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ABSTRACT 

 

FOREBODY OPTIMIZATION OF A JET TRAINER AIRCRAFT USING 

RESPONSE SURFACE METHODOLOGY WITH GENETIC ALGORITHM 

 

 
Kandemir, Ömer 

Master of Science, Aerospace Engineering 
Supervisor : Prof. Dr. İsmail Hakkı Tuncer 

 
 

September 2021, 75 pages 

 

The aerodynamic design of an aircraft's forebody geometry has a significant impact 

on its performance and stability. Although most studies on aircraft performance have 

focused on optimizing wing-like structures, the contribution of an effective forebody 

design to aircraft performance could be as significant as that of wing-like structures. 

A well-designed forebody can reduce the wave drag and improve the directional 

characteristics at high angles of attack. The forebody optimization of a jet trainer 

aircraft in terms of supersonic cruise performance and directional stability is 

investigated in this thesis. While doing so, two objectives are considered: the wave 

drag and directional stability. The response surface methodology is used to generate 

the aerodynamic database, and the non-dominated sorting genetic algorithm–II is 

used to search for Pareto-optimal solutions. The open-software flow solver SU2 is  

used to obtain turbulent flow solutions. It is shown that the optimization study 

enhances the aircraft's performance in terms of wave drag up to 2% and directional  

stability up to 30%. 

Keywords: Aerodynamics, Optimization, Response Surface, Genetic Algorithm, 

Design 
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ÖZ 

 

JET EĞİTİM UÇAĞI ÖN GÖVDESİNİN CEVAP YÜZEY YÖNTEMİ VE 

GENETİK ALGORİTMA İLE ENİYİLENMESİ 

 

 

 
Kandemir, Ömer 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. İsmail Hakkı Tuncer 
 

 

Eylül 2021, 75 sayfa 

 

Aerodinamik ön gövde tasarımı, hava aracı performansı ve kararlılığı açısından 

önemli bir etkiye sahiptir. Şu ana kadar hava aracı performansı üzerine yapılan 

çalışmalar genellikle kanat-benzeri yapıların eniyileştirilmesi üzerine olmasına 

rağmen, verimli bir ön gövde tasarımının hava aracı performansına katkısı, kanat-

benzeri yapıların tasarımından gelen katkı kadar etkili olabilir. İyi tasarlanmış bir ön 

gövde, dalga sürüklemesini azaltabilir ve yüksek hücum açılarında yanal kararlılığın 

iyileştirilmesini sağlayabilir. Bu tezde, bir jet eğitim uçağının ön gövde en 

iyileştirmesi incelenmiştir. Çalışma gerçekleştirilirken, iki adet amaç fonksiyonu 

dikkate alınmıştır: dalga sürüklemesi ve yönel kararlılık. Türbülanslı akış çözümleri, 

açık-yazılım akış çözücüsü olan SU2 ile elde edilmiştir. Cevap yüzey yöntemi, 

aerodinamik veri tabanı oluşturmak için kullanılmış ve Pareto-optimal çözümler ise 

baskın olmayan sıralama genetik algoritması-II ile elde edilmiştir. Gerçekleştirilen 

en iyileştirme çalışması, hava aracını dalga sürüklemesi ve yönel kararlılık 

bakımından iyileştirmektedir.Yapılan eniyileştirme çalışması sonucunda hava 

aracının performansında dalga sürüklemesi açısından %2’ye, yönel kararlılık 

açısından %30’a varan iyileştirme gözlemlenmiştir. 
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CHAPTER 1  

1 INTRODUCTION  

The idea of supersonic flight was thought to be a myth at the early stages of aviation 

history. Airplane crashes and incidents while flying near the speed of sound have led 

to a term called “sound barrier”, a strong belief among many aeronautical engineers 

that airplanes would never fly faster than the speed of sound. It was a rational 

argument at that time since the theoretical value of drag rises to infinity as the sonic 

speed is achieved. Yet, during the presentations of the fifth Volta Conference, the 

idea of the sound barrier was going to be proven to be the actual myth rather than the 

supersonic flight itself by the conference attendees in 1935 [1]. Twelve years later, 

Charles Elwood Yeager would go down in history as the first man to move faster 

than the speed of sound inside the Bell’s experimental aircraft X-1[2]. Although this 

was a breakthrough in aviation history, it brought particular concerns regarding 

aircraft performance and safety issues. With the addition of these supersonic 

performance and safety concerns to the subsonic flight requirements, the aircraft 

design became a very challenging process. Within years, many scientists and 

engineers worked on these concerns and tried to develop solutions to the problems 

encountered during supersonic flight. The proper design of the external geometry 

was one of these solutions to diminish supersonic flight performance issues. 

Although wings represent the most important structure of the external geometry in 

terms of aerodynamic performance, the forebody geometry also has a significant 

effect on the aerodynamic characteristics of an aircraft. 
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1.1 Challenges in Supersonic Aircraft Design 

The design of an aircraft is a sequential process that requires multiple disciplines to 

work incoherence. From the start of the design, important decisions, which will 

affect the financial success of the design program, have to be taken by each 

discipline. The earlier these decisions are taken, the higher the impact on the cost of 

the program [3]. Aerodynamics is one of those disciplines that takes a role in the 

very early stages of the design process. The decisions taken in the aerodynamic 

design phase will significantly affect the aircraft’s future. To reduce the cost of an 

aircraft, one shall carefully take the decisions during the aerodynamic design phase. 

The aerodynamic design is a critical factor in determining an aircraft's required 

performance in flight, and it is specifically interested in the aircraft’s external 

structure. These structures consist of wing, canopy, fuselage, forebody, horizontal 

tail, vertical tail, etc. Wings being the primary structure regarding the main 

aerodynamic concerns, all of these structures have significant effect on aircraft’s 

performance and stability. Considering the fact that the forebody is the first 

component encountering the incoming flow, the distortions created on the flow by 

the forebody will be carried downstream, which will eventually affect the flow 

distribution over other components of the aircraft. Especially for a supersonic 

aircraft, the forebody design plays a vital role in aircraft’s characteristics.  

1.1.1 Effect of Forebody Geometry on Aircraft’s Shock Characteristics 

In the case of supersonic flight, the flow in the vicinity of an object encounters a 

phenomenon across which sudden, drastic changes are observed in the flow 

properties. This phenomenon is called a shockwave, a quite thin region causing 

losses in the flow. Passing through a shockwave, an increase in the static pressure 

and a decrease in the total pressure are observed. The sudden increase in the static 

pressure makes the shockwaves the major source of drag in the supersonic flight and 

one shall understand the physics of shockwaves to design a feasible supersonic 
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aircraft. The magnitude of the losses and also the increase in the drag force is 

dependent on the shock strength.  

As it is previously mentioned, the forebody is the first component of an aircraft 

encountering the incoming flow. The shockwaves occurring in the vicinity of the 

forebody will cause the drag force to increase.  Yet, with the right forebody design, 

the increase in the drag force in supersonic regimes can be effectively reduced by 

lowering the shock strength.  

According to Raymer, the wetted area of an aircraft is the driving factor in friction 

drag. It can be reduced by using a forebody with a low fineness ratio. A forebody 

with a low fineness ratio, on the other hand, will result in a high supersonic wave 

drag [4]. Apart from that, Al-Obaidi and Al-Atabi found out that the nose bluntness  

also has a high impact on the wave drag at supersonic speeds [5].  

1.1.2 Effect of Forebody Geometry on Aircraft’s Directional 

Characteristics 

The effectiveness of the forebody is not limited to drag reduction; it also has a 

significant impact on the directional stability at high angles of attack. Directional 

stability could be defined as an aircraft’s initial tendency to return to its equilibr ium 

point when a side-slip disturbance is given to the aircraft. Poor directional stability 

constitutes a major risk to the aircraft. Negative directional stability may result in the 

loss of control over the aircraft.   

The effect of the forebody on the lateral and directional characteristics at high angles 

of attack is investigated by various scientists. At high angles of attack, a forebody 

with sharp lower corners may initiate a separated vortex, which can have 

unpredictable effects on the aircraft's intake, wing, and tail surfaces [6]. Chambers 

found out in 1970 that a proper forebody design may reduce the flow asymmetries 

at high angles of attack that are present due to increased vortex strength at high angles 

of attack [8]. On the other hand, the asymmetries present in the flow due to the 
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forebody shape may create a suction force on the forebody and this suction force 

may provide a favorable contribution to the lateral, directional stability at high angles 

of attack [7].  

1.2 The Importance of Multi-objective Optimization in Aircraft Design 

It is possible to meet the requirements specified by the customer or manufacturer 

with an efficient external geometry design. However, evaluating that efficient design 

by hand is difficult when there are several requirements that must be met. The design 

process becomes more difficult, especially when the requirements contradict each 

other. As a result, an efficient search algorithm must be implemented into the design 

process in order to find the optimal design that meets all of the requirements. 

Unlike single-objective optimization, multi-objective optimization deals with more 

than one objective function simultaneously. It is possible to see the applications of 

multi-objective optimization in engineering, economics, and various others. One of 

the most used multi-objective optimization algorithms is the genetic algorithm which 

takes the Darwinian evolution theory as the basis. Due to their robustness, genetic 

algorithms have become increasingly popular for solving optimization problems in 

aerospace applications [9]. Using a genetic algorithm, Yamamoto optimized an 

airfoil's lift to drag ratio in a transonic flow and compared the resulting airfoil with 

a supercritical airfoil [10]. Antunes investigated the effect of the population size of 

genetic algorithms on the performance of the optimization process of an airfoil [11]. 

Chen used genetic algorithms to optimize a wind turbine blade for multiple 

objectives [12]. Genetic algorithms have shown promising results in multi-object ive 

optimization problems in recent studies. 

However, the use of sole genetic algorithms may not be a cost-effective way to dive 

into optimization problems. Especially in aerodynamic design applications where a 

single point solution is obtained within hours, an optimization using only genetic 

algorithms may take months to end with today’s computing technology. Therefore, 
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the hybrid usage of genetic algorithms with other surrogate models may be preferable 

for the optimization studies of aerodynamic configurations. Response Surface 

Methodology (RSM) is one of these surrogate models which may reduce the 

computational effort needed in optimization with genetic algorithms. The use of 

genetic algorithms together with response surface methodology gives feasible and 

efficient results in optimization studies.  

1.3 Objectives and Outline of the Thesis 

The studies conducted on the effects of the forebody design exhibit significant 

changes in an aircraft’s aerodynamic performance and stability characteristics. As it 

is discussed in section 1.1.1, the forebody design plays a vital role in the shock 

characteristics of an aircraft which significantly affects the cruise performance in a 

supersonic flight. In addition to that, the high angle of attack stability characteristics 

of an aircraft is highly dependent on the vortex initiated by the forebody geometry, 

as explained in section 1.1.2.  Therefore, one shall consider these effects in the design 

of a forebody. 

