them

by applying element-wise product. We use binary cross entropy as our loss function

for segmentation. To extend HoughNet for the instance segmentation task, we add the

40

Visual Evidence
Prediction

Width & Height
Prediction

Center Offset
Prediction

Backbone
CNN

3x3 conv ReLU 1x1 conv:

Input Image Prototype Mask
Prediction

Attention Map
Prediction

Figure 4.5: Overall processing pipeline of baseline model for instance segmentation.

Image is taken from the supplementary document of our ECCV’20 paper extension

work [3].

Visual Evidence
Prediction

Width & Height
Prediction

Center Offset
Prediction

Backbone
CNN

3x3 conv ReLU 1x1 conv:

Voting module

Visual Evidence Tensors Object Presence Maps

sta
ck

vote field
Input Image Prototype Mask

Prediction

Attention Map
Prediction

Figure 4.6: Overall processing pipeline of HoughNet for instance segmentation. Im-

age is taken from the supplementary document of our ECCV’20 paper extension

work [3].

new branches as described above and follow the same training process. We provide

the network architecture of instance segmentation for HoughNet in Figure 4.6.

We present the instance segmentation results on the COCO dataset in Table 4.11.

Both baseline and HoughNet models are trained for 80 epochs with a batch size of

32. Initial learning rate 1.25 × 10−4 is divided by 10 at epoch 50. Voting module of

HoughNet improves instance segmentation performance by 1.2 AP points and out-

performs the baseline for all instance segmentation and box AP metrics.

41

Table 4.11: Effect of voting module for the instance segmentation task on COCO

val2017 set. Results are shown for both COCO segmentation and box AP. Mod-

els are trained on COCO train2017. Results are obtained without any test time

augmentation.

Method APseg APseg50 APseg75 APsegS APsegM APsegL APbox APbox50 APbox75 APboxS APboxM APboxL

Baseline 27.2 46.4 28.0 8.6 31.3 43.9 33.9 51.3 36.5 14.7 39.3 50.0

+ Voting 28.4 48.0 28.8 9.1 32.1 46.1 35.0 52.9 37.6 15.0 40.0 52.2

4.3.3 3D Object Detection

Here we conduct experiments in 3D object detection to see whether our voting mod-

ule is useful. In addition to the class and location prediction as done in 2D object

detection, a 3D object detector has to predict additional depth, 3D dimension and

orientation attributes. For this task also, we consider OAP [40] as our baseline. In

addition to the branches from 2D object detection, OAP adds separate branches for

these additional three attributes.

To show the effectiveness of the voting module, similar to 2D object detection we

attach our voting module with 3 rings and 90◦ to the class prediction branch. We

experimented with car classes of KITTI dataset [97] using the training and valida-

tion splits from SubCNN [98]. Following OAP, we use the original image resolution

1280 × 384 both during training and inference. We trained the network with a batch

size of 16 for 70 epochs with Adam optimizer [85]. Initial learning rate 1.25× 10−4

was divided by 10 at epochs 45 and 60. For fair comparison with the baseline, we

use Deep Layer Aggregation (DLA) [99] backbone as in OAP. More details related to

both training and inference could be found in OAP [40].

Table 4.12 shows results for bounding box AP, average orientation score (AOS) and

bird-eye-view bounding box AP (BEV AP) at 3 levels of difficulty, namely, easy,

medium and hard. AP values in the table correspond to the average AP at IoU thresh-

old 0.5 at 11 recalls from 0.0 to 1.0 with a step size of 0.1. As also identified by OAP,

since the recall threshold is small, the evaluation measures fluctuate up to 10% AP.

To smooth the effect of fluctuations we trained 5 models and reported the averages

42

Table 4.12: Effect of voting module for the 3D object detection task on KITTI. Mean

AP values of 5 models are presented with their standard deviations. Results are ob-

tained without any test time augmentation.

Method APe APm APh AOSe AOSm AOSh BEV APe BEV APm BEV APh

Baseline 90.2±1.2 80.4±1.4 71.1±1.6 85.3±1.7 75.0±1.6 66.2±1.8 31.4±3.7 26.5±1.6 23.8±2.9

+ Voting 89.2±0.4 80.6±3.0 70.0±0.2 86.0±0.8 77.0±3.1 66.5±0.6 35.0±0.8 28.0±0.8 26.1±0.7

Detection Voters Detection Voters Detection Voters

Figure 4.7: Sample car detections of HoughNet from KITTI dataset and their vote

maps. In the “detection” columns, we show a correctly detected object, marked with

a blue 3D bounding box. In the “voters” columns, the locations that vote for the de-

tection are shown. Colors indicate vote strength based on the standard “jet” colormap

(red is high, blue is low; Figure 1.1). In all detections, in addition to the local votes,

there are strong votes come from surroundings such as road, buildings and wall. Im-

age is taken from our ECCV’20 paper extension [3].

together with standard deviation for each metric as in OAP.

The model with our voting module performs on par with the baseline for bounding

box AP, and it outperforms baseline on AOS and BEV AP. Especially BEV AP is sig-

nificantly improved and is more stable with much less variance compared to baseline.

In Figure 4.7, we show visualization of votes for sample car detections.

4.3.4 2D Human Pose Estimation

In this section, we show the effectiveness of our voting module for 2D Human Pose

Estimation task. Human Pose Estimation is the problem of detecting human joints

(i.e. keypoints) in images. It is another detection task that our voting module could

43

Table 4.13: Comparing our voting module with baseline for 2D human pose estima-

tion on COCO val2017 set. The voting module is attached to the person classifica-

tion and keypoint estimation branches separately and concurrently. Results are shown

for both COCO keypoint and box AP. Models are trained on COCO train2017.

Results are presented on SS testing mode.

Method APkp APkp50 APkp75 APkpM APkpL APbox APbox50 APbox75 APboxS APboxM APboxL

Baseline 54.7 81.7 59.4 49.0 64.6 47.5 63.9 52.8 15.9 65.8 79.3

+ Voting for Person Class. 56.9 81.6 61.9 51.3 67.9 50.1 71.4 54.1 16.9 64.7 79.3

+ Voting for Keypoint Est. 56.8 81.5 61.2 50.7 68.0 50.2 70.9 54.3 17.2 64.4 79.4

+ Voting for Both 56.9 81.6 62.1 50.8 68.4 50.4 71.7 54.4 17.0 64.9 79.8

help by leveraging the interactions both among keypoints and other visual parts.

Our baseline (OAP [40]) considers pose estimation as a regression task and defines

each keypoint with an offset to the center of the instance and directly regresses them

in a separate branch. In order to refine keypoints, OAP also employs the common

bottom-up multi-human pose estimation approach as in [100, 101, 102] and predicts

heatmaps for each of k human joints in another branch. More detail on training and

inference processes can be found in OAP [40].

We analyze the effect of voting by attaching our voting module to the class predic-

tion and the keypoint heatmap prediction branches both separately and at the same

time. We conducted our experiments on COCO dataset which has 17 keypoints for

person object instances. For fair comparison with the baseline, we use DLA back-

bone and initialize it with the center detection model of OAP. We followed exactly

the same training setup as in Section 4.2.1. The models are trained on train2017

and evaluated on val2017. In Table 4.13, we show the results for both keypoint AP

(APkp) and box AP (APbox). Baseline results are obtained using the publicly available

equivalent model trained with 140 epochs from the official repository of OAP. In all

cases, attaching our voting module improved the baseline. Using the voting module

in classification and keypoint heatmap prediction branches at the same time gives the

best performance for both keypoint APkp and box APbox. Attaching the voting module

improves the baseline by 2.2 and 2.9 points for APkp and APbox, respectively. Espe-

cially in APbox50 , our voting module dramatically improved baseline by 7.8 points. We

44

provide visualization of votes for sample detections in Figure 4.8.

Detection Voters Voters Detection Voters Voters

Figure 4.8: Sample detections of HoughNet and their vote maps. In the “detection”

columns, we show correctly detected objects and their poses. Detection box is marked

with a yellow bounding box, and pose estimation is shown with blue color for the left

parts, red color for the right parts. In the “voters” columns, the locations that vote for

the detection are shown. Colors indicate vote strength based on the standard “jet” col-

ormap (red is high, blue is low; Figure 1.1). For the first image of the top row, votes

for the left-elbow and left-shoulder are shown respectively. The left-elbow detection

gets strong votes from the left-shoulder, left-knee and left-wrist. The left-shoulder

detection gets votes from the area spanning from right-elbow to left-elbow. In the

second image of top row, the right-shoulder and right-elbow keypoint detections

get strong votes from the upper-body parts. In the first example of the bottom row,

votes for the left-elbow and left-knee are shown respectively. Despite heavy occlusion,

left-elbow gets votes especially from the region of wrinkles. Moreover the invisible

left-knee gets strong votes from the right-ankle and arm region. In the second image

of bottom row, right-knee and right-wrist detections and their vote maps are given.

Image is taken from our ECCV’20 paper extension [3].

45

Table 4.14: Comparing our voting module with baseline model (HPRNet) for 2D

whole-body human pose estimation on COCO WholeBody validation set. Models

are trained on COCO WholeBody training set from scratch. Results are presented on

SS testing mode.

Method
body foot face hand whole-body all-mean

APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp

HPRNet 55.2 63.1 49.1 60.9 74.6 83.7 47.0 60.8 31.5 44.6 51.5 62.6

+ Voting 55.9 63.4 49.6 61.5 75.0 83.9 47.5 61.2 31.7 44.8 51.9 63.0

4.3.5 2D Whole-body Human Pose Estimation

In order to show the effectiveness of our voting module for whole-body human pose

estimation, we first developed HPRNet. Details on whole-body pose estimation task

and HPRNet could be found in Chapter 6. Later on top of HPRNet we attached our

voting module to the class prediction branch. We experimented with DLA backbone

and followed exactly the same training setup as in Section 4.2.1. As the Table 4.14

shows, attaching our voting module consistently improves the performance for all

body parts.

4.3.6 Face Detection

Here we show the effectiveness of our voting module for face detection on Wider

Face benchmark [103]. Again, we consider OAP [40] as our baseline. As in 2D

object detection we attach our voting module with 3 rings and 90◦ to the class (i.e

face) prediction branch. We experimented with Resnet-18 [6] backbone and followed

exactly the same training setup as in Section 4.2.1.

Table 4.15 presents mAP results at 3 levels of difficulty, namely, easy, medium and

hard. Our voting module improved the performance by 2.2 point for easy group, 2.0

point for medium group and 1.8 point for hard group.

We further improved the face detection performance adding landmark regression as

a supervision task. For this purpose, we define each face landmark with an offset to

46

Table 4.15: Comparing our voting module with baseline for face detection on Wider

Face val set. The voting module is attached to the face classification branch. mAP

results are shown for easy, medium and hard groups. Models are trained on Wider

Face train. Results are presented on SS testing mode.

Method mAPE mAPM mAPH

Baseline 91.2 89.1 70.1

+ Voting 93.4 91.1 71.9

+ Voting w Landmark Supervision 93.6 91.3 72.7

the face center and directly regress them in a separate branch as in 2D Human Pose

Estimation in Section 4.3.4. Landmark supervision especially effective for hard group

of faces.

4.4 Hough Voting for an Image Generation Task

Another task where long-range interactions could be useful is the task of image gener-

ation from a given label map. There are two main approaches to solve this task; using

unpaired and paired data for training. We take CycleGAN [104] and Pix2Pix [105] as

our baselines for unpaired and paired approaches, respectively. We attach our voting

module at the end of CycleGAN [104] and Pix2Pix [105] models.

Table 4.16: Comparison of FCN and LPIPS Scores for the “Labels to Photo” Task on

the Cityscapes Dataset [1].

Method Per-pixel acc. ↑ Per-class acc. ↑ Class IOU ↑ LPIPS ↓

CycleGAN 0.43 0.14 0.09 0.52

+ Voting 0.52 0.17 0.13 0.53

pix2pix 0.71 0.25 0.18 0.43

+ Voting 0.76 0.25 0.20 0.44

For quantitative comparison, we use the Cityscapes [1] dataset. In Table 4.16, we

present FCN scores [106] (which is used as the measure of success in this task) of

47

Input CycleGAN + Voting Input Pix2Pix + Voting

Figure 4.9: Sample qualitative results for the “labels to photo” task. When integrated

with CycleGAN, our voting module helps generate better images in the sense that the

image conforms to the input label map better. In all three images, CycleGAN fails

to generate sky, buildings and falsely generates vegetation in the last image. When

used with Pix2Pix, it helps generate more detailed images. In the first row, cars and

buildings can be barely seen for Pix2Pix. Similarly, a bus is generated as a car and a

bicycle is silhouetted in the second and third images, respectively. Our voting module

fixes these errors. Image is taken from our ECCV’20 paper [3].

CycleGAN and Pix2Pix with and without our voting module. To obtain the “without”

result, we used the already trained model shared by the authors. We obtained the

“with” result using the official training code from their repositories. In both cases

evaluation was done using the official test and evaluation scripts from their repos.

Results show that using the voting module improves FCN scores by large margins.

For the realism analysis of generated images, we also present Learned Perceptual

Image Patch Similarity (LPIPS) [107] scores in Table [106]. Lower LPIPS values

are better. Attaching our voting module has a slightly negative effect on realism of

generated images. For this part, further research is needed.

Qualitative inspection also shows that when our voting module is attached, the gener-

ated images conform to the given input segmentation maps better (Figure 4.9). This

is the main reason for the quantitative improvement. Since Pix2Pix is trained with

48

Table 4.17: Comparison of HoughNet with NLNN and RN context models.

