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ABSTRACT

COMPUTATIONAL MODELING OF SELF-ASSEMBLY IN DEFORMABLE
BODIES

Koçak, Bilgin

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

September 2021, 113 pages

Self-assembly is a process in which an irregular system transforms into a regular pat-

tern or an organized structure through local interactions between the components of

the material without any external influence. Therefore, self-assembly has great poten-

tial in the synthesis and manufacture of new materials. Although the main focus in the

literature is mostly on self-assembly at the molecular level, there are many exciting

applications of the self-assembling processes at larger scales. Space and time-varying

patterns are described by various classes of spatio-temporal partial differential equa-

tions. The reaction-transport problems constitute one of these classes that employs

the Cahn-Hilliard-type equation, also originally a fourth-order transport equation, for

patterning. This study is concerned with the effect of mechanical stresses on the gen-

erated pattern in a self-assembling process. For mechanics, both finite elasticity and

viscoelasticity are considered. To this end, the Cahn-Hilliard equations are solved

together with the conservation equation of the linear momentum. The finite element

method is used to solve the coupled partial differential equations. It is anticipated

that the coupling with mechanics will open up possibilities for the design of new ma-

terials and lead to novel experiments for various kinds of self-assembly. Numerous
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representative numerical examples are presented to illustrate the characteristics and

physics of the coupled and decoupled phase separation and self-assembly problems.

Keywords: Self-assembly, Cahn-Hilliard equation, (Visco-)elasticity, Finite element

method, Phase separation
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ÖZ

ŞEKİL DEĞİŞTİREBİLEN CİSİMLERDE KENDİLİĞİNDEN
YAPILANMANIN HESAPLAMALI MODELLENMESİ

Koçak, Bilgin

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Eylül 2021 , 113 sayfa

Kendiliğinden yapılanma, düzensiz bir sistemin, herhangi bir dış etki olmaksızın,

malzemenin bileşenleri arasındaki yerel etkileşimler yoluyla düzenli bir örüntü veya

organize bir yapıya dönüştüğü bir süreçtir. Bu nedenle kendiliğinden yapılanma, yeni

malzemelerin sentezinde ve üretiminde büyük bir potansiyele sahiptir. Literatürdeki

çalışmaların çoğu moleküler düzeydeki kendiliğinden yapılanma üzerine odaklansa

da, kendiliğinden yapılanma işlemlerinin daha büyük ölçeklerde birçok heyecan ve-

rici uygulaması vardır. Konum ve zamanla değişen örüntüler, çeşitli uzay-zaman kısmi

türevsel denklem sınıfları tarafından açıklanmaktadır. Tepkime-taşıma problemleri

modelleme için, asıl olarak dördüncü dereceden bir taşıma denklemi olan ve Cahn-

Hilliard türü denklemi kullanan bu sınıflardan birini oluşturur. Bu çalışma, kendiliğin-

den yapılanma sürecinde mekanik gerilmelerin oluşturulan örüntü üzerindeki etkisini

konu almaktadır. Mekanik davranışta hem elastisite hem de viskoelastisite dikkate

alınmaktadır. Bu amaçla Cahn-Hilliard denklemleri doğrusal momentumun korunum

denklemi ile birlikte çözülmüştür. Birleştirilmiş kısmi türevsel denklemleri çözmek

için sonlu elemanlar yöntemi kullanılmaktadır. Mekanikle bağlaşık çeşitli kendili-
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ğinden yapılanma problemlerinin yeni malzemelerin tasarımına olanaklar yaratacağı

ve yeni deneylere yol açacağı ön görülmektedir. Bağlaşık ya da ayrık faz ayrımı ve

kendiliğinden yapılanma problemlerinin özelliklerini ve fiziğini göstermek için çok

sayıda temsili sayısal örnek sunulmaktadır.

Anahtar Kelimeler: Kendiliğinden yapılanma, Cahn-Hilliard denklemi, (Visco-)elastisite,

Sonlu elemanlar yöntemi, Faz ayrılması
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

From the invention of the wheel to cannonballs to aircraft design, the shape and ge-

ometry of a product have great importance. If we look at the situation from the ma-

terial side, the shapes of the molecules can give the material different properties [2].

The unique and complex nanostructure of the materials will give those materials very

interesting properties such as optical tunability [3, 4]. It is exciting to design new ma-

terial structures and produce new materials by considering the concepts of geometry

and shape [5]. Moreover, shape is important in self-assembly since it helps to rec-

ognize particle [6], it assists in determining the structure and density of the particle

packings [7, 8, 9, 10, 11], and it can ease the bindings from ligand molecules [12, 13].

The self-assembly is generally defined as the natural formation of a certain three-

dimensional geometry by molecules under a certain condition [14]. Therefore, self-

assembly represents a thermodynamic process. The organized structure is obtained

by the transition of the system towards its minimum free energy state [15]. The for-

mation of micelles fits the self-assembly scheme, and it is maybe one of the most

studied systems in the self-assembly topic. Also, this may be the first studied topic in

the context of self-assembly. To give a thermodynamic explanation for this system,

it starts from the equilibrium between surfactant micelles and surfactant molecules

[14]. The formation of micelles is often called surfactant self-assembly. Surfactant

self-assembly is the self-assembly of surfactant molecules in a solvent. Thus, it can

form different types of aggregate structures. Some of these aggregate structures are

spherical micelle, cylindrical micelle, bilayer, bicontinuous bilayer, reverse cylindri-
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cal micelle, and reverse spherical micelle. General schema [1] is depicted in Figure

1.1. Generally, surfactant molecules have two separate parts. Those are hydrophilic

and hydrophobic. The hydrophilic part has an affinity towards the water, and the

hydrophobic part stays away from water. The surfactant self-assembly is well formu-

lated in the 1970s [16].

Figure 1.1: General schema for surfactant self assembly [1]

The surfactant self-assembly formulation is successfully applied to the self-assembly

of amphiphilic polymers, which is similar to the surfactant self-assembly [17]. One

example of amphiphilic polymers is block copolymers. The self-assembly formula-

tions are useful to predict the characteristic behavior such as micelle size and aggre-

gation number.

There are many examples of the self-assembly phenomena in nature, and those exam-

ples are not limited to surfactant self-assembly. The self-assembly of dendritic poly-

mers [18], the formation of metal and semiconductor that is due to the self-assembly

of atoms [19], protein folding [20], producing virus [21], and fabricating a nanos-

tructure [22] are examples of self-assembly which have an association unit different

than surfactant molecule. Therefore, self-assembly covers a wide range of association

units.
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According to the size of association units, self-assembly is mainly classified as atomic,

molecular, and colloidal self-assembly. Polymeric self-assembly is considered as

molecular self-assembly. In addition to these, the self-assembly process can occur

in a biological system or interface. Biological systems are intriguing because many

self-assembly processes occur. Therefore, self-assembly is classified according to the

system where it occurs. Biological and interfacial self-assembly is an example for

this classification. These classifications are illustrated in Figure 1.2.

Figure 1.2: Classification of the self-assembly phenomenon

Materials science has greatly improved thanks to two different material design con-

cepts. These concepts are self-assembly [23, 24] and responsive matter [25, 26].

The responsive materials assist in the transport of ions and molecules and can change

their adhesion properties with environmental stimuli [27]. Furthermore, it can trans-

form chemical signals into electrical, thermal, optical, and mechanical signals. It

can also do the opposite of these signal conversions. The responsive matters can be

used in areas such as drug delivery [28, 29, 30], diagnostics, tissue engineering [31],

biosensors and bio-applications [32, 33].

In this thesis, we mainly focus on the self-assembly process, specifically the self-

assembly of block copolymers. That is an important research area since it offers

a variety of morphologies such as spheres, cylinders, bicontinuous structures, vesi-

cles, and lamellae [3]. These morphologies have many practical applications in many
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fields such as biomedicine, biomaterials, microelectronics, photoelectric materials,

catalysts [34, 35, 36, 37]. In literature, modeling of self-assembly is done mostly at

the molecular level. However, in literature, there are some studies to model the self-

assembly of block copolymer using the Cahn-Hilliard equations at the large scales

[38, 39]. In addition to this, [40] and [41] couple the Cahn-Hilliard equation with

mechanics. In this thesis, we combined these studies. Then, we investigate the effects

of mechanics on the self-assembly process.

1.2 Scope of Thesis

In this study, we deal with modeling the self-assembly of block copolymer using

the Cahn-Hilliard equations and couple these equations with the conservation of the

linear momentum equation. The detail of the models is in the following chapters. The

aim of the thesis is to add the contribution of modeling of self-assembly considering

the mechanical stresses at the continuum scale to the literature.

Unless otherwise stated, FEniCS is used in order to solve all problems in this thesis.

FEniCS is a open-source computing platform for solving partial differential equations

(PDEs) using finite element method [42]. These solutions are mostly obtained using

the Google Colab. Google Colab provides the ability to run python codes in the cloud

[43]. Moreover, the Backward-Euler method is used for the time discretization for all

problems. For visualizations of the solutions in this thesis, Paraview is used [44].

1.3 Contributions and Novelties

Our contributions are as follows:

• We add an extra interface stretch coupling term, which is different from volu-

metric swelling in the coupling of the Cahn-Hilliard equation and finite elastic-

ity. The details of the term are in Chapter 3.

• We contribute to the literature by adding the coupling of the Cahn-Hilliard

equation and finite viscoelasticity.
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• We consider the self-assembly with the effect of finite viscoelasticity at the

continuum scale.

1.4 Outline of Thesis

In Chapter 2, the Cahn-Hilliard equation is derived through the Ginzburg-Landau

free energy functional. Furthermore, different types of the Cahn-Hilliard equations

are presented, such as the Cahn-Hilliard-Oono equation, the Cahn-Hilliard equation

with the proliferation term and the fidelity term. Numerous numerical examples are

also presented to illustrate the behavior of the Cahn-Hilliard equation.

In Chapter 3, the Cahn-Hilliard equation is solved together with the conservation

equation of linear momentum. Volumetric deformation is selected as a coupling pa-

rameter.

Chapter 4 is devoted to the modeling of self-assembly via two coupled Cahn-Hilliard

equations.

In Chapter 5 we combined the self-assembly process with the mechanics. For me-

chanics, we have examined the case considering finite viscoelasticity.

In Chapter 6, concluding remarks regarding the obtained results and the future works

are provided.
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CHAPTER 2

CAHN-HILLIARD EQUATION

2.1 Cahn-Hilliard Equation

The Cahn–Hilliard (CH) equation was proposed by Cahn and Hilliard in order to

model phase separation process in binary solution [45, 46, 47, 48]. The fourth-order

Cahn-Hilliard equation is expressed as

∂c

∂t
= div

(
M∇x

(
f ′(c)− ε∇2

xc
))

(2.1)

where c is the concentration/order parameter, M is the mobility tensor, f(c) denotes

local free energy per unit volume, ε is the surface parameter and t is time.

Moreover, div and∇x denote the divergence and gradient operators through the spa-

tial position x. Note that f ′(c) := df(c)
dc

2.1.1 Derivation of Cahn-Hilliard Equation

Before we outline the derivation of the Cahn-Hilliard equation, let us derive the mass

transport equation.
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2.1.1.1 Derivation of Mass Transport Equation

Figure 2.1: The mass conservation over the domain B

Π is a source term that represents the number of particles created per unit volume per

unit time due to a chemical reaction. j is the flux vector that represents number of

particle leaving per unit surface area per unit time. The mass conservation equation

is expressed as

summation of mass |in − summation of mass |out

+


generation

or depletion

by chemical reaction

 = rate of mass [49]
(2.2)

The concentration field, c(x, t) is defined as the number of particles per unit volume;

that is,

c := lim
∆V→0

∆N

∆V

where N is the number of particles and V is the volume. The mathematical form of

Equation (2.2) can then be written as follows

d

dt

∫
B
cdV =

∫
B

ΠdV −
∫
∂B

j · ndA (2.3)

where n is the unit normal vector of the surface of body.
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By using the Gauss Divergence theorem, (2.3) can be written as follows.

∫
B

∂c

∂t
dV =

∫
B

ΠdV −
∫
B

div jdV (2.4)

∫
B

(
∂c

∂t
− Π + div j

)
dV = 0 (2.5)

Through localization, we obtain the local mass balance equation.

