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ABSTRACT

THE WRONSKI MAP FOR FLAG VARIETIES

Giingor, Emre
M.S., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Ali Ulas Ozgiir Kisisel

September 2021, [53| pages

In this thesis, we studied flag varieties, the Grassmann variety G(d, n) and their be-
havior under the Wronski map. We begin by introducing algebraic, topological and
geometric tools that are required to define flag varieties as projective varieties. Schu-
bert calculus is introduced in order to understand the cohomology of the Grassman-
nian and flag varieties. We described Young tableau which is a helpful tool that
makes some combinatorial computations, in particular of Littlewood-Richardson co-
efficients, easier and studied it extensively. Finally, we studied the Wronski map
which sends a set of polynomials to their Wronski determinant which is given by the

polynomials and their derivatives.

Keywords: Grassmann variety, Schubert calculus, flag varieties, Wronski map
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BAYRAK VARYETELERI ICIN WRONSKI GONDERIMI

Gilingor, Emre
Yiiksek Lisans, Matematik Bolumii

Tez Yoneticisi: Dog. Dr. Ali Ulas Ozgiir Kisisel

Eyliil 2021 ,[53]sayfa

Bu tezde bayrak varyeteleri, Grassmann varyeteleri G(d,n) ve Wronski gonderimi
altindaki davramslari ¢alisilmistir. Oncelikle, bayrak varyetelerini projektif varyete
olarak tanimlanmasi i¢in gerekli cebirsel, topolojik ve kombinatorik ara¢lar tanitildi.
Grassmann varyetesinin ve bayrak varyetelerinin kohomolojisini anlamak i¢in Sc-
hubert kalkiiliis tanimlandi. Bazi kombinatorik hesaplamalari, 6zellikle Littlewood-
Richardson katsayilarin1 hesaplamayi kolaylastiran Young tablosu tarif edildi ve iize-
rinde derinlemesine ¢alisildi. Son olarak ise bir polinom setini, polinomlarin ve on-
larin tiirevlerinin determinanti olarak tanimlanan Wronski determinantina gonderen

Wronski gonderimini inceledik.

Anahtar Kelimeler: Grasman varyetesi, Schubert kalkiiliis, bayrak varyeteleri, Wronski

gonderimi
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CHAPTER 1

INTRODUCTION

The Grassmannian or the Grassmann Variety G (d, n) and flag varieties F'(dy, ..., d,;n)
are fundamental objects in algebraic geometry. Grassmannians are very helpful tools
to parametrize linear subspaces of an n-dimensional vector space V' whereas flag va-
rieties parametrize sequences of subspaces. In particular, Grassmannians are special
types of flag varieties. Other than algebraic geometry, flag varieties are fundamen-
tal objects in combinatorics and representation theory. They also have a very rich

topological structure that can be explored in many ways.

Another way that the Grassmannians can be studied is by using so called the Wronski
map. It sends a set of polynomials into their Wronskian, i.e., the determinant obtained
by taking derivatives of these polynomials. The Wronski map gives us a well-defined
map from the Grassmannian to a projective space. Fibers of the Wronski map have
been of interest for many years, and there are many works around the topic. We will

explore the Wronski map in depth.

In Chapter 2, we will start with basic notations for the Grassmannian G(d, n) which
is nothing but the set of all d-dimensional subspaces of an n-dimensional vector space
V. We will develop the necessary algebraic background including exterior algebra,
in order to give the Grassmannian a variety structure via Pliicker embedding. After
establishing the Grassmannian as a projective variety, we will explore its defining
equations. More precisely, Pliicker relations and the homogeneous ideals are com-
puted. Later in this chapter, we will develop a cover the Grassmannian with affine

charts which helps us to understand some further questions about the Wronski map.

In Chapter 3, we dive into Schubert calculus. We give affine stratification for the



Grassmannian, namely we will define Schubert cells and Schubert varieties. We give
a thorough example to compute Schubert varieties and their corresponding matrices.
They are also important tools for exploring the topological structure of the Grass-
mannian. Schubert varieties define the cohomology classes in the cohomology ring
H*(G(d,n),Z). We will give statements of Pieri’s Rule and Giambelli’s Rule that

are helpful to compute the product of any two Schubert cycles.

Other than topological aspects, Schubert classes are important for computing Littlewood-
Richardson coefficients. To compute these coefficients, we will introduce a useful
tool that is called Young tableaux. It has many applications in combinatorics, and
representation theory. We explore the properties and importance of Young tableaux
in depth. At the end of the chapter, we will state the Littlewood-Richardson Rule

involving Young tableaux.

In Chapter 4, we will extend the structure that we established in Chapter 2 for Grass-
mannians in order to define flag varieties. We will explore over an example how we
can obtain the homogeneous ideal and defining quadratic equations of flag varieties.

We will also give the cohomology structure of flag varieties.

In Chapter 5, we will define the Wronski map and its properties. Its relation with

Schubert calculus will be explored.



CHAPTER 2

GRASSMANN VARIETY

2.1 Definition and basic notation

We define Grassmannian or Grassmann variety over a vector space V' as follows:

Definition 2.1.1. Let V be an n-dimensional vector space over a field. Let d, 0 < d <
n, be an integer. The Grassmannian G(d, n) is the set of all d-dimensional subspaces

ofV, ie.,

G(d,n) = {W | Wis a subspace of V and dim W = d}.

We can also consider the Grassmannian as the set of all (d — 1)-dimensional linear
subspaces of an (n — 1)-dimensional projective space P"~!. When we consider the
Grassmannian is this way, we will denote it as G(d — 1,n — 1). Thus, for instance,
when d = 2 and n = 4, we have G(2,4) = G(1, 3).

Example 2.1.2. G(1,n) is the set of all 1-dimensional subspaces of an n-dimensional

vector space V, which is P! itself.

2.2 A Brief Review of Exterior Algebra

In order to understand Grassmannians, it is crucial to understand the underlying al-
gebra called exterior algebra or Grassmann algebra. Exterior algebra has a product
called the wedge product (or exterior product). For the vectors u and v, the wedge
product of u and v is denoted by v A v and called a bivector. Geometrically, the
magnitude of the wedge product can be interpreted as the area of the paralellogram

having the sides v and v.



Definition 2.2.1. Let V' be an n-dimensional vector space over a field F. Let
T°V)=F, T'(V) =V, and T*(V) =VRV®..eV

be tensor products of d-many copies of the vector space V.. Let A%(V') be the subspace
of T4(V') spanned by all vectors of the form v; ® vy @ ... ® vg With v1, Vg, ..., 03 € V.
and v; = v; for some i # j.The d-th exterior power of the vector space V is defined

as ]
AV =TV)/A4YV).
Conventionally, an element v; ® v; ® ... @ vg + A4V) € /\d V is denoted by
V1 NV A ... Ny

Ifwe A"Vandw € A?V with w = v+ A%(V) and w' = v + A%(V),

respectively, we define
wAw =v®v + AMTE(Y)

as an element of /\d1+d2 V. Direct sum of all exterior powers of V" is defined as

/\v:/O\V@/I\V@...@/n\V.

Basically, if there is no superscript in the notation, we understand it as direct sum of

all exterior powers of V.

Definition 2.2.2. Let u, v and w be elements of \ V and «, 3 € F. The wedge product

is a multiplication operation
N AV AV — AV
(u,v) —>uAv

satisfying the following properties:

1. (uAv) ANw=uA (vAw) (associativity)
2. u N (o + Pw) = au A v + fu A w (multilinearity)
3. u ANv = —v A u (anticommutativity)

4



Remark 2.2.3. If {u;} is a basis for V, then one can easily see that u; A u; = 0

whenever 1 = j.

Proposition 2.2.4. Let V be an n-dimensional vector space over F with basis {vy, vy, ..., v, }.
Then, for every d € {1,...,n}, d-th exterior power of a vector space V is a vector

space with basis {vi, N\ ... ANv;, }withl < iy <iy < ... <iy<m,ie,

d
/\ V={ Z Ciyig,igVip N\ oo A vid}

where ¢;, ;, . i, € F.
Definition 2.2.5. v € /\d V' is said to be totally decomposable, if v can be written as
UL N oo N\ Ug.

where uy, ...,uq € V are linearly independent.

Proposition 2.2.6. Ifv € /\d V' is totally decomposable, then v A v = (.

Proof. Let v € /\d V be totally decomposable. Then we can write
V=ui N ... \NUy
for some uq,...,uqg € V. Then
VAU = (up Ao Aug) A (g Ao A ug).

By Definition 2.2.2., we can move each u; with respect to anticommutativity. So for

instance once we move u; to the left, next to first u,, we will get
up A (D)5 ug A Aug Aug A A ug)
Thus by Remark 2.2.3. we get u; A (—1)41u; =0. Sov Av = 0. |

Example 2.2.7. For d = 4, assume vy,...,v4 € V are linearly independent and

char(F) # 2. Then vy A\ vy + v3 A vy is not totally decomposable, since
0= (v Avg +v3 Avyg) A (V1 A v+ v3 A vy)
=V ANV Avg Avg+v3 ANvg Avp A Vg
=201 A vy A vg Ay

which is a contradiction since v A vy A\ V3 A\ vy IS nonzero.



