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ABSTRACT 

 

AN INVESTIGATION OF DEVELOPMENT OF PROSPECTIVE 

ELEMENTARY TEACHERS’ KNOWLEDGE TO TEACH ALGEBRA IN 

EARLY GRADES THROUGH CASE DISCUSSIONS 

 

 

Öztürk, Nejla  

Master of Science, Mathematics Education in Mathematics and Science Education 

Supervisor : Assist. Prof. Dr. Işıl İşler Baykal 

 

 

 

September 2021, 132 pages 

 

 

The purpose of this study was to investigate the development of prospective 

elementary teachers’ subject matter and pedagogical content knowledge for teaching 

algebra in elementary grades. Prospective elementary teachers attended a 5-week (10 

hours) intervention as part of a method course, Teaching Mathematics I, that was 

designed based on case discussions. The participants of the study were nine third-

year students who were enrolled in the course in the 2020-2021 fall semester as a 

must course of the undergraduate primary school education program in a private 

university. During the last 5 weeks of the 12-week course, the prospective 

elementary teachers were presented with the big ideas of equivalence and equations, 

generalized arithmetic, and functional thinking as the content of early algebra 

through text-based classroom cases. In these lessons, the prospective teachers were 

asked to discuss students’ thinking, the teacher’s instructions, and the tasks in the 

given classroom cases. Data were collected through one-hour individual interviews 

before and after the early algebra lessons. The interview questions were adapted from 

the related literature to examine prospective elementary teachers’ subject matter and 
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pedagogical content knowledge. Qualitative methods were used to analyze data. The 

analysis of the pre-interviews indicated that prospective elementary teachers did not 

have the required subject matter knowledge to guide algebraic thinking in elementary 

grades, such as the relational meaning of the equal sign, generalizing, representing, 

or justifying arithmetic or functional relationships and reasoning with them. 

Similarly, they were found not to have sufficient pedagogical content knowledge 

related to students’ conception/misconceptions and appropriate instruction to foster 

early algebra. However, after the early algebra lessons based on case discussions, the 

prospective elementary teachers were found to progress in various aspects of 

teaching algebra in early grades, as both subject matter and pedagogical content 

knowledge related to teaching.  

Keywords: Early Algebra, Prospective Elementary Teachers, Teacher Knowledge, 

Case Discussion 
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ÖZ 

 

SINIF ÖĞRETMENİ ADAYLARININ DURUM TARTIŞMALARI 

YOLUYLA ERKEN CEBİR ÖĞRETİMİNE YÖNELIK BİLGİLERİNİN 

GELİŞİMİNİN İNCELENMESİ 

 

 

Öztürk, Nejla  

Yüksek Lisans, Matematik Eğitimi, Fen ve Matematik Bilimleri Eğitimi  

Tez Yöneticisi: Dr. Öğr. Üyesi Işıl İşler Baykal 

 

 

 

Eylül 2021, 132 sayfa 

 

ÖZ 

Bu çalışmanın amacı, durum tartışmaları temelli olarak tasarlanmış erken cebir 

derslerine katılan sınıf öğretmeni adaylarının, ilkokul seviyesinde cebir öğretimine 

yönelik alan ve pedagojik alan bilgilerinin gelişimini incelemektir. Çalışmanın 

katılımcıları, 2020-2021 güz döneminde sınıf öğretmenliği programının zorunlu 

dersi olan Matematik Öğretimi I dersini alan dokuz öğretmen adayıdır. Bu 12 

haftalık dersin son 5 haftasında, sınıf öğretmeni adaylarına metin formundaki sınıf 

durumları aracılığıyla erken cebir içeriği olarak eşitlik ve denklem, genelleştirilmiş 

aritmetik ve fonksiyonel düşünme konuları sunulmuştur. Bu derslerde, öğretmen 

adaylarından verilen sınıf durumlarındaki öğrenci düşünceleri, öğretmen yönergeleri 

ve etkinlikler üzerine tartışmaları istenmiştir. Veriler, erken cebir derslerinden önce 

ve sonra yapılan birer saatlik bireysel görüşmelerle toplanmıştır. Görüşme soruları, 

sınıf öğretmeni adaylarının alan ve pedagojik alan bilgilerini incelemek için ilgili 

alan yazından uyarlanmıştır. Verileri analiz etmek için nitel yöntemler kullanılmıştır. 