∂c

∂t
− Π + div j = 0 in B × (0, T ] (2.6)

where B and (0, T ] represent the spatial and time domain respectively.

The Cahn-Hilliard equation can then be derived as follows. Consider the following

free energy functional, which is called Ginzburg–Landau free energy:

ΨB(c,∇xc) =

∫
B
ψ̂B(c,∇xc)dV =

∫
B

( ε
2
|∇xc|2 + f(c)

)
dV (2.7)

where |.| denotes the Euclidean norm and B ⊂ Rn with n =1,2, or 3, is the spatial

domain. Then, the chemical potential µ is defined as the variational derivative of

ψ̂B(c,∇xc).

µ :=
δψ̂B
δc

= −ε∇2
xc+ f ′(c) (2.8)

Note that the variational derivative defined as

δf(y,∇xy)

δy
:= ∂yf(y,∇xy)− div [∂∇xyf(y,∇xy)] (2.9)

and ∇2
x(•) := div (∇x(•)). The mass balance equation without source term is

∂c

∂t
= −divh (2.10)
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where h is the mass flux vector [50] which is related to the chemical potential µ by

the following constitutive equation. h = j

h = −M∇xµ (2.11)

When Equation (2.8) is inserted in Equation (2.11) and Equation (2.11) is inserted

into Equation (2.10), we obtain the Cahn-Hilliard equation.

∂c

∂t
= div

(
M∇x(f ′(c)− ε∇2

xc)
)

(2.12)

2.1.2 Cahn-Hilliard Problem

In order to solve the Cahn-Hilliard equation, we need to specify boundary conditions,

an initial condition, and a local free energy function. We can write Cahn-Hilliard

problems as follows.

∂c

∂t
− div M

(
∇x

(
f ′(c)− ε∇2

xc
))

= 0 in B (2.13a)

M
(
∇x

(
f ′(c)− ε∇2

xc
))
· n = 0 on ∂B, (2.13b)

εM∇xc · n = 0 on ∂B. (2.13c)

c = c0 in B at t = 0 (2.13d)

Equations (2.13b) and (2.13c) show the flux free boundary condition for chemical

potential and concentration, respectively.

2.1.3 Solution of Cahn-Hilliard Problem by using C0 elements

First, we need to split the Cahn-Hilliard equation into two second-order partial dif-

ferential equations. Because this is a fourth-order partial differential equation and

casting it in a weak form would result in the presence of second-order spatial deriva-

tives. Therefore, we can not solve it by standard Lagrangian finite element basis since

it consists of C0 elements. The problem must be rephrased by two coupled second-

order partial differential equations.
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Substituting Equation (2.8) to Equation (2.12), we obtain the Cahn-Hilliard equation

as splited two second-order coupled partial differential equations [51]:

∂c

∂t
= div(M∇xµ)

µ = f ′(c)− ε∇2
xc

(2.14)

Generally the Cahn-Hilliard Problem has fully homogeneous Neumann boundary

conditions. Using Equation (2.8), we get boundary conditions as following form

(M∇xµ) · n = 0 on ∂B,

εM∇xc · n = 0 on ∂B.
(2.15)

Simplify Equation (2.15) to obtain

∇xµ · n = 0 on ∂B,

∇xc · n = 0 on ∂B.
(2.16)

Then the strong form of problem becomes:

∂c

∂t
− div(M∇xµ) = 0 in B (2.17a)

µ− f ′(c) + ε∇2
xc = 0 in B (2.17b)

∇xµ · n = 0 on ∂B, (2.17c)

∇xc · n = 0 on ∂B. (2.17d)

c = c0 in B at t = 0 (2.17e)

To solve this problem with the finite element method, it is needed to obtain the weak

form of partial differential equations.

Multiply Equation (2.17a) with the test function v

∂c

∂t
v − div(M∇xµ)v = 0 (2.18)
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with

v ∈ V0 (2.19)

V and V0 are the function spaces and defined as below.

V =
{
v : ‖v‖L2(B) + ‖∇xv‖L2(B) <∞

}
(2.20)

V0 = {v ∈ V : v|∂B = 0} (2.21)

Integrate Equation (2.18) over the domain B,∫
B

∂c

∂t
vdV −

∫
B

div(M∇xµ)vdV = 0 (2.22)

By using integration by parts, we can write the second term of Equation (2.22),∫
B

div(M∇xµ)vdV =

∫
B

div(M∇xµv)dV −
∫
B
(M∇xµ) · ∇xvdV (2.23)

According to the divergence theorem, the first-term on the right side of Equation

(2.23) becomes:

∫
B

div(M∇xµv)dV =

∫
∂B
vM∇xµ · ndA (2.24)

This term vanishes due to the Neumann boundary condition in Equation (2.17c).

∇xµ · n = 0 on ∂B (2.25)

∫
B

div(M∇xµv)dV = 0 (2.26)

Therefore, Equation (2.24) becomes∫
B

div(M∇xµ)vdV = −
∫
B
(M∇xµ) · ∇xvdV (2.27)
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Substituting the result in Equation (2.27) into Equation (2.22), we get the weak form

of Equation (2.17a)∫
B

∂c

∂t
vdV +

∫
B
(M∇xµ) · ∇xvdV = 0 ∀v ∈ V0 (2.28)

Also, we need the weak form of Equation (2.17b). To obtain that, multiply Equation

(2.17b) by the test function q.

q ∈ V0 (2.29)

µq − f ′(c)q + ε∇2
xcq = 0 (2.30)

Integrate Equation (2.30) over the domain B,∫
B
µqdV −

∫
B
f ′(c)qdV +

∫
B
ε∇2

xcqdV = 0 (2.31)

By using integration by parts, we can write last term of Equation (2.31),∫
B
ε∇2

xcqdV =

∫
B
ε div(∇xcq)dV −

∫
B
ε∇xc · ∇xqdV (2.32)

Similarly, by the divergence theorem, the first term on the left side of Equation (2.32)

becomes:

∫
B
ε div(∇xcq)dV =

∫
∂B
ε∇xc · nqdA = 0 (2.33)

Since∇xc · n = 0 on ∂B

∫
B
ε∇2

xcqdV = −
∫
B
ε∇xc · ∇xqdV (2.34)

Then weak form of Equation (2.17b) becomes

∫
B
µqdV −

∫
B
f ′(c)qdV −

∫
B
ε∇xc · ∇xqdV = 0 ∀q ∈ V0 (2.35)

The weak form of the Cahn-Hilliard problem is then given by

13



Find c ∈ V and µ ∈ V such that

∫
B

∂c

∂t
vdV +

∫
B
(M∇xµ) · ∇xvdV = 0 ∀v ∈ V0 (2.36a)∫

B
µqdV −

∫
B
f ′(c)qdV −

∫
B
ε∇xc · ∇xqdV = 0 ∀q ∈ V0 (2.36b)

c = c0 in B at t = 0 (2.36c)

This system of equations is nonlinear since f ′(c) in (2.36b) has nonlinear terms of c.

To solve it, we need to linearize the problem [52]. There are many methods to lin-

earize the Cahn-Hilliard problem, such as the Eyre’s method (EY) [53], the Optimal

dissipation method (OD2) [54], the Wu-Van Zwieten-Van der Zee’s method (WVV)

[55], and the Linear splitting method (LS) [38]. However, we will use Newton’s

Method to linearize the problem. Before linearization, we need to create a mixed-

function space to obtain a monolithic solution.

Define u = (c× µ), u ∈ (V × V ) and w = (v × q), w ∈ (V0 × V0). In other words,

u is a function of the mixed function space and w is the test function of the mixed

function space.

F(u,w) =

∫
B

∂c

∂t
vdV +

∫
B
(M∇xµ) · ∇xvdV

+

∫
B
µqdV −

∫
B
f ′(c)qdV −

∫
B
ε∇xc · ∇xqdV

∀(v × q) ∈ (V0 × V0)

(2.37)

Find u = (c× µ) ∈ (V × V ) such that

F(u,w) = 0 ∀(v × q) ∈ (V0 × V0) (2.38a)

c = c0 in B at t = 0 (2.38b)
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2.1.3.1 Linearization of Weak Form of Cahn-Hilliard Equations

Let us assume the solution of the problem (2.38) is u = u0 + δu. Through the Taylor

series expansion of F(u,w) = F(u0 + δu, w) around u0 we have

F
(
u0 + δu

)
= F

(
u0
)

+
δF
δu

(
u0
)
δu+O

(
δu2
)

(2.39)

Neglecting all terms quadratic in δu, we end up with a linear equation.

Find δu ∈ (V × V ) such that

F
(
u0 + δu

)
≈ F

(
u0
)

+
δF
δu

(
u0
)
δu = 0 (2.40)

Solving Equation (2.40), for δu we obtain

δu = −J −1F
(
u0
)

(2.41)

where

J :=
δF
δu

(
u0
)

(2.42)

Once we have solved Equation (2.41) for δu, we then iterate with the Newton-Galerkin

method for new solution guess.

2.1.3.2 Finite Element Approximation

LetK be a triangulation ofB and Vh be the space of continuous piece-wise linear basis

functions on K. Replacing V with Vh, we obtain the finite element approximation.

Vh,0 = {v ∈ Vh : v|∂B = 0} (2.43)
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F(uh, w) =

∫
B

∂ch
∂t

vdV +

∫
B
M∇xµh · ∇xvdV

+

∫
B
µhqdV −

∫
B
f ′(ch)qdV −

∫
B
ε∇xch · ∇xqdV

∀(v × q) ∈ (Vh,0 × Vh,0)

(2.44)

Therefore, the discretized problem becomes

Find uh = (ch × µh) ∈ (Vh × Vh) such that

F(uh, w) = 0 ∀(v × q) ∈ (Vh,0 × Vh,0) (2.45a)

ch = c0 in B at t = 0 (2.45b)

After linearization of the discretized form,

Find δuh ∈ (Vh × Vh) such that

F
(
u0
h + δuh, w

)
≈ F

(
u0
h, w

)
+
δF
δuh

(
u0
h, w

)
δuh = 0 (2.46)

where

J (δuh, w) =
δF
δuh

(
u0
h

)
(δuh, w) (2.47)

The discretized and linearized residual is

r (w) = F(u0
h, w) (2.48)

The solution of the linear equation is expressed as

δuh = −J (δuh, w)−1 r (w) (2.49)

Both spaces Vh and Vh,0 have the same basis functions. Since δuh ∈ Vh andwh ∈ Vh,0,

we can write them as the linear combination of the basis functions of the space Vh.
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δuh =

ni∑
j=1

djϕj (2.50a)

wh =

ni∑
i=1

ϕi (2.50b)

where dj , j = 1, 2..., ni are ni unknown components to be determined, ni repre-

sent the number of unknown components. ϕj , j = 1, 2..., ni are the basis functions

spanning the space Vh

Inserting equations (2.50) into (2.47), we get

Jij = A

{
J

(
ni∑
j=1

djϕj,

ni∑
i=1

ϕi

)}
(2.51)

where Jij are the entries of J that is the ni × ni Jacobian matrix. Furthermore, note

that A denotes assembly operator.

ri = A

{
r

(
ni∑
i=1

ϕi

)}
(2.52)

where r is the ni × 1 so-called residual vector. In matrix form we write

Jd = −r (2.53)

The algorithm of the Newton-Galerkin Method for the Cahn-Hilliard equation is pre-

sented in Algorithm 1.
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Algorithm 1 NEWTON-GALERKIN METHOD FOR THE CAHN-HILLIARD EQUA-

TION FOR ONE TIME-STEP

1: Choose a starting guess u(0)
h ∈ (Vh x Vh) and desired tolerance tol.

2: for k= 0,1,2... do

3: Assemble the Jacobian matrix J (k) and the residual vector r(k) with entries

J
(k)
ij = A

{
J

(
ni∑
j=1

djϕj,

ni∑
i=1

ϕi

)}

r
(k)
i = A

{
r

(
ni∑
i=1

ϕi

)}
4: Solve the linear system.