Remark 2.2.8. Every nonzero element of /\1 V' is trivially totally decomposable.

Definition 2.2.9. Ler V be a finite dimensional vector space and let v € V, w €

/\d V. Then we say v divides w, if there exists x € /\d_1 V' such that w = v N\ x.

Lemma 2.2.10. Let V' be a finite dimensional vector space and v € V, w € /\d V.
Then, v divides w if and only if v A w = 0.

Proof. (=) Since v divides w, there exists ¢ € /\d_1 V such that w = v A . Multiply
both sides by v, we get

vAw=vAvANe=0ANp=0
since v A v = 0.

(<) Assume v Aw = 0. Start with fixing a basis for V, B = {vy, ..., v, } withv; = v.
Then v;, A... Avg, is a basis for A V. Since w € A"V, we write w = S v;, A... Av;,

for 1 < iy <19 < ... <1ig < n. By the assumption we have

(VAN (Z Ci1,iz,-..,id(vi1 VANPVAN Uid)) = Z Ci17i27.,,7l'd<?} A Vi, VANPIAN Uid) =0.

Since all the multivectors v A v;; A ... A v;, are linearly independent and nonzero for

1 > 1, we get ¢;, 4,5, = 0fori; > 1. So w is a linear combination of the basis

-----

vectors of the form v;, A ... Av;, = v Awy fori; = 1 where w; = A Ay, It

follows that w = > ¢y, i, (VA wy) =0 A DY (Cliy,..i,W5)- [ |

We denote the set of all v € V dividing w € A*V by D, i.e.

d—1
Dw:{v€V|w:U/\:cforsome:U€/\V}.

Proposition 2.2.11. D,, is a subspace of V.
Proof. Let vy, vy be vectors in D,,. Then v; A w = 0 and v A w = 0 by Lemma
2.2.10. So we have
(v1 +v2) Aw = (11 Aw) + (vg Aw) = 0.
It is clear that for any o € F, if v A w = 0, then we have av A w = 0. [ |

Proposition 2.2.12. An element w € /\d V' is totally decomposable if and only if
dim(D,,) = d.



Proof. Suppose w € /\d V' is totally decomposable, say w = v; A ... A vg. Clearly,
V1, Vg, ..., Vg are linearly independent. Now, extend the set {vy, v, ..., v4} to a basis
{v1,vg, ..., v, }. Then we can write for any v € V, v = ajv; + asvy + ... + a,v, for

some a; € F. So we get,

n

O=vAw= (Zaivi) A (U1 A oo A ).
i=1

Note that, all the terms with ¢ < d will vanish since v; A v; = 0 for i = j. So we
get all a; = 0 for d < © < n. Hence v is a linear combination of vy, vs, ..., v4. There-
fore {vy, v, ...,v4} spans D, and also forms a basis for D,, since they are linearly

independent.

Conversely, suppose dim(D,,) = d. Let {vy, vs, ..., uq} be a basis for D,,. Extend it

to a basis for V, namely {vy, vo, ..., v, }. Then we can write

w = E Ciyig,... in (Uil A Viq VANPIVAN 'U,L'n)
for some ¢;, 4, . ;, € F. So we get,
0=V AW=3 Ciripri (U A 01,

for1 < k < d, since vy Av;; = 0 wheni; € {1,2,...,d}. Thus we have ¢;, 4, ..q, =0

for d < k < n. So we can write
w = vy Nvy N\ ... \ vy

for some o € [F. Thus w € /\d V 1is totally decomposable. |

We will define a map that enables us to characterize the totally decomposable vectors:

Letw € /\d V, then the map

d+1
pu:V— \V
is defined by
0u(v) = v Aw.

Corollary 2.2.13. w € /\d V' is totally decomposable if and only if p,, has rank n—d.

Proof. Let ¢,, be the map above. By Proposition 2.2.12, w is totally decomposable if
and only if dim(D,,) = d. We will show ker(y,,) = D,,. Recall that forw € A"V,
D,={veV]vAw=0}

7



by Lemma 2.2.10. In other words,
D, ={v eV |p,(v)=0}=ker(py,).

Thus dim(D,,) = dim(ker(¢y,)) = d. So by Rank-Nullity Theorem ¢,, has rank
n —d. n

Corollary 2.2.14. w € /\d V' is totally decomposable if and only if the rank of p,, is

at most n — d.

Proof. Suppose w € /\d V is totally decomposable. We need to show that it is not
the case that ¢, has rank strictly less than n — d, since we proved that the claim
holds when dim(y,) = n — d. Assume ¢, has rank less than n — d. Then by
rank-nullity theorem dim(ker(p,,)) = m > d. Since ker(p,) = D,,, we also have
dim(D,,) = m. But the proof of Proposition 2.2.12 shows that dim(D,,) cannot be

more than d. [ |

2.3 Pliicker Embedding

In order to give Grassmannian a variety structure, we need to embed it to a projective
space. To achieve this, we associate to a d-dimensional subspace W € V a point of
P(A*(V)) which is the line spanned by v; A ... A vg. In other words, we have a map,
called Pliicker embedding or Pliicker map,

U:G(d,n) - P(/\V) (2.1)

given by
U = span(uy, ...,ug) — [ug A ... A ug]
This map is well-defined by the following lemma:

Lemma 2.3.1. Let W be a d-dimensional subspace of a finite dimensional vector
space V over F. Let By := {wy,ws,...,ws} and By = {w},w),...,w)} be two

ordered bases for W. Then

Wiy A AWy = wy A ... ANwg for some X € F

8



where X is the determinant of the change of basis matrix from {wq,ws, ..., wg} to

{wy, wh, ..., W}

Proof. Follows from multilinearity and anticommutativity of wedge product. See

[29] Prop. 11.12. |

Proposition 2.3.2. The Pliicker map

d

U G(d,n) = P(/\V)

is injective.

Proof. Let U, W € G(d,n) be two subspaces. Let {uy, us, ..., uq} and {wq, wo, ..., wq}
be bases for U and W, respectively. Recall that we have a map

d+1

pu: V= \V
defined by

v — v AU

Now suppose ¥(U) = W(W) and u = [u; Aug A ... Augl, w = [wy Aws A ... Awyg).

Then we have

U(U) =V (W) < Jx € F* such that u = zw
& a2’ € F* such that ¢, = 7',

& ker(pu) = ker(y).

So, in order to show W is injective, it is enough to show that ker(p,) = U. Itis
obvious that U C ker(yp,,) since u; A u; = 0 for i = j, we have u A u = 0. To
show ker(y,) C U, note that we can extend basis {u, us, ..., uq} of U to a basis
{uy, ug, ..., ug, ..., up } of V. Now, let v € ker(p,). Write v = ajuy + agus + ... +

a,v, =Y a;v;. Then we have

O0=vAu=(a1v1 + ... + a,v,) ANu

= (a1v1 + ... + apvy) A (ug + .o + ug).

Expanding the wedge product, we can see that all terms of the form a,u; A u; where

i = j, vanish. Thus we are left with the terms a;u; A u;,@ # j, 7,7 > d + 1 which are

9



nonzero. So we geta; = Ofort > d+1,1.e. v = uy +us + ... + ug. Hence v € U.

This finishes the proof. [

Let V' be an n-dimensional vector space with basis {vy, vs, ..., v, } as usual and let

U € G(d,n) with basis {uy, usg, ..., ug}. By Definition 2.2.4, we have

d
/\ V= { Z Ciyig,...iqVir VANRAN Uid}

where ¢;, ;, ., € F. Thus the basis for /\d V' is of the form {v;, A v, A ... Ay}
We can express the basis elements of U with respect to basis elements of V. So for
1 <j <dletu; =Y 7 ,a;v;. Then the coordinates of W(U) = [uy A ... A ug] are
called the Pliicker coordinates. Once we choose a basis for V', we will see that we
can represent U € G(d,n) by a d x n matrix My. The Pliicker coordinates are the

d x d minors of the matrix M.

