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ABSTRACT

THE WRONSKI MAP FOR FLAG VARIETIES

Güngör, Emre

M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ali Ulaş Özgür Kişisel

September 2021, 53 pages

In this thesis, we studied flag varieties, the Grassmann variety G(d, n) and their be-

havior under the Wronski map. We begin by introducing algebraic, topological and

geometric tools that are required to define flag varieties as projective varieties. Schu-

bert calculus is introduced in order to understand the cohomology of the Grassman-

nian and flag varieties. We described Young tableau which is a helpful tool that

makes some combinatorial computations, in particular of Littlewood-Richardson co-

efficients, easier and studied it extensively. Finally, we studied the Wronski map

which sends a set of polynomials to their Wronski determinant which is given by the

polynomials and their derivatives.

Keywords: Grassmann variety, Schubert calculus, flag varieties, Wronski map
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ÖZ

BAYRAK VARYETELERİ İÇİN WRONSKİ GÖNDERİMİ

Güngör, Emre

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Ali Ulaş Özgür Kişisel

Eylül 2021 , 53 sayfa

Bu tezde bayrak varyeteleri, Grassmann varyeteleri G(d, n) ve Wronski gönderimi

altındaki davranışları çalışılmıştır. Öncelikle, bayrak varyetelerini projektif varyete

olarak tanımlanması için gerekli cebirsel, topolojik ve kombinatorik araçlar tanıtıldı.

Grassmann varyetesinin ve bayrak varyetelerinin kohomolojisini anlamak için Sc-

hubert kalkülüs tanımlandı. Bazı kombinatorik hesaplamaları, özellikle Littlewood-

Richardson katsayılarını hesaplamayı kolaylaştıran Young tablosu tarif edildi ve üze-

rinde derinlemesine çalışıldı. Son olarak ise bir polinom setini, polinomların ve on-

ların türevlerinin determinantı olarak tanımlanan Wronski determinantına gönderen

Wronski gönderimini inceledik.

Anahtar Kelimeler: Grasman varyetesi, Schubert kalkülüs, bayrak varyeteleri, Wronski

gönderimi
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CHAPTER 1

INTRODUCTION

The Grassmannian or the Grassmann VarietyG(d, n) and flag varietiesF (d1, ..., dr;n)

are fundamental objects in algebraic geometry. Grassmannians are very helpful tools

to parametrize linear subspaces of an n-dimensional vector space V whereas flag va-

rieties parametrize sequences of subspaces. In particular, Grassmannians are special

types of flag varieties. Other than algebraic geometry, flag varieties are fundamen-

tal objects in combinatorics and representation theory. They also have a very rich

topological structure that can be explored in many ways.

Another way that the Grassmannians can be studied is by using so called the Wronski

map. It sends a set of polynomials into their Wronskian, i.e., the determinant obtained

by taking derivatives of these polynomials. The Wronski map gives us a well-defined

map from the Grassmannian to a projective space. Fibers of the Wronski map have

been of interest for many years, and there are many works around the topic. We will

explore the Wronski map in depth.

In Chapter 2, we will start with basic notations for the Grassmannian G(d, n) which

is nothing but the set of all d-dimensional subspaces of an n-dimensional vector space

V . We will develop the necessary algebraic background including exterior algebra,

in order to give the Grassmannian a variety structure via Plücker embedding. After

establishing the Grassmannian as a projective variety, we will explore its defining

equations. More precisely, Plücker relations and the homogeneous ideals are com-

puted. Later in this chapter, we will develop a cover the Grassmannian with affine

charts which helps us to understand some further questions about the Wronski map.

In Chapter 3, we dive into Schubert calculus. We give affine stratification for the
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Grassmannian, namely we will define Schubert cells and Schubert varieties. We give

a thorough example to compute Schubert varieties and their corresponding matrices.

They are also important tools for exploring the topological structure of the Grass-

mannian. Schubert varieties define the cohomology classes in the cohomology ring

H∗(G(d, n),Z). We will give statements of Pieri’s Rule and Giambelli’s Rule that

are helpful to compute the product of any two Schubert cycles.

Other than topological aspects, Schubert classes are important for computing Littlewood-

Richardson coefficients. To compute these coefficients, we will introduce a useful

tool that is called Young tableaux. It has many applications in combinatorics, and

representation theory. We explore the properties and importance of Young tableaux

in depth. At the end of the chapter, we will state the Littlewood-Richardson Rule

involving Young tableaux.

In Chapter 4, we will extend the structure that we established in Chapter 2 for Grass-

mannians in order to define flag varieties. We will explore over an example how we

can obtain the homogeneous ideal and defining quadratic equations of flag varieties.

We will also give the cohomology structure of flag varieties.

In Chapter 5, we will define the Wronski map and its properties. Its relation with

Schubert calculus will be explored.

2



CHAPTER 2

GRASSMANN VARIETY

2.1 Definition and basic notation

We define Grassmannian or Grassmann variety over a vector space V as follows:

Definition 2.1.1. Let V be an n-dimensional vector space over a field. Let d, 0 < d <

n, be an integer. The Grassmannian G(d, n) is the set of all d-dimensional subspaces

of V, i.e.,

G(d, n) = {W | W is a subspace of V and dim W = d}.

We can also consider the Grassmannian as the set of all (d − 1)-dimensional linear

subspaces of an (n − 1)-dimensional projective space Pn−1. When we consider the

Grassmannian is this way, we will denote it as G(d − 1, n − 1). Thus, for instance,

when d = 2 and n = 4, we have G(2, 4) = G(1, 3).

Example 2.1.2. G(1,n) is the set of all 1-dimensional subspaces of an n-dimensional

vector space V, which is Pn−1 itself.

2.2 A Brief Review of Exterior Algebra

In order to understand Grassmannians, it is crucial to understand the underlying al-

gebra called exterior algebra or Grassmann algebra. Exterior algebra has a product

called the wedge product (or exterior product). For the vectors u and v, the wedge

product of u and v is denoted by u ∧ v and called a bivector. Geometrically, the

magnitude of the wedge product can be interpreted as the area of the paralellogram

having the sides u and v.

3



Definition 2.2.1. Let V be an n-dimensional vector space over a field F. Let

T 0(V ) = F, T 1(V ) = V, and T d(V ) = V ⊗ V ⊗ ...⊗ V

be tensor products of d-many copies of the vector space V . LetAd(V ) be the subspace

of T d(V ) spanned by all vectors of the form v1 ⊗ v2 ⊗ ...⊗ vd with v1, v2, ..., vd ∈ V
and vi = vj for some i 6= j.The d-th exterior power of the vector space V is defined

as
d∧
V = T d(V )/Ad(V ).

Conventionally, an element v1 ⊗ v2 ⊗ ...⊗ vd + Ad(V ) ∈
∧d V is denoted by

v1 ∧ v2 ∧ ... ∧ vd

If w ∈
∧d1 V and w

′ ∈
∧d2 V with w = v + Ad1(V ) and w

′
= v

′
+ Ad2(V ),

respectively, we define

w ∧ w′ = v ⊗ v′ + Ad1+d2(V )

as an element of
∧d1+d2 V . Direct sum of all exterior powers of V is defined as

∧
V =

0∧
V ⊕

1∧
V ⊕ ...⊕

n∧
V.

Basically, if there is no superscript in the notation, we understand it as direct sum of

all exterior powers of V .

Definition 2.2.2. Let u, v andw be elements of
∧
V and α, β ∈ F. The wedge product

is a multiplication operation

∧ :
∧

V ×
∧

V −→
∧

V

(u, v) 7−→ u ∧ v

satisfying the following properties:

1. (u ∧ v) ∧ w = u ∧ (v ∧ w) (associativity)

2. u ∧ (αv + βw) = αu ∧ v + βu ∧ w (multilinearity)

3. u ∧ v = −v ∧ u (anticommutativity)

4



Remark 2.2.3. If {ui} is a basis for V , then one can easily see that ui ∧ uj = 0

whenever i = j.

Proposition 2.2.4. Let V be an n-dimensional vector space over F with basis {v1, v2, ..., vn}.
Then, for every d ∈ {1, ..., n}, d-th exterior power of a vector space V is a vector

space with basis {vi1 ∧ ... ∧ vid} with 1 ≤ i1 ≤ i2 ≤ ... ≤ id ≤ n, i.e.,

d∧
V = {

∑
1≤i1≤i2≤...≤id≤n

ci1,i2,...,idvi1 ∧ ... ∧ vid}

where ci1,i2,...,id ∈ F.

Definition 2.2.5. v ∈
∧d V is said to be totally decomposable, if v can be written as

u1 ∧ ... ∧ ud.

where u1, ..., ud ∈ V are linearly independent.

Proposition 2.2.6. If v ∈
∧d V is totally decomposable, then v ∧ v = 0.

Proof. Let v ∈
∧d V be totally decomposable. Then we can write

v = u1 ∧ ... ∧ ud

for some u1, ..., ud ∈ V . Then

v ∧ v = (u1 ∧ ... ∧ ud) ∧ (u1 ∧ ... ∧ ud).

By Definition 2.2.2., we can move each ui with respect to anticommutativity. So for

instance once we move u1 to the left, next to first u1, we will get

u1 ∧ (−1)d−1u1 ∧ ... ∧ ud ∧ u2 ∧ ... ∧ ud)

Thus by Remark 2.2.3. we get u1 ∧ (−1)d−1u1 = 0. So v ∧ v = 0. �

Example 2.2.7. For d = 4, assume v1, ..., v4 ∈ V are linearly independent and

char(F) 6= 2. Then v1 ∧ v2 + v3 ∧ v4 is not totally decomposable, since

0 = (v1 ∧ v2 + v3 ∧ v4) ∧ (v1 ∧ v2 + v3 ∧ v4)

= v1 ∧ v2 ∧ v3 ∧ v4 + v3 ∧ v4 ∧ v1 ∧ v2

= 2v1 ∧ v2 ∧ v3 ∧ v4

which is a contradiction since v1 ∧ v2 ∧ v3 ∧ v4 is nonzero.

5



Remark 2.2.8. Every nonzero element of
∧1 V is trivially totally decomposable.

Definition 2.2.9. Let V be a finite dimensional vector space and let v ∈ V, w ∈∧d V . Then we say v divides w, if there exists x ∈
∧d−1 V such that w = v ∧ x.