Considering the effects of the forebody design on the aircraft characteristics, two 

design objectives are selected. The first objective focuses on the minimization of the 

drag force in the supersonic cruise condition. The minimization of the drag force 

would result in better fuel efficiency and higher endurance. In order to minimize the 

drag force, the wave drag caused by the forebody geometry is aimed to be reduced 

by perturbing the forebody geometry. In the second objective, the directional 

stability indicator, yawing moment derivative with respect to side-slip angle, at a 

high angle of attack landing configuration is aimed to be maximized. With the 

maximization of yawing moment derivative with respect to side-slip angle at a high 

angle of attack, the aircraft is aimed to gain better departure consistency and 

improved spin characteristics.  
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The majority of optimization studies have concentrated on wing-like structures. The 

goal of this thesis is to demonstrate that a well-designed forebody geometry can be 

as effective as these structures in terms of aerodynamic performance of the aircraft. 

To do so, an aerodynamic shape optimization study based on response surface 

methodology is performed. Design variables are selected based on the design of 

experiments and computational grids are then generated for perturbed design 

variables. Then the turbulent flow solutions are obtained for each geometry by using 

SU2. The design objective values are derived from the flow solutions and used to 

establish surrogate models using response surface analyses. Finally, the Pareto-

optimal solutions are obtained by feeding the resulting response surface models into 

a non-dominated sorting genetic algorithm-II. As an outcome of this thesis, the 

supersonic cruise performance and high angle of attack directional characteristics of 

a jet trainer aircraft are aimed to be improved by an appropriate forebody design.  

The process of the forebody optimization is explained in detail in the following 

chapters. To obtain the design objective values, the aerodynamic flow field around 

the aircraft must be calculated. The flow field calculation is based on the solution of 

turbulent RANS equations. The details of RANS equations, the solver used to obtain 

RANS solutions and the boundary conditions assigned for the solution of RANS 

equations are discussed in Chapter 2. Apart from that, design variables, the grid 

generation process and the response surface methodology are also explained in 

Chapter 2. The non-dominated sorting genetic algorithm-II, which is used to 

optimize the response surfaces, is discussed in detail in Chapter 3. In Chapter 4, the 

results of the grid convergence study are first discussed. The accuracy of turbulent 

flow solutions and the response surface models are then discussed. Following that, 

the optimal forebody geometries evaluated by the non-dominated sorting genetic 

algorithm-II are investigated in detail. Finally, the outcomes of this thesis are 

explained in Chapter 5.  
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CHAPTER 2  

2 METHODOLOGY 

In this section, the methodology used in the optimization study is explained in detail.  

The forebody geometry is represented by four independent design variables which 

control the lateral cross-section of the forebody. A grid is then generated for the 

configurations with the perturbed design variables. Following that, the turbulent flow 

solutions are obtained at the design points specified in Table 4.1 by using SU2. 

Aerodynamic coefficients calculated from the turbulent flow solutions are fed into a 

statistical tool to conduct design of experiments. The idea behind that is to reduce 

the number of design variables if it is possible. Based on the results of design of 

experiments, a training data set is generated and the response surface models are 

obtained for each design objective. 

2.1 Configuration and Design Variables  

The baseline forebody geometry is provided in Figure 2.1. The baseline 

configuration has a fineness ratio of 1.9. The midline of the baseline forebody makes 

an angle of 7.4° with the horizontal axis. 
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Figure 2.1: Baseline Configuration 

In the design of the forebody geometry, four design variables are used to control the 

lateral cross-section of the forebody geometry [23]. These design variables are listed 

as follows:  

 θ: Nose Deflection Angle 

 𝐹𝑅: Fineness Ratio 

 𝑌𝐶: Y Spline Coefficient 

 𝑍𝐶: Z Spline Coefficient 

Here, nose deflection angle, θ, represents the angle between the horizontal axis and 

midline of the forebody. Fineness ratio, 𝐹𝑅, is the ratio of the length of the forebody 

to the base cross-section diameter. As the base diameter, the average of the y and z 

diameters of the base cross-section is used. On the other hand, y and z spline 

coefficients are used to calculate the radius of the forebody cross-sections at a given 

x location. The auxiliary-parameters used with the design variables are shown in 

Figure 2.2. In this figure, L represents the length of forebody geometry. Dy and Dz 

are diameters at the base cross-section of forebody geometry in y and z directions 

respectively. 𝑥′ is the non-dimensional distance in x-direction starting from the 
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forebody apex. It is used for the calculation of the radius in y (𝑅𝑦,𝑥′), and in z (𝑅𝑧,𝑥′) 

directions at a given section. The equations used for the calculation of 𝑅𝑦,𝑥′, 𝑅𝑧,𝑥′ 

and 𝐹𝑅 are given in (2.1), (2.2) and (2.3) respectively. 

 

Figure 2.2: Lateral Cross-section Design Parameters 

 
𝑅𝑦,𝑥′ =

𝐷𝑦

2
∗ (1 − 𝑥′

1
𝑌𝐶 ) (2.1) 

 
𝑅𝑧,𝑥′ =

𝐷𝑧

2
∗ (1 − 𝑥′

1
𝑍𝐶 ) (2.2) 

 
𝐹𝑅 =

L ∗ cos θ

(Dy + Dz) ∗ 0.5
 (2.3) 

The reason behind the selection of these design variables is based on the results of 

experiments conducted previously to observe the effects of the forebody geometry 

on the design objectives. The fineness ratio is expected to have significant effects 

on both high angle of attack directional characteristics as Chambers [8] stated and 

the wave drag according to Raymer [4]. The y and z-spline coefficients control the 
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bluntness of the forebody geometry and are expected to have a significant role in 

the creation of wave drag , as well, based on the statements of Al-Obaidi and Al-

Atabi [5]. 

2.2 Response Surface Method 

Response surface methodology (RSM), which originated in the early 1950s from 

Box and Wilson’s studies on the effects of environmental factors on a chemical 

process [26], is a combination of statistical and mathematical techniques to develop, 

improve and optimize a product or process [27]. In the industrial world, RSM is 

extensively used in multiple fields ranging from agricultural applications [28] to 

space studies [29]. Especially, for the cases where several factors influence the 

performance and quality of a product or process, RSM becomes highly 

advantageous.   

2.2.1 Screening Experiments  

RSM applications are performed with a sequential procedure. Before performing 

response surface analyses, one shall determine the important and unimportant factors 

on the response by conducting an experiment which is often called a screening 

experiment. The idea behind the screening experiment is to eliminate the 

unimportant factors and thereby reduce the number of tests or runs to be conducted 

for response surface analyses.  

To conduct screening experiments, a suitable design shall be selected. The type of 

the design is dependent on the level of details the experimenter expects to observe. 

To observe both the main effects and two-way interaction effects, the two-level (2𝑘) 

full factorial design becomes the best choice when the number of factors is less than 

or equal to four [30]. Since there are four design variables (factors) for the case under 

consideration, 2𝑘  full factorial design is selected to conduct the screening 
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experiments. By taking two points at the minimum and maximum levels of each 

factor, 16 different configurations are generated in total. 

Once the design choice is determined, the responses are obtained by conducting the 

necessary experiments. By using the response values obtained, the important and 

unimportant factors are determined. In an experiment, if there are replicates available 

one can determine the variance of the effects by estimating the variance of the 

response. Then, the variance of the effects could be used to determine the significant 

factors on each response. However, for the case under consideration, it is not possible 

to get replicates since the CFD analyses that provide the response values are based 

on numerical calculations and will give the same results for each replication. In order 

to assess the significance of the main and two-way interaction effects when the 

replicated data is not available, the Lenth’s method for estimating the standard 

deviation of the effects could be used [31]. In this method, a quantity called “Pseudo 

Standard Error” (𝑃𝑆𝐸) is calculated. Then the significance of the effects is decided 

based on the margin of error (𝑀𝐸) derived from this quantity. The calculation of 𝑀𝐸 

starts by calculating the absolute value of effect estimate for each factor. So, let 𝑐 

denote the absolute value of the effects. Then it is calculated by the relation shown 

in (2.4). In this relation, the 𝑦+ and 𝑦− terms correspond to average response values 

for the observations at the highest and lowest values of each factor respectively. 

 𝑐 = 𝑦+ − 𝑦− (2.4) 

Following that, 1.5 times the median of effects of each factor is calculated as shown 

in (2.5).  

 𝑠0 = 1.5 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑐𝑖|} (2.5) 

Then the 𝑃𝑆𝐸 is calculated in a similar process by excluding the effects which are 

greater than the 2.5 times of the 𝑠0 value calculated by using the relation given in 

(2.5).  

 𝑃𝑆𝐸 = 1.5 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑐𝑖|: |𝑐𝑖| < 2.5𝑠0}  (2.6) 
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In the final step, the PSE value computed in (2.6) is multiplied with a factor 𝑡 

obtained from 1 − 𝛼/2 quantile of t-distribution. The term 𝛼 is the significance level 

and is taken as 5% for this study. The 𝑀𝐸 is calculated as follows: 

 𝑀𝐸 = 𝑡1−𝛼/2 ∗ 𝑃𝑆𝐸 (2.7) 

The factors with absolute value of effects higher than the 𝑀𝐸 calculated in (2.7) is 

assumed to be statistically significant. To display the significant effects, the Pareto 

chart of standardized effects is used. 

2.2.2 Regression Model 

The parametric relation between the response and independent variables is 

established via a regression model. While establishing the relation between the 

response and predictors, a two-step approach is followed [27].  First a function that 

estimates the response is found. The general form of this function is shown in (2.8). 

In this equation, the 𝑌 term is the response, the 𝑓(𝑋) term is the function used to model 

the response, the 𝑋 term represents the predictor matrix including main factors, their 

interactions and higher order terms of predictors. The 𝛽 term is the regression coefficient 

matrix and 𝜖 is the error term.   

𝑌 = 𝑓(𝑋) + 𝜖, 𝑓(𝑋) =  �̂� = 𝛽𝑋  (2.8) 

Once the model has been selected, the regression coefficients shall be estimated 

based on the training data set. The regression coefficients shall be selected such that 

the model error is minimized as much as possible. To find the suitable regression 

coefficients, the least squares method is used [32]. In the least squares approach, the 

residual sum of squares (RSS) is minimized. RSS can be expressed as in (2.9).  

𝑅𝑆𝑆 = ∑(𝑌𝑖 − 𝑌�̂�)
2

𝑛

𝑖=1

 (2.9) 
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2.2.3 Model Accuracy and Performance Assessments 

To assess the accuracy of the response surface model, the adjusted R-squared is used. 

