
SOME STUDIES ON c-DIFFERENTIAL UNIFORMITY OF THE SWAPPED
INVERSE FUNCTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BETÜL ÜNVER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2021





Approval of the thesis:

SOME STUDIES ON c-DIFFERENTIAL UNIFORMITY OF THE SWAPPED
INVERSE FUNCTION

submitted by BETÜL ÜNVER in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Cenk
Institute of Applied Mathematics, METU

Prof. Dr. Ferruh Özbudak
Institute of Applied Mathematics, METU

Assist. Prof. Dr. Eda Tekin
Department of Mathematics, Karabük University

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: BETÜL ÜNVER

Signature :

v



vi



ABSTRACT

SOME STUDIES ON c-DIFFERENTIAL UNIFORMITY OF THE SWAPPED
INVERSE FUNCTION

ÜNVER, Betül
M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2021, 33 pages

Lately, Ellingsen et al in [5] created a new concept by making minor changes on
the old concept of (multiplicative) differential. This new definition which has poten-
tial to be capable of extending differential cryptanalysis in a completely new way is
named as c-differential and brought with it the concept of c-differential uniformity.
We examlify that how some known functions’ behaviour, especially inverse func-
tion, would be under this extended differential. The main purpose of this thesis is
to observe how the swapped inverse function, which is one of the variety of ways
to modify the binary inverse function, impacts the function’s c-differential unifor-
mity. In this thesis, we proposed a new theorem including the new characterization
of the (0, α)-swapped inverse function in even characteristic under this new concept,
x2

n−2 +x2
n−1/α+ (x−α)2

n−1/α on F2n , and reached two conclusions for all c 6= 1:
we prove that its c-differential uniformity value can take 1,2,3 and 4 and attains its
maximum value 4 under two special conditions satisfied by the trace mapping.

Keywords: c-DDT, c-differential uniformity, c-PN, c-APN, swapping function , swapped
inverse function
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ÖZ

DEĞİŞTİRİLEN TERS FONKSİYONUN C-DİFERANSİYEL TEKDÜZELİĞİ
ÜZERİNE BAZI ÇALIŞMALAR

ÜNVER, Betül
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2021, 33 sayfa

Son zamanlarda, Ellingsen ve diğerleri [5]’de eski (çarpımsal) diferansiyel kavramı
üzerinde küçük değişiklikler yaparak yeni bir kavram yarattılar. Diferansiyel kripta-
nalizi tamamen yeni bir şekilde genişletme potansiyeline sahip olan bu yeni tanım,
c-diferansiyel olarak adlandırılmış ve beraberinde c-diferansiyel tekdüzelik kavra-
mını getirmiştir. Bilinen bazı fonksiyonların davranışlarının, özellikle ters fonksiyo-
nun, bu genişletilmiş diferansiyel altında nasıl olacağını inceleyeceğiz. Bu tezin temel
amacı, ikili ters fonksiyonu değiştirmenin çeşitli yollarından biri olan değiş tokuş edi-
len ters fonksiyonun, fonksiyonun c-diferansiyel tekdüzeliğini nasıl etkilediğini göz-
lemlemektir. Bu tezde, çift karakteristikli (0, α)-değiştirilmiş ters fonksiyonu için,
x2

n−2 + x2
n−1/α + (x− α)2

n−1/α F2n üzerinde , bu yeni kavram altında çift karak-
teristikli yeni karakterizasyonunu içeren yeni bir teorem önerdik ve tüm c 6= 0 için
iki sonuca ulaştık: onun c-diferansiyel tekdüzelik değerinin 1,2,3 ve 4’ü alabileceğini
ve trace bağıntı tarafından sağlanan iki özel koşul altında maksimum değeri olan 4’e
ulaştığını kanıtladık.

Anahtar Kelimeler: c-DDT, c-diferansiyel tekdüzeliği, c-PN, c-APN, takas fonksi-
yonu, değiştirilen ters fonksiyonu
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CHAPTER 1

INTRODUCTION

We now live in a data-driven society, and in most situations, businesses acquire and

keep sensitive personal and non-personal data, which cyber criminals can exploit.

Cryptography, when used correctly and with the right tactics, can help protecting this

sensitive data from cyber attacks and threat actors. In other words, it aims to ensure

safe communication against malicious third-parties. Cryptography includes math-

ematical principles and a sequence of rule-based logical operations known as algo-

rithms to make messages complex and hard to decipher. Block ciphers are symmetric-

key algorithms for cryptography that use the same cryptographic keys for both the

encryption and decryption by dividing the data into blocks.

The security of block ciphers against differential attacks has attracted a lot of atten-

tion and been the research topic for the last 30 years. In order for a cryptosystem to be

considered “secure”, it must be subjected to rigorous testing by the security commu-

nity. How resistant a block cipher to an attack depends on a cryptographic properties

of a Boolean function which is used in block ciphers. Because of this reason, the

crucial cryptographic properties of Boolean function are considered in the process of

designing and evaluating secure block cipher.

Differential cryptanalysis is the first statistical attack to analyze the security of a

block cipher structure, proposed back in the late 1980s by Biham and Shamir [3].

Its publication allows a great deal of studies which analyzed the security provided

by various types of functions in the matter of differential attack. This attack made a

significant contribution to the development of stronger encryption methods thanks to
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mathematical idea behind it.

1.1 Motivation and Problem Definition

1.1.1 DDT and c-DDT

When a vectorial function is put to use as an S-box nonlinear part in a block cipher,

its differential uniformity measures the function’s contribution to differential crypt-

analysis resistance. For this purpose, a table also known as the difference distribution

table (DDT) was formed for S-box to show the total number of solutions of equations

S(x ⊕ a) ⊕ S(x) = b for every input a and output b. It is a method to represent the

differential behavior of a function.

Example: Consider the lookup table of 5x5 S-box and determine its differential be-

havior using DDT. The DDT for this S-box is given in Table 1.1.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 8 15 5 10 2 11 6 13 13 10 5 7 9 11 1 15

The Appendix A contains a detailed table showing the results from the equation

S(x ⊕ a) ⊕ S(x) = b for all input a and corresponding output value b, allowing

us to derive this DDT for S-box in this example. The maximum value which is 10

in this Difference Distribution Table of this S-box is called its differential uniformity.

If the differential uniformity of a function equals to 2, then it has better resistance to

differential attacks. This means that these functions have high security in cryptogra-

phy and they are called APN functions.

Ellingsen et al. [5] reconstructed a brand new notion an crucial criteria for func-

tions and their resistances based on the notion DDT. They are called this new table

as c-DDT whose its maximum entry gives c-differential uniformity. There are block

ciphers that use the multiplication operation as a primitive, so this extended notion

could be intriguing from a practical standpoint for these ciphers. Thanks to this new

concept, differential cryptanalysis have chance to gain a different point of view and

some existing ciphers were cryptanalyzed with it.
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Table 1.1: Differential Distribution Table (DDT) of S-Box

a
b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 32 - - - - - - - - - - - - - - -
1 - - 4 - 2 - - 6 2 4 2 4 - - 2 6
2 - - 2 2 4 2 2 - 8 - - - - 6 4 2
3 - - 4 - - 2 4 6 - 2 6 - 2 2 - 4
4 - 2 - 4 6 - 2 2 8 2 4 - - 2 - -
5 - 4 2 6 - - 4 4 2 - 2 - 4 2 2 -
6 6 2 2 - 2 2 2 4 2 - - - 6 - 4 -
7 - 2 2 - 2 2 - - 2 2 2 2 2 - 6 8
8 4 2 4 2 - 10 - 2 2 - - 2 - 2 2 -
9 - 2 8 - 2 - - - - 6 4 - 4 2 2 2
10 2 - - 4 2 - 4 - 4 - 2 4 2 6 - 2
11 - - 4 - 6 - 2 4 - - 4 - 2 4 2 4
12 - 4 2 4 4 2 - - 2 - 4 4 - 4 - 2
13 2 2 4 2 4 - 6 - 4 2 2 2 2 - - -
14 4 4 2 2 - 6 2 4 - 2 - 2 4 - - -
15 2 - - 2 2 2 - 4 - - 4 - 4 2 8 2

We looked into a few well-known almost perfect nonlinear functions.