Example 2.3.3. Consider the Grassmannian G(2,5). Let {vy, va, V3, v4, Vs } be a basis

for V. Then the basis for /\2 V' is given by
{v1 A vg,v1 A vg,v1 A vy, v1 A Vs, U3 A Vg, Vg A Vg, U2 A Vs, U3 A Vg, U3 A Us, Uy A U5}
Let {uy,us} be a basis for U € G(2,5). Write the basis elements as follows:

Ul = A11V1 + Q1202 + A13V3 + A14V4 + A15V5

Ug = A21V71 + 99U + a923U3 + A24V4 + a95Vs5.
Then,

Uy A ug = (ajiag — aiaa91)vy A vg + (a11a23 — ay3a21)v1 A v3

11024 — A140Q21)01 N\ V4 + (@11025 — Q15021 )V1 A Us

(13024 — A14023)V3 N\ Uy

) )
+ ) ( )
+ (@12a23 — @13a22)V2 A V3 + (A12024 — G14G22)V2 A V4
+ (@125 — a15a22)v2 A s + ( )
) ( )

+ (a13a25 — A15G23)v3 A U5 + (@14025 — a15024) V4 A V5.
So the Pliicker coordinates are

(a11a22 — A12G21, @11A23 — A130A21, A11A24 — A14021, A11A25 — A15A21,
Q12023 — 13022, A12024 — A140A22, A12025 — A15022, @13024 — A14G23,

Q13025 — Q15023, A14025 — a15a24)

10



Let us denote the Pliicker coordinates by x12, x13, X14, T15, 23, T24, T25, T34, T35, L45,
respectively. We can observe that the Pliicker coordinates are the 2 X 2 minors of the

following matrix My:

a1 Qa2 @13 A4 Q15
My =

Q21 Q22 G23 G24 (25
Proposition 2.3.2 shows that the Pliicker map allows us to view the Grassmannian
G(d,n) as a subset of the projective space P(A\? V). Naturally, the next question is

whether we can embed G(d,n) onto a projective variety under the Pliicker map or

not. In other words, can we see the Grassmannian as a projective variety?

Lemma 2.3.4. [w] € P(\"V) lies in the image of the Grassmannian under the

Pliicker embedding if and only if w € /\d V' is totally decomposable.

Proof. Let [w] € P(A\* V) and [w] = U(U) forsome U € G(d,n). Let {uy, us, ..., ug}
be a basis for U. Then [w] = [uj A ... A ug). Sow = Aug A ... A ug is totally decom-

posable for some .

Conversely, assume that w € /\d V' is totally decomposable, say w = wy A ... A wy.
Then the subspace W spanned by {ws,ws, ..., wy} is d-dimensional and so W €
G(d,n). Observing that U (W) = [w], finishes the proof. |

Before moving to the main result, we simply state a fact from linear algebra.

Remark 2.3.5. The rank of a matrix M € M,,«,, is the largest integer k such that

some k x k minor does not vanish.

Theorem 2.3.6. G(d,n) C P(\" V) is a projective variety.

Proof. By Lemma 2.3.3 and Corollary 2.2.10, [w] lies in the image of the Grassman-
nian if and only if the rank of the map ¢, : V. — A" (V) given by ¢, (v) = v Aw
is n — d. But in fact, by Corollary 2.2.11, we can say that

[lw] € G(d,n) < rank(py,) <n —d.

Now, the map AV — Hom(V, A*"' V) given by w ~— ¢, is linear. So we can
view ¢, € Hom(V, /\dJrl V') as a matrix whose entries are functions of w. Since

©w(AV) = Ay, (v), these functions are homogeneous of degree 1.

11



By Remark 2.3.4, ¢, has rank at most n — d if and only if all (n —d+1) x (n—d+1)
minors vanish. Thus [w] lies in the image of the Grassmannian if and only if all
(n—d+1) x (n—d+ 1) minors vanish. In other words, one can say that G(d,n) C
P(A\* V) is a projective variety defined by the zero locus of the (n—d~+1)x (n—d+1)

minors of the matrix My of @y, [ |

Remark 2.3.7. My is the same matrix that is mentioned before when we talked about

the Pliicker coordinates after the proof of Proposition 2.3.2.

2.4 Pliicker Relations

The equations above give defining equations of the Grassmannian as a variety, how-
ever they do not generate whole homogeneous ideal of the Grassmannian. In order to

find the homogeneous ideal of the Grassmannian, we need more tools.

Let V' be an n-dimensional vector space over [F. Let V/* be the dual space of V. The
pairing (-,-) : V*® V — F defined by (w*,v) = w*(v) forall w* € V*andv € V

is a nondegenerate bilinear form.

Proposition 2.4.1. Let V and W be a finite dimensional vector spaces over a field

andlet f -V — W and g : V — W™ be linear maps. Then the pairing
(9(v), f(v)):V = F
is a quadratic form.

Proposition 2.4.2. Let V be an n-dimensional vector space over F. Let V* be the

dual space of V. Let 0 < d < n be an integer. Then we have a nondegenerate pairing

d n—d n
NV x ANV — A\V=F,
that induces an isomorphism
n—d d d
AV=(AV)>=A\Vv.

So, up to a scalar, we can identify AV with A" *V*. Let w € A’V and let

w* € /\"_d V* be its dual. As with the vector space V', we have a linear map

n—d+1

T /\ %

12



defined by
Qu (V) = 0" Aw™.
Proposition 2.4.3. An element w € /\d V' is totally decomposable if and only if ©,,~

has rank at most d.

The proof of this proposition is similar to the Corollary 2.2.13. We can observe that,
assuming w to be totally decomposable, the kernel of the map ¢,, is the annihilator

of the kernel of the map ¢,,-. In other words, for the tranpose maps

d+1 n—d+1
gofv:/\v*—ﬂf* , o /\ V—V

their images annihilate each other.

Theorem 2.4.4. [w] lies in the Grassmannian G(d,n) if and only if for every pair
ae N VEand e NNV, we have

Ea,8(w) = (00, (c0), 01 (8)) = 0

E,.5(w) are quadratic polynomials by Proposition 2.3.6. They are called the Pliicker relations
and they generate the homogeneous ideal of G(d, n) which is called the Pliicker ideal.
See [23]] Chapter 9.

Let us look at an example in order to understand the structure better.

Example 2.4.5. We will explore the defining equations and homogeneous ideal of
G(2,4), the Grassmannian of 2-planes. Let V' a be 4-dimensional vector space. Let
B = {v1,v9,v3,v4} be a basis for V. Then the canonical bases By, Bs for /\2 V and

/\3 V, respectively, are
B2 = {1)1 A\ V2, U1 A V3, U1 A V4, U2 A Vs, U2 A\ V4, U3 N ’04}7
Bg = {’Ul/\UQ/\Ug,Ul/\UQ/\U4,U1/\Ug/\U4,U2/\’U3/\U4}.

Letw e N*V. since w = > aivi Avj, themap o, -V — A*V given by v — v Aw

is represented by the following matrix

azs —aiz a0
Q24 —Q14 0 Q12

asg 0 —au a3

0 asqy —Q24 Q23

13



So the Grassmann variety G(2,4) is defined by the zero locus of 3 X 3 minors of the
above matrix. If we calculate the minors for each entry, we get 16 equations. however,
there is a simple way to determine homogeneous ideal for the case G(2,4). Since w €

/\2 V' is totally decomposable, we have w N w = 0. If we expand w =) a;;v; A\ v;,
W = @121 A Vg + a1301 A U3 + G1401 A\ Vg + Q2302 N U3 + A4V N\ V4 + A34V3 N\ Uy,
then
w A w = 2(a12a34 — a13a24 + a14a23)v1 A V3 A V3 A Uy
The condition w N w = 0 gives us that aisa34 — a13a24 + a14a03 = 0. Thus, the

homogeneous ideal of the Grassmannian GG(2,4) is generated by the polynomial

T12T34 — T13T24 + T14T23 = 0

In general, the ideal of the Grassmannian G(2,n) for any n, is given by similar
quadratic polynomials. Let {vy, va, ..., v, } be a basis for V, and w = ) z;;u; Av; €
A\’ V, then the homogeneous ideal of the Grassmannian G(2,n) is generated by the

polynomials

{fijkl =TT — TipTj + Talje = 0 | 0<1I<i< j <k<l< n}

2.5 Affine Charts of the Grassmannian

Remember that we can cover the projective space with affine charts. Similarly, the
Grassmannian can also be covered with Zariski open subsets that are isomorphic to

affine spaces.

Let V be an n-dimensional vector space and let P and () be complementary subspaces
of V of dimension d and n — d, respectively, so that V = P @ (). Let U, be the subset

of d-dimensional subspaces that intersect trivially with @), i.e.,
Ug={WeG(d,n) | WnNE =0}.

We can observe that U, is Zariski open in G(d, n) since if wy, ...w,_, is any basis for

@ and v = wy A ... A w,_g4, we have

d
Ug = {[w] € G(d,n) CP(A\V) | wA~y # 0}

14



Thus Uy corresponds to the complement of zero set of polynomials that represent a

hyperplane section of G(d, n).

The graph of any linear map [: P — (@ is a d-dimensional subspace I'(/) defined by
I'{il)={x+1(zx) | z € P}.

Notice that for any linear map [/, we have I'(l) N Q = 0. Otherwise, if for x € P,
z +1(z) € I'(l) N Q, then it implies that x + [(x) € @ and since [(z) € (), we have
x € Q. But PN = 0. So we reach a contradiction. The following lemma is needed

to establish an affine covering for the Grassmannian, though we will not prove it.

Lemma 2.5.1. Any d-dimensional linear subspace W C V with W N Q) = 0, ie
W C Uy, is the graph of a unique linear map

a5t T
P2 WcCcV=PaQ%Q.

where Tp and 7 are natural projections onto P and (), respectively.

Observe that 7p is also an isomorphism between P and V. Now, let Hom(P, Q) be

the vector space of linear maps from P to () and Uy as above. Define a map
©: Hom(P,Q) — Ug
o) — T(1).