Ön görüşmelerin analizi, öğretmen adaylarının, ilkokul seviyesinde cebirsel 

düşünmeye rehberlik edecek, eşit işaretinin ilişkisel anlamı, aritmetik veya 
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fonksiyonel ilişkileri genelleme, temsil etme, gerekçelendirme ve bu ilişkiler 

üzerinde akıl yürütme gibi gerekli alan bilgisine sahip olmadıklarını göstermiştir. 

Benzer şekilde, erken cebir alanında öğrenci düşünmeleri/kavram yanılgıları ve 

uygun öğretim yolları ile ilgili yeterli pedagojik alan bilgisine sahip olmadıkları 

bulunmuştur. Ancak durum tartışmalarına dayalı erken cebir derslerinden sonra sınıf 

öğretmeni adaylarının ilkokul seviyesinde cebir öğretiminin çeşitli yönlerinde hem 

alan hem de pedagojik alan bilgisi olarak ilerleme kaydettikleri tespit edilmiştir.  

Anahtar Kelimeler: Erken Cebir, Sınıf Öğretmeni Adayı, Öğretmen Bilgisi, Durum 

Tartışması  
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CHAPTER 1  

1 INTRODUCTION  

Twenty-six years ago, Schoenfeld (1995) stated that;  

Algebra today plays the role that reading and writing did in the industrial 

age. If one does not have algebra, one cannot understand much of science, 

statistics, business, or todays’ technology. Thus, algebra has become an 

academic passport for passage into virtually every avenue of the job 

market and every street of schooling (p.11). 

This fact is still accurate and might be more valid for our technology-wrapped era. 

To gain significant mathematics knowledge and reach future educational and 

employment opportunities, algebra is seen as a “gateway” (Kaput, 1998; National 

Mathematics Advisory Panel, 2008) and is located in the mathematics curriculum as 

a central learning domain. 

Traditionally, mathematics education is on the grounds of arithmetic then algebra 

approach. More explicitly, students are first expected to gain procedural fluency for 

arithmetic in elementary grades; then, they face algebra, mostly based on a 

procedural approach in the middle grades (Blanton et al., 2007). Parallel with this 

approach, algebra does not appear in the Turkish mathematics curriculum as a 

learning domain for elementary grades (MoNE, 2018). However, the transition from 

concrete arithmetic thinking to increasingly abstract algebraic reasoning, which is 

required in secondary school and later grades, became a hurdle for students’ 

mathematics learning (Bekdemir & Isik, 2007; Carpenter et al., 2000; Knuth et al., 

2016). This problem led educators and mathematics education researchers to 

consider the “deep, long-term algebra reform” (Kaput, 1999, p. 134). Kaput (1999) 

described a route to that reform as “infusing algebra throughout the mathematics 

curriculum from the very beginning of the school” (p. 134). Teachers can provide 
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students with a more sophisticated algebra background, which involves solid 

understandings and experiences for middle grades and high school, by placing 

algebra in the curriculum from kindergarten onward (NCTM, 2000). This new 

approach is currently known as “Early Algebra.” 

Early algebra does not mean serving common algebraic concepts and procedures 

addressed in the middle grades to the elementary students earlier (Carraher et al., 

2008) Besides, early algebra is not an attempt to make the elementary curriculum 

bigger (Kaput et al., 2008). Early algebra is a way of thinking to provide students 

opportunities to generalize relationships and mathematical facts by delving into the 

concepts already in the curriculum to provide a deep and coherent mathematical 

understanding (Blanton et al., 2007). 

Although integrating algebra in the elementary grades is a relatively new idea, recent 

research findings enable us to recognize the capability of elementary students (e.g., 

Blanton, Stephens, et al., 2015) and kindergarten students (e.g., Stephens et al., 2020) 

to think algebraically, gain insight into a classroom environment for early algebraic 

thinking (e.g., Bastable & Schifter, 2008) and teacher practices and necessary 

algebra knowledge (e.g., Blanton & Kaput, 2003). However, this situation is not 

valid in our national context. Although there are some studies related to elementary 

students’ algebraic thinking process (e.g., Tanışlı, 2011; Turgut & Temur, 2017), we 

still need to know more about algebraic thinking in Turkish elementary grades. On 

the other hand, in both national and international contexts, the question: “How can 

prospective teachers be given a good start on developing essential knowledge of 

algebra for teaching?” (Fey et al., 2007, p. 27) has not been answered sufficiently. 