Lemma 2.2.10. Let V be a finite dimensional vector space and v ∈ V , w ∈
∧d V .

Then, v divides w if and only if v ∧ w = 0.

Proof. (⇒) Since v divides w, there exists ϕ ∈
∧d−1 V such that w = v∧ϕ. Multiply

both sides by v, we get

v ∧ w = v ∧ v ∧ ϕ = 0 ∧ ϕ = 0

since v ∧ v = 0.

(⇐) Assume v∧w = 0. Start with fixing a basis for V , B = {v1, ..., vn} with v1 = v.

Then vi1∧ ...∧vid is a basis for
∧d V . Since w ∈

∧d V , we write w =
∑
vi1∧ ...∧vid

for 1 ≤ i1 < i2 < ... < id ≤ n. By the assumption we have

v ∧ (
∑

ci1,i2,...,id(vi1 ∧ ... ∧ vid)) =
∑

ci1,i2,...,id(v ∧ vi1 ∧ ... ∧ vid) = 0.

Since all the multivectors v ∧ vi1 ∧ ... ∧ vid are linearly independent and nonzero for

i1 > 1, we get ci1,i2,...,id = 0 for i1 > 1. So w is a linear combination of the basis

vectors of the form vi1 ∧ ... ∧ vid = v ∧ wi′ for i1 = 1 where w′i = vi2 ∧ ... ∧ vid . It

follows that w =
∑
c1,i2,...,id(v ∧ wi′ ) = v ∧

∑
(c1,i2,...,idwi′ ). �

We denote the set of all v ∈ V dividing w ∈
∧d V by Dw, i.e.

Dw = {v ∈ V | w = v ∧ x for some x ∈
d−1∧

V }.

Proposition 2.2.11. Dw is a subspace of V .

Proof. Let v1, v2 be vectors in Dw. Then v1 ∧ w = 0 and v2 ∧ w = 0 by Lemma

2.2.10. So we have

(v1 + v2) ∧ w = (v1 ∧ w) + (v2 ∧ w) = 0.

It is clear that for any α ∈ F, if v ∧ w = 0, then we have αv ∧ w = 0. �

Proposition 2.2.12. An element w ∈
∧d V is totally decomposable if and only if

dim(Dw) = d.

6



Proof. Suppose w ∈
∧d V is totally decomposable, say w = v1 ∧ ... ∧ vd. Clearly,

v1, v2, ..., vd are linearly independent. Now, extend the set {v1, v2, ..., vd} to a basis

{v1, v2, ..., vn}. Then we can write for any v ∈ V , v = a1v1 + a2v2 + ... + anvn for

some ai ∈ F. So we get,

0 = v ∧ w = (
n∑
i=1

aivi) ∧ (v1 ∧ ... ∧ vd).

Note that, all the terms with i ≤ d will vanish since vi ∧ vj = 0 for i = j. So we

get all ai = 0 for d < i ≤ n. Hence v is a linear combination of v1, v2, ..., vd. There-

fore {v1, v2, ..., vd} spans Dw and also forms a basis for Dw since they are linearly

independent.

Conversely, suppose dim(Dw) = d. Let {v1, v2, ..., vd} be a basis for Dw. Extend it

to a basis for V , namely {v1, v2, ..., vn}. Then we can write

w =
∑

ci1,i2,...,in(vi1 ∧ vi2 ∧ ... ∧ vin)

for some ci1,i2,...,in ∈ F. So we get,

0 = vk ∧ w =
∑

ci1,i2,...,in(vk ∧ vij)

for 1 ≤ k ≤ d, since vk ∧ vij = 0 when ij ∈ {1, 2, ..., d}. Thus we have ci1,i2,...,in = 0

for d < k ≤ n. So we can write

w = αv1 ∧ v2 ∧ ... ∧ vd

for some α ∈ F. Thus w ∈
∧d V is totally decomposable. �

We will define a map that enables us to characterize the totally decomposable vectors:

Let w ∈
∧d V , then the map

ϕw : V −→
d+1∧

V

is defined by

ϕw(v) = v ∧ w.

Corollary 2.2.13. w ∈
∧d V is totally decomposable if and only if ϕw has rank n−d.

Proof. Let ϕw be the map above. By Proposition 2.2.12, w is totally decomposable if

and only if dim(Dw) = d. We will show ker(ϕw) = Dw. Recall that for w ∈
∧d V ,

Dw = {v ∈ V | v ∧ w = 0}

7



by Lemma 2.2.10. In other words,

Dw = {v ∈ V | ϕw(v) = 0} = ker(ϕw).

Thus dim(Dw) = dim(ker(ϕw)) = d. So by Rank-Nullity Theorem ϕw has rank

n− d. �

Corollary 2.2.14. w ∈
∧d V is totally decomposable if and only if the rank of ϕw is

at most n− d.

Proof. Suppose w ∈
∧d V is totally decomposable. We need to show that it is not

the case that ϕw has rank strictly less than n − d, since we proved that the claim

holds when dim(ϕw) = n − d. Assume ϕw has rank less than n − d. Then by

rank-nullity theorem dim(ker(ϕw)) = m > d. Since ker(ϕw) = Dw, we also have

dim(Dw) = m. But the proof of Proposition 2.2.12 shows that dim(Dw) cannot be

more than d. �

2.3 Plücker Embedding

In order to give Grassmannian a variety structure, we need to embed it to a projective

space. To achieve this, we associate to a d-dimensional subspace W ∈ V a point of

P(
∧d(V )) which is the line spanned by v1 ∧ ... ∧ vd. In other words, we have a map,

called Plücker embedding or Plücker map,

Ψ : G(d, n)→ P(
d∧
V ) (2.1)

given by

U = span(u1, ..., ud) 7→ [u1 ∧ ... ∧ ud]

This map is well-defined by the following lemma:

Lemma 2.3.1. Let W be a d-dimensional subspace of a finite dimensional vector

space V over F. Let B1 := {w1, w2, ..., wd} and B2 := {w′1, w′2, ..., w′d} be two

ordered bases for W . Then

w′1 ∧ ... ∧ w′d = λw1 ∧ ... ∧ wd for some λ ∈ F

8



where λ is the determinant of the change of basis matrix from {w1, w2, ..., wd} to

{w′1, w′2, ..., w′d}.

Proof. Follows from multilinearity and anticommutativity of wedge product. See

[29] Prop. 11.12. �

Proposition 2.3.2. The Plücker map

Ψ : G(d, n)→ P(
d∧
V )

is injective.

Proof. LetU,W ∈ G(d, n) be two subspaces. Let {u1, u2, ..., ud} and {w1, w2, ..., wd}
be bases for U and W , respectively. Recall that we have a map

ϕu : V →
d+1∧

V

defined by

v 7−→ v ∧ u.

Now suppose Ψ(U) = Ψ(W ) and u = [u1 ∧ u2 ∧ ... ∧ ud], w = [w1 ∧ w2 ∧ ... ∧ wd].
Then we have

Ψ(U) = Ψ(W )⇔ ∃x ∈ F∗ such that u = xw

⇔ ∃x′ ∈ F∗ such that ϕu = x′ϕw

⇔ ker(ϕu) = ker(ϕw).

So, in order to show Ψ is injective, it is enough to show that ker(ϕu) = U . It is

obvious that U ⊂ ker(ϕu) since ui ∧ uj = 0 for i = j, we have u ∧ u = 0. To

show ker(ϕu) ⊂ U , note that we can extend basis {u1, u2, ..., ud} of U to a basis

{u1, u2, ..., ud, ..., un} of V . Now, let v ∈ ker(ϕu). Write v = a1u1 + a2u2 + ... +

anvn =
∑
aivi. Then we have

0 = v ∧ u = (a1v1 + ...+ anvn) ∧ u

= (a1v1 + ...+ anvn) ∧ (u1 + ...+ ud).

Expanding the wedge product, we can see that all terms of the form aiui ∧ uj where

i = j, vanish. Thus we are left with the terms aiui ∧ uj, i 6= j, i, j ≥ d+ 1 which are

9



nonzero. So we get ai = 0 for i ≥ d + 1, i.e. v = u1 + u2 + ... + ud. Hence v ∈ U .

This finishes the proof. �

Let V be an n-dimensional vector space with basis {v1, v2, ..., vn} as usual and let

U ∈ G(d, n) with basis {u1, u2, ..., ud}. By Definition 2.2.4, we have

d∧
V = {

∑
1≤i1≤i2≤...≤id≤n

ci1,i2,...,idvi1 ∧ ... ∧ vid}

where ci1,i2,...,id ∈ F. Thus the basis for
∧d V is of the form {vi1 ∧ vi2 ∧ ... ∧ vid}.

We can express the basis elements of U with respect to basis elements of V . So for

1 ≤ j ≤ d, let ui =
∑n

j=0 aijvj . Then the coordinates of Ψ(U) = [u1 ∧ ... ∧ ud] are

called the Plücker coordinates. Once we choose a basis for V , we will see that we

can represent U ∈ G(d, n) by a d × n matrix MU . The Plücker coordinates are the

d× d minors of the matrix MU .

Example 2.3.3. Consider the Grassmannian G(2,5). Let {v1, v2, v3, v4, v5} be a basis

for V . Then the basis for
∧2 V is given by

{v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v1 ∧ v5, v2 ∧ v3, v2 ∧ v4, v2 ∧ v5, v3 ∧ v4, v3 ∧ v5, v4 ∧ v5}.

Let {u1, u2} be a basis for U ∈ G(2, 5). Write the basis elements as follows:

u1 = a11v1 + a12v2 + a13v3 + a14v4 + a15v5

u2 = a21v1 + a22v2 + a23v3 + a24v4 + a25v5.

Then,

u1 ∧ u2 = (a11a22 − a12a21)v1 ∧ v2 + (a11a23 − a13a21)v1 ∧ v3

+ (a11a24 − a14a21)v1 ∧ v4 + (a11a25 − a15a21)v1 ∧ v5

+ (a12a23 − a13a22)v2 ∧ v3 + (a12a24 − a14a22)v2 ∧ v4

+ (a12a25 − a15a22)v2 ∧ v5 + (a13a24 − a14a23)v3 ∧ v4

+ (a13a25 − a15a23)v3 ∧ v5 + (a14a25 − a15a24)v4 ∧ v5.

