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ABSTRACT

GENOTYPE CATALOG FOR THE ANALYSIS OF
DRUG-DRUG INTERACTIONS

OZDEMIR, AYSE
M.S., Department of Health Informatics

Supervisor: Assist. Prof. Dr. Aybar Can Acar

September 2021, 61 pages

Polypharmacy is an essential practice in today’s therapeutics, especially in the care of
older population. Most polypharmacy-induced drug-drug interactions (DDIs) are of-
ten discovered after drugs are put on the market. Health problems and economic bur-
den due to unpredicted DDIs put the health system in a difficult situation. Therefore,
increasing the predictability of DDIs has become one of the most critical concerns
towards improving treatment success. Being dependent on several underlying param-
eters makes DDIs challenging to foresee. One of the most significant determinants of
these underlying parameters is genetic variability. Therefore, a more profound knowl-
edge of the DDI-genetic relationship, called drug-drug-gene interactions (DDGI), will
improve treatment success. This study aims to design a relational database named
DDGICat, which was designed to contribute to the ongoing DDGI research by serv-
ing as a guideline to prescribers, researchers, and the pharmaceutical industry. The
content of the DDGICat was derived from other knowledge bases, including Drug-
Bank, PharmGKB, Ensembl, KEGG Drug, and ONC High. DDGICat contains drugs,
drug target proteins, drug-associated SNPs, DDIs, drug-gene interactions (DGIs), and
DDGIs. Additionally, a developed web portal named DDGICat Browser provides the
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results of mentioned content in both tabular and graphical formats. Furthermore, the
end products of this study are tested in a case study on a chosen disease.

Keywords: drug-drug interaction (DDI), drug-gene interaction (DGI), drug-drug-
gene interaction (DDGI), database, Single Nucleotide Polymorphism (SNP)
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ÖZ

İLAÇ-İLAÇ ETKİLEŞİMLERİ ANALİZİ İÇİN
GENOTİP KATALOĞU

OZDEMIR, AYSE
Yüksek Lisans, Sağlık Bilişimi Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Aybar Can Acar

Eylül 2021, 61 sayfa

Polifarmasi, günümüz tedavi biliminde, özellikle yaşlı nüfusun bakımında önemli bir
uygulamadır. Polifarmasinin neden olduğu çoğu ilaç-ilaç etkileşimleri (DDI’ler), ge-
nellikle ilaçlar piyasaya sürüldükten sonra fark edilmektedir. Öngörülemeyen DDI
lardan kaynaklanan sağlık problemleri ve ekonomik yük, sağlık sistemini zor du-
rumda bırakmaktadır. Bu nedenle, DDI’lerin öngörülebilirliğini artırmak, tedavi ba-
şarısını iyileştirmeye yönelik en önemli amaçlardan biri haline gelmiştir. Birçok para-
metreye bağımlı olmaları, DDI’ların tahmin edilebilirliklerini zorlaştırmaktadır. Ge-
netik çeşitlilik altta yatan parametrelerin en önemlilerinden biridir. Bu nedenle, ilaç-
ilaç-gen etkileşimleri (DDGI) olarak adlandırılan, DDI-genetik arası ilişki hakkındaki
daha derin bir bilgi, tedavi başarısını artıracaktır. Bu çalışma, reçete yazanlara, araş-
tırmacılara ve ilaç endüstrisine kılavuzluk ederek, devam eden DDGI çalışmalarına
katkıda bulunmak üzere tasarlanmış DDGICat adlı ilişkisel bir veritabanı tasarlamayı
amaçlamaktadır. DDGICat’in içeriği DrugBank, PharmGKB, Ensembl, KEGG Drug,
ve ONC High dahil olmak üzere diğer veri tabanlarından türetilmiştir. DDGICat ilaç-
ları, ilaç hedef proteinlerini, ilaçla ilişkili SNP’leri, DDI’ları, ilaç-gen etkileşimlerini
(DGI’lar) ve DDGI’ları içermektedir. İlave olarak, bahsi geçen içerikleri hem tablo
hem de grafik formatında sunmak amacıyla DDGICat Browser isimli bir web portalı
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geliştirilmiştir. Ayrıca, bu çalışmanın nihani ürünleri, seçilen bir hastalık üzerine bir
vaka çalışmasında test edilmiştir.

Anahtar Kelimeler: İlaç-ilaç etkileşimi (DDI), ilaç-gen etkileşimi (DGI), ilaç-ilaç-gen
etkileşimi (DDGI), veritabanı, Tek Nükleotid Polimorfizmi (SNP)
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Emergency department visits and rehospitalizations due to Adverse Drug Reactions
(ADRs) are a threatening problem for public health [1]. Drug-drug interaction (DDI)
is a particular case of ADRs and occurs when a drug alters the effect of a concomitant
drug. As stated in a study prepared by evaluating the results of 23 studies worldwide,
DDIs cause 0.054% of emergency room visits, 0.57% of hospital admissions, and
0.12% of rehospitalizations [2].

Drug-gene interaction (DGI) explains drug phenotype differences among individuals
caused by genes and genetic variances. DGI has started to gain more attention after
realizing that not every drug has the same effect on everybody. As reported by re-
search conducted among 10,000 patients, more than 90% of each patient had at least
one genetic variation, leading to drug response differences [3].

Drug-drug-gene interaction (DDGI) is a subset of DDI, and it is the cumulative effect
of DDI and DGI. According to a study conducted among 30 patients, approximately
one-third of patients had DDGIs [4].

Although genetic variability on DDI occurrence is apparent, it still does not receive
the deserved attention. However, with the contribution of the fact that genetic testing
has become more accessible at lower costs, the effect of genetic variability in current
DDI studies has started to be considered more prevalently [5].

Most DDGIs are being detected after drugs are put on the market during post-marketing
surveillance. This unpredictability is a threatening risk for public health; therefore,
early detection of DDGIs could reduce the economic and health burden on both pa-
tients and the pharmaceutical industry.
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1.2 Goal

Due to recent technological developments, the drug development process has become
both less costly and more error-free. One of the essential instruments contributing to
this success is the convenience of accessing the pharmacological data.

Similarly, the increasing amount of biological, pharmacological, and pharmacoge-
nomics (PGx) data is significant for ongoing DDI, DGI, and DDGI research. Un-
fortunately, gathering this data is challenging since it is primarily found in separate
sources in a heterogeneous state [6]. Another issue is that biological data found in dif-
ferent sources can contain contradictions or have minimal overlap with each other [6].
The situation is also the same with PGx data. Currently, most DDI databases do not
involve genotype focussed data. Due to the mentioned challenges, ongoing DDI,
DGI, and DDGI studies are being hampered.

This study aims to contribute to the mentioned gap in the literature by providing
a combined catalog database named DDGICat, which was developed by extracting
information from several knowledge bases. DDGICat consists of the derived data on
drugs, genes, drug-associated genes, DDI, DGI, and DDGI. Unlike previous research,
DDGICat provides information on the DDI-genetic relationship. Moreover, a web
interface named DDGICat Browser allows viewing DDGICat content and statistical
visuals through a web portal.

Furthermore, for future studies, the content of the DDGICat may serve as a guideline
in predicting DDIs, DGIs, and DDGIs that have not yet been anticipated.

1.3 Thesis Outline

This thesis comprises five parts, and the outline is as follows.

• Chapter 2 gives background information on DDIs, DGIs, DDGIs, and the chrono-
logical drug and pharmacology overview. Towards the end of this chapter, a critique
of related studies and used data sources is demonstrated.

• Chapter 3 describes technical details about the applied data integration and data pre-
processing steps to construct DDGICat. Similarly, technical details of the developed
web portal, which enables user interaction with DDGICat, are demonstrated.

• Chapter 4 provides sample statistics retrieved from DDGICat. Through the end of
this chapter, a sample use case scenario demonstrating an example for the real-life
usage of the developed catalog (DDGICat) is presented.