There are some criteria for permutation functions to use them as the S-boxes in block

ciphers. Besides the high algebraic degree and high nonlinearity, they must have

low differential uniformity. Power functions require lower implementation costs in

hardware. We focus on their analysis under this new differential. We especially

studied on the inverse function through this new multiplicative notions, one of the

class of power functions. This thesis includes new results on swapped form of them.

1.2 The Outline of the Thesis

The following is the structure of the thesis:

• Some of the fundamental primitives, notations, and definitions about topic and

an important lemma which will highly help at some points during the thesis are

in Chapter 2.

• Chapter 3 relates to analysis of c-differential uniformity of well-known func-

tions such as Gold/Kasami and power functions. There are some information on

3



what the swapping of a function is and a formula on how it can be obtained. Af-

ter giving detailed information about swapped inverse function, (0, 1)-swapped

inverse function and its c-differential uniformity are following this.

• Chapter 4 details our study on (0, α)-swapped inverse function and involves a

theorem which includes the results of all works in it.

• Section 5 concludes the paper and provides comprehensive detailed information

about the entire thesis and future works.

4



CHAPTER 2

PRELIMINARY TO THE SUBJECT

In this chapter, some of the fundamental primitives, notations, and definitions will

be given to help the reader to get sufficient theoretical background information about

subject.

2.0.1 Notations

From now on, S-box will equally mean a vectorial Boolean function S : F n
2 →

F n
2 . Functions in this form were used in this thesis. The focus is on cryptographic

differential properties of extended dimensions of Boolean functions. This section

includes only some required notations related to the objects of thesis. Before giving

main required definitions, generally accepted meanings to some signs and notations

in the finite field is as follows:

Assume that p is a prime number, let m, n are positive integers and Fpn denotes the

finite field throughout the thesis. Obviously, it has pn elements. If the element zero

is removed from this field, then the new group is denoted as the same notation but

with asteriks, F∗
pn . It denotes the multiplicative finite field. 1

α
means the inverse of

the nonzero element α in the multiplicative group of mentioned finite field); if a finite

field with bigger dimension is considered, the notation will be Fnp or Fpn . It denotes

the vector space with n-dimensional on Fp. The following two functions type are

most crucial for S-boxes used in block ciphers: any map from Fpn (or Fnp ) to Fp (i.e,

f: Fpn → Fp ) with n variables is named as a p-ary Boolean function; a function

F : Fpn → Fpm (or, F : Fnp → Fmp ) is named as a vectorial p-ary Boolean function.

In other words, it is simply denoted as (n,m)-function.

5



Definition 1. (Derivative of f ) Let f be a p-ary function, the following

Dαf(x) = f(x+ α)− f(x), for all x ∈ Fpn (2.1)

is also a p-ary function. It represents the derivative of f at the point α ∈ Fpn . The

derivative of a vectorial Boolean function F at the same point α can easily obtain from

above definition on the derivative of f.

Definition 2. (the entries of Difference Distribution Table) Let F : Fpn → Fpn be a

vectorial function, let α,b ∈ Fpn ,

#{x ∈ Fpn : DαF (x) = F (x+ α)− F (x) = b} = ∆F (α, b)

This definition can be defined for general vectorial Boolean function, i.e for the func-

tion F in the form of (n,m). We give this definition for the case when m=n since we

consider m=n through the thesis.

Definition 3. (Differential Uniformity of F)

max{∆F (a, b) : α, b ∈ Fpn , α 6= 0} = δF (2.2)

The above mathematical definition says basically that the maximum entry in Differ-

ence Distribution Table gives us the differential uniformity of F. In other words, the

maximum entry at DDT refers to exactly δ. If ∆F ≤ δ (or, δF = δ ), then this function

is called differential uniformity-δ function.

• Name this function as planar function, shortly PN or a perfect nonlinear if this

number is equivalent to 1.

• Name this function as shortly APN or an almost perfect nonlinear if this num-

ber is equivalent to 2.

(Note that there is not any function with differential 1-uniformity in even char-

acterictic.)

There are some criteria for these functions in order to resist differential attacks. Their

differential uniformity should be very low in term of their resistance besides other

good cryptological properties.

6



Definition 4. ( (multiplicative) c-derivative of F)

Let F : Fpn → Fpm be a vectorial map. Let α, b ∈ Fpn . Assume that c be an

element from the field Fpm . The (multiplicative) c-derivative of this function at the

point α ∈ Fpn is the following mapping:

F (x+ α)− cF (x) = cDαF (x) for all x ∈ Fpn (2.3)

For c=1, the above definition will be exactly identical to the definition on standard

derivative of function at the same point.

Definition 5. (the c-Difference Distribution Table’s entries) Let F : Fpn → Fpm be a

vectorial map. Let α, b ∈ Fpn . Assume that c be an element from the field Fpm .

#{x ∈ Fpn : cDαF (x) = F (x+ α)− cF (x) = b} = c∆F (α, b)

Definition 6. (c-Differential Uniformity of F)

max{c∆F (α, b) | α, b ∈ Fpn , α 6= 0 if c=1} = δF,c (2.4)

Definition 7. (Trace map) Let TrF/K be a map s.t TrF/K : Fqn → Fq and x ∈ Fqn ,

the trace of x over Fq is defined by

TrF/K(x) = x+ xp + xp
2

+ ...+ xp
n−1

Consider the following properties of the trace map:

• TrF/K(l + k) = TrF/K(l) + TrF/K(k) for all s, t ∈ F ;

• TrF/K is a linear transformation.

• TrF/K(cs) = cTrF/K(s) for all c ∈ K, s ∈ F

• TrF/K(c) = tc for all c ∈ K

• TrF/K(sq) = TrF/K(s) for all s ∈ F

7



In this thesis, we will use additive form of Hilbert’s Theorem 90. It says the following:

Definition 8. (Hilbert’s Theorem 90) Let G be a Galois group. Let K/F be an exten-

sion. Assume G=< ρ >. Then for α ∈ K

α = ρ(β)− β if and only if TrK/F(α) = 0, for some β ∈ K

This thesis is based on finding how many solutions satisfying the given equations

according to characteristic of the field in the thesis and enumerating them.

Lemma 1. 1. Let 0 6= c∈ F∗
2n and let d∈ F∗

2n . Consider the equation x2+cx+d =

0, it has two solutions in F2n if Tr
(
c
d2

)
= 0. If this condition is not hold, then

it has no solution in this field. If a is not equivalent to 0 and b is equivalent to

zero, it has only one solution. (see [2]).

2. Let 0 6= c ∈ F∗
pn and let d ∈ F∗

pn . Consider cx2 + dx + e = 0 , p is a prime

number except 2. There exists two solutions for this equation in Fpn if and only

if d2 − 4ce is nonzero square in Fpn . If this discriminant is zero square, then it

has only one solution in this field. (see [12]).