So the Plücker coordinates are

(a11a22 − a12a21, a11a23 − a13a21, a11a24 − a14a21, a11a25 − a15a21,

a12a23 − a13a22, a12a24 − a14a22, a12a25 − a15a22, a13a24 − a14a23,

a13a25 − a15a23, a14a25 − a15a24)
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Let us denote the Plücker coordinates by x12, x13, x14, x15, x23, x24, x25, x34, x35, x45,

respectively. We can observe that the Plücker coordinates are the 2× 2 minors of the

following matrix MU :

MU =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

 .
Proposition 2.3.2 shows that the Plücker map allows us to view the Grassmannian

G(d, n) as a subset of the projective space P(
∧d V ). Naturally, the next question is

whether we can embed G(d, n) onto a projective variety under the Plücker map or

not. In other words, can we see the Grassmannian as a projective variety?

Lemma 2.3.4. [w] ∈ P(
∧d V ) lies in the image of the Grassmannian under the

Plücker embedding if and only if w ∈
∧d V is totally decomposable.

Proof. Let [w]∈ P(
∧d V ) and [w] = Ψ(U) for someU ∈ G(d, n). Let {u1, u2, ..., ud}

be a basis for U . Then [w] = [u1 ∧ ... ∧ ud]. So w = λu1 ∧ ... ∧ ud is totally decom-

posable for some λ.

Conversely, assume that w ∈
∧d V is totally decomposable, say w = w1 ∧ ... ∧ wd.

Then the subspace W spanned by {w1, w2, ..., wd} is d-dimensional and so W ∈
G(d, n). Observing that Ψ(W ) = [w], finishes the proof. �

Before moving to the main result, we simply state a fact from linear algebra.

Remark 2.3.5. The rank of a matrix M ∈ Mm×n is the largest integer k such that

some k × k minor does not vanish.

Theorem 2.3.6. G(d, n) ⊂ P(
∧d V ) is a projective variety.

Proof. By Lemma 2.3.3 and Corollary 2.2.10, [w] lies in the image of the Grassman-

nian if and only if the rank of the map ϕw : V −→
∧d+1(V ) given by ϕw(v) = v ∧w

is n− d. But in fact, by Corollary 2.2.11, we can say that

[w] ∈ G(d, n)⇔ rank(ϕw) ≤ n− d.

Now, the map
∧d V → Hom(V,

∧d+1 V ) given by w 7→ ϕw is linear. So we can

view ϕw ∈ Hom(V,
∧d+1 V ) as a matrix whose entries are functions of w. Since

ϕw(λv) = λϕw(v), these functions are homogeneous of degree 1.
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By Remark 2.3.4, ϕw has rank at most n−d if and only if all (n−d+1)× (n−d+1)

minors vanish. Thus [w] lies in the image of the Grassmannian if and only if all

(n− d+ 1)× (n− d+ 1) minors vanish. In other words, one can say that G(d, n) ⊂
P(
∧d V ) is a projective variety defined by the zero locus of the (n−d+1)×(n−d+1)

minors of the matrix MU of ϕw. �

Remark 2.3.7. MU is the same matrix that is mentioned before when we talked about

the Plücker coordinates after the proof of Proposition 2.3.2.

2.4 Plücker Relations

The equations above give defining equations of the Grassmannian as a variety, how-

ever they do not generate whole homogeneous ideal of the Grassmannian. In order to

find the homogeneous ideal of the Grassmannian, we need more tools.

Let V be an n-dimensional vector space over F. Let V ∗ be the dual space of V . The

pairing 〈·, ·〉 : V ∗ ⊗ V → F defined by 〈w∗, v〉 = w∗(v) for all w∗ ∈ V ∗ and v ∈ V
is a nondegenerate bilinear form.

Proposition 2.4.1. Let V and W be a finite dimensional vector spaces over a field F

and let f : V → W and g : V → W ∗ be linear maps. Then the pairing

〈g(v), f(v)〉 : V → F

is a quadratic form.

Proposition 2.4.2. Let V be an n-dimensional vector space over F. Let V ∗ be the

dual space of V. Let 0 < d < n be an integer. Then we have a nondegenerate pairing
d∧
V ×

n−d∧
V −→

n∧
V ∼= F,

that induces an isomorphism
n−d∧

V ∼= (
d∧
V )∗ =

d∧
V ∗.

So, up to a scalar, we can identify
∧d V with

∧n−d V ∗. Let w ∈
∧d V and let

w∗ ∈
∧n−d V ∗ be its dual. As with the vector space V , we have a linear map

ϕw∗ : V ∗ −→
n−d+1∧

V ∗

12



defined by

ϕw∗(v
∗) = v∗ ∧ w∗.

Proposition 2.4.3. An element w ∈
∧d V is totally decomposable if and only if ϕw∗

has rank at most d.

The proof of this proposition is similar to the Corollary 2.2.13. We can observe that,

assuming w to be totally decomposable, the kernel of the map ϕw is the annihilator

of the kernel of the map ϕw∗ . In other words, for the tranpose maps

ϕtw :
d+1∧

V ∗ −→ V ∗ , ϕtw∗ :
n−d+1∧

V −→ V

their images annihilate each other.

Theorem 2.4.4. [w] lies in the Grassmannian G(d, n) if and only if for every pair

α ∈
∧d+1 V ∗ and β ∈

∧n−d+1 V , we have

Ξα,β(w) = 〈ϕtw(α), ϕtw∗(β)〉 = 0

Ξα,β(w) are quadratic polynomials by Proposition 2.3.6. They are called the Plücker relations

and they generate the homogeneous ideal ofG(d, n) which is called the Plücker ideal.

See [23] Chapter 9.

Let us look at an example in order to understand the structure better.

Example 2.4.5. We will explore the defining equations and homogeneous ideal of

G(2, 4), the Grassmannian of 2-planes. Let V a be 4-dimensional vector space. Let

B = {v1, v2, v3, v4} be a basis for V . Then the canonical bases B2, B3 for
∧2 V and∧3 V , respectively, are

B2 = {v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4},

B3 = {v1 ∧ v2 ∧ v3, v1 ∧ v2 ∧ v4, v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4}.

Let w ∈
∧2 V . since w =

∑
aijvi∧ vj , the map ϕw : V →

∧3 V given by v 7→ v∧w
is represented by the following matrix

a23 −a13 a12 0

a24 −a14 0 a12

a34 0 −a14 a13

0 a34 −a24 a23
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So the Grassmann variety G(2, 4) is defined by the zero locus of 3 × 3 minors of the

above matrix. If we calculate the minors for each entry, we get 16 equations. however,

there is a simple way to determine homogeneous ideal for the caseG(2, 4). Since w ∈∧2 V is totally decomposable, we have w ∧ w = 0. If we expand w =
∑
aijvi ∧ vj ,

w = a12v1 ∧ v2 + a13v1 ∧ v3 + a14v1 ∧ v4 + a23v2 ∧ v3 + a24v2 ∧ v4 + a34v3 ∧ v4,

then

w ∧ w = 2(a12a34 − a13a24 + a14a23)v1 ∧ v2 ∧ v3 ∧ v4.

The condition w ∧ w = 0 gives us that a12a34 − a13a24 + a14a23 = 0. Thus, the

homogeneous ideal of the Grassmannian G(2, 4) is generated by the polynomial

x12x34 − x13x24 + x14x23 = 0

In general, the ideal of the Grassmannian G(2, n) for any n, is given by similar

quadratic polynomials. Let {v1, v2, ..., vn} be a basis for V , and w =
∑
xijvi ∧ vj ∈∧2 V , then the homogeneous ideal of the Grassmannian G(2, n) is generated by the

polynomials

{fijkl := xijxkl − xikxjl + xilxjk = 0 | 0 ≤ 1 < i < j < k < l ≤ n}.

2.5 Affine Charts of the Grassmannian

Remember that we can cover the projective space with affine charts. Similarly, the

Grassmannian can also be covered with Zariski open subsets that are isomorphic to

affine spaces.

Let V be an n-dimensional vector space and let P andQ be complementary subspaces

of V of dimension d and n−d, respectively, so that V = P ⊕Q. Let UQ be the subset

of d-dimensional subspaces that intersect trivially with Q, i.e.,

UQ = {W ∈ G(d, n) | W ∩Q = 0}.

We can observe that UQ is Zariski open in G(d, n) since if w1, ...wn−d is any basis for

Q and γ = w1 ∧ ... ∧ wn−d, we have

UQ = {[w] ∈ G(d, n) ⊂ P(
d∧
V ) | w ∧ γ 6= 0}
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Thus UQ corresponds to the complement of zero set of polynomials that represent a

hyperplane section of G(d, n).

The graph of any linear map l : P → Q is a d-dimensional subspace Γ(l) defined by

Γ(l) = {x+ l(x) | x ∈ P}.

Notice that for any linear map l, we have Γ(l) ∩ Q = 0. Otherwise, if for x ∈ P ,

x + l(x) ∈ Γ(l) ∩ Q, then it implies that x + l(x) ∈ Q and since l(x) ∈ Q, we have

x ∈ Q. But P ∩Q = 0. So we reach a contradiction. The following lemma is needed

to establish an affine covering for the Grassmannian, though we will not prove it.

Lemma 2.5.1. Any d-dimensional linear subspace W ⊂ V with W ∩ Q = 0, i.e

W ⊂ UQ, is the graph of a unique linear map

l : P
π−1
P−−→ W ⊂ V = P ⊕Q

πQ−→ Q.

where πP and πQ are natural projections onto P and Q, respectively.

Observe that πP is also an isomorphism between P and W . Now, let Hom(P,Q) be

the vector space of linear maps from P to Q and UQ as above. Define a map

Θ: Hom(P,Q) −→ UQ

Θ(l) 7−→ Γ(l).

By above discussion, Θ is a bijection with the inverse map Θ−1 : UQ −→ Hom(P,Q).

So we have the following isomorphisms

UQ ∼= Hom(P,Q) ∼= Ad(n−d).

Choose a basis {v1, v2, ...vn} for V such that {v1, v2, ...vd} is a basis for P and

{vd+1, vd+2, ...vn} is a basis for Q. So for W ∈ UQ, {π−1
P v1, π

−1
P v2, ..., π

−1
P vk} forms

a basis for W . Thus we can represent W with the matrix
1 0 ... 0 a11 a12 ... a1n−d

0 1 ... 0 a21 a22 ... a2n−d

...