Starting from a simple linear model, the adjusted R-squared values are calculated, 

and the model order is increased until a desired value of an adjusted R-squared is 

reached. The insignificant interaction and high order terms are removed based on p-

statistics provided by MINITAB. The formulation for adjusted R-squared is provided 

in (2.10). The terms 𝑛 and 𝑝 are the number of design points and predictors 

respectively. 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑅𝑆𝑆(𝑛 − 𝑝 − 1)

𝑇𝑆𝑆(𝑛 − 1)
 (2.10) 

The 𝑅𝑆𝑆 term is the residual sum of squares and is provided previously in (2.9). The 

TSS term, on the other hand, refers to as the total sum of squares and the formulation 

for that term is provided in (2.11). The 𝑌�̅� term is the mean value of the responses 

and calculated by using the equation described in (2.12). 

𝑇𝑆𝑆 = ∑(𝑌𝑖 − 𝑌�̅�)
2

𝑛

𝑖=1

 (2.11) 

𝑌�̅� =
1

𝑛
∑ 𝑌𝑖

𝑛

𝑖=1

 (2.12) 

The reason behind using the adjusted R-squared instead of classical R-squared is that 

the adjusted R-squared uses the number of design points and predictors to assess the 

model performance. However, the classical R-squared might be misleading in certain 

conditions where the number of design points is high. The ideal value of adjusted R-

squared is 1 which indicates a perfect fit. However, the desired value of adjusted R-

squared is generally taken as 0.9 which is set as the cut-off value for the rest of the 

study. 
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2.3 Turbulent RANS Solver: SU2 

The Stanford University Unstructured (SU2), which has been developed for solving 

partial differential equation analyses and optimization problems on unstructured 

grids, is used as the flow solver [14]. The solver has the capability of solving 

compressible, turbulent flows that are present in fluid dynamics applications. Partial 

differential equations can be discretized either by using the finite volume method 

(FVM) or the finite element method (FEM) with an edge-based data structure. Both 

explicit and implicit schemes are available for time integration and spatial integration 

could be performed with centered or upwind schemes.  

2.3.1 Governing Flow Equations in SU2 

Aerodynamic flow field around the aircraft is obtained by solving three dimensional, 

compressible Navier-Stokes equations.  Navier-Stokes equations are the type of non-

linear partial differential system of equations derived from conservation of mass, 

linear momentum and energy equations and could be represented as follows. 

 𝜕�⃗� 

𝜕𝑡
+ ∇. 𝐹𝑐⃗⃗  ⃗ = ∇.𝐹𝑣⃗⃗  ⃗ + �⃗�  (2.13) 

In (2.13), �⃗�  is the conservative flow variable vector and represented as in (2.14). 

Where 𝜌 is the density, �⃗�  is the three-dimensional velocity vector which is 

decomposed into three components (u, v, w) in x, y and z directions in Cartesian 

coordinates as shown in  (2.15). 𝐸 is the total energy per unit mass. 

 

�⃗� = {

𝜌

𝜌�⃗� 

𝜌𝐸
 } (2.14) 

 

 
�⃗� = {

𝑢
𝑣
𝑤

 } (2.15) 
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𝐹𝑐⃗⃗  ⃗ and 𝐹𝑣⃗⃗  ⃗ are the convective and viscous flux vectors and represented as in (2.16) 

and (2.17) respectively. The term 𝑝 represents the static pressure, whereas 𝑘 and 𝑇 

represent the thermal conductivity and static temperature respectively.  

 

𝐹𝑐⃗⃗  ⃗ = {

𝜌�⃗� 

𝜌�⃗� × �⃗� + 𝑝𝐼 ̿

𝜌𝐸�⃗� + 𝑝�⃗� 

 } (2.16) 

 

 
𝐹𝑣⃗⃗  ⃗ = {

0
𝜏̿

𝜏̿. �⃗� + 𝑘∇𝑇

 } (2.17) 

𝜏̿ is the stress tensor and represented in (2.18) where 𝜇 is the dynamic viscosity. 

 
𝜏̿ = [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧

] = 𝜇 [∇�⃗� + ∇�⃗� 𝑇 −
2

3
𝐼(̿∇. �⃗� )] (2.18) 

The equation (2.13) could be further expanded in Cartesian coordinates as follows  

[13]: 

 𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
+

𝜕𝜌𝑤

𝜕𝑧
= 0 (2.19) 

  

 𝜕𝜌𝑢

𝜕𝑡
+

𝜕𝜌𝑢𝑢

𝜕𝑥
+

𝜕𝜌𝑢𝑣

𝜕𝑦
+

𝜕𝜌𝑢𝑤

𝜕𝑧

= −
𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
) 

(2.20) 

 

 𝜕𝜌𝑣

𝜕𝑡
+

𝜕𝜌𝑣𝑢

𝜕𝑥
+

𝜕𝜌𝑣𝑣

𝜕𝑦
+

𝜕𝜌𝑣𝑤

𝜕𝑧

= −
𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
(
𝜕𝜏𝑦𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
)  

(2.21) 
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 𝜕𝜌𝑤

𝜕𝑡
+

𝜕𝜌𝑤𝑢

𝜕𝑥
+

𝜕𝜌𝑤𝑣

𝜕𝑦
+

𝜕𝜌𝑤𝑤

𝜕𝑧

= −
𝜕𝑝

𝜕𝑧
+

1

𝑅𝑒
(
𝜕𝜏𝑧𝑥

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
)   

(2.22) 

  

 𝜕𝐸

𝜕𝑡
+

𝜕𝑢𝐸

𝜕𝑥
+

𝜕𝑣𝐸

𝜕𝑦
+

𝜕𝜌𝑤𝐸

𝜕𝑧
= 

−
𝜕𝑢𝑝

𝜕𝑥
−

𝜕𝑣𝑝

𝜕𝑦
−

𝜕𝑤𝑝

𝜕𝑧
−

1

𝑅𝑒𝑃𝑟
(
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
) 

+
1

𝑅𝑒
(

𝜕

𝜕𝑥
(𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧)+

𝜕

𝜕𝑦
(𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧)

+
𝜕

𝜕𝑧
(𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧)) 

(2.23) 

In the equations described above, (2.19) is the conservation of mass equation, (2.20), 

(2.21) and (2.22) are the conservation of linear momentum equations in x, y and z 

directions respectively and (2.23) is the conservation of energy equation. 𝑅𝑒 is the 

Reynolds number and 𝑃𝑟 is the Prandtl number.  Explicit definitions of  𝑅𝑒 and 𝑃𝑟 

are given in (2.23) and (2.24) respectively. In these relations, 𝑐 is the reference length 

and 𝑐𝑝 is the specific heat coefficient. 

 
𝑅𝑒 =

𝜌𝑉𝑐

𝜇
 (2.24) 

 

 
𝑃𝑟 =

𝑐𝑝𝜇

𝑘
 (2.25) 

The Navier-Stokes equations introduced in this chapter consist of six unknowns, yet 

the number of equations to be solved is five. Hence, one more equation shall be 

introduced in order to have a closed system. The final equation can be introduced by 

using ideal gas law as in (2.26). The 𝑅 term is the universal gas constant.  

 𝑝 = 𝜌𝑅𝑇 (2.26) 
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2.3.2 Reynolds Averaging and Decomposition 

Osborne Reynolds introduces the Reynolds decomposition of flow variables in the 

Navier-Stokes equations. Based on that, Navier-Stokes equations are decomposed 

into mean (time-averaged) and fluctuating components in the following relation 

shown in (2.27). 

 ∅ = ∅̅ + ∅′ (2.27) 

The ∅̅ term is the time averaged value of a random variable whereas the ∅′ term is 

the fluctuating components of the random variable. The time averaged values are 

obtained by integrating the requested variable over time and then dividing the 

integrated value by the timescale ∆𝑡 which is large enough compared to fluctuating 

components. Time averaging relation is given by (2.28). 

 

∅̅ =
1

∆𝑡
∫ ∅𝑑𝑡

𝑡+∆𝑡

𝑡

 (2.28) 

The Reynolds-Averaged Navier-Stokes (RANS) equations are obtained by 

substituting the decomposition relation introduced in (2.27) into Navier-Stokes 

equations.  

2.3.3 Turbulence Model 

The Reynolds decomposition of Navier-Stokes equations gives rise to an unknown 

term called Reynolds-stress tensor which has to be modelled in order for the system 

of equations to be solved. For the case under consideration, Spalart-Allmaras 

turbulence model is preferred for modelling Reynolds-stress tensor due to its 

accuracy and robustness [15]. The eddy viscosity is obtained by using Spalart-

Allmaras turbulence model as follows: 

 
𝜇𝑇 = 𝜌𝜈𝑓𝑣1, 𝑓𝑣1 =

𝑥3

𝑥3 + 𝑐𝑣1
3 , 𝑥 =

𝜈

𝑣
, 𝑣 =

𝜇

𝜌
  (2.29) 
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The 𝜈 term in (2.29) is the modified kinematic eddy viscosity and the transport 

equation for this term is given by (2.30).  

 𝜕𝜈

𝜕𝑡
+ ∇(�⃗� 𝜈) = 𝑐𝑏1�̃�𝜈 +

1

𝜎
[∇((𝑣 + 𝜈)∇𝜈) + 𝑐𝑏2(∇𝜈)2]

− 𝑐𝑤1𝑓𝑤 [
𝜈

𝑑
]
2

 

(2.30) 

The 𝑐𝑏1, 𝑐𝑏2 and 𝑐𝑤1terms are the model constants and the 𝑑 term is the distance to 

the closest wall. The �̃� term in (2.31) is the production term and calculated by using 

the relation defined in (2.31).  

 
�̃� = |𝜔| +

𝜈

𝜅2𝑑2𝑓𝑣2, 𝑓𝑣2 = 1 −
𝑋

1 + 𝑋𝑓𝑣1
   (2.31) 

The auxiliary parameter 𝑓𝑤 used in (2.30)  is expressed in detail by (2.32). 

 
𝑓𝑤 = 𝑔 [

1+ 𝑐𝑤3
6

𝑔6 + 𝑐𝑤3
6 ]

1/6

, 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟),

𝑟 =
𝜈

�̃�𝜅2𝑑2
 

(2.32) 

Model constants are given in (2.33). 