Prospective teachers’ subject matter knowledge and knowledge to teach is at the 

center of the complex landscape of prospective teacher education (da Ponte & 

Chapman, 2008), and while investigating prospective teachers’ preparation and their 

development of knowledge to teach is so critical, the number of studies that focused 

on prospective teachers’ knowledge to teach algebra in early grades is quite limited.  
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The theory and practice gap, as a perennial issue related to prospective teacher 

education, has been discussed several times (Darling-Hammond, 2006; Gravett, 

Henning & Eiselen, 2011; Korthagen, 2001), and various solutions have been 

proposed to eliminate this gap. As one of them, since they take hold of the 

authenticity and complication of the instructional practice, classroom cases in 

teacher education are seen as an antidote to an overly theoretical approach (Smith & 

Friel, 2008). L. Shulman (1996) stated that “case-based teacher education offers safe 

contexts within which teachers can explore their alternatives and judge their 

consequences” (p. 214). 

In the scope of these considerations, this study investigated the development of 

prospective elementary teachers’ knowledge to teach algebra in elementary grades 

through case discussions. 

1.1 Purpose of The Study  

The purpose of this study was to investigate the development of prospective 

elementary teachers' (PET) “subject matter knowledge” and “pedagogical content 

knowledge” (L. Shulman, 1987) to teach algebra in the elementary grades during 

their participation in the case discussions that focused on early algebra contents. 

More clearly, the study aimed to find out the change in PETs’ knowledge related to 

equivalence and equations, generalized arithmetic, and functional thinking as part of 

“subject matter knowledge” and their knowledge to teach these contents in terms of 

knowledge of students’ thinking, instructional strategies, and representations as part 

of “pedagogical content knowledge,” after participating in early algebra lessons 

including case discussions.  
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1.2 Research Questions  

The specific research question that guided this study was the following: 

How does the prospective elementary teachers’ knowledge to teach early algebra 

develop after attending early algebra lessons including case discussions?  

a. In what aspects does PETs’ subject matter knowledge related to 

equivalence and equations, generalized arithmetic, functional thinking, 

and the concept of variable change after attending early algebra lessons 

including case discussions?  

b. In what aspects does PETs’ pedagogical content knowledge in terms of 

knowledge of students’ thinking, instructional strategies, and 

representations for algebra in early grades change after attending early 

algebra lessons including case discussions?  

1.3 Significance of The Study  

“All students should learn algebra” (NCTM, 2000, p. 37) and early algebra studies 

conjecture that when young students have some sustained experiences related to 

algebraic reasoning, they develop “important habits of mind” and gain much deeper 

mathematical understanding, by comparison with the ones who have experiences 

focused on arithmetical competence and so they become better prepared for 

secondary algebra learning (Blanton et al., 2007, p. 8). Moreover, everyone accepts 

that one of the most critical factors on student learning is teacher knowledge 

(Fennema & Franke, 1992). Therefore, to provide better mathematics education, 

particularly algebra education, investigating prospective teachers’ early algebra 

related knowledge development has significance. Exploring how prospective 

teachers make sense of early algebra and teaching algebra in early grades might help 

us gain insight into designing future teacher education courses and professional 

development programs. 
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Among early algebra researches, the ones focused on prospective teachers’ 

knowledge are scarce, especially in the national context. Thus, the current study 

comes into prominence in terms of its contribution to the related literature. In 

addition, different from the existing research (e.g., Hohensee, 2017; McAuliffe & 

Vermeulen, 2018) which focus on the prospective teachers’ subject matter 

knowledge, this study was designed to examine mainly the development of 

prospective teachers’ pedagogical content knowledge. However, since subject matter 

knowledge is considered as a prerequisite for pedagogical content knowledge 

development (Agathangelou & Charalambous, 2020; Ball et al., 2005), prospective 

teachers’ subject matter knowledge is also examined within the scope of the study. 

In other words, while previous studies focused on prospective teachers’ 

comprehension of early algebra, this study also aimed to focus on examining their 

learning to teach early algebra. Moreover, similar to studies conducted by McAuliffe 

and Vermeulen; and Hohensee in which prospective teachers’ knowledge is 

examined in a content course, the intervention in this study is designed as including 

case discussions. Case-based teaching, as compared to the conventional method, 

assists prospective teachers in comprehending the complexity of teaching and allows 

them to connect theory-based principles to practical impasses (Gravett et al., 2017). 

Therefore, the study is also important because of the scarcity of the studies using 

case discussions in this area. This feature of the study distinguishes it from the others. 