Method Baseline Backbone Improvement (AP)

RN FasterRCNN [9] ResNet-101 w DCN 1.0

NLNN MaskRCNN [20] ResNet-101 1.3

HoughNet OAP [40] ResNet-101 w DCN 2.2

paired data, generated images follow input segmentation maps, however, Pix2Pix

fails to generate small details.

4.5 Comparing HoughNet with Context Models

We compare HoughNet with the established context models Non-local neural net-

works (NLNN) [71] and Relation networks (RN) [60] for object detection. NLNN

integrates long-range features. There is one fundamental difference between NLNN

and HoughNet. In NLNN, the relative displacement between interacting features is

not taken into account. However, HoughNet uses this information encoded through

the regions of the log-polar vote field. NLNN and HoughNet do not have a common

experimental configuration. In the closest experiment, NLNN reports 1.3 AP im-

provement over MaskRCNN [20] with ResNet-101 backbone, and HoughNet reports

2.2 AP improvement over OAP [40] with the similar ResNet-101 w DCN backbone

(see Table 4.17).

RN is a method developed for proposal-based two-stage detectors. Object-object

relations are explicitly modeled. In this sense, long range evidence is used. RN

and HoughNet do not have a common experimental configuration. In the closest

experiment, RN reports 1.0 AP improvement over FasterRCNN [9] with ResNet-101

w DCN backbone, and HoughNet reports 2.2 AP improvement over OAP [40] with

the similar ResNet-101 w DCN backbone (see Table 4.17).

49

50

CHAPTER 5

REDUCING LABEL NOISE IN ANCHOR-FREE OBJECT DETECTION

This chapter is taken from our BMVC’20 paper [24].

5.1 Introduction

Early deep learning based object detectors were two-stage, proposal driven meth-

ods [9, 108]. In the first stage, a sparse set of object proposals are generated and a con-

volutional neural network (CNN) categorizes them in the second stage. Later, the idea

of unified detection in a single stage has gained increasing attention [10, 35, 8, 36],

where proposals were replaced with predefined anchors. On the one hand, anchors

have to cover the image densely (in terms of location, shape and scale) so as to max-

imize recall; on the other hand, their number should be kept at a minimum to reduce

both the inference time and the imbalance problems [109] they create during training.

A considerable amount of effort has been spent on addressing the drawbacks of

anchors: several methods have been proposed to improve the quality of anchors

[38, 110], to address the extreme foreground-background imbalance [111, 8, 109],

and recently, one-stage anchor-free methods have been developed. There are two

main groups of prominent approaches in anchor-free object detection. The first group

is keypoint based, bottom-up methods, popularized after the pioneering work Corner-

Net [14]. These detectors [14, 15, 40, 112] first detect keypoints (e.g. corners, center

and extreme points) of objects, and then group them to yield whole-object detections.

The second group of anchor-free object detectors [39, 113, 92] follow a top-down

approach, and directly predict class and bounding box coordinates at each location in

the final feature map(s).

51

Figure 5.1: Three sample detections by PPDet, from left to right: surfboard, laptop

and racket. The colored dots show the locations whose predictions are pooled to

generate the final detection shown in the green bounding box. The color denotes

the contribution weight. Highest contributions are coming from the objects and not

occluders or background areas. Images are from COCO val2017 set. Image is

taken from our BMVC’20 paper [24].

One important aspect of object detector training is the strategy used to label object

candidates, which could be proposals, anchors or locations (i.e. features) in the final

feature map. In order to label a candidate ‘positive’ (foreground) or ‘negative’ (back-

ground) during training, a variety of strategies have been proposed, based on Intersec-

tion over Union (IoU) [9, 87, 10, 8], keypoints [14, 15, 40, 112] and relative location

to a ground-truth box [39, 114, 113]. Specifically in top-down anchor-free object de-

tectors, after the input image is passed through the backbone feature extractor and the

FPN [88], features that spatially fall inside a ground-truth box are labeled as positive

and others as negative – there is also an “ignore” region in between. Each of these

positively-labeled features contributes to the loss function as a separate prediction.

The problem with this approach is that some of these positive labels might be plain-

wrong or of poor quality, hence, they inject label noise during training. Noisy labels

come from (i) non-discriminatory features that are on the object, (ii) background fea-

tures within the ground-truth box, and (iii) occluders (Figure 5.1). In this work, we

propose an anchor-free object detection method, which relaxes the positive labeling

strategy so that the model is able to reduce the contributions of non-discriminatory

features during training. In accordance with this training strategy, our object detec-

tor employs an inference method where highly-overlapping predictions enforce each

other.

In our method, during training, we define a “positive area” within a ground-truth (GT)

52

box, which is co-centric and has the same shape with the GT box. We experimentally

adjust the size of the positive area relative to the GT box. As this is an anchor-

free method, each feature (i.e. location in the final feature maps) predicts a class

probability vector and bounding box coordinates. The class predictions from the

positive area of a GT box get pooled together and contribute to the loss as a single

prediction. This sum-pooling alleviates the noisy-labels problem mentioned above

since the contributions of features from non-object (background or occluded) areas,

and non-discriminatory features are automatically down weighted during training. At

inference, class probabilities of highly overlapping boxes are again pooled together to

obtain the final class probabilities. We name our method as “PPDet”, which is short

for “prediction pooling detector.”

Our contributions with this work are two fold: (i) a relaxed labelling strategy, which

allows the model to reduce the contribution of non-discriminatory features during

training, and (ii) a new object detection method, PPDet, which uses this strategy for

training and a new inference procedure based on prediction pooling. We show the

effectiveness of our proposal on the COCO dataset. PPDet outperforms all anchor-

free top-down detectors and performs on-par with the other state-of-the-art methods.

PPDet is especially effective for detecting small objects (31.4 APS , better than state-

of-the-art).

5.2 Related Work

Apart from the classical one-stage [10, 35, 8, 36] vs. two-stage [9, 108, 87] cat-

egorization of object detectors, we can also categorize the current approaches into

two: anchor-based and anchor-free. Top-down anchor-free object detectors simplify

the training process by eliminating complex IoU operations and focus on identify-

ing the regions that may contain objects. In that sense, FCOS [39], FSAF [92] and

FoveaBox [113] first map GT boxes onto the FPN levels, then label the locations,

i.e. features, as positive or negative based on whether they are inside a GT box.

Bounding box prediction is only for positively-labeled locations. FoveaBox [113]

and FSAF [92] define three areas for each object instance; positive area, ignore area

and negative area. FoveaBox defines the positive (fovea) area as the region which

53

is co-centric with the GT box, and whose dimensions are scaled by a (shrink) factor

0.3. All locations within this positive area are labeled as positive. Similarly, another

area is obtained using a shrink factor of 0.4. Any location that is outside this area is

labeled as negative. If a location is neither positive nor negative, it is ignored during

training. FSAF follows the same approach and uses shrink factors 0.2 and 0.5, re-

spectively. Instead of having pre-defined discrete areas as in [92, 113, 114], FCOS

down-weights the features based on their distance to the center using a centerness

branch. FCOS and FoveaBox implement static feature-pyramid level selection where

they assign objects to levels based on GT box scale and GT box regression distance,

respectively. Unlike them, FSAF relaxes the feature selection step and dynamically

assigns each object to the most suitable feature-pyramid level.

Bottom-up anchor-free object detection methods [14, 15, 40, 112] aim to detect cer-

tain keypoints of objects, such as corners and the center. Their labeling strategy

uses heatmaps, and in this sense, it is considerably different from that of top-down

anchor-free methods. Also, HoughNet, a novel, bottom-up voting-based method that

can utilize both near and long-range evidence to detect object centers, has shown

comparable performance with major one-stage and two-stage top-down methods (see

Chapter 4).

In the anchor-based approaches [9, 87, 10, 35, 8, 93, 114], objects are predicted from

regressed anchor boxes. During training, the label of an anchor box is determined

based on its intersection over union (IoU) with a GT box. Different detectors use

different criteria, e.g. Faster RCNN [9] labels an anchor as positive if IoU > 0.7,

and negative if IoU < 0.3; R-FCN [87], SSD [10] and Retinanet [8] use IoU > 0.5

for positive labeling but slightly different criterias for negative labeling. There are

two prominent anchor-based methods which directly address the labeling problem.

Guided Anchoring [114] introduces a new adaptive anchoring scheme that learns ar-

bitrary shaped boxes instead of dense and predefined ones. Similar to FSAF [92],

FoveaBox [113] and our method PPDet, Guided Anchoring follows region based la-

belling and defines three types of regions for each ground-truth object; center region,

ignore region and outside region, and labels the generated anchors positive if it resides

inside the center region, negative if in outside region and ignores the rest. On the other

hand, FreeAnchor [93] applies the idea of relaxing positive labels for anchor-based

54

detectors. This is the most similar method to ours. It replaces hand-crafted anchor

assignment with a maximum likelihood estimation procedure, where anchors are set

free to choose their GT box. Since FreeAnchor is optimizing object-anchor matching

using a customized loss function, it can not be directly applied to anchor-free object

detectors.

5.3 Methods

5.3.1 Labeling Strategy and Training

Anchor-free detectors limit prediction of GT boxes by assigning them to appropriate

FPN levels based on their scales [113] or target regression distances [39]. Here,

we follow the scale-based assignment strategy [113] since it is a way of naturally

associating GT boxes with feature pyramid levels. Then, we construct two different

regions for each GT box. We define the “positive area” as the region that is co-centric

with the GT box and having the same shape as the GT box. We experimentally set

the size of the “positive area”. Then, we identify all the locations (i.e. features)

that spatially fall inside the “positive area” of a GT box as “positive (foreground)”

features and the rest as “negative (background)” features. Each positive feature is

assigned to the ground-truth box that contains it. In Figure 5.2, blue and red cells

represent foreground cells and the rest (empty or white) are background cells. The

blue cells are assigned to the frisbee object and the red cells to the person object. To

obtain the final detection score for an object instance, we pool the classification scores

of all the features that are assigned to that object, by adding them together to obtain

a final C-dimensional vector where C is the number of the classes. All features

except the positively labelled ones are negatives. Each negative feature contributes

individually to the loss (i.e. no pooling). This final prediction vector is fed to the focal

loss (FL). For example, suppose {pi|i = 1, 2, . . . , N} represent the red, foreground

features that are assigned to the person object in Figure 5.2. Let y be the ground-truth,

one-hot vector for the person class. Then, this particular object instance contributes

“FL(
∑

i pi,y)” to the loss function in training. Each object instance is represented

with a single prediction.

55

pfrisbee

pperson

personground truth box for

frisbeeground truth box for

Backbone

C

W

H

Figure 5.2: Prediction pooling during training of PPDet. For simplicity, it is illus-

trated on a single FPN level and the bounding box regression branch is not shown.

Blue and red cells are foreground cells. Same color foreground cells, each of which is

a C-dimensional vector, are pooled, i.e. summed together, to form the final prediction

score for the corresponding object. These pooled scores (i.e., pperson, pfrisbee), are fed

to the loss function (i.e., focal loss). Image is taken from our BMVC’20 paper [24].

By default, we assign positive features to the object instance of the box they are in.

At this point, assignment of features in the intersection areas of different GT boxes is

an issue to be handled. In such cases, we assign those features to the GT box with the

smallest distance to their centers. Similar to other anchor-free methods [39, 92, 113,

40], in our model each foreground feature assigned to an object is trained to predict

the coordinates of its object’s GT box.

We use the focal loss [8] (α = 0.4 and γ = 1.5) for the classification branch and

smooth L1 loss [108] for the regression branch.

5.3.2 Inference

Inference pipeline of PPDet is given in Figure 5.3. First, the input image is fed to a

backbone neural network model (described in the next section) which produces the

initial set of detections. Each detection is associated with (i) a bounding box, (ii) an

object class (chosen as the class with maximum probability) and (iii) a confidence

score. Within these detections, those labeled with the background class are elimi-

nated. We consider each remaining detection at this stage as a vote for the object

that it belongs to, where the box is an hypothesis for the location of the object and the

confidence score is the strength of the vote. Next, these detections are pooled together

56

Input

PoolingBackbone
 Network

A Prediction Pooling
Example

Detections

Output Final
Detections

NMS

Pooled
Predictions

3.2

2.3

3.22.8

1.82.1
1.91.1

2.3

1.0
0.7 0.6

0.8
0.8 1.0
0.6

3.2

2.3

Figure 5.3: (Left) Illustration of PPDet’s inference pipeline. Predicted boxes for per-

son and snowboard are shown in red and blue, respectively. Red and blue boxes vote

for each other among themselves. See text for details. (Right) A pooling example.

The dashed-boundary red boxes vote for the solid red box and the dashed-boundary

blue boxes vote for the solid blue box. Final scores (after aggregation) of solid boxes

are shown. Image is taken from our BMVC’20 paper [24].

as follows. If two detections belonging to the same object class overlap more than a

certain amount (i.e. intersection over union (IoU) > 0.6), then we consider them as

voting for the same object and the score of each detection is increased by k(IoU−1.0)

times the score of the other detection, where k is a constant. The more the IoU, the

higher the increase. After applying this process to every pair of detections, we obtain

the scores for final detections. This step is followed by the class aware non-maxima

suppression (NMS) operation which yields the final detections.

Note that although the prediction pooling used in inference might seem to be differ-

ent from the pooling employed in training, in fact, they are the same process. The

pooling used in training makes the assumption that the bounding boxes predicted by

the features in the positive area overlap among each other perfectly (i.e. IoU=1).

57

5.3.3 Network Architecture

PPDet uses the network model of RetinaNet [8] which consists of a backbone con-

volutional neural network (CNN) followed by a feature pyramid network (FPN) [88].