 
𝜎 =

2

3
, 𝑐𝑏1 = 0.1355 , 𝑐𝑏2 = 0.622, 𝜅 = 0.41,

𝑐𝑤1 =
𝑐𝑏1

𝜅2 +
1 + 𝑐𝑏2

𝜎
, 𝑐𝑤2 = 0.3,

𝑐𝑤3 = 2, 𝑐𝑣1 = 7.1 

(2.33) 

2.3.4 Spatial Integration 

Spatial integration of governing equations over a control volume Ω are performed 

via finite volume method by applying divergence theorem to (2.13) as follows:  
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∫

𝜕�⃗� 

𝜕𝑡
𝑑Ω

 

Ω𝑖

+ ∑ (�̃�𝑐𝑖𝑗
+ �̃�𝑣𝑖𝑗

)

𝑗𝜖N(i)

Δ𝑆𝑖𝑗 − �⃗� |Ω𝑖|

= ∫
𝜕�⃗� 

𝜕𝑡
𝑑Ω

 

Ω𝑖

+ 𝑅𝑖(�⃗� ) = 0 

(2.34) 

In (2.34), the �̃�𝑐𝑖𝑗
 and �̃�𝑣𝑖𝑗

 terms are the numerically approximated versions of 

convective and viscous flux vectors projected into normal direction respectively. 

Δ𝑆𝑖𝑗 is the area of the face associated with edge ij and |Ω𝑖| is the volume of the dual 

control volume. N(i) represents the neighboring nodes of ith node. 𝑅𝑖(�⃗� ) is the 

numerical residual vector. Both types of fluxes are evaluated at the midpoint of each 

edge and by integrating the evaluated fluxes, the numerical residual vector at each 

node of the grid is calculated.  

2.3.5 Time Integration 

Time integration of the integral form of governing equations is performed by using 

implicit time integration schemes. Implicit integration of time performed on (2.34) 

leads to the following linear system shown in (2.35).  

 

 
(
|Ω𝑖|

Δ𝑡𝑖
𝑛 𝛿𝑖𝑗 +

𝜕𝑅𝑖(𝑄
𝑛)

𝜕𝑄𝑗

)∆𝑄𝑗
𝑛 = −𝑅𝑖(𝑄

𝑛), ∆𝑄𝑖
𝑛 = 𝑄𝑗

𝑛+1 − 𝑄𝑗
𝑛 (2.35) 

 

To solve (2.35), a flexible generalized minimum residual (FGMRES) iterative solver 

is used. FGMRES solver has the capability of handling a wide class of 

preconditioners in a robust way, however the memory allocation of this solver is 

twice of the classical generalized minimum residual (GMRES) solver for the same 

number of iterations [16]. 
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2.3.6 Flux Discretization Scheme 

The gradient of the convective flux term in (2.13) forms a hyperbolic system of 

equations. The discretization of these hyperbolic systems of equations on a grid is 

adjusted according to the direction in which the information propagates. The idea 

behind that is based on the fact that the numerical stability of hyperbolic equations 

is conditional to the identification of upwind direction. In order to identify the 

upwind directions two different approaches, namely the Godunov (Flux Difference 

Splitting) approach and the Flux Vector Splitting (FVS) approach are proposed. The 

FVS approach is simpler and more efficient compared with the Godunov approach 

and it is a well-suited approach for implicit methods [17]. However, the FVS 

schemes are not as good as Godunov-type schemes for capturing the discontinuit ies 

in the flow.  

The flux difference splitting schemes, which are based on the solution of Riemann 

problem and Godunov’s approach, split the difference of the flux vector rather than 

the flux vector itself as the FVS schemes do. In other words, the flux difference 

splitting schemes are interested in the waves instead of their direction. By doing so, 

the oscillations due to discontinuities in the flow are eliminated. Since the exact 

solution to the Riemann problem requires a highly challenging calculation, certain 

approximations must be made in order to ease the computational effort. The most 

popular one among the approximate solvers to the Riemann problem was suggested 

by Roe in 1981 [18]. Roe approximates the non-linear Riemann problem as a linear 

problem. For the discretization of convective flux vector, ROE’s flux difference 

splitting scheme is used. The discretization of the viscous flux vector, on the other 

hand, is done by a scalar upwind scheme.  
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2.3.7 Boundary Conditions 

The system of partial differential equations defined in section 2.3.1 forms a boundary 

value problem. To obtain the solution to that boundary value problem, a set of 

boundary conditions must be defined.  

2.3.7.1 Farfield Boundary Condition 

The pressure far-field (PFF) or often called characteristic boundary condition is used 

at the outer boundary of the flow field. PFF boundary condition is a commonly 

preferred boundary condition used in external compressible aerodynamic 

applications [19], [20] and [21]. It is used to define a free stream condition at a far 

distance from the object under consideration, such that all the disturbances created 

on the flow by this object fades out at this boundary. First, the thermodynamic state 

of the free stream is defined. For the thermodynamic state of the free stream, the SU2 

software offers two initialization options. Throughout this study, the default 

initialization option, in which the free stream density (𝜌∞) is computed by specifying 

the free stream pressure (𝑝∞) and temperature (𝑇∞) at the boundary, is used. After 

setting the thermodynamic state of the free stream, the flow Mach number and flow 

direction based on angle of attack (𝛼) and side-slip angle (𝛽), for 3D flows, should 

be specified. The free stream viscosity (𝜇∞) is calculated by using Sutherland’s Law 

[22]. One should note that free stream values that are defined in the far-field 

boundary are used not only for flow initialization but also for non-

dimensionalization.  

The PFF boundary is located around 20 times the length of the aircraft away from 

the position which corresponds to the quarter of the mean aerodynamic chord. A 

spherical PFF boundary is created in order to provide an almost uniform grid 

distribution from aircraft body to PFF boundary. The PFF boundary is shown in 

Figure 2.3. 
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Figure 2.3: Pressure Far-field Boundary 

2.3.7.2 Wall Boundary Conditions 

The surfaces of the aircraft geometry are attained no-slip wall boundary conditions. 

Wall boundaries are kept stationary and adiabatic. Adiabatic wall boundary 

conditions could be expressed such that there is no heat transfer between air and wall 

boundary. The wall boundaries are shown in Figure 2.4. 

 

Figure 2.4: Wall Boundaries 
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2.4 Grid Generation 

The grid generation process is completed within three stages. Each of the three stages 

of the grid generation process is described below. In the first stage, the surface grid 

is created by using meshing software Pointwise. ANSYS Fluent, on the other hand, 

is used to generate the volume grid in the second stage of the grid generation. 

ANSYS Fluent is rather preferred for volume grid generation since it offers more 

options for prism layer generation, resulting in higher quality grids [24].  In the final 

section, ICEM-CFD is used in order to convert Fluent “.msh” output into “.cgns” 

format since the flow solver cannot be used with “.msh” format. A Python code 

automates the entire process by creating script files for each tool used and then 

running them in order. The grid generation procedure is summarized in a flow-chart 

given in Figure 2.5.  

 

Figure 2.5: Flow-Chart of Grid Generation 
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A single grid is generated for each geometry such that the first layer height is 

calculated based on the case with the highest Reynolds number and total boundary 

layer height is adjusted based on the case with the lowest Reynolds number since it 

will result in the highest boundary layer height. First layer height and boundary layer 

height calculations are based on the equations of fully turbulent flow on a flat plate 

as shown in (2.36) and (2.37) respectively. 

 
𝐹𝑖𝑟𝑠𝑡 𝐿𝑎𝑦𝑒𝑟 𝐻𝑒𝑖𝑔ℎ𝑡 =

𝑦+ ∗ 𝑐𝑟𝑒𝑓  

𝑅𝑒√
𝐶𝑓

2

 
(2.36) 

 
𝛿𝐵𝐿 = 0.38 ∗

𝑐𝑟𝑒𝑓

𝑅𝑒0.2 (2.37) 

Table 2.1 Grid Generation Considerations 

Consideration Re(106) 

𝑦+ = 1 82 

𝛿𝐵𝐿 ≅ 41.7𝑚𝑚 13.7 

 

 

 

 

 

 

 

 

 

 



 

 
25 

CHAPTER 3  

3 OPTIMIZATION ALGORITHM 

Aerodynamic coefficients obtained from the SU2 solutions are used as training 

dataset to be used in data generation with RSM in a statistical analysis tool called 

MINITAB to generate an aerodynamic database. Screening experiments are 

conducted by using two-level factorial (2𝑘) designs to determine the significant 

factors. Based on the results of screening experiment, a training data set is generated 

using a three-level factorial (3𝑘) design, which makes it possible to accurately 

capture the effects of main and interaction terms. [25]. Following the completion of 

RSM studies conducted on each objective, the Pareto optimal solutions are obtained 

using non-dominated sorting genetic algorithm II (NSGA-II). 

3.1 Non-Dominated Sorting Genetic Algorithm - II 

Non-Dominated Sorting Genetic Algorithm- II (NSGA-II) is a multi-object ive 

search algorithm which is derived from classical evolutionary genetic algorithms. It 

is based on natural selection and genetics [33]. There stands a simple idea behind 

this algorithm; “survival of the fittest” which originated from Darwinian 

evolutionary theory. Based on that theory, the organisms, which adjust themselves 

to the environment best, survive and inherit their characteristics from generation to 

generation. In the case under consideration, the organisms are referred to as the 

geometries produced in the design space and the characteristics are the coded 

versions of the design variables which are used to generate each geometry.  

Before going into the details of NSGA-II, the classical genetic algorithm is going to 

be explained first since it is easier to follow. The genetic algorithms are a sequential 

process in which three stages are followed. The first stage is the reproduction stage 

in which the fittest individuals from a population are selected to reproduce off-
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springs which inherit the characteristics of their parents. This stage is nothing but the 

artificial version of natural selection in genetics. In the second stage, an operator 

called crossover takes place. This operator is used to exchange the critical 

information via genes between the selected individuals (parents). By this process 

several off-springs are produced based on crossover probability. One of the most 

used crossover methods, uniform crossover, is shown in Figure 3.1. In this type of 

crossover, a crossing site selected in the chromosomes of each parent and genes at 

the opposite sites of the crossing site are exchanged between the parents to form 

offspring.  

 

Figure 3.1: Uniform Crossover Process 

In the final stage of the genetic algorithm, the mutation operator takes place. The 

mutation operator changes the genes in a chromosome to maintain the diversity 

within the population. The genes in a chromosome are subjected to mutation 

operation with a low, random, and equal probability. Because of the low probabilit y 

of occurrence, the mutation operation has a secondary effect in the application of 

genetic algorithms. Although mutation operator has a secondary effect, it plays a 

vital role to avoid being stuck in a local minimum [33].   
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Figure 3.2: Mutation Operator 

Once all three operators are applied to a population of an ith generation, parent and 

offspring populations go under a sorting operation. Following that, the first portion 

of the sorted population with the same size of the initial population is selected to 

reproduce the offspring population in the next generation. The remaining portion is 

rejected automatically. This process is repeated until a convergence criterion is 

achieved. The criterion could be either the maximum number of generations or a 

custom user defined function. The summary of the process is given in Figure 3.3.  

