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Mechanical Engineering, Hacettepe University

Assist. Prof. Dr. Halit Ergezer
Mechatronics Engineering, Çankaya University

Date: 07.09.2021



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.
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ABSTRACT

TRANSFER FUNCTIONS WITH POSITIVE IMPULSE RESPONSE:
FEEDBACK CONTROLLER DESIGN AND APPLICATION TO

COOPERATIVE ADAPTIVE CRUISE CONTROL

İşler, İbrahim Tayyip

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Werner Schmidt

September 2021, 73 pages

Driver assistance systems are increasingly employed to replace human driver func-

tionality. Cooperative adaptive cruise control (CACC) automates the longitudinal

vehicle motion to support safe vehicle following using distance measurements and

state information communicated among vehicles. A basic requirement when using

CACC is to attenuate fluctuations along vehicle strings, which is captured by the for-

mal condition of string stability. Hereby, different notions of string stability exist in

the literature based on different operator norms.

In this thesis, a string stability condition based on the L-infinity norm, denoted as

strict L∞ string stability is used. This condition can be fulfilled by designing a CACC

feedback loop, where the input/output behavior of the CACC system has positive im-

pulse response. Accordingly, the main contribution of this thesis is the development

of sufficient conditions for achieving a positive impulse response. These conditions

are then used to formulate an optimization problem, whose solution provides suit-

able controller parameters for ensuring strict L∞ string stability. The practicability
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of the proposed method is validated by simulation experiments with realistic vehicle

parameters. In addition, it is shown that the proposed method is robust to additional

communication delay and actuator delay, which are generally encountered in real-life

CACC systems.

Keywords: Cooperative Adaptive Cruise Control, String Stability, Heterogeneous Ve-

hicle Strings, Positive Impulse Response
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ÖZ

POZİTİF DÜRTÜ TEPKİLİ TRANSFER FONKSİYONLARI:
GERİBESLEMELİ KONTROLCÜ TASARIMI VE KOOPERATİF ADAPTİF

SEYİR KONTROLÜ UYGULAMASI

İşler, İbrahim Tayyip

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Eylül 2021 , 73 sayfa

Sürücü yardım sistemleri, insan sürücü işlevselliğinin yerini almak için giderek daha

fazla kullanılmaktadır. Kooperatif adaptif seyir kontrolü (CACC), araçlar arasında

iletilen mesafe ölçümlerini ve durum bilgilerini kullanarak güvenli araç takibini des-

teklemek için boylamasına araç hareketini otomatikleştirir. CACC kullanırken temel

bir gereklilik, zincir stabilitesinin formel koşulu tarafından yakalanan araç zincirleri

boyunca dalgalanmaları azaltmaktır. Bu vesileyle, literatürde farklı operatör normla-

rına dayanan farklı zincir stabilite kavramları mevcuttur.

Bu tezde, L-sonsuz normuna dayalı mutlak L∞ zincir stabilite diye tabir edilen bir

zincir stabilite koşulu kullanılmıştır. Bu koşul, giriş/çıkış davranışının pozitif dürtü

yanıtına sahip olduğu bir CACC geri besleme döngüsü tasarlanarak yerine getirilebi-

lir. Bunun üzerine ilerlenerek bu tezin ana katkısı pozitif dürtü yanıtının elde edilmesi

için yeterli koşulların geliştirilmesi olmuştur. Bu koşullar daha sonra çözümü mutlak

L∞ zincir stabilitesini garanti eden uygun kontrolcü parametrelerini sağlayan bir op-

timizasyon probleminin formülize edilmesinde kullanılmıştır. Öne sürülen yöntemin
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uygulanabilirliği gerçekçi araç parametreleri ile gerçekleştirilen benzetim deneyle-

riyle doğrulanmıştır. Ayrıca, öne sürülen yöntemin, gerçek hayatta CACC sistemle-

rinde genellikle karşılaşılan ekstra iletişim ve eyleyici gecikmelerine karşı gürbüz

yapıda olduğu gösterilmiştir.

Anahtar Kelimeler: Kooperatif Adaptif Seyir Kontrolü, Zincir-Stabilite, Heterojen

Araç Zincirleri, Pozitif Dürtü Tepkisi

viii



to the Truth...

ix



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Klaus

Werner Schmidt for his constant support, unique guidance and uplifting encourage-

ment throughout my graduate study under his supervision.

For their perceptive comments, and criticism, I would also like to thank the committee

members.

I am grateful to my company and colleagues for their encouragement and understand-

ing during my graduate studies.

I would like to thank my friends Muhammed Yusuf Candan and Mustafa Murat Sezer

for their sincere and caring advice throughout my academic journey.

I would like to express my foremost thanks to my ever loving mother Sema, generous

and reliable father Ahmet Sami, lovely sister and genuinely protective brother Amine

Berra and Talha, and to my compassionate grandparents, for everything they made to

bring me up to this day.

I owe my loving thanks to my beloved wife Reyyan because without her love, support,

and patience, I would not have been able to cope with work and graduate studies

simultaneously. I shall always remember her trust in me.

All praise and gratitude is due to Allah, by whose favor good deeds are accomplished.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Cooperative Adaptive Cruise Control . . . . . . . . . . . . . . . . . 5

2.2 String Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Positive Impulse Response . . . . . . . . . . . . . . . . . . . . . . . 13

3 POSITIVE IMPULSE RESPONSE COOPERATIVE ADAPTIVE CRUISE
CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Impulse Response Formulation . . . . . . . . . . . . . . . . . . . . . 18

xi



3.3 The Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.5 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.6 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 SIMULATION AND VERIFICATION OF STRING STABILITY . . . . . . 33

4.1 Defining The Test Input Signals . . . . . . . . . . . . . . . . . . . . 36

4.2 Validation With Different Sets of Driveline Parameters . . . . . . . . 38

4.3 Communication Delay . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Actuator Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii



LIST OF TABLES

TABLES

Table 4.1 Zero delay homogeneous string parameter set . . . . . . . . . . . . 38

Table 4.2 Zero delay heterogeneous string parameter set 1 . . . . . . . . . . . 43

Table 4.3 Zero delay heterogeneous string parameter set 2 . . . . . . . . . . . 47

Table 4.4 Zero delay heterogeneous string parameter set 3 . . . . . . . . . . . 51

Table 4.5 Fixed parameter set to test communication delay tolerance . . . . . 53

Table 4.6 Fixed parameter set to test actuator delay tolerance . . . . . . . . . 63

Table 4.7 Fixed parameter set for examining the effect of headway time . . . . 66

xiii



LIST OF FIGURES

FIGURES

Figure 2.1 ACC and CACC . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2 CACC Vehicle String Structure . . . . . . . . . . . . . . . . . . 7

Figure 2.3 Constant Time Gap Policy . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.4 String Unstable Acceleration Signals . . . . . . . . . . . . . . . 11

Figure 2.5 String Stable Acceleration Signals . . . . . . . . . . . . . . . . 11

Figure 2.6 Impulse response examples with corresponding step responses . 13

Figure 4.1 Representation of CACC in Simulink . . . . . . . . . . . . . . . 33

Figure 4.2 Reusable Vehicle Block Applying CACC . . . . . . . . . . . . . 34

Figure 4.3 CACC Simulation Model . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.4 Leader vehicle’s states in response to constant jerk . . . . . . . . 36

Figure 4.5 Response to acceleration-deceleration type input . . . . . . . . . 37

Figure 4.6 Input signal simulating acceleration and then braking to stop . . 37

Figure 4.7 Homogeneous string τi = 0.16, pole-zero maps of Γi in case 1 . 39

Figure 4.8 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.9 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.10 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiv



Figure 4.11 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.12 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.13 IR functions of homogeneous string with τi = 0.16 for case 3 . . 42

Figure 4.14 IR functions of homogeneous string with τi = 0.64 for case 6 . . 42

Figure 4.15 Pole-zero maps of heterogeneous string in Table 4.2 for case 3 . 44

Figure 4.16 Corresponding Bode plots . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.17 Corresponding impulse responses . . . . . . . . . . . . . . . . . 45

Figure 4.18 Resulting accelerations in response to input in Figure 4.5 . . . . 45

Figure 4.19 Corresponding velocities . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.20 Corresponding positions . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.21 Pole-zero maps of heterogeneous string in Table 4.3 for case 6 . 47

Figure 4.22 Corresponding Bode plots . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.23 Corresponding impulse responses . . . . . . . . . . . . . . . . . 48

Figure 4.24 Resulting accelerations in response to input in Figure 4.5 . . . . 49

Figure 4.25 Corresponding velocities . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.26 Corresponding positions . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.27 Impulse response for the resultant controller in case 1 . . . . . . 54

Figure 4.28 Impulse response for the resultant controller in case 2 . . . . . . 54

Figure 4.29 Impulse response for the resultant controller in case 3 . . . . . . 55

Figure 4.30 Impulse response for the resultant controller in case 4 . . . . . . 55

Figure 4.31 Impulse response for the resultant controller in case 5 . . . . . . 56

Figure 4.32 Impulse response for the resultant controller in case 6 . . . . . . 56

xv



Figure 4.33 Accelerations for the synthesized controllers in case 1 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.34 Accelerations for the synthesized controllers in case 2 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.35 Accelerations for the synthesized controllers in case 3 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.36 Accelerations for the synthesized controllers in case 4 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.37 Accelerations for the synthesized controllers in case 5 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.38 Accelerations for the synthesized controllers in case 6 for θi =

25ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.39 Case 6, Communication delay increased to θi = 125ms . . . . . 60