By above discussion, © is a bijection with the inverse map ©~': Uy — Hom(P, Q).

So we have the following isomorphisms

Uo = Hom(P,Q) = A9,

Choose a basis {vy,v9,...v,} for V' such that {vy,vs,...v4} is a basis for P and
{Vas1, Vara, .- vn} is a basis for Q. So for W € Ug, {mp vy, mp'vg, ..., mp vy} forms

a basis for . Thus we can represent I/ with the matrix

1 0 ... 0 ai; a1 ... QAip—d
01 .. 0 ao1 A22 ... A2p—(
_0 0 ... 1 Qg1 Qg2 ... adn_d_

where the matrix [a;;] is the transpose of the matrix of the linear map [: P — Q).
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CHAPTER 3

SCHUBERT CALCULUS ON GRASSMANNIANS

3.1 Schubert cells and Schubert Varieties

Let G(d,n) be the Grassmannian of d-dimensional subspaces of an n-dimensional

vector space V. Let

F:0)=Vo,cVhCc..CV,=V

be a full flag such that dim(V;) = d; with basis {ej, e, ...,e;} for V; and let A =
(A1, Ag, ..., Ag) be an integer partition satisfying the condition n —d > Ay > Ay >
. > Ag > 0. Partitions that satisfy the condition are called admissible parti-

tions. For every admissible partion A = (A1, g, ..., \y), the Schubert variety or

Schubert cycle X, (F) is defined by

ZA(F) = {U c G(d, 7’L) | dim(Vn_dH_)\i N U) > i, V1 < < d}

The codimension of the Schubert variety is |[\| = 3)\;, which is also the weight of
A. Schubert varieties >, (F) define the cohomology classes ¢ in the cohomology
ring H*(G(d,n),Z). The cohomology class o) is called Schubert class and it is the
Poincare dual of the homology class of >J,. Note that o), is independent of the choice
of the fixed flag defining it. When the choice of the flag is obvious, we will denote
Ya(F) as Xy.

In order to define the cohomology ring of the Grassmannian G(d,n), we need to
introduce a stratification of the Grassmannian. For a given flag F and an admissible

partition A = (A1, A, ..., Ag) as above, the Schubert cell X$(F) is a set of subspaces
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U € G(d,n) such that

0, j<n—d+1—X\
da n_)\dgj

To move forward, we will state a fundamental observation about Schubert cells.

Theorem 3.1.1. The Schubert cell ¥3(F) is isomorphic to A4~

Proof. See [[18] Theorem 4.1. [ |

For each U € X$(F), we can choose a unique basis so that U is spanned by the rows
of a row-reduced d x (n — d) matrix. The only nonzero entries are 1 in the i-th row
and n — d + ¢ — A\;-th column from the left. All the entries after 1 are O in a row; all

the entries in the column that has a leading 1’s are also 0. So the matrix is of the form

* .. «x 1 0 .. 00 .. 0
* ... %« 0 x ... x 1 0 0

* ...« 0 % ...« 0 1 0

where *’s are arbitrary and there are n — )\; many of *’s in ¢-th row. Following this
construction, we can write the Grassmannian as a disjoint union of Schubert cells:
Gdn) = || 3F
X admissible
We also define the Schubert variety X, (F) to be the closure of 33 (F). Since union
of Schubert cells of real dimension not larger than i, i = 0, 1,2, ..., 2d(n — d), form a

cellular CW structure of Grassmannian G(d, n), we reach the following theorem, see

(23, 34]:

Theorem 3.1.2. The Grassmannian G(d,n) has cohomology only in even degrees,
and Schubert classes form an additive basis for the cohomology ring H*(G(d, n), 7).
In other words, H**(G(d,n),Z) = Z™ where m, is the number of partitions of the
integer A = (A1, Mg, ..., \g) wheren —d > Xy > Xy > ... > Ny > 0 and

H*(G(d,n),Z) =D Z-ox.
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Example 3.1.3. We will explore the structure of the rather famous and popular Grass-
mannian G(2,4) = G(1,3) that lives in P°. We will use projective perspective
in order to understand the structure better. Let’s take the standard full flag in P3,
p C L C H, that consists of a point p, contained in a line L, contained in a plane H
contained in P3. For d = 2, n = 4 we have dim(G(2,4))=4, and the partitions that
satisfy the definition are (2,2), (2,1), (2,0), (1,1), (1,0), and (0,0).

o For \=(2,2), the Schubert variety is ¥y = {U | U = L}, i.e., given line
L, and the Schubert cycle oo5 € H®(G(2,4),7) corresponds to the matrix
10 00
010 0|

e For A\=(2,1), the Schubert variety is 39, = {U | p € U C H}, i.e, lines in
a plane H that pass through p, and the Schubert cycle 0y, € H®(G(2,4),7)
1 000

corresponds to the matrix .
0 « 1 0

o For A\=(2,0), the Schubert variety is Y20 = {U | p € U}, i.e, lines through
the point p, and the Schubert cycle o, € H*(G(2,4),7Z) corresponds to the
1000

matrix .
0 « x 1

o For \=(1,1), the Schubert variety is ¥, = {U | U C H}, i.e., lines in the
plane H, and the Schubert cycle o1, € H*(G(2,4),Z) corresponds to the
* 1 0 0

matrix .
* 01 0

e For A=(1,0), the Schubert variety is ¥10 = {U | UNL = 0}, i.e., lines incident
to L, and the Schubert cycle 019 € H*(G(2,4),7) corresponds to the matrix
* 1 0 0
0 % 1|

e For A\=(0,0) the Schubert variety is ¥y = G(1,3), i.e., lines in P?, and the
x % 1 0

Schubert cycle og o € H°(G(2,4),7Z) corresponds to the matrix :
* o+ 0 1

By Theorem 3.1.2., we can see, for instance, that the Schubert cycles oy and o1
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corresponding to the codimension 2 Schubert varieties ¥ and X, generate the

cohomology group H*(G(2,4), 7).

3.2 Pieri’s Rule and Giambelli’s Rule

In the last section, we have shown that for a given admissible partition, the coho-
mology ring of the Grassmannian G/(d, n) is additively generated by Schubert cycles.
So we can express any product of two given Schubert cycles in the cohomology ring
H*(G(d,n),Z) as a linear combination of these generators. A nice way to formulate
this relation is the following theorem that arises from the well known Littlewood-

Richardson rule (LR):

Theorem 3.2.1. Let 0y, 0, be Schubert cyles with respect to the partitions \ and |

and let v be an arbitrary partion. Then

_ v
OO0y = E Cap Ov-
v

The coeffients cX , are called Littlewood-Richardson coefficients.

The coefficients cf , represent the degree of intersection of two Schubert cycles. Orig-
inally, Littlewood-Richardson coefficients were defined in order to multiply Schur
functions, as they are a basis of symmetric functions, but in a similar context there
are multiple useful computations for the Littlewood-Richardson coefficients. There
are many works about Young diagrams ([23]]) and Littlewood-Richardson rule ([44]
[6]). Although LR is studied from the combinatorial perspective, recently ([9]], vakil)
gave geometric proofs. In the next section, though we will not give too much detail,
using Young tableaux is one of many ways to calculate these coefficients. In this

section we will give examples of special cases of Littlewood-Richardson rule.

Let A = (A1, Az, ..., A\g) be an admissible partition. X is called a special partition if
Ay = A3 = ... = A\g = 0). The Schubert class defined with respect to such a special
partition is called the special Schubert class. For ease of notation, we will denote

such a special Schubert class as o, instead of oy, 0.0
Theorem 3.2.2. Pieri’s Rule. Let oy be a special Schubert class, and let o, be any
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Schubert class with an admissible partition . Then

O\ 0y = E oy

[v[=]A+ k]
i <y <pri—1

Proof. See [18]]. |

Let us work out Pieri’s Rule with an example over the Grassmannian G(2, 5).

Example 3.2.3. We will compute some products of Schubert classes of the Grasm-
mannian G(2,5). Note that dim(G(2,5))=6 and partitions X should satisfy admissi-
bility criteria. Schubert classes of G(2,5) are 033, 039, 031, 03, 022, 021, 02, 011,

o1, and oy.
e 0y-033=0 ® 0,031 =033

® 01031 =032

)

® 0'3‘0'171:0

® 01091 =032+ 031

)

® 0303 =033
® 03021 = 032

® 0y:092 =031+ 022 ® 0301 =031

The next theorem describes the computation for a special Grassmannian G(2, n+1) =

G(1,n) where the Schubert varieties with respect to the flag F are as follows:
2)\17,\2 = {U € G(2,n + 1) ‘ UnN an)\l # Oand U C Vn+1,)\2}.