The FPN computes a multi-scale feature representation and produces feature maps

at five different scales. There are two separate, parallel networks on the top of each

FPN layer, namely classification network and regression network. The classification

network outputs a W ×H ×C tensor where W and H are spatial dimensions (width

and height, respectively) and C is the number of the classes. Similarly, the regres-

sion network outputs a W × H × 4 tensor where 4 is the number of bounding box

coordinates. We refer to each pixel in these tensors as a feature.

5.4 Experiments

This section describes the experiments we conducted to show the effectiveness of our

proposed method. First, we present ablation experiments to find the optimal relative

area of the positive region within GT boxes and the regression loss weight. Next, we

present several performance comparisons on the COCO dataset. Finally, we provide

sample heatmaps which show the GT box relative locations of features responsible

for correct detections.

5.4.1 Implementation Details

We use Feature Pyramid Network (FPN) [88] on top of ResNet [6] and ResNeXt [115]

as our backbone networks for ablations and state of the art comparison, respectively.

For all experiments, we resize the images such that their shorter side is 800 pixels and

longer side is maximum 1300 pixels. The constant k used in vote aggregation (i.e.,

kIoU−1) was set to 40 experimentally. We trained all of the experiments on 4 Tesla

V100 GPUs, and tested using a single Tesla V100 GPU. We used MMDetection [116]

framework with Pytorch [117] to implement our models.

58

5.4.2 Ablation Experiments

Unless stated otherwise, in ablation experiments we used ResNet-50 with FPN back-

bone. They are trained with a batch size of 16 for 12 epochs using stochastic gradient

descent (SGD) with weight decay of 0.0001 and momentum of 0.9. Initial learning

rate 0.01 was dropped 10× at epochs 8 and 11. All ablation models are trained on

COCO [7] train2017 dataset and tested on val2017 set.

5.4.2.1 Size of the “Positive Area”

As explained before, we define the “positive area” as the region that is co-centric

with the GT box and that has the same shape as the GT box. We adjust the size of this

“positive area” by multiplying its width and height with a shrink factor. We experi-

mented with shrink factors between 1.0 and 0.2. Performance results are presented

in Table 5.1. From shrink factor 1.0 to 0.4, AP increases, however, after that point

performance degrades dramatically. Based on this ablation, we set the shrink factor

to 0.4 for the rest of our experiments.

Table 5.1: Experiments to determine the best shrink factor which defines the rela-

tive size of the “positive area” with respect to the GT box. Models were trained on

train2017 and results were obtained on val2017.

Shrink Factor AP AP50 AP75 APS APM APL

1.0 30.0 44.4 32.5 17.2 33.9 38.4

0.8 32.4 47.9 35.1 18.0 36.4 41.9

0.6 34.5 51.3 37.5 19.6 38.5 44.5

0.4 36.0 53.6 39.0 20.4 39.6 46.6

0.2 32.6 50.3 34.7 17.9 36.3 42.5

5.4.2.2 Regression Loss Weight

To find the optimal balance between the classification and regression loss, we con-

ducted ablation experiments on the regression loss weight. As shown in Table 5.2,

59

0.75 yields the best results. We set the weight of the regression loss to 0.75 for the

rest of our experiments.

Table 5.2: Experiments on regression loss (RL) weight. Models were trained on

train2017 and results were obtained on val2017.

RL weight AP AP50 AP75 APS APM APL

1.00 36.0 53.6 39.0 20.4 39.6 46.6

0.90 36.0 53.9 39.3 20.1 39.6 47.2

0.75 36.3 54.3 39.5 21.1 39.5 47.5

0.60 36.2 54.6 39.5 21.0 40.1 47.1

5.4.2.3 Improvements

We also employed improvements used in other state-of-the-art object detectors [39,

113, 40]. First, we trained our baseline model using ResNet-101 with FPN backbone.

Later, we replaced the last convolution layer before class prediction in the classifi-

cation branch with deformable convolutional layers. This modification improved the

performance around 0.3 for all APs (see Table 5.3). Later, on top of this modification,

we add another one where we adopt group normalization after each convolution layer

in the regression and classification branches. As seen in Table 5.3, this modification

increased AP by 0.6 and AP50 by 1.1. In this table, we also provide results for the

recently introduced moLRP [21] metric, which combines localization, precision and

recall in a single metric. Lower values are better. Models are trained with a batch size

of 16 for 24 epochs using stochastic gradient descent (SGD) with weight decay of

0.0001 and momentum of 0.9. Initial learning rate 0.01 was dropped 10× at epochs

16 and 22. We include these two modifications in our final model.

5.4.2.4 Class Imbalance

PPDet sum-pools predictions into a single prediction per object instance which re-

duces the number of positives during training. One may think that it exacerbates the

60

Table 5.3: Experiments on improvements. Using deformable convolution in the clas-

sification branch and group normalization layers further improve detection perfor-

mances. Models are trained on train2017 and tested on val2017 set.

Method AP AP50 AP75 APS APM APL moLRP ↓

Baseline 39.6 58.0 43.4 23.9 44.1 51.0 68.9

+ Deform. Conv. 39.9 58.4 43.7 24.2 44.4 51.3 68.7

+ Group Norm. 40.5 59.5 44.2 25.4 44.7 52.3 67.8

class imbalance [109] even more. To analyse the issue, we calculated the average

number of positives per image, which is 7 for PPDet, 41 for FoveBox and 165 for

RetinaNet. PPDet considerably decreases the number of positives. However, this is

still small compared to the number of negatives (tens of thousands), hence, it does

not exacerbate the existing class imbalance problem. We use focal loss to tackle the

imbalance.

5.4.3 State-of-the-art Comparison

To compare our model with the state-of-the-art methods, we used ResNet-101 with

FPN and ResNeXt-101-64x4d with FPN backbones. They are trained with batch

sizes of 16 and 8 for 24 and 16 epochs, respectively, using SGD with weight decay of

0.0001 and momentum of 0.9. For the ResNet backbone, initial learning rate 0.01 was

dropped 10× at epochs 16 and 22. For the ResNeXt backbone, initial learning rate

0.005 was dropped 10× at epochs 11 and 14. The models are trained on COCO [7]

train2017 dataset and tested on test-dev set. We used (800, 480), (1067, 640),

(1333, 800), (1600, 960), (1867, 1120), (2133, 1280) scales for multi-scale testing.

Table 5.4 presents performances of PPDet and several established state-of-the-art de-

tectors.

FSAF [92] and FoveaBox [113] use a similar approach to ours to build the “positive

area”. While single scale testing performance of PPDet is comparable with that of

FSAF on the same ResNeXt-101-64x4d with FPN backbone, PPDet’s multi-scale

61

Table 5.4: Detection performances on COCO test-dev set. The methods are di-

vided into three groups: two-stage, one-stage anchor-based and one-stage anchor-

free. The best results are boldfaced separately for each group. PPDet achieves state-

of-the-art results on the AP S metric among all the detectors. ∗ results are taken from

MMDetection. † MS test for FoveaBox is implemented by us on top of the original

code.

Method Backbone Train size Test size AP AP50 AP75 APS APM APL FPS

Two-stage detectors:

R-FCN [87] ResNet-101 800×800 600×600 29.9 51.9 - 10.8 32.8 45.0 5.9

CoupleNet [49] ResNet-101 ori. ori. 34.4 54.8 37.2 13.4 38.1 50.8 -

Faster R-CNN+++ [6] ResNet-101 1000×600 1000×600 34.9 55.7 37.4 15.6 38.7 50.9 -

Faster R-CNN [88] ResNet-101-FPN 1000×600 1000×600 36.2 59.1 39.0 18.2 39.0 48.2 5.0

Mask R-CNN [20] ResNeXt-101-FPN 1300×800 1300×800 39.8 62.3 43.4 22.1 43.2 51.2 11.0

Cascade R-CNN [89] ResNet-101 - - 42.8 62.1 46.3 23.7 45.5 55.2 12.0

PANet [90] ResNeXt-101 1400×840 1400×840 47.4 67.2 51.8 30.1 51.7 60.0 -

One-stage, anchor-based:

SSD [10] VGG-16 512×512 512×512 28.8 48.5 30.3 10.9 31.8 43.5 -

YOLOv3 [35] Darknet-53 608×608 608×608 33.0 57.9 34.4 18.3 35.4 41.9 20.0

DSSD513 [36] ResNet-101 513×513 513×513 33.2 53.3 35.2 13.0 35.4 51.1 -

RefineDet (SS) [91] ResNet-101 512×512 512×512 36.4 57.5 39.5 16.6 39.9 51.4 -

RetinaNet [8] ResNet-101-FPN 1300×800 1300×800 39.1 59.1 42.3 21.8 42.7 50.2 10.9∗

RetinaNet [8] ResNeXt-101-FPN 1300×800 1300×800 40.8 61.1 44.1 24.1 44.2 51.2 7.0∗

RefineDet (MS) [91] ResNet-101 512×512 ≤2.25× 41.8 62.9 45.7 25.6 45.1 54.1 -

GA-RetinaNet [114]∗ ResNet-101 1300×960 1300×800 41.9 62.2 45.3 24.0 45.3 53.8 -

FreeAnchor (SS) [93] ResNeXt-101-FPN 1300×960 1300×960 44.9 64.3 48.5 26.8 48.3 55.9 8.4∗

FreeAnchor (MS) [93] ResNeXt-101-FPN 1300×960 ∼≤2.0× 47.3 66.3 51.5 30.6 50.4 59.0 -

Anchor-free, bottom-up:

ExtremeNet (SS) [15] Hourglass-104 511×511 ori. 40.2 55.5 43.2 20.4 43.2 53.1 3.1

CornerNet (SS) [14] Hourglass-104 511×511 ori. 40.5 56.5 43.1 19.4 42.7 53.9 4.1

CornerNet (MS) [14] Hourglass-104 511×511 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7 -

CenterNet (SS) [40] Hourglass-104 512×512 ori. 42.1 61.1 45.9 24.1 45.5 52.8 7.8

HoughNet (SS) [2] Hourglass-104 512×512 ≤ ori.× 43.1 62.2 46.8 24.6 47.0 54.4 6.4

ExtremeNet (MS) [15] Hourglass-104 511×511 ≤1.5× 43.7 60.5 47.0 24.1 46.9 57.6 -

CenterNet (SS) [112] Hourglass-104 511×511 ori. 44.9 62.4 48.1 25.6 47.4 57.4 3.0

CenterNet (MS) [40] Hourglass-104 512×512 ≤1.5× 45.1 63.9 49.3 26.6 47.1 57.7 -

HoughNet (MS) [2] Hourglass-104 512×512 ≤1.8× 46.4 65.1 50.7 29.1 48.5 58.1 -

CenterNet (MS) [112] Hourglass-104 511×511 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9 -

Anchor-free, top-down:

FoveaBox [113] (SS) ResNet-101-FPN 1300×800 1300×800 40.6 60.1 43.5 23.3 45.2 54.5 -

FoveaBox [113] (SS) ResNeXt-101-FPN 1300×800 1300×800 42.1 61.9 45.2 24.9 46.8 55.6 -

FSAF (SS) [92] ResNeXt-101-FPN 1300×800 1300×800 42.9 63.8 46.3 26.6 46.2 52.7 2.7

FoveaBox [113] (MS)† ResNet-101-FPN 1300×800 1300×800 44.2 65.4 47.8 28.8 46.7 53.7 -

FSAF (MS) [92] ResNeXt-101-FPN 1300×800 ∼≤2.0× 44.6 65.2 48.6 29.7 47.1 54.6 -

FCOS [39] ResNeXt-101-FPN 1300×800 1300×800 44.7 64.1 48.4 27.6 47.5 55.6 7.0∗

PPDet (SS) ResNet-101-FPN 1300×800 1300×800 40.7 60.2 44.5 24.5 44.4 49.7 7.5

PPDet (SS) ResNeXt-101-FPN 1300×800 1300×800 42.3 62.0 46.3 26.2 46.0 51.9 4.1

PPDet (MS) ResNet-101-FPN 1300×800 ∼≤2.0× 45.2 63.5 50.3 30.0 48.6 54.7 -

PPDet (MS) ResNeXt-101-FPN 1300×800 ∼≤2.0× 46.3 64.8 51.6 31.4 49.9 56.4 -

62

testing performance is 1.7 AP points better than that of FSAF’s. Our both models with

single-scale testing get slightly better results than FoveaBox while outperforming it

on small objects by more than 1.0. The results of our multi-scale testing outperforms

FoveaBox by 1 AP on the same ResNet-101 with FPN backbone.

Our multi-scale performance is the best among all the anchor-free top-down methods.

Moreover, our multi-scale performance on small objects (i.e. APS) sets the new state-

of-the-art among all detectors in Table 5.4.

We conducted experiments to analyse the effect of the prediction pooling for training

and inference. When we removed the prediction pooling from the inference pipeline

of our ResNet-101-FPN backbone model, we observed that AP goes down by 2.5

points on val2017 set. To analyse the effect of prediction pooling for training, we

added prediction pooling to RetinaNet [8] and FoveaBox [113] only during inference

(so, no PP in training). This resulted in 0.5 and 2.8 points drop in AP for RetinaNet

and FoveaBox, respectively.

We also conducted another experiment to test the effectiveness of sum-pooling over

max-pooling. For max-pooling, we identified the feature within the positive area,

whose predicted box overlaps the most with the GT box. Then, only this feature is

included in focal loss to represent its GT box during training. This strategy dropped

AP by more than 2 points, yielding 38.4 with ResNet101 with FPN backbone.