0 0 ... 1 ad1 ad2 ... adn−d


where the matrix [aij] is the transpose of the matrix of the linear map l : P → Q.
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CHAPTER 3

SCHUBERT CALCULUS ON GRASSMANNIANS

3.1 Schubert cells and Schubert Varieties

Let G(d, n) be the Grassmannian of d-dimensional subspaces of an n-dimensional

vector space V . Let

F : (0) = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

be a full flag such that dim(Vi) = di with basis {e1, e2, ..., ei} for Vi and let λ =

(λ1, λ2, ..., λd) be an integer partition satisfying the condition n − d ≥ λ1 ≥ λ2 ≥
... ≥ λd ≥ 0. Partitions that satisfy the condition are called admissible parti-

tions. For every admissible partion λ = (λ1, λ2, ..., λd), the Schubert variety or

Schubert cycle Σλ(F) is defined by

Σλ(F) = {U ∈ G(d, n) | dim(Vn−d+i−λi ∩ U) ≥ i, ∀ 1 ≤ i ≤ d}.

The codimension of the Schubert variety is |λ| = Σλi, which is also the weight of

λ. Schubert varieties Σλ(F) define the cohomology classes σλ in the cohomology

ring H∗(G(d, n),Z). The cohomology class σλ is called Schubert class and it is the

Poincare dual of the homology class of Σλ. Note that σλ is independent of the choice

of the fixed flag defining it. When the choice of the flag is obvious, we will denote

Σλ(F) as Σλ.

In order to define the cohomology ring of the Grassmannian G(d, n), we need to

introduce a stratification of the Grassmannian. For a given flag F and an admissible

partition λ = (λ1, λ2, ..., λd) as above, the Schubert cell Σo
λ(F) is a set of subspaces
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U ∈ G(d, n) such that

dim(U ∩ Vj) =


0, j < n− d+ 1− λ1

i, n− d+ i− λi ≤ j < n− d+ i+ 1− λi+1

d, n− λd ≤ j

.

To move forward, we will state a fundamental observation about Schubert cells.

Theorem 3.1.1. The Schubert cell Σo
λ(F) is isomorphic to Ad(n−d)−|λ|.

Proof. See [18] Theorem 4.1. �

For each U ∈ Σo
λ(F), we can choose a unique basis so that U is spanned by the rows

of a row-reduced d × (n − d) matrix. The only nonzero entries are 1 in the i-th row

and n − d + i − λi-th column from the left. All the entries after 1 are 0 in a row; all

the entries in the column that has a leading 1’s are also 0. So the matrix is of the form
∗ ... ∗ 1 0 ... 0 0 ... 0

∗ ... ∗ 0 ∗ ... ∗ 1 0 0

...

∗ ... ∗ 0 ∗ ... ∗ 0 1 0


where ∗’s are arbitrary and there are n − λi many of ∗’s in i-th row. Following this

construction, we can write the Grassmannian as a disjoint union of Schubert cells:

G(d, n) =
⊔

λ admissible

Σo
λ(F)

We also define the Schubert variety Σλ(F) to be the closure of Σo
λ(F). Since union

of Schubert cells of real dimension not larger than i, i = 0, 1, 2, ..., 2d(n− d), form a

cellular CW structure of Grassmannian G(d, n), we reach the following theorem, see

[23, 34]:

Theorem 3.1.2. The Grassmannian G(d, n) has cohomology only in even degrees,

and Schubert classes form an additive basis for the cohomology ring H∗(G(d, n),Z).

In other words, H2λ(G(d, n),Z) = Zmλ where mλ is the number of partitions of the

integer λ = (λ1, λ2, ..., λd) where n− d ≥ λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0 and

H∗(G(d, n),Z) =
⊕
λ

Z · σλ.
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Example 3.1.3. We will explore the structure of the rather famous and popular Grass-

mannian G(2, 4) = G(1, 3) that lives in P5. We will use projective perspective

in order to understand the structure better. Let’s take the standard full flag in P3,

p ⊂ L ⊂ H , that consists of a point p, contained in a line L, contained in a plane H

contained in P3. For d = 2, n = 4 we have dim(G(2,4))=4, and the partitions that

satisfy the definition are (2,2), (2,1), (2,0), (1,1), (1,0), and (0,0).

• For λ=(2,2), the Schubert variety is Σ2,2 = {U | U = L}, i.e., given line

L, and the Schubert cycle σ2,2 ∈ H8(G(2, 4),Z) corresponds to the matrix1 0 0 0

0 1 0 0

.

• For λ=(2,1), the Schubert variety is Σ2,1 = {U | p ∈ U ⊂ H}, i.e., lines in

a plane H that pass through p, and the Schubert cycle σ2,1 ∈ H6(G(2, 4),Z)

corresponds to the matrix

1 0 0 0

0 ∗ 1 0

.

• For λ=(2,0), the Schubert variety is Σ2,0 = {U | p ∈ U}, i.e., lines through

the point p, and the Schubert cycle σ2,0 ∈ H4(G(2, 4),Z) corresponds to the

matrix

1 0 0 0

0 ∗ ∗ 1

.

• For λ=(1,1), the Schubert variety is Σ1,1 = {U | U ⊂ H}, i.e., lines in the

plane H , and the Schubert cycle σ1,1 ∈ H4(G(2, 4),Z) corresponds to the

matrix

∗ 1 0 0

∗ 0 1 0

.

• For λ=(1,0), the Schubert variety is Σ1,0 = {U | U ∩L = ∅}, i.e., lines incident

to L, and the Schubert cycle σ1,0 ∈ H2(G(2, 4),Z) corresponds to the matrix∗ 1 0 0

∗ 0 ∗ 1

.

• For λ=(0,0) the Schubert variety is Σ0 = G(1, 3), i.e., lines in P3, and the

Schubert cycle σ0,0 ∈ H0(G(2, 4),Z) corresponds to the matrix

∗ ∗ 1 0

∗ ∗ 0 1

.

By Theorem 3.1.2., we can see, for instance, that the Schubert cycles σ2,0 and σ1,1
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corresponding to the codimension 2 Schubert varieties Σ2,0 and Σ1,1 generate the

cohomology group H4(G(2, 4),Z).

3.2 Pieri’s Rule and Giambelli’s Rule

In the last section, we have shown that for a given admissible partition, the coho-

mology ring of the Grassmannian G(d, n) is additively generated by Schubert cycles.

So we can express any product of two given Schubert cycles in the cohomology ring

H∗(G(d, n),Z) as a linear combination of these generators. A nice way to formulate

this relation is the following theorem that arises from the well known Littlewood-

Richardson rule (LR):

Theorem 3.2.1. Let σλ, σµ be Schubert cyles with respect to the partitions λ and µ

and let ν be an arbitrary partion. Then

σλ · σµ =
∑
ν

cνλ,µ σν .

The coeffients cνλ,µ are called Littlewood-Richardson coefficients.

The coefficients cνλ,µ represent the degree of intersection of two Schubert cycles. Orig-

inally, Littlewood-Richardson coefficients were defined in order to multiply Schur

functions, as they are a basis of symmetric functions, but in a similar context there

are multiple useful computations for the Littlewood-Richardson coefficients. There

are many works about Young diagrams ([23]) and Littlewood-Richardson rule ([44]

[6]). Although LR is studied from the combinatorial perspective, recently ([9], vakil)

gave geometric proofs. In the next section, though we will not give too much detail,

using Young tableaux is one of many ways to calculate these coefficients. In this

section we will give examples of special cases of Littlewood-Richardson rule.

Let λ = (λ1, λ2, ..., λd) be an admissible partition. λ is called a special partition if

λ2 = λ3 = ... = λd = 0). The Schubert class defined with respect to such a special

partition is called the special Schubert class. For ease of notation, we will denote

such a special Schubert class as σλ1 instead of σλ1,0,0,..,0

Theorem 3.2.2. Pieri’s Rule. Let σλ be a special Schubert class, and let σµ be any
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Schubert class with an admissible partition µ. Then

σλ · σµ =
∑

|ν|=|λ|+|µ|
µi≤νi≤µi−1

σν

Proof. See [18]. �

Let us work out Pieri’s Rule with an example over the Grassmannian G(2, 5).

Example 3.2.3. We will compute some products of Schubert classes of the Grasm-

mannian G(2, 5). Note that dim(G(2, 5))=6 and partitions λ should satisfy admissi-

bility criteria. Schubert classes of G(2, 5) are σ3,3, σ3,2, σ3,1, σ3, σ2,2, σ2,1, σ2, σ1,1,

σ1, and σ0.

• σ1 · σ3,3 = 0

• σ1 · σ3,1 = σ3,2

• σ1 · σ2,1 = σ3,2 + σ3,1

• σ2 · σ2,1 = σ3,2

• σ2 · σ2 = σ3,1 + σ2,2

• σ2 · σ3,1 = σ3,3

• σ3 · σ1,1 = 0

• σ3 · σ3 = σ3,3

• σ3 · σ1 = σ3,1

The next theorem describes the computation for a special GrassmannianG(2, n+1) =

G(1, n) where the Schubert varieties with respect to the flag F are as follows:

Σλ1,λ2 = {U ∈ G(2, n+ 1) | U ∩ Vn−λ1 6= 0 and U ⊂ Vn+1−λ2}.

Theorem 3.2.4. Suppose, for admissible partitions λ = (λ1, λ2) and µ = (µ1, µ2),

that λ1 − λ2 ≥ µ1 − µ2. Then

σλ1,λ2 · σµ1,µ2 = σλ1+µ1,λ2+µ2 + σλ1+µ1−1,λ2+µ2+1 + ...+ σλ1+µ2,λ2+µ1

=
∑

|ν|=|λ|+|µ|
λ1+µ1≤ν1≤λ1+µ2

σν1,ν2 .