3. Let c ∈ F∗
2n and let 0 6= d ∈ F∗

2n . Consider the equation x3 + cx + d = 0. (Let

u1, u2 be the solutions for the equation u2 + du+ c3 = 0).

(i) Tr(1) = Tr(c3/d2) and u1, u2 are cubes in F2n for both even and odd

n ⇐⇒ there are three solutions for this equation in the field of even

characteristic;

(ii) Tr(1) 6= Tr(c3/d2) ⇐⇒ it has only one solution in the field of even

characteristic ;

(iii) u1, u2 are not cubes in this field for even n and in F2n

2 for odd n and

Tr(1) = Tr(c3/d2) ⇐⇒ there is no solution in the field of even charac-

teristic. (see [12]).
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CHAPTER 3

C-DIFFERENTIAL UNIFORMITY

3.0.1 c-Differential Uniformity of Power Functions

Power permutations are a good possible choice for cryptography because they are

usually less expensive to implement in hardware enviroment. Power functions’ re-

silience to the typical differential attack attracted attention. They led to prompted

more investigation on them. A detailed Table 3.4 is displayed by Riera et al. in [10],

placed the end of this section. The idea of calculating their c-differential uniformity

is coming from the following concept. Firstly, one need to look at the entries of

c-Difference Distribution Table of power functions for α = 1, which is c∆F (1, b).

Secondly, the entries of c-Difference Distribution Table of power functions for α = 0

should be calculated, which is c∆F (0, b). The second one is exactly corresponding to

gcd(d, pn− 1). After calculating these two c-differential at the point 0 and 1, then the

maximum value of their union gives the entries of c-Difference Distribution Table for

this power functions, which are given in the paper [14].

The following idea is very useful to calculate the gratest common divisor in above

explanation, which is coming from the paper [14].

There are three different answers for the gratest common divisor of pk +1 and pn−1:

If the finite field is on the even characteristic, then

gcd(pk+1, pn−1) equals to 2gcd(2k,n)−1

2gcd(k,n)−1 ; n
gcd(n,k)

is odd, then gcd(pk+1, pn−1) equals

to 2; if it is even, the greatest common divisor equals to pgcd(k,n)+1.

9



Below two examples are coming from two items of Theorem 3 from the paper [10].

We have proved both of them in detail as in the following way:

Example 1: Let H : Fpn → Fpn be a mapping such that H(x) = xd. Let c is

not equivalent to 1. If d equals to two, then H becomes almost perfect c-nonlinear

function under the condition constructed for c.

By Definition 2.4, taking d = 2, the c-differential equation for H(x) = x2 is By

Definition 2.3, the (multiplicative) c-derivative of x2 at the point α ∈ Fpn is

b = cDαH(x) = (x+ α)2 − x2 = x2 + 2αx+ α2 − cx2

= (1− c).x2 + 2αx+ α2

Since we are free to choose b, taking b = 0, By Lemma 1, Tr(1−c
4

) equals to 0 if and

only if there are 2 zeros for the this equation with second order , of course under the

assumption c 6= 1, hence F is APcN function for d = 2.

Example 2: For c6=1, the c-differential uniformity of H(x) = x10− vx6− v2x2 over

F3n is c∆H is greater than or equal to 2.

The c-differential equation cDαH(x) = b for H(x) = x10 − vx6 − v2x2 on Fn
3 is as

follows:

b = (x+ α)10 − v(x+ α)6 − v2(x+ α)2 − c(x10 − vx6 − u2x2)

= x10 + x9α + xα9 − v(x6 + 2x3α3 + α6)− v2(x3 + 2xα2 + α3)

− c(x10 − vx6 − v2x2)

= (1− c)x10 + vα3x3 + v(c− 1)x6 + αx9

+ (α9+2)x+ α10 − v2α2 − vα6 + v2(c− 1)x2

When α is taken as 0, above equation becomes b = (c− 1)(−x10 + vx6 + v2x2). As

one can be seen that when x equals to 1 then it is a solution for the map H under the

condition that c is not equal to 1 and b = 0. Hence, 1 → c∆H(0, 0). This equations

has two solutions, which are x = 1, 2 under c 6= 1 and b = (c − 1)(−1 + v + v2).

Thus, 2→ c∆H

(
α, (c− 1)(−1 + u+ u2)

)
. As a result, this equation takes the value

2 a maximal c-differential uniformity. So, c∆H

(
α, (c− 1)(−1 + v + v2)

)
≥ 2.
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Since the function in Example 2 is the generalized formula, if u = ±1 for the special

case, the equation becomes H(x) = ±x6 − x2 + x10 on F3n . The following Table

3.1 shows the behavior for both functions when they are subjected to new notion of

c-differential uniformity, by way of c-differential derivative.

Table 3.1: When c ∈ F3n \ {0, 1}, H(x) = x10 ± x6 − x2 on characteristic p=3 [4]
n H(x) = x6 − x2 + x10 H(x) = −x6 − x2 + x10

11 10 10
9 10 10
7 10 10
5 6 6
3 4 4
2 2 2
1 2 2

We have already proved that its c-differential uniformity of H should be at least 2 in

Example 2, as seen in the rows of the table. It equals to n+1 for n=1,3,5 and equals to

10 for n ≥ 7, from [4].

3.0.2 c-Differential Uniformity for Gold/Kasami Function

We will consider two specific functions which are Gold and Kasami functions seen

their mathematical formulas over F2n in the Table 3.2

Table 3.2: APN families that have been identified [9].
Exponent Condition

Dobbertin -1+22s + 23s + 2s+24s 5s = n

Niho 2s − 2
s
2 − 1 n = 2s+ 1, s even

2s − 2
3s+1

2 − 1 n = 2s+ 1, s odd
Inverse 2s − 2 s odd

Kasami −2s + 22s + 1 gcd(s, n) = 1

Welch 2s + 3 n = 2s+ 1

Gold 2s + 1 gcd(s, n) = 1

Note that, for s = 1, the Kasami function K(x) = x2
2s−2s+1 and the Gold function

G(x) = x2
s+1 are identical on characteristic 2, which is x3, it can be easily obtained

from Table 3.2.
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• If r is selected as 1 to investigate their c-differential uniformity, this value

equals to 2 when n ≥ 2; equals to 3 when n ≥ 3 for both functions. The

proof for n ≥ 3 is as follows:

Proof. By Definition 2.3, the (multiplicative) c-derivative of K(x) = x3 at the

point 1 ∈ F2n will become like in the following:

= (x+ 1)3 + c.x3

= x3 + 3x2 + 3x+ 1− c.x3

= (1 + c).x3 + x2 + x+ 1 = cD1K(x)

By Definition 2.4, taking b=1, the c-differential equation for K(x) = x3

c∆K(α, b) = #{x ∈ F2n : cD1K(x) = 1}

The equation (1 + c).x3 + x + 1 + x2 = 1 becomes (1 + (1 + c)x2 + x)x =

0. It is obvious that x = 0 is a trivial solution. By Lemma 1, Tr(1 + c) is

equivalent to zero ⇐⇒ the quadratic equations (1 + c)x2 +x+ 1 = 0 has two

zeros. ( Assuming 0 6== γ2 + γ + 1 = c where γ is a primitive root of F2n).

Consequently, three solutions are coming from quadratic equations and x = 0

for b = cDαK(x). Thus, the c-differential uniformity of Gold/Kasami function

equals to 3 when s = 1.