 

Figure 3.3: Genetic Algorithm Process Flowchart 

The basics of classical genetic algorithm structure is summarized above. Besides 

that, all the operators summarized are based on a single objective problem. However, 

most of the cases faced in engineering problems have more than one objective. In 

the presence of several objectives, a set of optimal solutions (also known as Pareto-

optimal solutions) are obtained rather than a single solution. NSGA-II is a type of 

multi-objective evolutionary algorithm (MOEA) that is developed to reduce the 

computational complexity of such evolutionary algorithms that uses non-dominated 

sorting [34]. Like classical single objective genetic algorithms, NSGA-II also 
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involves reproduction, crossover and mutation operators with slight modifications 

applied to sorting algorithms.  

In NSGA-II, the sorting algorithm is divided into two as non-dominated sorting and 

crowding distance sorting. In non-dominated sorting approach, an individual p is said 

to dominate another individual q if and only if the following conditions are true [35]: 

I. Individual p has no objective worse than that of individual q. 

II. At least one objective of individual p is better than that of individual q. 

In the non-dominated sorting approach, each individual is assigned two entities: the 

domination count 𝑛𝑝 which is nothing but the number of individuals that dominates 

individual p and a set of solutions 𝑆𝑝 that is dominated by individual p. The 

individuals with a domination count of zero will be placed in the first non-dominated 

front. Then for each individual p in the first non-dominated front, the domination 

count of each individual q of set 𝑆𝑝 is reduced by one. The individuals with a non-

domination count of zero, if there are any, are put into a separate list Q which is the 

second non-dominated front. This procedure is repeated until all the fronts are 

identified in the population.  

In the second part of the sorting algorithm of NSGA-II, the crowding distance sorting 

approach is assigned. Crowding distance is used to sort the individuals belonging to 

the same front. This entity could be represented as the absolute difference in the 

normalized objective values of two adjacent individuals belonging to the same non-

dominated front. The crowding distance assignment to each individual in the same 

front is performed by using the algorithm shown in Table 3.1. In a non-dominated 

set 𝑆, the crowding distance entity (𝑑) for each individual is set to zero. Following 

that, the individuals are sorted in an ascending order for each objective 𝑚 and the 

crowding distance values of the individuals at the boundary points are set to infinity. 

Hence, the individuals with smallest and largest objective values in a non-dominated 

set are always selected. For the remaining each individual 𝑖, the crowding distance 

assignments are performed by using the nearest neighbor’s objective function values.  
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In Table 3.1, the term 𝑓𝑚
𝑖

 stands for the 𝑚𝑡ℎ objective function value of 𝑖𝑡ℎ individua l. 

The terms 𝑓𝑚
𝑚𝑎𝑥

 and 𝑓𝑚
𝑚𝑖𝑛

 stand for the maximum and minimum values of 𝑚𝑡ℎ objective 

function in a non-dominated set 𝑆 respectively. A visual is provided in Figure 3.4 to 

clarify the logic behind crowding distance assignment. 

 

Figure 3.4: Graphical Illustration of Crowding Distance Assignment 

Table 3.1: Crowding Distance Algorithm 

𝑙 =  𝑠𝑖𝑧𝑒(𝑆) 

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 𝑖𝑛 𝑆 

       𝑑𝑖𝑠𝑡(𝑖)  =  0 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑚 

      𝑆 =  𝑠𝑜𝑟𝑡(𝑆,𝑚) 

     𝑑(1) =  𝑑(𝑙) = ∞ 

     𝑓𝑜𝑟 𝑖 =  2 𝑡𝑜 𝑙 − 1 

          𝑑(𝑖) =  𝑑(𝑖) + (𝑓𝑚
𝑖+1 − 𝑓𝑚

𝑖−1)/(𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛) 

 

The crowding distance sorting is useful in the cases where a certain part of a non-

dominated front cannot be passed to the next generation and must be eliminated. The 

crowding distance entity preserves the diversity in a population [34]. Both the non-

dominated sorting and crowding distance approaches are provided in a scheme in 

Figure 3.5. 
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Figure 3.5: NSGA-II Sorting Approach 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

Based on the methodologies explained in Chapter 2 and Chapter 3, the results are 

obtained and discussed within this chapter. First, a grid convergence study is 

conducted. Grid independent flow solutions obtained by using SU2 are discussed in 

terms of accuracy. Then, the response surface models are validated. Finally, the 

Pareto-optimal design configurations obtained by NSGA-II are analyzed at the flow 

conditions provided for design objectives and the results are compared to RSM 

predictions. 

4.1 Grid Convergence Study 

The grid generation criterions for this study have been previously defined in Table 

2.1. In the first criterion it is stated that boundary layer height shall be approximately 

42 mm. To capture the boundary layer properties accurately, the initial grid generated 

from the wall boundaries is formed by a special type of cells called prism cells in 

ANSYS Fluent. To see whether the first grid generation criterion is satisfied or not, 

one can observe the slice taken over the volume grid at the quarter span of wing 

geometry shown in Figure 4.1.  43.8 mm of total prism layer height is achieved as it 

can be seen in Figure 4.1.  Since the total prism layer height is over the value of 

boundary layer height specified in Table 2.1, it can be stated that the first criterion 

for grid generation is satisfied. 
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Figure 4.1: Boundary Layer Grid over the Wing 

Another criterion, that has been specified for grid generation in Table 2.1 in the 

previous chapter, was the y+ value. The y+ value is important for capturing turbulent 

properties so that the effect of viscous forces on aerodynamic coefficients is obtained 

as accurately as possible. The Spalart-Allmaras turbulence model in SU2 requires 

resolving the fully turbulent viscous sublayer. Therefore, the y+ value shall be less 

than 1 as it is given in Table 2.1. In Figure 4.2, the y+ value distribution over the 

aircraft surfaces for the case with 82M of Reynolds number is given as a contour 

plot. Overall, the value is below one. Yet, at certain parts of the aircraft, especially 

at the leading edges where separation bubbles are observed, the maximum value of 

y+ reaches up to 1.6. However, one shall note that the parts of the aircraft with y+ 

value above 1 cover only a small portion of the aircraft’s external surface.  

 

Figure 4.2: y+ Distribution (Re = 82M) 
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The grid generation criterions discussed above is mainly satisfied. Hence, the studies 

conducted on the grid convergence could be further discussed. While conducting 

grid converging studies, five different grids with five different node element counts 

ranging from 3M to 20.4M are used. In Figure 4.3, three of the grids with the node 

element counts (in the volume grid) of 3.2 M being the coarsest, 7.2M being the 

medium and 20.2M being the finest grid are displayed. Starting from the coarsest 

grid, the surface grid nodes are doubled in size and the maximum edge length is 

halved. The volume grid generation, on the other hand, is done by considering the 

constraints specified in Table 2.1 for each grid separately.  

 

Figure 4.3: Surface Grid Densities Used in Grid Convergence Studies 



 

 
34 

There are several ways to decide on selecting the grid to continue with. In this study, 

Roache’s grid convergence index (GCI) derived from Richardson extrapolation [36] 

is used as the grid convergence criteria since it compares the changes in the objective 

function with respect to grid sizes regardless of the objective function’s order of 

magnitude. Roache’s GCI is calculated by using the formulation expressed in (4.1). 

In equation (4.1), the term 𝑟 refers to the grid refinement ratio which is nothing but 

the ratio of the fine grid’s node count to that of coarse grid. On the other hand, the 

terms 𝑝 and 𝐹𝑠 are the order of magnitude which is taken as 2 and the safety factor 

which is set to 3 by default respectively. The 𝜖 term corresponds to the percent 

change in the objective function value from fine to coarse grid. It is expressed in 

more detail by the equation shown in (4.2). In this equation, the terms ∅1  and ∅2 

correspond to the objective function values of fine and coarse grids respectively. 

 
𝐺𝐶𝐼𝑓𝑖𝑛𝑒 𝑔𝑟𝑖𝑑 =

𝐹𝑠 |𝜖|

𝑟𝑝 − 1
 (4.1) 

 
𝜖 =

∅1 − ∅2

∅1
 (4.2) 

By using the relations shown in (4.1) and (4.2), the grid convergence index for the 

four out of five grids excluding the most coarse one (since the relation given in (4.1) 

is used for only the fine grid) is calculated and the results provided in a graph in 

Figure 4.4. It is possible to observe from Figure 4.4 that the Roache’s GCI for yawing 

moment coefficient decreases significantly after the first grid size and then no 

significant change is observed. On the other hand, the Roache’s GCI calculated for 

drag coefficient is already at a significantly low value. Hence, the grid with 7.2M 

node elements is used for the rest of the study. 



 

 
35 

 

Figure 4.4: Variation of Grid Convergence Index 

4.2 Flow Solutions and Response Surface Formation 

In section 2.3, it is mentioned that SU2 is used in order to obtain the turbulent flow 

solutions around aircraft. In this section, the results obtained by SU2 are going to be 

investigated by using the open-software post-process tool ParaView. First the 

convergence of the flow solutions is investigated by checking the continuity and 

momentum residuals. In Figure 4.5, the logarithm of the root mean square (RMS) of 

the density and x-momentum residuals are provided for the supersonic cruise 

condition and high angle of attack case. The maximum number of iterations is 

selected as 3000, 500 iterations of first order and 2500 iterations of second order 

solutions. The total wall-clock time for full iteration solutions by using 480 cores is 

around 55 minutes.  Based on the residual plots, both the continuity and x-

momentum residuals drop to 10-8 for the supersonic cruise condition. For the high 

angle of attack case the residuals are slightly higher. The jumps in the residual 

histories correspond to the iteration where the solution order is switched to the 

second order.   
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Figure 4.5: Continuity and Momentum Residuals 

 Following the convergence check, an investigation is conducted by tracing the 

streamlines passing through the apex of the forebody. In Figure 4.6, the streamlines 

passing through the apex of the forebody for the flow solution with 0.2 Mach 

number, 25° of angle of attack and 10° of side-slip angle are provided. One can 

observe that the streamlines are directed towards the vertical tail which will 

eventually disturb the pressure distribution over the vertical tail. Wider the forebody 

gets in the y-z plane, the higher the possibility that the vertical tail is in the wake of 

the forebody. Therefore, the directional stability is expected to be affected 

significantly with the shape of the forebody based on not only the statements of 

Chamber’s experiments conducted in Langley Research Center [8] but also the SU2 

results. 
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Figure 4.6: Streamlines Over the Forebody (0.2 Mach - 25°- AoA - 10° Beta) 

Another investigation is conducted by observing the Mach distribution at a slice 

taken at y = 0. In Figure 4.7, the Mach number distribution at a slice taken at y = 0 

is shown for the flow solution with 1.2 Mach number, 1.3° of angle of attack and 

0°of side slip angle. The supersonic incoming flow encounters a flow phenomenon 

passing through the forebody apex and the flow speed is decreased to a level below 

sonic speed which is an indicator of a strong shock formation. The strength of the 

shock is highly dependent on the deflection angle of the obstacle from the incoming 

flow direction. Higher the deflection angle, the stronger the shock becomes. It is 

expected to observe a reduction in the shock strength forming at the apex of the 

forebody by designing a high fineness ratio forebody with a low z-spline coefficient 

which will result in a lower deflection angle from the incoming flow direction.     