As we can see, Pieri’s formula is useful for computations involving special Schubert

classes. However, we need to be able to compute the product of arbitrary Schubert

classes. Giambelli’s Rule will show us that any Schubert class can be expressed in

terms of special Schubert classes. Using both Pieri’s and Giambelli’s Rules, we can

compute the intersection of two arbitrary Schubert classes.
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Theorem 3.2.5. Giambelli’s Rule. Any Schubert class can be expressed as a linear

combination of products of special Schubert classes:

σλ1,...,λd =

∣∣∣∣∣∣∣∣∣∣∣

σλ1 σλ1+1 σλ1+2 ... σλ1+d−1

σλ2−1 σλ2 σλ2+1 ... σλ2+d−2

... ...

σλd−d+1 σλd−d+2 σλd−d+3 ... σλd

∣∣∣∣∣∣∣∣∣∣∣
Following the Example 3.2.3., we can compute σ2,2 as follows:

σ2,2 =

∣∣∣∣∣∣σ2 σ3

σ1 σ2

∣∣∣∣∣∣ = σ2
2 + σ3σ1.

3.3 Young Tableaux and Littlewood Richarson Rule

Young tableaux or Young diagram is an alternative and practical way to represent

Schubert classes. As we mentioned before, there is an alternative formulation for

Littlewood-Richardson rule involving Young diagrams. In this section, we will intro-

duce the basic concepts of Young diagrams and develop necessary tools in order to

understand the theorem. For a detailed discussion and more information about this

section, [23] is a great source.

Definition 3.3.1. A Young diagram is a collection of left-justified boxes with a weakly

decreasing number of boxes in each row.

The number of boxes in each row forms a partition of an integer λ = (λ1, λ2, ..., λd)

with the total number of boxes being |λ| =
∑
|λi|. Conversely, every partition corre-

sponds to a Young diagram. For example, partition 9 = 3 + 3 + 2 + 1 corresponds to

the Young diagram

If |λ| = n, we say that λ is a partition of n and we denote λ ` n. We define Λ to

be the set of partitions whose diagram fit inside a d × (n − d) rectangle. The largest
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partition in Λ, n− d ≥ n− d ≥ ... ≥ n− d is denoted by
d

.We can put numbers

inside the boxes. Putting positive integers in each box is called a filling.

Definition 3.3.2. A Young tableau is a filling that is weakly increasing along each

row and strictly increasing down in each column. A standard tableau is a Young

tableau consisting of entries from 1 to n.

For instance, with partition 9 = 3 + 3 + 2 + 1, Young tableau and standard Young

tableau correspond to followings, though they can be filled differently in many ways,

respectively:

1 2 2

2 3 5

4 5

6

1 3 4

2 5 7

6 9

8

In the context of Schubert calculus, we will not deal with every partition of an integer

λ. As we defined in the beginning of the chapter, we are going to look at admissible

partitions λ = (λ1, λ2, ..., λd), n − d ≥ λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0. We have a

correspondence between such partitions and the Schubert classes. In this way, we can

represent each Schubert class σλ of the Grassmannian G(d, n).

To see the correspondence clearly on an example, we will work on G(2, 5).

• σ3,3 ←→

• σ3,2 ←→

• σ3,1 ←→

• σ3 ←→

• σ2,2 ←→

• σ2,1 ←→

• σ2 ←→

• σ1,1 ←→

• σ1,0 ←→

• σ0 ←→ ∅
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Young diagrams make calculations easier. For instance, we saw that for a special

Schubert class σ2, we have σ2 · σ2,1 = σ3,2. In Young diagram notation, we add

corresponding boxes of σ2 to the diagram of σ2,1 one by one in each row satisfying

the Young diagram conditions and the inequality in Pieri’s Rule:

· =

Definition 3.3.3. A skew Young diagram or skew shape λ/µ is a difference of Young

diagrams of λ and µ, where λ ≥ µ.

Let λ, µ ∈ Λ and λ/µ be a skew shape which fits inside d × (n − d) rectangle. We

denote µd for the skew shape
d

/ µ, and let µ∨ := (n − d − µd, ..., n − d − µ1)

denote the dual partition obtained by rotating µd by 180◦. The number of boxes in

λ/µ is |λ/µ| = |λ| − |µ|.

Definition 3.3.4. A standard Young tableau of shape λ/µ is a filling of the boxes

of λ/µ with entries 1, 2, ..., |λ/µ| where the entries increase through the rows and

columns. The set of all such tableaux is denoted by SYT(λ/µ). When repetition is

allowed in the filling , we call it simply a skew Young tableau and the set of all such

tableaux is denoted by SY T (λ/µ; +)

Example 3.3.5. ConsideringG(3, 9), let λ = (6, 4, 2) and µ = (4, 2, 1) be partitions.

Then we have,

λ = , µ =

µd = , µ∨ =

The skew Young diagram λ/µ is
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Definition 3.3.6. A row-bumping or row insertion is a method of producing a new

Young tableau denoted by T ← x out of a given tableau T and a positive integer x.

Insertion process is carried out by the following rules:

1. If x is greater than or equal to the all entries in the first row of T, add x in a

new box on the first row.

2. If not, find the left-most entry of the first row of T that is strictly larger than x,

and replace it with x, i.e., bump the entry.

3. Apply 1 and 2 to the entry replaced by x, starting from the second row.

4. Repeat the process until the bumped entry finds its position either at the bottom

as a new row, or as the last box of the last row of T .

Example 3.3.7. Let λ = (4, 3, 3, 2) be a partition and let T be its corresponding

Young tableau with the following filling:

1 2 2 4

3 5 7

6 6 9

8 9

If we want to row-insert 4 in T , T ← 4, then we get

1 2 2 4 4

3 5 7

6 6 9

8 9

If we want to have T ← 3, then we get

1 2 2 3

3 4 7

5 6 9

6 9

8
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For any two tableaux T and U , row-insertion can be used to define a product operation

on T and U . The product tableau T · U can be constructed by starting row-inserting

the bottom-left entry of U into T . Then the next entry is row-inserted to the resulting

tableau. By repeating this process after all entries in the bottom row is row inserted

into T , and continuing the same process through the upper rows from left to right,

gives us T · U .

Example 3.3.8. Let T and U be Young tableaux as follows:

1 2 2 4

3 5 7

6 6 9

8 9

,
1 2

3

Then the product T · U is calculated as follows:

1 2 2 4

3 5 7

6 6 9

8 9

·
1 2

3
=

1 2 2 3

3 4 7

5 6 9

6 9

8

· 1 2

=

1 1 2 3

2 4 7

3 6 9

5 9

6

8

· 2 =

1 1 2 2

2 3 7

3 4 9

5 6

6 9

8

Observe that the number of the boxes in T ·U is equal to the total number of boxes of

tableaux T and U . Apart from row-insertion, there is another method called sliding

to obtain the product of two tableaux. In order to define sliding, we will make some

more definitions.

Definition 3.3.9. Let T be a skew Young diagram of shape λ/µ.

• An inside corner is a box in µ where the box on the right side and below does

not belong to µ.
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• An outside corner is a box in λ where the box on the right side and below does

not belong to λ.

Example 3.3.10. Following the Example 3.3.5, let T be the skew Young diagram of

shape λ/µ as follows:

In order to understand the operation and what the inside and outside corners are, we

will specify the diagram of µ:

• •
• •

• •

Inside corners are the yellow boxes with dots, and the outside corners are the white

boxes with dots.

Definition 3.3.11. Given a skew Young Tableau T and an inside corner, the sliding

operation is carried out with the following rules:

1. Compare the entries of the right side and below of the inside corner. Swap

boxes with the smaller entry.

2. If there is no box below, swap with box on the right side.

3. Continue this process until the inside corner becomes an outside corner.

4. Remove the outside corner from the tableau.

Explicitly, in a single step of a sliding operation, one of the following happens:

• y

x
−→


x y

•
, x ≤ y

y •
x

, x > y

For a skew Young tableau T , this process can be done with each inside corner. If

we continue this process until there is no inside corner left, the result will again be

a tableau. The resulting tableau is called the rectification of T , denoted rect(T).
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The rectification shape of T is the shape of rect(T ). When the partitions are in

consideration, i.e., if T ∈ SY T (λ/µ), for partitions λ and µ, then rectification of T

is also denoted as slideU(T ) where U ∈ SY T (µ).

This operation is independent of the choice of an inside corner. If we have started

with a different inside corner, the resulting tableau would be the same. The sliding

operation that was introduced by Schützenberger and together with the rectification

process, it is also referred to as jeu de taquin.

Example 3.3.12. Continuing the above Example 3.3.10., let S be the skew Young

tableau with some arbitrary filling. Then the rectification is carried out as follows:

• 2 3

• 2 4

• 5

−→
2 • 3

• 2 4

• 5

−→
• 2 3 •

• 2 4

• 5

−→
2 2 3

• • 4

• 5

−→
2 2 3

• 4 •
• 5

−→
• 2 2 3

4 •
• 5

−→
• 2 2 3

• 4

5 •
−→

2 • 2 3

• 4

5

−→
2 2 • 3

• 4

5

−→
2 2 3 •

• 4

5

−→
• 2 2 3

4 •
5

−→
2 • 2 3

4

5

−→
2 2 • 3

4

5

−→
2 2 3 •
4

5

−→
2 2 3

4

5

So the rectification shape of T is the resulting diagram .

For given Young tableaux T and U , there is a way to express their product using

sliding and rectification. Let T = U = be two Young tableaux,

omitting the filling for the purpose of definition. Then let T ∗ U denote the following
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tableau:

T ∗ U =

Then we have

T · U = rect(T ∗ U).

Example 3.3.13. For the purpose of this example, we are going to choose smaller

tableau with standard filling in order to make calculations easier. So let T = 1 2
3

and U = 1 2 4
2 3 . Then T · U using row-insertion is

T · U =
1 2 4

2 3
·

1 2

3
=

1 1 2

2 2 3

3 4

Let us calculate the rectification of T ∗ U :

T ∗ U =

1 2

• 3

1 2 4

2 3

1 2

• 3

1 2 4

2 3

−→

• 1 2

• 3

1 2 4

2 3

−→

1 2

• 3

1 2 4

2 3

−→

• 1 2

• 2 3

1 3 4

2

−→

1 2

• 2 3

1 3 4

2

−→
• 1 2

1 2 3

2 3 4

−→
1 1 2

2 2 3

3 4

Definition 3.3.14. If for T ∈ SY T (λ/µ; +) and T ′ ∈ SY T (λ′/µ′; +), we have

rect(T ) = rect(T ′), then we say that T and T ′ are equivalent and denote T ∼ T ′.
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Definition 3.3.15. For T, T ′ ∈ SY T (λ/µ; +), if slideT and slide′T are identical

operations, then we say that T and T ′ are dual equivalent, and write T ∼∗ T ′.