Note that, for s = 2, the Kasami renders K(x) = x5. Gold function G turns into

G(x) = x13 over F2n , respectively, from Table 3.2.

• If s is selected as 2, it allows us to obtain Table 3.3 below which shows their

maximal c-differential uniformity for some n-values.
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Table 3.3: c-differential for K(x) and G(x), r=2 [5].
n and s = 2 for Gold for Kasami

8 5 5
7 3 3
6 5 5
5 3 3
4 5 5
3 3 3
2 4 4
1 2 2

The fact that c-differential uniformity of Kasami/Gold functions equals to 3 in the

field of prime characteristic except for 2. (When n and s are relatively prime ). It

equals to 5 when p is even, which can be seen from the Table 3.3, for a proof see [5].

A number of well-known power functions and their differential spectrum are shown

below in the Table 3.4 coming from the paper [4]. As one can see that they are quite

low.
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Table 3.4: c-differential uniformity which belongs to known power functions on Fpn

[10].
p d condition c∆F Refs

any 2 c 6= 1 2 [5]
any pn − 2 c = 0 1 [5]
2 2n − 2 c 6= 0, Trn(c) = Trn(c−1) = 1 2 [5]
2 2n − 2 c 6= 0, Trn(c) = 0 or 3 [5]

Trn(c−1) = 0

odd pn − 2 c = 4, 4−1, or µ(c2 − 4c) = −1 2 [5]
and µ(1− 4c) = −1

odd pn − 2 c 6= 4, 4−1,µ(c2 − 4c) = 1 3 [5]
or µ(1− 4c) = 1

3 (3k + 1)/2 c = −1, n/gcd(k, n) = 1 1 [5]
odd (p2 + 1)/2 c = −1, n odd 1 [1]
odd p2 − p+ 1 c = −1, n = 3 1 [1]
odd p4 − (p− 2)p2 + (p− 1)p+ 1 c = −1, n = 5 1 [6]
odd (p5 + 1)/(p+ 1) c = −1, n = 5 [6]
odd (p− 1)p6 + p5 + (p− 1)p4 + p3 + p2 + p c = −1, n = 7 1 [6]
odd (p7 + 1)/(p+ 1) c = −1, n = 7 1 [6]
any pk + 1 c 6= 1 ∈ Fpgcd(n,k) pgcd(n,k)+1 [10]-Thm 3
2 2k + 1 c 6= 1, n

gcd(n,k)
≥ 3 (n odd) 2gcd(n,k)+1 [10]-Thm 4

n
gcd(n,k)

≥ 4 (n even)
odd (p2 + 1)/2 c = 1 ≤ 4 [8]

odd (p2 + 1)/2 c = −1 pgcd(n,k)+1 [10]-Thm 6
odd (p2 + 1)/2 c 6= ∓1 ≤ 4 [10]-Thm 9
odd (p2 + 1)/2 c 6= ∓1, µ(1−c

1+c
) = 1 ≤ 4 [10]-Thm 9

pn ≡ 1( mod 4)

3 3n+3
2

c = −1, n even 2 [10]-Thm 10
>3 (pn + 3)/2 pn ≡ 3( mod 4), c 6= −1 ≤ 3 [10]-Thm 11
>3 (pn + 3)/2 pn ≡ 1( mod 4), c 6= −1 ≤ 4 [10]-Thm 11
3 3n − 3 c = 1, n > 1 odd 2 [7]
3 3n − 3 c = 1, n > 2, n ≡ 2( mod 4) 4 [13]
3 3n − 3 c = 1, n > 2, n ≡ 0( mod 4) 5 [13]
3 3n − 3 c = −1, n > 2, n ≡ 0( mod 4) 6 [10]-Thm 12
3 3n − 3 c = −1, n > 2, n0( mod 4) 4 [10]-Thm 12
3 3n − 3 c = 0 2 [10]-Thm 12
3 3n − 3 c 6= 0,−1 ≤ 5 [10]-Thm 12

odd (pn − 3)/2 c = −1 ≤ 4 [10]-Thm 15
any (2pn − 1)/3 pn2( mod 3) ≤ 3 [10]-Thm 16
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The next section is related to c-differential uniformity of inverse function form of

xpn−2 on Fpn for all characteristics, which is a family class of permutation functions

as it can be seen from the below Table 3.4.

3.0.3 c-Differential Behaviors of Inverse Functions

The inverse permutations are in the form of x2n−2 in even characteristic. The follow-

ing is their c-differential uniformity in all characteristic

The following two theorems are from the article [4].

3.0.3.1 The Inverse Function in Even Characteristic

When the finite field has characteristic 2, the following theorem shows these func-

tions’ differential behaviors under the notion of c:

Theorem 1. [4] Let F be the inverse function s.t. F (x) = x2
n−2. Assume that c be

an element from the field F2n:

(i) P is c-planar function if c equals to zero (it means that P is a permutation

polynomial).

(ii) P is c-almost perfect nonlinear if c is not equal to 0, Tr(c) equals to zero and

Tr(1/c) equals to 1.

(iii) δP,c = 3 if c is not equal to 0, Tr(1/c) equals to zero or Tr(c) equals to 0

Proof (i): The first step is constructing the equation c∆P = b as

(x+ α)2
n−2 + cx2

n−2 = b (3.1)

For α, b ∈ F2n , when c=0, (x+ α)2
n−2 = b (?). When α equals to 1, then it becomes

x2
n−2 = b, which is x = 1

b
. As a result, there is at most one solution which belongs

to (?) in the case of α = 0. Hence c∆P (0, 1
b
) = 1. (Shortly, without computing, this

proof can be explained with the fact that it has one solution because of permutation

features of map P.
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Proof (ii) and (iii): For α, b ∈ F2n , when c is not equivalent to 0, if α equals to zero,

3.1 renders b = (1+c)x2
n−2, which has one zero: Since if b equals to 0, then x = 0 is

only one zero; if x equals to 1, then b = c+ 1. Hence, 1→ c∆P (0, 1 + c); if x 6= 0, 1,

then multiply equation with x, it turns into xb = (c+ 1)x2
n−1, which means x = 1+c

b
,

which has only one solution. From here on, we will suppose that a 6= 0. Case 1:

a = 1, b = 0, the equation 3.1 becomes (x + 1)2
n−2+cx2n−2 = 0 (??). It is obvious

that x = 0 is not solution. x = 1 is also not a solution in this case. Since x 6= 0, 1, we

have only one solution which is x = c
c+1

since the equation (??) turns to x = (1+x)c

by multiplying both sides of the equation (?) by x(x+1). Case 2: a equals to one and

b equals to 1, the equation 3.1 becomes (x+ 1)2
n−2+cx2n−2 = 1. While x = 0 is not

a solution, x = 1 is a solution for this equation. So, 1→ c∆F (1, 1). Multiplying it by

x+ 1 and x, then it turns into x+ c(x+ 1) = x(x+ 1) which means 0 = c+ cx+ x2.