2



• Chapter 5 mentions the importance of drug-drug interaction, drug-drug-gene in-
teraction, and DDGICat. Moreover, the significance of the data in DDGICat is dis-
cussed. Additionally, this chapter reviews accomplished tasks and gives recommen-
dations for future studies.

3
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CHAPTER 2

RELATED WORK

This chapter puts forth the following topics in order: Section 2.1 reveals a historical
overview of drugs, which is the primary subject of this study. Section 2.2 introduces a
brief pharmacology overview that will assist the reader through this study. Section 2.3
explains drug-drug interactions (DDIs). Section 2.4 describes drug-gene interactions
(DGIs). Section 2.5 presents drug-drug-gene interactions (DDGIs). Section 2.6 in-
troduces the knowledge bases used in this research. Finally, Section 2.7 summarizes
previous studies in the literature.

2.1 Drug: From Past to Present

A drug that is the principal product in pharmacology takes its origin from the French
word fragrance (Drogue) with the meaning of dry herb. According to the definition of
the WHO (World Health Organization), “Drug is any substance or product that is used
or is intended to be used to modify or explore physiological systems or pathological
states for the benefit of the recipient” [7].

One of the most challenging problems of humankind has been to find novel ways to
advance health and longevity. Ötzi, who was called the iceman and lived around 3200
BC, also had the same ambition. The fungus found in his belongings was thought to
cure parasitic worms, proving his ambition for wellness. Based on this proof, it would
not be wrong to say that the history of drugs used for medicinal purposes is as old as
human history.

This ambition for wellness has been a cultural heritage transferred among civiliza-
tions, including Sumerians, Egyptians, Indians, Chinese, Greeks, Roman Empire civ-
ilization, and Arabs [8]. The famous saying of Hippocrates, “Primum non nocere!”
meaning “first, do not harm” is one of the main rules taught in medical schools to-
day [9].
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2.2 Pharmacology

The word pharmacon and -logia both come from Greek (Pharmacology, n.d.). Phar-
macology is a combination of these two words [8], meaning the science that studies
the interaction of living systems with chemical molecules [10].

Rudolf Buchheim, known as the founding father of pharmacology, established the
first institute of pharmacology, in 1847, at the University of Dorpat, in Germany [11].
In its initial periods, pharmacology was applied by trial and error and progressed by
finding the correct answers to which drug, which dose, how often, and how long. The
process that involves finding the most accurate answers to these questions is called
the Drug Development Process.

The drug development process involves identifying the abnormality that causes the
disease and, subsequently, finding the most efficient therapeutic molecule to fix or
mitigate this abnormality. These steps are mainly conducted by in vitro and in vivo
studies. In vitro studies are performed in a test tube in a laboratory environment
without using living organisms. In vivo studies contain experiments with living or-
ganisms [12]. The inclusion of in silico studies based on software technologies into
the drug development process has significantly decreased time and costs [13].

After finding the most therapeutic molecules to fix or mitigate the abnormality, a new
step named the Preclinical Development process starts. This step includes laboratory
studies on animals. Clinical Trials are the subsequent step and involve five consec-
utive phases [14]. Phase 0 consists of experiments with a low dose of the drug on
healthy volunteers. Phase 1 contains tests conducted on healthy individuals. Phase 2
includes studies with patients who have the disease. Phase 3 holds trials with more
patients who have the disease. Finally, phase 4 comprises observations after a drug is
put on the market.

The shortening of the time required for the drug development process has increased
the number of drugs produced. Therefore the growing number of drugs has created
the need to classify them, and various methods have been developed. One of these
methods is ATC (Anatomical Therapeutic Chemical). WHO controls ATC, and it uses
pharmacological, therapeutic, and chemical properties to classify the drugs into five
groups hierarchically (one leading group and four hierarchical subgroups). Similarly,
another classification is viable to drug categories. Drugs are mainly divided into two
main categories, including biotech and small molecule drugs. While biotech drugs
are extracted from living organisms, small molecule drugs are obtained from various
chemicals. Classifying drugs according to their names is an alternative way since
drugs are named differently for different purposes. The first one is the Chemical
Name, which has the function of specifying the drug chemically. The second one is
the Generic Name chosen by the government, and the third one is the Brand Name
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given by the manufacturer, which is the only agent holding the right to produce and
sell the drug within a certain period. Pharmacology has two subgroups, including
Pharmacokinetics and Pharmacodynamics, and the following sections provide their
details.

2.2.1 Pharmacokinetics

The word kinesis comes from Greek and means movement. Pharmacokinetics (PK)
is a subfield of pharmacology and analyzes “what the body does to the drug” [15].
PK has four drug-related subgroups referred to as ADME (Absorption, Distribution,
Metabolism, Excretion).

Absorption (A) explains how drugs move from the site of administration into the
bloodstream [16]. Depending on the route of administration, drugs have different
absorption mechanisms. For instance, while intravascularly administered drugs do
not need absorption as they are already in the bloodstream, orally administered drugs
are absorbed through the GI (gastrointestinal) system and sent to the liver and blood-
stream, respectively [17].

Distribution (D) defines the movement of drugs through the body to reach their site
of action (Seifert, 2019). During drug distribution in the body, many drugs bind
plasma proteins, and this chemical reaction is called plasma protein binding (Seifert,
2019). However, plasma protein binding may lead to undesired results since it pre-
vents access to the primary target that the drug should activate [17]. The volume of
distribution (Vd) is another related term that measures how quickly a given dose of
the drug reaches the required therapeutic plasma concentration [14].

Metabolism (M) refers to transforming a drug into a more water-soluble form by the
liver. Drug metabolism consists of two stages, including phase I and phase II. While
Phase I reactions convert the drug into a more water-soluble form, Phase II reactions
are mainly responsible for drug elimination [17]. Bioavailability defines the percent-
age of administered drugs included in systemic circulation in the unchanged form.
For example, while intravenously administered drugs offer nearly 100% bioavailabil-
ity, orally administered ones provide less bioavailability since a certain amount is
eliminated due to metabolization in the liver [16]. This process is called the first-pass
metabolism. Therefore, bioavailability and first-pass metabolism are the terms used
to describe drug metabolism.

Each organism has its metabolic rate depending on the polymorphism of the metabolic
enzymes. Based on the polymorphism of metabolic enzymes, an organism is classi-
fied into poor (PM), intermediate (IM), rapid (RM), and ultra-rapid (URM) metabo-
lizers. Since the metabolizing enzymes are less active, PMs or IMs metabolize drugs
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rather slowly, needing lower doses to prevent undesired toxicity. On the other hand,
RMs or URMs break down drugs quickly, and they need higher doses to get the de-
sired effects.

Excretion (E) is defined as eliminating drugs from the body mainly by the liver and
kidneys. Half-life and clearance are the terms used for the measurements of this step.
Half-life measures the required time for the drug to drop to its half amount in the
body. Clearance defines the ability of the body to eliminate the drug.

2.2.2 Pharmacodynamics

The word dynamics comes from Greek and means power. Pharmacodynamics (PD)
is a subfield of pharmacology and analyzes “what the drug does to the body”. In
other words, PD focuses on how drugs act on predefined biochemical reactions at
their targets [18].

Drugs generally interact with four different types of protein, including target, en-
zyme, carrier, and transporter. Targets, also called receptors, are macromolecules
that recognize the drug and initiate the response. Agonist and antagonist terms are
used to describe drug and receptor interaction. In agonist reactions, drugs cause the
expected physiological response by attaching the predefined receptor, whereas, in an-
tagonist reactions, drugs prevent the expected physiological response by blocking the
receptor [19]. Enzymes are mainly responsible for drug metabolism. Carriers, also
called ion channels, regulate drug flow across cell membranes. Finally, transporters
transport substrates while entering or leaving cells [10].