1.4 Definition of Important Terms  

Early Algebra 

Early algebra refers to providing students with opportunities to make generalizations 

and examine mathematical relationships within the current curriculum to provide 

students with a deep and coherent understanding of mathematics and ultimately 

prepare them for learning advanced algebra (Blanton et al., 2007). 
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Prospective Elementary Teachers 

Prospective Elementary Teachers are college students who were in their third year 

in a four-year primary school education (PSE) program at a private university in 

Ankara, Turkey. The graduates of the program are certified to teach 1st to 4th grades 

(elementary school). 

Classroom Cases  

Classroom cases are “an account of an experience in which our intentions have been 

unexpectedly obstructed, and the surprising event has triggered the need to examine 

alternative courses of action” (L. Shulman, 2004, p. 474). Cases attempt to provide 

a multidimensional representation of the situation's context, participants, and reality 

(Gravett et al., 2017). They are seen as “a way to bridge the abstract nature of 

principles and teaching standards to classroom practice” (J. Shulman, 2002, p. 2). In 

this study, classroom case refers to a classroom narrative that includes the 

descriptions of lessons’ context, teacher’ decisions, students’ thinking and teacher-

students interactions. In other words, a classroom case is a written account of what 

occurred during a lesson. 

Case-Based Instruction 

Case-based instruction entails utilizing real-world examples to assist teachers in 

gaining the knowledge and skills they need to respond to the complexities and 

authenticity of real-world classrooms (Merseth, 1996; Sykes & Bird, 1992). It is an 

instruction method in which students read, analyze, and reflect on the classroom 

cases (Ertmer & Stepich, 1999; Kowalski,1999). In the current study, case-based 

instruction refers to a way in which prospective elementary teachers discuss and 

reflect their ideas related to mathematical understanding, students' thinking, and 

teachers' moves on a classroom case.  

Big Ideas 

Big ideas are “key ideas that underlie numerous concepts and procedures across 

topics” (Baroody, Cibulskis, Lai, & Li, 2004, p. 24). 
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CHAPTER 2  

2 LITERATURE REVIEW 

This study investigates the development of prospective elementary teachers' 

knowledge to teach algebra in the early grades through case discussions. In this 

chapter, the related literature will be introduced in three parts. The first part will give 

information about the framework used for teacher knowledge. The second part will  

focus on the need for early algebra studies, the reconceptualization of algebra, and 

the nature and content of early algebra. Lastly, the use of case-based instruction in 

teacher education will be explained in the third part. 

2.1 Teacher Knowledge 

It is indeed beyond doubt that "to be a teacher requires extensive and highly 

organized bodies of knowledge" (L. Shulman, 1985, p. 447). Nevertheless, there is 

no agreement on what teachers need to know or what constitutes the teacher 

knowledge (Even & Tirosh, 2008), neither on pre-service teacher development and 

assessment (Hill et al., 2004) nor on what should be investigated in studies related to 

teacher knowledge (Petrou & Goulding, 2011). On the other hand, while knowledge 

and pedagogy were previously considered separately, Lee Shulman (1986, 1987) 

initiated a new wave by pointing out the content dimensions of teaching.  

L. Shulman (1987) proposed seven dimensions of teacher knowledge by referring to 

content as a missing paradigm in teaching research. These dimensions are introduced 

in Table 2.1. 
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Table 2.1  

L. Shulman’s (1986,1987) Dimensions of Teacher Knowledge 

According to L. Shulman's (1986) conceptualization, subject matter knowledge is 

"the amount and organization of the knowledge per se in mind of the teacher" (p. 9), 

and it involves not only knowing the subject related facts, principles, or rules and 

also knowing the reasons under the structures. Besides, L. Shulman identifies 

pedagogical content knowledge as knowing "ways of representing and formulating 

the subject that make it comprehensible to others" and "what makes the learning of 

specific topics easy or difficult" (p. 9). Moreover, understanding related to students' 

thinking or misconceptions is an essential component of pedagogical content 

knowledge. The last dimension of L. Shulman's conceptualization of teacher 

knowledge is curricular knowledge, and it is the knowledge of available instructional 

materials, scope, and sequence of the current curriculum.   

Although L. Shulman's conceptualization still maintains its influence on teacher 

education and research, it is criticized because of a lack of clear distinction between 

content and pedagogical content knowledge (Ball et al., 2008) and ignorance of the 

dynamic nature of teaching (Fennema & Franke, 1992). Then, based on his work, 

several conceptualizations or frameworks for teacher knowledge were put forward 

(e.g., Ball et al., 2008; Fennema & Franke, 1992; Grossman, 1995; Peterson, 1988). 