 

Figure 4.7: Mach number Distribution @ Y = 0 (1.2 Mach - 1.3°- AoA - 0° Beta) 
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SU2 is a validated flow solver. Figure 4.8 shows the variation of drag coefficient at 

0° of angle of attack with respect to Mach number ranging from 0.2 to 1.3 for both 

SU2 and wind tunnel test results. As observed, the drag coefficients predicted are in 

general in good agreement with experimental data in all Mach regimes. In Figure 

4.9, the variation of yaw moment coefficient at 0.3 Mach and 25° of angle of attack 

with respect to side slip angle ranging from 0° to 10° is similarly shown for both 

SU2 and wind tunnel test data. Although the deviations are higher compared to the 

ones observed in drag coefficient comparison, the trend in the data seems to be 

captured.  

 

Figure 4.8: Variation of Drag Coefficient 

 

Figure 4.9: Variation of Yaw Moment Coefficient 
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4.3 Response Surface   

The current research focuses on wave drag reduction and directional stability 

enhancement at take-off and landing configurations. The flow conditions and the 

objectives of the study are given in Table 4.1.  The first objective is to minimize the 

trim drag at supersonic cruise and second one is to maximize the derivative of yaw 

moment coefficient with respect to side-slip angle at landing and take-off 

configurations.  

Table 4.1: Flow Conditions used for Objective Function Calculations  

Objective Mach AoA Beta 

Minimize 𝐶𝐷,𝑡𝑟𝑖𝑚 1.2 1.3 0 

Maximize 𝐶𝑛𝛽
 0.2 25 0-10 

4.3.1 Screening Experiments 

Before obtaining response surface models for each objective, screening experiments 

are conducted to determine the significant and insignificant factors. To do that, 2-

level factorial (2k) design is used to generate 16 geometries at the highest and lowest 

levels of four independent design variables. Then, CFD analyses are conducted on 

each geometry at the flow conditions given in Table 4.1. Based on Lenth’s PSE [31], 

the significant factors are determined. The Pareto-chart of the standardized effects 

of 2k design are provided for objective 1 and objective 2 in Figure 4.10 and Figure 

4.11 respectively. 
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Figure 4.10: Standardized Effects for Objective#1 (2k-Design) 

 

Figure 4.11: Standardized Effects for Objective#2 (2k-Design) 

Based on the screening experiments, all the design variables have significant 

standardized effects on objective 1. For objective 2, although the fineness ratio has 

insignificant standardized main effect, its two-way interactions with y and z spline 

coefficients have significant effect. Hence, the fineness ratio shall be added to the 

significant factors while conducting response surface analyses. The screening 

experiments have shown that all the four design variables contribute to both design 

objectives with a significant amount and the design points could not be further 

reduced by eliminating any factor. 
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4.3.2 Three-level Full Factorial Design 

Following the completion of screening experiments, using 3-level factorial (3k) 

design in which three levels are taken at the minimum, medium and maximum values 

of each design variable, 81 geometries are produced and for each geometry, CFD 

analyses are performed at the flow conditions shown in Table 4.1. Once the CFD 

analyses at the flow conditions shown in Table 4.1 are performed, the objective 

functions are calculated based on the results obtained from CFD analyses. The CFD 

results obtained for the first objective function indicates a 1.8% increase in the lift 

coefficient over the entire design space. Although the change in the lift coefficient is 

at a negligible amount, the pitch moment coefficient changes by approximately 30% 

within the entire design space due to the high moment arm of the forebody. Since 

the pitch moment must be zero in a trim condition, a correction must be applied to 

the aerodynamic data. The pitching moment change by the forebody design could be 

balanced by deflecting the horizontal tail. However, this will result in a change in the 

trim drag. Therefore, a relation between the additional drag coefficient and delta 

pitch moment coefficient of the horizontal tail must be obtained. The analytical 

relation between the delta pitch moment coefficient and drag coefficient of the 

horizontal tail is provided in (4.3). In this relation, the term 𝐶𝐷,𝑡𝑟𝑖𝑚 refers to the 

corrected trim drag coefficient. The terms 𝐶𝐷,@𝛼=1.3 and 𝐶𝑚,@𝛼=1.3 are the drag and 

pitch moment coefficients respectively obtained by the CFD analyses performed at 

1.2 Mach, 1.3° of angle of attack and 0° of side slip angle. The terms ∆𝐶𝐷 and ∆𝐶𝑚 

are the additional drag and pitch moment coefficients due to horizontal tail 

deflection. The 𝛿𝐻𝑇 term, on the other hand, is the horizontal tail deflection angle. 

The 
∆𝐶𝐷

𝛿𝐻𝑇

𝛿𝐻𝑇

∆𝐶𝑚
 term in (4.3) is obtained by fitting a second order polynomial to 

∆𝐶𝐷

𝛿𝐻𝑇
 vs 

∆𝐶𝑚

𝛿𝐻𝑇
 data shown in Figure 4.12.  

 
𝐶𝐷,𝑡𝑟𝑖𝑚 = 𝐶𝐷,@𝛼=1.3 +

∆𝐶𝐷

𝛿𝐻𝑇

𝛿𝐻𝑇

∆𝐶𝑚
𝐶𝑚,@𝛼=1.3 (4.3) 
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Figure 4.12: Variation of  
∆𝐶𝐷

𝛿𝐻𝑇
 with 

∆𝐶𝑚

𝛿𝐻𝑇
 

Once the corrections are applied on the trim drag coefficient for the first objective, 

the effects of design variables with respect to the trim drag coefficient are 

investigated. In Figure 4.13, the Pareto chart of the standardized effects of the design 

variables on the first objective is given for a full-quadratic response surface model 

with a confidence level of 95%. The fineness ratio is the most effective factor for the 

trim drag coefficient with an almost 10 times higher standardized effect than that of 

the second most effective parameter, the deflection angle. The remaining parameters, 

on the other hand, seem to have only a secondary effect for the variation of the first 

objective. Based on the standardized effects obtained for the first objective, the non-

significant effects are removed from the response surface model and a model fit is 

obtained with a Radj
2 of 99.84% for the trim drag coefficient.   
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Figure 4.13: Standardized Effects for Objective#1(3k-Design) 

The Pareto chart of the standardized effects of design variables on the second 

objective, the derivative of yaw moment coefficient with respect to side-slip angle 

for a full-quadratic response surface model, is provided in Figure 4.14. Based on 

these results, the second objective is not dominated by a single variable. The y-spline 

coefficient seems to be the driving factor for the change in directional stability. 

Following that, nose deflection angle and z-spline coefficient also have a strong main 

effect on this objective. Again, for the second objective, the non-significant 

parameters are removed from the relation and a response surface model fit is 

established with a Radj
2 of 93.71%.  

 

Figure 4.14: Standardized Effects for Objective#2 (3k-Design) 



 

 
44 

The previously made model performance assessments are based on a training dataset 

and do not give an idea about what the model performance would be on an untrained 

dataset. So, in order to test the model performance on an untrained dataset, 8 random 

geometries which correspond to the 10% of the geometries used in the training 

dataset are generated. Then, the CFD analyses stated in Table 4.1 are performed on 

these geometries. The geometries in the test dataset are displayed in Figure 4.15. 

 

Figure 4.15: Sample Geometries in the Test Dataset 
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After the verification of SU2 solutions, the predictions of response surface models 

for both objectives are compared to the ones obtained from the SU2 solutions. By 

considering the CFD results as the true values of the objectives, the prediction errors 

of the response surface model are obtained for the test dataset and provided in Table 

4.2. The terms 휀𝐶𝐷 and 휀𝐶𝑁𝛽 in Table 4.2 are the percent prediction errors for the 

first and second objective response surface models respectively.  Based on the 

prediction errors of the first objective, it can be stated that highly accurate results are 

obtained for the prediction of the trim drag coefficient. The largest error for this 

objective is 0.11%. The main reasons behind such small errors are that the drag 

coefficient changes by 6.5% at most in the entire design space and the dominating 

factor, fineness ratio, forms almost a linear relation with the trim drag coefficient. 

The predictions of the response surface model for the second objective, on the other 

hand, have higher error compared to that of the first objective. However, while 

evaluating the error terms in the second objective predictions, it should be noted that 

the yaw moment coefficient changes by 77% in the entire design space. 

Table 4.2: Test Dataset Error 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦  휀𝐶𝐷 휀𝐶𝑁𝛽 

1 0.11% 0.40% 

2 0.07% 3.38% 

3 0.07% 0.71% 

4 0.00% 2.82% 

5 0.02% 1.74% 

6 0.03% 0.52% 

7 0.04% 2.89% 

8 0.01% 3.96% 

 

The variation of design objectives with respect to design variables are provided in  

Figure 4.16 and Figure 4.17 for objective 1 and 2 respectively. The trim drag in the 

first objective decreases with increasing fineness ratio, nose deflection angle and y-

spline coefficient. On the other hand, the trim drag increases with increasing z-spline 
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coefficient. The yawing moment derivative with respect to side-slip angle exhibits a 

linear increment with increasing fineness ratio and y-spline coefficient. However, a 

decrease is observed in the directional stability indicator while increasing nose 

deflection angle and z-spline coefficient. One should note that, the sensitivity plots 

are obtained by changing a single parameter at a time while others are kept constant. 

Therefore, the interaction effects cannot be deducted from these graphs.  