Theorem 3.2.4. Suppose, for admissible partitions X\ = (A1, \2) and pn = (p1, o),
that A\ — \o > 11 — juo. Then

Oxi e " Opnpms = OXi4pn datps T OXi4pn—1 dotpa+1 T oo T 0N o Aot

= : : 0”17V2'

[v]=|Al+]p]
A1tp1 <vi<A1+pg

As we can see, Pieri’s formula is useful for computations involving special Schubert
classes. However, we need to be able to compute the product of arbitrary Schubert
classes. Giambelli’s Rule will show us that any Schubert class can be expressed in
terms of special Schubert classes. Using both Pieri’s and Giambelli’s Rules, we can

compute the intersection of two arbitrary Schubert classes.
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Theorem 3.2.5. Giambelli’s Rule. Any Schubert class can be expressed as a linear

combination of products of special Schubert classes:

Ox\ O +1 Oxi+2 -+ Oxi4d—1
Oxa—1 O\s Oxo4+1 -+ OXxy4d—2
OXiyisha =
ONg—d+1  ONg—d+2 Oxg—d+3 --- OXg

Following the Example 3.2.3., we can compute o3 o as follows:

02 O3 9
0292 = :02+0301.
01 02

3.3 Young Tableaux and Littlewood Richarson Rule

Young tableaux or Young diagram is an alternative and practical way to represent
Schubert classes. As we mentioned before, there is an alternative formulation for
Littlewood-Richardson rule involving Young diagrams. In this section, we will intro-
duce the basic concepts of Young diagrams and develop necessary tools in order to
understand the theorem. For a detailed discussion and more information about this

section, [23]] is a great source.

Definition 3.3.1. A Young diagram is a collection of left-justified boxes with a weakly

decreasing number of boxes in each row.

The number of boxes in each row forms a partition of an integer A = (A1, Ag, ..., Ag)
with the total number of boxes being |\| = > |\;|. Conversely, every partition corre-
sponds to a Young diagram. For example, partition 9 = 3 4+ 3 + 2 + 1 corresponds to

the Young diagram

If |[\| = n, we say that A is a partition of n and we denote A - n. We define A to

be the set of partitions whose diagram fit inside a d x (n — d) rectangle. The largest
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d
partitionin A,n —d >n —d > ... > n — dis denoted by .We can put numbers

inside the boxes. Putting positive integers in each box is called a filling.

Definition 3.3.2. A Young tableau is a filling that is weakly increasing along each
row and strictly increasing down in each column. A standard tableau is a Young

tableau consisting of entries from 1 to n.

For instance, with partition 9 = 3 4+ 3 + 2 + 1, Young tableau and standard Young
tableau correspond to followings, though they can be filled differently in many ways,

respectively:

(@21 BTSN B NG
Ol DN =

In the context of Schubert calculus, we will not deal with every partition of an integer
A. As we defined in the beginning of the chapter, we are going to look at admissible
partitions A = (A, Ao, Ag),m—d > A > Ay > ... > Ny > 0. We have a
correspondence between such partitions and the Schubert classes. In this way, we can

represent each Schubert class o, of the Grassmannian G(d, n).

To see the correspondence clearly on an example, we will work on G(2,5).

® 033 — ® 021 A
e U —
3,2 o 0y —>

® 031 <

® 011 <
® 03 <

® 010 —
[ J 022 —

000<—>®
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Young diagrams make calculations easier. For instance, we saw that for a special
Schubert class o3, we have o3 - 031 = 035. In Young diagram notation, we add
corresponding boxes of oy to the diagram of o3 ; one by one in each row satisfying

the Young diagram conditions and the inequality in Pieri’s Rule:

Definition 3.3.3. A skew Young diagram or skew shape )/ is a difference of Young
diagrams of \ and j1, where \ > [i.

Let A\, u € A and \/pu be a skew shape which fits inside d x (n — d) rectangle. We
d

denote 1 for the skew shape [, and let ¥ == (n —d — pg,...,n —d — j17)
denote the dual partition obtained by rotating ¢ by 180°. The number of boxes in

Muis A pl = Al = |ul.

Definition 3.3.4. A standard Young tableau of shape \/y is a filling of the boxes
of N/ with entries 1,2, ...,|\/ 11| where the entries increase through the rows and
columns. The set of all such tableaux is denoted by SYT(\/1). When repetition is
allowed in the filling , we call it simply a skew Young tableau and the set of all such
tableaux is denoted by SY T (\/ui; +)

Example 3.3.5. Considering G(3,9), let A = (6,4,2) and p = (4,2, 1) be partitions.

Then we have,

The skew Young diagram A/ is
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Definition 3.3.6. A row-bumping or row insertion is a method of producing a new
Young tableau denoted by T' <— x out of a given tableau T and a positive integer x.

Insertion process is carried out by the following rules:

1. If x is greater than or equal to the all entries in the first row of T, add x in a

new box on the first row.

2. If not, find the left-most entry of the first row of T that is strictly larger than x,

and replace it with x, i.e., bump the entry.
3. Apply 1 and 2 to the entry replaced by x, starting from the second row.

4. Repeat the process until the bumped entry finds its position either at the bottom

as a new row, or as the last box of the last row of T'.

Example 3.3.7. Let A = (4,3,3,2) be a partition and let T be its corresponding
Young tableau with the following filling:

2
5
6
9

0| | W| =

If we want to row-insert 4 inT', 'T' <— 4, then we get

414

112
3195
6|6
819

If we want to have T’ <— 3, then we get

Ol | O] W | =
O =] N
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For any two tableaux 7" and U, row-insertion can be used to define a product operation
on 7" and U. The product tableau 7" - U can be constructed by starting row-inserting
the bottom-left entry of U into 7". Then the next entry is row-inserted to the resulting
tableau. By repeating this process after all entries in the bottom row is row inserted
into 7', and continuing the same process through the upper rows from left to right,

givesus 1" - U.

Example 3.3.8. Let T’ and U be Young tableaux as follows:

11224
3157 2
6169 13
819
Then the product T’ - U is calculated as follows:
112 3
112 4
314
315 2
=516 112
6|6 3
619
819
8
111 3 111 2
2|4 2|3
316 314
= 2 =
519 516
6 619
8 8

Observe that the number of the boxes in 7"- U is equal to the total number of boxes of
tableaux 7" and U. Apart from row-insertion, there is another method called sliding
to obtain the product of two tableaux. In order to define sliding, we will make some

more definitions.
Definition 3.3.9. Let T be a skew Young diagram of shape \/ ju.
e Aninside corner is a box in |1 where the box on the right side and below does
not belong to .
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e An outside corner is a box in \ where the box on the right side and below does

not belong to \.

Example 3.3.10. Following the Example 3.3.5, let T be the skew Young diagram of
shape A/ as follows:

In order to understand the operation and what the inside and outside corners are, we

will specify the diagram of .

Inside corners are the yellow boxes with dots, and the outside corners are the white

boxes with dots.
Definition 3.3.11. Given a skew Young Tableau T and an inside corner, the sliding
operation is carried out with the following rules:
1. Compare the entries of the right side and below of the inside corner. Swap
boxes with the smaller entry.
2. If there is no box below, swap with box on the right side.
3. Continue this process until the inside corner becomes an outside corner.

4. Remove the outside corner from the tableau.

Explicitly, in a single step of a sliding operation, one of the following happens:

p

xXr
y, Ty

® |y ®

—
xr y|e
y T >y
\

For a skew Young tableau 7', this process can be done with each inside corner. If
we continue this process until there is no inside corner left, the result will again be

a tableau. The resulting tableau is called the rectification of 7', denoted rect(T).
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The rectification shape of 7" is the shape of rect(T).

When the partitions are in

consideration, i.e., if 7" € SYT(\/u), for partitions A and y, then rectification of T
is also denoted as slidey (1) where U € SYT' ().

This operation is independent of the choice of an inside corner. If we have started

with a different inside corner, the resulting tableau would be the same. The sliding

operation that was introduced by Schiitzenberger and together with the rectification

process, it is also referred to as jeu de taquin.

Example 3.3.12. Continuing the above Example 3.3.10., let S be the skew Young

tableau with some arbitrary filling. Then the rectification is carried out as follows:

213 o |3 ° 3| e
e | 2|4 — ° — e | 214
e | 5 e |5 e |5
2 3 3 e | 2213
— o | e — ° — 4| e
e |5 e |5 5
21213 2 3 212 el 3
— | e | 4 —_— 4 — 4
5| e 5
213 | e o |2 2 213
—>| e — 4] e — 1 4
5 5) 5
21e |3 212 2 3
— — | 4 — | 4
5) 5

So the rectification shape of T is the resulting diagram ||

For given Young tableaux 7" and U, there is a way to express their product using

sliding and rectification. Let 7" =

U =

| be two Young tableaux,

omitting the filling for the purpose of definition. Then let 7"« U denote the following
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tableau:

TxU =

Then we have

T-U=rect(T«U).

Example 3.3.13. For the purpose of this example, we are going to choose smaller

tableau with standard filling in order to make calculations easier. So let T' =

2[4 . . .
and U = (513 . ThenT - U using row-insertion is

T.U:

Let us calculate the rectification of T' x U:

TxU =
2
3 °
—
4 2
2 213
o |12 1
e |23 °
— —
314 1
2 2
111
— 2|2
314

1

2]

3

Definition 3.3.14. If for T € SYT(\/p;+) and T" € SYT(N/i';+), we have
rect(T) = rect(T"), then we say that T and T' are equivalent and denote T ~ T'.
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Definition 3.3.15. For T,7" € SYT(A/u;+), if slider and slide’, are identical

operations, then we say that T and T' are dual equivalent, and write T ~* T".