Among them, the model of "Mathematical Knowledge for Teaching (MKfT)," which 

was introduced by Ball, Thames, and Phelps (2008), guided this study and will be 

explained in the following section. 

General Dimensions  Content Dimensions 

General pedagogical knowledge Subject matter knowledge 

Knowledge of learners 
Pedagogical content 

knowledge 

Knowledge of the educational context Curricular knowledge 

Knowledge of educational ends, purposes, and 

values 
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2.1.1 Mathematical Knowledge for Teaching Framework  

Ball, Thames, and Phelps (2008) generated the Mathematical Knowledge for 

Teaching framework as a detailed categorization of L. Shulman's (1986,1987) 

conceptualization and the framework composed of two main domains, which are 

subject matter knowledge (SMK) and pedagogical content knowledge (PCK). Then, 

while the domain of SMK is divided into three subdomains as common content 

knowledge (CCK), specialized content knowledge (SCK), and horizon content 

knowledge, the domain of PCK is also divided into three subdomains as knowledge 

of content and students (KCS), knowledge of content and teaching (KCT) and 

knowledge of content and curriculum (see Figure 2.1). 

Figure 2.1   

Domains of mathematical knowledge for teaching (Ball et al., 2008, p.403) 

According to Ball et al. (2008), under subject matter knowledge, while common 

content knowledge refers to knowledge and skills that are not specific for teaching 

and used in other settings, specialized content knowledge refers to teaching specific 

knowledge and skills. For instance, to expect and respond to students' “why” 

questions such as why we need a common denominator to add two fractions, might 

be categorized under SCK. Furthermore, as the last component of SMK, horizon 

content knowledge is "an awareness of how mathematical topics are related over the 
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span of mathematics included in the curriculum" (p. 403). Concerning the 

components of pedagogical content knowledge, firstly, knowledge of content and 

students includes the knowledge about students' conceptions and misconceptions by 

combining knowledge about content and students. Secondly, knowledge of content 

and teaching refers to the knowledge such as selecting and sequencing mathematical 

tasks with an awareness of decisions' advantages and disadvantages, orchestrating 

classroom discussion, or using students' strategies and responses to provide 

mathematical understanding. KCT is shortly a combination of knowledge about 

content and teaching. The third and last component of PCK, similar to L. Shulman's 

curricular knowledge, knowledge of content and curriculum refers to teachers' 

knowledge about what students have learned in previous years and what they will 

learn in the future related to their current learning area.  

Hohensee (2017), asserted that in the learning and teaching process of early algebra, 

while elementary students need to transition from arithmetic to algebra, prospective 

elementary teachers need to transition from formal algebra back to early algebra. 

This is because early algebra is a relatively new idea and that most prospective 

teachers do not have early algebra related experience in their elementary education. 

Based on this, “if prospective elementary teachers are going through a similar 

process as elementary students (although in reverse), then it makes sense for 

prospective elementary teachers to first learn about early algebra as content before 

learning how to teach early algebra” (Hohensee, 2017, p. 233). Therefore, the current 

study, which aimed to investigate the development of prospective elementary 

teachers' knowledge to teach algebra in early grades, focused on KCS and KCT 

dimensions in terms of (a) students' conceptions and misconceptions and (b) 

instructional strategies and representations, respectively, as part of PCK, and as well 

as CCK as part of SMK. Assuming that PETs go through a similar learning process 

with elementary students, the knowledge and skills that elementary students should 

acquire, which early algebra studies have put forward, are regarded as common 

content knowledge related to the early algebra content, which PETs were expected 

to learn in this study. 
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2.2 Early Algebra  

The primary purpose of elementary school mathematics is to provide young students 

with fundamental mathematical knowledge and skills and preparing them for higher 

mathematics. Algebra is one of the significant components of mathematics that 

students encounter in middle and high school (Kieran, 2004). Therefore, elementary 

school mathematics should offer young students content to develop necessary 

concepts and skills related to algebra. Nevertheless, because of the traditional 

"arithmetic-then-algebra" approach, students' studying for competence in arithmetic 

and procedural fluency in early grades is followed by learning algebra in middle 

grades as a "distinct subject matter standing in a particular order" (Schliemann et al., 

2007, p. x). The distinction of arithmetic and algebra and the abrupt transition 

between them deprives students of developing significant mathematical schemes and 

makes learning algebra difficult in later grades (Kaput, 1998; Kieran, 2004). Hence, 

recently a consensus has emerged on the substantial role of algebra at all grades, and 

the necessity of reformulation of school algebra from kindergarten to higher grades 

has risen (e.g., NCTM, 2000). Supporting this idea, the curricula of countries such 

as Singapore and Korea, which have high success in mathematics in international 

exams (see results of TIMMS 2019 in Mullis et al., 2020), include content to support 

algebraic thinking at early grades. According to Ferrucci’s (2004) overview, 

although it is not explicitly referenced, Singapore’s curriculum provides activities to 

contribute to the algebraic thinking in early grades. Similarly, while Korean students 

begin to study formal algebra in grade 7, algebraic thinking is supported by several 

prerequisite activities at early elementary school levels.  