Jd = −r

5: Set u(k+1)
h = u

(k)
h + δu

(k)
h , where δu(k)

h =
∑ni

j=1 djϕj

6: if
∥∥∥δu(k)

h

∥∥∥ < tol then

BREAK

endif

7: endfor
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2.1.4 Solution of Cahn-Hilliard Problem by using C1 elements

Recall the Cahn-Hilliard problem:

∂c

∂t
− div

[
M
(
∇x

(
f ′(c)− ε∇2

xc
))]

= 0 in B (2.54a)

M
(
∇x

(
f ′(c)− ε∇2

xc
))

= 0 on ∂B, (2.54b)

ε(M∇xc) · n = 0 on ∂B. (2.54c)

Multiply (2.54a) by the test function φ ∈ H2 to obtain the weak form of the fourth-

order Cahn-Hilliard equation. H2 is the Hilbert space of functions with square-

integrable second derivatives. Note that, the Hilbert space is a vector space that has

norm definition by the inner product [56].

(
∂c

∂t
, φ

)
=
(
div M∇x(f ′(c)− ε∇2

xc), φ
)

(2.55)

For simplicity, the interior and boundary inner products are used instead of integral

form. We define the interior and boundary inner products as:

(A,B) :=

∫
B

A : BdV (2.56a)

〈A,B〉 :=

∫
∂B

A : BdA, (2.56b)

Integrate by parts,

(
div M[∇x(f ′(c)− ε∇2

xc)], φ
)

=
(
div
(
M∇x(f ′(c)− ε∇2

xc)φ
)
, 1
)

−
((

M∇x(f ′(c)− ε∇2
xc)
)
,∇xφ

) (2.57)

Using the divergence theorem, the first term in (2.57) can be written as

(
div
(
M∇x(f ′(c)− ε∇2

xc)φ
)
, 1
)

=
〈
M∇x(f ′(c)− ε∇2

xc) · n, φ
〉

= 0
(2.58)
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Due to boundary condition in (2.54b), Equation (2.58) vanishes. When we insert

(2.58), (2.57) into (2.55), we arrive at

(
∂c

∂t
, φ

)
= −

((
M∇x(f ′(c)− ε∇2

xc)
)
,∇xφ

)
= −

((
∇x(f ′(c)− ε∇2

xc)
)
,MT∇xφ

) (2.59)

since M is space-invariant. We can integrate the last term in (2.59) by parts once

more.

((
∇x(f ′(c)− ε∇2

xc)
)
,MT∇xφ

)
=
(
div((f ′(c)− ε∇2

xc)M
T∇xφ), 1

)
−
(
(f ′(c)− ε∇2

xc), div
(
MT∇xφ

)) (2.60)

The second term in (2.60), can be decomposed into the following two terms

(
div((f ′(c)− ε∇2

xc)M
T∇xφ), 1

)
=
(
div((f ′(c))MT∇xφ), 1

)
−
(
div((ε∇2

xc)M
T∇xφ), 1

) (2.61)

By using the product rule, the second term in (2.61) becomes

(
div((f ′(c))MT∇xφ), 1

)
=
(
(∇x(f ′(c))),MT∇xφ

)
+
(
f ′(c), div MT∇xφ

)
(2.62)

Using the divergence theorem, the last term in (2.61) can be written as

(
div((ε∇2

xc)M
T∇xφ), 1

)
=
〈
ε∇2

xc, (M
T∇xφ) · n

〉
(2.63)

Inserting the result in (2.62) and (2.63) into (2.61), we obtain

(
div((f ′(c)− ε∇2

xc)M
T∇xφ), 1

)
=
(
(∇x(f ′(c))),MT∇xφ

)
+
(
f ′(c), div MT∇xφ

)
−
〈
ε∇2

xc, (M
T∇xφ) · n

〉
(2.64)

20



Substituting Equation (2.64) into (2.60), we get

((
∇x(f ′(c)− ε∇2

xc)
)
,MT∇xφ

)
=
(
(∇x(f ′(c))),MT∇xφ

)
+
(
f ′(c), div MT∇xφ

)
−
〈
ε∇2

xc, (M
T∇xφ) · n

〉
−
(
(f ′(c)− ε∇2

xc), div MT∇xφ
)

(2.65)

If we simplify Equation (2.65)

((
∇x(f ′(c)− ε∇2

xc)
)
,MT∇xφ

)
=
(
∇x(f ′(c)),MT∇xφ

)
+
(
ε∇2

xc, div MT∇xφ
)

−
〈
ε∇2

xc, (M
T∇xφ) · n

〉
(2.66)

As we insert Equation (2.66) into (2.59), we obtain the weak form of the Cahn-

Hilliard equation

(
∂c

∂t
, φ

)
= −

(
∇x(f ′(c)),MT∇xφ

)
−
(
ε∇2

xc, div MT∇xφ
)

+
〈
ε∇2

xc, (M
T∇xφ) · n

〉 (2.67)

Therefore, the integral form of the Equation (2.67) becomes

∫
B

∂c

∂t
φdV = −

∫
B
∇xf

′(c) ·MT∇xφdV −
∫
B
ε∇2

xc div MT∇xφdV

+

∫
∂B
ε∇2

xc(M
T∇xφ) · ndA

(2.68)

Note that this weak form can also be used for higher continuity elements than C1 such

as C2 elements.

2.1.5 Other Models For Phase Separation

In this part, other models that can be used to model the phase separation phenomenon

are presented.
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2.1.5.1 Allen-Cahn Equation

The moving interface problem is a special type of the initial boundary-value problem.

Two-phase problems in fluid dynamics, the interaction between crystals in solids,

and the phase transition problems for alloys in materials science are examples of

the moving interface problem. Phase-field methods are used in solving the moving

interface problem.

This equation has been extensively used to study various physical problems, such as

image segmentation, crystal growth, and mean curvature flows [57].

ct −∇2
xc+

1

ε2
f(c) = 0, (x, t) ∈ B × (0, T ]

∇xc · n = 0

c(x, 0) = c0

(2.69)

Weak Form

∫
B
ctvdV +

∫
B
∇xc · ∇xvdV +

∫
B

1

ε2
f(c)vdV = 0, v ∈ V (2.70)

where f(c) generally has the following form

f(c) = c3 − c (2.71)

2.1.5.2 Cahn-Hilliard-Oono Equation

The initial and boundary value problem in (2.72) known as the Cahn–Hilliard–Oono

equation [58].
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∂c

∂t
+ βc = ∆µ, β ≥ 0 (2.72a)

µ = −∇2
xc+ f ′(c) (2.72b)

∇xc · n = ∇xµ · n = 0, on ∂B (2.72c)

c(x, 0) = c0 in B (2.72d)

The Cahn-Hilliard-Oono equation is an extended version of the Cahn-Hilliard equa-

tion since it has an extra term. When β = 0, we simply get the Cahn-Hilliard equa-

tion.

2.1.5.3 Generalized Cahn-Hilliard Equation

The initial and boundary value problem of the generalized Cahn-Hilliard equation is

shown below. We have an extra term g(x, c).

∂c

∂t
+ ∆2c−∆f(c) + g(x, c) = 0

∇xc · n = ∇x(∆u− f(c)) · n = 0, on ∂B

c(x, 0) = c0 in B

(2.73)

• Cahn-Hilliard-Oono equation.

g(x, c) = g(c) = βc, β ≥ 0

This function was proposed to account for long ranged interaction.

• Cahn-Hilliard equation with proliferation term.

g(x, c) = g(c) = βc(c− 1), β ≥ 0

This function was proposed to model biological phenomenon such as wound

healing and tumor growth.

• Cahn-Hilliard equation with fidelity term.

g(x, c) = λ0ΞB\D(x)(c− ϕ(x)), λ0 > 0, D ⊂ B, ϕ ∈ L2(B)
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Where Ξ denotes the indicator function. This function was proposed for image

inpainting.

2.1.5.4 6th-Order Generalized Cahn-Hilliard Equation

Using the anisotropic surface energy makes the Cahn-Hilliard equation challenging

to solve. For the sufficiently large degree of anisotropic Cahn-Hilliard equation, we

encounter ill-posedness. Willmore or biharmonic regularization makes the problem

well-posed [59]. In addition to these, to overcome the ill-posedness of the anisotropic

Cahn-Hilliard model, a higher-order derivative term should be added to the surface

energy [60]. Therefore, we will obtain a sixth-order Cahn-Hilliard system.

ct = div(M∇xµ)− g(x, c)

µ = f(c)−∇2
xc+ ωf ′(c)−∇2

xω + εct

ω = f(c)−∇2
xc

(2.74)

2.1.6 Convergence Analysis

2.1.6.1 Method of Manufactured Solution

In this section, we will employ a manufactured solution to verify our approximate

solution. Assume the concentration has the following form.

ĉ = (t+ 1) sin(απx), (2.75)

Substituting the function (2.75) in Equation (2.1), we obtain residual S.

∂ĉ

∂t
− div

(
M∇x

(
f ′(ĉ)− ε∇2

xĉ
))

= S (2.76)
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where

f(ĉ) =
ĉ4

4
− ĉ2

2

M = 1

(2.77)

S = sin(απx) + 3(t+ 1)3α2π2 sin3(απx) + ε(t+ 1)α4π4 sin(απx)

− (t+ 1)α2π2 sin(απx)− 6(t+ 1)3α2π2 sin(απx) cos2(απx)
(2.78)

Then we will split the Equation (2.76),

 ∂ĉ
∂t

= div(∇xµ̂) + S
µ̂ = −ε∆ĉ+ f ′(ĉ)

(2.79)

where the chemical potential becomes,

µ̂ = ε(t+ 1)α2π2 sin(απx) + (t+ 1)3 sin3(απx)− (t+ 1) sin(απx) (2.80)

We compute the L2-error norms and H1-error norms for convergence analysis. These

norms are defined as

‖ĉ− ĉh‖L2(B) =
(∫
B |ĉ− ĉh|

2 dV
)1/2

‖ĉ− ĉh‖H1(B) =
(∫
B

(
|ĉ− ĉh|2 + |∇x (ĉ− ĉh)|2

)
dV
)1/2 (2.81)

The unit square (centered at the origin) domain is considered. The linear Lagrange

triangle finite element discretization is used. Four uniform meshes (50× 25 = 1250,

100 × 50 = 5000, 200 × 100 = 20000 and 400 × 200 = 80000 T1 elements) are

created. In Figure 2.2, 50× 25 = 1250 T1 elements mesh are presented. Parameters

of problem are presented in Table 2.1. Then ‖ĉ− ĉh‖L2(B) and ‖ĉ− ĉh‖H1(B) are

calculated at the final time, Tfinal. ĉ and ĉh denote the manufactured solution and the

finite element solution, respectively.
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Figure 2.2: 50× 25 = 1250 T1 elements mesh

Table 2.1: The parameters of the L2-error norms and H1-error norms example

No. Parameter Name Value

1 B Domain [−0.5, 0.5]× [−0.5, 0.5]

2 ∆t Time step 1× 10−5

3 ε Surface parameter 1× 10−4

4 Tfinal Final time 1× 10−3

The solutions of Equation 2.79 are presented in Figure 2.3. As can be seen from

the figures, the finer meshes cause both L2-error and H1-error norms to decrease. In

other words, the solution converges to the exact solution as the finer meshes are used.
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(a) L2-error vs number of elements

(b) H1-error vs number of elements

Figure 2.3: L2-error and H1-error for different α values and mesh sizes
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2.1.6.2 Convergence Analysis by Relative Error

In this part, the convergence of solutions for different mesh sizes and different time

step values are studied. Random numbers are given as initial conditions. We have to

give the same pattern as initial conditions in order to compare concentration, chemical

potential, and Ginzburg-Landau Free Energy function. Even if seed is used to give a

random number, the same pattern can not be obtained for different mesh sizes since

mesh with different mesh sizes has different node numbers. To solve this problem,

the initial condition is set for the coarsest mesh, and for the finer meshes, nodal values

are obtained from the initial condition of the coarsest mesh. After that, empty nodal

values in the finer meshes are interpolated. Initial conditions for different mesh sizes

are shown in Figure 2.4

(a) Initial condition for h = 1/25 (b) Initial condition for h = 1/50

(c) Initial condition for h = 1/80 (d) Initial condition for h = 1/100

Figure 2.4: Finer meshes have the same pattern as the initial condition of the coarsest

mesh. Four uniform meshes (50× 25 = 1250, 100× 50 = 5000, 160× 80 = 12800

and 200× 100 = 20000 T1 elements) are presented
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Equation (2.14) is solved for all mesh sizes (h = 1/25, h = 1/50, h = 1/80, h =

1/100) for the given parameters in Table 2.2

Table 2.2: The parameters of the mesh convergence analysis example

No. Parameter Name Value

1 B Domain [−0.5, 0.5]× [−0.5, 0.5]

2 ∆t Time step 10−4

3 ε Surface parameter 10−2

4 M Mobility 1

5 f(c) Free energy c4/4− c2/2

6 c0 Initial concentration Random number between -1 and 1

The line graph of the concentration, the chemical potential, and the Ginzburg-Landau

free energy per unit volume are obtained from the same diagonal line in solution at

t = 0.0025 for each mesh size. These graphs are presented in Figure 2.6. According

to Figure 2.6, h = 1/50 is fine enough since solution is nearly the same as the solution

of finer meshes. As an example, the diagonal line is depicted in Figure 2.5.