Figure 4.40 Case 6, Communication delay increased to θi = 250ms . . . . . 61

Figure 4.41 Case 6, Communication delay increased to θi = 500ms . . . . . 61

Figure 4.42 Bode plots for the resultant controllers in case 6 . . . . . . . . . 62

Figure 4.43 Accelerations for the controller in case 6 for 25ms actuator delay 64

Figure 4.44 Accelerations for the controller in case 6 for 50ms actuator delay 64

Figure 4.45 Accelerations for the controller in case 6 for 65ms actuator delay 65

Figure 4.46 Accelerations for the controller in case 3 for 65ms actuator delay 65

Figure 4.47 Accelerations for 0.5 second headway time . . . . . . . . . . . . 66

Figure 4.48 Accelerations for 1 second headway time . . . . . . . . . . . . . 67

Figure 4.49 Accelerations for 1 second headway time 150ms actuator delay . 67

Figure 4.50 Accelerations for 1 second headway time 170ms actuator delay . 68

xvi



LIST OF ABBREVIATIONS

CC Cruise Control

ACC Adaptive Cruise Control

CACC Coopertative Adaptive Cruise Control

SS String Stability

MPC Model Predictive Control

IR Impulse Response

PIR Positive Impulse Response

LPF Low-Pass Filter

PI Proportional-Integral

PD Proportional-Derivative

PID Proportional-Integral-Derivative

AF Acceleration Feedforward

PAF Predicted Acceleration Feedforward

ISF Input Signal Feedforward

BIBO Bounded Input Bounded Output

xvii



LIST OF VARIABLES

x Position

v Velocity

a Acceleration

L Vehicle length

d Intervehicle distance

r Intervehicle distance at standstill

h Headway time

φ Actuator time delay

τ Driveline dynamics

θ Communication delay

G Longitudinal vehicle dynamics transfer function

C Feedback controller transfer function

Kp Proportional gain

Kd Derivative gain

F Feedforward filter transfer function

H Constant time-gap transfer function

D Communication delay transfer function

Γ Closed loop transfer function between vehicles

xviii



CHAPTER 1

INTRODUCTION

One of the trending topics of the last decade has been autonomous vehicles. Major

automotive companies are already in a rivalry in achieving higher levels of autonomy.

In fact, there are already significant examples of autonomous driving trials such as

Google’s Waymo and others. Still, there is quite some work to be undertaken for

completely autonomous driving functionality. In addition, the difficulties and limita-

tions faced whilst trying to solve control issues in autonomous driving systems not

only relate to necessity of further studies in control theory to develop techniques ad-

dressing subject specific matters, but also to other interdisciplinary study areas, such

as 5G communication.

Dividing the problem of autonomous driving into subproblems, one of the major is-

sues is the control of longitudinal motion. Longitudinal control, i.e. applying the

throttle or brake action, constitutes a huge portion of the entire motion taking place in

traffic. Thus, it needs to be studied painstakingly. Every step to be taken in this field

of study will determine how much more we can lessen the footprints to be left to the

future. By now, it has become evident to the researchers [1], [2] that closing the inter-

vehicle distance in vehicle platoons has promising results, such as increase in traffic

throughput, decrease in energy consumption, and savings of time. Yet, how this goal

can safely be achieved still remains as an open area of research. Specifically, coop-

erative adaptive cruise control (CACC) offers a highly efficient and secure solution

to the question of controlling longitudinal vehicle dynamics. In short CACC, uses

both sensor measurements such as distance and velocity and communicated state in-

formation between vehicles in order to enable driving at small inter-vehicle distances,

hence yielding efficiency in traffic flow and fuel consumption.
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There have been many studies on this subject aiming both theoretical development

and practical implementation. In some studies, the means of communication which

are the underlying basis of CACC and its requirements have been discussed. The

matter of communicating the feedforward signals of predecessor vehicles will not

be in the scope of our study. Rather, we will be solely concentrating on how to

synthesize robust controllers that can handle various situations at real-life scenario.

For a quick review on the topic of how vehicle to vehicle (V2V) communication is

sustained Dey et al. [3] can be referred. Also Darbha et al.’s [4] is enlightening for

gaining some insight into the benefits of V2V communication in CACC. The study

carried out by Xing et al. [5] makes it clear how communication delays can be critical

and its compensation can yield significant improvements. For a more holistic view of

the subject Wang et al.’s survey [6] can be consulted.

Regarding the practical implementation of CACC, Ploeg et al. [7] clearly showed the

possibility of increasing traffic throughput via lower distances between vehicles by

proving theoretical work to be true in the field with a test fleet of vehicles. Further-

more, Bayezit et al. [8] also managed to implement CACC in the Grand Cooperative

Driving Challange (GCDC). In the United States, there have been several attempts by

the United States Department of Transportation who took a comprehensive initiative

to establish and see the full potential of connected vehicle concept. A recent study [9]

brought engineers from different major car manufacturer companies together to test

and see the outcomes of utilization of CACC to its full capacity. Yet, there is still a

lot of work to be done both in theory and practice.

CACC can be established through a variety of control schemes and as long as they

serve the purpose and guarantee safe driving, they are all considered to be conform-

ing. As a constituent component, each control policy comes with a spacing policy

that determines the desired distance between vehicles in a string. On the one hand,

there is work on the constant gap policy, where vehicles travel at a constant distance

independent of the vehicle velocity [10, 11]. On the other hand, a large body of

the existing work on CACC focuses on a variable spacing policy, where the desired

distance increases linearly with the vehicle velocity depending on a headway time

constant [12–14]. In this thesis, we focus on the variable spacing policy due to its

higher relevance in practice.
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All control methods utilized for CACC aim to grant a more comfortable and efficient

longitudinal driver unit while at the same time trying not to compromise any budget

from robustness or safety. In this context, string stability is an important condition

to fulfill the described goal. Intuitively, string stability ensures that fluctuations in a

vehicle string are attenuated along the string. Wang et al. [15] reviewed some of the

related approaches. For instance, Zhu et al. in [16], focused on uncertainties and het-

erogeneity of vehicle strings, hence, put forth adaptive optimal control techniques as

a solution to CACC problem. Zhou et al. [17], developed a specific model predictive

control (MPC) approach to achieve string stability goal.

When considering string stability, it has to be noted that different definitions of string

stability exist. Specifically, [1] introduces the general notion of strict Lp string sta-

bility and puts forward that the special cases of strict L2 and strict L∞ string stability

are of practical use. L2 string stability ensures the attenuation of the L2 norm (en-

ergy content) , whereas strict L∞ string stability guarantees the attenuation of the L∞

norm (maximum amplitude) of a chosen output signal along a vehicle string. Zhu et

al. in [16], considered the L2 string stability definition and tried to find the minimum

headway times by sum of squares programming. Zhou et al. [17], considered both

L2 and L∞ string stability definitions with MPC. In the literature, frequency domain

analysis and tools to suffice L2 string stability are discussed thoroughly. However,

there is an obvious shortage of studies in the field of time domain analysis for fulfill-

ing strict L∞ string stability condition. Yet, it possesses potentially a more powerful

type of string stability.

The main contribution of this thesis work comes right at this point, providing a unique

method for fulfilling strict L∞ string stability with an additional robustness feature of

yielding positive impulse responses. The method also gives the user an opportunity

to turn the headway time constant into one of the optimization parameters. In order to

validate the method we propose, there have been several types of tests carried out. We

first experiment with different driveline dynamics constants to show that our method

can manage a spectrum of strings and vehicles. Then, we move on to tests regarding

the delays to analyze the method’s robustsness and viability. Ultimately, the method

proposed was observed to be capable of dealing with significant amount of cases and

realistic values even under non-zero delay values.
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After the introduction chapter, there will be three main chapters to this thesis in which

the necessary concepts, the problem, and the results attained will be shared in an or-

derly fashion. In the second chapter, background is divided into three subjects. Two

of the background subjects constitute directly the fundamental elements of a CACC.

The third section in the background chapter lays out the unprecedented solution ap-

proach which we are trying to adapt for the CACC problem. In the third chapter, what

can also be labeled as the body of the thesis work regarding CACC is brought under

attention. The fourth presents the results and comments on them. Finally, the thesis

concludes with remarks and thoughts on prospective studies which can be built upon

this work or may benefit from the results observed.
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CHAPTER 2

BACKGROUND

2.1 Cooperative Adaptive Cruise Control

Cooperative adaptive cruise control (CACC) is an extension of the commercially

available adaptive cruise control (ACC) systems with a feedforward signal added to

the control loop, increasing robustness and yielding a new notion of stability named

string stability.

Block diagrams for both ACC and CACC, and, highlighted in blue, the evolution of

ACC to CACC with feedforward path addition are shown in Figure 2.1. Briefly, Gi

represents the longitudinal vehicle dynamics, Ci is the feedback controller generat-

ing the acceleration and deceleration actions in the loop and, Fi is the feedforward

transfer function which enables the follower vehicles to replicate the actions of their

predecessors much quicker than they do in the case of ACC.

The general setting of CACC is illustrated in Figure 2.2. In CACC, vehicles form

a string to achieve a seamless and harmonious longitudinal motion while observing

a certain type of inter-vehicle spacing policy. In the literature, generally, a policy

named ’constant time gap’ is practiced which simply means maintaining a distance

proportional to the velocity of the string. This proportionality constant is also referred

as ’headway time’. In Figure 2.3, the constant time gap spacing policy is illustrated.