Toxicity (T) is another critical term for drug pharmacology. Toxicity refers to the sit-
uation when a drug damages a biological target. Pharmacology and toxicity intersect
very commonly since the primary goal of pharmacology is to increase therapeutic
effects while decreasing toxicity. Therefore ADMET (Absorption, Distribution, Me-
tabolization, Excretion, Toxicity) is an interchangeable term of ADME.

2.3 Drug-Drug Interactions (DDIs)

Polypharmacy refers to using multiple drugs concomitantly, and it is a part of today’s
therapeutics. Although some polypharmacy-induced effects are desirable for the sake
of treatment, in most cases, they cause harm. The term Adverse Drug Reactions
(ADRs) is a technical term defining these detrimental effects.

The probability of ADR is positively correlated with the number of concomitant
drugs. According to a cohort study, a patient taking 5-9 medications has a 50%
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risk of having ADR, whereas a patient taking 20 or more medications has a 100%
risk of having ADR [20]. Since the number of simultaneous diseases increases in
advanced ages, the elderly are inevitably more vulnerable to polypharmacy-induced
ADRs [20], [21], [22]. One of the most common causes of ADRs is drug-drug inter-
actions (DDIs) [23].

DDI refers to the interaction between two or more co-administered drugs when one
drug changes the effect of another drug in both a desirable or undesirable way. A well-
known example of a desirable DDI is the Probenecid and Penicillin pair. Probenecid
is given together with Penicillin to decrease the excretion of Penicillin for a longer
duration of action in the body [24]. In contrast to desirable DDIs, undesirable DDIs
led to many health and economic problems. For example, according to an analysis
based on 23 clinical studies, DDIs cause 0.054% of emergency room visits, 0.57%
hospital admissions, and 0.12% rehospitalizations [2].

Although anticipating DDIs beforehand is essential in most cases, due to the hardship
of detecting all drug combinations experimentally, DDIs are often realized during
post-marketing surveillance after drugs are sent to the market [25]. Emerging data-
oriented in silico approaches seem to have considerable potential in the solution of
the problem. With the help of in silico techniques, predicting the hazardous effects
of DDIs at the time of prescription seems to prevent unexpected results. A study
conducted among the elderly in polypharmacy revealed that CDST (Clinical Decision
Support Tool) used in the study reduced re-hospitalization and emergency department
visits [26].

2.4 Drug-Gene Interactions (DGIs)

In 2006, a Codeine prescribed breastfeeding mother lost her baby due to morphine
overdose, although other breastfeeding mothers having the same prescription did not
have any problem with their babies [27]. The underlying reason for the baby’s death
was the polymorphism on the CYP2D6 enzyme of the mother, which led her to metab-
olize Codeine at a relatively fast rate (URM). It is soon discovered that an excessive
amount of morphine, which is the product of Codeine metabolization, passed into the
baby through the mother’s breast milk.

In 1957, Arno Motulsky first put forward that genetic differences may lead to drug-
response variability [28]. 2 years later, Friedrich Vogel coined the term Pharma-
cogenetics [29]. Afterward, Marshall coined the term Pharmacogenomics in 1997
[30]. Pharmacogenetics focuses on different drug responses among individuals hav-
ing different genetic makeup. Similarly, Pharmacogenomics explores all genes in
the genome. Therefore, PGx is a technical term referring to Pharmacogenetics and
Pharmacogenomics.
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With recent advances in PGx studies, drug-gene interactions (DGIs) gained popularity
in measuring the effect of genetic variability on drug response [31]. As stated in
a study, genetics explains variability in drug response by 20–95 % [29]. Similarly,
inter-individual variability of CYP450 genes explains 25% of the variability in drug
response [32].

Considering the substantial effect of DGIs on drug response, incorporating them to
predict DDIs may increase the prediction accuracy [33]. For instance, in a study
[34] the drug-gene interaction information has been used to estimate the unknown
drug-drug interactions, and approximately 80% of the prediction success has been
achieved.

2.5 Drug-Drug-Gene Interactions (DDGIs)

Various similarity approaches such as chemical, biological, target, functional, side
effect, and metabolism of drug pairs have been used to reveal undetected DDIs [35],
[36], [37], [38], [39]. In addition, several computerized techniques, including classi-
fication, clustering, text mining, and graph simulations, led to unknown DDIs being
predicted [40], [34], [39], [41], [38]. Moreover, following the recent advances in PGx
studies, DDIs also have started to be reviewed from the perspective of genetics [42].
For example, a genotype-guided DDI study among the elderly in polypharmacy re-
vealed that not only emergency department visits and re-hospitalization but treatment
costs also decreased [43]. Similarly, revealing CYP-450 mediated DDIs has enabled
predicting and reducing DDIs in the hospitalized elderly [44].

Drug-drug-gene interaction (DDGI) is the cumulative effect of DDI and DGI since
the aggregate effect of concomitant drug usage and genetic variability alters predicted
drug response [45].

Although there is no simple explanation or generated model of DDGIs, their pro-
files, including the order of administration, route of administration, dose, and geno-
type of the metabolizing enzymes, are feasible [46]. Furthermore, a literature review
searching the relation of DDIs with major metabolizing enzymes, including CYP2C9,
CYP2C19, and CYP2D6, revealed that polymorphisms on these metabolizing en-
zymes are an essential determinant of DDGIs [47].

2.6 Drug Knowledge Bases Used

This section details the drug knowledge bases used in this study: DrugBank, Phar-
mGKB, Ensembl, KEGG Drug, and ONC High Priority. Drug information, which is
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the primary material of this study, is obtained from DrugBank since it is a compre-
hensive drug encyclopedia. In addition, drug-associated gene and SNP records are
extracted from PharmGKB and Ensembl. Furthermore, DDI records retrieved from
DrugBank are fed by the severity information gathered from KEGG Drug and ONC
High Priority.

2.6.1 DrugBank

DrugBank [48], also known as a drug encyclopedia, was first published in 2006. It
is a detailed, blended bioinformatics and cheminformatics drug database containing
drug information mainly extracted from literature. DrugBank has a wide range of
users, including researchers, students, physicians, pharmacists, medicinal chemists,
and the pharmaceutical industry. DrugBank content has open access with a member-
ship prerequisite.

DrugBank has information on drugs, drug chemical properties, ADMET details, drug-
gable genes, drug proteins, drug pathways, drug-SNP associations, DDIs, and drug-
food interactions. In this study, drug, DDI, and drug-associated SNP records are
extracted from DrugBank.

Drug entity has information about 225 different organisms. It has 14315 drug entries,
which are composed of 2481 biotech drugs and 11834 small molecule drugs. Based
on the FDA statuses, drugs are categorized into six groups: approved, investigational,
experimental, nutraceutical, illicit, and vet-approved. The DDI entity has around one
million drug-drug interactions. These interaction records contain clinically verified
entries as well as prediction-based ones. DrugBank gathered clinically proven records
mainly from drug labels and literature. In addition, it contains prediction-based en-
tries generated by using several machine learning algorithms.

The drug-associated SNP entity has 308 records, with column names drug identifier,
SNP identifier, gene, UniProt identifier, allele, defining change, and PubMed identi-
fier, 201 of which are harmless and 107 of which are adverse interactions.

2.6.2 PharmGKB

The Pharmacogenomics Knowledge Base (PharmGKB) [49] is a publicly available
online resource that was developed at Stanford University in 2000 and funded by the
NIH (National Institutes of Health). PharmGKB data mainly focuses on the relations
between variant, drug, and phenotype. This data has been prepared by manual cura-
tion of the literature and natural language processing techniques. PharmGKB shares
its content with a free membership prerequisite in two separate parts. The first part,
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also mentioned as primary data, comprises each gene, drug, variant, and phenotype
definition. The second part contains curated literature records, including variant an-
notations, clinical annotations, drug label annotations, clinical guideline annotations,
and pathways [50]. At the time of this study, PharmGKB included 712 drug annota-
tions, 780 drug label annotations, 165 clinical guideline annotations, and 151 pathway
annotations [March 2021].