From Lemma 1, there is two solutions ⇐⇒ Tr( c
c2

) = Tr(1
c
) = 0. Therefore, 2 →

c∆F (1, 1) under Tr(1
c
) = 0. As a result, c∆F (1, 1) = 3. (This partially completes

item (iii) in the Theorem under Tr(1
c
) = 0). If 1 = Tr(1

c
), only one solution occurs

for it. Case 3: bisnotequaltozerooroneandα equals to 1, the equation 3.1 turns into

b = cx2
n−2 + (x + 1)2

n−2+. There is only one solution which is 1, x should not be

zero. In the case that x is not equal to zero or one, multiplying by x and x + 1, the

equation turns into x2+( b+c+1
b

)x+ b
c

= 0, which has two solutions under b+c+1 6= 0

if and only if Tr
(

cb
(b+c+1)2

)
= 0. Taken b = c 6= 0, 1, 0 = Tr(c2) = Tr(c). All in all,

adding all solutions, there are three zeros under the assumption of Tr(c) = 0. (This

completely proves the item (iii) in the Theorem under the assumption of Tr(c) = 0).

Taken b 6= c 6= 0, 1, (Clearly, x = 0 and x = 1 do not satisfy the equation ). We now

control whether two solutions exist or not from trace notion except x = 0, 1. The

equation has only one solution in the case that c is not equal to one and b is equal

to zero. (we did it in Case 1); otherwise 0 = Tr
(

bc
b2+c2+1

)
if and only there are two

solutions. As one can see, the case of 1 = Tr(c) and 1 = Tr(1
c
) sufficient to show ,

since otherwise, we showed that three solutions occur. After now on, we claimed that

one can always find b 6= 0 such that Tr
(

bc
b2+c2+1

)
= 0 in odd case or even case:

When n is odd, It can be argued that there is k s.t

1

c
+ 1 =

1 + c

c
=

ct

c2 + 1 + t2
,
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It converts to 0 = c2t + (c + 1)t2 + (c + 1)3, means 0 = t2 + c2

c+1
t + (c + 1)2, from

Lemma 1(i), 0 = Tr( (c+1)2

c4/(c+1)2

)
= Tr( c+1

c
) = Tr

(
(c+1)4

c4

)
= Tr(1 + 1

c
) if and only

if there is two zeros. We know that Trn(1
c
) = 1. In addition to this, because n odd n,

0 = Tr(1) then 0 = Tr(1
c

+ 1). We proved that there exists such a solution k since

t satisfies the trace condition. There is two roots satisfying c-differential equation in

odd case.

For even n, we now take the equation that

tc

t2 + c2 + 1
= 1 + c+

1

c

equals t2 + c2

1+c+c2
t + (c + 1)2 = 0. 0 = Tr

(
(c+1)2

c4/(c+c2+1)2

)
= Tr

( (c2+c+1)(c+1)
c2

)
=

Tr( c
3+1
c2

) = Tr(c) +Tr( 1
c2

) = Tr(c) +Tr(
1
c
) if and only if there is two zeros, which

is exactly true. When we take b as such solution t, then the trace condition holds. So,

the c-differential equation has two solutions in even case. Since we got the results

c∆P (1, b) = 2. desired in item (ii) of the theorem thanks to above first three cases,

then we do not need to regard the Case 4, a and b are not equal to 0 or 1, which gives

us the equation itself, (x+ a)2
n−2 + cx2

n−2 = b.

Normally, PN only exist when p is odd for c = 1. However, Theorem 1(i) shows that

there exists PcN functions for even characteristic, for all c 6= 1.

3.0.3.2 The Inverse Function in Odd Characteristic

When the finite field has odd characteristic, the following theorem shows these func-

tions’ differential behaviors under the notion of c. For each set Z, [Z]2 in below

theorem means the squares in this set.

Theorem 2. [4]: Let P be the inverse function s.t. P (x) = x2
n−2. Assume that c be

an element from the field Fpn . Let p be odd prime :

(i) P is c-planar function if c equals to zero (it means that P is a permutation

polynomial).
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(ii) δP,c = 3 if c is not equal to (−4c + c2), 1
4
, 0, 4 is a square in the set [Fpn ]2, or

(−4c+ 1) is a square in [Fpn ]2,

(iii) δP,c = 2 if c is equal to1
4

or 4.

(iv) P is c-almost perfect nonlinear if c is not equal to zero, (−4c+c2) is not square

in [Fpn ]2 and (−4c+ 1) is not square in [Fpn ]2

Proof (i): We display first the c-differential equation at a

(x+ α)p
n−2 − cxpn−2 = b (3.2)

When c is equal to 0, the proof is as similar as in the even case since if b is equal to

0, α = x is merely one solution; if not, the equation 1 = b(x + α) has only one root.

There is only one solution for a,b ∈ F2n , so F is PcN.

Proof (ii), (iii) and (iv): For a, b ∈ Fpn , when c 6= 0, if a = 0, the equation 3.2

becomes (1 + c)xp
n−2 = b(?), which has at most one solution as in the case of

p = 2. We will suppose that a 6= 0 after now on, assuming that a = 1, then we need

to consider the equation (x + 1)p
n−2 − cxp

n−2 = b. Case 1: b = 0, the equation

3.2 becomes (x + 1)p
n−2 − cxp

n−2 = 0. It is obvious that x = 0 and x = −1

are not solutions for this equation. When x 6= 0,−1, by multiplying both sides of

the equation (?), we have only one solution which is x = c
1−c as in the even case.

Case 2: b = 1, the equation 3.2 becomes (x + 1)p
n−2 − cxp

n−2 = 1. It has one

solutions: x = 0 because 1 − c.0 = 1, always true; x = −1, 0 − c.(−1) = 1,

a contradiction. When x 6= 0,−1, then the equation x − c.(x + 1) = x(x + 1)

is occured by multiplying x(x + 1), which equals x2 + cx + x = 0. By Lemma

1(ii), the discriminant becomes d1 = c2 − 4c for this equation; it has two solutions

if d1 6= 0 and unique solution if d1 = 0. As a result, we get three solutions for the

equation if 0 6= d1 ∈ [Fpn ]2 and two solutions if d1 = 0 with prior x = 0. (Here

we get x = −2 as second solution since c = 4 (?) in this case, x2 + 4x + 4 = 0).

Case 3: b 6= 0, 1, x = 0 is not a solution since 1 − 0 = b which is a contradiction

and x = −1 is a solution for the equation 3.2. We next suppose that x 6= 0,−1,

3.2 becomes x − c(x + 1) = bx(x + 1). Assume b = c 6= 0, 1, then it renders

cx2 +(2c−1)x+ c = 0 which is equivalent to x2 +(2− 1
c
)+1 = 0. By Lemma 1(ii),
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the discriminant becomes d2 = (2 − 1
c
)2 − 4c = 1−4c

c2
for this equation; it has two

solutions if d2 6= 0 and unique solution if d2 = 0. Therefore, we get three solutions

for the equation if 1 − 4c 6= 0 (c 6= 0 from assumption) and two solutions if d1 = 0

with prior x = −1 under the condition of c = 1
4

(??). Actually, the proof is done for

(iii) because we got desired results in Theorem at (?) and (??).

Assume b 6= 0, 1. The equation 3.2 has no solution at x = 0 and x = −1. When

x 6= 0,−1 multiplying the equation by x(x+ 1) gives us the equation x− c(x+ 1) =

bx(x + 1), derived at the beginning of this case. It equals to x2 +
(
b+c−1
b

)
x + c

b
.

By Lemma 1(ii), the discriminant becomes d3 = (b + c − 1/b)2 − 4b/c, that is

(b + c − 1)2 = 4bc for this equation; it has two solutions if and only if 0 6= d3 =

(b+ c− 1)2 − 4bc ∈ [Fpn ]2 and one solution if and only if d3 = 0.