Assuming a constant gap between all vehicles along the string at standstill (2.3), the

aim of CACC is to maximize the number of vehicles travelling in unit time (traffic

throughput) and to minimize fuel consumption by minimizing the inter-vehicle dis-

tance. In short, in the ideal case, the whole string of vehicles would have acted as one
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Figure 2.1: ACC and CACC

body by all vehicles applying the changes of the velocity of their predecessor vehi-

cles instantaneously with zero time gap yielding zero velocity tracking error. Thence,

6



Figure 2.2: CACC Vehicle String Structure

Figure 2.3: Constant Time Gap Policy

the inter-vehicle distance would have been minimized to the initial standstill con-

stant distance. However, there are limiting factors in reality, such as communication

and actuator delays and, bounds on the control inputs. Therefore, the inter-vehicle

distance and how quick vehicles track their predecessors’ velocities will have to be

traded off for robustness and safety.

In a predecessor-follower type CACC application, the plant is the whole chain of ve-

hicles. In practice, every individual vehicle other than the leader is responsible for

implementing the changes in longitudinal motion that it receives from its predecessor

as a reference signal in a specific fashion, which can be characterized with a certain

type of transient behavior too. So, a string stable CACC will be achieved if and only

if all follower vehicles are controlled meeting the transient response requirements.

Right then and there, we suggest and assume that designing controllers yielding pos-

itive impulse responses will be a feasible and highly effective way of establishing

CACC.

In the definition of CACC problem, only the longitudinal motion is defined and dealt

with. For practical purposes, number of vehicles in a string is left unlimited. Also

the type of strings can be divided into two categories as homogeneous and heteroge-

neous strings. In homogeneous strings all members of the string are assumed to be

7



identical vehicles. This definition makes certain analysis easier and brings simplicity

to the problem formulation, in that, the vehicle dynamics difference is no longer ex-

istent. On the other hand, in heterogeneous strings, every vehicle has to consider its

predecessor’s driveline dynamics while controlling its own attitude of acceleration or

deceleration. So the dynamic difference has to be accounted for in controller design.

The vehicle string can be depicted as in Figure 2.2. Therein, Li denotes the length of

ith vehicle. The distance between vehicles at any time instant is di. Lastly, taking the

rear bumpers as the reference point we denote the position, velocity and acceleration

of ith vehicle by xi, vi and ai respectively.

To begin with, the intervehicle spacing policy has to be determined before designing

a CACC. To this end, constant time gap is the most frequently encountered approach

in literature. It is a simple and intuitive way to set a distancing rule that fits very

well to the problem nature. There have been other spacing policies suggested in the

literature too. However, we will also stick with the constant time gap spacing policy

(Figure 2.3) and implement it in our problem definition.

Letting ri denote the distance between vehicles at standstill (i.e. when vi = 0, i =

1, 2, ..., n), the constant time gap spacing policy is given as

di,ref = ri + hivi. (2.1)

In steady state, the distance between vehicles will settle at di,ref . On the other hand,

in the transient part, where the predecessor vehicle adopts to a new velocity, the actual

distance between subsequent vehicles will be defined as

di = xi−1 − xi − Li. (2.2)

The difference between the actual distance signal and the reference distance value

will define the spacing error.

ei = di − di,ref = xi−1 − xi − Li − ri − hivi (2.3)

This positional error will be controlled by the CACC in a way that guarantees collision-

free longitudinal driving under any practical acceleration or deceleration behavior.

It must also be noted that the constant time gap policy can be expressed in s-domain
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as

Hi(s) = 1 + his. (2.4)

This form of constant time gap policy will be used in s-domain analysis of the closed

loop transfer function and it will be seen that the headway times of each vehicle

introduce a unique pole of its own in the vehicle-to-vehicle transfer function.

Longitudinal dynamics of a vehicle is much more simpler than its lateral dynamics.

Taking the throttle and brake actions, i.e. acceleration, as input to the system, the

output is defined as the longitudinal position of the vehicle. The transfer function

in Equation (2.5) is validated for a wide range of driving scenarios [18] and its use-

fulness is acknowledged in the recent academic works [13, 19, 20]. It is, in fact, a

simplified model obtained from a more complex one by applying feedback lineariza-

tion [7, 21, 22].

Gi(s) =
Yi(s)

Ui(s)
=
Xi(s)

Ai(s)
=

e−φis

(1 + sτi)s2
(2.5)

In this equation, τi stands for the driveline dynamics of the respective vehicle, φi rep-

resents the delay between the control input being generated and the time of actuator

realization. The squared s term (double integrator) is there for translating acceleration

input to position output.

2.2 String Stability

The term string stability expresses the stability of the chain of vehicles applying

CACC with respect to each other. In control theory, when a system is questioned

whether it is stable or not, it is meaningful to talk about its individual stability with

respect to different definitions of stability (BIBO stability, Lyapunov stability etc.).

However, in CACC, stability of individual systems, i.e. vehicles, is no longer the ut-

most concern since that kind of stability can not guarantee collision-free drive dynam-

ics. String stability, instead, introduces a new notion to the definition of stability by

considering the attenuation of acceleration and velocity signals along the subsequent

vehicles. This attenuation of acceleration and velocity signals may equivalently be

interpreted as the decrease in the responses of vehicles to the variations of the leader

vehicle’s acceleration or velocity. Since CACC is aimed to be a part of the future
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autonomous driving functionality, it has to ensure safety of the travellers. The mea-

sure of safety can be expressed mathematically by different types of string stability

definitions. Although many of those definitions promise secure driving functionality

in theory they have to be tested thoroughly under various conditions to be labeled as

safe. Therefore, choosing and designing controllers that satisfy the strongest type of

string stability definition will be a wiser choice and expected to be holding a better

solution of the problem.

In literature, there have been different approaches to define and satisfy string stability.

Feng et. al. [23] summarized various definitions. The most common type of string

stability definition is derived by comparing the norms of successive vehicles’ output

signals (e.g. acceleration signals). For string stability, each and every follower ve-

hicles’ norm of acceleration signal must be less than its predecessor’s. To recall, Lp

norm of a signal x is defined as

‖x‖p = p

√√√√ n∑
i=1

|xi|p. (2.6)

In general, the L2 and L∞ are the most preferred norms to define string stability

with. Having a closer look at Equation (2.6), it is easily recognized that the L2 norm

is no other than square root of sum of squares, which is therefore also referred as

’Euclidean Norm’. And, the L∞ norm is maximum of a series. Thus, definition of

L2 norm deals with the energy of signals. Thus, L2 string stability guarantees that

the output signals will have less energy than the input signals. On the other hand,

L∞ norm string stability considers and compares the supremum of input and output

signals which means the maximum magnitude of the output signal would have to

be less than the maximum of the input signal. There can be an extension made to

the definition of L∞ string stability, which is to satisfy that there shall not be any

overshoots in the system response. This additional condition yields a new form of

string stability, namely, string stability without overshoot.

For example, in Figure 2.4, it can be seen that the acceleration signals are not atten-

uated towards the tail of the string of vehicles. This is a typical output of a string

unstable CACC to step inputs which will cause collisions in certain scenarios. On the

contrary, Figure 2.5 is a string stable example where there shall not be any collisions
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Figure 2.4: String Unstable Acceleration Signals

Figure 2.5: String Stable Acceleration Signals
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between the vehicles due to CACC.

Mathematically, all these different definitions of string stability can be expressed with

certain conditions, some being stronger than the other in terms of stability and safety

measures. As will be discussed in further detail in the following sections, the one

condition which will be brought attention to in this thesis will be satisfying a positive

impulse response in the time domain. This will guarantee that we satisfy all string

stability definitions given above.

To be able to discuss string stability we define the following so called output string

stability transfer function between successive vehicles’ acceleration signals. Let the

output signals be denoted as

L−1{Yi(s)} = yi(t) = ai(t). (2.7)

Then the output string stability transfer function whose block diagram illustration was

given in Figure 2.1 is

Γi(s) =
Yi(s)

Yi−1(s)
=

Gi(s)

Gi−1(s)

Fi(s) +Gi−1(s)Ci(s)

1 +Hi(s)Gi(s)Ci(s)
. (2.8)

Note that for homogeneous strings it will be reduced to the following expression by

the cancellation of vehicle dynamics transfer functions.

Γi(s) =
Yi(s)

Yi−1(s)
=

Fi(s) +G(s)Ci(s)

1 +Hi(s)G(s)Ci(s)
. (2.9)

Then, the following condition on Γi will be sufficient to say that the CACC is strictly

L2 string stable [1].

‖Γi(jω)‖∞ = max
ω
|Γi(jω)| ≤ 1 (2.10)

Equivalently, Equation (2.10), in time domain, corresponds to the condition that

‖yi(t)‖L2 ≤ ‖yi−1(t)‖L2 ,∀i = 1, 2, ..., n (2.11)

The Equation (2.11) is an expression of attenuation of energy in the acceleration sig-

nals of subsequent vehicles. In other words, every follower vehicle possesses less or

at most equal energy than its predecessor.

Similarly, the second common type of string stability, the strict L∞ string stability,

can be summarized with the following condition.

‖γi(t)‖1 ≤ 1 (2.12)
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Figure 2.6: Impulse response examples with corresponding step responses

However, doing analysis on the time domain entity γi is quite difficult and it can

alternatively be obtained by satisfying the following two sufficient conditions at the

same time.