 

Figure 4.16: Sensitivity Plots for Objective #1 
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Figure 4.17: Sensitivity Plots for Objective #2 

4.4 Pareto Optimal Solutions 

After obtaining the RSM regression coefficients for each objective, the entire design 

space is searched for Pareto-optimal solutions with NSGA-II. Before doing that, the 

optimal values of each objective are searched by the classical genetic algorithm 

separately since NSGA-II requires more than one objective to conduct non-

dominated sorting. While doing so, the population size, crossover probability, and 

mutation rate are set to 20, 0.7, and 0.02 respectively. The first investigation is 

conducted on the minimum value of trim drag coefficient. The variation of trim drag 

coefficient relative to the base configuration’s trim drag coefficient with the iteration 

count and the best drag configuration are provided in Figure 4.18. A convergence is 

achieved within approximately 60 iterations. An approximately 2.1% improvement 

on the baseline configuration’s trim drag coefficient is observed by the best drag 

configuration. 
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Figure 4.18: Variation of Objective #1 and the Best Drag Configuration  

The maximum value of the second objective, the yawing moment derivative with 

respect to side-slip angle, is searched again by using the classical genetic algorithm. 

The variation of the second objective relative to the base configuration’s yawing 

moment derivative with the iteration count and the best directional stability 

configuration are provided in Figure 4.19. The convergence to the maximum value 

is achieved around 40 iterations. The directional stability of the baseline 

configuration at 0.2 Mach, 25 degrees of angle of attack may be increased by 

approximately 30% by the best directional stability configuration.  
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Figure 4.19: Variation of Objective #2 and the Best Directional Stability 

Configuration  

When performing the Pareto-optimal search analyses with NSGA-II, the population 

size, crossover probability, and mutation rate are set to 20, 0.7, and 0.02 respectively 

as used in the classical genetic algorithm. In Figure 4.20, the final Pareto-front 

solutions obtained by NSGA-II are represented by the red circles whereas the black 

circles represent the initial population generated at the beginning of this iterative 

procedure. In this graph, the horizontal axis indicates the value of the first objective 

function relative to the base configuration in an ascending order from left to right 

and the vertical axis indicates the value of the second objective function relative to 

the base configuration in an ascending order from bottom to top. The domination of 

Pareto-front solutions over the initial population can be clearly seen in this graph. 
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Figure 4.20: Pareto-Optimal Solutions vs Initial Population 

In Figure 4.21, the variation of minimum drag coefficient and highest yaw moment 

coefficient ever evaluated in the population relative to the base configuration with 

the iteration count are shown. The convergence for the trim drag coefficient is 

achieved approximately around 350 iterations whereas it is approximately 210 

iterations for yaw moment coefficient derivative.  Note that the convergence 

achieved by NSGA-II requires more iterations compared to the classical single 

objective genetic algorithm. However, NSGA-II provides a Pareto-optimal set of 

solutions with the same size of population whereas the classical genetic algorithm 

provides a single solution. 
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Figure 4.21: Objectives vs Iteration Count 

Figure 4.22 shows the variation of design variables 𝐹𝑅, θ, 𝑌𝐶 and 𝑍𝐶 with respect 

to the iteration count. The variations of configurations are given for each objective 

function separately. For both objectives, the 𝐹𝑅 value converges to 2.5 and this 

behavior is coherent with screening experiment results. The design variable θ, on the 
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other hand, exhibits an opposite behavior for each objective. The θ value converges 

to 10° for the minimum drag configuration whereas a convergence to 0° of θ is 

observed for the best directional stability configuration. The 𝑌𝐶 converges to a 

moderate value of 2.1 for the minimum drag configuration. The best directional 

stability configuration is obtained with a 𝑌𝐶 value converging to 2.4 which is the 

maximum value of 𝑌𝐶 in the design space. The 𝑍𝐶, similar to 𝐹𝑅, converges to the 

same value of 1.2 for both objectives as indicated by screening experiment results. 

 

Figure 4.22: Variation of Design Variables: FR (Top-Left), θ (Top-Right), YC 

(Bottom-Left) and ZC (Bottom-Right) 

NSGA-II searches for Pareto-optimal solutions by inserting the objective functions 

separately. The classical genetic algorithm, on the other hand, requires a single 

objective which might be obtained by attaining weights to the objective functions. In 

order to compare the Pareto-optimal results obtained by NSGA-II with the ones 

obtained by classical genetic algorithm, a Pareto-optimal search is conducted on a 
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single objective by attaining weights to the objective functions for 20 times, which 

is the population size used in NSGA-II. The results are displayed in Figure 4.23. As 

observed, the Pareto-optimal solutions obtained by both algorithms lie in the same 

Pareto-optimal curve. However, the positions of the individuals in the design space 

are not the same for each individual obtained by both algorithms. The reason behind 

that is the randomness of NSGA-II. Since NSGA-II is a random search algorithm, 

depending on the population size, there might be slight changes in the position of 

optimal solutions on the Pareto-optimal curve.  Note that the Pareto-optimal 

configurations with the best drag and the best directional stability configurations are 

the same with the ones obtained by the classical genetic algorithm. 

 

Figure 4.23: Comparison of NSGA-II results with Weighted Genetic Algorithm 

Three different configurations are chosen from the Pareto-optimal solution set and 

the SU2 analyses given in Table 4.1 are performed for these three geometries. The 

Figure 4.24 shows the Mach number distribution over two different slices taken at y 



 

 
54 

= 0 and z-coordinate corresponding to the forebody apex of each of the three 

geometries chosen from Pareto-front solutions for the case with 1.2 Mach number, 

1.3° of angle of attack and 0°of side slip angle.  The one on the top of this figure has 

the highest directional stability, the one to middle has the lowest wave drag and the 

bottom one has the moderately low wave drag and high directional stability 

compared to the baseline model. 

 

Figure 4.24: Mach number Distribution over the Best Directional Stability 
Configuration (Top), Lowest Drag Count Configuration (Middle), Moderately 

Optimal Configuration (Bottom) 
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To investigate the shock characteristics of the selected Pareto-optimal 

configurations, the shock angles of the oblique shock occurring at the forebody apex 

are approximately measured. These angles are provided in Figure 4.25 for the base 

(top-left), best directional stability (top-right), best drag (bottom-left) and 

moderately optimal (bottom-right) geometries. The highest shock angles are 

observed in the base geometry. For the best drag geometry, although the shock angle 

on the upper side of the forebody is high, the one on the bottom side is significantly 

decreased with the forebody design. Similarly, the shock angle on the bottom side of 

the moderately optimal forebody is reduced significantly. On the other hand, a 

noteworthy decrease only in the upper side shock angle is observed for the best 

directional stability geometry. 

 

Figure 4.25: Shock Angles over the Base Configuration (Top-Left), Best 

Directional Stability Configuration (Top- Right), Lowest Drag Count 

Configuration (Bottom-Left), Moderately Optimal Configuration (Bottom- Right) 

In Figure 4.26, the pressure coefficient distributions over the base and three Pareto-

optimal configurations are provided. Since the length of the geometries differ in x-

direction, the horizontal axis in this graph represents the non-dimensional x distance. 

A value of 0 in non-dimensional x distance corresponds to the forebody tip and a 

value of 1 in non-dimensional x distance corresponds to the forebody end. The base 
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configuration has the largest pressure coefficient values on both upper and lower 

surfaces. Apart from that, the best drag configuration has similar pressure 

distribution on the upper surface with the base configuration. The pressure 

distribution on the lower surface, on the other hand, is quite lower compared to the 

base configuration. However, the pressure coefficient difference in the upper and 

lower surfaces of the best drag configurations causes a higher lift force on the 

forebody geometry which eventually causes higher pitching moment difference from 

that of trim condition. The change in the pitching moment would cause a downgrade 

on the improvement of trim drag.  The best directional stability configuration also 

has lower pressure coefficient distributions on both surfaces compared to the base 

configuration. In addition to that, since the pressure difference between the upper 

and lower surface of the best directional stability configuration is low, it will create 

less pitching moment deviations from the trim condition which may bring additional 

improvement to the trim drag. For the moderately optimal configuration, the pressure 

distribution on the upper surface is lower compared to the best drag configuration. 

However, the one on the upper surface of the moderately optimal configuration is 

higher compared to the best drag configuration. The pressure difference between the 

upper and lower surfaces of the moderately optimal configuration is also lower 

compared to the best drag configuration. This indicates a lower additional drag 

caused by the pitching moment for the moderately optimal configuration compared 

to the best drag configuration. Based on the pressure distributions shown in Figure 

4.26, a strong shock formation is observed in the vicinity of the forebody-canopy 

junction. The highest pressure increase is observed in the best directional stability 

configuration. The reason behind this is that the best directional stability 

configuration has the lowest nose deflection angle among the configurations shown 

in Figure 4.25 which causes a higher angle in the forebody-canopy junction which 

eventually causes stronger shock formation. The lowest pressure increase is observed 

in the best drag configuration contributing to the wave drag increase less than the 

other three contributions.  For the base and moderately optimal configurations, 

similar pressure increase is observed in the forebody-canopy junction. 
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Figure 4.26: Pressure Coefficient Distributions over the Base Configuration (Top-

Left), Best Directional Stability Configuration (Top- Right), Lowest Drag Count 

Configuration (Bottom-Left), Moderately Optimal Configuration (Bottom- Right) 

@ Y=0 

The drag coefficients of the base and three Pareto-optimal configurations are 

decomposed into pressure and friction components in SU2 solutions and their 

percentages are provided in Figure 4.27. The pressure component, which also 
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includes the wave drag component, has the lowest percentage in the best drag and 

moderately optimal configurations. 

 

Figure 4.27: Drag Component Percentages for the Base, Best Directional Stability 

and Moderately Optimal Configurations 

Recall that for an isentropic flow, the relation between the total pressure and static 

pressure could be obtained by using the formula given in (4.4). 

 𝑝0

𝑝
= (1 +

𝛾 − 1

2
𝑀2)

𝛾
𝛾−1

 (4.4) 

Based on this formulation, a term called “isentropic Mach number” could be 

obtained. This term enables users to obtain Mach number distribution over the 

surfaces by assuming that the total pressure is preserved within the flow domain. 

However, in the presence of shockwaves and a viscous phenomenon within the 

boundary layer, there is going to be certain losses in the total pressure. Therefore, 

the Mach distribution obtained on the surfaces is provided by an error margin due to 

isentropic flow assumption. Yet, the isentropic Mach number may give an idea about 
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the locations where the flow is accelerated, and the shock-induced separations 

occurred. The formulation of isentropic Mach number is provided in (4.5). 

 

𝑀𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 = √(
𝑝0

𝑝
)

𝛾−1
𝛾 2

𝛾 − 1
− 1

= √(
𝑝∞

𝑝
)

𝛾−1
𝛾

(1 +
𝛾 − 1

2
𝑀∞

2)
2

𝛾 − 1
− 1 

(4.5) 

 

 

Figure 4.28: Isentropic Mach number Distribution over the Base Configuration 

(Top-Left), Best Directional Stability Configuration (Top- Right), Lowest Drag 

Count Configuration (Bottom-Left), Moderately Optimal Configuration (Bottom- 

Right) 

In Figure 4.28, the isentropic Mach number distribution over the base and three 

Pareto-optimal configurations are given in a side view. It is possible to observe that 

the accelerated flow region covers a greater space on the forebody geometry for the 

best drag and moderately optimal configurations compared to the base and best 
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directional stability configurations. The accelerated flow regions indicate a lower 

pressure over the surface and less contribution to the drag force. 