As an additional result, we present the performance of PPDet on the PASCAL VOC

dataset [118]. For training, we used the union set of PASCAL VOC 2007 trainval

and VOC 2012 trainval images (“07+12”). For testing, we used the test set of

PASCAL VOC 2007. Our PPDet model achieves 77.8 mean average precision (mAP)

outperforming FoveaBox [113] at 76.6 mAP, which we consider as a baseline here,

when both use the ResNet-50 backbone.

Figure 5.4 shows the heatmap of cell centers relative to the ground-truth box, which

are responsible for detection. The heatmaps of RetinaNet are concentrated at the cen-

ter of the ground-truth object boxes. In contrast, PPDet’s final detections are formed

from a relatively wider area verifying its dynamic and automatic characteristics on

assigning weights to the features in the positive area. In addition to the detections

63

Person Bicycle Boat Bench Tie Skis

Figure 5.4: Feature locations that are responsible for detection during inference, rel-

ative to the ground-truth box (blue rectangle). To bring different ground-truth boxes

into the same plot, we normalized each ground-truth box to a canonical size. Relative

locations of responsible features were normalized accordingly. Top row shows the

heatmap of responsible feature locations for anchor-based RetinaNet. Second row

shows the same for anchor-free object detector FoveaBox. Bottom row shows the

same for PPDet. Heatmaps were obtained on COCO val2017 images with ResNet-

101 with FPN backbone. RetinaNet detects objects mostly with center cells. In terms

of peakyness, FoveaBox’s heatmaps are similar to RetinaNet’s. PPDet detects ob-

jects from a wider area, also from outside of the object box. Image is taken from our

BMVC’20 paper [24].

coming from the center of the ground-truth box, they may heavily come from the

different parts of the ground-truth box.

5.5 Conclusion

In this work, we introduced a novel labeling strategy for the training of anchor-free

object detectors. While current anchor-free methods force positive labels on all the

features that are spatially inside a predefined central region of a ground-truth box,

our labeling strategy relaxes this constraint by sum-pooling predictions stemming

64

from individual features into a single prediction. This allows the model to reduce the

contributions of non-discriminatory features during training. We developed PPDet,

a one-stage, anchor-free object detector which employs the new labeling strategy

during training and a new inference method based on pooling predictions. We an-

alyzed our idea by conducting several ablation experiments. We reported results on

COCO test-dev and show that PPDet performs on par with the state-of-the-art and

achieves state-of-the-art results on small objects (APS 31.4). We further validated the

effectiveness of our method through visual inspections.

65

66

CHAPTER 6

HIERARCHICAL POINT REGRESSION FOR WHOLE-BODY HUMAN

POSE ESTIMATION

This chapter is taken from our IMAVIS journal paper [25].

6.1 Introduction

As a challenging computer vision task, human pose estimation aims to localize hu-

man body keypoints in images and videos. Human pose estimation has an important

role in several vision tasks and applications such as action recognition [119, 120,

121, 122, 123], human mesh recovery [124, 125, 126, 127], augmented/virtual real-

ity [128, 129, 130], animation and gaming [131, 132, 133, 134]. Unlike the standard

human pose estimation task, whole-body pose estimation aims to detect face, hand

and foot keypoints in addition to the standard human body keypoints. The chal-

lenge in this problem is the extreme scale variance or imbalance among different

whole-body parts. For example, the relatively small scale of face and hand keypoints

make accurate localization of face and hand keypoints more difficult compared to the

standard body keypoints such as elbow, knee and hip. Direct application of exist-

ing human pose estimation methods do not yield satisfactory results due to this scale

variance problem.

Even though human pose estimation has been well studied for the past few decades,

the whole-body pose estimation task has not been sufficiently explored, mainly due

to the lack of large-scale fully annotated whole-body keypoint datasets. The previous

few methods [135, 136], trained several deep networks separately on different face,

hand and body datasets, and ensembled them during inference. These methods suffer

67

from issues arising from datasets’ biases, variations of illumination, pose and scales,

and complex training and inference pipelines.

Figure 6.1: Whole-body keypoints as defined in the COCO WholeBody dataset.

There is a total of 133 keypoints. In addition to standard 17 human body keypoints

(top-left) from the COCO keypoints dataset, there are 68 face (top-right), 42 hand (21

keypoints for each) (bottom-right) and 6 foot (3 for each) (bottom-left) keypoints are

annotated. Image source: https://github.com/jin-s13/COCO-WholeB

ody

Recently, in order to address the missing benchmark issue, Jin et al. [23] introduced

a novel dataset for whole-body pose estimation, called COCO WholeBody. COCO

WholeBody extends COCO keypoints dataset [137] by further annotating face, hand

and foot keypoints. In addition to the standard, 17 human body keypoints from the

COCO keypoints dataset; 68 facial landmarks, 42 hand keypoints and 6 foot keypoints

are annotated (Figure 6.1). Along with these 133 whole-body keypoint annotations,

the dataset also has face and hand bounding box annotations that were automatically

computed from the extreme keypoints of the corresponding part. They also proposed a

strong baseline, called ZoomNet, which has set the state of the art. ZoomNet is a top-

down, two-stage method based on the human pose estimation model HRNet [138].

Given an image, ZoomNet first detects person instances using the FasterRCNN [9]

68

https://github.com/jin-s13/COCO-WholeBody
https://github.com/jin-s13/COCO-WholeBody

person detector, then it predicts 17 body and 6 foot keypoints using a CNN model.

Later, to overcome the scale variance between whole-body parts, ZoomNet crops the

hand and face areas that it detected and transforms them to higher resolutions using

seperate CNNs to further perform face and hand keypoint estimation.

There are two main approaches for human pose and whole-body pose estimation;

bottom-up [139, 140, 141, 142, 143, 144, 145, 146, 136, 147, 148, 149, 150, 151] and

top-down [152, 153, 20, 154, 138, 155]. Bottom-up methods directly detect human

body keypoints and later group them to obtain final poses for each person in a given

image. On the other hand, top-down methods (e.g. ZoomNet) first detect and extract

person instances, then apply pose estimation on each instance separately. The group-

ing stage of bottom-up methods is more efficient than repeating pose estimation for

each person instance. As a result, top-down methods slow down with the increasing

number of people (Figure 6.6). However, compared to bottom-up methods, better

accuracies are obtained by top-down approaches.

In this work, we propose a new bottom-up method, HPRNet, that explicitly handles

the hierarchical nature of whole-body pose estimation by regressing keypoints hier-

archically. To this end, in addition to the estimation of standard body keypoints, we

define the bounding box centers of relatively small body parts such as face and hands

with offsets to the person instance center (Figure 6.3). Concurrently, we build another

level of regression where we define each hand and face keypoints with an offset to

their corresponding hand and face bounding box centers. We jointly train each level

of regression hierarchy and regress all whole-body keypoints with respect to their de-

fined center points. This hierarchical bottom-up approach brings two benefits. First,

the scale variance among different body parts are handled naturally as the relative

distances within each part are in a similar range and each part-type is processed by a

separate sub-network. Second, being a bottom-up method, HPRNet’s inference speed

is minimally affected by the number of persons in the input image. This is in con-

trast to the top-down methods such as ZoomNet, which significantly slows down with

more person instances (65.7 ms for an image containing 1 person versus 668.2 ms for

an image with 10 persons). Our method is based on the center-point based bottom-up

object detection methods [40, 2, 19, 14]. These methods can easily be extended to the

keypoint estimation task [40, 3].

69

We validated the effectiveness of our method through ablation experiments and com-

parisons with the state of the art (SOTA) on the COCO WholeBody dataset. Our

method significantly outperforms all bottom-up methods. It also outperforms the

SOTA top-down method ZoomNet in the detection of face and hand keypoints, while

being significantly faster than ZoomNet.

Our major contribution in this work is the proposal of a one-stage, bottom-up method

to close the performance gap between the bottom-up and top-down methods. In con-

trast to top-down methods, our method runs almost in constant time, independent

from the number of persons in the input image.

6.2 Related Work

6.2.1 Human Body Pose Estimation

We can categorize the current approaches for multi-person pose estimation into two:

bottom-up and top-down. In the bottom-up methods [139, 140, 141, 142, 143, 144,

145, 146, 136, 147, 148, 149, 150, 151], given an image, body keypoints detected

first, without knowing the number or location of person instances or to which person

instances these keypoints belong. Later, detected keypoints are grouped and assigned

to person instances. Recently, center-based object detection methods [40] have been

extended to perform human pose estimation [40, 3]. These methods represent key-

points with an offset value to the center of the person box and directly regresses them

during training. In order to improve localization of keypoints, they also estimate the

heatmap of each keypoint as in other bottom-up methods [135, 141, 144, 143]. At

inference, using center offsets, they group and assign keypoints to person instances.

Since bottom-up methods detect all people keypoints at once, they are fast.

Top-down methods [152, 153, 20, 154, 138, 155] first detect person instances in

the input image. Commonly, they use an off-the-shelf object detector (e.g. Faster-

RCNN [9]) to obtain person boxes. Next, top-down methods estimate a single person

pose for each cropped person box. By cropping and resizing each person box, top-

down methods have the advantage to zoom into the details of each person. Therefore,

70

top-down approaches are more capable of handling scale variance issues. As a result,

state-of-the-art results are obtained by top-down methods and there is an accuracy

gap between top-down and bottom-up approaches. However, since a pose estimation

model is run for each person instance, top-down methods tend to be slow on average,

that is, they get significantly slower with increasing number of persons in an image

(Figure 6.6).

One may think that using human body pose estimation methods on a whole-body pose

estimation dataset (i.e. COCO WholeBody) could be a solution for whole-body pose

estimation. However, as it is stated in the COCO WholeBody dataset paper [23], due

to the large scale variance between whole body parts, applying these methods directly

results in suboptimal accuracies.

6.2.2 Whole-body Pose Estimation

Whole-body pose estimation requires accurate localization of keypoints on body,

face, hand and feet. Detection of keypoints is well studied for each of these body

parts independently, under face alignment [156, 157, 158, 159], facial landmark de-

tection [160, 161], hand pose estimation [162, 163], hand tracking [164, 165] and feet

keypoint detection [135] topics. However, there are not many works on the whole-

body pose estimation mostly due to lack of a large-scale annotated dataset. Prior to

the release of the COCO WholeBody dataset [23], OpenPose [135] attempted to de-

tect the whole-body keypoints. For this purpose, OpenPose ensembles 5 separately

trained models namely human body pose estimation, hand detection, face detection,

hand pose estimation and face pose estimation. Due to these multiple models, training

and inference of OpenPose are complex and costly. Our end-to-end trainable single

network eliminates these drawbacks.

Hidalgo et al. presented a bottom-up method called SN [136]. Their model ex-

tends PAF [139] for whole-body pose estimation. Similar to PAF [139], they predict

heatmaps for each keypoint and use part affinity maps for grouping. SN model is

trained on a dataset that is sampled from different datasets. Both SN and our pro-

posed model HPRNet are bottom-up methods. However, SN falls short of handling

scale variations between whole-body parts whereas hierarchical point representation

71

of HPRNet overcomes this issue.

The first step towards having a whole-body pose estimation benchmark is the release

of the COCO WholeBody dataset [23]. Jin et al. extended the existing COCO key-

points [137] dataset by further annotating face, hands and feet keypoints (Figure 6.1).

They also proposed a strong, two-stage, top-down model to perform whole-body pose

estimation on the COCO WholeBody dataset. Similar to top-down human pose es-

timation methods, Jin et al. [23] first obtain candidate person boxes in an image us-

ing FasterRCNN [9]. Next, using a single network called ZoomNet, detection of

whole-body keypoints is performed on the person boxes. ZoomNet is composed of

4 sub CNN networks. First, FeatureNet processes input person boxes and extracts

shared features at two scales. Next, using features from FeatureNet, BodyNet de-

tects body and foot keypoints. BodyNet is also responsible for the prediction of the

face and hand bounding box corner points to roughly extract face and hand areas.

Later, cropped face and hand bounding boxes are fed to the FaceHead and HandHead

networks to detect the keypoints on face and hands. They use HRNet-W32 [138]

network for the BodyNet and HRNetV2p-W18 [166] network for the FaceHead and

HandHead networks.

Even though bottom-up approaches are fast, they are not robust enough to handle

the scale variance across the whole-body parts. However, we hypothesize that repre-

senting each keypoint with an offset value to a carefully selected location can handle

the scale variance. Based on this, we extend the center-based human pose estima-

tion method [40] to perform whole-body pose estimation by introducing hierarchical

regression of keypoints. We also show that hierarchical regression of keypoints for

small scale whole-body parts (i.e. face and hand) is more effective than cropping and

zooming into them.

6.3 Model

HPRNet is a one-stage end-to-end trainable network that learns regressing the whole-

body keypoints. In HPRNet, the input image first passes through a backbone network

and output of the backbone is fed to 8 separate branches, namely; Person Center

72

Optional branch

Person
Center

Heatmaps

Backbone

HxWxD

Input Image

HxWx1 HxWx2 HxWx2 HxWx26 HxWx52 HxWx84 HxWx136 HxWx2

Person
Center

Correction

Person
Box

W&H

Body
Keypoint

Heatmaps

Body
Keypoint
Offsets

Hand
Keypoint
Offsets

Face
Keypoint
Offsets

Face
Box

W&H

LFL LFLLcor Lsize LsizeLoffset Loffset Loffset

Figure 6.2: Network architecture of the proposed HPRNet for whole-body keypoint

detection. Image is taken from our IMAVIS journal paper [25].