Definition 3.3.16. For any tableaux U◦ of shape µ and V◦ of shape ν, we define the

following sets:

S(µ/λ, U◦) = {S of shape µ/λ | rect(S) = U◦}

T (λ, µ, V◦) = {[T, U ] | T of shape λ, U of shape µ, rect(T ∗ U) = V◦}

Proposition 3.3.17. For any tableaux U◦ of shape µ and V◦ of shape ν, there is a

canonical one-to-one correspondence

S(µ/λ, U◦)↔ T (λ, µ, V◦).

Corollary 3.3.18. Cardinalities of the sets S(µ/λ, U◦) and T (λ, µ, V◦) are indepen-

dent of choice ofU◦ or V◦, and depend only on the shapes λ, µ and ν. The cardinalities

of these sets are denoted by cνλ,µ and are called Littlewood-Richardson coefficients.

Proof. See [23] �

Definition 3.3.19. • Given a tableau or skew tableau T , a word of T , denoted

w(T ), is defined by reading the entries of T from left to right and bottom to top.

• A lattice word w = x1x2...xr is called a reverse lattice word, if when it is

read backwards from the end to any letter, the sequence xrxr−1...xs contains as

many 1’s as it does 2’s, at least as many 2’s as 3’s, and so on for all positive

integers.

• A skew tableau T is called a Littlewood-Richardson skew tableau if its word

w(T ) is a reverse lattice word.

Example 3.3.20. Let T =

1 1

2 2

3

and T ′ =

2 3

1 3

2

. Then w(T ) =

32211 and w(T ′) = 21323. Observe that w(T ) is a reverse lattice word whereas

w(T ′) is not. Thus, T is a Littlewood-Richardson skew tableau.

Definition 3.3.21. A skew tableau is said to have content µ = (µ1, , , µl) if its entries

consist of µ1 1’s, µ2 2’s, an so on up to µl l’s.
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Now we are finally ready to state the Littlewood-Richardson rule:

Theorem 3.3.22. Let σλ, σµ be Schubert cycles with respect to the partitions λ and µ

and let ν be an arbitrary partition. Then

σλ · σµ =
∑
ν

cνλ,µ σν .

where the coefficients cνλ,µ are the number of Littlewood-Richardson skew tableau of

shape ν/λ of content µ.

Alternatively, cνλ,µ counts the different ways of a tableaux V of shape ν that can be

written as a product of tableau T of shape λ and a tableau U of shape µ.

Theorem 3.3.23. The Littlewood-Richardson coefficient

cνλ,µ =
∑
σ

σλ∨σµσν

is the number of dual equivalence classes in SYT(λ / µ;+) with rectification shape ν.

Proof. See [42]. �

Example 3.3.24. The followings are all of the Littlewood-Richardson skew tableau

on the skew shape (4, 3, 2, 1)/(2, 1, 1):

1 1

1 2

2

1

,

1 1

1 2

2

2

,

1 1

1 2

2

3

,

1 1

1 2

3

1

1 1

1 2

3

2

,

1 1

1 2

3

4

,

1 1

2 2

3

1

1 1

2 2

3

3

,

1 1

2 2

3

4

.
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As ν = (4, 3, 2, 1) and λ = (2, 1, 1) fixed, the Littlewood-Richardson numbers cνλ,µ,

as µ changes, are as follows:

cνλ,µ = 1 for µ = (4, 2), (3, 3), (4, 1, 1), (3, 1, 1, 1), (2, 2, 2) and (2, 2, 1, 1)

cνλ,µ = 3 for µ = (3, 2, 1)

cνλ,µ = 0 for all other µ.
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CHAPTER 4

FLAG VARIETIES

4.1 Basics

We can generalize the results for Grassmannians that we established in Chapter 2.

Before moving into a more formal definition, we can picture it verbally. The general-

ization is called flag varieties, and they are basically defined as homogeneous spaces

whose points are flags.

Definition 4.1.1. Let V = kn where k is an algebraically closed field. A flag F in V

is

F : (0) = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

such that dim(Vi) = di. The signature of a flag is defined to be the sequence

(dim(V1), dim(V2), ..., dim(Vn)).

Let d1, d2, ..., dr, n be integers such that 0 < d1 < d2 < ... < dr < n. We define

F (d1, d2, ..., dr;n) to be the set of all possible flags in V with signature (d1, d2, ..., dr, n).

F (d1, d2, ..., dr;n) is called an r-step flag variety.

Example 4.1.2. If r = 1, then we have flag (0) ⊂ Vd1 ⊂ V. But this exactly means

that F (d1;n) = G(d1, n).

When r = n−1, F (d1, d2, ..., dr;n) is called a full flag variety or complete flag variety.

Otherwise it is called a partial flag variety. One special case of partial flag varieties

is when r = 2, which is called a 2-step flag variety. Important results have been es-

tablished for both partial varieties and 2-step varieties such as Coşkun’s works [8, 9]

on Littlewood-Richardson Rule and many more. See [1, 6, 7, 35, 51].
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We can observe that F (d1, d2, ..., dr;n) is contained in G(d1, n) × ... × G(dr, n).

We have already seen in Example 3.1.2. that this is the case when r = 1, i.e.,

F (d1;n) = G(d1, n). For the general case, we have a canonical inclusion

Φ : F (d1, d2, ..., dr;n) ↪→ G(d1, n)× ...×G(dr, n)

sending

F : V0 ⊂ V1 ⊂ ... ⊂ Vr 7−→ (V1, V2, ..., Vr).

Thus we can write the following:

F (d1, d2, ..., dr;n) = {(V1, V2, ..., Vr) ∈
∏
r

G(dr, n) |V0 ⊂ V1 ⊂ ... ⊂ Vr}.

As we did in the previous chapter, we can endow a projective variety structure to

F (d1, d2, ..., dr;n) via Plücker embedding. Since we saw the inclusion part, we need

to show that it is a closed subset.

Proposition 4.1.3. F (d1, d2, ..., dr;n) is a Zariski closed subset of G(d1, n) × ... ×
G(dr, n).

Proof. We already know that this is true when r = 1. Notice that

Φ : F (d1, d2, ..., dr;n)→ G(d1, n)× ...×G(dr, n)

F : {Vi} 7−→ (V1, V2, ..., Vr)

is an embedding. Consider the projection map

πi,j : G(d1, n)× ...×G(dr, n)→ G(di, n)×G(dj, n)

for any 1 ≤ i < j ≤ r. Consider the restriction to F (d1, d2, ..., dr;n). Then we have

Φ(F (d1, d2, ..., dr;n)) =
⋂

1≤i<j≤n

π−1
i,j (πi,j(Φ(F (d1, d2, ..., dr;n)))).

Since πi,j(Φ(F (d1, d2, ..., dr;n))) = F (di, dj;n), it is enough to show thatF (di, dj;n)

is Zariski closed in G(di, n)×G(dj, n) for i < j.

Now, let (U,W ) ∈ G(di, n) × G(dj, n). Let {u1, u2, ..., ui} be a basis for U and

{w1, w2, ..., wj} be a basis forW . Let u = u1∧u2∧ ...∧ui and w = w1∧w2∧ ...∧wj .
As in the Grassmannian case, we have maps

ϕu : V →
i+1∧

V
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and

ϕw : V →
j+1∧

V.

Direct sum of these maps will give us

ϕu ⊕ ϕw : V →
i+1∧

V ⊕
j+1∧

V

and ker(ϕu ⊕ ϕw) = U ∩W . Furthermore, by rank-nullity we have

rank(ϕu ⊕ ϕw) = n− ker(ϕu ⊕ ϕw) = n− dim(U ∩W ) ≥ n− i.

Thus, by Remark 2.3.4, ϕu ⊕ ϕw has rank at most n − i if and only if all (n − i +

1) × (n − i + 1) minors vanish. So F (di, dj;n) can be defined by the zero locus of

the (n− i+ 1)× (n− i+ 1) minors of the matrix ϕu ⊕ ϕw. �

As in the case of Grassmannians, those equations are not as simple as possible. We

can find finer polynomials such that they generate the homogeneous ideal defining the

flag varieties. To see this over 2-step flag varieties, let V be an n-dimensional vector

space with basis {v1, v2, ..., vn} and let F (d1, d2;n) be a 2-step flag variety:

F (d1, d2;n) = {(U,W ) ∈ G(d1, n)×G(d2, n) | U ⊂ W}

Let {u1, u2, ..., ud1} and {w1, w2, ..., wd2} be bases for U and W , respectively. Since

we can see each Grassmannian G(d1, n), G(d2, n) in
∧d1 V and

∧d2 V , we can write

u1 ∧ u2 ∧ ... ∧ ud1 =
∑

aivi1 ∧ ... ∧ vid1

w1 ∧ w2 ∧ ... ∧ wd2 =
∑

ajvj1 ∧ ... ∧ vjd1

where

i = {(i1, i2, ..., id1) | 1 ≤ i1 < i2 < ... < id1 ≤ n}

j = {(j1, j2, ..., jd2) | 1 ≤ j1 < j2 < ... < jd2 ≤ n}

are index sets. So the defining equations for F (d1, d2;n) are given by

(u1 ∧ u2 ∧ ... ∧ ud1) · (w1 ∧ w2 ∧ ... ∧ wd2)−∑
(u1 ∧ ... ∧ w1 ∧ ... ∧ wk ∧ ... ∧ ud1) · (ui1 ∧ ... ∧ vik ∧ wk+1 ∧ ... ∧ wd2) = 0

for 1 ≤ k ≤ d2.

35



In terms of homogeneous coordinates, we have the following quadratic equation:

xi · xj −
∑

xi′xj′ = 0

where i′ is obtained by changing first k indices of i with k indices of j by preserv-

ing the order. Thus the homogenous ideal of F (d1, d2;n) is generated by the above

polynomials.

Let us see this over an example.