‖Γ‖∞ ≤ 1, γ(t) ≥ 0,∀t (2.13)

The effectiveness of designing CACC with positive impulse responses comes into

play right at this point. Since it is known that

|Γ(0)| ≤ ‖Γ‖∞ ≤ ‖γ‖1. (2.14)

Definition of Laplace transform allows us to write

|Γ(0)| =
∣∣∣∣ ∫ ∞

0

γ(t)dt

∣∣∣∣ ≤ ∫ ∞
0

|γ(t)|dt = ‖γ‖1. (2.15)

Consequently, provided that the impulse response γ is non-negative

‖Γ‖∞ = ‖γ‖1. (2.16)

Therefore, guaranteeing a positive impulse response and having a bode plot which

never goes above 0dB both at the same time in the CACC design guarantees a more

stringent type of string stability than both L2 and L∞ cases.

2.3 Positive Impulse Response

Impulse response, being the inverse Laplace transform of a transfer function, is a

unique entity in hand to work on and manipulate through controller of choice. In
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many cases, it can be used as a design parameter or a checkpoint to see whether a

system will satisfy specific conditions and constraints put on its input-output rela-

tionship. In particular, having a positive impulse response will yield a step response

with no undershoots and no overshoots. A pair of impulse responses featuring this

property and not featuring it are shared in the Figure 2.6. This property and implica-

tion becomes useful and meaningful for a CACC since it reassures that any stepwise

change in the leader vehicle’s acceleration, due to either disturbances or reference

point velocity changes, will be followed without any oscillations, and hence, there

shall not be any collisions. It is one of the safest options for attaining string stability.

Herein, the impulse responses of the transfer functions between successive vehicles’

acceleration signals will be assumed to be only consisting of exponential terms. This

assumption will be laid out in detail in the following section and it will be seen with

quite reasonable assumptions on the plant model and choice of controller, the impulse

response of the closed loop transfer function, with predecessor acceleration input fed

forward in the follower vehicle’s controller structure, is going to be sum of exponen-

tials whose coefficients and decay factors will be expressed with the constants from

problem’s dynamics and controller parameters.

The generic time domain expression for the impulse response of closed loop transfer

function given in Equation (2.8) is

γ(t) = a0e
α0 + a1e

α1 + a2e
α2 + a3e

α3 . (2.17)

This impulse response’s coefficients and decay factors can be manipulated and tuned

with the choice of controller. In [24], Laguerre presented the conditions on number

of alternations of time series composed of exponential terms in detail on his paper

named ’On The Theory of Numeric Equations’. In this thesis work, we have used

those derived conditions to impose them as nonlinear constraints to an optimization

problem where the objective is formulated to make sure the intervehicle time gap h is

minimized while at the same time a safe and secure string stable CACC performance

is established.

To automate robust and effective CACC design, there has to be a well defined proce-

dure which will overcome possible difficulties that can be encountered in heteroge-

neous vehicle strings while at the same time guaranteeing a satisfactory longitudinal
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following performance. In fact, if this procedure was to permit tuning of the dynamic

response of the vehicle string, then it will be more than just a satisfactory solution.

Laguerre’s mathematical derivations and analysis of number of alternations of certain

types of series sums [24], with reasonably valid assumptions on the model and the

use scenario of the CACC design, serves this purpose.

Particularly, in his work, he has dealt with finding conditions on the coefficients and

decay factors of the time series alike the one in Equation (2.17) which we are con-

cerned with. He started by stating that the integral expression, Θ(z) is a piecewise-

polynomial integrand, ∫ b

a

e−zxΘ(z)dz = 0 (2.18)

can be rearranged* into the form

eα0xf0(x) + eα1xf1(x) + ...+ eαnxfn(x) = 0, (2.19)

where αi and fi are constants and polynomials. Then, the following coefficients were

defined,

p0 = a0, (2.20)

p1 = a0 + a1, (2.21)

p2 = a0 + a1 + a2, (2.22)

...................................., (2.23)

pn = a0 + a1 + a2 + ...+ an. (2.24)

Afterwards, the following integral was considered.∫ α1

α0

e−zxp0dz +

∫ α2

α1

e−zxp1dz +

∫ α3

α2

e−zxp2dz + ...+

∫ ∞
αn

e−zxp0dz = 0 (2.25)

This integral is then transformed into

a0e
−α0x + a1e

−α1x + a2e
−α2x + ...+ ane

−αnx = 0. (2.26)

Replacing

e−x = z, (2.27)

Equation (2.26) becomes

a0z
α0 + a1z

α1 + a2z
α2 + ...+ anz

αn = 0 (2.28)
∗ integration by parts followed by clearing powers of x from the denominator
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It is noted that the number of positive roots of Equation (2.26) is the same as the

number of roots of (2.28) which lie between 0 and 1. Furthermore, it can be rigorously

proven that the number of positive roots of Equation (2.26) is equal to the number of

alternations of the series∫ α1

α0

p0dz +

∫ α2

α1

p1dz +

∫ α3

α2

p2dz + ...+

∫ ∞
αn

p0dz = 0. (2.29)

Thus, the following proposition is made:

Arranging α0, α1, α2, ..., αn in increasing order, the number of positive roots of Equa-

tion (2.26) is no more than the number of alternations of the series

p0(α1 − α0) + p1(α2 − α1) + ...+ pn−1(αn − αn−1) + pn.∞†. (2.30)

This is the simplest case where both αi and ai are all assumed to be real quantities.

This will have an implication in positive impulse response CACC design imposing a

nonlinear equality constraint which is going to be dug up in the next chapter as this

proposition will be utilized and investigated.

† The number of alternations of the series a + b + c + d.∞ is the number of variations of the terms of the
sequence a, a+ b, a+ b+ c, d.
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CHAPTER 3

POSITIVE IMPULSE RESPONSE COOPERATIVE ADAPTIVE CRUISE

CONTROLLER

3.1 Introduction

This chapter can be thought as the main body where the main outcomes of this thesis

work will be shared. As it is evident that robustness and efficiency are utmost concern

in CACC controller design, in this chapter it will be made clear that the approach of

coming up with controllers which yield positive impulse response closed loop transfer

functions between successive vehicles is one guaranteed way to achieve them. The

theoretical background in the previous chapter forms the basis of our study here in

this chapter. Provided that certain conditions are met in the time domain expression

of a transfer function, there can be optimal solutions with positive impulse responses.

The optimality measure is one of the key factors and its choice, by itself, a part of the

problem which requires more and more studies to be carried on.

In short, the following sections will first develop the formulation of an optimization

problem for the CACC controller parameters. Then, different cases for the optimiza-

tion problem are identified and the solution of the optimization problem is discussed.

As the last section of this chapter, the results obtained in simulations and the val-

idation of string stability with satisfactory performance under a wide spectrum of

circumstances will be shared and discussed.
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3.2 Impulse Response Formulation

To formulate the impulse response between consecutive vehicles, let us reconsider

the closed loop transfer function that belongs to a heterogeneous string.

Γi(s) =
Gi(s)

Gi−1(s)

Fi(s) +Gi−1(s)Ci(s)

1 +Hi(s)Gi(s)Ci(s)
. (3.1)

In the literature, for the control scheme in Figure 2.2 there have been several ap-

proaches on how to implement the feedforward path [1, 12, 14, 20]. In our formula-

tion we are going to use so called input signal feedforward (ISF) as the feedforward

method. Moreover, at the feedforward path we are going to assume that no com-

munication delay exists for the formulation of our optimization problem. Hence, the

feedforward transfer function becomes

Fi(s) =
1

Hi(s)
(3.2)

Where

Hi(s) = 1 + his (3.3)

Which was explained in detail in Section 2.1. As the longitudinal vehicle dynamics

transfer function we will use the aforementioned model in (2.5) with the assumption

that there exists no actuator delays (φi = 0).

The assumptions of zero delays for communication and actuation are necessary for an

analytical evaluation of the vehicle-to-vehicle transfer function. Otherwise, the pro-

posed method is not applicable even if 2nd or 1st order Padé approximations were to

be used, and the mathematical work required for formulating an optimization problem

becomes arduous and untraceable.

Finally, the controller choice is going to be a proportional-derivative controller as

Ci(s) =
Kp,i +Kd,is

Hi(s)
. (3.4)
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Then Equation (3.1) becomes

Γi(s) =
1 + τi−1s

1 + τis

s2(1+τi−1s)+(Kp,i+Kd,is)

s2(1+his)(1+τi−1s)

s2(1+τi)+(Kp,i+Kd,is)

s2(1+τis)

=
1 + τi−1s

1 + τis

[
s2(1 + τi−1s) + (Kp,i +Kd,is)

]
(1 + τis)

(1 + his)(1 + τi−1)
[
s2(1 + τi) + (Kp,i +Kd,is)

]
=

s2(1 + τi−1s) + (Kp,i +Kd,is)

(1 + his)
[
s2(1 + τi) + (Kp,i +Kd,is)

]
=

τi−1s
3 + s2 +Kd,is+Kp,i

τihis4 + (τi + hi)s3 + (hiKd,i + 1)s2 + (hiKp,i +Kd,i)s+Kp,i

(3.5)

It must be noted that the closed loop transfer function has a 4th order denominator.

Therefore, there will be 4 poles and they will manifest themselves as 4 exponential

terms in the impulse response.

To be able to extract the poles of the closed loop transfer function in terms of the

CACC design parameters Kp,i, Kd,i, hi and driveline dynamics’ constants τi, partial

fraction expansion is applied to Equation (3.5).

Γi(s) =

[
(τi−1 − τi)(1−Kd,ihi +Kp,ih

2
i )

(Kp,ih3i −Kd,ih2i + hi − τi)

]
s2

τis3 + s2 +Kd,is+Kp,i

+

[
(τi−1 − τi)(Kd,i −Kp,ihi)

Kp,ih3i −Kd,ih2i + hi − τi

]
s

τis3 + s2 +Kd,is+Kp,i

+

[
(τi−1 − τi)Kp,i

Kp,ih3i −Kd,ih2i + hi − τi

]
1

τis3 + s2 +Kd,is+Kp,i

+

[
Kp,ih

3
i −Kd,ih

2
i + hi − τi−1

Kp,ih3i −Kd,ih2i + hi − τi

]
1

his+ 1
(3.6)

Equation (3.6) gives a lot of insight into the possible impulse responses of the system.