Figure 4.29 shows the streamlines passing through the apex of the forebody for the 

three Pareto-optimal solutions to better understand the effect of forebody geometry 

on directional characteristics. The streamlines are spread out more in the geometry 

with the lowest directional stability, whereas the streamlines are more concentrated 

in the geometry with the highest directional stability. 

 

Figure 4.29: Streamlines over the Best Directional Stability Configuration (Top), 
Lowest Drag Count Configuration (Middle), Moderately Optimal Configuration 

(Bottom) 
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In Figure 4.30 and Figure 4.31, Q-criterion iso-surfaces (Q=0.01) for 0.2 Mach, 25 

degrees of angle of attack and 10 degrees of side-slip angle flow solutions over the 

three Pareto-optimal geometries and the base geometry are provided. Q refers to the 

second invariant of the velocity gradient tensor and is commonly used for the 

visualization of vortex structures in the flow. One may observe from these figures, 

the vortex structures emanating from the apex of the forebody are denser for the 

forebody with the best directional stability. Following that, the moderately optimal 

forebody has the second highest dense vortex structure. For the base and best drag 

geometries, a less dense vortex structure emanates from the forebody apex. The 

results are coherent with Witford’s [7] statements. Nonetheless, the vortex structures 

emanating from the forebody apex seem to fade out before reaching to the vertical 

tail.  

 

Figure 4.30: Q-criterion Iso-surfaces (TOP-VIEW) @ (0.2 Mach - 25°- AoA - 10° 

Beta) over the Base Configuration (Top-Left), Best Directional Stability 

Configuration (Top- Right), Lowest Drag Count Configuration (Bottom-Left), 

Moderately Optimal Configuration (Bottom- Right) 
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Figure 4.31: Q-criterion Iso-surfaces (SIDE-VIEW) @ (0.2 Mach - 25°- AoA - 10° 

Beta) over the Base Configuration (Top-Left), Best Directional Stability 

Configuration (Top- Right), Lowest Drag Count Configuration (Bottom-Left), 

Moderately Optimal Configuration (Bottom- Right) 

Table 4.3 shows the RSM predictions as well as the CFD-provided actual 

improvements on each objective. Based on the CFD results, the best drag geometry 

predicted by the response surface models appears to be dominated by the moderate 

geometry, as both geometries provide the same performance for objective 1, but the 

moderate geometry provides better directional characteristics. As a result, the best 

drag geometry is no longer among the Pareto-optimal solutions. 

Table 4.3: Objective Improvements on the Selected Geometries (Predicted / 
Actual) 

Geometry Minimize 𝐶𝐷,𝑡𝑟𝑖𝑚 Maximize 𝐶𝑛𝛽
 

Best Directional Stability 1.3% / 1.3% 30.5% / 33.0% 

Best Drag 2.1% / 2.0% 1.5% / 0.8% 

Moderate 1.9% / 2.0% 12.8% / 14.6% 

 

Since the best drag geometry is no longer in the Pareto-optimal configurations, the 

characteristics of best directional stability and moderately optimal geometries could 

be further investigated. As Chambers [8] stated, the strong vortex formation at the 

forebody apex for high angle of attack flows may cause flow asymmetries. 
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Therefore, an investigation is conducted on the yawing moment coefficient at 0.2 

Mach, 25 degrees of angle of attack and 0 degree of side-slip angle of base and two 

Pareto-optimal geometries and the data is provided in Figure 4.32. The yawing 

moment coefficients are normalized using the base geometry’s yawing moment 

coefficient and the absolute values of the yawing moment coefficient are used.  

 

Figure 4.32: Flow Asymmetry Data for Base and Two-Pareto Optimal 

Configurations 

The results have yielded that the flow asymmetry in the best directional configuration 

causes a yawing moment coefficient almost twice that of base configuration. On the 

other hand, the asymmetries present in the moderately optimal configuration cause 

only a 10% increase compared to the base configuration.  

To investigate the reason behind the flow asymmetries, the Q-criterion iso-surface 

are obtained with a Q-value of 0.01 and given in Figure 4.33 for the base, best 

directional stability and moderately optimal configurations. As observed the densest 

vortex formation occurs in the best directional stability configuration and the 

statements of Chamber [8] on the relation between the vortex strength and flow 

asymmetries seem to be observed in SU2 solutions as well.  
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Figure 4.33: Q-criterion Iso-surfaces (TOP-VIEW) @ (0.2 Mach - 25°- AoA - 0° 

Beta) over the Base Configuration (Top), Best Directional Stability Configuration 

(Middle), Moderately Optimal Configuration (Bottom) 
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CHAPTER 5  

5 CONCLUSION 

In this thesis, an optimization study has been conducted on the forebody geometry 

of a jet trainer aircraft to improve its supersonic cruise performance and directional 

stability characteristics. To represent the lateral cross-section of the forebody 

geometry, four independent design variables are used. Response Surface Method is 

used for optimization, and the aerodynamic database for the objective functions is 

generated by means of turbulent flow solutions with SU2. Based on response surface 

models, NSGA-II is used to search for Pareto-optimal solutions.  

The present optimization study conducted on the forebody optimization provides 

promising improvements on the wave drag and directional stability. The driving 

factor in the reduction of wave drag is the fineness ratio, and the wave drag is reduced 

by producing high fineness ratio forebodies with low z-spline coefficient. A similar 

pattern is observed in the improvement of directional stability. The two objectives 

contradict each other while changing the forebody deflection angle and y-spline 

coefficient. The aircraft’s directional stability decreases with increasing deflection 

angle and decreasing y-spline coefficient, whereas the opposite behavior is observed 

in the wave drag. 

It is concluded that a significant improvement in the directional stability and an 

unignorable decrease in the wave drag can be achieved with a proper forebody 

design. As future work, the yaw moment coefficient may be included among the 

objective function to be investigated in more detail. 
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APPENDICES 

A. Non-dominated Sorting Genetic Algorithm-II Python Code 

""" 

Created on Sun Jan 10 21:43:17 2021 

@author: omer 

""" 

import numpy as np 

class Problem: 

    def __init__(self, num_var, min_var, max_var): 

        self.num_var = num_var # # of independent variables(genes) 

        self.min_var = min_var # minimum constraint array for variables 

        self.max_var = max_var # maximum constraint array for variables 

class GaParameters: 

    def __init__(self, max_it, pop_size, p_cross=1, gamma=0.01, p_mutation=0.01 

                 , beta=0.01, sigma=0.01): 

        self.max_it = max_it # # of iterations for GA operations 

        self.pop_size = pop_size # population size 

        self.p_cross = p_cross # cross-over probability %/100 

        self.num_cross = int(round(p_cross * pop_size / 2) * 2) 

        self.gamma = gamma # cross-over step size 

        self.p_mutation = p_mutation # mutation probability %/100 
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        self.beta = beta # primary mutation step size argument 

        self.sigma = sigma # secondary mutation step size argument 

class Population: 

    def __init__(self, position, cost, subset, dom_count, rank , front, crowd_dist ):  

        self.position = position # position of genes in design space 

        self.cost = cost # cost value of genes 

        self.subset = subset # individual list that ith individual dominates 

        self.dom_count = dom_count # individual list that ith individual dominates 

        self.rank = rank # rank of individuals 

        self.crowd_dist = crowd_dist # crowding distance of genes 

        self.front = front # front list of genes 

    def __repr__(self): 

        return "Population with position = " + str( 

            self.position) + " , cost = " + str(self.cost) 

    @classmethod 

    def from_initial_population(cls, params, problem): 

        # Select random individuals 

        position = np.random.uniform(problem.min_var, problem.max_var,  

                                     size=[params.pop_size, problem.num_var]) 

        # Evaluate cost for individuals 

        cost = cost_function(position, problem) 

        subset = sub_set(cost) 
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        dom_count = domination_count(cost) 

        rank, front = rank_evaluation(subset, dom_count) 

        crowd_dist = crowding_distance(rank, front, cost) 

        return cls(position, cost, subset, dom_count, rank, front, crowd_dist) 

    @classmethod 

    def from_parent_selection(cls,pop,tournament_size = 3): 

        # Select Parents 

        parent_index = parent_selection(pop, tournament_size) 

        position = pop.position[parent_index] 

        cost = pop.cost[parent_index] 

        rank = pop.rank[parent_index] 

        subset = pop.subset[parent_index] 

        front = [] 

        dom_count = pop.dom_count[parent_index] 

        crowd_dist = pop.crowd_dist[parent_index] 

        return cls(position, cost, subset, dom_count, rank, front, crowd_dist) 

    @classmethod 

    def from_crossover(cls, parents, params, problem): 

        offsprings = np.empty([params.num_cross / 2, problem.num_var, 2]) 

        for i in range(params.num_cross / 2): 

            offsprings[i, :, 0], offsprings[i, :, 1] = crossover(parents, 

                                                                 params) 
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        position = offsprings.reshape([params.num_cross, problem.num_var]) 

        position = np.maximum(position,problem.min_var) 

        position = np.minimum(position,problem.max_var) 

        cost = cost_function(position, problem) 

        subset = sub_set(cost) 

        dom_count = domination_count(cost) 

        rank, front = rank_evaluation(subset, dom_count) 

        crowd_dist = crowding_distance(rank, front, cost) 

        return cls(position, cost, subset, dom_count, rank, front, crowd_dist) 

    @classmethod 

    def from_sorting(cls, pop, popc, params): 

        # Merge Parents and Offsprings 

        position = np.vstack((pop.position, popc.position)) 

        cost = np.vstack((pop.cost, popc.cost)) 

        subset = sub_set(cost) 

        dom_count = domination_count(cost) 

        rank, front = rank_evaluation(subset, dom_count) 

        crowd_dist = crowding_distance(rank, front, cost) 

        so_list = np.vstack([rank, crowd_dist]).transpose() 

        so = np.lexsort((-so_list[:,1], so_list[:,0])) 

        position = position[so[0:params.pop_size], :] 

        cost = cost[so[0:params.pop_size], :] 
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        subset = sub_set(cost) 

        dom_count = dom_count[so[0:params.pop_size]] 

        rank, front = rank_evaluation(subset, dom_count) 

        crowd_dist = crowd_dist[so[0:params.pop_size]] 

        return cls(position, cost, subset, dom_count, rank, front, crowd_dist) 

. . . Shortened version . . . 