Heatmap, Person Center Correction, Person W & H, Body Keypoint Offsets, Body

Keypoint Heatmaps, Hand Keypoint Offsets, Face Keypoint Offsets and Face Box W

& H. We show the network architecture of HPRNet in Figure 6.2.

6.3.1 Hierarchical Regression of Whole-Body Keypoints

In HPRNet, we build a hierarchical regression mechanism, where we define each of

the whole-body keypoints with a relative location (i.e. offset) to a specific point on

the person box.

We represent each of the (standard) 17 keypoints on the body with an offset to the

center of the person bounding box. Unlike the body; face, hand and foot are small

parts. Based on this, we define each of this parts with a relative location to their part

center as follows; (i) each of 68 face keypoints is defined with an offset to the center

of face bounding box, (ii) each of 21 left hand keypoints is defined with an offset to

left hand bounding box center, (iii) each of 21 right hand keypoints is defined with an

offset to right hand bounding box center, (iv) each of 3 left foot keypoints is defined

with an offset to left foot bounding box center, (v) each of 3 right foot keypoints is

defined with an offset to right foot bounding box center. Face, hand and foot bounding

boxes are automatically extracted from the groundtruth keypoint annotations.

We treat the bounding box center of the face, left hand, right hand, left foot and

73

11

9

7 6

8

1013 12

15 14

17

16

45 3 21

18

1

2021

1

20 21

22
12

3

21
1 2

3

1

68

Person
Center

Figure 6.3: All regressed keypoints in HPRNet. Blue keypoints are body keypoints as

defined in COCO keypoints and COCO WholeBody datasets. Colored square points

correspond to the face (18), left hand (19), right hand (20), left foot (21) and right foot

(22) box centers. Blue keypoints (1-17) and colored square points are defined with

an offset to the center of the person instance. For simplicity, face and hand keypoints

are sparsely illustrated. Image is taken from our IMAVIS journal paper [25].

right foot as a body part keypoint and define each of them with an offset value to the

person box center (Figure 6.3). We illustrate the hierarchical regression of whole-

body keypoints in Figure 6.4b.

At inference, after detecting all the keypoints in the input image, we group and assign

them to person instances. To achieve this, we get predicted person centers from the

output of Person Center Heatmap branch as in CenterNet [40]. Next, we obtain the

offset values on the predicted person center locations of Body Keypoint Offsets branch

output. After that, we add these offsets to person centers to obtain the regressed body

keypoint locations. At the same time, we extract the detected body keypoints from

the outputted heatmap of the Body Keypoint Heatmaps branch. At the last step, we

match the detected and regressed keypoints based on L2 distance and only take the

keypoints inside the predicted person bounding box.

74

Next, we group face and hand keypoints (and foot keypoints as well, if we are using

the Hierarchical Model-I (Figure 6.4b). We obtain predicted part centers from the

output of Body Keypoint Heatmaps branch. Then, we collect the offset values on

the corresponding predicted part center locations of Hand Keypoint Offsets and Face

Keypoint Offsets branch output. Finally, we add these offsets to the part centers to

obtain the face and hand keypoints.

6.3.2 Regression of Foot Keypoints

Ideally, each labeled foot part in the COCO WholeBody dataset should have 3 key-

point annotations. However, more than 20% of annotated feet have missing anno-

tations (i.e. they have one or two keypoints annotations, instead of three). These

missing annotations present a challenge to HPRNet, since we automatically extract

foot centers from the annotated extreme points. In the case of the missing foot key-

points, the obtained foot center point is not reliable. To deal with this issue, we treat

the foot keypoints as body keypoints as shown in Figure 6.4c, and represent them by

their offsets to the center of the person bounding box.

6.3.3 Network Architecture

Given an input image of size 4H × 4W × 3, the backbone network outputs a feature

map of size H ×W ×D. The backbone’s output is fed to the following subsequent

branches. Each branch has one convolutional layer with 3 × 3 filters followed by a

ReLU layer and another convolutional layer with 1× 1 filters.

• Person Center Heatmap branch outputs H ×W sized tensor for person center

point predictions.

• Person Center Correction branch predicts H×W × 2 sized tensor for the local

offsets of center locations across the spatial axes. These offsets help to recover

the lost precision of the center points due to down-sampling operations through

the network.

• Person Box W & H branch outputs H × W × 2 sized tensor of widths and

75

Body Kps Face Kps Left Hand Kps Right Hand Kps

Face Cntr Left Hand Cntr Right Hand Cntr

Left Foot Kps

Left Foot Cntr

Right Foot Kps

Right Foot CntrPerson Cntr

171 ...

20
18

...

23
21

...

91 24

...

11
2

92

...

13
3

11
3

...

(a) Baseline Model

1

6818

...

21
1

19

...

211

20

...

3

1 21

...
3

1

22

... 171 ...

(b) Hierarchical Model-I

1

6818

...

21
1

19 ...

211

20

...

171 ...

23

21

...

2
6

2
4

...

(c) Hierarchical Model-II

Figure 6.4: Hierarchical representations of whole-body keypoints. (a) Each of 133

whole-body keypoints is defined with an offset to the person box center. (b) Body

keypoints and other part centers (i.e. foot, face and hand) are defined with offsets

to the person box center. Foot, face and hand keypoints are defined with offsets

according to their corresponding part centers. (c) Considering the sparsity of foot

keypoint annotations, we define them with their offset values to the person box center.

In both Hierarchical Model-I and Hierarchical Model-II, body keypoints are defined

with offset values to the person box center. Each face and hand keypoint is defined

with an offset to face and hand bounding box centers, respectively. Image is taken

from our IMAVIS journal paper [25].

heights for each person instance center.

• Body Keypoint Offsets branch predicts offset values of 26 keypoints (17 body

keypoints + 6 foot keypoints + Center of Face Box + Center of Left Hand Box

+ Center of Right Hand Box) to the person box center across the x and y axes.

• Body Keypoint Heatmaps branch outputs H×W ×26 sized heatmap tensor for

the 26 keypoints.

• Hand Keypoint Offsets branch outputsH×W ×84 sized tensor of offset values

between 21 left hand keypoints and left hand box center; and the offset values

between the 21 right hand keypoints and right hand box center across the spatial

axes.

76

• Face Keypoint Offsets branch outputsH×W×136 sized tensor of offset values

between 68 face keypoints and face box center across the spatial axes.

• Face Box W & H branch outputs H×W × 2 sized tensor of widths and heights

for each face. It is an optional branch.

6.3.4 Objective Functions

For the optimization of the Person Center Heatmap (PCH) and Body Keypoint Heatmap

(BKH) branches, we use the modified focal loss [8] as done in previous work [14, 15,

40, 2]. Modified focal loss (FL) is presented in Equation 6.1. I ∈ R4W×4H×3 is our

input image. In HPRNet,due to downsampling operations, the spatial output size of

each branch is 4 times smaller resulting in W × H . Therefore, Y ∈ [0, 1]W×H×C is

the ground truth heatmap for person centers and keypoints. C corresponds to class

number and keypoint types. For instance, in the Person Center Heatmap branch, we

have only person class, thus C = 1. Ŷ ∈ [0, 1]W×H×C is the predicted heatmap out-

put by the branches where Ŷx,y,c = 1 indicates presence of a person center or keypoint

at location (x, y) for class c. In the following all equations, N is the total number of

ground truth person centers or keypoints in image I . α and β are focal loss parameters

and set as α = 2 and β = 4 as in CornerNet [14].

LFL =
−1

N

∑
xyc


(

1− Ŷxyc
)α

log
(
Ŷxyc

)
if Yxyc = 1

(1− Yxyc)β
(
Ŷxyc

)α
log
(

1− Ŷxyc
)

otherwise

(6.1)

To compensate for the discretization error of the person center points due to down-

sampling operations through the network, we optimize the Person Center Correction

according to the following L1 loss similar to the bottom-up object detectors [14, 15,

40, 2]. T̂ ∈ RW×H×2 is the predicted local offset by the network to recover the lost

precision of person center points. p ∈ R2 is a ground truth keypoint and p̃ =
⌊
p
4

⌋
is

77

the corresponding ground keypoint location at low-resolution.

Lcor =
1

N

∑
p

∣∣∣T̂p̃ − (p
4
− p̃
)∣∣∣ (6.2)

We optimize the Body Keypoint Offset, Hand Keypoint Offset and Face Keypoint Off-

set branches using the L1 loss. The generic formulation of keypoint regression is

presented in Equation 6.3. In the equation, Ô ∈ RH×W×k×2 is the regression output

of keypoints k for a specific whole-body part (i.e. body, face, hand), and Bpart is the

ground truth center of that part’s bounding box.

Loffset =
∑
k

∣∣∣Ô[k] −Bpart

∣∣∣ (6.3)

Finally, for the Person Box H & W and Face Box H & W branches, we use L1 loss

and scale it by 0.1 as in CenterNet [40]. In the Equation 6.4, sn = (w, h) is the width

and height values of the each object (or face) n and Ŝ ∈ RW×H×2 is the predicted

width and height values.

Lsize =
1

N

N∑
n=1

∣∣∣Ŝpn − sn∣∣∣ (6.4)

We obtain the overall loss by summing the losses from all branches as follows:

Loverall = LPCHFL + LBKHFL + Lcor + Lbodyoffset + Lfaceoffset + Lhandoffset + 0.1Lpersonsize + 0.1Lfacesize

6.4 Experiments

This section describes the experiments we conducted to show the effectiveness of

our proposed method. First, we present ablation experiments to compare hierarchical

models I and II shown in Figure 6.4. Next, we compare our method with our baseline

CenterNet [40] (Figure 6.4a). Finally, we provide performance comparison with the

state of the art and a run-time analysis.

78

6.4.1 Implementation Details

We use Deep Layer Aggregation (DLA) [99] backbone for ablation and baseline com-

parison experiments, and Hourglass-104 [14] as our backbone network for state of the

art comparison. For all experiments, during training we resize the images to 512×512

pixels. At inference we use images with their original sizes without applying any scal-

ing. We train all the models with a batch size of 32 for 140 epochs using the Adam

optimizer [85]. We set the initial learning rate to 1.25× 10−4 and divided it by 10 at

epochs 90 and 120. We trained all of the models on 4 Tesla V100 GPUs, and tested

using a single GTX 1080 TI GPU. We used PyTorch [117] to implement our models.

All of our experiments are conducted on the COCO WholeBody Dataset [23] and

results are presented in keypoint AP (APkp) and keypoint recall AR (ARkp) metrics

without any test time augmentation. All results are obtained on the COCO Whole-

Body validation set.

6.4.2 Hierarchical Model-I vs Hierarchical Model-II

In Table 6.1, we compare Hierarchical Model-I and Hierarchical Model-II (see Fig-

ure 6.4). As it can be seen from the table, regressing foot keypoints as a part of the

body keypoints, improves the foot APkp significantly by 15.6 points (33.5 vs. 49.1).

Moreover, hand and whole-body APkps also improved about 3 points in this setup.

Based on these results, for the rest of the experiments we use the Hierarchical Model-

II.

Table 6.1: Comparison of Hierarchical Model-I (HM-I) and Hierarchical Model-II

(HM-II) as in Figure 6.4. Training foot keypoints with offset values to the person box

center outperforms the model when trained with offset values to the foot part centers.

Both models are trained with DLA backbone.

Method
body foot face hand whole-body all-mean

APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp

HM-I 55.5 63.4 33.5 55.3 74.6 83.5 44.1 57.8 28.0 40.5 47.1 60.1

HM-II 55.2 63.1 49.1 60.9 74.6 83.7 47.0 60.8 31.5 44.6 51.5 62.6

79

6.4.3 Comparison with Baseline

To obtain the baseline results, we regress all the 133 keypoints to the person instance

box center during training as in CenterNet [40] (see Figure 6.4b). In Table 6.2, we

compare HPRNet with the baseline model in terms of accuracy and recall. Our pro-

posed HPRNet significantly outperforms the baseline results for all APkp and ARkp

metrics except the whole-body APkp.

Table 6.2: Comparing HPRNet with the baseline model. To obtain the baseline re-

sults, we regress all the 133 keypoints to the person instance box center during train-

ing as in Figure 6.4b. Both models are trained with DLA backbone.

Method
body foot face hand whole-body all-mean

APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp

Baseline 46.7 55.5 33.6 48.9 52.0 60.2 26.4 39.1 33.3 43.4 38.4 49.4

HPRNet 55.2 63.1 49.1 60.9 74.6 83.7 47.0 60.8 31.5 44.6 51.5 62.6

6.4.4 Comparison with the State-of-the-art

Table 6.3 presents the performance of our models and several established keypoint

estimation models on the COCO WholeBody validation set. We also present aver-

age run times if available. HPRNet performs best among the bottom-up meth-

ods. Other bottom-up methods especially fail to accurately localize foot keypoints.

The performance gap between the second best performing bottom-up method and our

method is 40.9 APkp points on the foot keypoint detection. Similarly, our method out-

performs other bottom-up methods for the body, face, hand and whole-body keypoint

detection by a large margin. Among the top-down methods, ZoomNet outperforms

the well known OpenPose [135] and HRNet [138]. Here, ZoomNet is a two-stage

framework where at the first stage person candidates are extracted with FasterRCNN

and at the second stage ZoomNet is run on these candidate boxes. HRNet can be seen

as a one-stage counterpart of ZoomNet and finally OpenPose is a multi-model which

requires separate training for each whole-body part. HPRNet obtains state-of-the-art

results on face and hand keypoint detection. Our model with Hourglass-104 back-

80

Table 6.3: Comparison with the state-of-the-art on COCO WholeBody validation set.

