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Numerical simulations of thermal convection
under the influence of an inclined magnetic
field by using solenoidal bases

D. Yarımpabuça*†, H. I. Tarmanb and C. Yıldırımc

Communicated by C. Miao

The effect of an inclined homogeneous magnetic field on thermal convection between rigid plates heated from below
under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent.
The numerical technique is based on solenoidal (divergence-free) basis functions satisfying the boundary conditions
for both the velocity and the induced magnetic field. Thus, the divergence-free conditions for both velocity and mag-
netic field are satisfied exactly. The expansion bases for the thermal field are also constructed to satisfy the bound-
ary conditions. The governing partial differential equations are reduced to a system of ordinary differential equations
under Galerkin projection and subsequently integrated in time numerically. The projection is performed by using a dual
solenoidal bases set such that the pressure term is eliminated in the process. The quasi-steady relationship between the
velocity and the induced magnetic field corresponding to the liquid metals or melts is used to generate the solenoidal
bases for the magnetic field from those for the velocity field. The technique is validated in the linear case for both
oblique and vertical case by reproducing the marginal stability curves for varying Chandrasekhar number. Some numer-
ical simulations are performed for either case in the nonlinear regime for Prandtl numbers Pr D 0.05 and Pr D 0.1.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Magnetic field interacts with electrically conducting moving fluid through Lorentz force. Various experimental and numerical studies
are performed to explore the consequences of this interaction between convective motions and magnetic field in the fields of metal-
lurgy [1], astrophysics [2], flow control [3], and hydrodynamic stability [4]. It is observed experimentally [5] and verified theoretically [2]
that when applied in the vertical direction (direction of gravity), an external magnetic field suppresses the roll motion arising in ther-
mal convection between plates heated from below and thus delays the onset of convective motions. When applied in the horizontal
direction, it aligns the convection rolls and stabilize the onset of oscillatory instability. The convective layer between plates of infinite
extent provides the simplicity in geometry to focus on the interaction between thermal convection and the externally applied mag-
netic field. On a periodic geometry as convective cells, there have been series of numerical studies exploring the nonlinear interaction
of a magnetic field and convection [6–11].

The equations modeling the interaction between buoyancy force and the Lorentz force are obtained from Navier–Stokes equa-
tions using Boussinesq approximation and Maxwell equations. In Boussinesq approximation, the density is treated as a constant in all
terms except in the buoyancy term where variability with temperature is assumed. Thus, the convective flow field is still considered
solenoidal (divergence-free). The numerical treatment of the solenoidal condition has been one of the most challenging aspects of
computational incompressible fluid dynamics. Various treatment techniques have been employed in literature such as the fractional
step [12], the influence matrix [13], and the staggered grid [14]) methods. The common focus in these techniques is to numerically
treat the pressure variable, which usually comes without any boundary conditions and whose role is to enforce the solenoidal con-
dition on the flow. On the other hand, these techniques help to enforce the solenoidal condition only to a certain limited degree of
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accuracy. Accurate handling of the solenoidal condition is important in numerical hydrodynamic stability studies where the flow is per-
turbed to identify the critical parameter values between the transitory regimes. Furthermore, the numerical simulation studies of flow
under the influence of a magnetic field encounter an additional solenoidal condition on the magnetic field variable. Various numerical
approaches [7], [15] have been used for this purpose, and the effects of the poor handling of the solenoidal condition [16] and some
remedies [17] are presented in literature.