The primary PharmGKB data contributing to this study are the Clinical Annotations
and Relationships files. The Clinical Annotations file has information on chromo-
somes, gene, SNP, drug, disease, level of evidence, and PubMed identifier. Similarly,
the Relationships data file holds the association information on drug, gene, SNP, dis-
ease, PK, PD, evidence, and PubMed identifier.

The Clinical Annotation file contains 4559 drug-associated SNP records. The Re-
lationships data file contains 61604 records on drug-gene, drug-variant, drug-drug,
drug-disease, gene-disease, and disease-variant associations.

Most of the PharmGKB content includes an additional rating attribute including high,
moderate, low, and unsupported given by PharmGKB curators describing the evi-
dence, which is a combinatorial value depending on the trustiness of the evidence or
the number of the published paper about the case.

2.6.3 Ensembl

Towards the end of the Human Genome Project, known as the most prominent biolog-
ical joint project, to meet the need of classifying, integrating, and demonstrating vast
amounts of annotated genomic data, the Ensembl project started with the funding of
EMBL European Bioinformatics Institute and the Wellcome Trust Sanger Institute, in
1999. Ensemble consolidates massive biological data retrieved from several sources
and shares this content from a central point with a free membership prerequisite.

Ensembl content includes genes, variants, phenotypes of certain species (human,
mouse, zebrafish, and rat). For the mentioned species, Ensemble imported infor-
mation from the HAVANA project. Every gene in Ensembl has a unique identifier
starting with the ENSG prefix. In the same way, transcripts are named with the ENST
prefix. Variation data for the human genome in Ensemble consist of the imported
records from dbSNP.

To solve the problem of timely access to the latest genomic data, Ensembl provides
the data via several tools. Ensembl Browser is one of these tools and allows search-
ing biological information of over 250 species, with gene name, gene symbol, gene
identifier, variation, disease, and phenotype search keys.
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Another tool is BioMart, a browser-based genome query tool enabling users to export
cross-database gene information for selected species in different formats. Several
filtering options provide users to define customized search criteria, including region,
gene, phenotype, and variant. Programmatically access to the Ensembl data is another
alternative. For instance, an open-source R package called biomaRt [51] enables users
to retrieve the genomic content. It provides retrieval of data via predefined R objects
without knowing the complete structure of the database or constructing complex SQL
queries. In this research, 11,889 gene entries and the 2,093 SNP records are extracted
from Ensembl via biomaRt.

2.6.4 DDI Severity Sources

DDI data extracted from DrugBank does not have severity information. Therefore,
the severity information of interacted drug pairs was extracted from other sources,
including KEGG Drug and ONC High Priority.

KEGG (Kyoto Encyclopedia of Genes and Genomes) [52] is an integrated knowledge
base, first started in Kanehisa Laboratories in 1995. KEGG has a broad information
spectrum, including health, genomic and chemical on 18 different domains, one of
which is the KEGG Drug.

KEGG Drug is a comprehensive drug resource containing general drug information,
PK, PD, and variant information of approved drugs in Japan, the USA, and Europe.
Drug Interaction Database is a subset of KEGG Drug, and it has derived contraindi-
cation (CI) and precaution (P) data for prescription drugs available in Japan. Drug
Interaction Database has 217,854 rows containing severity and description of inter-
acted drug pairs.

The ONC High Priority [53] project was started by ONC (Office of the National
Coordinator for Health Information Technology) to determine drug-drug interactions
having high severity. ONC High contains information on 602 critically interacted
drug pairs.

2.7 Related Studies

Drug-drug-gene interaction (DDGI) is the cumulative effect of DDI and DGI. There-
fore, this section reveals previous studies of DDI, DGI, and DDGI, respectively, to
evaluate the existing work holistically. Later in this section, a summary of the previ-
ous work is summarized in Table 1.

13



2.7.1 DDI & DGI Studies

ADReCS-Target [54] is the Adverse Drug Reaction Classification System-Target
which contains protein, gene, and genetic variation information associated with ad-
verse drug reactions. It was funded by Bioinformatics & Design group (BIDD). Cur-
rently, it includes more than 65000 ADR associations of 662 drugs with 63298 genes,
2613 variations, 1710 proteins. The database content is derived from literature and
other knowledge bases, including DrugBank, Ensembl, and GWAS Catalog. The
database has open access to download with a free membership prerequisite.

DGIdb [55] is the Drug-Gene Interaction database. It contains information on drug-
associated genes derived from over thirty sources such as literature, clinical trial
records, and other knowledge bases, including DrugBank, PharmGKB, Chembl, Drug
Target Commons, and Therapeutic Target Database (TTD). The database has over
1.000,000 drug-gene interaction records associated with around 10,000 drugs and
more than 40,000 genes. DGIdb content is accessible through the provided web por-
tal, downloadable data files, and provided API.

Merged-PDDI [6] is the Merged Potential Drug-Drug Interactions. The University
of Pittsburgh funded it. In total, Merged-PDDI is a synthesis of 14 different sources,
including CredibleMeds, NDF-RT, ONC High Priority, ONC Non-interruptive, DDI
Corpus, KEGG DDI, TWOSIDES, DrugBank. Merged-PDDI content has open ac-
cess through both the provided web portal and data downloading options.

PreMedKB [56] is the Precision Medicine Knowledge Base, and Fudan University
funded it. It contains association information on genes, diseases, drugs, and vari-
ants. PreMedKB has around 200,000 genetic variations, 29,000 drug-gene associa-
tions, and 6,000 variant-drug pairs derived from several resources, including HGNC,
NCBI, UniProtKB, ClinVar, dbSNP, DailyMed, Drugs@FDA, DrugBank, PubChem,
STITCH, PharmGKB, and TTD.

VarDrugPub [57] is funded by the National Research Foundation of Korea. It pro-
vides pharmacogenomic data content, which was generated by deriving information
from around 6,000 PubMed papers. It has information for 901 drugs, 1,077 genes,
3,591 mutations, and 5,712 drug-variation associations.

2.7.2 DDGI Studies

DDI-Predictor [58] is an online decision-making tool assisting pharmacists with
their DDI decisions. The study is ongoing and started by analyzing prescriptions
by 18 clinical pharmacists by the Genophar Working Group at the University Claude
Bernard Lyon. Among the 199,733 prescriptions, 213 cases are meaningful, and they
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are divided into groups of inducers, inhibitors, cirrhotic patients with percentages
of 26, 68, and 6, respectively. The tool has an online interface providing search op-
tions based on five modules, including drug-drug interactions, drug-gene interactions,
drug-drug-gene interactions, cirrhosis-drug interactions, cirrhosis-drug-drug interac-
tions. The DDI module provides search options on the selected drug, substrate, and
inducer pairs. Similarly, the DDGI module makes predictions on the selected sub-
strate, interactor, and genotype pairs. The data is open access through the provided
API named DDPRED and downloadable data files.

[59] designed to predict detrimental DDIs between two drugs by considering ge-
netic interaction between genes that encode these drugs’ targets. In order to build
the prediction model, DDI data is retrieved from other knowledge bases, including
DrugBank, TWOSIDES, and Merged-PDDI. The generated dataset contains 1,113
adversely interacted drug pairs, 11,113 non-interacted drug pairs. The final model
predicts 432 novel adverse DDIs and provides supporting evidence regarding the pre-
diction results.
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Table 1: Previous DDI, DGI, and DDGI studies

Name Year Owner Source Entity

ADReCS-Target 2018
Bioinformatics-Aided
Drug Discovery
Group (BADD)

PubMed,
DrugBank,
Ensembl,
GWAS Catalog

ADR
associated
protein and
gene

DGIdb 2017 Washington
University

More than 30 databases,
including PubMed,
clinical trial records,
DrugBank,
PharmGKB,
TTD, etc

Drug
associated
gene

Merged-PDDI 2017 University of
Pittsburgh

14 sources, including
CredibleMeds,
NDF- RT,
ONC,
KEGG DDI,
TWOSIDES,
DrugBank, etc.