It is evident that one of the poles is always introduced by the chosen spacing policy

which is purely real, and the headway time constant hi determines its location on the

real axis. For instance, seeking ’0’ headway time would mean trying to push that pole

to ’−∞’ which makes sense, since intuitively it would be expected that the best case

scenario is supposed to be the most difficult to realize.

Next, the roots of the 3rd order polynomial that shows up in the denominator of the

closed loop transfer function are to be found symbolically.

D(s) = τis
3 + s2 +Kd,is+Kp,i = 0 (3.7)

19



At this step, the cubic formula for solving any 3rd order polynomial equation [25]

was utilized. It is an interesting fact that this kind of a formula was first published by

Cardano [26] in 1545. Thankfully, there are now available computation tools which

can walk us through such problems [27].

Now for readability and compactness, let us introduce the following three interme-

diary constants which are functions of the controller parameters and the driveline

dynamics constants:

c1,i = (−27τ 2i Kd,i + 9τiKd,i − 2), (3.8)

c2,i = (3τiKd,i − 1), (3.9)

c3,i =
3

√
(
√

(c21,i + 4c32,i) + c1,i). (3.10)

The roots are then given as

s1,i =
c3,i

3 3
√

2τi
−

3
√

2c2,i
3τic3,i

− 1

3τi
(3.11)

s2,i =
(1 + i

√
3)c2,i

3 3
√

4τic3,i
− (1− i

√
3)c3,i

6 3
√

2τi
− 1

3τi
(3.12)

s3,i =
(1− i

√
3)c2,i

3 3
√

4τic3,i
− (1 + i

√
3)c3,i

6 3
√

2τi
− 1

3τi
. (3.13)

Then Equation (3.6) can be rewritten as

Γi(s) =

[
(τi−1 − τi)(1−Kd,ihi +Kp,ih

2
i )

(Kp,ih3i −Kd,ih2i + hi − τi)

]
s2

(s+ s1,i)(s+ s2,i)(s+ s3,i)

+

[
(τi−1 − τi)(Kd,i −Kp,ihi)

Kp,ih3i −Kd,ih2i + hi − τi

]
s

(s+ s1,i)(s+ s2,i)(s+ s3,i)

+

[
(τi−1 − τi)Kp,i

Kp,ih3i −Kd,ih2i + hi − τi

]
1

(s+ s1,i)(s+ s2,i)(s+ s3,i)

+

[
Kp,ih

3
i −Kd,ih

2
i + hi − τi−1

Kp,ih3i −Kd,ih2i + hi − τi

]
1

his+ 1
. (3.14)

Now the only step left before obtaining the time domain expression of the impulse

response is to take inverse Laplace transform of Γi(s). Before proceeding with inverse

Laplace transform, we note that the roots of Equation (3.7) are composed of one

complex-conjugate pair (s2,i = s∗3,i) and a single real one (s1,i). Here, if we impose the

necessary conditions on the conjugate pair poles to equate their complex part to zero,
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then we can get an easier inverse Laplace transform expression. It will also be the

one that we would like to have for being able to examine with the given proposition

in section 2.3. That is, the resultant time domain expression will be in the same

form with Equation (2.26). To derive those conditions to be imposed, we consider

Equations (3.12),(3.13) and equate the imaginary parts to zero.

=(s2,i) = −=(s3,i) = 0 (3.15)

This yields

c3,i =

√
− 3
√

4c2,i. (3.16)

Therefore,

3
√

4c2,i + c23,i = 0 (3.17)

And since we cannot tolerate a negative square root term,

c2,i = 3τiKd,i − 1 ≤ 0. (3.18)

Again for simplicity and to keep the terms traceable we define the following interme-

diary constants:

k1,i =

[
(τi−1 − τi)(1−Kd,ihi +Kp,ih

2
i )

(Kp,ih3i −Kd,ih2i + hi − τi)

]
, (3.19)

k2,i =

[
(τi−1 − τi)(Kd,i −Kp,ihi)

Kp,ih3i −Kd,ih2i + hi − τi

]
, (3.20)

k3,i =

[
(τi−1 − τi)Kp,i

Kp,ih3i −Kd,ih2i + hi − τi

]
, (3.21)

k4,i =

[
Kp,ih

3
i −Kd,ih

2
i + hi − τi−1

Kp,ih3i −Kd,ih2i + hi − τi

]
. (3.22)

Hence,

L−1{Γi(s)} = L−1
{
k1,is

2 + k2,is+ k3,i
D(s)

}
+ L−1

{
k4,i

his+ 1

}
. (3.23)

21



Reiterating that s2,i = s3,i, γi becomes

γi(t) =

[
es2,it(k1,is

2
2,i − 2k1,is1,is2,i)

(s1,i − s2,i)2
+

k1,is
2
1,ie

s1,it

(s1,i − s2,i)2
+

(k1,is
2
2,ite

s2,it)

(s1,i − s2,i)

]

+

[
k2,is1,ie

s2,it

(s1,i − s2,i)2
− k2,is1,ie

s1,it

(s1,i − s2,i)2
− k2,is2,ite

s2,it

(s1,i − s2,i)

]

+

[
k3,ie

s1,it

(s1,i − s2,i)2
− k3,ie

s2,it

(s1,i − s2,i)2
+

k3,ite
s2,it

(s1,i − s2,i)

]

+

[
k4,ie

−t/hi

hi

]
. (3.24)

Rearranging the terms we get

γi(t) =
k4,i
hi
e−t/hi +

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
es1,it+[

k1,is
2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
es2,it+[

k1,is
2
2,i − k2,is2,i + k3,i

(s1,i − s2,i)

]
tes2,it. (3.25)

In this equation, Equation (3.25), it is going to be assumed that if the coefficient of

the tet term can be forced to go to 0 by the choice of design parameters, then the

remaining part will resemble Equation (2.26). Thereafter, the proposition given in

Section 2.3 for Equation (2.30) can be exploited. Hence, we want to impose[
k1,is

2
2,i − k2,is2,i + k3,i

(s1,i − s2,i)

]
= 0. (3.26)

We see benefit in underlining a fact here, that is, we are going to try to achieve two

equations via optimization, Equations (3.15) and (3.26), in order to be able to use

the proposition coming from Laguerre’s mathematical work [24]. The crucial point

to be remembered is that Laguerre’s proposition facilitates arriving at the sufficient

conditions. Therefore, even if those two constraints of the optimization process were

to be violated at the end, that does not necessarily mean the ultimate goal of attaining

positive impulse responses has failed. Rather, the resultant vehicle-to-vehicle transfer

function has to be checked to see whether it possesses a positive impulse response or

not. In other words, trying to push the solver to converge to a guaranteed region with
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potentially small violations of (3.26) by aiming to arrive at sufficient conditions may

quite likely be a successful way to achieve a positive impulse response.

After this point, we need to examine different scenarios where modes of the system

are arranged in increasing order. There are 6 different possibilities in the arrangement

of the modes of the system, which are given as

s2,i < s1,i <
−1

hi
< 0, (3.27)

s1,i < s2,i <
−1

hi
< 0, (3.28)

s2,i <
−1

hi
< s1,i < 0, (3.29)

s1,i <
−1

hi
< s2,i < 0, (3.30)

−1

hi
< s2,i < s1,i < 0, (3.31)

−1

hi
< s1,i < s2,i < 0. (3.32)

For each of these cases, the series sum given in Equation (2.30) has to be evaluated

and examined. Fulfilling the conditions stated in the aforementioned proposition, a

positive impulse response can be attained with the resultant controller. On how to

develop and introduce those conditions to an optimization problem whose outputs are

the design parameters, the next section will lay down the road map and give insights.

3.3 The Optimization Problem

An optimization problem is formed to seek the best possible solution for a set of

unknown parameters where the best solution is assumed to be the one that minimizes

a certain cost function which is in general a function of the parameter set to be found.

While doing this, the problem may or may not have linear and nonlinear or, equality

or inequality constraints on the parameter set. This type of optimization problems are

also called nonlinear programming problems where the solver finds the minimum of
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a function specified as

min
x
f(x) subject to



c(x) ≤ 0

ceq(x) = 0

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub.

(3.33)

In Equation (3.33), x is the vector of unknowns, c and ceq are used to express nonlinear

inequality and equality constraints respectively. Similarly, A, b, Aeq and beq are used

to express linear ones. Lastly, lb and ub correspond to specified upper and lower

bounds for the parameters to be found in x.

In our optimization problem for the CACC controller design, the vector x is deter-

mined by the choice of controller gains for every individual vehicle in Equation (3.4)

and the headway time constant in Equation (3.3) as

xi =


x1,i

x2,i

x3,i

 =


Kp,i

Kd,i

hi

 (3.34)

With the given formulation in above Equation (3.33), the next task is to translate

positive impulse response CACC problem, which was thoroughly discussed in the

previous section 3.2, into an optimization problem in the same form and seek robust

and efficient solutions. For this purpose, we have to examine 6 different cases of

order of poles as given in Equations (3.27)-(3.32). In the following subsections, we

will be defining the necessary constraints for formulating the optimization problem

for all these different arrangements of poles.