Figure 2.5: Concentration for h = 1/100, at t = 0.0025
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(a) c vs x axis for different mesh sizes

(b) µ vs x axis for different mesh sizes

(c) Ginzburg-Landau free energy vs x axis for different mesh sizes

Figure 2.6: Convergence analysis for different mesh sizes
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Now, we will solve same problem with given parameters in Table 2.3 but now for

different time step values (∆t = 1 × 10−3, ∆t = 5 × 10−4, ∆t = 1 × 10−4). The

line graphs of the concentration, the chemical potential and the Ginzburg-Landau free

energy per unit volume are obtained from the same diagonal line which is from point

(−0.5,−0.5) to point (0.5, 0.5) at t = 0.025 for different time steps. These line

graphs can be seen in Figure 2.7.

According to Figure 2.7, it can be stated that ∆t = 1× 10−3 is good enough to solve

the Cahn-Hilliard equation for the given parameters in Table 2.3.

Table 2.3: The parameters of the time step convergence analysis example

No. Parameter Name Value

1 B Domain [−0.5, 0.5]× [−0.5, 0.5]

2 h Mesh size 10−2

3 ε Surface parameter 10−2

4 M Mobility 1

5 f(c) Free energy c4/4− c2/2

6 c0 Initial concentration Random values between -1 and 1

In Figure 2.8, Ginzburg-Landau free energy function (
∫
B

(
ε
2
|∇xc|2 + f(c)

)
dV ) val-

ues are plotted. The free energy function values decrease throughout the time since

solution of the Cahn-Hilliard equation is minimization of the Ginzburg-Landau free

energy function. In Figure 2.8a, Ginzburg-Landau free energy function values are

same for different mesh sizes at t = 0. Similarly, in Figure 2.8b, Ginzburg-Landau

free energy function values are same for different time steps at t = 0
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(a) c vs x axis for different time steps

(b) µ vs x axis for different time steps

(c) Ginzburg-Landau Free Energy vs x axis for different time steps

Figure 2.7: Convergence analysis for different time steps
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(a) For different mesh sizes

(b) For different time steps

Figure 2.8: Ginzburg-Landau free energy function values throughout the time
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2.1.7 Numerical Examples

In the numerical examples, we assumed isotropic behavior through the scalar mobility

parameter M to simplify the equation. Mobility tensor can be represented by multi-

plication of scalar value with identity tensor. Furthermore, in the literature, mobility

is usually stated as a scalar number.

2.1.7.1 Cahn-Hilliard Equation with Different Free Energy Density Functions

In this part, we solve the Cahn-Hilliard problem with given parameters in Table 2.4

for different free energy densities. In other words, everything is the same except for

the free energy densities. The initial condition is presented in Figure 2.9 for all cases.

The free energy densities are shown in Figure 2.10.

∂c

∂t
− div(M∇xµ) = 0 in B

µ+ f ′(c)− ε∇2
xc = 0 in B

∇xµ · n = 0 on ∂B,

∇xc · n = 0 on ∂B.

c = c0 in B at t = 0

(2.82)

Table 2.4: Parameters of the Cahn-Hilliard equation for different free energy densities

No. Parameter Name Value

1 B Domain [0, 1]× [0, 1]

2 h Mesh size 10−2

3 ε Surface parameter 10−2

4 M Mobility 1

5 ∆t Time step 5× 10−4

6 c0 Initial concentration Random values between -1 and 1
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Figure 2.9: Initial condition is the same for all cases with different free energy densi-

ties. The color indicates the value of the concentration field.

Five different free energy density function functions are used. These are shown in

Figure 2.10. The functions in Figures 2.10a, 2.10b, 2.10c, and 2.10e are double-

well potential. In other words, those have two local minimums in the range of in-

terest, which is [−1, 1]. The double-well potential will lead to a pattern formation.

One phase will occur around the first minimum point, and the other phase will occur

around the second minimum point.

The function in Figure 2.10d has only one minimum point. Therefore, we will not

observe any two-phase pattern formation.

With this study, we will see whether the pattern changes or not with the free energy

density function. In Figure 2.10a, the free energy function has symmetry. The ener-

gies in Figure 2.10b and 2.10c are not symmetric and one of the minimum point has a

lower value. The free energy function in Figure 2.10e, is not symmetric, and the local

maximum point is slightly shifted towards c = 1 axis. In all energy functions, we

expect different patterns at the final time since the derivatives of energy functions are
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different, and they play a role in pattern evolution. The solutions of the Cahn-Hilliard

problem are depicted in Figures 2.11 - 2.15 at different times.

(a) f(c) = c2(c2 − 1) (b) f(c) = c2(c2 − 1)(c+ 1.5)

(c) f(c) = c2(c2 − 1)(1.5− c) (d) f(c) = c2 − 1

(e) f(c) = (c− 0.3)2(c2 − 1)

Figure 2.10: Different free energy function functions for the CH problem

36



(a) Concentration for f(c) = c2(c2 − 1) (b) Concentration for f(c) = c2(c2 − 1)(c+1.5)

(c) Concentration for f(c) = c2(c2 − 1)(1.5− c) (d) Concentration for f(c) = c2 − 1

(e) Concentration for f(c) = (c− 0.3)2(c2 − 1)

Figure 2.11: Solutions of CH problem at t = 0.1. The color indicates the value of the

concentration field.

37



(a) Concentration for f(c) = c2(c2 − 1) (b) Concentration for f(c) = c2(c2 − 1)(c+1.5)

(c) Concentration for f(c) = c2(c2 − 1)(1.5− c) (d) Concentration for f(c) = c2 − 1

(e) Concentration for f(c) = (c− 0.3)2(c2 − 1)

Figure 2.12: Solutions of CH problem at t = 0.2. The color indicates the value of the

concentration field.
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(a) Concentration for f(c) = c2(c2 − 1) (b) Concentration for f(c) = c2(c2 − 1)(c+1.5)

(c) Concentration for f(c) = c2(c2 − 1)(1.5− c) (d) Concentration for f(c) = c2 − 1

(e) Concentration for f(c) = (c− 0.3)2(c2 − 1)

Figure 2.13: Solutions of CH problem at t = 1. The color indicates the value of the

concentration field.
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(a) Concentration for f(c) = c2(c2 − 1) (b) Concentration for f(c) = c2(c2 − 1)(c+1.5)

(c) Concentration for f(c) = c2(c2 − 1)(1.5− c) (d) Concentration for f(c) = c2 − 1

(e) Concentration for f(c) = (c− 0.3)2(c2 − 1)

Figure 2.14: Solutions of CH problem at t = 5. The color indicates the value of the

concentration field.
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(a) Concentration for f(c) = c2(c2 − 1) (b) Concentration for f(c) = c2(c2 − 1)(c+1.5)

(c) Concentration for f(c) = c2(c2 − 1)(1.5− c) (d) Concentration for f(c) = c2 − 1

(e) Concentration for f(c) = (c− 0.3)2(c2 − 1)

Figure 2.15: Solutions of CH problem at t = 20. The color indicates the value of the

concentration field.
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As can be seen from Figure 2.15, we have different pattern formations for different

free energy density functions. Initial conditions are approximately the same for all

problems in this subsection. Therefore initial condition does not have an effect on the

pattern change. For f(c) = c2 − 1, no pattern formation is occurred as expected. For

other free energy density functions, we state that the pattern at the final time is not

predicted since the behavior of the governing equation is highly nonlinear. All we say

is that for free energy in Figure 2.10e, we expect more blue region in Figure 2.15e

since local maximum of the free energy density function is not in c = 0 axis. It is

slightly shifted towards c = 1 axis. We have more region between c = −1 axis and

the local maximum point than between the local maximum point and c = 1 axis and

random initial condition is given. This leads to more blue region in Figure 2.15e.

2.1.7.2 Allen-Cahn Equation

Two examples of the Allen-Cahn problem and their finite element solutions are pre-

sented here.

ct − ε2∇2
xc+ f(c) = 0, (x, t) ∈ B × (0, T ]

∇xc · n = 0

c(x, 0) = c0

(2.83)

Weak Form:

∫
B
ctvdV +

∫
B
ε2∇xc · ∇xvdV +

∫
B
f(c)vdV = 0, v ∈ V (2.84)

where

f(c) = c3 − c (2.85)

The model parameters used to generate the results in Figure 2.16 illustrated are given

in Table 2.5.
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Table 2.5: Parameters of Allen-Cahn model 1D problem

No. Parameter Name Value

1 B Domain [−1, 1]

2 ε Surface parameter 10−2

3 ∆t Time step 5× 10−5

4 c0 Initial concentration 0.1 cos(2πx)

(a) c at t = 0

(b) c at t = 5

Figure 2.16: Solution of the first Allen-Cahn problem
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The model parameters of the second example for Allen-Cahn equation are given in

Table 2.6. Initial condition and solutions are shown in Figure 2.17 and Figure 2.18

respectively.

Table 2.6: Parameters of Allen-Cahn model 2D problem

No. Parameter Name Value

1 B Domain [−1, 1]× [−1, 1]

2 ε Surface parameter 10−2

3 ∆t Time step 5× 10−5

4 c0 Initial concentration 0.1 cos(2πx) cos(2πy)

From the computational experiments of the Allen-Cahn problem, we observe that

c increases for the region c0 > 0 and c decreases for the region c0 < 0. These

observation can be seen from Figures 2.16 and 2.18.

Figure 2.17: Initial concentration, c0
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(a) Concentration at t = 0.5

(b) Concentration at t = 2.5

(c) Concentration at t = 5

(d) Concentration at t = 10

Figure 2.18: Solution of the second Allen-Cahn problem. The color indicates the

value of the concentration field.
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2.1.7.3 Cahn-Hilliard Equation

In this part, we will solve Equation (2.17) using C0 and C2 elements. For both solu-

tions, the parameters in Table 2.7 are used.

Table 2.7: Parameters of C0 and C2 comparison example

No. Parameter Name Value

1 B Domain [0, 1]× [0, 1]

2 ε Surface parameter 1× 10−2

3 M Mobility 1

4 f(c) Free energy 100c2(1− c)2

5 ∆t Time step 5× 10−6

6 c0 Initial concentration Random values between 0.61 and 0.65

Solution Obtained by Using C0 Elements

In the analysis, 200×100 = 20000 triangular elements (T1) are used. Initial condition

is described in Figure 2.19a. The solution is shown in Figure 2.19. We aim to ob-

tain similar results and observe the spinodal decomposition and the Ostwald ripening

phenomenon for both solutions.

Weak Form:

∫
B

∂c

∂t
vdV +

∫
B
M∇xµ · ∇xvdV = 0 ∀v ∈ V0∫

B
µqdV +

∫
B
f ′(c)qdV +

∫
B
ε∇xc · ∇xqdV = 0 ∀q ∈ V0

c = c0 in B at t = 0

(2.86)
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(a) Concentration at t = 0 (b) Concentration at t = 0.00001

(c) Concentration at t = 0.0001 (d) Concentration at t = 0.0005

(e) Concentration at t = 0.001 (f) Concentration at t = 0.0025

Figure 2.19: Solutions of CH problem using C0 elements
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Solution Obtained by Using C2 Elements

Firedrake is used in order to solve this problem. Like FEniCS, Firedrake is a open-

source computing platform for solving partial differential equations (PDEs) using

the finite element method [61]. 32 × 16 = 512 triangular Bell elements are used.