The methods are divided into two groups: top-down and bottom-up. The best results

and run times are boldfaced separately for each group. HPRNet performs best among

the bottom-up methods. HPRNet also obtains state-of-the-art results on face and hand

keypoint detection outperforming ZoomNet. Among all methods, HPRNet with DLA

backbone is the fastest one. ∗ indicates that run time linearly increases as the number

of people in an image increases. HG is Hourglass-104. R. time is Running time.

Method
body foot face hand whole-body all-mean R. time

(ms)
APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp APkp ARkp

Top-down methods:

OpenPose [135] 56.3 61.2 53.2 64.5 48.2 62.6 19.8 34.2 33.8 44.9 42.3 53.5 45

HRNet∗ [138] 65.9 70.9 31.4 42.4 52.3 58.2 30.0 36.3 43.2 52.0 44.6 52.0 -

ZoomNet∗ [23] 74.3 80.2 79.8 86.9 62.3 70.1 40.1 49.8 54.1 65.8 62.1 70.6 175

Bottom-up methods:

PAF [139] 26.6 32.8 10.0 25.7 30.9 36.2 13.3 32.1 14.1 18.5 19.0 29.1 100

SN [136] 28.0 33.6 12.1 27.7 38.2 44.0 13.8 33.6 16.1 20.9 21.6 32.0 216

AE [141] 40.5 46.4 7.7 16.0 47.7 58.0 34.1 43.5 27.4 35.0 31.5 39.8 -

Ours (HPRNet-DLA) 55.2 63.1 49.1 60.9 74.6 83.7 47.0 60.8 31.5 44.6 51.5 62.6 37

Ours (HPRNet-HG) 59.4 68.3 53.0 65.4 75.4 86.8 50.4 64.2 34.8 49.2 54.6 66.8 101

bone outperforms ZoomNet on the detection of face keypoints by 13.1 APkp points

and hand keypoints by 10.3 APkp points. These successful results on the face and

hand keypoint detection, further shows the effectiveness of our proposed bottom-up

hierarchical approach over the ZoomNet’s zoom-in mechanism. However, for the

detection of the body and whole-body keypoints ZoomNet performs best among all

methods. Among all methods, our HPRNet with the DLA backbone is the fastest

one (37 ms) with constant run time. In Figure 6.5, we show sample qualitative

results for our approach.

6.4.5 Runtime Analysis

Average run time of ZoomNet (including Faster RCNN for person detector) on a

single image is 174.7 ms. Similarly, the average run time of HPRNet with DLA and

Hourglass-104 backbones is 37 ms (26 ms for feedforward and 11 ms for keypoint

grouping and assignment) and 101 ms (90 ms for feedforward and 11 ms for keypoint

81

Figure 6.5: Sample whole-body keypoint detection results of HPRNet. We show

correctly detected people, and their whole-body poses. Detection box is marked with

a purple bounding box, and body pose estimation is shown with blue color for the

left parts, red color for the right parts. For clarity, we mark the detected keypoints on

face, hand and foot with magenta, green and cyan colors, respectively. Detected faces

are marked with an orange bounding box. Image is taken from our IMAVIS journal

paper [25].

grouping and assignment). HPRNet is significantly faster than ZoomNet. Moreover,

as a top-down method, run time of ZoomNet increases as the number of people on an

image increases. We compare the run time of our models and ZoomNet in Figure 6.6.

6.4.6 Face Detection from Keypoints

In this section, we studied the face detection task and compared HPRNet and Zoom-

Net. We first extracted face boxes using extreme face keypoints and calculated AP

scores as in object detection. Our model outperformed ZoomNet in face detection

82

2 4 6 8 10 12 14 16 18 20
Number of people

0

200

400

600

800

1000

1200

1400

Ru
nt

im
e

(m
s)

ZoomNet
HPRNet (DLA)
HPRNet (Hourglass-104)

Figure 6.6: Runtime analysis of ZoomNet and our models with respect to number

of people in an image. As the number of people in an image increases, the runtime

of ZoomNet linearly increases. Whereas, our models almost have constant run time.

Image is taken from our IMAVIS journal paper [25].

(46.2 AP vs 37.7 AP). Later, using an additional branch for face detection we train

another model (see Figure 6.2). Our model with an extra face detection branch further

improved the performance of HPRNet for face detection achieving 55.8 AP and 56.4

AP with DLA and Hourglass-104 backbones respectively. Results are presented in

Table 6.4.

Table 6.4: Face detection results. The first group of results are obtained from extreme

face keypoints for both ZoomNet and HPRNet. The HPRNet results in the second

group are obtained with an extra face detection branch. HG is Hourglass-104.

Method AP AP50 AP75 APM APL

When face boxes are extracted from extreme face keypoints:

ZoomNet 37.7 64.5 41.1 25.8 44.9

HPRNet (DLA) 46.2 70.6 54.8 32.2 53.8

HPRNet (HG) 46.1 70.9 53.6 33.4 53.1

Our model with an extra face detection branch

HPRNet (DLA) 55.8 82.3 66.2 40.0 63.6

HPRNet (HG) 56.4 82.4 67.1 43.4 63.3

83

6.5 Conclusion

In this work, we introduced HPRNet as a bottom-up, one-stage method for whole-

body keypoint detection. HPRNet handles scale variance among whole-body parts

by hierarchically regressing whole-body keypoints. We evaluated the effectiveness

of our method through baseline comparison and ablation experiments on hierarchical

structure of whole-body keypoints. Our method achieves state-of-the-art results in

the detection of face and hand keypoints on the COCO WholeBody dataset; it also

outperforms all other bottom-up methods in the detection of all whole-body parts.

We conducted a run time analysis between HPRNet and ZoomNet and showed that

in contrast to ZoomNet, HPRNet runs in constant time, independent of the number of

persons in an image.

84

CHAPTER 7

CONCLUSION

This chapter is adopted from our ECCV’20 paper [2] and its extension [3].

In this thesis, we presented HoughNet, a new, one-stage, anchor-free, voting-based,

bottom-up object detection method. HoughNet determines the presence of an object

at a specific location by the sum of the votes cast on that location. Voting module

of HoughNet is able to use both short and long-range evidence through its log-polar

vote field. Thanks to this ability, HoughNet generalizes and enhances current object

detection methodology, which typically relies on only local (short-range) evidence.

We show that HoughNet performs on-par with the state-of-the-art bottom-up object

detectors, and obtains comparable results with one-stage and two-stage methods. To

further validate our proposal, we used the voting module of HoughNet in video object

detection, instance segmentation, 3D object detection, 2D human pose estimation, 2D

whole-body human pose estimation, face detection and “labels to photo” image gen-

eration tasks, and showed that our voting module consistently improves the baseline

performances.

For video object detection we extended voting in spatial domain to the temporal do-

main and developed a new method, which takes the difference of features from two

frames, and applies spatial and temporal voting using our “temporal voting module”

to detect objects.

We also developed a “scalable” variant of HoughNet where the number of voting

operations does not depend on the number of object classes. We showed that scalable

Hough voting dramatically improves inference speed with a slight drop in accuracy.

We also conducted analysis studies on HoughNet. First, we examined the relations

85

between vote-giver and vote-getter classes of HoughNet. Secondly, we evaluated

HoughNet’s performance using localisation, recall, precision metrics and compared

the source of errors with the baseline model.

In order to show the effectiveness of our proposal on whole-body human pose esti-

mation task, we developed a bottom-up, one-stage method called HPRNet. HPRNet

handles scale variance among whole-body parts by hierarchically regressing whole-

body keypoints. We showed that HPRNet is both fast and accurate. HPRNet runs in

constant time, independent of the number of persons in an image, and also performs

best among bottom-up methods and achieves state-of-the-art results on face and hand

keypoint detection.

We also developed a one-stage, anchor-free object detector, PPDet, which integrates

short-range interactions through voting. PPDet employs the new labeling strategy

during training and a new inference method based on pooling predictions. This al-

lows PPDet to reduce the contributions of non-discriminatory features during training.

We showed that PPDet performs on par with the state-of-the-art and especially very

effective for small object detection.

7.1 Limitations and Future Work

The current design of Hough voting module has limitations. First, in the current

design, one could only apply voting at the last layer to detect object classes. Applying

voting at the early layers on intermediate feature tensors are computationally very

costly. With a more efficient design voting could be applied at early layers and also

performance could be improved further.

Second, the current design is not compatible with object detector networks with

FPN [88]. One has to search for the best log-polar vote-field for each FPN layer

manually. Moreover, applying voting at each output of FPN layer is computationally

costly. In that sense, a different voting mechanism could be developed particularly

for network architectures with FPN.

Third, in the current design we apply voting at each spatial location. However, not all

86

the locations contain useful short or long-range evidence for the detection of objects.

Applying voting only on the locations with strong short and long-range evidence will

improve the run time of HoughNet.

HoughNet exposes the latent patterns between objects and its voters. In this way, our

voting module is able to get votes from non-labeled objects in a dataset. Based on this

observation, in future we aim to extend our work for the discovery of unseen object

classes.

Both HoughNet and transformer based object detectors integrates short and long-

range interactions. We aim to compare HoughNet with transformer based object de-

tectors, and possibly extend the log-polar voting module to be used within transform-

ers.

In the current version of HPRNet, we rely on manually assigned hierarchy labels

of whole-body keypoints. Manually assigned hierarchy labels force the network to

regress each whole-body keypoint according to a hand crafted pre-defined value. Re-

laxing this regressing strategy will let each whole-body keypoint to leanr its own hier-

archy level during training. Adopting the network to relax regressing of whole-body

keypoints could improve the performance further.

In the current design of PPDet, we manually define the positive area of a ground-truth

box. Dynamic selection of this positive area could improve the performance of PPDet

further. To this end, a new branch could be integrated to the network to predict the

positive area of the corresponding object’s ground-truth area.

87

88

REFERENCES

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban

scene understanding,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3213–3223, 2016.

[2] N. Samet, S. Hicsonmez, and E. Akbas, “HoughNet: Integrating near and long-

range evidence for bottom-up object detection,” in European Conference on

Computer Vision, 2020, in press.

[3] N. Samet, S. Hicsonmez, and E. Akbas, “Houghnet: Integrating near and long-

range evidence for visual detection,” 2021.

[4] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, “Dis-

criminatively trained deformable part models, release 5.”

http://people.cs.uchicago.edu/ rbg/latent-release5/.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object

detection with discriminatively trained part-based models,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645,

2009.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in IEEE Conference on Computer Vision and Pattern Recognition,

pp. 770–778, 2016.

[7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Euro-

pean Conference on Computer Vision, pp. 740–755, Springer, 2014.

[8] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense

object detection,” in IEEE International Conference on Computer Vision, 2017.

89

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” in Advances in Neural Infor-

mation Processing Systems, pp. 91–99, 2015.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European Conference on Computer

Vision, 2016.

[11] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

[12] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with inter-

leaved categorization and segmentation,” International Journal of Computer

Vision, vol. 77, pp. 259–289, May 2008.

[13] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object

detection with discriminatively trained part based models,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2010.

[14] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in

European Conference on Computer Vision, pp. 734–750, 2018.

[15] X. Zhou, J. Zhuo, and P. Krähenbühl, “Bottom-up object detection by group-

ing extreme and center points,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2019.

[16] P. V. C. Hough, “Machine Analysis of Bubble Chamber Pictures,”

vol. C590914, pp. 554–558, 1959.

[17] D. H. Ballard et al., “Generalizing the hough transform to detect arbitrary

shapes,” Pattern Recognition, 1981.

[18] M. Land and B. Tatler, Looking and acting: vision and eye movements in nat-

ural behaviour. Oxford University Press, 2009.

[19] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint

triplets for object detection,” in IEEE International Conference on Computer

Vision, 2019.

90

[20] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask r-cnn,” IEEE Inter-

national Conference on Computer Vision, pp. 2980–2988, 2017.

[21] K. Oksuz, B. Cam, E. Akbas, and S. Kalkan, “Localization recall precision

(LRP): A new performance metric for object detection,” in European Confer-

ence on Computer Vision, 2018.

[22] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “One metric to measure them

all: Localisation recall precision (LRP) for evaluating visual detection tasks,”

under review at TPAMI, 2020.

[23] S. Jin, L. Xu, J. Xu, C. Wang, W. Liu, C. Qian, W. Ouyang, and P. Luo,

“Whole-body human pose estimation in the wild,” in European Conference

on Computer Vision, 2020.

[24] N. Samet, S. Hicsonmez, and E. Akbas, “Reducing Label Noise in Anchor-

Free Object Detection,” in British Machine Vision Conference (BMVC), 2020.

[25] N. Samet and E. Akbas, “Hprnet: Hierarchical point regression for whole-body

human pose estimation,” Image and Vision Computing, vol. 115, p. 104285,

2021.

[26] R. Okada, “Discriminative generalized hough transform for object detection,”

in IEEE International Conference on Computer Vision, 2009.

[27] J. Gall and V. Lempitsky, “Class-specific hough forests for object detection,”

in IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[28] N. Razavi, J. Gall, P. Kohli, and L. Van Gool, “Latent hough transform for

object detection,” in European Conference on Computer Vision, 2012.

[29] S. Maji and J. Malik, “Object detection using a max-margin hough transform,”

in IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[30] O. Barinova, V. Lempitsky, and P. Kholi, “On detection of multiple object

instances using hough transforms,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 9, pp. 1773–1784, 2012.

91

[31] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d ob-

ject detection in point clouds,” in IEEE International Conference on Computer

Vision, 2019.