Furthermore, we would like to note that in all these cases there will be three common

constraints, two of which come from equating the imaginary parts of the poles as

given in Equation (3.15), and the other comes from equating tes2,it term’s coefficient

to zero. Since these three always remain the same in all 6 cases, we think that it fits

mentioning them once before detailing all the definitions in the upcoming subsections.

Firstly, equating the imaginary parts to zero yields the nonlinear equality constraint

shown in Equation (3.17), and the linear inequality constraint shown in Equation

24



(3.18) which results in

Ax = [0 3τi−1 0]


Kp,i

Kd,i

hi

 ≤ b, b = 1. (3.35)

Secondly, looking at Equation (3.25), the following coefficient term is equated to

zero, yielding another nonlinear equality constraint.[
k1,is

2
2,i − k2,is2,i + k3,i

(s1,i − s2,i)

]
= 0 (3.36)

Which is equivalent to [
k1,is

2
2,i − k2,is2,i + k3,i

]
= 0. (3.37)

Finally, the derived constants pj,i in Equation (2.30) for guaranteeing positive impulse

response which were given as

p0,i = a0,i, (3.38)

p1,i = a0,i + a1,i, (3.39)

p2,i = a0,i + a1,i + a2,i (3.40)

are all going to be defined in the same way. Nevertheless, the exponential coefficients

aj,i are going to be assigned differently. Moreover, using the proposition made in

Section 2.3 with Equation (2.30), the following three inequalities are introduced to

the optimization problem as nonlinear constraints.

p0,i(α1,i − α0,i) ≥ 0 (3.41)

p1,i(α2,i − α1,i) + p0,i(α1,i − α0,i) ≥ 0 (3.42)

p2,i ≥ 0 (3.43)

So the Equations (3.41), (3.42), and (3.43) are going to be common nonlinear inequal-

ity constraints but their content will be differing in every case according to ordering

of poles.

To sum up, these three Equations, (3.17),(3.35), and (3.37), apply for all optimization

problem formulations in the following subsections. The remainder, i.e. 3 inequal-

ities coming from orders of poles and 3 other inequalities coming from alternating
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series sum proposition, of each case’s constraints formulation will be elaborated in

the subsections below.

The formulated optimization problem was solved in MATLAB using ’fmincon’ func-

tion. And as for the cost function, the simplest approach is to push the closest pole to

the imaginary axis, namely α0,i, as far to the left as possible. In addition, minimizing

hi would also be meaningful in the sense that it is a straightforward measure of the

main goals of CACC at the end of the day, fuel efficiency and traffic throughput.

3.3.1 Case 1

In the first case, in decreasing order the poles are−1/hi, s1,i, and s2,i, resulting in the

corresponding decay factors in exponential terms being arranged in increasing order.

Recalling the form mentioned in Equation (2.17), it is noted that

a0,i =
k4,i
hi
, (3.44)

a1,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
, (3.45)

a2,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
. (3.46)

And

α0,i =
1

hi
, (3.47)

α1,i = −s1,i, (3.48)

α2,i = −s2,i. (3.49)

As a consequence of being arranged in increasing order, three inequalities follow

−α0,i =
−1

hi
≤ 0, (3.50)

α0,i − α1,i = −−1

hi
+ s1,i ≤ 0, (3.51)

α1,i − α2,i = −s1,i + s2,i ≤ 0. (3.52)

The latter two of these three inequalities are going to be introduced as nonlinear

inequality constraints to the optimization problem. The first one can be imposed

by simply allowing only non-negative hi values.
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Hence, Equations (3.41)-(3.43), (3.51), (3.52) define c in Equation (3.33) for the first

case.

3.3.2 Case 2

The second case is very similar to the first. The only difference is that orders of s1,i

and s2,i are switched. Hence,

a0,i =
k4,i
hi
, (3.53)

a1,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
, (3.54)

a2,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
. (3.55)

And

α0,i =
1

hi
, (3.56)

α1,i = −s2,i, (3.57)

α2,i = −s1,i. (3.58)

Then the three inequalities due to the order of poles are

−α0,i =
−1

hi
≤ 0, (3.59)

α0,i − α1,i =
1

hi
+ s2,i ≤ 0, (3.60)

α1,i − α2,i = −s2,i + s1,i ≤ 0. (3.61)

Similar to the first case, the latter two of these three inequalities are going to be

expressed in c of the nonlinear optimization constraints. Once again, the first one can

be achieved easily by setting the lower bound of hi equal to zero.

As mentioned previously, the inequalities coming from the alternating series sum

proposition are all going to be the same in closed form. Hence, Equations (3.41)-

(3.43), (3.60), (3.61) are going to constitute the nonlinear inequality constraints for

the second case.
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3.3.3 Case 3

In the third case, in decreasing order the poles are s1,i, −1/hi, and s2,i. And the

constants in the impulse response expression are defined as

a0,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
, (3.62)

a1,i =
k4,i
hi
, (3.63)

a2,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
. (3.64)

And

α0,i = −s1,i, (3.65)

α1,i =
1

hi
, (3.66)

α2,i = −s2,i. (3.67)

Three inequalities coming from ordering of poles are then given as

−α0,i = s1,i ≤ 0, (3.68)

α0,i − α1,i = −s1,i −
1

hi
≤ 0, (3.69)

α1,i − α2,i =
1

hi
+ s2,i ≤ 0. (3.70)

Since this time none of these three inequalities present themselves as non-negativity

of hi, it must be remarked that 3 separate nonlinear inequality constraints have to be

defined. As a result, Equations (3.41)-(3.43), (3.68), (3.69),(3.70) will show up as

nonlinear inequality constraints in the optimization process.

3.3.4 Case 4

The fourth case resembles the third, in that, the pole introduced by the inter-vehicle

spacing policy constant hi is still in between the other two poles existent due to the

problem dynamics, except that their order is switched. In decreasing order we have,
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s2,i, −1/hi, and s1,i. Then,

a0,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
, (3.71)

a1,i =
k4,i
hi
, (3.72)

a2,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
. (3.73)

And

α0,i = −s2,i, (3.74)

α1,i =
1

hi
, (3.75)

α2,i = −s1,i. (3.76)

The Equation (3.30) yields

−α0,i = s2,i ≤ 0, (3.77)

α0,i − α1,i = −s2,i −
1

hi
≤ 0, (3.78)

α1,i − α2,i =
1

hi
+ s1,i ≤ 0. (3.79)

Therefore, (3.41)-(3.43), (3.77), (3.78),(3.79) are nonlinear inequality constraints in

the fourth case of optimization problem.

3.3.5 Case 5

The fifth case assumes that the pole coming from headway time constant is the farthest

away from the imaginary axis. In decreasing order s1,i, s2,i, and−1/hi. Meaning that

a0,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
, (3.80)

a1,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
, (3.81)

a2,i =
k4,i
hi
. (3.82)
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And

α0,i = −s1,i, (3.83)

α1,i = −s2,i, (3.84)

α2,i =
1

hi
. (3.85)

Following the Equation (3.31), the following three inequalities are derived

−α0,i = s1,i ≤ 0, (3.86)

α0,i − α1,i = −s1,i + s2,i ≤ 0, (3.87)

α1,i − α2,i = −s2,i −
1

hi
≤ 0. (3.88)

Equations (3.41)-(3.43), (3.86), (3.87),(3.88) define the nonlinear inequality con-

straints for the fifth case.

3.3.6 Case 6

The sixth and the fifth are much alike cases. Orders of s2,i and s1,i are changed.

Hence,

a0,i =

[
k1,is

2
2,i − 2k1,is1,is2,i + k2,is1,i − k3,i

(s1,i − s2,i)2

]
, (3.89)

a1,i =

[
k1,is

2
1,i − k2,is1,i + k3,i

(s1,i − s2,i)2

]
, (3.90)

a2,i =
k4,i
hi
. (3.91)

And

α0,i = −s2,i, (3.92)

α1,i = −s1,i, (3.93)

α2,i =
1

hi
. (3.94)

The three inequalities coming from the ordering are given as

−α0,i = s2,i ≤ 0, (3.95)

α0,i − α1,i = −s2,i + s1,i ≤ 0, (3.96)

α1,i − α2,i = −s1,i −
1

hi
≤ 0. (3.97)
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6 inequality constraints are defined for the last case with Equations (3.41)-(3.43),

(3.95), (3.96),(3.97).
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CHAPTER 4

SIMULATION AND VERIFICATION OF STRING STABILITY

In this chapter, we are going to present the simulation results of our studies. For sim-

ulation purposes, MATLAB and Simulink are used. From individual vehicle model

to whole string of vehicles in CACC scheme, all blocks are designed in Simulink

environment according to the generic formula for heterogeneous CACC closed loop

transfer function given in Equation (3.1) and simulated with the outputs of the afore-

mentioned MATLAB script.

Figure 4.1: Representation of CACC in Simulink

In Figure 4.1, the Simulink model representing the translation between successive

vehicles’ acceleration signals is given. This Simulink block takes the predecessor

vehicle’s position and acceleration as input signals and produces the ith vehicle’s ac-

celeration, velocity, position, and positional distance keeping error signals as outputs,

as shown in Figure 4.2. This block practically can be reused for arbitrarily many

vehicles in forming a string. Individual vehicle parameters can be managed within
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Figure 4.2: Reusable Vehicle Block Applying CACC

the blocks and assigned separately making it optional to simulate homogeneous or

heterogeneous strings. Representation of a string of five consisting of four followers

and a leader vehicle in Simulink environment is given in Figure 4.3. This model is

used to simulate all synthesized controllers and for the comparison of results to be

shared in this section.