DDI

PreMedKB 2019 Fudan University

More than
20 databases,
including
DrugBank,
PharmGKB,
TTD, etc.

drug, gene,
disease, and
variant
associations

VarDrugPub 2018 Korea University

PubMed,
ClinVar,
PharmGKB,
PubTator

drug, gene,
and
variant
associations

DDIPredictor 2019 University Claude
Bernard Lyon EHR

drug,
protein,
gene,
variant, and
DDI
associations

Qian et al., 2019 2019 Cornell University
DrugBank,
TWOSIDES,
Merged-PDDI

Adverse DDI,
gene, and
protein
associations
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CHAPTER 3

MATERIALS AND METHODS

This chapter explains data integration and preprocessing operations with tables, vi-
suals, the Entity-Relationship Diagram (ERD), and Relational Data Model (RDM).
Moreover, through the end of this chapter, database entities are explained in detail.
Finally, the developed web interface which enables users to view the end product of
this study was introduced.

3.1 Data Sources

3.1.1 DrugBank

The latest published version of DrugBank at the time of this study is 5.1.8, released
on 2021-01-03. DrugBank has an API to query the database content partially and a
downloadable 1.5 GB sized XML-formatted full dataset, which was downloaded and
used in this project. This dataset was parsed with an open-source R package called
“dbparser” [60] and imported into the local RDBMS (Relational Database Manage-
ment System). The parsed data has several entities, including drug, drug-interacting
protein, DDI, and drug-associated SNP.

The drug entity has comprehensive information on name, synonym, indication, phar-
macokinetics (PK), and pharmacodynamics (PD). This entity has 14,315 drugs, 11,834
are small molecules, and 2,481 biotech drugs. Drugs are categorized into six groups
based on the FDA approval status: experimental, investigational, nutraceutical, illicit,
vet-approved, and withdrawn. A drug might belong to more than one group since
it could have been approved to treat disease while it is in the trial to treat another
disease. A summary of the drug entity is given in Table 2.
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Table 2: Drug statistics a) Drug counts per drug type b) Drug counts per drug group
c) Drug counts per combination of drug type and group.

a)

Type Number of
Drugs

Biotech 2,481
Small
Molecule 11,834

Total 14,315

c)
Type
(Approved)

Number of
Drugs

Small Molecule 2,675
Biotech 1,433

b)

Group Number of
Drugs

Approved 4,108
Experimental 6,554
Illicit 205
Investigational 5,245
Nutraceutical 131
Vet Approved 423
Withdrawn 265
Total 16,931

The drug-protein entity consists of drug-associated proteins. Considering that some
clinical tests are conducted on mice and rats, drug-proteins for organisms including
“mice” and “rats” in addition to the “Humans and other mammals” were extracted
and imported into DDGICat. Table 3 summarizes the statistics of this entity.

Table 3: Drug-protein statistics a) Grouped by drug-protein b) Grouped by drug-
protein and drug type

a)
Protein
Type #Records

Target 14,514
Enzyme 5,179
Carrier 816
Transporter 3,079

b)

Protein
Type

#Small
Molecule
Drugs

#Biotech
Drugs

Target 13,623 891
Enzyme 5,027 152
Carrier 791 25
Transporter 3,050 29

The DDI entity has a total of 2.682,157 interacting drug pairs with name and interac-
tion description attributes. This entity primarily consists of theoretical DDI entries,
most of which did not have clinical evidence since they were produced with software
and algorithms.
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The Drug-SNP module contains drug-associated SNP records, including both ad-
verse and other interactions. Each record has attributes such as drug identifier, drug-
protein type, drug-protein identifier, drug-protein name, gene name, and description.

3.1.2 PharmGKB

PharmGKB content is provided partially in specialized files. The data files used for
this study are the Clinical Annotations and Relationships. Therefore, these files were
downloaded, parsed, and imported into the local RDBMS [March 2021].

The Clinical Annotations file has summaries of associations between drugs and ge-
netic variants. This module has information on chromosomes, genes, variants, drugs,
and diseases. After filtering out the drugs that do not exist in DrugBank, the proper
text parsing operations were conducted on gene and drug columns of the remaining
drugs. Finally, 5,897 annotation records for 509 drugs, 859 genes, 2,457 variants, and
2,345 PubMed identifiers were imported into DDGICat.

The relationships file has information on name, type, evidence, description, pharma-
cokinetics (PK), pharmacodynamics (PD), PubMed identifier, and the association in-
formation on variant-drug, variant-disease, gene-drug, gene-disease, gene-gene, and
drug-drug. Sixty clinically-tested DDI entries were extracted from this file and im-
ported into DDGICat. Table 4 summarizes the content of Clinical Annotations and
Relationships files.

Table 4: PharmGKB data files a) Clinical annotations b) Relationships

a)
Entity #Records
Drug 637
Variant 2,900
Gene 1,007
PMID 5,205
Total 4,559

b)
Entity #Records
variant-drug 6,065
variant-disease 4,120
gene-drug 5,720
gene-disease 3,548
gene-gene 2,836
drug-drug 60

3.1.3 Ensembl

Ensembl has comprehensive biological content, including genes, variants, and phe-
notypes. Apart from being an extensive resource, Ensembl holds several naming con-
ventions which may vary between knowledge bases. For instance, while DrugBank
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represents protein information with a Uniprot identifier, PharmGKB holds them with
an Ensembl identifier. Therefore, in this study, Ensembl was used to link the knowl-
edge bases with different naming conventions.

Gene and SNP information was extracted from Ensembl, with an R package named
“biomaRt” [51]. Gene information for the drug-proteins in DDGICat was extracted
and put into a list object. Subsequently, this list was used to query the corresponding
genes from Ensembl. SNP data were queried in a similar logic. Therefore, 3,897
genes and 538,615 SNPs were thus extracted from Ensembl. Table 5 summarizes the
bioMart parameters used to query gene and SNP data.

Table 5: biomaRt parameters used to query data from Ensembl.

Entity Gene SNP
BioMart ensembl snp
Dataset hsapiens_gene_ensembl hsapiens_snp

Filters hgnc_symbol chr_name,start_position,
end_position

Attributes

ensembl_gene_id,ensembl_transcript_id,
hgnc_symbol,description,uniprot_gn_id,
uniprot_gn_symbol,chromosome_name,
start_position,end_position

refsnp_id,refsnp_source,
chr_name,chrom_start,
chrom_end

3.1.4 DDI Severity

The severity level of interacting drug pairs describes the importance of interaction.
DDI records in DDGICat do not contain severity information. Therefore, this in-
formation was obtained from different knowledge bases, including KEGG Drug and
ONC High.

DrugBank has the identifiers of drugs that exist in other knowledge bases. Based on
the KEGG drug identifiers of 1,600 drugs existing in DrugBank, interaction severity
values of 26,074 records were updated with the data retrieved from KEGG’s Rest
Service. The same operation was conducted for ONC High, and 946 more records
were updated with severity information.
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Table 6: Severity information of interacted drug pairs retrieved from KEGG Drug and
ONC High (CI: Contraindication, P: Precaution)

Source KEGG Drug KEGG Drug KEGG Drug ONC High
Severity P CI CI, P high
Record Count 25,492 337 232 946 =27,007

A quantitive summary of the data obtained after the earlier extraction processes are
presented in Table 7 below.