[32] A. Sheshkus, A. Ingacheva, V. Arlazarov, and D. Nikolaev, “Houghnet: Neu-

ral network architecture for vanishing points detection,” in IEEE International

Conference on Document Analysis and Recognition (ICDAR), pp. 844–849,

2019.

[33] E. Gabriel, M. Schleiss, H. Schramm, and C. Meyer, “Analysis of the discrim-

inative generalized hough transform as a proposal generator for a deep net-

work in automatic pedestrian and car detection,” Journal of Electronic Imag-

ing, vol. 27, no. 5, p. 051228, 2018.

[34] I. Lifshitz, E. Fetaya, and S. Ullman, “Human pose estimation using deep con-

sensus voting,” in European Conference on Computer Vision, 2016.

[35] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.

[36] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional

single shot detector,” arXiv preprint arXiv:1701.06659, 2017.

[37] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu, “Ac-

curate single stage detector using recurrent rolling convolution,” in IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017.

[38] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal by guided

anchoring,” in IEEE Conference on Computer Vision and Pattern Recognition,

2019.

[39] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage

object detection,” in IEEE International Conference on Computer Vision, 2019.

[40] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” in arXiv preprint

arXiv:1904.07850, 2019.

[41] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition

92

using shape contexts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, pp. 509–522, April 2002.

[42] E. Akbas and M. P. Eckstein, “Object detection through search with a foveated

visual system,” PLoS computational biology, vol. 13, no. 10, p. e1005743,

2017.

[43] V. J. Traver and A. Bernardino, “A review of log-polar imaging for visual

perception in robotics,” Robotics and Autonomous Systems, vol. 58, no. 4,

pp. 378–398, 2010.

[44] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala,

and P. Dollár, “A multipath network for object detection,” arXiv preprint

arXiv:1604.02135, 2016.

[45] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang, “Gated bi-directional cnn

for object detection,” in European Conference on Computer Vision, pp. 354–

369, Springer, 2016.

[46] X. Zeng, W. Ouyang, J. Yan, H. Li, T. Xiao, K. Wang, Y. Liu, Y. Zhou, B. Yang,

Z. Wang, et al., “Crafting gbd-net for object detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 40, no. 9, pp. 2109–2123,

2017.

[47] W. Ouyang, K. Wang, X. Zhu, and X. Wang, “Learning chained deep

features and classifiers for cascade in object detection,” arXiv preprint

arXiv:1702.07054, 2017.

[48] S. Gidaris and N. Komodakis, “Object detection via a multi-region and se-

mantic segmentation-aware cnn model,” in IEEE International Conference on

Computer Vision, pp. 1134–1142, 2015.

[49] Y. Zhu, C. Zhao, J. Wang, X. Zhao, Y. Wu, and H. Lu, “Couplenet: Coupling

global structure with local parts for object detection,” in IEEE International

Conference on Computer Vision, pp. 4126–4134, 2017.

[50] C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, “R-cnn for small object detection,”

in Asian Conference on Computer Vision, pp. 214–230, Springer, 2016.

93

[51] Y. Kim, T. Kim, B.-N. Kang, J. Kim, and D. Kim, “Ban: Focusing on bound-

ary context for object detection,” in Asian Conference on Computer Vision,

pp. 555–570, Springer, 2018.

[52] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert, “An empirical

study of context in object detection,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1271–1278, IEEE, 2009.

[53] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2016.

[54] Z. Li, Y. Chen, G. Yu, and Y. Deng, “R-FCN++: Towards accurate region-

based fully convolutional networks for object detection,” in AAAI Conference

on Artificial Intelligence, 2018.

[55] J. Li, Y. Wei, X. Liang, J. Dong, T. Xu, J. Feng, and S. Yan, “Attentive contexts

for object detection,” CoRR, vol. abs/1603.07415, 2016.

[56] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside net:

Detecting objects in context with skip pooling and recurrent neural networks,”

in IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–

2883, 2016.

[57] C. Desai, D. Ramanan, and C. C. Fowlkes, “Discriminative models for multi-

class object layout,” International Journal of Computer Vision, vol. 95, no. 1,

pp. 1–12, 2011.

[58] Q. Chen, Z. Song, J. Dong, Z. Huang, Y. Hua, and S. Yan, “Contextualizing

object detection and classification,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 37, no. 1, pp. 13–27, 2014.

[59] X. Chen and A. Gupta, “Spatial memory for context reasoning in object detec-

tion,” in IEEE International Conference on Computer Vision, pp. 4086–4096,

2017.

[60] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object

detection,” in IEEE Conference on Computer Vision and Pattern Recognition,

pp. 3588–3597, 2018.

94

[61] N. Arbel, T. Avraham, and M. Lindenbaum, “Inner-scene similarities as a con-

textual cue for object detection,” arXiv preprint arXiv:1707.04406, 2017.

[62] Z. Chen, S. Huang, and D. Tao, “Context refinement for object detection,” in

European Conference on Computer Vision, pp. 71–86, 2018.

[63] S. Gupta, B. Hariharan, and J. Malik, “Exploring person context and local

scene context for object detection,” arXiv preprint arXiv:1511.08177, 2015.

[64] Y. Liu, R. Wang, S. Shan, and X. Chen, “Structure inference net: Object detec-

tion using scene-level context and instance-level relationships,” in IEEE Con-

ference on Computer Vision and Pattern Recognition, pp. 6985–6994, 2018.

[65] W. Chu and D. Cai, “Deep feature based contextual model for object detec-

tion,” Neurocomputing, vol. 275, pp. 1035–1042, 2018.

[66] N. Dvornik, J. Mairal, and C. Schmid, “On the importance of visual context for

data augmentation in scene understanding,” arXiv preprint arXiv:1809.02492,

2018.

[67] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and

A. Yuille, “The role of context for object detection and semantic segmentation

in the wild,” in IEEE Conference on Computer Vision and Pattern Recognition,

2014.

[68] X. Qiao, Q. Zheng, Y. Cao, and R. W. Lau, “Tell me where i am: Object-level

scene context prediction,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2633–2641, 2019.

[69] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective re-

ceptive field in deep convolutional neural networks,” in Advances in Neural

Information Processing Systems, pp. 4898–4906, 2016.

[70] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”

arXiv preprint arXiv:1710.09829, 2017.

[71] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”

in IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–

7803, 2018.

95

[72] N. Samet, S. Hicsonmez, and E. Akbas, “Houghnet: Integrating near and

long-range evidence for bottom-up object detection,” in ECCV, pp. 406–423,

Springer, 2020.

[73] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,

“End-to-end object detection with transformers,” European Conference on

Computer Vision, 2020.

[74] H. Qiu, Y. Ma, Z. Li, S. Liu, and J. Sun, “Borderdet: Border feature for dense

object detection,” in European Conference on Computer Vision, pp. 549–564,

2020.

[75] C. Chi, F. Wei, and H. Hu, “Relationnet++: Bridging visual representations

for object detection via transformer decoder,” Advances in Neural Information

Processing Systems, 2020.

[76] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems, pp. 5998–6008, 2017.

[77] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recognition,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 10076–10085, 2020.

[78] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei, “Flow-guided feature aggrega-

tion for video object detection,” in ICCV, 2017.

[79] H. Deng, Y. Hua, T. Song, Z. Zhang, Z. Xue, R. Ma, N. Robertson, and

H. Guan, “Object guided external memory network for video object detection,”

in ICCV, 2019.

[80] C. Guo, B. Fan, J. Gu, Q. Zhang, S. Xiang, V. Prinet, and C. Pan, “Progressive

sparse local attention for video object detection,” in ICCV, 2019.

[81] Y. Chen, Y. Cao, H. Hu, and L. Wang, “Memory enhanced global-local aggre-

gation for video object detection,” in CVPR, 2020.

[82] G. Bertasius, C. Feichtenhofer, D. Tran, J. Shi, and L. Torresani, “Learning

temporal pose estimation from sparsely labeled videos,” in NIPS, 2019.

96

[83] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-nms–improving ob-

ject detection with one line of code,” in IEEE International Conference on

Computer Vision, pp. 5561–5569, 2017.

[84] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and

tracking,” in European Conference on Computer Vision, pp. 466–481, 2018.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[86] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

CoRR, 2015.

[87] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based

fully convolutional networks,” in Advances in Neural Information Processing

Systems, pp. 379–387, 2016.

[88] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Fea-

ture pyramid networks for object detection,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 936–944, 2017.

[89] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality object

detection,” in IEEE Conference on Computer Vision and Pattern Recognition,

pp. 6154–6162, 2018.

[90] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance

segmentation,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 8759–8768, 2018.

[91] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement neural

network for object detection,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 4203–4212, 2018.

[92] C. Zhu, Y. He, and M. Savvides, “Feature selective anchor-free module for

single-shot object detection,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2019.

[93] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye, “Freeanchor: Learning to match

97

anchors for visual object detection,” in Advances in Neural Information Pro-

cessing Systems, 2019.

[94] A. Gupta, P. Dollar, and R. Girshick, “LVIS: A dataset for large vocabulary

instance segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019.

[95] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual

recognition challenge,” IJCV, 2015.

[96] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask: Top-

down meets bottom-up for instance segmentation,” in CVPR, 2020.

[97] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3354–3361, 2012.

[98] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory-aware convolutional

neural networks for object proposals and detection,” in IEEE Winter Confer-

ence on Applications of Computer Vision, pp. 924–933, 2017.

[99] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,” in

IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–

2412, 2018.

[100] A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learn-

ing for joint detection and grouping,” in Advances in Neural Information Pro-

cessing Systems, pp. 2277–2287, 2017.

[101] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 7291–7299, 2017.

[102] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and K. Mur-

phy, “Personlab: Person pose estimation and instance segmentation with a

bottom-up, part-based, geometric embedding model,” in European Conference

on Computer Vision, pp. 269–286, 2018.

98

[103] S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face: A face detection

benchmark,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016.

[104] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks,” in IEEE International Con-

ference on Computer Vision, pp. 2223–2232, 2017.

[105] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1125–1134, 2017.

[106] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-

mantic segmentation,” in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431–3440, 2015.

[107] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreason-

able effectiveness of deep features as a perceptual metric,” in IEEE Conference

on Computer Vision and Pattern Recognition, June 2018.

[108] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer

Vision, 2015.

[109] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance Problems in Object

Detection: A Review,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 1–1, 2020.

[110] T. Yang, X. Zhang, W. Zhang, and J. Sun, “Metaanchor: Learning to detect

objects with customized anchors,” in NIPS, 2018.

[111] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object de-

tectors with online hard example mining,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 761–769, 2016.

[112] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint

triplets for object detection,” in IEEE International Conference on Computer

Vision, 2019.

99

[113] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, “Foveabox: Beyond anchor-

based object detector,” IEEE Transactions on Image Processing, pp. 7389–

7398, 2020.

[114] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal by guided

anchoring,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2965–2974, 2019.

[115] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transfor-

mations for deep neural networks,” in IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1492–1500, 2017.

[116] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,

Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,

X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and

D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,” arXiv

preprint arXiv:1906.07155, 2019.

[117] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala, “Pytorch: An imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.

[118] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,

“The PASCAL Visual Object Classes (VOC) Challenge,” International Jour-

nal of Computer Vision, pp. 303–338, 2010.

[119] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network for

skeleton based action recognition,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[120] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-structural

graph convolutional networks for skeleton-based action recognition,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2019.

[121] A. Yan, Y. Wang, Z. Li, and Y. Qiao, “Pa3d: Pose-action 3d machine for video

100

recognition,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019.

[122] L. Huang, Y. Huang, W. Ouyang, and L. Wang, “Part-aligned pose-guided

recurrent network for action recognition,” Pattern Recognition, 2019.

[123] D. C. Luvizon, D. Picard, and H. Tabia, “2d/3d pose estimation and action

recognition using multitask deep learning,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2018.

[124] H. Choi, G. Moon, and K. M. Lee, “Pose2mesh: Graph convolutional network

for 3d human pose and mesh recovery from a 2d human pose,” in European

Conference on Computer Vision, 2020.

[125] J. N. Kundu, M. Rakesh, V. Jampani, R. M. Venkatesh, and R. V. Babu, “Ap-

pearance consensus driven self-supervised human mesh recovery,” in European

Conference on Computer Vision, 2020.

[126] U. Iqbal, K. Xie, Y. Guo, J. Kautz, and P. Molchanov, “Kama: 3d keypoint

aware body mesh articulation,” arXiv preprint arXiv:2104.13502, 2021.

[127] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end recovery of

human shape and pose,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2018.

[128] G. Cimen, C. Maurhofer, B. Sumner, and M. Guay, “Ar poser: Automatically

augmenting mobile pictures with digital avatars imitating poses,” in 12th Inter-

national Conference on Computer Graphics, Visualization, Computer Vision

and Image Processing, 2018.

[129] A. Elhayek, O. Kovalenko, P. Murthy, J. Malik, and D. Stricker, “Fully auto-

matic multi-person human motion capture for vr applications,” in International

Conference on Virtual Reality and Augmented Reality, 2018.

[130] W. Xu, A. Chatterjee, M. Zollhoefer, H. Rhodin, P. Fua, H.-P. Seidel, and

C. Theobalt, “Mo2cap2: Real-time mobile 3d motion capture with a cap-

mounted fisheye camera,” IEEE transactions on visualization and computer

graphics, 2019.

101

[131] “Azure kinect body tracking joints.”.

[132] “3d skeletal tracking on azure kinect.”.

[133] “How huawei ml kit’s face detection and hand keypoint detection capabilities

helped with creating the game crazy rockets.”

https://medium.com/huawei-developers/how-huawei-ml

-kits-face-detection-and-hand-keypoint-detection

-capabilities-helped-with-creating-6a22fdb7f967.