When c = −1, p = 3 and n = 2, some b which satisfies this equation (b+ c+ 1)2 −
4bc = 0 will occur only under this conditions. Now we claim that there exits b such

that (b+ c+ 1)2− 4bc 6= 0 under the condition c 6= −1, b 6= 0, 1, c, p 6= 3 and n 6= 2.

When c 6= −2, 2, 4, taken b as 1
2
(c− 2) 6= 0, then the equation becomes

(b+ c+ 1)2 − 4bc = 1
4
(c− 4)2 6= 0:

Now we will do some finite field constructions to make the proof more clear and

understandable:

1. p = 3 and n = 2, if the primitive polynomial is x2 − x − 1, then let β be the

root of it. So, we can express the field as F32 = F3[x]
<x2−x−1>

= F3(β)

2. p = 5 and n = 2, if the primitive polynomial is x2−x+ 2, then let β be the root

of it. So, we can express the field as F52 = F5[x]
<x2−x+2>

= F5(β).

When c = 2 or c = 4, p is not equal to 3 and 5, taken b as 2(c+ 1), then the equation

becomes (b+ c+ 1)2 − 4bc = (1− c)2 6= 0.

If c = 2 and p = 3, then the equation becomes (b + c + 1)2 − 4bc = b2 + 1:

If n > 2, taken b as β − 1
β

, where β is a primitive root over F3n . So, b2 + 1 =

(β + 1
β
)2 6= 0. The equation 3.2 has two or fewer solutions; if n = 2, from Case 1:

d1 = 22 − 4.2 = 2 = (β + 1)2 ∈ [F3n ]2 6= 0. Thus, 3.2 has at most two solutions

which means its c-differential uniformity is 3. If c = 2, and p = 5, from Case 1:

d1 = 22 − 4.2 = 1 = 12 ∈ [F5n ]2 6= 0. It has at most two solutions which means its

c-differential uniformity is again 3.
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If c = 4 and p = 3, c equals to 1 in the modulo p = 3, which is a contradiction with

our assumption. If c = 4 and p = 5, then the equation becomes (b+ c+ 1)2 − 4bc =

b2 + 4: If n > 2, taken b as β − 1
β

, where β is a primitive root over F5n . So,

b2 + 4 = (2β + 2)2 6= 0 when b = β + 3 6= 0, 1,−1. When c = −2, from Case 3:

d2 = (2− 1
2
)2 − 4 = 25

4
− 4 = (3

2
)2 ∈ [F52 ]

2. The equation has 3 solutions for p 6= 3,

d2 6= 0. If p is equal to 3, then c would be -2, which is 1. This case is out of this

theorem because it corresponds to usual derivative. All in all, the equation 3.2 has at

most 3 solutions, so its c-differential uniformity is ≤ 3. This result proves the second

item in Theorem 2.

3.0.3.3 c-Differential Uniformity of Modification of Inverse Function

There are lots of ways constructed to modify the inverse functions in the previous

studies under this new differential concept. They are examined c-differential be-

haviour of this modified version of the inverse function. For instance, adding some

appropriate linearized monomials is one of these ways. One can observed that there

is an increase in the value of their c-differential uniformity. The following theorem is

achieved by Stanica and Geary in the paper [12].

Theorem 3. Let n ≥ 4, F (x) = x2
n2 be the inverse function on Fn2 and 1 6= c ∈ Fn2 .

Then, if n is even, the c-differential uniformity of G(x) = F (x) + x is δG,c = 5, for

some c; if n is odd, there exist c such that δG,c = 4, 5. Moreover, if G(x) = F (x) +x2

and n is even, then there exists c such that δG,c = 5; if n is odd and there exists a such

that Tr( a2

a2+a+1
) = Tr( a4

(a+1)5
) = 0, , then δG,c = 5 for some c.(

for example, c = 1 + 1

(a3+a2+1)
1
2

)

3.0.3.4 Swapped Inverse Function

The study area of this thesis is based on inverse functions which is one of the class of

power functions. Another way to modify the inverse function is swapping two output

points.
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Consider a function F : F2n → F2n and two points x0 6= x1 ∈ F2n ,

F:

x0 y0

x1 y1
→ G:

x0 y0

x1 y1

... others fixed

From the scheme, as one can see that G : Fpn → Fpn is a function such that G(x0) =

y1, G(x1) = y0 and fixes remaining all values unlike the function F does, such that

F (x0) = y0, F (x1) = y1. The new function G is a modified version of the original

function F by changing two output points. Therefore, the function G is called the

{x0, x1}-swapping of F, denoted by Gx0x1 . It is formulated on F2n in the paper [11]

as follows:

Gx0x1 = F (x) +
(
(x+ x0)

pn−1 + (x+ x1)
pn−1

)
(y0 + y1)

More generally, we give its more general formula valid for all characterictic as fol-

lows:

Gx0x1 = F (x)−
(
(x− x0)p

n−1 − (x− x1)p
n−1

)
(y0 + y1) (3.3)

Throughout the thesis, we will symbolize it shortly by G if it won’t cause confusion.

In this thesis, we consider the (0,1)-swapping and the (0,α)-swapping of the inverse

function F = x2n−2. The following two sections are about these two modified version

of inverse function and their c-differential uniformity.

3.0.3.5 The c-Differential Uniformity of the (0,1)-Swapped Inverse Function

For the inverse function F (x) = x2
n−2 on F2n , and two points x0 6= x1 ∈ F2n such

that x0 = 0 and x1 = 1. (Note that F (0) = 0 and F (1) = 1). One can obtained

that its (0,1)-output swapping of inverse function by using the generalized formula
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3.3 defined in the beginning of the Chapter 3 is the following way:

G0,1 = x2
n−2 −

(
(x− 0)2

n−1 − (x− 1)2
n−1

)
(0 + 1)

= x2
n−2 + x2

n−1 + (x− 1)2
n−1

As one can see G(0) = 1, G(1) = 0 and for any α in F2n G(α) = 1
α

like in the

function F s.t. F (α) = 1
α

. (other elements are fixed). The following theorem is

related to the c-differential uniformity of this swapped function G, coming from the

article [11]. The given theorem leads our studies.

Theorem 4. [11] Let n ≤ 2 be a positive integer, 0,1 6= c ∈ Fpn and F: Fpn → F2n

be the inverse function defined by F (x) = x2
n−2 and G be its (0, 1)-swapping. If

n = 2, then c∆G(a, b) ≤ 1; if n = 3, then c∆G(a, b) ≤ 3. If n ≥ 4, and for any a,b

∈ Fpn , the c-DDT entries satisfy c∆G(a, b) ≤ 4 (all [1,2,3,4] c-DDT entries occur).

Furthermore, c∆G(a, b) =4 (so, the c-differential uniformity of G is δF,c = 4) if and

only if any of the conditions happen:

(i) For a ∈ F∗
2n with Tr

(
a
a+1

)
= 0, b = 1

a+1
and c = 1

a2+a
, then c∆G(a, 1

a+1
) = 4

(ii) For a ∈ F∗
2n with Tr

(
a

(a+1)2

)
= 0, b = 1

a2
and c = a+1

a2
then, c∆G(a, 1

a2
) = 4

Proof. See [11].

As we know that this theorem is about c-DDT entries of {0, 1}-swapped form of a

inverse function F in characteristic 2 and gives us two results. Firstly, it provides

some bounds for c-DDT entries of swapped inverse function G according to changing

n variables. Secondly it gives maximum value that c-DDT entries will attain under

two specific conditions i and ii.