The Bell element has first and second derivative continuity at the nodes and it is

depicted in Figure 2.20 [62]. The dots indicate that the nodal values are continuous,

while the small and big hollow circles indicate that the first and second derivatives are

continuous respectively in Figure 2.20. Initial condition is depicted in Figure 2.21a.

The solution is shown in Figure 2.21.

Figure 2.20: The Bell element

The same problem is solved using C0 and C2 elements. According to Figure 2.19

and Figure 2.21, similar solutions are obtained. Different initial conditions are used

since it is challenging to use the same initial condition for FEniCS and Firedrake for

different mesh sizes. Due to the different initial conditions used, differences in the

patterns of the solutions occur. We obtained approximately twice speedup when using

C2 elements. On the same virtual machine, to obtain FEM solutions using C0 and C2

elements took 305.1 and 150.4 seconds, respectively.

In Figure 2.19b and 2.21b, spinodal decomposition occurs. The spinodal decomposi-

tion phenomenon is that two phases start to occur from one phase due to fluctuations

in the system to reduce the system’s free energy. In Figures 2.19c - 2.19f and Figures

2.21c - 2.21f, the Ostwald ripening phenomenon is being observed. The phenomenon

of merging of small phases to form a larger phase is called the Ostwald ripening. In

the lithium-ion battery electrode and liquid crystal phase separation, we observe the

Ostwald ripening phenomenon [63].
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(a) Concentration at t = 0 (b) Concentration at t = 0.00001

(c) Concentration at t = 0.0001 (d) Concentration at t = 0.0005

(e) Concentration at t = 0.001 (f) Concentration at t = 0.0025

Figure 2.21: Solutions of CH problem using C2 elements. The color indicates the

value of the concentration field.
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2.1.7.4 Generalized Cahn-Hilliard Equation

In this subsection, the sixth-order Cahn-Hilliard equation is solved using the finite

element method. It is generally used for an anisotropic Cahn-Hilliard model. Two

phase-field crystal examples are reproduced from [58].

∂u

∂t
+∇2

xw +
1

ε
g(x, u) = 0

w + a20ε
∂4u

∂x4
+ a02ε

∂4u

∂y4
+ a11ε

∂4u

∂x2∂y2

−a10ε
∂2u

∂x2
− a01ε

∂2u

∂y2
+

1

ε
f(u) = 0

u(0, x, y) = u0(x, y)

(2.87)

Weak Form:

((
∂u

∂t
, v1

))
− ((∇xw,∇xv1)) +

1

ε
((g(x, u), v1)) = 0

((w, v2))− a20ε

((
∂p

∂x
,
∂v2

∂x

))
− a02ε

((
∂q

∂y
,
∂v2

∂y

))
−a11ε

2

((
∂p

∂y′
,
∂v2

∂y

))
− a11ε

2

((
∂q

∂x
,
∂v2

∂x

))
−a10ε ((p, v2))− a01ε ((q, v2)) +

1

ε
((f(u), v2)) = 0

((p, v3)) +

((
∂u

∂x
,
∂v3

∂x

))
= 0

((q, v4)) +

((
∂u

∂y
,
∂v4

∂y

))
= 0

(2.88)

where

∂2u

∂x2
= p,

∂2u

∂y2
= q,

∂4u

∂x2∂y2
=

1

2

∂2p

∂y2
+

1

2

∂2q

∂x2

(2.89)

Phase-Field Crystal Example 1:
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Parameters of the phase-field crystal example 1 are in Table 2.8

Table 2.8: Parameters of phase-field crystal example 1

No. Parameter Name Value

1 B Domain [−10, 10]× [−10, 10]

2 f(u) Free energy u3 + (1− 0.025)u

3 g(x, u) Mobility 2u

4 ∆t Time step 1× 10−4

5 u0 Initial concentration Randomly distributed between -0.2 and 0.3

6 a20 Coefficient 1

7 a11 Coefficient 0.1

8 a02 Coefficient 0.1

9 a10 Coefficient −2

10 a01 Coefficient −2

Phase-Field Crystal Example 2:

Parameters of the phase-field crystal example 2 are in Table 2.9

Table 2.9: Parameters of phase-field crystal example 2

No. Parameter Name Value

1 B Domain [−10, 10]× [−10, 10]

2 f(u) Free energy u3 + (1− 0.025)u

3 g(x, u) Mobility 2u

4 ∆t Time step 1× 10−4

5 u0 Initial concentration Randomly distributed between -0.2 and 0.3

6 a20 Coefficient 0.1

7 a11 Coefficient 0.1

8 a02 Coefficient 1

9 a10 Coefficient −2

10 a01 Coefficient −2
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(a) u0 (b) u at t = 0.002

(c) u at t = 0.01 (d) u at t = 0.05

(e) u at t = 0.1

Figure 2.22: Solutions of phase-field crystal example 1. The color indicates the value

of u field.
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(a) u0 (b) u at t = 0.002

(c) u at t = 0.01 (d) u at t = 0.05

(e) u at t = 0.1

Figure 2.23: Solutions of phase-field crystal example 2. The color indicates the value

of u field.
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Considering Figures 2.22 and 2.23, we state that anisotropic pattern formation has

been successfully modeled by the sixth-order Cahn-Hilliard equation. Using the

fourth-order Cahn-Hilliard equation, it is not easy to model anisotropy because we

encounter the ill-posedness. Therefore, it is recommended to use the sixth-order

Cahn-Hilliard equation to model tumor growth and wound healing. Here, for both

examples, we have the same parameter values except for a20 and a02. a20 is the coef-

ficient of the term ∂4u
∂x4

. When a higher value of a20 is used, the interfacial area which

has∇u is in the x direction is going to be minimized. Therefore we obtain the Figure

2.22. Similarly, if a higher value of a02 is used, the interfacial area which has ∇u is

in the y direction is going to be minimized.
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CHAPTER 3

MECHANICS COUPLED WITH DIFFUSION

Lithium-ion batteries plays an important role in power systems such as electrical vehi-

cles. Appropriate chemo-mechanical theory of the underlying physics of the lithium-

ion batteries helps prevent the degradation of the performance of the electrode par-

ticles. In this manner, the diffusion-induced stress generation has been studied in

[64, 65, 66] at small scales. In this chapter, we couple the Chan-Hilliard problem

with mechanics considering the procedure in [40, 41].

3.1 Coupling of Cahn-Hilliard Equation with Finite Elasticity

The initial boundary-value problem of species diffusion in an elastic solid is a coupled

problem, because the concentration of the species and deformation affect each other.

In the coupling of mechanics and the Cahn-Hilliard equation, we have to consider

three fields. These are the deformation field, the concentration, and the chemical

potential.

ϕ :

 B0 × T −→ Bt ⊂ R3

(X, t) −→ x = ϕ(X, t)
(3.1)

c :

 B0 × T −→ [0, 1]

(X, t) −→ c(X, t)
and µ :

 B0 × T −→ R

(X, t) −→ µ(X, t)
(3.2)

The deformation fieldϕmaps the points in the reference configuration onto the points

of the current configuration.
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The concentration gradient, the negative of the chemical potential gradient and the

deformation gradient are defined as:

C :=∇Xc(X, t) (3.3a)

M :=−∇Xµ(X, t) (3.3b)

F :=∇Xϕ(X, t) (3.3c)

F is the deformation gradient, its cofactor and its Jacobian are defined as cof[F ] :=

det[F ]F−T , J := det[F ] respectively. By the condition J > 0, the map, ϕ is

constrained due to the non-penetrable deformation.

dx = F dX, da = cof[F ]dA, dv = det[F ]dV (3.4)

Let g,G ∈ Sym+(3) be the standard metric tensors of the current and reference con-

figurations. Then, the right and inverse of the left Cauchy-Green tensors are defined

as:

C := F TgF and c := F−TGF−1 (3.5)

3.1.1 Derivation of Local Balance Equations

No mass production is assumed due to chemical reactions. Therefore, conservation

of solid mass is

∫
Pt

ρdv =

∫
P0

ρ0dV and P0 ⊂ B0, Pt ⊂ Bt (3.6)

where ρ(x, t) and ρ0(X) are the density fields belonging to the current and reference

configurations as shown in Figure 3.1.
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Figure 3.1: P0 and Pt

It is assumed that no species is produced due to chemical reactions. Thus, conserva-

tion of the species is

d

dt

∫
P0

cdV = −
∫
∂Pt

hda (3.7)

where h is the out-flux of species through the surface and c(x, t) ∈ [0, 1] is the

concentration of species. The outward flux is defined through

h(x, t; n) := h(x, t) · n (3.8)

where the h(x, t) is spatial species flux vector. Then, the material species flux vector

is defined as

H · dA = h · da and H := F−1(Jh), (3.9)

The conservation of chemical microforces reads

∫
P0

gdV = −
∫
∂Pt

ξda (3.10)

g(x, t) is the chemical microforce per unit volume of the reference configuration and

ξ(x, t) is the normal microtraction.

ξ(x, t; n) := k(x, t) · n (3.11)
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where k(x, t) is the spatial microtraction vector. Then the material microtraction

vector is defined below.

K · dA = k · da and K := F−1(Jk) (3.12)

By neglecting the inertia effect, the conservation of linear momentum becomes

∫
∂Pt

tda+

∫
P0

γ̄dV = 0 (3.13)

where γ̄ is the body force per unit volume of the reference configuration and t is the

spatial stress traction vector. Cauchy’s stress theorem, which is shown below, defines

the stress traction vector.

t(x, t; n) := σ(x, t)n (3.14)

where σ(x, t) is the Cauchy stress tensor. Then the definition of the nominal stress

tensor, P is

P dA = σda and P := (Jσ)F−T (3.15)

The conservation of the angular momentum reads

∫
∂Pt

x× tda+

∫
P0

x× γdV = 0 (3.16)

Through the localization of Equations (3.6), (3.7), (3.10), (3.13) and (3.16), we ob-

tain the local form of the balance equations for finite elasticity coupled with diffusion.

These local balance equations and their constitutive equations are presented in Equa-
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tion (3.17)

1. Balance of solid mass ρ0 = ρJ

2. Balance of species content ċ = −Div[H ]

3. Balance of chemical microforce g = −Div[K]

4. Balance of linear momentum Div[P ] + γ̄ = 0

5. Balance of angular momentum skew
[
PF T

]
= 0

6. Constitutive stresses P = ∂F ψ̂(F , c,C)

7. Constitutive microforce g = µ− ∂cψ̂(F , c,C)

8. Constitutive microtraction K = ∂Cψ̂(F , c,C)

9. Constitutive species flux H = ∂Mφ̂(M;F , c)

(3.17)

The constitutive equations are obtained following the procedure outlined in [40]. ψ̂

and φ̂ are expressed in Equations (3.24) and (3.30) respectively.

3.1.2 The Boundary Conditions and Initial Condition for the Coupled Problem

We have three primary fields; therefore, we need to write the boundary conditions for

these three primary fields. These boundaries are shown in Equation (3.18)

∂B0 = ∂Bϕ0 ∪ ∂Bt0, ∂B0 = ∂Bc0 ∪ ∂B
ξ
0, ∂B0 = ∂Bµ0 ∪ ∂Bh0 (3.18)

∂Bϕ0 ∩ ∂Bt0 = ∅, ∂Bc0 ∩ ∂B
ξ
0 = ∅, ∂Bµ0 ∩ ∂Bh0 = ∅ (3.19)

The Dirichlet and Neumann-type boundary conditions for the deformation field

ϕ = ϕ̄(X, t) on ∂Bϕ0 and PN = t̄(x, t) on ∂Btt (3.20)

for the concentration field

c = c̄(X, t) on ∂Bc0 and K ·N = ξ̄(x, t) on ∂Bξ0 (3.21)
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for the chemical potential field

µ = µ̄(X, t) on ∂Bµ0 and H ·N = h̄(x, t) on ∂Bh0 (3.22)

Here, N is the unit normal vector on the surface ∂B0 and the initial condition of

concentration field is

c (X, t0) = c0(X) in B0 (3.23)

3.1.3 Isotropic Constitutive Model for Coupling Through Volumetric Deforma-

tion

Following [40], we consider a simple isotropic model for a coupled problem. Two

constitutive functions, ψ̂, φ̂ are chosen as follows. ψ̂ is the energy storage function

that is decomposed into elastic, chemical, and interface contributions.