Figure 4.3: CACC Simulation Model

At this point, it must be recalled that zero communication and actuator delays were

assumed in the impulse response formulation section 3.2. In this section, all results

are obtained with synthesized controllers according to that assumption. However,

it will be seen that even after solving the formed optimization problem with zero

delays assumption the resultant controller and headway time constant parameters are

capable of dealing with nonzero delays. Moreover, in all cases and simulations, the
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cost function in Equation (3.33) will be defined as

min
x
f(x) = hi − α0,i = x3,i + α0,i. (4.1)

This choice of cost function is intuitive in the sense that it both tries to push the

closest pole to the imaginary axis as far as possible, making the system response as

quick as possible, and minimizes the headway time as much as possible which is a

direct measure of efficiency in CACC.

Within this chapter, subsequently, we will start by defining suitable test inputs to be

given to the system. Secondly, we will propose and discuss the use of time-domain

impulse response function based optimal CACC controller design via simulations

of various driveline dynamics constants found in the literature to prove itself as an

acceptable method. Then, we will investigate the effects of nonzero delays by fixing

other parameters and see that they have to be limited for string stability. Therein,

increasing the constant time gap between vehicles the maximum allowable delays

will be evaluated and compared.

As a last note, Jhayyish and Schmidt [14] briefly went through the existing values in

the literature, and adopted that

0.1 ≤ τi ≤ 0.8, 0.02 ≤ φi ≤ 0.25, 0.02 ≤ θi ≤ 0.2. (4.2)

We will use these reference values as a guide to make realistic simulations.
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4.1 Defining The Test Input Signals

To begin with, several types of motion scenarios are defined and tested in simulation

environment. One of them is constant jerk signal. In other words, the actuator of

the leader vehicle produces an acceleration signal with constant slope, yielding a

wave like velocity behaviour first speeding up and then slowing down periodically.

In Figure 4.4, this hypothetical example acceleration signal along with the resultant

velocity and position signals are given. The second example signal is much more

likely to happen in a real-life traffic scenario where the leader accelerates for a period

of time to a certain speed and then decelerates down to zero velocity to stop. In

Figure 4.6, such a signal triad is given. The last example is somewhat similar to the

previous one except for the velocity reached after acceleration is kept for a specific

time interval while possessing zero acceleration and then decelerated to zero velocity.

One such periodic signal pairing is given in Figure 4.5. With these three types of

inputs, we are going to simulate a string of five vehicles for different investigations.

Figure 4.4: Leader vehicle’s states in response to constant jerk
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Figure 4.5: Response to acceleration-deceleration type input

Figure 4.6: Input signal simulating acceleration and then braking to stop
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4.2 Validation With Different Sets of Driveline Parameters

The first type of tests will be for understanding how the change in driveline dynamics

affects the controller synthesis process. At the end of this section, a reasonable con-

fidence in the developed optimization based controller design method will be gained

by witnessing that it can manage to find parameters yielding strict L∞ string stabil-

ity with positive impulse responses for the recognized range of driveline dynamics

constant values in Equation (4.2).

First, let us consider a homogeneous string of vehicles without any delays. In a sense,

it can be considered as the simplest case of CACC. The parameters to be simulated are

as given in Table 4.1. The resulting controllers in case of homogeneous strings will

be identical. This is clearly noted in pole-zero maps of Γi transfer functions in Fig-

ures 4.7 to 4.12. Also, it must be noted that due to the cancellation in Equation (2.9),

the system exhibits only a single pole.

In these simulations, another valuable thing to take note of is that the positions of

resulting poles. This tells us a lot about which of the cases are more likely to yield

faster responses for CACC controller design. What we noticed in our simulations

is that, although the speed of responses of vehicles for each case may differ slightly

with changing driveline dynamics constants, there is a trend in the speed of resul-

tant controllers’ when compared with respect to different cases. For instance, in the

simulations for Table 4.1, cases 3 and 6 sticks out as the fastest ones, and the same

behaviour was found in simulations for doubled and quadrupled values of τi. Some

of the plots of positive impulse response functions attained in such simulations are

given in Figures 4.13 and 4.14.

i θi φi τi

∀i 0 0 0.16

Table 4.1: Zero delay homogeneous string parameter set
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Figure 4.7: Homogeneous string τi = 0.16, pole-zero maps of Γi in case 1

Figure 4.8: Case 2
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Figure 4.9: Case 3

Figure 4.10: Case 4
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Figure 4.11: Case 5

Figure 4.12: Case 6

41



Figure 4.13: IR functions of homogeneous string with τi = 0.16 for case 3

Figure 4.14: IR functions of homogeneous string with τi = 0.64 for case 6
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Secondly, heterogeneous strings are to be considered. From here onwards, in this

section, to build on top of the discussion held above, we will concentrate on sharing

the results for cases 3 and 6. We start heterogeneous examples off with the simu-

lations of two different strings, whose parameter values are as given in Tables 4.2

and 4.3. The driveline dynamics constants of the first are close to the lower bound of

acknowledged values in literature (Equation (4.2)), and the latter have them near the

upper bound. The resultant pole-zero maps, bode plots and impulse response func-

tions for both simulations with the controllers optimized in cases 3 and 6 are given in

Figures 4.15 to 4.17 and 4.21 to 4.23. Also, the corresponding acceleration, velocity

and position signals are given in Figures 4.18 to 4.20 and 4.24 to 4.26. Referring

to Equation (2.10), it is evident from bode plots that all synthesized controllers yield

L2 string stability. Comparing the infinity norm of accelerations also clearly indicates

strict L∞ string stability. With these two results the optimization based controller syn-

thesis method proves itself to be useful for the range of driveline dynamics constant

values which are deemed as realistic ones.

i θi φi τi

0 0 0 0.14

1 0 0 0.16

2 0 0 0.18

3 0 0 0.22

4 0 0 0.24

Table 4.2: Zero delay heterogeneous string parameter set 1
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Figure 4.15: Pole-zero maps of heterogeneous string in Table 4.2 for case 3

Figure 4.16: Corresponding Bode plots
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Figure 4.17: Corresponding impulse responses

Figure 4.18: Resulting accelerations in response to input in Figure 4.5
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Figure 4.19: Corresponding velocities

Figure 4.20: Corresponding positions
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i θi φi τi

0 0 0 0.70

1 0 0 0.72

2 0 0 0.74

3 0 0 0.76

4 0 0 0.78

Table 4.3: Zero delay heterogeneous string parameter set 2

Figure 4.21: Pole-zero maps of heterogeneous string in Table 4.3 for case 6

47



Figure 4.22: Corresponding Bode plots

Figure 4.23: Corresponding impulse responses
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Figure 4.24: Resulting accelerations in response to input in Figure 4.5

Figure 4.25: Corresponding velocities
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Figure 4.26: Corresponding positions

At this point, it is essential to revisit the definition of the optimization problem laid

out in section 3.3. Before proceeding into investigation of effects of delays, certain

constraints that were imposed to yield positive impulse response transfer functions

are needed to be checked and analyzed. To recall, there are fundamentally two con-

straints needed to be checked which are given in Equations (3.15) and (3.26). It has

been recorded that, in none of the heterogeneous strings these two constraints were

achieved. In fact, when the former of the two constraints is violated, the expression

for Equation (3.25) becomes invalid since the imaginary pole pairs will start intro-

ducing different time domain expressions into the impulse response functions, whose

generic form are given as

eatsin(bt). (4.3)

However, reiterating that the whole process was designed to force the optimizer to

push the resulting transfer function to attain positive impulse response by trying to

fulfill the sufficient conditions which are more than necessary ones, this does not

necessarily mean that strict L∞ string stability with positive impulse response transfer

functions is unachievable. Actually, examining the coefficients of time domain terms
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would shed light on the ambiguity of how come the optimization process manages

to return positive impulse responses. Though, assuming complex conjugate pair of

poles in Equation (3.14) and generalizing Laguerre’s [24] proposition to complex

decay factors would be beyond the scope of this thesis work. Still, taking the outputs

generated by the optimizer into account, there can be comments made on answering

this question. The most reasonable way to interpret the positive impulse responses

observed throughout the experiments with a variety set of parameters is to think that

the exponential terms in time domain expressions of complex poles, Equation (4.3),

are decaying so fast such that the sinusoids become unable to distort the impulse

response function causing negativity.

i θi φi τi

0 0 0 0.16

1 0 0 0.32

2 0 0 0.48

3 0 0 0.64

4 0 0 0.72

Table 4.4: Zero delay heterogeneous string parameter set 3

Finally, we would like to draw attention to a specific case of heterogeneous strings.

It is the case where within a string, subsequent vehicles’ driveline dynamics differ

dramatically. In other words, the parameter sets where a predecessor-follower pair

has huge difference in terms of their driveline dynamics. One such exemplary param-

eter set is given in Table 4.4. In such simulations, it was observed that some of the

controllers may yield unstable impulse responses regardless of the case of optimiza-

tion process being run. This might be causing certain constraints and the objective

function to be pushed in such ways that the solver cannot converge to any feasible

solution where it satisfies string stability. It might even be the case that attaining

string stability with positive impulse transfer functions becomes impossible in such

scenarios. This phenomena occurring with the choice of range of driveline dynam-

ics constant, intuitively tells us that it can generate controllers for strings which are

composed of alike vehicles i.e. cars with cars and trucks with trucks. In short, it must
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be stated that when the driveline dynamics parameters are far apart from each other

for some predecessor-follower vehicle pairs, the developed optimization based con-

troller tuning is not working properly. Enlightening the reason behind this requires

further investigation of constraints and defined objective function of the optimization

problem.