Table 7: Statistical summary of DDGICat entities

Entity Name Count
Drug 13,914
Gene 3,897
SNP 2,093
Drug-Protein 22,122
Drug-SNP 5,897
DDI 1,154,667
DDI pairs sharing same drug-protein 583,277
Disease 67

3.2 Data Integration

This section explains data integration steps of this study. As mentioned before, drug
data is retrieved from DrugBank. DDI data is a combination of DrugBank, Phar-
mGKB, KEGG Drug, and ONC High. Drug-associated SNP information is gathered
from both DrugBank and PharmGKB. Disease information is extracted from Phar-
mGKB. Finally, Ensembl is the central knowledge base for SNP and Gene informa-
tion. Figure 1 depicts the data flows used in data integration.
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Figure 1: Data flows used in data integration

3.3 Data Preprocessing

This part summarizes the data preprocessing steps conducted for DrugBank and Phar-
mGKB. In contrast, BioMart, KEGG Drug, and ONC High do not require data pre-
processing since their content was already in the required format.

• DrugBank contains information on 222 different organisms, including bacteria,
viruses, fungi, and mammals. Considering the use of mice or rats in the pre-experimental
stages of drug development, groups other than “Human” and “Human and other mam-
mals” were filtered out, and the remaining 13,185 drug records were imported into
the DDGICat.

• Drug-associated proteins were combined into a single table with an additional at-
tribute representing protein type (target, enzyme, carrier, and transporter).

• DDI records contained duplicate entries due to the directionality of drug pairs. In-
teracting drug pair combination was set as the primary key constraint. Additionally,
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the lexicographical order of interacting drug pairs was used, and 1.154,667 distinct
DDI records were determined out of 2.682,157 records.

• An additional interaction severity attribute was added to the DDI entity, and it was
fed by the records retrieved from ONC High and KEGG Drug.

• Interacting drug pairs associated with the same drug-protein were calculated and
stored in a new table named ddi_same_drug_protein.

• Drug-associated polymorphisms were retrieved from both DrugBank and Phar-
mGKB and combined in a single table named drug_snp. Three hundred twenty-four
entries were extracted from DrugBank. Five thousand nine hundred records were ex-
tracted from PharmGKB after conducting proper text parsing operations since “Gene”
and “Drug Name” attributes were multi-valued (delimited by semicolons).

3.4 Database Creation

A relational database management system (RDBMS) enables the manipulation of
stored data in a database. In this study, we used PostgreSQL 9.5.24 to store DDGICat
content. PostgreSQL is an open-source RDBMS that dates back to 1986 as part of
the POSTGRES project at the University of California [61].

DDGICat contains five entities, eight tables, and three connection tables. Details of
them are as follows:

DRUG: This entity details information about drugs. We extract most of them from
DrugBank. The attributes of this entity are as follows.

• drug_id (Drug identifier)

• name (Drug name)

• synonym (Drug synonym)

• type (Drug type)

• description (Drug description)

• state (Drug state)

• indication (Drug indication)

• toxicity (Drug toxicity)
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• pharmacodynamics, absorption, half_life, metabolism, mechanism_of_action,
volume_of_distribution, protein_binding, clearance, route_of_elimination (PK
and PD) pubmed_id (PubMed identifier)

The primary key of this entity is drug_id.

DRUG PROTEIN: This entity contains drug proteins, including target, enzyme, car-
rier, and transporter. This entity has the following attributes.

• drug_id (Drug identifier)

• protein_id (Target/enzyme/carrier/transporter identifier)

• protein_type (Protein type)

• protein_name (Protein name)

• source (Protein source (TrEMBL, Swiss-Prot))

• uniprot_id (Uniprot identifier)

• gene_name

• function (A brief explanation of protein’s functions)

• pubmed_id (PubMed identifier)

The (drug_id, protein_id, type) combination is the primary key of this entity.

GENE: Drug-related gene information extracted from DrugBank, PharmGKB, and
Ensembl was combined and stored in this entity.

• ensembl_gene_id (Ensembl gene identifier)

• hgnc_symbol (Gene symbol)

• description

• uniprot_id (Uniprot identifier)

• uniprot_symbol (Uniprot symbol)

• chromosome (Chromosome name)

• start_position (Start position on the chromosome)

• end_position (End position on the chromosome)
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The (ensembl_id, uniprot_id) combination is the primary key of this entity.

SNP: This entity holds SNP records. We extracted the required data from Ensem-
bl/BioMart. This entity has the following attributes:

• refsnp_id (Single nucleotide polymorphism identifier)

• refsnp_source (Database source)

• chr_name (Chromosome name)

• chrom_start (Start position on the chromosome)

• chrom_end (End position on the chromosome)

• chrom_strand

• allele

refsnp_id attribute is the primary key of this entity.

DDI: This entity has adverse drug-drug interactions and potential drug-drug interac-
tions. Its attributes are:

• drug1_id (Drug identifier of the first drug)

• drug2_id (Drug identifier of the second drug)

• description (A brief description of the interaction)

• category (Interaction category)

• drug1_name (Name of the first drug)

• drug2_name (Name of the second drug)

• severity (interaction severity level)

• severity_desc (interaction severity explanation)

The (drug1_id and drug2_id) set is the primary key of this entity.

DRUG_MAPPER: This is a connection table, which maps drug identifiers of differ-
ent knowledge bases into each other. It has the following attributes:
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• drugbank_id (Drugbank drug identifier)

• pharmgkb_id (PharmGKB drug identifier)

• onchigh_id (ONC High drug identifier)

• kegg_id (KEGG drug identifier)

The drugbank_id is the primary key of this table.

GENE-SNP: This is a mapper table and maps SNP records to the genes. Attributes
of it are as follows:

• emsembl_id (Ensembl gene identifier)

• uniprot_id (Uniprot identifier)

• snp_id (Single nucleotide polymorphism identifier)

The (ensembl_id, uniprot_id, and snp_id) set is the primary key of this table.

DRUG-SNP: This is a connection table providing relations between drug and SNP
entities. It has the following attributes:

• drug_id (Drug identifier)

• snp_id (Single nucleotide polymorphism identifier)

• uniprot_id (Uniprot identifier)

• gene_name

• chromosome

• significance

• description

• severity

• pubmed_id (PubMed identifier)

The primary key of this table is (drug_id, snp_id, uniprot_id, gene_name, chromo-
some, description, and pubmed_id) combination.
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The entity-relationship diagram (ERD) is a logical model of the database, which de-
picts the attributes of each entity and the relations between them with specialized
symbols. ERD of DDGICat is shown in Figure 2. Similarly, the Relational Data
Model of DDGICat is depicted in Figure 3.
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Figure 2: ER Diagram of DDGICat
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Figure 3: The Relational Data Model of DDGICat (Screenshot from PgAdmin 3)
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3.5 Querying DDGICat

DDGICat is publicly accessible both by downloading the database content and a web
application named DDGICat Browser. DDGICat Browser enables viewing DDGICat
data in both tabular and graphical formats. DDGICat Browser was developed with
an open-source R package named Shiny [62]. Shiny enables the development of
interactive web applications. At the time of this study, the latest Shiny version was
1.6.0, published in January 2021 [62].

The Downloads page of DDGICat Browser provides the database entities as down-
loads, as shown in Figure 4.