In this work, solenoidal bases expansion is used in the numerical simulation of Rayleigh–Bénard thermal convection under the influ-
ence of an oblique magnetic field. By introducing an expansion in terms of solenoidal basis functions for the velocity and the magnetic
field into the model equations in a Galerkin projection onto dual solenoidal bases, both solenoidal conditions are exactly satisfied
and the pressure variable is completely eliminated, thus the number of equations and the number of flow variables are reduced. This
reduces the burden on the numerical technique and increases the accuracy with which the solenoidal conditions are satisfied. While the
velocity solenoidal basis functions are generated independently, a quasi-steady relationship between the velocity and the magnetic
field variables is used to generate the corresponding magnetic solenoidal basis functions. This relationship arises in the case of liquid
metals or melts as the convective fluid. The basis functions are expressed in terms of Legendre polynomials where they facilitate the
construction of the dual bases and the evaluation of the Galerkin projection integrals using highly accurate Gauss–Legendre–Lobatto
(GLL) quadrature rule.

Some early studies on the use of solenoidal bases are conducted by Leonard and Wray [18], Moser et al. [19], and Mhuiris [20] where
shifted-Jacobi, Chebyshev, and Legendre polynomials are used for the representation of the solenoidal bases, respectively. They are
the polynomial solutions to singular Sturm Liouville problems with weighted orthogonality property and exhibit excellent conver-
gence properties. However, the need for the inclusion of the associated weight function in the construction of the dual bases makes
Legendre polynomials the most convenient because of the associated unity weight. Other works employ solenoidal expansions in the
form of generalized streamfunctions [21] or toroidal–poloidal decomposition [7, 9, 11] of a solenoidal vector field in order to exactly
satisfy the continuity equation. Further, the procedure employed for eliminating the pressure leads to increased order of derivatives in
the resulting evolution equations. More recently, Meseguer and Trefethen [22] presented a Galerkin procedure for the pipe flow using
solenoidal basis functions based on Chebyshev polynomial representation. Techniques of spectral methods are employed in [22] lead-
ing to efficient implementation; however, the incorporation of the associated weight leads to added effort in the construction of the
dual solenoidal bases. An analysis on the use of solenoidal bases in the numerical approximation of the Stokes problem is presented
in [23]) and a domain decomposition procedure is proposed in [24] to introduce some flexibility in the use of solenoidal bases. Other
solenoidal bases are constructed empirically from flow database and used for optimal truncated representation of the underlying flow
field such as Karhunen–Loeve bases [25]. They are efficient in energy optimal low dimensional representation of the dynamics, but they
are parameter dependent and carry the limited degree of accuracy in satisfying the solenoidal condition as the flow database.

The geometry of the problem, the system of model partial differential equations, dimensionless numbers, and the boundary con-
ditions are presented in Section 2. In Section 3, solenoidal basis functions for the velocity and the magnetic field, which satisfy
divergence-free and boundary conditions, are constructed, and the dual bases for velocity field are built on the basis of the condi-
tion of eliminating the total pressure term from the model system. In Section 4, a weak solution is obtained by applying Galerkin
projection to the model partial differential equations. Then, the linear stability of the system is investigated by dropping the nonlinear
terms involving perturbation variables over the basic conductive state, and the results are compared with the works of Chandrasekhar
[2], Busse and Clever [10], and Burr and Müller [26]. The time discretization of the system and treatment of the nonlinear terms are
explained for the simulations in the nonlinear regime in Section 5 where verification of the results are also presented. The results of the
present work are compared with Güray and Tarman [27] and Busse and Clever [9].

2. Governing equations

Thermal convective motion of a perfectly conducting fluid is considered in a periodic horizontal layer of thickness d between conduct-
ing plates that are heated from below under the influence of a uniform magnetic field B0 applied externally in the yz plane with angle
� from y axis (Figure 1).

The dimensionless form of the model equations are as follows:

r � uD 0, (1)

Figure 1. The geometry of the periodic convective domain.
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where p denotes the pressure, uD .u, v, w/ the velocity vector, bD .bx , by , bz/ the induced magnetic field, and‚ is the deviation from
the linear conductive temperature profile. The nondimensionalization is performed in accordance with Chandrasekhar [2], namely,
thermal diffusion time is used as the time scale, temperature difference between plates �T as the temperature scale, and B0 as the
magnetic scale, except for the length scale, which is taken on the basis of the half depth dh D

1
2 d for computational convenience. The

resulting dimensionless numbers are the Rayleigh (RaD 8Rah), Chandrasekhar (QD 4Qh), and Prandtl (Pr) numbers where
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��
, QD

B2
0d2

����
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�
. (6)

Here, the Rayleigh and Chandrasekhar numbers, respectively, characterize the buoyancy and the Lorentz forces in relation to the vis-
cous forces. Prandtl number is the ratio of the rates of the advection of momentum and heat and plays a role in the nonlinear regimes
of convection. The appearance of Rah and Qh in (2) is due to the use of half depth as the length scale.