Definition 3.3.16. For any tableaux U, of shape 1 and V, of shape v, we define the

following sets:
S(u/NUs) = {S of shape u/\ | rect(S) = Us}
TN, Vo) =A{[T,U] | T of shape \,U of shape p, rect(T «U) = V,}

Proposition 3.3.17. For any tableaux U, of shape 1 and V, of shape v, there is a

CCanl’liCCll one-to-one correspondence
S(u/AU) & T, Va).

Corollary 3.3.18. Cardinalities of the sets S(ju/\,Us,) and T (A, i, V) are indepen-
dent of choice of U, or V,, and depend only on the shapes )\, ;o and v. The cardinalities

of these sets are denoted by ¢ , and are called Littlewood-Richardson coefficients.

Proof. See [23]] |

Definition 3.3.19. e Given a tableau or skew tableau T, a word of T, denoted

w(T), is defined by reading the entries of T' from left to right and bottom to top.

e A lattice word w = x1x5...7, is called a reverse lattice word, if when it is
read backwards from the end to any letter, the sequence x.x,_1...Ts contains as
many 1’s as it does 2’s, at least as many 2’s as 3’s, and so on for all positive

integers.

o A skew tableau T' is called a Littlewood-Richardson skew tableau if its word

w(T) is a reverse lattice word.

Example 3.3.20. Let T = 212 and T' = 113 . Then w(T') =

3 2
32211 and w(T") = 21323. Observe that w(T') is a reverse lattice word whereas

w(T") is not. Thus, T is a Littlewood-Richardson skew tableau.

Definition 3.3.21. A skew tableau is said to have content 1. = (1, ,, 1) if its entries

consist of 11 1’s, o 2’s, an so on up to jy ’s.
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Now we are finally ready to state the Littlewood-Richardson rule:

Theorem 3.3.22. Let 0y, 0, be Schubert cycles with respect to the partitions A and |1

and let v be an arbitrary partition. Then

_ 17
OOy = E Cap Ov-

v

where the coefficients cf , are the number of Littlewood-Richardson skew tableau of

shape v |\ of content .

Alternatively, ¢§ , counts the different ways of a tableaux V' of shape v that can be

written as a product of tableau 7" of shape A and a tableau U of shape .

Theorem 3.3.23. The Littlewood-Richardson coefficient
CK’# = Za)\vauay
is the number of dual equivalence classes in SYT(\ / i;+) with rectification shape v.

Proof. See [42]. [ |

Example 3.3.24. The followings are all of the Littlewood-Richardson skew tableau
on the skew shape (4,3,2,1)/(2,1,1):

101 101 101 101
2 1|2 1|2 112
2 T2 R ) 13
1 2 3 1
111 1 1
2 2 2
3 "3 13
2 4 1
1|1 101
2 2
3 4
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Asv = (4,3,2,1) and \ = (2,1, 1) fixed, the Littlewood-Richardson numbers X o

as |1 changes, are as follows:

Ap=1forp= (4,2),(3,3),(4,1,1),(3,1,1,1),(2,2,2) and (2,2,1,1)
cxp =3 forp=1(3,21)

5, =0 for all other p.
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CHAPTER 4

FLAG VARIETIES

4.1 Basics

We can generalize the results for Grassmannians that we established in Chapter 2.
Before moving into a more formal definition, we can picture it verbally. The general-
ization is called flag varieties, and they are basically defined as homogeneous spaces

whose points are flags.

Definition 4.1.1. Let V' = k™ where k is an algebraically closed field. A flag F in 'V
is
F:(0)=VpcVrcCc..CV,=V

such that dim(V;) = d;. The signature of a flag is defined to be the sequence

(dim(V1), dim(Va), ..., dim(V},)).

Let dy,ds, ..., d,,n be integers such that 0 < d; < dy < ... < d, < n. We define
F(dy,ds, ...,d.;n) to be the set of all possible flags in V' with signature (d1, ds, ..., d,., n).
F(dy,ds,...,d,;n) is called an r-step flag variety.

Example 4.1.2. If r = 1, then we have flag (0) C Vy, C V. But this exactly means
that F(dy;n) = G(dy,n).

Whenr = n—1, F(dy,ds, ..., d,;n) is called a full flag variety or complete flag variety.
Otherwise it is called a partial flag variety. One special case of partial flag varieties
is when r» = 2, which is called a 2-step flag variety. Important results have been es-
tablished for both partial varieties and 2-step varieties such as Coskun’s works [8} 9]

on Littlewood-Richardson Rule and many more. See [ 6, [7, 35, 51]].
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We can observe that F'(d,ds, ...,d,;n) is contained in G(dy,n) X ... X G(d,,n).
We have already seen in Example 3.1.2. that this is the case when r = 1, i.e.,

F(dy;n) = G(dy,n). For the general case, we have a canonical inclusion
O : F(dy,d,...,dy;n) — G(di,n) x ... x G(d,,n)
sending
F:VocWvic..CcV,— (W1, Va,..,V}).

Thus we can write the following:

F(dy,dy, ..., dy;n) = {(V1,Va, ... Vi) € [ [ Gldr,n) Vo C Vi C .. €V}

As we did in the previous chapter, we can endow a projective variety structure to
F(dy,ds, ...,d.;n) via Pliicker embedding. Since we saw the inclusion part, we need

to show that it is a closed subset.

Proposition 4.1.3. F'(dy,ds, ...,d.;n) is a Zariski closed subset of G(dy,n) X ... X
G(d,,n).

Proof. We already know that this is true when » = 1. Notice that
¢ F(dy,dy,...,d;n) — G(d,n) X ... x G(d,,n)
F AVt — (W, Ve, 1))
is an embedding. Consider the projection map
mij: G(di,n) x ... x G(d,,n) = G(d;,n) x G(d;,n)
forany 1 <i < j < r. Consider the restriction to F'(dy, ds, ..., d,;n). Then we have

O(F(dy,dy, ...dyin)) = [ 77} (7 (R(F(dy, da, ..., dy;m)))).
1<i<j<n

Since m; ;(®(F(dy,da, ..., dr;n))) = F(d;, d;; n), itis enough to show that F'(d;, d;; n)
is Zariski closed in G(d;, n) x G(d;,n) for i < j.

Now, let (U, W) € G(d;,n) x G(dj,n). Let {uy,us,...,u;} be a basis for U and
{wy,ws, ..., w;} be abasis for W. Let u = uy Aug A ... Au; and w = wy Awa A... Aw;.

As in the Grassmannian case, we have maps
i+1

gpu:V—>/\V
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and

J+1
pu: V= \V.
Direct sum of these maps will give us
i+1 j+1

pu®ew: Vo> AVe \V
and ker(p,, @ ¢,,) = U N W. Furthermore, by rank-nullity we have
rank(p, ® @u) =n —ker(p, ® gu) =n—dim(UNW) >n —i.

Thus, by Remark 2.3.4, ¢, ® ¢,, has rank at most n — 7 if and only if all (n — i +
1) x (n — i+ 1) minors vanish. So F'(d;,d;;n) can be defined by the zero locus of

the (n —i+ 1) x (n — 4+ 1) minors of the matrix ¢, & @,. [

As in the case of Grassmannians, those equations are not as simple as possible. We
can find finer polynomials such that they generate the homogeneous ideal defining the
flag varieties. To see this over 2-step flag varieties, let IV be an n-dimensional vector

space with basis {vy, ve, ..., v, } and let F'(dy, do; n) be a 2-step flag variety:
F(dy,do;n) = {(U,W) € G(dy,n) x G(da,n) | U C W}

Let {uy, ug, ..., ug, } and {wq, wo, ..., wq, } be bases for U and W, respectively. Since

we can see each Grassmannian G(dy, n), G(dy,n) in A” V and A” V, we can write
U ANug A ... Nug, = Zaivil N oA\ Vg,

wy ANwa N ..o N\ W, = Zajvh ARTNAN

where

i= {(i17i27'--aid1) I 1 S 'l.1 < '5.2 < ... < Z.dl S ’]’L}
j = {(j17j27"'7jd2) | 1 S jl < j2 < ... < de S TL}

are index sets. So the defining equations for F'(d;, dy; n) are given by

(ug Aug A oo Agy) - (wy Awg A oo A wg, )—

S (u Ao Awr A Awg A Aig,) - (g A A Awggr A A wg,) =0
forl < k <d,.
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In terms of homogeneous coordinates, we have the following quadratic equation:

Ti - Tj — g ryry =0

where i’ is obtained by changing first & indices of i with k indices of j by preserv-
ing the order. Thus the homogenous ideal of F'(d;,dy;n) is generated by the above

polynomials.
Let us see this over an example.