ψ̂(F , c,C) = ψ̂el
(
F el(F , c)

)
+ ψ̂che(c) + ψ̂int(C) (3.24)

A compressible Neo-Hookean form [67] is assumed for the elastic contribution.

ψ̂el
(
F el
)

=
γ

2

[
F el : F el − 3

]
+
γ

β

[(
detF el

)−β − 1
]

(3.25)

where γ is the shear modulus and the parameter β describes the weak volumetric

compressibility of material, which has a relation with Poisson’s ratio as β = 2v/1−2v

The deformation gradient is split into the elastic part, F el and the volumetric swelling

part, F c multiplicatively. Thus, the coupling will be incorporated through the volu-

metric swelling part [41, 40].

F = F elF c with F c := J1/3
c 1 (3.26)

F el = J−1/3
c F with Jc = 1 + Ω (c− c0) (3.27)
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The chemical contribution to the free energy function is assumed to be the same as

in the proposal of Cahn and Hilliard [45, 46, 48]. The chemical contribution is given

for different a and b values in Figure 3.2. We must have a double-well chemical

contribution to obtain a phase separation.

ψ̂che(c) = a[c ln c+ (1− c) ln(1− c)] + bc(1− c) (3.28)

The interface contribution is also the same as classical Cahn-Hilliard theory.

ψ̂int(C) =
ε

2
|C|2 (3.29)

The convex quadratic form is assumed for the dissipation potential, φ̂, through the

negative gradient of chemical potential.

φ̂(µ;C, c) = c(1− c)M
2
C−1 : (M⊗M) (3.30)

where M > 0 is the species mobility.
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(a) Chemical energy, ψche for a = 10, b = 25

(b) Chemical energy, ψche for a = 10, b = 0

Figure 3.2: Chemical energy for different a and b values. b > 2a leads to a double-

well potential
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Here, the expressions of P , g, H , and K in the local balance equations are deter-

mined using constitutive equations.

Since ∂F ψ̂che = 0 and ∂F ψ̂int = 0

P = ∂F ψ̂(F , c,C) = ∂F ψ̂el (3.31)

∂F ψ̂el = J−1/3
c ∂F elψ̂el

= γJ−1/3
c

[
F el −

(
detF el

)−β
F e−T

] (3.32)

Therefore,

P = γJ−1/3
c

[
F el −

(
detF el

)−β
F e−T

]
(3.33)

∂cψ̂el = ΩJ−1
c p (3.34)

p := −1

3
∂F ψ̂el : F

= −1

3
P : F

(3.35)

where p is the pressure. Thus microforce is

g = µ− ∂cψ̂che − ∂cψ̂el

= µ− a ln[
c

1− c
]− b(1− 2c)− ΩJ−1

c p
(3.36)

The microtraction expression reads

K = ∂Cψ̂ = ε∇Xc (3.37)

Then, the species flux expression is

H = −cn (1− cn)MC−1
n M (3.38)
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where cn is the concentration at the previous time, and Cn is the right Cauchy-Green

tensor at the previous time.

3.1.4 Curvature Calculation

The curvature of the concentration might have effects on the stress evolution in the

body. These effects are not investigated in this thesis, but we will investigate them

in the future. Moreover, we presented the curvature of the concentration using the

following formulation.

Gaussian curvatureK and mean curvatureH of the surface are obtained from the first

and second fundamental form of the surface [68].

The curvature of the concentration field can be calculated as follows. Note that the

subscript x and y denote the partial derivatives of the field with respect to the spatial

coordinates x and y.

K =
LN −M2

EG− F 2

H =
1

2

LG− 2MF +NE

EG− F 2

(3.39)

where

E = 1 + c2
x

F = cxcy

G = 1 + c2
y

L =
cxx√

1 + c2
x + c2

y

M =
cxy√

1 + c2
x + c2

y

N =
cyy√

1 + c2
x + c2

y

(3.40)
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Therefore the principal curvatures can be expressed as

κmax = H +
√
H2 −K

κmin = H −
√
H2 −K

(3.41)

3.1.5 Numerical Simulations

To obtain the numerical solution of the chemomechanical problem, we need the weak

form of the problem.

Weak Form of Three-Field Coupled Problem:

∫
B
ċqdV =

∫
B
H · ∇XqdV (3.42a)∫

B
gwdV =

∫
B
K · ∇XwdV (3.42b)∫

B
P : ∇XedV =

∫
B
γ̄ · edV (3.42c)

where q, w and e are the test functions for the concentration, the chemical potential

and the deformation field, respectively. The model parameters are presented in Table

3.1. With these parameters we will solve the Cahn-Hilliard coupled with the finite

elasticity problem in the two-dimensional ([0, 0.5] × [0, 0.5]) and three-dimensional

domains ([0, 0.5]× [0, 0.5]× [0, 0.5]). For the two-dimensional problem, the displace-

ments are set as zero in the x and y direction at point (0,0). Also for point (0,0.5),

the zero displacement is set in y direction. For the rest of the boundary, we have zero

traction.

In addition, we solve the 3D problem as well using the same parameters as in the 2D

problem. 3D solution is demonstrated in Figure 3.6
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Table 3.1: Parameters of model problem

No. Parameter Name Value Unit

1 γ Shear modulus 3 [N/m2]

2 v Poisson’s ratio 0.3 [-]

3 Ω Swelling parameter 0− 10 [-]

4 a Chemical energy parameter 10 [N/m2]

5 b Mixing energy parameter 2.5a [N/m2]

6 ε Interface parameter 0.001 [N]

7 M Mobility parameter 0.001 [m4/Ns]

8 c0 Initial concentration 0.5 [-]

In Figures 3.3 and 3.6, we see the diffusion induced deformation for 2D and 3D prob-

lem respectively. For the phase where the concentration is increased, we observe the

expansion. For the phase where the concentration is decreased, we see the swelling.

The mean and Gaussian curvature of the concentration field for 2D problem is visu-

alized in Figures 3.4 and 3.5.
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500 (f) t = 1000

Figure 3.3: Solution of the Cahn-Hilliard problem coupled with finite elasticity in the

two-dimensional domain. The color indicates the concentration field, and deformed

shapes show the deformation field.
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500 (f) t = 1000

Figure 3.4: Mean curvature of the concentration field in Figure 3.3. The color indi-

cates the mean curvature field
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500
(f) t = 1000

Figure 3.5: Gaussian curvature of the concentration field in Figure 3.3. The color

indicates the Gaussian curvature field
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500
(f) t = 1000

Figure 3.6: Solution of the Cahn-Hilliard problem coupled with finite elasticity in the

three-dimensional domain. The color indicates the concentration field, and deformed

shapes show the deformation field.
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3.1.5.1 Elasticity Coupled with the Cahn-Hilliard Equation with Extra Term

In this section, we add an extra term to the energy storage function ψ̂(F , c,C). We

consider Equation (3.24) as follows

ψ̂(F , c,C) = ψ̂el
(
F el(F , c)

)
+ ψ̂che(c) + ψ̂int(C) + ψ̂extra(F

el(F , c),C) (3.43)

with

ψ̂extra(F
el(F , c),C) = dF elTF el : (C⊗ C) (3.44)

where d is the coefficient to control the contribution of the additional interface stretch

term.

The interface stretch term couples the deformation gradient and the concentration

gradient. We add this stretch term to the storage energy function. By solving the

partial differential equations, we minimize the storage function. Therefore, interface

stretch term contribution should be minimized. This term is only valid in the inter-

face region because it has the concentration gradient term. To minimize the interface

stretch term, the solution increases the interface area; this leads to decreasing the

concentration gradient or decrease the deformation gradient in the interface region.

Here, we added the interface stretch term, but we will try to add the following term

in the future.

ψ̂newextra(F
el(F , c),C) = eF elC · F elC (3.45)

where e is the coefficient to control the contribution of the new interface stretch term.

Again this is a future work.

To combine with the previous formulation, we need to add the terms below to the
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necessary part of weak form of the equation.

∂cψ̂extra(F
el(F , c),C) = ΩJ−1

c pextra

∂F ψ̂extra(F
el(F , c),C) = J−1/3

c ∂F elψ̂extra

∂Cψ̂extra(F
el(F , c),C) = F elTF el : ((δikCj + Ciδjk)ei ⊗ ej ⊗ ek)

(3.46)

where

pextra := −1

3
∂F ψ̂extra : F

∂F elψ̂extra =
(
(δKmδkMF

el
kL + F el

KkδkmδLM)eK ⊗ eL ⊗ em ⊗ eM
)

: (C⊗ C)

(3.47)

since

∂(F el
kK

T
F el
kL)

∂F el
mM

= (δKmδkMF
el
kL + F el

KkδkmδLM) (3.48)

where i, j, k, K, L, m, M are indices and e denotes the basis vector. Note that δ is

Kronecker’s delta.

Here, we used the values of given parameters in Table 3.1 and d = 10−3. Figure

3.7 has different pattern than Figure 3.3. In other words, the additional interface

stretch term affects the pattern formation. Furthermore, Figure 3.7 has more interface

thickness as expected. We explained the reason of it. This interface thickness growth

easily observed in mean and Gaussian curvature plots in Figures 3.8 and 3.9.
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500 (f) t = 1000

Figure 3.7: Solution of the Cahn-Hilliard problem coupled with the finite elasticity

considering the additional interface stretch term in the two-dimensional domain. The

color indicates the concentration field, and deformed shapes show the deformation

field. 73



(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500 (f) t = 1000

Figure 3.8: Mean curvature of the concentration field in Figure 3.7
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(a) t = 0 (b) t = 5

(c) t = 20 (d) t = 100

(e) t = 500 (f) t = 1000

Figure 3.9: Gaussian curvature of the concentration field in Figure 3.7
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3.2 Finite Linear Viscoelasticity Coupled with Diffusion

3.2.1 Finite Linear Viscoelasticity with Volumetric-Isochoric Split

The finite linear elasticity is extended towards the finite linear viscoelasticity using

the isochoric part of the free energy function through the procedure that is introduced

in [69]. The multiplicative decomposition of the deformation gradient procedure is

followed. Consider the deformation gradient decomposed as

F = F̄ F vol

F̄ := J−
1
3F

F vol := J
1
3 1

(3.49)

where F vol and F̄ are the volumetric and isochoric part of the deformation gradient,

respectively.

Consider that the volumetric deformation is purely elastic, and the isochoric defor-

mation is viscoelastic. The following form of the stored-energy function is taken into

account [69].

ψ̂ (C) = ψ̂vol(J) + ψ̂eiso
(
C̄
)

+ ψ̂viso
(
C̄,A

)
(3.50)

with

ψ̂vol(J) = 1
2
κ
(

1
2

(J2 − 1)− ln J
)
,

ψ̂eiso
(
C̄
)

= 1
2
µ(C̄ : 1− 3) = 1

2
µ(tr[C̄]− 3)

(3.51)

where J is the Jacobian determinant J := det[F ] and C̄ is the right Cauchy-Green

tensor which is defined as C̄ := F̄
T
F̄ . Furthermore, κ and µ are the bulk and shear

moduli respectively.

The second Piola-Kirchhoff stress tensor is stated as

S = Svol + Siso (3.52)
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with

Svol = Jψ̂′vol(J)C−1

Siso = J−
2
3 DEV

[
S̄
e
iso + Q̄

]
= Seiso +Q

(3.53)

where

S̄
e
iso = 2∂C̄ψ̂

e
iso(C̄)

Q̄ = 2∂C̄ψ̂
v
iso(C̄,A)

(3.54)

and Q is the isochoric viscous overstress, which can be obtained by the following

evolution equation.