Total magnetic field in the dimensionless form becomes

BD Cos�ey C Sin�ez C
�

�
b, (7)

which indicates that the induced magnetic field b is weak compared with the externally imposed uniform magnetic field B0 in a con-
ducting fluid having the limit � � � with � and � being thermal and magnetic diffusivities, respectively. In this limit, all the terms
multiplied by �

�
is neglected in the induction equation
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resulting in (4) and in Lorentz force
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resulting in the corresponding term in (2) after the termr2B is combined in the gradient termr…, which is eliminated in the projection
procedure. Liquid metals or melts are characterized by this limit.

The flow takes place in a doubly periodic three-dimensional rectangular region 	 in Figure 1 with aspect ratio sx � sy � 2 or


� 1

2 sx : 1
2 sy
�

such that

0� x � sx , 0� y � sy , � 1� z � 1, (10)

where sx D Lx=dh and sy D Ly=dh are the dimensionless periods in the horizontal x and y directions, respectively. While periodic
boundary conditions are used for all the dependent variables in the horizontal directions, the boundary conditions at the perfectly
conducting plates in the vertical that are maintained at constant temperatures take the form

uD 0 and
@bx

@z
D
@by

@z
D bz D‚D 0 at zD˙1. (11)

3. Solenoidal bases

At the outset, the solenoidal basis functions V.x/ are required to satisfy

r � VD 0, V.x/ jzD˙1 D 0. (12)

The assumption of periodicity in the horizontal directions allows the use of Fourier representation

V.x/D V.z/e.i�xCi�y/, (13)
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and reduces the continuity equation to the form

i�UC i�V CDW D 0, (14)

where V.z/ D .U, V , W/ and D D d
dz are the differentiation operator. The same letter is used for both basis V.x/ and its vertical profile

V.z/ here, and in the subsequent paragraphs for economy of notation, however, explicit appearance of the argument x or z is used to
provide distinction where necessary. It turns out that the basis functions come in pairs V.j/, j D 1, 2 because the continuity equation
reduces the degree of freedom in selecting the components of V to two by connecting the three components together. A typical set of
solenoidal basis functions for the wavenumbers � ¤ 0 and �¤ 0 are as follows:
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3
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and for � D 0 and �D 0
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Here, 2 D �2 C �2, g D .1 � z2/Lp.z/, h D .1 � z2/2Lp.z/, and Lp.z/ denotes Legendre polynomial of degree p. The solenoidal basis

pairs carry different characters in that while V.1/ lacks vertical velocity component V.1/ � ez D 0, V.2/p has vanishing vertical vorticity

component
�
r � V.2/p

	
� ez D 0. In fact, the pairing of the bases corresponds to toroidal–poloidal decomposition of the flow field

uDr � ez Cr � .r � ez'/ , (17)

for some functions  , ' [11].