Based on Theorem 4, the c-differential uniformity of the (0, α)-swapped inverse func-

tion will be discussed in details in the next Chapter.
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CHAPTER 4

C-DIFFERENTIAL UNIFORMITY OF {0,α}- SWAPPED

INVERSE FUNCTION

We work on the same function F (x) = x2
n−2 on F2n . As you know that above

theorem is on {0, 1}-swapping of this function , we focus on {0, α}-swapping of it

and we analyze its c-differential uniformity case by case throughout next two sections.

4.1 Preparation for Thesis Work

Before going into more detail, we need to prepare the equation used in the proof and

analyzed. In Chapter 3, we created a formula to get the swapped function G that

would allow us to construct this equation.

G(x) = x2
n−2 +

x2
n−1

α
+

(x− α)2
n−1

α
(4.1)

(Observe that while F (0) = 0 and F (α) = 1
α

and F (β) = 1
β

for any β in F2n ,

G(0) = 1
α

, G(α) = 0 and G(β) = 1
β

for any β, other elements are fixed.)

We can now construct the equation whose solutions gives us the entries of the c-DDT

of G by using the definition below

c∆G(a, b) = #{x ∈ Fpn : cDaG(x) = G(x+ a)− c.G(x) = b} (4.2)
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The equation to be actively used and analyzed in the proof is as follows:

c∆G(a, b) = (x+ a)2
n−2 − (x+ a)2

n−1

α
+

(x− α + a)2
n−1

α

+c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= b

(4.3)

4.2 An Approach to Thesis Work and The Results

After now on we extend above Theorem 4 related to c-differential uniformity of

{0, 1}-swapped inverse function to {0, α}-swapped inverse function by using the idea

behind this theorem. The obtained theorem and its proof in thesis study is as follows:

Theorem 5. Let n ≤ 2 be a positive integer, 0,1 6= c ∈ F2n and F: F2n → F2n be the

inverse function defined by F (x) = x2
n−2 and G be its (0, α)-swapping. While n ≥ 5,

c∆G(a, b) =4 (so, the c-differential uniformity of G is δF,c = 4) if and only if any of

the conditions happen:

(i) For a ∈ F∗
2n with Tr

(
a

a+α

)
= 0, b = 1

a+α
and c = α2

a2+aα
, then

c∆G(a, 1
a+α

) = 4

(ii) For a ∈ F∗
2n with Tr

(
a

α2.(a+1)2

)
= 0, b = α

a2
and c = α2+α.a

a2
, then

c∆G(a, α
a2

) = 4

Proof. The proof is done for n = 2, 3, 4 in Theorem 4. So, we now assume

n ≥ 5.

For a,b∈ F2n , we consider the c-differential equation (4.3). If a=0, then (4.3) becomes

Solve for a sphere:

b = x2
n−2 − x2

n−1

α
+

(x− α)2
n−1

α
+ c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= (1 + c)G(x)

Since G is also a permutation, then there exists a unique solution x, regardless of what

c6= 1, b∈ F2n . Thus, c∆G(0, b) = 1. From now on, we will assume that a6= 0
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Case 1. Let a=α, b = 0. Then (4.3) becomes

(x+ α)2
n−2 − (x+ α)2

n−1

α
+
x2

n−1

α

+c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= 0

Surely, x = 0 is a solution if and only if 1
α
− 1

α
+ 0 + c.

(
0 + 0 + 1

α

)
= 0, that is, c = 0

unless α 6= 0, 1, a contradiction. If x = α, then 0 − 0 + 1
α

+ c.
(
1
α
− 1

α
+ 0

)
= 0,

so 1
α

= 0 , a contradiction . If x 6= 0, α, then multiplying displayed equation by

x(x+α), renders x+ c.(x+α) = 0, and so, x = cα
1+c

, which implies 1→ c∆G(α, 0).

Case 2. Let a=α, b=α. Then (4.3) becomes

(x+ α)2
n−2 − (x+ α)2

n−1

α
+
x2

n−1

α

+c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= α

If x = 0 in (4.3), then we must 1
α
− 1

α
+ 0 + c.

(
0 + 0 + 1

α

)
= α, so c = α2. This

is a solution. If x = α, then 0 − 0 + 1
α

+ c.
(
1
α
− 1

α
+ 0

)
= α, so 1

α
= α, which

means α2 = 1, that is α = 1, a contradiction . If x 6= 0, α, then multiplying displayed

equation by x(x+ α), gives us

x+ c.(x+ α) = α.x.(x+ α), that is, α.x2 + (α2 + 1 + c).x+ c.α = 0

to apply Lemma 1 to this equation, firstly divide this equation by α, and convert it to

the desired form by Lemma 1. By Lemma 1, under α2+c+1
α
6= 0, has two distinct solu-

tions if and only if Tr
(

c.α2

(α2+c+1)2

)
= 0, therefore, we have 3→ c∆G(α, α) (including

the prior x=0), under this conditions, and a contribution of 2, otherwise.

Case 3. Let a=α, b 6= 0, α. Then (4.3) becomes

(x+ α)2
n−2 − (x+ α)2

n−1

α
+
x2

n−1

α

+c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= b

If x = 0 in (4.3), then we must have 1
α
− 1

α
+ 0 + c.

(
0 + 0 + 1

α

)
= b, so b = c

α
. which

means that is a solution. So, 1→ c∆G(α, c
α

). If x = α, then 0−0+ 1
α

+c.
(
1
α
− 1
α

+0
)

=

b, so 1
α

= b, which means that this is also a solution since α 6= 0, 1 and α2 6= 1. If

x 6= 0, α, then multiplying displayed equation by x(x+ α), gives us

25



x+ c.(x+ α) = b.x.(x+ α), that is, b.x2 + (b.α + 1 + c).x+ c.α = 0

If we again divide both sides of this equation by b to apply Lemma 1 on it, then we can

get two distinct solutions if and only if Tr =
(

c.α.b
(b.α+c+1)2

)
= 0 (of course, as long as

b.α+c+1
b
6= 0). Thus, if b = c

α
, and Tr(c) = 0 (since Tr(c2) = 0), then 3→ c∆G(α, c

α
)

If b = c
α

and Tr(c) = 1 then 1→ c∆G(α, c). If b 6= c
α

, and Tr =
(

c.α.b
(b.α+c+1)2

)
= 0,

then 2→ c∆G(α, b).

Case 4. Let a, b 6= 0, α. Then the equation (4.3) would remain in its original form.

All variables are active without any substitution. The equation we will examine is as

follows:

(x+ a)2
n−2 − (x+ a)2

n−1

α
+

(x− α + a)2
n−1

α

+c.

(
x2

n−2 − x2
n−1

α
+

(x− α)2
n−1

α

)
= b

If x = 0 in (4.3), then we must have 1
a
− 1

α
+ 1

α
+ c.

(
0 + 0 + 1

α

)
= b, implies

b = 1
a

+ c
α

. Therefore, 1 → c∆G(a, 1
a

+ c
α

). If x = α in (4.3), then we must have
1

α+a
− 1

α
+ 1
α

+c.
(
1
α
− 1

α
+0

)
= b, implies b = 1

α+a
. Hence, 1→ c∆G(a, 1

α+a
). If x = a,

then 0− 0 + 1
α

+ c.
(
1
a
− 1

α
+ 1

α

)
= b, implies b = 1

α
+ c

a
. Thus, 1→ c∆G(a, 1

α
+ c

a
).

If x = a+ α in (4.3), then we must have 1
α
− 1

α
+ 0 + c.