Example 4.1.4. Let V be a 4-dimensional vector space with basis {vy, vy, v3,v4}. Let

F(1,2;4) be a 2-step flag variety
F(1,2;4) ={(U,IW) € G(1,4) x G(2,4) | U c W}
where {uy} and {wy,w,} are bases for the subspaces U and W, respectively. Write
w = Y a;v; and wy A wy = Y b;jjv; Avj. Then
i<y

U1 A w1 A Wy = Z albg3 — a2b13 + agblg U1 A V2 N U3

a1b34 — a3b14 + a4blg U1 A V3 N V4

absy — agbag + agbaz)va A vs A vy

( )
Z(a1b24 - a2b14 + a4b12)U1 VAN (%) VAN V4
> )
> )

In order to have U C W, we need u; N\ wy N we = 0. So in terms of homoge-
neous coordinates, the homogeneous ideal of F'(1,2;4) is generated by the quadratic
equations T1xg3 — Tak13 + T3T12, T1T24 — T2T14 + TaZ1, T1T34 — T3T14 + T4T13,

ToT34 — T3To4 + T4To3. SO
F(1,2;4) = V(21293 — T2%13 + T3%12, T1T24 — Tol14 + T4T12,

T1T34 — T3T14 + T4T13, TaTas — T3Tog + T4To3).

In the general case, the concept is the same. For any partial flag variety F'(d;, da, ..., d,; n),

the defining quadratic equations are

(ur Aug A oo Ay) - (wg Awg A oo A wy)—

D (A Awr A Awg A At < (g, A A, Awggr A Awg) =0
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for1 <k < gqgandp < qin {dy,dy,...,d,}. Simirlarly, in terms of homogeneous

coordinates, we can write

Ti - Tj — E ryry =0

where
i= {(ilai%'-'aip) ‘ 1<ii<in<... < ip < n}
j = {(j17j27 ---7jq) ’ 1 S jl < j2 < ... < jq S 7’L}

Wlthp < q in {dl,dg, ...,dT}.

4.2 Cohomology of Flag Varieties

Cohomology of flag varieties is a generalization of the concept for the Grassmannian.
As we have seen above, Grassmannians are considered as a special case of flag va-
rieties. Since the Grassmannian G(d,n) = F(dy,ds, ...,d.;n) with r = 1 is a flag

variety, we can define the same structure for the flag varieties.
Let

F:0)=V,cWcCc..CcV,=V

be a complete flag such that dim(V;) = d;. Let {v1, vs, ..., v, } be a basis for V and a
basis for each V/ is the first ¢ elements of this basis, namely {v;, va, ..., v; }. Schubert
varieties for the r-step flag varieties are parametrized by the sequences S of integers
of length n with the integers 1, 2, ..., 7 4+ 1, where d; — d;_; of the entries are ¢. Given

that .S, is the ¢-th place in the sequence S, the Schubert variety is defined as follows

Ew(f) == {(Ul, ...,Ur> S F(dl, dT,TL> ’
dim(U; N V) > #{t | S, < i, t < j}}.

A basis for the cohomology of flag varieties is formed by the Poincare duals of the
classes of all Schubert varieties. For each Schubert class oy in G(d,n), there is a

special Schubert class ng) in F(d — k,d + k;n) given by
S = (U1, Us) | dim(Uy N Vyyon, ) > d =k — i, dim(Us N Vi_aysn,) > 5}
where 1 <:<n—dand1 <5 <d.
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As an alternative to the sequence notation, for the cohomology classes of the flag
varieties, we are going to introduce a similar notation to the one we used for Grass-
mannians. We can use a pair of sequences A, J of length d, where the sequence
A1 > ... > Ay, has the digit in the (n — d, + ¢ — \;)-th position less than r + 1.
Schubert classes of the r-step flag variety is denoted by aill”'.'.'.”id; where \;’s corre-
spond to the partition that is defining the d,-plane U, considered as Schubert class in
G(d,,n); whereas the upper 9;’s are recording the digits in the gth d, where the se-
quence A\; > ... > )y has the digit in the sequence w and J; are the integers between

1 and r, of which d; of them is 1, and d; — d;_, of them is 7.

Translation between the two notations is fairly easy. In order to form an integer
sequence of length n, put  + 1 to every position in the sequence except the (n — d,. +

J — Aj)-th position. For the (n — d, + j — A;)-th position, place d;.
With this notation, we can also define the Schubert varieties as follows:

S(F) = {(Uy,...,U,) € F(dy,...dy;n) |
dim(U; N Vi—a,1j-x,) > #{t < j | 6 < i}}.

Example 4.2.1. Let (0) = Vo, C V) C ... C Vo =V be a flag and let F(2,4;9) be a
2-step flag variety. In order to find the Schubert variety corresponding the sequence
1,3,3,2,3,3,1,3,2 in F(2,4,9), which can be expressed by aégig first we find the flag
elements that are needed for each U;. For Us, considering n — d, + j — A, those are
the flag elements V1, V,, V7, Vo. Then the flag elements for U, is determined by the
upper 0;’s which assign indexes to the flag elements that are less than or equal to 1.

Those are V', and V; Then the Schubert variety is the following:

S5t = {(U1, Ua) € F(2,4;,9) |dim(Us N V3) > 1, dim(Us N V) > 2
2

dim(UyNVy) > 1, dim(U; N'Vz) }.

Partial flag varieties have a long history of interest. In particular, their cohomology
rings have been studied in various ways. As there are many interpretations of LR
coefficients of the cohomology ring of the Grassmannians, it is quite natural to ask

whether there is a way to express the Littlewood-Richarson rule for the cohomology
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of partial flag varieties. Although there is no LR rule for an arbitrary partial flag vari-
ety, there are results for some cases. Recently Buch, Kresch, Purbhoo and Tamvakis
in [[7]] proved the famous puzzle conjecture of Knutson involving triple interctions for
two step flag varieties. 1. Coskun gave a geometric proof for two step flag varieties
and gave a geometric rule for computing the LR coefficients for partial flag varieties
(8, 9]

Apart from the classical cohomology of flag varieties, their quantum cohomology is
particularly a point of interest. There are many studies in this topic including [4], [S],

[L1O].
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CHAPTER 5

WRONSKI MAP

5.1 Definition and history

Historically, the Wronskian is a determinant that is used to find the dependency of the
solutions of differential equations. It is named after the Polish mathematician J6zef
Hoene-Wronski. For each d linearly independent polynomials of degree at most n,
the Wronskian assigns a non-zero polynomial of degree at most d(n — d). In other
words, if (f1, f2, ..., fa) are linearly independent polynomials of degree at most 7,

then their Wronski determinant is

h o fa
Wr(fi, fo, - fa) = hi f f
f1(d_1) 2(d—1) fcgd—n

where f! denotes the usual derivative and fi(dfl) is the d — 1-st derivative of the

polynomial f;.

It is quite clear from the basic rules of determinant that W (fi, fo,...fs) = 0 if and
only if the polynomials (fi, fo,...fq) are linearly dependent. Also, again from the
properties of the determinant operation, if we multiply the polynomials ( fi, fo, ... f4)
by a d x d matrix M, then the Wronskian is multiplied by det(M). These give
some insights why and how we can apply Wronskian to Grassmannians and projective

space.

We now give the precise relation of Wronskian with our topic of interest. Let FF[z]

be the polynomial ring over a field I, either R or C, and let FF,,[z] denote the n + 1-

41



dimensional vector space of polynomials of degree at most n:

Fulz] = {f(z) € Fl2] | deg(f(2)) < n}.
Let 0 < d < n. Let X = G(d,F,_1[z]) denote the Grassmannian of d-dimensional
subspaces of an n-dimensional subspace F,_;[z]. As we proved earlier, dimX =

d(n —d). Sofor U € X, U = span(fi, fo, ...f4), the Wronskian is

fi for o Ja

Wrhofofa) — | 0 2 T

d—1 d—1 d—1
R S

Calculating this determinant, we can see that the resulting is a polynomial of degree at
most d(n — d), let N = d(n — d). By above mentioned properties of the determinant,

the Wronskian gives a well-defined map
Wr: X — P(Fylz]).
This map is called the Wronski map. For each element z € X, we denote any

representative of Wr(x) in Fy[z] by Wr(z; 2). It is natural to say that a point z € X
is real if the subspace z in F,,_1[z] has a basis f1, fa, ..., fa € R,_1]z].

Proposition 5.1.1. The Wronski map is well-defined.