For the subsequent projection procedure, dual basis functions V
.j/
.x/ need to be constructed to satisfy

r � V
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D 0, V

.j/
� ez jzD˙1 D 0. (18)

These requirements on the dual bases facilitate the elimination of the gradient term r…:

˝
V,r…

˛
D

Z
�

V � r… d	D

Z
S

…
�
V � n

�
dS�

Z
�

…
�
r � V

�
d	, (19)

in the projection procedure under the inner product

hF, Gi D
Z
�

F.x/ �G.x/ d	. (20)

Here, n is the outward unit normal to the bounding surface S of the horizontally periodic convective domain 	 including the upper
and lower plates where nD˙ez . A typical set of dual basis Vp satisfying the study of Leonard and Wray (18) has the form as in (15) and
(16) with the choices of gD Lp.z/, hD .1� z2/Lp.z/. Normally, a weight function !.z/ associated with the underlying expansion in the
z variable appears in the inner product integral that causes the dual bases to satisfy the conditionr �

�
!.z/V

�
for the elimination of the

gradient term. The use of underlying Legendre expansion associated with the unity weighting !.z/ D 1 becomes advantages here in
the construction for the dual bases in comparison with, for example, Chebyshev expansion associated with !.z/D .1� z2/1=2.

Because the induced magnetic field b is prescribed by the velocity field as stated by the quasi-steady relationship (4), solenoidal
basis functions

B.x/D B.z/e.i�xCi�y/, (21)

for the magnetic field are constructed by solving

D2B� 2BD� ŒCos��miC Sin�D�V, (22)

for B.z/ subject to the boundary conditions

DBx DDBy D Bz D 0 at zD˙1. (23)

for each V D V.j/p .z/ , where B.z/ D .Bx , By , Bz/. The singularity in the equations for Bx and By at � D � D 0 due to the homogeneous
Neumann boundary conditions is removed by setting

Bx.0/D By.0/D 0, (24)

without loss of generality.
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4. Numerical experiments

The assumption of periodicity in the horizontal directions allows the use of Fourier series expansions of the dependent flow variables,
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m and n. The vertical profiles for the velocity and the induced magnetic fields are further expanded in terms of the solenoidal bases
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The velocity and the induced magnetic fields share the same time evolution as dictated by the quasi-steady link stated in (4). The
expansion for the thermal field is taken as
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where Tp.z/ D .1� z2/Lp.z/ with its dual T p.z/ D Lp.z/. The evolution of the time-dependent expansion coefficients a.j/p .t/ and bp.t/
is determined by numerically integrating the projected model equations in time. For the numerical evaluation of the inner product
integrals arising in the projection procedure, GLL quadrature is used
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where .wq, zq/ are GLL quadrature weights and nodes, respectively. It can be shown that the number of quadrature nodes Nz and the
number of solenoidal basis functions M should be related in the least by Nz D .3MC10/=2 in order to render the numerical quadrature
exact due to the presence of the nonlinear terms.

4.1. Linear stability for oblique magnetic field

In order to test the solenoidal bases and the projection procedure, the linear stability of the conductive (no-motion) state is investigated
under an oblique magnetic field that leads to critical Rayleigh values when the convective motion just sets in. The equations linearized
around no-motion state
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are projected onto the dual space after the substitution of the expansions in terms of the bases, thus resulting in a system of ordinary
differential equations
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for each wavenumber pair .�m, �n/, where 2 D �2
m C �

2
n. The assumption of a time dependence in the form
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Table I. Linear stability points for various angle � and wavenumber
kc for constant oblique magnetic field QD 100.

Clever and Busse [10] Present work (resolution)

Angle kc Rac Rac .Nx � Ny � Nz/

�D 0ı 3.117 1707.8 1707.8 .4� 4� 9/
�D 30ı 3.45 2281.3 2281.4 .4� 4� 13/
�D 60ı 3.86 3290.7 3290.5 .4� 4� 13/
�D 90ı 4.01 3757.2 3757.4 .4� 4� 17/

1 2 3 4 5 6 7 8103

104

Ra

k

Q = 100 −χ = 30

Q = 100.sin(30)2 −χ = 90

Figure 2. Comparing the result of the vertical magnetic field QSin2	with inclined magnetic field Q with angle 	D 30ı , at QD 100.

h
a.1/; a.2/; b

i
/ exp.& t/, (33)

reduces the system to a generalized eigenvalue problem for the eigenvalues & . The critical wavenumber kc and Rayleigh number Rac

values for Q D 100 and for various angle � values are listed in Table I for the rightmost eigenvalue just crossing the imaginary axis.
These are obtained at the selection of nD 1 and mD 0.