˙̄Q+
1

τ
Q̄ = β

d

dt

(
DEV

[
S̄
e
iso

])
(3.55)

where τ is the relaxation time, and β is the stiffness ratio

Note that DEV[•] = [•] :
[
I− 1

3
C ⊗C−1

]
There are many ways to deal with the evolution equation. Here, we solved coupled

with the mechanics equations.

3.2.2 Finite Linear Viscoelasticity Coupled with the Cahn-Hilliard equation

The following energy storage function is used. This function is obtained by replacing

the elastic part of the free energy in [40] with the free energy in Equation (3.50).

ψ̂(F , c,C) = ψ̂mech
(
Fmech(F , c)

)
+ ψ̂che(c) + ψ̂int(C) (3.56)

with

ψ̂
(
Fmech(F , c)

)
mech

= ψ̂vol(J) + ψ̂iso
(
C̄
)

(3.57)
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and

ψ̂vol(Jmech) = 1
2
κ
(

1
2

(
Jmech

2 − 1
)
− ln Jmech

)
,

ψ̂iso
(
C̄
)

= 1
2
µ(C̄ : 1− 3) = 1

2
µ(tr[C̄]− 3)

(3.58)

where C̄ and J are defined in Equations (3.61) and (3.62) respectively. The chemical

and the interface contributions of the free energy function are same with Equation

(3.28) and (3.29) respectively.

The deformation gradient splits into the mechanical part, Fmech and the volumetric

swelling part F c multiplicatively using the same procedure in [40].

F = FmechF c with F c := J1/3
c 1 (3.59)

Fmech = J−1/3
c F with Jc = 1 + Ω (c− c0) (3.60)

The mechanical part of the deformation gradient is also split into volumetric and

isochoric parts using the procedure which is explained in [69].

Fmech = F̄ F vol

F̄ := Jmech
− 1

3Fmech

F vol := Jmech
1
3 1

C̄ := F̄
T
F̄

Cmech := FmechTFmech

(3.61)

with

Jmech := det[Fmech] (3.62)

The expressions of P , g, H , and K in the local balance equations are determined

78



using constitutive equations similarly to the previous section.

P = ∂F ψ̂(F , c,C) = ∂F ψ̂mech (3.63)

∂F ψ̂mech = J−1/3
c ∂Fmechψ̂mech

= J−1/3
c F 2∂Cmechψ̂mech

= J−1/3
c F

[
JmechΨ

′
vol(Jmech)C

−1 + Jmech
− 2

3 DEV
[
2∂C̄Ψiso(C̄) + Q̄

]]
︸ ︷︷ ︸

Smech:=Svol+Siso

(3.64)

Therefore,

P = J−1/3
c F

[
JmechΨ

′
vol(Jmech)C

−1 + Jmech
− 2

3 DEV
[
2∂C̄Ψiso(C̄) + Q̄

]]
(3.65)

∂cψ̂mech = ΩJ−1
c p (3.66)

p := −1

3
∂F ψ̂mech : F

= −1

3
P : F

(3.67)

where p is the pressure. Thus microforce is

g = µ− ∂cψ̂che − ∂cψ̂mech

= µ− a ln[
c

1− c
]− b(1− 2c)− ΩJ−1

c p
(3.68)

The microtraction and species flux are same with Equation (3.37) and (3.38) respec-

tively.

Weak Form of the Finite Viscoelasticity Coupled with the Cahn-Hilliard Problem
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∫
B
ċqdV =

∫
B
H · ∇XqdV (3.69a)∫

B
gwdV =

∫
B
K · ∇XwdV (3.69b)∫

B
P : ∇XedV =

∫
B
γ̄ · edV (3.69c)

with ∫
B

˙̄Q : UdV +

∫
B

1

τ
Q̄ : UdV =

∫
B
β
d

dt

(
DEV

[
S̄
e
iso

])
: UdV (3.70)

where q, w, e and U are test functions for concentration, chemical potential, defor-

mation and isochoric viscous overstress field respectively. The rest of the notations

are defined in the previous subsections.
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CHAPTER 4

MODELING OF SELF-ASSEMBLY

4.1 Coupled Cahn-Hilliard Equations

The coupling of two Cahn-Hilliard equations is used to model the self-assembly of

the block copolymer [39]. Two or more chemically distinct block polymers forms the

block copolymer.

Coupling of two Cahn-Hilliard equations are obtained by the minimization of the

following energy functional.

F ≡Fε1,ε2,%(c1, c2)

=

∫
B

{
ε21
2
|∇xc1|2 +

ε22
2
|∇xc2|2 +W (c1, c2) +

%

2

∣∣(−∇2
x)−1/2(c2 − c̄2)

∣∣2} dV
(4.1)

with

W (c1, c2) =
(c2

1 − 1)
2

4
+

(c2
2 − 1)

2

4
+ αc1c2 + βc1c

2
2 + γc2

1c2 (4.2)

The Euler-Lagrange system of equations of this functional will yield to the two cou-

pled Cahn-Hilliard equations.

τ1ċ1 = ∇2
x

(
δF

δc1

)
= −∇2

x

{
ε21∇2

xc1 + (1− c1)(1 + c1)c1 − αc2 − βc2
2

} (4.3)
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Notice that Equation (4.4) is the Cahn-Hilliard-Oono eqaution since it has %(c2 − c̄2)

term.

τ2ċ2 = ∇2
x

(
δF

δc2

)
= −∇2

x

{
ε22∇2

xc2 + (1− c2)(1 + c2)c2 − αc1 − 2βc1c2

}
− %(c2 − c̄2)

(4.4)

4.1.1 Initial Boundary-Value Problem

Here initial boundary value problem is stated. We give a brief description of the

model. The system consists of a copolymer and a homopolymer mixture. Particularly,

there exist two different phase separations. In other words, we make patterns for

both micro and macro phases. The copolymer and homopolymer mixture form a

macrophase. c1 ∈ [−1, 1] field shows the macrophase pattern. The value of the c1

that is close to−1 and 1 states the homopolymer-rich mixture and the copolymer-rich

mixture, respectively. The microphase separation is inside the copolymer among its

two components (say polymer block A and polymer block B), and it is represented

by c2 ∈ [−1, 1] field. Similarly, the value of the c2 that is close to −1 and 1 indicates

A polymer block rich mixture and B polymer block rich mixture, respectively. The

representative figure for both c1 and c2 fields is illustrated in Figure 4.1.

Figure 4.1: Illustration for c1 and c2 fields. The yellow and green regions represent

the homopolymer and copolymer, respectively. The blue and red regions inside the

copolymer represent the block copolymer A and B, respectively.
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We investigate the problem with homogeneous Neumann boundary conditions.

τ1ċ1 = −∇2
x

{
ε21∇2

xc1 + f1(c1, c2)
}

in B × [0, T ]

τ2ċ2 = −∇2
x

{
ε22∇2

xc2 + f2(c1, c2)
}
− %(c2 − c̄2) in B × [0, T ]

c1(x, 0) = c1,0 in B,

c2(x, 0) = c2,0 in B,

∇xc1 · n = ∇x

{
ε21∇2

xc1 + f1(c1, c2)
}
· n = 0 on ∂B × [0, T ]

∇xc2 · n = ∇x

{
ε22∇2

xc2 + f2(c1, c2)
}
· n = 0 on ∂B × [0, T ]

(4.5)

with

f1(c1, c2) = (1− c1)(1 + c1)c1 − αc2 − βc2
2

f2(c1, c2) = (1− c2)(1 + c2)c2 − αc1 − 2βc1c2

(4.6)

τ1, τ2 are the time constants to control the speed of the evolution of c1 and c2. In

other words, a smaller value will lead to faster evolution. ε1, ε2 parameters are related

to thickness of the interface for each c1 and c2 field. The parameter % controls the

bond in the copolymer. That is, it is related to bond between polymer block A and

polymer block B. It deals with nonlocal interactions. c̄2 is the mass ratio between two

polymers. α, β, and γ are the coefficients in the free energy density function.

c̄2 =
1

|B|

∫
B
c2dV = constant (4.7)

µ1 and µ2 are defined as the chemical potentials in order to split the Cahn-Hilliard
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equations. Therefore, we obtain the problem as follows.

τ1ċ1 = −∇2
xµ1 in B × [0, T ]

µ1 = ε21∇2
xc1 + f1(c1) in B × [0, T ]

τ2ċ2 = −∇2
xµ2 − %(c2 − c̄2) in B × [0, T ],

µ2 = ε22∇2
xc2 + f2(c2) in B × [0, T ],

c1(x, 0) = c1,0 in B,

c2(x, 0) = c2,0 in B,

∇xc1 · n = ∇xc2 · n = ∇xµ1 · n = ∇xµ2 · n = 0 on ∂B × [0, T ]

(4.8)

with

f1(c1, c2) = (1− c1)(1 + c1)c1 − αc2 − βc2
2

f2(c1, c2) = (1− c2)(1 + c2)c2 − αc1 − 2βc1c2

(4.9)

4.1.2 Numerical Model Simulations

To solve the coupled problem with the finite element method, we need a weak form

of the problem.

Weak Form of Coupled Cahn-Hilliard equations

∫
B
τ1ċ1θdV =

∫
B
∇xµ1 · ∇xθdV∫

B
µ1ηdV =

∫
B

{
−ε21∇xc1 · ∇xη + f1(c1, c2)η

}
dV∫

B
τ2ċ2ϑdV =

∫
B
{∇xµ2 · ∇xϑ− % (c2 − c̄2)ϑ} dV∫

B
µ2ζdV =

∫
B

{
−ε22∇xv · ∇xζ + f2(c1, c2)ζ

}
dV

c1(x, 0) = c1,0

c2(x, 0) = c2,0

(4.10)

where θ, η, ϑ, and ζ are the test functions for order the parameters and their chemical

potentials.
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4.1.2.1 The First Example

The first model is reproduced example in [52]. The values of parameters are presented

in Table 4.1 for this example. The solutions are presented in Figure 4.2.

Table 4.1: Parameters of Self-assembly Model 1

No. Parameter Name Value

1 B Domain [0, 1]× [0, 1]

2 ε1 Interface parameter 0.05

3 ε2 Interface parameter 0.05

4 τ1 Time coefficient 1

5 τ2 Time coefficient 10

6 α Surface energy coefficient 0.04

7 β Surface energy coefficient −0.9

8 γ Surface energy coefficient 0

9 % Long range interaction coefficient 100

10 ∆t Time step 1× 10−4

11 c1,0 Initial condition for c1 sin 10xy

12 c2,0 Initial condition for c2 cos 10(x− y)xy

13 Tfinal Final time 0.1

In the first example, we validate our solution because we obtain the same results in

[52]. Figure 4.2c shows macrophase separation. The red and blue colors indicate the

copolymer and the homopolymer, respectively. Figure 4.2d demonstrates the pattern

in the copolymer.
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(a) c1,0 (b) c2,0

(c) c1 at t = 10 (d) c2 at t = 10

Figure 4.2: Solution of the coupled Cahn-Hilliard equations are presented. c1 field

shows the macrophase separation and c2 field shows the microphase separation.

4.1.2.2 Onion Shape Example

Here we will solve the coupled Cahn-Hilliard equations with given parameters in

Table 4.2. Onion shape is produced from the striped pattern. The initial condition for

both c1 and c2 field are presented in Equations (4.11) and (4.12). The solutions of c1
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and c2 fields are depicted in Figure 4.4 and 4.3 respectively.

c1,0 =

0.6 for (x− 0.5)2 + (y − 0.5)2 ≤ 0.125

−0.6 otherwise
(4.11)

c2,0 =

sin 15πx for (x− 0.5)2 + (y − 0.5)2 ≤ 0.125

−0.2 otherwise
(4.12)

Table 4.2: Parameters of Self-assembly Model 2

No. Parameter Name Value

1 B Domain [0, 1]× [0, 1]

2 ε1 Interface parameter 0.025

3 ε2 Interface parameter 0.025

4 τ1 Time coefficient 1

5 τ2 Time coefficient 10

6 α Surface energy coefficient 0.3

7 β Surface energy coefficient −0.8

8 γ Surface energy coefficient 0

9 % Long range interaction coefficient 100

10 ∆t Time step 5× 10−4

11 Tfinal Final time 1
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(a) c1 at t = 0 (b) c1 at t = 0.001

(c) c1 at t = 0.003 (d) c1 at t = 0.005

(e) c1 at t = 0.01 (f) c1 at t = 1

Figure 4.3: Evolution of c1 field for onion shape production
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(a) c2 at t = 0 (b) c2 at t = 0.001

(c) c2 at t = 0.003 (d) c2 at t = 0.005

(e) c2 at t = 0.01 (f) c2 at t = 1

Figure 4.4: Evolution of c2 field for onion shape production

89



Here, we solve the onion shape example in three-dimensional geometry. The same

parameters are used in the two-dimensional example, which can be seen in Table 4.2.