4.3 Communication Delay

In order to see the delays effects purely, we will also fix the headway time constant

which was an optimization parameter as defined earlier by equating its upper and

lower bounds to make it a constant value. Throughout this section,

hi = 1 , i = 1, 2, 3, 4 (4.4)

will be the utilized headway time gap. Also, as one of the two delay parameters being

examined, the other will be left loose to let the delay of concern manifest its effect

more clearly.

Firstly, we are going to sweep the communication delay θi with the parameter set

in Table 4.5 for the evaluation of the effect of communication delays. Secondly,

simulations with the fixed values in Table 4.6 will be shared for observing the actuator

delay effect by sweeping φi. In short, it can be said that we are going to sweep the

two types of delays one by one up to their limits.

One last thing to note for having intuition over these simulations is that the chosen τi

values in Tables 4.5 and 4.6 somewhat represent a string like the one in Figure 2.2,

i.e. starting with a smaller driveline dynamics constant or equivalently a more agile

vehicle and being followed by a more sluggish one.

We swept the communication delay with the values in Equations (4.5) to (4.8)

1stRun : θi = 0.025s (4.5)

2ndRun : θi = 0.125s (4.6)

3rdRun : θi = 0.250s (4.7)

4thRun : θi = 0.500s (4.8)
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i hi φi τi

0 1 0.02 0.100

1 1 0.02 0.125

2 1 0.02 0.150

3 1 0.02 0.175

4 1 0.02 0.200

Table 4.5: Fixed parameter set to test communication delay tolerance

The effect of communication delay was examined by increasing θi gradually. In Fig-

ures 4.27 to 4.32, the resultant impulse responses of the optimized controllers are

given for different cases mentioned in optimization problem formulation. In the solu-

tion of optimization problem, the cost function was formed so that the closest pole to

the imaginary axis can be pushed as far as possible.

From Figures 4.27 to 4.32, it is seen that not in all cases of the optimization problem

a positive impulse response CACC controllers are achievable, for instance, in cases 2

and 4 the zero line was slightly crossed. Note that there might be achievable positive

impulse response controllers within the regions defined by those two cases, however,

it is certain that with the approach we adopted it was not possible to converge to

positive impulse response controllers in cases 2 and 4. On the other hand, for the rest

of the cases, it successfully converged to positive impulse response controllers.
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Figure 4.27: Impulse response for the resultant controller in case 1

Figure 4.28: Impulse response for the resultant controller in case 2
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Figure 4.29: Impulse response for the resultant controller in case 3

Figure 4.30: Impulse response for the resultant controller in case 4
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Figure 4.31: Impulse response for the resultant controller in case 5

Figure 4.32: Impulse response for the resultant controller in case 6
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Nonetheless, the acceleration signals for each case show L2 and L∞ string-stable be-

havior as can be seen in Figures 4.33 to 4.38. These are the acceleration response

to the third type of input signal given in Figure 4.6 simulated with 25ms commu-

nication delays between all vehicles. The responses are so close to each other such

that they cannot be distinguished unless zoomed in. There is no difference other than

very little changes in the speed of the transient responses of the vehicles to step inputs.

Figure 4.33: Accelerations for the synthesized controllers in case 1 for θi = 25ms
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Figure 4.34: Accelerations for the synthesized controllers in case 2 for θi = 25ms

Figure 4.35: Accelerations for the synthesized controllers in case 3 for θi = 25ms
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Figure 4.36: Accelerations for the synthesized controllers in case 4 for θi = 25ms

Figure 4.37: Accelerations for the synthesized controllers in case 5 for θi = 25ms

59



Figure 4.38: Accelerations for the synthesized controllers in case 6 for θi = 25ms

Figure 4.39: Case 6, Communication delay increased to θi = 125ms
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Figure 4.40: Case 6, Communication delay increased to θi = 250ms

Figure 4.41: Case 6, Communication delay increased to θi = 500ms
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For example, in Figure 4.42, since the condition in Equation (2.10) is fulfilled, L2

string stability is attained.

Figure 4.42: Bode plots for the resultant controllers in case 6

The swept values of θi in Equations (4.5) to (4.8) resulted in the following acceleration

signals, having not much significant changes except for the slower transient response

effect, which are given in Figures 4.38 to 4.41.
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4.4 Actuator Delay

For understanding the significance of actuator delay, which directly translates into

how late an action is taken by the feedback controller, it has been swept through

the values given in Equations (4.9) to (4.11) while having the rest of the parameters

fixed at the values given in Table 4.6. It is evident from Figures 4.43 to 4.46 that the

actuator delay is a much more sensitive parameter than communication delay, in that,

in any case of optimal controller solutions, approximately more than 60 milliseconds

cannot be tolerated.

Considering that the given values in Equation (4.2) ranges up to 200 milliseconds,

there needs to be an improvement made. If the optimization problem cannot be en-

hanced to yield such improvement, there has to be a trade off taking place which is

what we are going to point at in the set of simulations started by values in Table 4.7.

i hi θi τi

0 1 0.02 0.100

1 1 0.02 0.125

2 1 0.02 0.150

3 1 0.02 0.175

4 1 0.02 0.200

Table 4.6: Fixed parameter set to test actuator delay tolerance

1stRun : φi = 0.025s (4.9)

2ndRun : φi = 0.050s (4.10)

3rdRun : φi = 0.065s (4.11)
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Figure 4.43: Accelerations for the controller in case 6 for 25ms actuator delay

Figure 4.44: Accelerations for the controller in case 6 for 50ms actuator delay
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Figure 4.45: Accelerations for the controller in case 6 for 65ms actuator delay

Figure 4.46: Accelerations for the controller in case 3 for 65ms actuator delay
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In the following simulations, we are going to elaborate on the trade-off made by al-

lowing greater headway time constants. Basically, allowing a greater headway time

constant is not sought since it is one of the fundamental objectives of the whole

CACC scheme, that is, by decreasing the intervehicle gap higher efficiency in traffic

is wanted to be obtained. Yet, to be able to tolerate inherent delays, which cannot be

decreased below certain values, one has to consider resolving this issue by increasing

hi whenever a controller becomes incapable of handling them.

i hi θi φi τi

0 0.5 0.02 0.065 0.30

1 0.5 0.02 0.065 0.31

2 0.5 0.02 0.065 0.32

3 0.5 0.02 0.065 0.33

4 0.5 0.02 0.065 0.34

Table 4.7: Fixed parameter set for examining the effect of headway time

Figure 4.47: Accelerations for 0.5 second headway time

Simulation results for the values given in Table 4.7 with the input signal in Figure 4.5
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Figure 4.48: Accelerations for 1 second headway time

Figure 4.49: Accelerations for 1 second headway time 150ms actuator delay
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Figure 4.50: Accelerations for 1 second headway time 170ms actuator delay

are shown in Figure 4.47. It is seen that the system cannot attenuate the accelerations

along the string. Now consider the exact same scenario, but with the headway time

doubled. Then the response of the system becomes as seen in Figure 4.48. It is

evident that the string has become stabilized compared to the response with 0.5s

headway time. This is the effect of increase in headway time.

To see how much more of an actuator delay can be tolerated with the doubled headway

time constant, 1 second, we simulated up to delays which drive the system string

unstable. In Figures 4.49 and 4.50, it is observed that up to 150 milliseconds actuator

delays there were no unstable behaviour in the acceleration signals, but beyond 170

milliseconds delay the string is unable to follow each other stably.
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CHAPTER 5

CONCLUSION

With the advancement in many research areas, autonomous vehicles are, step by step,

becoming a reality in daily life. CACC as being a subarea of research in this cut-

ting edge technology, promises what is expected from future traffic dynamics. To

clarify, sustainability has become the most trending concept in the last few decades

due to the consequences of new millennium’s people’s lifestyle. In everything used

or consumed by mass populations, it is the uttermost property to be asked since the

future of humanity is endangered by what they cost physically. Hence, one of the

very fundamental needs of almost entire population on the surface of earth, the traffic

and transportation, has to be seized in an efficient and environment-friendly way. If

the whole traffic phenomena was to be analyzed to see what portion of its pollution

comes from longitudinal vehicle dynamics it would be evident that it constitutes the

major component. Therefore, bringing the future vehicles’ longitudinal motion con-

trollers under the spotlight and developing the best possible solution becomes worthy

of putting academical efforts on.

In this thesis work, we introduced a new methodology into CACC design literature by

taking on an unexampled path for synthesizing controllers with one of the strongest

types of strict L∞ string stability. As the initial step of our work, we formulated a

sufficient condition for strict L∞ string stability based on a fundamental result by La-

guerre. Then, we showed that these conditions can be used to define constraints for an

optimization problem that determines the CACC controller parameters for achieving

strict L∞ string stability. After validating the correctness of our method by simulation

results, we further showed that the inevitable delays in actuators and communication

can be tolerated up to a certain point, and the system robustness can be enhanced
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by trading off with increments in headway time. The formulated optimization prob-

lem proved itself to be a novel way of designing controllers, in that, just by giving

the standard known parameters as input to it, string stable CACC controllers can be

obtained as its output.

Future works to be built upon this study will explicitly consider the delays in the con-

troller design method for example by defining the delays with Padé approximations.

Hereby, it has to be stressed that this is a challenging task according to our experi-

ence. Moreover, the proposition for alternating series sums may be generalized to

apply the same theoretical work to the most generic cases in CACC where poles will

not need to be forced to have zero complex parts during optimization process. Lastly,

objective function to be defined during optimization process is a wide open subarea

to be studied for any betterment.
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