The horizontal component of the magnetic field has no effect on steady convection rolls, as stated in Chandrasekhar [2], Busse and
Clever [10], and Burr and Müller [26]. This is shown in Figure 2 by comparing the effect of the inclined magnetic field Q at angle �D 30ı

with the effect of the vertical component QSin2.30ı/ of the same field.

4.2. Linear stability for vertical magnetic field

The linearized Equations (30) and (31) are written for � D 90ı and then projected onto the dual space resulting in a reduced system
of ordinary differential equations for each wavenumber pair .�m, �n/, where 2 D �2

m C �
2
n, obtained. Then, the system is converted to

a generalized eigenvalue problem for the eigenvalues & . The critical wavenumber kc and Rayleigh number Rac values for different Q
values are listed in Table II for the rightmost eigenvalue just crossing the imaginary axis. These are obtained at the selection of n D 0
and mD 1. The corresponding

marginal stability curves for increasing Q values are plotted in Figure 3. These are in agreement with the linear analysis by Chan-
drasekhar in [2]. The solid circle marks in Figure 3 show the critical point for each marginal curve. The increase in the critical wave
number with increasing Chandrasekhar number is associated with the lateral dimension of the convective rolls, as stated in [2]. This
is explained in the study of Burr and Müller [28] by the lack of Joule dissipation for the vertical motions. Thus, the system reduces the
scale of the horizontal motion in order to minimize the loss of Joule dissipation resulting in a decrease in the wavelength (increase in
the wavenumber).

5. Nonlinear regime

For the numerical simulations in this regime, fully nonlinear model equations
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Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 2962–2971

2
9

6
7



D. YARIMPABUÇ, H. I. TARMAN AND C. YILDIRIM

Table II. Rac, for various Chandrasekhar number, Q and
wavenumber, kc .

Chandrasekhar [2] Present work (resolution)

Q kc Rac Rac .Nx � Ny � Nz/

0 3.12 1707.8 1707.8 .4� 4� 9/
50 3.68 2802.1 2802.1 .4� 4� 11/
500 5.16 10110.0 10110.0 .4� 4� 21/
6000 7.94 78391.0 78391.0 .4� 4� 29/

1 2 3 4 5 6 7 8103

104

105

106

Ra

k

Q = 0
Q = 50
Q = 500
Q = 6000

Figure 3. Marginal stability curves for different magnetic field strength Q values. Solid circles show corresponding critical points .kc , Rac/. (Rc ! �2Q and

kc! . 1
2�

4Q/1=6 as Q " ).
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using a semi-implicit scheme in which the nonlinear advection and magnetic terms are treated explicitly using the third-order Adams
Bashforth method, and diffusion terms are discretized using an implicit third-order Adams Moulton method. This results in a
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third-order accurate scheme in time. The resulting weak form of these equations after the projection procedure as in (32) is used to
obtain the time evolution of the expansion coefficients. The computation is performed in the Fourier (wavenumber) space except for
the nonlinear terms, which are computed in the physical space before transforming to the Fourier space.

5.1. Nonlinear analysis for oblique magnetic field

The numerical simulations are performed to study the effects of varying angle � and Rayleigh number on the convective heat transport
efficiency indicated by Nusselt number (Nu), which is the ratio of the heat transport with and without convection. The flow is chosen
to take place in a convective box with the aspect ratio 
 Œ3.3 : 3.2� for Prandtl number, Pr D 0.1 and Chandrasekhar number Q D 100
in order to be able to compare with results of Busse and Clever [9] for the case � D 90. In Figure 4, Nu versus Ra values are shown
for various direction angles of an external magnetic field fixed at Q D 100. The computation is started with the initial flow field just
supercritical obtained using the eigenfunctions of the previous linear stability study.