(
1

a+α
− 1

α
+ 1

α

)
= b, implies

b = c
a+α

. Therefore, 1→ c∆G(a, c
a+α

).

Now assuming that x = 0, α, a, α + a, multiplying Equation (4.3) by x.(x+a) and

dividing by b renders

x+ c.(x+ a) = b.x.(x+ a), that is, x2 +
(
a.b+1+c

b

)
.x+ a.c

b
= 0

By Lemma 1, under a.b+1+c
b
6= 0. This equation has two distinct solutions if and

only if Tr
(

a.b.c
(a.b+c+1)2

)
= 0

Now, we will do some calculations to determine the largest contributions to c∆G(a, b):

As one can see, we got 4 conditions and we need to check whether there is a over-

lapped among them by equalizing the pairs. If we pair these conditions , 6 states

would occur to examine.
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Four conditions are as follows:

(i) x = 0, 1→ c∆G(a, 1
a

+ c
α

)

(ii) x = α, 1→ c∆G(a, 1
α+a

)

(iii) x = a, 1→ c∆G(a, 1
α

+ c
a
)

(iv) x = a+ α, 1→ c∆G(a, c
a+α

)

Pairing and equalizing above conditions:

• If b = 1
a

+ c
α

= 1
α+a

, that is, α2 = αac+ a2c(
so, b = 1

a
and c = α2

α.a+a2

)
and Tr =

(
a.b.c

(a.b+c+1)2

)
= Tr

(
a2

(α+a)2

)
=

Tr
(

a
a+α

) = 0, then 2→ c∆G(a, 1
α+a

)

• If b = 1
α

+ c
α

= 1
α

+ c
a

(so, c = 1), a contradiction.

• If b = 1
a

+ c
α

= c
α+a

, that is, α2 + α.a = a2.c

(so, b = α
a2

and c = α2+α.a
a2

) and Tr
(

α2a
(a+α)3

)
= 0 ,

then 4→ c∆G(a, α
a2

)

• If b = 1
α+a

= 1
α

+ c
a
, that is, a2 = c.(α2 + α.a)

(so, b = 1
α+a

and c = a2

α2+α.a
) and Tr =

(
a.b.c

(a.b+c+1)2

)
= Tr

(
a3

(a2+α2)2

)
= 0,

then 4→ c∆G(a, 1
α+a

)

• If b = 1
α+a

= c
α+a

(so, c = 1), a contradiction.

• If b = 1
α

+ c
a

= c
α+a

, that is, α2.c = a2 + α.a

(so b = a
α2 and c = a2+α.a

α2 ) and Tr =
(

a.b.c
(a.b+c+1)2

)
= Tr

(
a3

(a2.(a+α)

)
= 0,

then 4→ c∆G(a, a
α2 )

Table 4.1: Results after pairing 6 states
States conditions c b a Tr

(
abc

ab+c+1

)
# of solutions

x = 0 ∧ x = α 1
a

+ c
α

= 1
α+a

α2

α.a+a2
1
a

a Tr
(

a
a+α

) 2
x = 0 ∧ x = a 1

α
+ c

α
= 1

α
+ c

a
1 x x x 2

x = 0 ∧ x = a+ α 1
a

+ c
α

= c
α+a

α2+α.a
a2

α
a2

a Tr
(

α2a
(a+α)3

)
2

x = α ∧ x = a b = 1
α+a

= 1
α

+ c
a

a2

α2+α.a
1

α+a
a Tr

(
a3

(a2+α2)2

)
2

x = α ∧ x = a+ α 1
α+a

= c
α+a

1 x x x 2
x = a ∧ x = a+ α 1

α
+ c

a
= c

α+a
c = a2+α.a

α2 ) a
α2 a Tr

(
a3

(a2.(a+α)

)
2
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As one can see, we reached values [1, 2, 3, 4] as c-DDT entries from cases. We proved

that the c-differential uniformity is less than or equal to 4. Next, we claim that (0, α)-

swapped inverse function attains its maximum value 4 under some conditions: Since

State 1 and State 6 collide with one other, we get just 2 solutions under Tr
(

a
a+α

) = 0

(observe that Tr(1
c
) = Tr( a

α
) + Tr( a

2

α2 ) = 0). Therefore, 4 → c∆G(a, 1
α+a

) (in-

cluding the prior in condition 1 and condition 2). Based on the same procedure, we

get 2 solutions from State 3 and State 4 under Tr
(

a
α2.(a+1)2

)
= 0 . Hence, 4 →

c∆G(a, α
a2

). We cannot get any solution from State 2 and State 5 because of c 6= 1.

The value 4 will occur when we found parameters from the combinations of the pre-

vious four conditions. We reached 4 solutions under the conditions Tr
(

a
a+α

) = 0 and

Tr
(

a
α2.(a+1)2

)
= 0. This proves the first and second conditions in Theorem 5.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

The behavior of the functions has attracted considerable interest, not just in terms of

the usual derivative, but also in terms of the new differential notion. As the main con-

clusion of this thesis is about how the functions’ behaviour against differential attacks

under this new definitions. It is thought that differential cryptanalysis can take a dif-

ferent approach under this new concept. We especially concentrate on permutations

because they are of particular significance to cryptography. Indeed, such functions are

strong candidates for side-channel resistant functions due to their low multiplicative

differential.

In introduction and preliminary part of the thesis, sufficient theoretical background

information about subject and some neccessary lemmas used throughout thesis are

given.

We presented some examples related to c-differential uniformity of some known func-

tions such as Gold/Kasami, power, especially inverse functions. In accordance with

this purpose, we analyze two Theorem 1 and 2 about the c-differential uniformity of

inverse function in even, respectively, odd characteristic and we gave a broad proof

in an explanatory way both of them. After giving deep analysis on the inverse func-

tion and their differential behaviours under this new notion, we also adapted a for-

mula suggested by Stanica in [11] on even characteristic to odd characteristic. This

formula allows to swap two outputs of a vectorial Boolean function. Based on Stan-

ica’s study on the c-differential uniformity of {0, 1}-binary swapped inverse function

F (x) = 2n−2 on F2n , we firstly construct c-differential equation for {0, α}-output
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swapped inverse function and proposed a theorem to the c-differential uniformity of

it and proved it case by case throughout the Chapter 4.

One can see that this theorem is about c-DDT entries of {0, α}-swapped form of a

inverse function F in characteristic 2 and gives us two results. Firstly, it provides

some bounds for c-DDT entries of {0, α}-swapped inverse function G according to

changing n variables. In other words, we proved that its c-differential uniformity is

less than or equal to 4. Secondly, it gives maximum value 4 that c-DDT entries attain

under two specific conditions satisfied by trace mapping.

This overall analysis in Chapter 4 raises some important open questions. One of them

is that whether there is any simple modification of the inverse function, F (x) = x2
n−2

on F2n , based on two outputs swapping such as {0, 1+α}, {1, α} or {α, β} for α,β ∈
F2n; whether there is any modification of the inverse function based on three outputs

swapping such as {0, 1, α}, for instance like G(0) = α, G(1) = 0 and G(α) = 1
α

,

or all these works can be searched for characteristic 3. All these are worthwhile

to study their properties through the new differential. In addition to these, the c-

differential uniformity of other AP/APN functions can be researched under this new

multiplication.
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Appendix A

SOME APPENDICES

Figure A.1: for α = 0, 1, 2, 3

Figure A.2: for α = 4, 5, 6, 7

Figure A.3: for α = 8, 9, 10, 11
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Figure A.4: for α = 12, 13, 14, 15
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