[134] L. Kumarapu and P. Mukherjee, “Animepose: Multi-person 3d pose estimation

and animation,” Pattern Recognition Letters, 2021.

[135] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: realtime

multi-person 2d pose estimation using part affinity fields,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.

[136] G. Hidalgo, Y. Raaj, H. Idrees, D. Xiang, H. Joo, T. Simon, and Y. Sheikh,

“Single-network whole-body pose estimation,” in IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

[137] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Euro-

pean Conference on Computer Vision, 2014.

[138] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation

learning for human pose estimation,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[139] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[140] G. Ning, Z. Zhang, and Z. He, “Knowledge-guided deep fractal neural net-

works for human pose estimation,” IEEE Transactions on Multimedia, 2017.

[141] A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learn-

ing for joint detection and grouping,” arXiv preprint arXiv:1611.05424, 2016.

102

https://medium.com/huawei-developers/how-huawei-ml-kits-face-detection-and-hand-keypoint-detection-capabilities-helped-with-creating-6a22fdb7f967
https://medium.com/huawei-developers/how-huawei-ml-kits-face-detection-and-hand-keypoint-detection-capabilities-helped-with-creating-6a22fdb7f967
https://medium.com/huawei-developers/how-huawei-ml-kits-face-detection-and-hand-keypoint-detection-capabilities-helped-with-creating-6a22fdb7f967

[142] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose

estimation,” in European Conference on Computer Vision, 2016.

[143] M. Kocabas, S. Karagoz, and E. Akbas, “Multiposenet: Fast multi-person pose

estimation using pose residual network,” in European Conference on Computer

Vision, 2018.

[144] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and K. Mur-

phy, “Personlab: Person pose estimation and instance segmentation with a

bottom-up, part-based, geometric embedding model,” in European Conference

on Computer Vision, 2018.

[145] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolutional

part heatmap regression,” in European Conference on Computer Vision, 2016.

[146] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler,

and B. Schiele, “Deepcut: Joint subset partition and labeling for multi person

pose estimation,” in IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016.

[147] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov, B. Andres,

and B. Schiele, “Arttrack: Articulated multi-person tracking in the wild,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[148] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele,

“Deepercut: A deeper, stronger, and faster multi-person pose estimation

model,” in European Conference on Computer Vision, 2016.

[149] U. Iqbal, A. Milan, and J. Gall, “Posetrack: Joint multi-person pose estimation

and tracking,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017.

[150] S. Jin, W. Liu, W. Ouyang, and C. Qian, “Multi-person articulated tracking

with spatial and temporal embeddings,” in IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2019.

[151] S. Jin, X. Ma, Z. Han, Y. Wu, W. Yang, W. Liu, C. Qian, and W. Ouyang,

“Towards multi-person pose tracking: Bottom-up and top-down methods,” in

ICCV PoseTrack Workshop, 2017.

103

[152] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid

network for multi-person pose estimation,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2018.

[153] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and

K. Murphy, “Towards accurate multi-person pose estimation in the wild,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[154] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose

estimation,” in IEEE International Conference on Computer Vision, 2017.

[155] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and

tracking,” in European Conference on Computer Vision, 2018.

[156] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regres-

sion,” International Journal of Computer Vision, 2014.

[157] G. Tzimiropoulos, “Project-out cascaded regression with an application to face

alignment,” in IEEE Conference on Computer Vision and Pattern Recognition,

2015.

[158] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou,

“Mnemonic descent method: A recurrent process applied for end-to-end face

alignment,” in IEEE Conference on Computer Vision and Pattern Recognition,

2016.

[159] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Learning deep representation for

face alignment with auxiliary attributes,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2015.

[160] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface: Single-

shot multi-level face localisation in the wild,” in IEEE Conference on Com-

puter Vision and Pattern Recognition, 2020.

[161] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment us-

ing multitask cascaded convolutional networks,” IEEE Signal Processing Let-

ters, 2016.

104

[162] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands deep in deep learning for

hand pose estimation,” 20th Computer Vision Winter Workshop, 2015.

[163] M. Oberweger and V. Lepetit, “Deepprior++: Improving fast and accurate 3d

hand pose estimation,” in IEEE International Conference on Computer Vision

Workshops, 2017.

[164] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhemann,

I. Leichter, A. Vinnikov, Y. Wei, et al., “Accurate, robust, and flexible real-time

hand tracking,” in Proceedings of the 33rd annual ACM conference on human

factors in computing systems, 2015.

[165] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt, “Fast and robust hand

tracking using detection-guided optimization,” in IEEE Conference on Com-

puter Vision and Pattern Recognition, 2015.

[166] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,

and J. Wang, “High-resolution representations for labeling pixels and regions,”

arXiv preprint arXiv:1904.04514, 2019.

105

106

Appendix A

A STEP-BY-STEP ANIMATION OF THE VOTING PROCESS.

Figure A.1 illustrates the vote aggregation process for two steps, for a specific class.

Each row corresponds to a single step. E is the visual evidence tensor for a specific

class. Its size is H ×W × R. O is the corresponding object presence map with size

H ×W .

107

STEP I

(a) (b) (c)

STEP II

(d) (e) (f)

Figure A.1: (a) O is initialized with zeros. (b) We pick an arbitrary location (i, j) and

the 3rd channel of E. We place the vote field centered at the location (i, j). Since,

we are using the 3rd channel, the relevant region of the vote field is 3 (shown with

pink color on E). Finally we apply the voting. (c) O after voting. (d) O before the

voting. (e) To further illustrate the voting process, we pick another location and the

8th channel in E. We place the vote field centered at the location. The region 8 marks

the target area to be voted on. We apply the voting. (f) O after voting. The colors in O

indicate accumulated vote strength.

108

Appendix B

COCO MINITRAIN STATISTICS

We present several statistics about COCO minitrain and show that minitrain’s

object instance statistics match those of train2017. We show Person class sepa-

rately, because it is the most dominant class in the dataset. When we add person class

to the figures, it becomes harder to see the details of other classes.

109

Figure B.1: (Top) Total annotations (i.e. object instances) normalized with total im-

age counts in the dataset. (Bottom) Person annotations normalized with total image

counts in the dataset.

110

Figure B.2: (Top) Total annotations normalized with total annotation counts in the

dataset. (Bottom) Person annotations normalized with total annotation counts in the

dataset.

111

Figure B.3: (Top) Small annotations normalized with total image counts in the dataset.

(Bottom) Small Person annotations normalized with total image counts in the dataset.

112

Figure B.4: (Top) Small annotations normalized with total annotation counts in the

dataset. (Bottom) Small Person annotations normalized with total annotation counts

in the dataset.

113

Figure B.5: (Top) Medium annotations normalized with total image counts in the

dataset. (Bottom) Medium Person annotations normalized with total image counts in

the dataset.

114

Figure B.6: (Top) Medium annotations normalized with total annotation counts in

the dataset. (Bottom) Medium Person annotations normalized with total annotation

counts in the dataset.

115

Figure B.7: (Top) Large annotations normalized with total image counts in the

dataset. (Bottom) Large Person annotations normalized with total image counts in

the dataset.

116

Figure B.8: (Top) Large annotations normalized with total annotation counts in the

dataset. (Bottom) Large Person annotations normalized with total annotation counts

in the dataset.

117

118

Appendix C

MORE VISUAL RESULTS ON OBJECT DETECTION

Following, we present more visual results on object detection.

119

Figure C.1: Fire hydrant detection gets strong votes from cars, person, buildings and

road.

Figure C.2: Tennis racket detection gets strong votes from person.

Figure C.3: Ski detection gets strong votes from other ski, ski baton and person.

120

Figure C.4: Kite detection gets strong votes from person and sky.

Figure C.5: Sports ball detection gets strong votes from person.

Figure C.6: Television detection gets strong votes from common things in a living

room such as paintings at the wall and books in the shelf.

121

Figure C.7: Remote detection gets strong votes from television and chair objects.

Figure C.8: Television detection gets strong votes from things in a living room such

as lamp (is not among 80 classes of COCO dataset), chair and couch.

Figure C.9: Television detection gets strong votes from things in a kitchen such as

lamp (is not among 80 classes of COCO dataset), and couch.

122

Appendix D

INTERACTION AMONG OBJECT CLASSES

We present the full 80 × 80 matrix to visualize voting relations between classes on

the COCO dataset in Figure D.1.

123

pe
rs

on
bi

cy
cle ca

r
m

ot
or

cy
cle

ai
rp

la
ne bu

s
tra

in
tru

ck
bo

at
tra

ffi
c

lig
ht

fir
e

hy
dr

an
t

st
op

 si
gn

pa
rk

in
g

m
et

er
be

nc
h

bi
rd ca
t

do
g

ho
rs

e
sh

ee
p

co
w

el
ep

ha
nt

be
ar

ze
br

a
gi

ra
ffe

ba
ck

pa
ck

um
br

el
la

ha
nd

ba
g tie

su
itc

as
e

fri
sb

ee sk
is

sn
ow

bo
ar

d
sp

or
ts

 b
al

l
ki

te
ba

se
ba

ll
ba

t
ba

se
ba

ll
gl

ov
e

sk
at

eb
oa

rd
su

rfb
oa

rd
te

nn
is

ra
ck

et
bo

ttl
e

wi
ne

 g
la

ss cu
p

fo
rk

kn
ife

sp
oo

n
bo

wl
ba

na
na

ap
pl

e
sa

nd
wi

ch
or

an
ge

br
oc

co
li

ca
rro

t
ho

t d
og

pi
zz

a
do

nu
t

ca
ke

ch
ai

r
co

uc
h

po
tte

d
pl

an
t

be
d

di
ni

ng
 ta

bl
e

to
ile

t tv
la

pt
op

m
ou

se
re

m
ot

e
ke

yb
oa

rd
ce

ll
ph

on
e

m
icr

ow
av

e
ov

en
to

as
te

r
sin

k
re

fri
ge

ra
to

r
bo

ok
clo

ck
va

se
sc

iss
or

s
te

dd
y

be
ar

ha
ir

dr
ie

r
to

ot
hb

ru
sh

person
bicycle

car
motorcycle

airplane
bus

train
truck
boat

traffic light
fire hydrant

stop sign
parking meter

bench
bird
cat

dog
horse
sheep

cow
elephant

bear
zebra

giraffe
backpack
umbrella
handbag

tie
suitcase

frisbee
skis

snowboard
sports ball

kite
baseball bat

baseball glove
skateboard

surfboard
tennis racket

bottle
wine glass

cup
fork

knife
spoon

bowl
banana

apple
sandwich

orange
broccoli

carrot
hot dog

pizza
donut
cake
chair

couch
potted plant

bed
dining table

toilet
tv

laptop
mouse
remote

keyboard
cell phone
microwave

oven
toaster

sink
refrigerator

book
clock
vase

scissors
teddy bear

hair drier
toothbrush

Figure D.1: We present the 80 × 80 matrix to visualize voting relations between

classes on the COCO dataset. Matrix rows are vote-getters classes and columns are

voters.

124

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition and Scope of the Thesis
	Prediction Pooling Detector
	Hierarchical Point Regression for Whole-Body Human Pose Estimation

	Contributions
	The Outline of the Thesis

	Related Work
	Generalized Hough Transform
	Non-deep, Voting-based Object Detection Methods
	Deep, Voting-based Object Detection Methods
	Bottom-up Object Detection Methods
	Methods using Log-polar Fields and Representations
	Context Modeling in Object Detection
	Detection with Scene Level Context
	Detection with Instance Level Context

	HoughNet: models and method
	The Log-polar ``Vote Field’’
	Voting Module
	Network Architecture
	Spatio-temporal Voting

	Experimental Analysis of Hough Voting on Different Vision Problems
	COCO minitrain
	Hough Voting for Object Detection
	Ablation Experiments
	Angle Bins
	Effects of Center and Periphery
	Ring Count
	Voting Module vs. Dilated Convolution

	Comparison with Baseline
	Comparison with the State-of-the-art
	Analysis
	Error Sources
	Interaction among Object Classes

	A Scalable Approach to Voting (independent of number of classes)

	Hough Voting for Other Visual Detection Tasks
	Video Object Detection
	Instance Segmentation
	3D Object Detection
	2D Human Pose Estimation
	2D Whole-body Human Pose Estimation
	Face Detection

	Hough Voting for an Image Generation Task
	Comparing HoughNet with Context Models

	Reducing Label Noise in Anchor-Free Object Detection
	Introduction
	Related Work
	 Methods
	Labeling Strategy and Training
	Inference
	Network Architecture

	Experiments
	Implementation Details
	Ablation Experiments
	Size of the ``Positive Area’’
	Regression Loss Weight
	Improvements
	Class Imbalance

	State-of-the-art Comparison

	Conclusion

	Hierarchical Point Regression for Whole-Body Human Pose Estimation
	Introduction
	Related Work
	Human Body Pose Estimation
	Whole-body Pose Estimation

	Model
	Hierarchical Regression of Whole-Body Keypoints
	Regression of Foot Keypoints
	Network Architecture
	Objective Functions

	Experiments
	Implementation Details
	Hierarchical Model-I vs Hierarchical Model-II
	Comparison with Baseline
	Comparison with the State-of-the-art
	Runtime Analysis
	Face Detection from Keypoints

	Conclusion

	Conclusion
	Limitations and Future Work

	REFERENCES
	A step-by-step animation of the voting process.
	COCO minitrain Statistics
	More visual results on Object Detection
	Interaction among object classes