Figure 4: Screenshot of Downloads Page on DDGICat Browser

Similarly, DDGICat Browser enables Drug, Gene, SNP, DDI, DGI, and DDGI con-
tents to be viewed in tabular and graphical formats. The screenshots regarding these
Pages are shown in Figure 5, Figure 6, Figure 7, and Figure 8, respectively. Addi-
tionally, the data retrieval logic of Drug, Gene, SNP, DDI, DGI, and DDGI Pages is
depicted in Figure 9.
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Figure 5: Screenshot of Drug Page on DDGICat Browser
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Figure 6: Screenshot of Gene and SNP Pages on DDGICat Browser
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Figure 7: Screenshot of DDI and DGI Pages on DDGICat Browser
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Figure 8: Screenshot of DDGI Page on DDGICat Browser. The DDGI Page shows the relation between a disease and a
drug pair in SNP, protein, gene, and chromosome detail
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Figure 9: Data retrieval logic behind Drug, Gene, SNP, DDI, DGI, and DDGI Pages.
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CHAPTER 4

RESULTS

DDGICat content, which consists of relationships between diseases, drugs, genes,
drug proteins, and SNPs, aims to guide different consumer types such as researchers,
prescribers, pharmacists, and statisticians. This chapter provides sample usages of
DDGICat in different scenarios. Moreover, through the end of this chapter, examples
of graphical outputs retrieved from DDGICat are shared.

4.1 Case Study

The DDI Page of DDGICat Browser displays the details of interacting drug pairs.
Therefore, this page aims to analyze the possibility of whether drug pairs may lead
to unpredicted DDIs. In the scenario to be exemplified, Acute Coronary Syndrome
(ACS) was selected. ACS is a general term used to describe the conditions associated
with the decrease in the blood flow to the heart. One of the leading causes of ACS-
associated diseases is genetics.

Clopidogrel is a drug used to treat ACS-related diseases. DDI Page provides possible
drug interactions with Clopidogrel. Additionally, the interaction severity filter enables
more focused searches on critical interactions.

DGI Page displays Clopidogrel-associated proteins (target, enzyme, carrier, trans-
porter). This page also allows users to filter the result set for a specific drug-associated
protein or gene. Figure 10 demonstrates the screenshots of DDI and DGI Pages.

DDGI Page presents the cumulative effect of DDI and DGI. For instance, similar to
the previous scenario, in the case of a patient, who uses Clopidogrel for her heart
disease, if the patient adds a second drug such as Omeprazole to treat her Gastroe-
sophageal Reflux Disease (GERD), these two drugs may interact.

As shown in Figure 11, DDGI Page allows prescribers to examine the interaction of
Clopidogrel and Omeprazole in detail in terms of chromosomes, genes, proteins, and
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SNPs. According to the results retrieved from this page, drug-proteins associated with
Clopidogrel and Omeprazole stand on chromosomes 7, 10, 15, and 19. In addition,
“P-glycoprotein 1” synthesized by the ABCB1 gene is the carrier protein for Clopi-
dogrel and Omeprazole. Similarly, enzymes including CYP1A2, CYP3A4, CYP2C9,
and CYP2C8 metabolize these two drugs. Moreover, the shared polymorphism for
Clopidogrel and Omeprazole is rs104564.
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Figure 10: Drugs and drug-associated proteins interacting with Clopidogrel. (Screenshot of DDI and DGI Pages)
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Figure 11: Severity of Clopidogrel and Omeprazole interaction affected by genetic materials. (Screenshots of DDGI Page)
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4.2 Database Statistics

This section provides graphical outputs retrieved from DDGICat entities, including
drug, gene, SNP, DDI, DGI, and DDGI. These graphs and more could be viewed on
the Statistics Page of DDGICat Browser.

The drug entity contains information for two drug types: biotech and small-molecule.
According to the FDA approval status, seven drug statuses include approved, experi-
mental, illicit, investigational, nutraceutical, vet-approved, and withdrawn. Figure 12
provides a summary of the drug entity according to the mentioned categorizations. As
shown in Figure 12, small molecule drugs form the vast majority of records. The ex-
perimental, investigational, and approved drug statuses have the highest proportions,
respectively.

Figure 12: Drug types classified per drug status

In addition, the gene entity contains 3,306 distinct genes distributed on 17 chromo-
somes. The first and second chromosomes contain the highest number of genes, with
343 and 233 genes. Figure 13 demonstrates the chromosome distribution of drug-
associated genes prepared based on the DDGICat and Ensembl databases.
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Figure 13: Drug-related gene distribution on chromosomes

SNP entity contains 2,093 drug-associated polymorphisms distributed on 22 chromo-
somes. As shown in Figure 14, the first chromosome has the most drug interacting
polymorphic genes with 225 records. The exact figure also contains the same distri-
bution based on the data retrieved from Ensembl.
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Figure 14: Distribution of drug-related SNPs on chromosomes

Additionally, Figure 15 depicts the top 10 most drug-associated genes. CYP3A4
(Cytochrome P450 3A4) is the gene interacting with most drugs (880 drugs).

The drug-protein entity holds information of drug-associated proteins, which are
gene products that interact with drugs. There are 3,190 distinct drug-associated pro-
teins, 2,906 of which are targets, 382 of which are enzymes, 77 of which are carriers,
and 258 of which are transporters. As shown in Figure 16, the most drug-associated
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Figure 15: Top 10 genes interacting with most drugs

protein types are targets, enzymes, transporters, and carriers, respectively. Drug pro-
tein types with the highest potential to interact with drugs are Enzymes with 67%,
Transporters with 16%, Targets with 13%, and 5% Carriers.

Figure 16: Distribution of drug-interacting protein types
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As summarized in Figure 17, CYP3A4 (Cytochrome P450 3A4), the enzyme respon-
sible for the metabolism of about 50% of drugs, has the highest drug interaction
potential.

Figure 17: Top 10 drug-interacting proteins

Figure 18 summarizes the drug-protein distribution per drug. Most drugs (3,569)
have a single target. Similarly, most drugs (670) are metabolized by a single Enzyme.
Furthermore, most drugs have one or two carriers. In addition, the vast majority of
drugs have one to three carriers and transporters.
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Figure 18: Drug-protein distribution per drug
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The DDI Entity has more than one million distinct drug-drug interaction records
on 3,952 drugs. These records, which constitute the majority of the content of this
table, are mainly generated by using a prediction system in combination with drug
labels and scientific publications. In the analyses related to drug-drug interaction
entries, in order to get more significant results, records having high severity levels
were included in the analysis in the following parts. For instance, DDI Distribution
per drug is depicted in Figure 19. According to the figure, drug pairs mainly interact
with one or two drugs. Additionally, the number of drugs that each drug interacts
with varies between 1 and 40.

Figure 19: DDI distribution per drug

DDGICat has information on interacting drug pairs which share the same drug-protein,
in total 583,277 records, 73,690 of which are targets, 392,264 of which are enzymes,
26,839 of which are carriers, and 90,484 of which are transporters. Figure 20 depicts
the distribution of interacting drug pairs per having the same drug protein.
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Figure 20: DDI distribution per drug-protein

Additionally, Figure 21 shows interacting drug pair percentages that share the same
drug protein. According to the figure, drugs metabolized by the same enzyme interact
at a rate of 64%. Similarly, drugs that share the same carrier and transporter interact
at a rate of 70% and 56%, respectively. Moreover, drugs that share the same target
interact at a rate of 6%.

Moreover, we searched if there was a correlation between interacting drug pairs and
their ATC level. There are four ATC levels, and the first ATC level is called the
root level. Figure 22 shows the drug-drug interaction distribution per ATC level of
interacting drug pairs. As can be seen from the graph, the interaction rates of drugs
increase as the ATC Level increases.
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Figure 21: DDI Percentages per drug-protein

Figure 22: DDI distribution per ATC level
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Furthermore, we classified interacting drug pairs into five main groups based on the
description information of interacting drug pairs. Classification results are shown in
Table 8.