Example 4.1.4. Let V be a 4-dimensional vector space with basis {v1, v2, v3, v4}. Let

F (1, 2; 4) be a 2-step flag variety

F (1, 2; 4) = {(U,W ) ∈ G(1, 4)×G(2, 4) | U ⊂ W}

where {u1} and {w1, w2} are bases for the subspaces U and W , respectively. Write

u1 =
∑
aivi and w1 ∧ w2 =

∑
i<j

bijvi ∧ vj . Then

u1 ∧ w1 ∧ w2 =
∑

(a1b23 − a2b13 + a3b12)v1 ∧ v2 ∧ v3

=
∑

(a1b24 − a2b14 + a4b12)v1 ∧ v2 ∧ v4

=
∑

(a1b34 − a3b14 + a4b13)v1 ∧ v3 ∧ v4

=
∑

(a2b34 − a3b24 + a4b23)v2 ∧ v3 ∧ v4

In order to have U ⊂ W , we need u1 ∧ w1 ∧ w2 = 0. So in terms of homoge-

neous coordinates, the homogeneous ideal of F (1, 2; 4) is generated by the quadratic

equations x1x23 − x2x13 + x3x12, x1x24 − x2x14 + x4x12, x1x34 − x3x14 + x4x13,

x2x34 − x3x24 + x4x23. So

F (1, 2; 4) = V (x1x23 − x2x13 + x3x12, x1x24 − x2x14 + x4x12,

x1x34 − x3x14 + x4x13, x2x34 − x3x24 + x4x23).

In the general case, the concept is the same. For any partial flag varietyF (d1, d2, ..., dr;n),

the defining quadratic equations are

(u1 ∧ u2 ∧ ... ∧ up) · (w1 ∧ w2 ∧ ... ∧ wq)−∑
(u1 ∧ ... ∧ w1 ∧ ... ∧ wk ∧ ... ∧ up) · (ui1 ∧ ... ∧ vik ∧ wk+1 ∧ ... ∧ wq) = 0
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for 1 ≤ k ≤ q and p ≤ q in {d1, d2, ..., dr}. Simirlarly, in terms of homogeneous

coordinates, we can write

xi · xj −
∑

xi′xj′ = 0

where

i = {(i1, i2, ..., ip) | 1 ≤ i1 < i2 < ... < ip ≤ n}

j = {(j1, j2, ..., jq) | 1 ≤ j1 < j2 < ... < jq ≤ n}

with p ≤ q in {d1, d2, ..., dr}.

4.2 Cohomology of Flag Varieties

Cohomology of flag varieties is a generalization of the concept for the Grassmannian.

As we have seen above, Grassmannians are considered as a special case of flag va-

rieties. Since the Grassmannian G(d, n) = F (d1, d2, ..., dr;n) with r = 1 is a flag

variety, we can define the same structure for the flag varieties.

Let

F : (0) = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

be a complete flag such that dim(Vi) = di. Let {v1, v2, ..., vn} be a basis for V and a

basis for each Vi is the first i elements of this basis, namely {v1, v2, ..., vi}. Schubert

varieties for the r-step flag varieties are parametrized by the sequences S of integers

of length n with the integers 1, 2, ..., r+ 1, where di− di−1 of the entries are i. Given

that St is the t-th place in the sequence S, the Schubert variety is defined as follows

Σω(F) = {(U1, ..., Ur) ∈ F (d1, ...dr;n) |

dim(Ui ∩ Vj) ≥ #{t | St ≤ i , t ≤ j}}.

A basis for the cohomology of flag varieties is formed by the Poincare duals of the

classes of all Schubert varieties. For each Schubert class σλ in G(d, n), there is a

special Schubert class σ(k)
λ in F (d− k, d+ k;n) given by

Σ
(k)
λ = {(U1, U2) | dim(U1 ∩ Vn−i−λd−i) ≥ d− k − i, dim(U2 ∩ Vn−d+j−λj) ≥ j}

where 1 ≤ i ≤ n− d and 1 ≤ j ≤ d.
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As an alternative to the sequence notation, for the cohomology classes of the flag

varieties, we are going to introduce a similar notation to the one we used for Grass-

mannians. We can use a pair of sequences λ, δ of length dr where the sequence

λ1 ≥ ... ≥ λdr has the digit in the (n − dr + i − λi)-th position less than r + 1.

Schubert classes of the r-step flag variety is denoted by σδ1,...,δdrλ1,...,λdr
where λi’s corre-

spond to the partition that is defining the dr-plane Ur considered as Schubert class in

G(dr, n); whereas the upper δi’s are recording the digits in the gth dr where the se-

quence λ1 ≥ ... ≥ λdr has the digit in the sequence w and δi are the integers between

1 and r, of which d1 of them is 1, and di − di−1 of them is i.

Translation between the two notations is fairly easy. In order to form an integer

sequence of length n, put r+ 1 to every position in the sequence except the (n− dr +

j − λj)-th position. For the (n− dr + j − λj)-th position, place δj .

With this notation, we can also define the Schubert varieties as follows:

Σδ
λ(F) = {(U1, ..., Ur) ∈ F (d1, ...dr;n) |

dim(Ui ∩ Vn−dr+j−λj) ≥ #{t ≤ j | δt ≤ i}}.

Example 4.2.1. Let (0) = V0 ⊂ V1 ⊂ ... ⊂ V9 = V be a flag and let F(2,4;9) be a

2-step flag variety. In order to find the Schubert variety corresponding the sequence

1,3,3,2,3,3,1,3,2 in F(2,4;9), which can be expressed by σ1,2,1,2
5,3,1,0 , first we find the flag

elements that are needed for each Ui. For U2, considering n− dr + j − λj , those are

the flag elements V1, V4, V7, V9. Then the flag elements for U1 is determined by the

upper δi’s which assign indexes to the flag elements that are less than or equal to 1.

Those are V1 and V7 Then the Schubert variety is the following:

Σ1,2,1,2
5,3,1,0 = {(U1, U2) ∈ F (2, 4; 9) |dim(U2 ∩ V1) ≥ 1, dim(U2 ∩ V4) ≥ 2,

dim(U2 ∩ V7) ≥ 3, dim(U2 ∩ V9) ≥ 4,

dim(U1 ∩ V1) ≥ 1, dim(U1 ∩ V7) ≥ 2}.

Partial flag varieties have a long history of interest. In particular, their cohomology

rings have been studied in various ways. As there are many interpretations of LR

coefficients of the cohomology ring of the Grassmannians, it is quite natural to ask

whether there is a way to express the Littlewood-Richarson rule for the cohomology
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of partial flag varieties. Although there is no LR rule for an arbitrary partial flag vari-

ety, there are results for some cases. Recently Buch, Kresch, Purbhoo and Tamvakis

in [7] proved the famous puzzle conjecture of Knutson involving triple interctions for

two step flag varieties. I. Coşkun gave a geometric proof for two step flag varieties

and gave a geometric rule for computing the LR coefficients for partial flag varieties

[8, 9]

Apart from the classical cohomology of flag varieties, their quantum cohomology is

particularly a point of interest. There are many studies in this topic including [4], [5],

[10].
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CHAPTER 5

WRONSKI MAP

5.1 Definition and history

Historically, the Wronskian is a determinant that is used to find the dependency of the

solutions of differential equations. It is named after the Polish mathematician Józef

Hoene-Wroński. For each d linearly independent polynomials of degree at most n,

the Wronskian assigns a non-zero polynomial of degree at most d(n − d). In other

words, if (f1, f2, ..., fd) are linearly independent polynomials of degree at most n,

then their Wronski determinant is

Wr(f1, f2, ...fd) =

∣∣∣∣∣∣∣∣∣∣∣

f1 f2 ... fd

f ′1 f ′2 ... f ′d
...

f
(d−1)
1 f

(d−1)
2 ... f

(d−1)
d

∣∣∣∣∣∣∣∣∣∣∣
.

where f ′i denotes the usual derivative and f
(d−1)
i is the d − 1-st derivative of the

polynomial fi.

It is quite clear from the basic rules of determinant that W (f1, f2, ...fd) = 0 if and

only if the polynomials (f1, f2, ...fd) are linearly dependent. Also, again from the

properties of the determinant operation, if we multiply the polynomials (f1, f2, ...fd)

by a d × d matrix M , then the Wronskian is multiplied by det(M). These give

some insights why and how we can apply Wronskian to Grassmannians and projective

space.

We now give the precise relation of Wronskian with our topic of interest. Let F[z]

be the polynomial ring over a field F, either R or C, and let Fn[z] denote the n + 1-
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dimensional vector space of polynomials of degree at most n:

Fn[z] = {f(z) ∈ F[z] | deg(f(z)) ≤ n}.

Let 0 < d < n. Let X = G(d,Fn−1[z]) denote the Grassmannian of d-dimensional

subspaces of an n-dimensional subspace Fn−1[z]. As we proved earlier, dimX =

d(n− d). So for U ∈ X , U = span(f1, f2, ...fd), the Wronskian is

Wr(f1, f2, ...fd) =

∣∣∣∣∣∣∣∣∣∣∣

f1 f2 ... fd

f ′1 f ′2 ... f ′d
...

f
(d−1)
1 f

(d−1)
2 ... f

(d−1)
d

∣∣∣∣∣∣∣∣∣∣∣
.

Calculating this determinant, we can see that the resulting is a polynomial of degree at

most d(n− d), let N = d(n− d). By above mentioned properties of the determinant,

the Wronskian gives a well-defined map

Wr : X −→ P(FN [z]).

This map is called the Wronski map. For each element x ∈ X , we denote any

representative of Wr(x) in FN [z] by Wr(x; z). It is natural to say that a point x ∈ X
is real if the subspace x in Fn−1[z] has a basis f1, f2, ..., fd ∈ Rn−1[z].

Proposition 5.1.1. The Wronski map is well-defined.