Because the horizontal component of the magnetic field has the only effect of aligning the rolls along in the steady roll motion
regime and the vertical magnetic field has an inhibition effect on the steady flow, the angle � is an important parameter at the point
where the rolls starts to oscillate. Chandrasekhar [2], Busse and Clever [10], and Burr and Müller [26] state that the horizontal compo-
nent of the magnetic field has no effect on the steady convection rolls until roll solutions begin to loose its stability and oscillate, which
are observed as kinks along the curves in Figure 4. These correspond to around Ra D 12000 for � D 90ı, Ra D 9000 for � D 60ı, and
Ra D 5000 for � D 30ı. The kinks appear earlier and in a more dramatic fashion for the angle � closer to the horizontal in accordance

2000 4000 6000 8000 10000 12000 14000 16000 18000
1

1.5

2

2.5

Rayleigh Number

Nu

Q=100−−χ=30

Q=100−−χ=60

Q=100−−χ=90

C.B.[1989]

Figure 4. Nusselt versus Rayleigh number for different angle 	 at PrD 0.1, 
 Œ3.3 : 3.2� and QD 100.

0 1000 2000 3000 4000 5000 6000
1

1.5

2

2.5

Q

N
u

Ra = 30000
Ra = 50000
Ra = 80000

Figure 5. Nu versus Q for PrD 0.05 at 
 Œ3 : 1.5�.
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Figure 6. Isothermal contours in the xz plane during the transient stages t D 0, 30, 60 of restructuring from top to bottom graph, respectively, when initially

QD 2500 is suddenly set to 3000 at RaD 50000, PrD 0.05 .

with the effects of the vertical and horizontal components of the imposed magnetic field. The horizontal component has more inhibi-
tion effect than the vertical component of the magnetic field after the onset of oscillations [10]. As the underlying convective motions
develops with increasing Ra values, Nu values corresponding to different angle cluster in Figure 4. These extend the results presented
in an earlier numerical study by Güray and Tarman [27].

5.2. Nonlinear analysis for vertical magnetic field

The numerical simulations at selected Rayleigh values are performed to study the effects of varying magnetic field strength Q on the
convective heat transport efficiency. A liquid metal with Pr D 0.05 is selected in a layer with aspect ratio 
 Œ3 : 1.5� and subjected to a
vertical magnetic field. The computation is started with the flow field obtained using the eigenfunctions of the linear stability study. It
is known that the application of a vertical magnetic field suppresses the convective motions [11] as shown in Figure 5 by decreasing
Nu values as Q increases, ultimately approaching to the conductive state with Nu D 1. In the process, kinks appear around Q D 1400
for Ra D 30000, Q D 2500 for Ra D 50000, and Q D 3600 for Ra D 80000. The kinks coincide with the increase in the number of rolls
and thus decrease in the wavelength. This is also observed and discussed in [27]. This change in the roll pattern is shown in Figure 6,
when QD 2250 is increased to QD 3000 for RaD 50000 at the transient stages tD 0, 30, 65. All these runs are in the steady roll motion
regime and use a typical dimensionless time step between 10�3 and 10�4.

6. Conclusion

The approach presented in this paper is novel in the construction and the implementation of the solenoidal bases leading to the reduc-
tion of the model partial differential equations to a nonlinear system of ordinary differential equations in time variable as well as in
the treatment of the solenoidal condition for the induced magnetic field variable in terms of derived solenoidal basis functions using
the quasi-steady relationship. This approach is an important alternative to the numerical techniques for the treatment of the pressure
variable in the case of incompressible flow and the treatment of the solenoidal conditions in Magnetohydrodynamics. The approach
has been validated in linear stability analysis of conductive regime loosing its stability to convective regime under the influence of
both oblique and vertical magnetic field. The results obtained in the numerical simulations are in good agreement with the studies in
literature. With relatively low resolution requirement and ease in the implementation, the current approach is tested to be robust and
efficient.
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