Table 8: Interacting drug pair classification based on interaction description informa-
tion (The descriptions are taken verbatim from DrugBank)

Id Interaction Description %

1 “The risk or severity of adverse effects can be increased when
Drug A is combined with Drug B.” 49

2 “Drug A may increase/decrease the . . . activities of Drug B.” 19

3 “The metabolism of Drug A can be increased/decreased when
combined with Drug B.” 16

4 “The therapeutic efficacy of Drug A can be decreased when
used in combination with Drug B.” 12

5 “The serum concentration of Drug A can be increased/decreased when
it is combined with Drug B.” 4
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CHAPTER 5

DISCUSSION & CONCLUSION

5.1 Importance of Drug-Drug Interactions

Polypharmacy, especially for the elderly, plays a vital role in today’s therapeutics.
Although polypharmacy is commonly preferred in treatment, it may cause negative
consequences. Drug-drug interactions (DDIs) are one of the leading drawbacks of
polypharmacy. A significant amount of emergency room visits, hospital admissions,
and rehospitalizations are due to DDIs.

DDIs threaten human health and pose an economic burden, necessitates a better un-
derstanding of their underlying reasons. Undoubtedly, one of the essential materials
contributing to this challenge is DDI data. Therefore, the primary motivation of this
study is to contribute to the ongoing DDI studies by creating a catalog database so
that the required DDI data could be reached and used by researchers, prescribers, and
the pharmaceutical industry.

5.2 Importance of Drug-Drug-Gene Interactions

Drug-drug-gene interaction (DDGI) is the cumulative effect of drug-drug interaction
(DDI) and drug-gene interaction (DGI). DDGI occurs when genetic variations al-
ter the concomitantly used drug pairs’ pharmacokinetics (PK) or pharmacodynamics
(PD).

Today, it is an accepted fact that drug response may vary between individuals. Among
several triggering factors, such as age, gender, weight, and other medications, genetic
variability is one of the most effective ones for these reasons. Therefore, the “one
size fits all” approach has started to lose its sufficiency, and this approach is being
replaced by Pharmacogenomics (PGx), a subfield of pharmacology that studies how
genes cause altered drug responses.
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Ongoing PGx studies have also contributed to DDI studies, and DDI researchers have
enlarged their vision by adding genetics into the equation, and they are starting to
inspect DDIs from the perspective of genetics.

5.3 Importance of DDGICat

To the best of our knowledge, DDGICat is the first catalog that allows drug-drug in-
teraction (DDI) information to be searched and viewed together with genetic makeup,
specifically at the chromosome, gene, protein, and SNP detail. Before this study, as
far as we know, one other study (DDIPred, mentioned in Chapter 2) has also con-
tributed to the gap in the ongoing DDI and genetic variability relationship. How-
ever, unlike previous work, DDGICat provides a combined dataset including DDI
and drug-gene interaction (DGI) records and their associations. DDGICat broadens
the content of genotype focussed drug-drug interaction data by having more entries
than previous studies. Furthermore, different from existing studies, interacting drug
pairs or drug-gene pairs have the option to be viewed together with shared chromo-
some, gene, protein, and SNP details. The content of DDGICat could be reached
through the developed web portal, named DDGICat Browser.

5.4 Significance of the Data in DDGICat

In the previous section, the distribution of drugs based on their types was shared in
Figure 12. According to this distribution, 17% of the data consists of biotech drugs,
while 83% are small molecule drugs. Most drugs are composed of small-molecule
drugs with a much longer history than biotech drugs, which is an understandable
explanation for their higher quantity.

According to the Ensembl data, the first and second chromosomes have the highest
number of genes, respectively (Figure 13). The same figure also shows the drug-
associated gene distribution on the chromosomes in DDGICat data. Similar to the En-
sembl data, the chromosomes with the highest number of genes are the first and sec-
ond chromosomes, respectively. Therefore, considering the first two chromosomes,
the number of genes in these chromosomes and the number of drug interacting genes
are consistent.

Figure 15, and Figure 17 show the drug-interacting proteins. Based on these fig-
ures, proteins having the most drug interactions are CYP3A4, CYP2D6, CYP2C9,
CYP1A2, and CYP2C19, respectively. In other words, based on the DDGICat data,
most of the drug-associated proteins belong to the CYP 450 family. As is known, en-
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zymes belonging to the CYP 450 family have a large proportion in drug metabolism.
Therefore, this fact is confirmed by these results obtained from DDGICat.

As described in Chapter 2, the main aim in the drug development process is to deter-
mine the target protein causing the disease and fix or mitigate the health problem by
providing the conditions in which the appropriate drug dosage will act on the target
protein. Considering this information, the distribution in Figure 16 is meaningful;
since the target protein quantity is much higher than other drug proteins, including
enzyme, transporter, and carrier.

In the previous section, Figure 18 summarizes the drug-protein (target, enzyme, car-
rier, transporter) distribution per drug. This relationship follows a power-law distribu-
tion, indicating that the network of drug-protein interactions is a scale-free network.
This scale-free nature exists both as a whole and at the level of different protein
classes (target, enzyme, carrier, transporter). That, in turn, indicates that there are
“hub” drugs, as well as hub proteins (like the aforementioned CYP450 family).

The previous section shared the analysis of drug-drug interaction (DDI) data in Figure
19, Figure 20, and Figure 21. According to Figure 19 and Figure 20, both the drug
count and interaction count relationship and drug-protein count and interaction count
seem to follow a power-law distribution. However, the evidence is not as strong as
the previous case (for instance, drug-protein interactions), and a conclusion cannot be
drawn in this case. That being said, according to Figure 21, interacting drugs share
the same target protein at a rate of 6%. This result is meaningful since drug pairs
generally do not have the same target as drug targets are specific to drugs, and their
commonality is low. Contrary to this, interacting drugs have the same enzyme at a
rate of 64%, have the same carrier at a rate of 70%, have the same transporter at 56%.

According to Figure 22, drug interaction possibility is positively correlated with the
drug ATC level. That makes sense since the higher the ATC level, the higher the
likelihood of drug interactions, as the similarity between drugs also increases.

Another DDI classification, as shown in Table 8 in the previous section, is viable to
the description information of interacting drug pairs. Based on the mentioned clas-
sification, we conclude that interacted drug pairs in the first group having interaction
description “The risk or severity of adverse effects can be increased when Drug A is
combined with Drug B” have more adverse drug-drug interactions (ADDIs) potential
compared to interactions in the other four groups.
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5.5 Conclusion

The primary purpose of this study is to emphasize the effect of genetic variability
on DDI occurrence, which we conclude is one of the most potent factors on drug
response variability. We designed a relational database that stores DDI and genetic
variability associations.

The designed database was implemented on top of the PostgreSQL relational database
management system (RDBMS). The data content has DDI, DGI, and DDGI data ex-
tracted from different knowledge bases, including DrugBank, PharmGKB, Ensembl,
KEGG Drug, and ONC. The content of this study was shared via a user-friendly web
interface. The web interface, named DDGICat Browser, was developed with the R
Shiny package. DDGICat Browser enables users to search for a particular drug, gene,
SNP, interacting drug pairs, and drug-gene interaction data. Additionally, It enables
viewing interacting drug pairs which share the same genetic materials.

The designed database (DDGICat) was tested on a case study on a sample disease
(Acute Coronary Syndrome (ACS)) via the developed visual interface (DDGICat
Browser). Drug pairs having interaction possibilities in associated chromosomes,
genes, proteins, and SNP details were shared within the case study.

In addition, statistical analysis results obtained from the developed database (DDG-
ICat) were shared. Among these results, it has been shown that the drug-associated
protein (target, enzyme, carrier, transporter) distribution per drug follows a power-
law distribution, meaning that drugs and associated proteins are a scale-free network.
Based on the obtained results, it is possible to say that there are “hub” drugs and drug
proteins.

5.6 Future Studies

The possible additions and improvements to this study are summarized below:

• More metadata relevant to data quality and provenance should be associated.

• More data containing clinically oriented interaction severity information can
be imported into the existing DDI records.

• A machine learning model may be generated based on the collected data to
predict the unknown DDI, DGI, and DDGI records.
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APPENDIX A

PROJECT CODES

All the R and SQL code created for this thesis is available at:
https://github.com/aycomp/DDGICat
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