Proof. Let U € X be a d-dimensional subspace of Fx|[z]. Let {f1, fo, ..., fa} and
{91, 92, ---, ga} be bases for U. We can write every g; as follows:
g1=anf1+...+aafa
go = ag1f1+ ... + azqfa

9a = ag1 f1 + ... + aqafa

Thus, the coefficients of f;’s form a d x d matrix M that is basically the change of
basis matrix from { f1, fa, ..., fa} to {g1, 92, ..., ga}. Then under the Wronski map we

have
g1 92 9d ap; Gi2 ... aid Ji fo fa
% 9 - Gy | |az; a2 .. G M s 1
d—1 d—1 d—1 d—1 d—1 d—1
g§ ) gé ) . gc(l ) aqgr Qg2 ... Qgqq fl( ) f2( ) e c(l )
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So the Wronskian differs by the determinant of the change of basis matrix M. [ |

Example 5.1.2. Let us see how the Wronski map is applied over an example. Let C;|z]
be a vector space of polynomials of degree at most 3. Let G(2,C3[z]) = G(2,4) be
the Grassmannian of 2-dimensional subspaces of Cs|z]. Suppose a subspace U €

G(2, Cs[z]) is spanned by the polynomials { f1, f2}. We can write { f1, fa} as follows:

2 3
fl =ag+ a1z + asz” + asz

f2 = b[) + blz + b22’2 + b32’3
So the Wronskian of f, and f is

f1 fg ap + a1z + a222 + a323 bo + blz + 19222 + ng3

f{ fé a + 2&22 + 3(1322 bl + 2b22 + 3b322
= (Clobl — albo) + 2(@0[)2 — agbo)Z
+ (3(&0()3 — agbo) -+ CleQ — a2b1)22

+ 2(@1()3 — CL3b1)Z3 + (CLng — CL3b2)Z4

As we can see the resulting polynomial is of degree 4. Hence it lives in C4[z]. P(Cy[z])

has of dimension 4, which is the same as dim(G(2,4)).

The Wronski map appears in many applications. In 1983, Eisenbud and Harris in [17]

proved the following theorem:

Theorem 5.1.3. Wr: X — P(Cy|z2]) is a flat, finite morphism of schemes.

In 1995, B. and M. Shapiro conjectured about the reality problem of the fibre of
the Wronski map, later known as the Shapiro conjecture. There are many studies
about the Shapiro conjecture including [48]] in which the conjecture has been studied
extensively and presented with computational evidence. The conjecture has been
proved by Eremenko and Gabrielov for special cases in [21] and finally it was proved

by Mukhin, Tarasov and Varchenko in [40, 41]].

Theorem 5.14. If f(z) € R,,_1[z] is a polynomial with real roots, then every point
in the fibre Wr='(f(2)) is real and Wr=(f(2)) is reduced.
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Remark 5.1.5. When F = C, there is an easy formula to compute the degree of the
Wronski map. In order to compute the degree, we need to change the set up a little

bit. We will define the Wronski map as follows
Wr: Glm, Cpip1[2]) —> P(Coy )

It is clear that the dimensions of both G(m, C,,+,_1[2]) and P(C,,,[2]) are mp. Then

the degree of the Wronski map, i.e., the number of points in a fiber, is given by

¢ . (mpl-11-20..-(p—1)
Pl (m A1) (mp — D)

For a more detailed discussion, see [20)].
Remark 5.1.6. When p = 2, the number #%2 is the m-th Catalan number. See [25]].

Example 5.1.7. Considering the Example 5.1.2., in this setting we have m = 2 and

p = 2. So the degree of the Wronski map above is:

22 79131

It means that there are 2 points in the fiber Wr=1(g(2)) of the Wronski map.

Remark 5.1.8. Observe that the degree of the Wronski map is equal to the number
d
SYT(] )|- In the light of the

of standard Young tableaux of maximal partition, i.e,

example above, for G(2,4), the possible standard Young tableaux are the followings:

The Wronski map has been an interest on its own and with its relation to Grass-
mannians. In [44], Purbhoo studied the Wronski map, with Shapiro Conjecture, on
orthogonal Grassmannians OG(n,2n + 1) C G(n,2n + 1). Purbhoo came up with
a new geometric proof for the Littlewood-Richardson rule for OG(n,2n + 1). In
[20] Eremenko and Gabrielov studied the computation of degrees of the real Wronski

maps. In [30], they studied the congruences for the fibers of the Wronski map.

5.2 Relation with Schubert Calculus

We will recall some definitions from earlier in order to understand the relation better.

Let A denote the set of partitions whose diagrams fit inside d x (n — d) rectangle. Let
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A = (A1, Ag, ..., Ag) be an admissible partition. There is a one-to-one correspondence

between the partitions whose diagram fit inside the largest rectangle and subsets

of {1,...,n} with d-elements: for each partition A\ € A, we have
JA) ={i + Aanr—y [ 1 < j < d}.

Letz € X be a d-dimensional subspace spanned by the polynomials f(z), f2(2), ..., fa(2)
of C,,_1[z] whose Pliicker coordinates are [p(x)]xea. Pliicker coordinates p) () are
defined to be the maximal minors of the matrix A ;(\) with the column set .J(\) where
the matrix A;; = [277']fi(2) is a d x n matrix whose entries are the coefficients of

the polynomials f;(z).

In [42]], Purbhoo showed that the Wronskian can be expressed in terms of Pliicker

coordinates:

Proposition 5.2.1. The Wronskian Wr(x; ) is (up to a scalar multiple) given explic-

itly in terms of the Pliicker coordinates of x by

Wr(x;z) = Z gpa ()2,
AeA

where q, is the Vandermonde determinant

1 1
ki e kg
D= . ME | RO
. . 1§7,'<de
[

and k’j = j + )\d+1,j.
Let us now define the Schubert cells and Schubert varieties. For each a € CP!, let F
be a flag in C,,_1[z]:

f(a): {O} C Fl(a) C FQ(CL) C...C anl(a) C (Cnfl[Z].

If a € C, then
Fi(a) = (z+a)"'C[z] N C,,_1[2]

is the set of polynomials in C,,_;[z] that are divisible by (z + a)"*. Let A be the

set of partitions whose diagrams fit inside a d X (n — d) rectangle and let J(\) be as
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above. Then for every A € A, the Schubert cell relative to the flag F(a) is

Xi(a)={x e X | dim(zNFij(a)) =|JAN)N{n—i+1,....,n}}

The Schubert variety is the closure of the Schubert cell, i.e., X (a) = X} (a). Codi-
mension of X (a) is |A|. If the codimension is 1, i.e., A = [J, then Xy(a) is called a

Schubert divisor.

There is a strong connection between the roots of the Wronskian and the Schu-
bert varieties. In the beginning of the chapter, we said that we will use the nota-
tion Wr(x; z) for the Wronskian as the representative of Wr(z) in Cy[z]. Now
we are going to elaborate why this notation makes sense. If Wr(z;z) has degree
strictly less than N, then we say that N — deg(Wr(x;z)) many roots are at in-
finity. If Wr(z;z) = Hle(z + a;), then the roots of Wr(z; —z) form a multiset

m(x) = {ai,as,...,an} where ax,; = ... = ay = 0 if k < N.

Theorem 5.2.2. Let v € X be a closed point, a € CP', and k > 0 an integer. Then
a € 7(x) with multiplicity at least k if and only if © € X, (a) for some \ b k.

Proof. See [42]. [ |

In this context, we denote the fibers of the Wronski map Wr at the point [[ (z+a;)
a;F#oo

as
X(a)=n"'a)={r e X | n(r) =a}
where a = {a;, as, ...,ax} C CP' is a multiset.

Mukhin, Tarasov and Varchenko in [40, 41]] proved the following theorem concerning

the reality of the intersections of the Schubert varieties:

Theorem 5.2.3. If a1, as, ..., ar € RP' are distinct real points, and M\, \s, ..., \j, are

partitions with |\1| + |X2| + ... + |\¢| = dim/(X), then the intersection
X,\l(al) N X)\2<CL2) n...N X;W(ak)

is finite, transverse and real.
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5.3 A Problem

As we have seen that the fibers of the Wronski map are widely studied in many ways.
A further question that may lead to an interesting results is the following: Suppose
we have a base Grassmannian G(ds, n). For each point x € G(dy,n), we can con-
sider another Grassmannian G(dy,dy). In the general picture, we are looking at a
2-step flag variety F'(dy,ds,n). At first, we would like to keep the base Grassman-
nian G(dz, n) unchanged. We know that each = € G(d, dy) is sent to the projective
space P(Cg, (4,—a,)[2]) via the Wronski map. Consider the projective bundle £ over
the Grassmannian G(ds,n). For an open cover {U; } for the Grassmannian G(ds, n),
Ey, will look like U; x P, for some . We would like to define a map from the the
Grassmannian G/(d;, ds) to the projective bundle over the Grassmannian G/(ds, n) via
the Wronski map. This bundle £ can be studied further in the sense that whether it is

uniform or not.

In general, vector bundles, in particular uniform vector bundles, over the Grassman-
nian are widely studied. It is proved by Grothendick in [27] that any vector bundle on
a projective line over an algebraically closed field splits as a direct sum of lines bun-
dles. While this is the case for 1-dimensional projective spaces, i.e. projective lines,
when the dimension is 2 or higher, it is more difficult to give such classification. More

details about uniform vector bundles on flag varieties can be found in 15,46, 47,152

Furthermore, we know that we can cover the Grassmannian with affine charts. If we
change the fixed affine chart for the base Grassmannian G(dz, n), how would it affect
the Grassmannian G(d;, dy) and how the image of the Wronski map is affected by

such a change?
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