The following form of initial conditions is used in the three-dimensional example.

c1,0 =

0.6 for (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.125

−0.6 otherwise
(4.13)

c2,0 =

sin 15πx for (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.125

−0.2 otherwise
(4.14)

The solution of the 3D onion shape example is shown in Figures 4.5 - 4.9. In the

visualization of the solution, the domain is cut in half to display better.

For both 2D and 3D onion shape examples, the transformation of the block copoly-

mers from striped lamellae into an onionlike sphere is modeled through the coupled

Cahn-Hilliard equations like in [39].
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(a) c1 at t = 0 (b) c1 at t = 0.001

(c) c1 at t = 0.003 (d) c1 at t = 0.005

(e) c1 at t = 0.01 (f) c1 at t = 0.25

Figure 4.5: Evolution of c1 field for 3D onion shape production example. The color

indicates the c1 field.
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(a) c1 at t = 0 (b) c1 at t = 0.001

(c) c1 at t = 0.003 (d) c1 at t = 0.005

(e) c1 at t = 0.01 (f) c1 at t = 0.25

Figure 4.6: Evolution of copolymer phases for 3D onion shape production. The

copolymer consists of block polymer A and B. The color indicates the c1 field.
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(a) c2 at t = 0 (b) c2 at t = 0.001

(c) c2 at t = 0.003 (d) c2 at t = 0.005

(e) c2 at t = 0.01 (f) c2 at t = 0.025

Figure 4.7: Evolution of c2 field for 3D onion shape production. The color indicates

the c2 field.
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(a) Blue phase at t = 0 (b) Blue phase at t = 0.001

(c) Blue phase at t = 0.003 (d) Blue phase at t = 0.005

(e) Blue phase at t = 0.01 (f) Blue phase at t = 0.025

Figure 4.8: Evolution of blue phase in the copolymer. The blue phase and red phase

in Figure 4.6 depict the onion shape formation. The color indicates the c2 field.
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(a) Red phase at t = 0 (b) Red phase at t = 0.001

(c) Red phase at t = 0.003 (d) Red phase at t = 0.005

(e) Red phase at t = 0.01 (f) Red phase at t = 0.025

Figure 4.9: Evolution of red phase in the copolymer. The combination of Figures 4.8

and 4.9 gives Figure 4.6. The color indicates the c2 field.
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CHAPTER 5

SELF-ASSEMBLY COUPLED WITH MECHANICS

This chapter contributes to the literature by combining self-assembly and mechanics.

In other words, we solve two Cahn-Hilliard equations coupled with finite viscoelas-

ticity.

5.1 Coupling of Self Assembly and Finite Viscoelasticity

In Chapter 3, we have investigated the coupling of the Cahn-Hilliard equation and

the mechanics. In Chapter 4, we have studied the coupling of two Cahn-Hilliard

equations and modeled self-assembly.

In modeling of self-assembly, we have two Cahn-Hilliard equations for both macrophase

and microphase separation. Here, for microphase separation, we solve the Cahn-

Hilliard equation with finite viscoelasticity using the procedure that is presented in

Chapter 3.

Equations (3.59), (3.61) and (3.62) are used for the deformation gradient split. The

following energy storage function is used.

W (F , c1, c2) = Wmech

(
Fmech(F , c2)

)
+Wche(c1, c2) (5.1)
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with

Wche(c1, c2) =
(c2

1 − 1)
2

4
+

(c2
2 − 1)

2

4
+ αc1c2 + βc1c

2
2 + γc2

1c2

Wmech

(
Fmech(F , c2)

)
= Wvol(J) +Wiso

(
C̄
) (5.2)

and

Wvol(Jmech) = 1
2
κ
(

1
2

(
Jmech

2 − 1
)
− ln Jmech

)
,

Wiso

(
C̄
)

= 1
2
µ(C̄ : 1− 3) = 1

2
µ(tr[C̄]− 3)

(5.3)

The coupling of the Cahn-Hilliard equation and mechanics is known. Now we can

combine this coupling with self-assembly, which is described in Chapter 4. The fol-

lowing set of partial differential equations are considered.

τ1ċ1 = −∇2
xµ1 in B × [0, T ]

µ1 = ε21∇2
xc1 + f1(c1, c2) in B × [0, T ]

τ2ċ2 = −∇2
xµ2 − %(c2 − c̄2) in B × [0, T ],

µ2 = ε22∇2
xc2 + f2(c1, c2) in B × [0, T ],

Div[P ] + γ̄ = 0 in B × [0, T ]

c1(x, 0) = c1,0 in B,

c2(x, 0) = c2,0 in B,

u(x, 0) = c2,0 in B,

ϕ = ϕ̄(X, t) on ∂Bϕ0 and Pn0 = t̄(x, t) on ∂Bt0
∇xc1 · n = ∇xc2 · n = ∇xµ1 · n = ∇xµ2 · n = 0 on ∂B × [0, T ].

(5.4)

with

f1(c1, c2) = (1− c1)(1 + c1)c1 − αc2 − βc2
2

f2(c1, c2) = (1− c2)(1 + c2)c2 − αc1 − 2βc1c2 + ΩJ−1
c p

(5.5)

where P is defined in Equation (3.65)
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5.1.1 Numerical Simulation

To solve the coupled problem with the finite element method, we need a weak form

of the problem.

Weak Form of the Problem:

∫
B
τ1ċ1θdV =

∫
B
∇xµ1 · ∇xθdV∫

B
µ1ηdV =

∫
B

{
−ε21∇xc1 · ∇xη + f1(c1, c2)η

}
dV∫

B
τ2ċ2ϑdV =

∫
B
{∇xµ2 · ∇xϑ− % (c2 − c̄2)ϑ} dV∫

B
µ2ζdV =

∫
B

{
−ε22∇xv · ∇xζ + f2(c1, c2)ζ

}
dV∫

B
P : ∇xqdV =

∫
B
γ̄ · qdV

c1(x, 0) = c1,0

c2(x, 0) = c2,0

(5.6)

with

∫
B

˙̄Q : UdV +

∫
B

1

τ
Q̄ : UdV =

∫
B
β
d

dt

(
DEV

[
S̄
e
iso

])
: UdV (5.7)

where θ, η, ϑ, ζ , q and U are test functions for order parameters, their chemical po-

tentials, deformation field and isochoric viscous overstress field. Values of parameters

are presented in Table 5.1.

The initial condition for both c1 and c2 field are shown in Figures 5.1a and 5.1a.

These parameters and initial conditions are the same as the onion shape example in

Chapter 4. Without mechanics effect, we obtained the onion shape. Now we get a

different pattern. According to the result, we obtained, considering the effect of the

viscoelasticity changes the concentration/order parameter. Solutions of c1 and c2 field
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are depicted in Figure 5.2 and 5.1 respectively.

c1,0 =

sin 15xy for (x− 0.5)2 + (y − 0.5)2 ≤ 0.125

−0.2 otherwise
(5.8)

c2,0 =

0.6 for (x− 0.5)2 + (y − 0.5)2 ≤ 0.125

−0.6 otherwise
(5.9)

Table 5.1: Parameters of Self-assembly Coupled with Mechanics Model

No. Parameter Name Value

1 B Domain [0, 1]× [0, 1]

2 ε1 Interface parameter 0.025

3 ε2 Interface parameter 0.025

4 τ1 Time coefficient 1

5 τ2 Time coefficient 10

6 α Surface energy coefficient 0.3

7 β Surface energy coefficient −0.8

8 γ Surface energy coefficient 0

9 % Long range interaction coefficient 100

10 ∆t Time step 5× 10−4

11 Tfinal Final time 1
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(a) c1 at t = 0 (b) c1 at t = 0.001

(c) c1 at t = 0.003 (d) c1 at t = 0.005

(e) c1 at t = 0.01 (f) c1 at t = 1

Figure 5.1: Evolution of c1 field for self-assembly model considering finite viscoelas-

ticity
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(a) c2 at t = 0 (b) c2 at t = 0.001

(c) c2 at t = 0.003 (d) c2 at t = 0.005

(e) c2 at t = 0.01 (f) c2 at t = 1

Figure 5.2: Evolution of c2 field for self-assembly model considering finite viscoelas-

ticity
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CHAPTER 6

CONCLUDING REMARKS

In this thesis, the process of self-assembly in deformable bodies was numerically

modeled using the finite element method. First, the Cahn-Hilliard equation is inves-

tigated. It is solved by using C0 and C2 elements separately. Moreover, its variants

were studied, such as the Allen-Cahn equation, the Cahn-Hilliard equation with the

proliferation and fidelity term, the Cahn-Hilliard-Oono equation, and the sixth-order

generalized Cahn-Hilliard equation. Relevant numerical examples were also given

for the variants of the Cahn-Hilliard equation. Second, coupling of the Cahn-Hilliard

equation with the conservation of linear momentum was examined. In this study, the

coupling was done by considering the volumetric deformation and adding an interface

stretch term to the storage function. We observed an increase in interface area as a re-

sult of the interface stretch term. Furthermore, for the mechanics part, finite elasticity

and finite viscoelasticity material behavior were considered. The self-assembly pro-

cess was modeled by two Cahn-Hilliard equations. One of the Cahn-Hilliard equa-

tions was coupled with the conservation of linear momentum equation. Numerous

representative numerical examples were presented.

In literature, there are few studies on the coupling of the Cahn-Hilliard equation with

mechanics. Those couplings are through volumetric deformation. Here, we also

consider an additional stretch term in the storage function, which couples the Cahn-

Hilliard equation and mechanics. In literature, the mechanical part is studied as the

finite elasticity, but we also studied finite viscoelasticity. To our best knowledge, there

are no studies combining the self-assembly process and the mechanical effects at the

continuum level. In this respect, this thesis has brought this novelty as well. We ob-

served that the mechanical effects affect the pattern comparing purely chemical and
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coupled formulation. Now, we have a tool to model self-assembly considering me-

chanical effects. We can add more coupling terms to the tool, and it can be calibrated

using the experimental data. This tool can be used by a researcher working in the

self-assembly area.

6.1 Challenges

The Cahn-Hilliard equation is a highly nonlinear, time-dependent 4th-order partial

differential equation. Therefore, to solve it, we should have fine meshes if we use

Lagrange finite elements. This increases the time required for simulations. For the

model of the self-assembly of the block copolymer, we need to solve at least two

Cahn-Hilliard equations together. To decrease cumulative error in the finite element

solution, we should have finer meshes and smaller time steps. In addition to this, when

we solve two Cahn-Hilliard equations considering the effect of the finite viscoelas-

ticity, we should definitely have finer meshes and smaller time steps. Otherwise, the

solution does not converge. This is a time-consuming simulation.

In the modeling of the self-assembly, some of the results that are presented in Chap-

ter 4 are obtained by trial and error since some parameter values are not given in the

literature. Furthermore, while coupling self-assembly and mechanics with the terms

we added, the coefficient at the beginning of this term was tried to be found by trial

and error. Therefore, all the trial error procedures in this study took a lot of time. In

this regard, an optimization problem can be written. By optimizing, we can obtain

the necessary parameters and initial conditions to obtain a particular pattern.

In addition to these, we do not have the experimental study and data to test and cali-

brate our model.

6.2 Future Studies

We plan to add different terms such as area stretch with concentration and the cur-

vature of concentration with stretch to the energy storage function in future studies.

Those terms couple the deformation fields and the concentration fields as well. Since
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we do not have experimental data, perhaps the most important thing is how to de-

termine the coefficient in front of these terms. How do we calibrate the numerical

model? Does this coupling explain exactly the underlying physics? These are the

questions that need to be answered in the future.
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