Proof. Let U ∈ X be a d-dimensional subspace of FN [z]. Let {f1, f2, ..., fd} and

{g1, g2, ..., gd} be bases for U . We can write every gi as follows:

g1 = a11f1 + ...+ a1dfd

g2 = a21f1 + ...+ a2dfd

...

gd = ad1f1 + ...+ addfd

Thus, the coefficients of fi’s form a d × d matrix M that is basically the change of

basis matrix from {f1, f2, ..., fd} to {g1, g2, ..., gd}. Then under the Wronski map we

have∣∣∣∣∣∣∣∣∣∣∣

g1 g2 ... gd

g′1 g′2 ... g′d
...

g
(d−1)
1 g

(d−1)
2 ... g

(d−1)
d

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1d

a21 a22 ... a2d

...

ad1 ad2 ... add

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

f1 f2 ... fd

f ′1 f ′2 ... f ′d
...

f
(d−1)
1 f

(d−1)
2 ... f

(d−1)
d

∣∣∣∣∣∣∣∣∣∣∣
.
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So the Wronskian differs by the determinant of the change of basis matrix M . �

Example 5.1.2. Let us see how the Wronski map is applied over an example. Let C3[z]

be a vector space of polynomials of degree at most 3. Let G(2,C3[z]) = G(2, 4) be

the Grassmannian of 2-dimensional subspaces of C3[z]. Suppose a subspace U ∈
G(2,C3[z]) is spanned by the polynomials {f1, f2}. We can write {f1, f2} as follows:

f1 = a0 + a1z + a2z
2 + a3z

3

f2 = b0 + b1z + b2z
2 + b3z

3

So the Wronskian of f1 and f2 is∣∣∣∣∣∣f1 f2

f ′1 f ′2

∣∣∣∣∣∣ =

∣∣∣∣∣∣a0 + a1z + a2z
2 + a3z

3 b0 + b1z + b2z
2 + b3z

3

a1 + 2a2z + 3a3z
2 b1 + 2b2z + 3b3z

2

∣∣∣∣∣∣
= (a0b1 − a1b0) + 2(a0b2 − a2b0)z

+ (3(a0b3 − a3b0) + a1b2 − a2b1)z2

+ 2(a1b3 − a3b1)z3 + (a2b3 − a3b2)z4

As we can see the resulting polynomial is of degree 4. Hence it lives in C4[z]. P(C4[z])

has of dimension 4, which is the same as dim(G(2, 4)).

The Wronski map appears in many applications. In 1983, Eisenbud and Harris in [17]

proved the following theorem:

Theorem 5.1.3. Wr : X −→ P(CN [z]) is a flat, finite morphism of schemes.

In 1995, B. and M. Shapiro conjectured about the reality problem of the fibre of

the Wronski map, later known as the Shapiro conjecture. There are many studies

about the Shapiro conjecture including [48] in which the conjecture has been studied

extensively and presented with computational evidence. The conjecture has been

proved by Eremenko and Gabrielov for special cases in [21] and finally it was proved

by Mukhin, Tarasov and Varchenko in [40, 41].

Theorem 5.1.4. If f(z) ∈ Rn−1[z] is a polynomial with real roots, then every point

in the fibre Wr−1(f(z)) is real and Wr−1(f(z)) is reduced.
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Remark 5.1.5. When F = C, there is an easy formula to compute the degree of the

Wronski map. In order to compute the degree, we need to change the set up a little

bit. We will define the Wronski map as follows

Wr : G(m,Cm+p−1[z]) −→ P(Cmp[z])

It is clear that the dimensions of both G(m,Cm+p−1[z]) and P(Cmp[z]) are mp. Then

the degree of the Wronski map, i.e., the number of points in a fiber, is given by

#G
m,p :=

(mp)! · 1! · 2! · · · (p− 1)!

m! · (m+ 1)! · · · (m+ p− 1)!
.

For a more detailed discussion, see [20].

Remark 5.1.6. When p = 2, the number #G
m,2 is the m-th Catalan number. See [25].

Example 5.1.7. Considering the Example 5.1.2., in this setting we have m = 2 and

p = 2. So the degree of the Wronski map above is:

#G
2,2 =

4! · 1!

2! · 3!
= 2.

It means that there are 2 points in the fiber Wr−1(g(z)) of the Wronski map.

Remark 5.1.8. Observe that the degree of the Wronski map is equal to the number

of standard Young tableaux of maximal partition, i.e, |SYT(
d
)|. In the light of the

example above, for G(2, 4), the possible standard Young tableaux are the followings:

1 2

3 4
,

1 3

2 4

The Wronski map has been an interest on its own and with its relation to Grass-

mannians. In [44], Purbhoo studied the Wronski map, with Shapiro Conjecture, on

orthogonal Grassmannians OG(n, 2n + 1) ⊂ G(n, 2n + 1). Purbhoo came up with

a new geometric proof for the Littlewood-Richardson rule for OG(n, 2n + 1). In

[20] Eremenko and Gabrielov studied the computation of degrees of the real Wronski

maps. In [30], they studied the congruences for the fibers of the Wronski map.

5.2 Relation with Schubert Calculus

We will recall some definitions from earlier in order to understand the relation better.

Let Λ denote the set of partitions whose diagrams fit inside d× (n−d) rectangle. Let
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λ = (λ1, λ2, ..., λd) be an admissible partition. There is a one-to-one correspondence

between the partitions whose diagram fit inside the largest rectangle
d

and subsets

of {1, ..., n} with d-elements: for each partition λ ∈ Λ, we have

J(λ) = {j + λd+1−j | 1 ≤ j ≤ d}.

Let x ∈ X be a d-dimensional subspace spanned by the polynomials f1(z), f2(z), ..., fd(z)

of Cn−1[z] whose Plücker coordinates are [pλ(x)]λ∈Λ. Plücker coordinates pλ(x) are

defined to be the maximal minors of the matrixAJ(λ) with the column set J(λ) where

the matrix Aij = [zj−1]fi(z) is a d × n matrix whose entries are the coefficients of

the polynomials fi(z).

In [42], Purbhoo showed that the Wronskian can be expressed in terms of Plücker

coordinates:

Proposition 5.2.1. The Wronskian Wr(x; z) is (up to a scalar multiple) given explic-

itly in terms of the Plücker coordinates of x by

Wr(x; z) =
∑
λ∈Λ

qλpλ(x)z|λ|.

where qλ is the Vandermonde determinant

qλ =

∣∣∣∣∣∣∣∣∣∣∣

1 ... 1

k1 ... kd
... ...

...

kd−1
1 ... kd−1

d

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤d

(kj − ki),

and kj = j + λd+1−j .

Let us now define the Schubert cells and Schubert varieties. For each a ∈ CP1, let F
be a flag in Cn−1[z]:

F(a) : {0} ⊂ F1(a) ⊂ F2(a) ⊂ ... ⊂ Fn−1(a) ⊂ Cn−1[z].

If a ∈ C, then

Fi(a) = (z + a)n−iC[z] ∩ Cn−1[z]

is the set of polynomials in Cn−1[z] that are divisible by (z + a)n−i. Let Λ be the

set of partitions whose diagrams fit inside a d× (n− d) rectangle and let J(λ) be as
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above. Then for every λ ∈ Λ, the Schubert cell relative to the flag F(a) is

X◦λ(a) = {x ∈ X | dim(x ∩ Fi(a)) = |J(λ) ∩ {n− i+ 1, ..., n}|}.

The Schubert variety is the closure of the Schubert cell, i.e., Xλ(a) := X◦λ(a). Codi-

mension of Xλ(a) is |λ|. If the codimension is 1, i.e., λ = �, then X�(a) is called a

Schubert divisor.

There is a strong connection between the roots of the Wronskian and the Schu-

bert varieties. In the beginning of the chapter, we said that we will use the nota-

tion Wr(x; z) for the Wronskian as the representative of Wr(x) in CN [z]. Now

we are going to elaborate why this notation makes sense. If Wr(x; z) has degree

strictly less than N , then we say that N − deg(Wr(x; z)) many roots are at in-

finity. If Wr(x; z) =
∏k

i=1(z + ai), then the roots of Wr(x;−z) form a multiset

π(x) := {a1, a2, ..., aN} where ak+1 = ... = aN =∞ if k < N .

Theorem 5.2.2. Let x ∈ X be a closed point, a ∈ CP1, and k ≥ 0 an integer. Then

a ∈ π(x) with multiplicity at least k if and only if x ∈ Xλ(a) for some λ ` k.

Proof. See [42]. �

In this context, we denote the fibers of the Wronski map Wr at the point
∏

ai 6=∞
(z+ai)

as

X(a) := π−1(a) = {x ∈ X | π(x) = a}

where a = {a1, a2, ..., aN} ⊂ CP1 is a multiset.

Mukhin, Tarasov and Varchenko in [40, 41] proved the following theorem concerning

the reality of the intersections of the Schubert varieties:

Theorem 5.2.3. If a1, a2, ..., ak ∈ RP1 are distinct real points, and λ1, λ2, ..., λk are

partitions with |λ1|+ |λ2|+ ...+ |λk| = dim(X), then the intersection

Xλ1(a1) ∩Xλ2(a2) ∩ ... ∩Xλk(ak)

is finite, transverse and real.
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5.3 A Problem

As we have seen that the fibers of the Wronski map are widely studied in many ways.

A further question that may lead to an interesting results is the following: Suppose

we have a base Grassmannian G(d2, n). For each point x ∈ G(d2, n), we can con-

sider another Grassmannian G(d1, d2). In the general picture, we are looking at a

2-step flag variety F (d1, d2, n). At first, we would like to keep the base Grassman-

nian G(d2, n) unchanged. We know that each x ∈ G(d1, d2) is sent to the projective

space P(Cd1(d2−d1)[z]) via the Wronski map. Consider the projective bundle E over

the Grassmannian G(d2, n). For an open cover {Ui} for the Grassmannian G(d2, n),

EUi will look like Ui × Pr, for some r. We would like to define a map from the the

Grassmannian G(d1, d2) to the projective bundle over the Grassmannian G(d2, n) via

the Wronski map. This bundle E can be studied further in the sense that whether it is

uniform or not.

In general, vector bundles, in particular uniform vector bundles, over the Grassman-

nian are widely studied. It is proved by Grothendick in [27] that any vector bundle on

a projective line over an algebraically closed field splits as a direct sum of lines bun-

dles. While this is the case for 1-dimensional projective spaces, i.e. projective lines,

when the dimension is 2 or higher, it is more difficult to give such classification. More

details about uniform vector bundles on flag varieties can be found in [15, 46, 47, 52]

Furthermore, we know that we can cover the Grassmannian with affine charts. If we

change the fixed affine chart for the base Grassmannian G(d2, n), how would it affect

the Grassmannian G(d1, d2) and how the image of the Wronski map is affected by

such a change?
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