As Carraher and his colleagues (2008) state, "early algebra is not the same as algebra 

early" (p. 235). In other words, early algebra means neither to down the traditional 

algebra curriculum into elementary grades nor to replace arithmetic with algebra. It 

means reforming our way of teaching arithmetic (Carpenter et al., 2005) to help 

students recognize and reason with underlying mathematical structures and 

properties and develops the ability to identify, describe, and analyze the relationships 
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between varying quantities (Knuth et al., 2016). In a word, early algebra seeks an 

answer to the question, "What kinds of algebraic concepts can children learn in 

instructional settings that support algebraic thinking?" (Kaput et al., 2008, p. xviii), 

in order to prepare them for formal algebra in later grades.  

The distinction between algebra in early grades and traditional school algebra 

brought the questions of what algebra is and what kind of thinking should be 

considered algebraic (e.g., Bell, 1996) and the need for the reconceptualization of 

those concepts (Kaput, 1998). To that end, various characterizations of algebra that 

highlight important aspects have been asserted (e.g., Bednarz et al., 1996; Kaput, 

2008; Kieran, 1996; Usiskin, 1988). Among these characterizations, Kaput, who is 

the pioneer of the early algebra approach, introduced a useful framework, which 

guided this study.  

This section in the literature review intends to present the rationale behind the early 

algebra studies. Next section will detail Kaput's (2008) framework, and it will be 

followed by the nature and content of early algebra. Lastly, the studies related to 

teaching early algebra will be overviewed.  

 

2.2.1 Kaput’s Algebraic Reasoning Framework  

According to Kaput (2008), algebraic reasoning has two core aspects (Core Aspect 

A & B), and these two aspects run through three content strands (Strand 1, 2 & 3).  

Figure 2.2 presents each core aspects and strands.  
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Figure 2.2  

Kaput’s core aspects and strands (Kaput, 2008, p.11) 

As stated in Figure 2.2, while Core Aspect A focuses on regularities and relations to 

make generalizations and using symbols for generalizations, Core Aspect B focuses 

on symbol manipulations and following rules. Kaput (2008) explained that Core 

Aspect B is usually developed after Core Aspect A is developed. Stated another way, 

during the algebraic reasoning process, by using symbols as a tool, a relational 

understanding should be advanced first, then skills for acting on symbols should be 

considered. These two core algebraic thinking aspects are embodied in three content 

strands, and despite the presence of the strands as single entities in the figure, they 

overlap (Kaput, 2008). Strand 1 refers to generalized arithmetic, which is the "heart 

of algebra" (Kaput, 2008, p. 12). It could be explained as seeing how "algebra is 

inherent to arithmetic" (Carraher & Schliemann, 2007). It involves building 

generalization from structures of arithmetic (e.g., structures of arithmetic operations 

and properties) in terms of their form rather than their computed value. The next 

strand, Strand 2, refers to functions and focuses on reaching generalizations that 

describe systematic variation of samples in a domain and acting on the forms of these 

generalizations. Lastly, Strand 3 refers to modeling and is explained in three types. 

The first type is the number or quantity specific modeling, and it reflects the usage 
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of the syntactic aspect of algebra to solve an arithmetic problem in which the variable 

regards as an unknown. The second type of modeling is expressing and generalizing 

regularities in situations as a form of function. The last one refers to generalizations 

as single-answer modeling, which builds on solutions to arithmetic problems by 

nature.  

To investigate the development of prospective elementary teachers' knowledge to 

teach algebra in early grades, this study concentrates on using symbols for 

generalization (Core Aspect A) and acting on symbols (Core Aspect B) in the 

contents of generalized arithmetic (Strand 1) and functions (Strand 2). 

2.2.2 The Content of Early Algebra  

To put it merely, early algebra refers to "encompass algebraic reasoning and algebra-

related instruction among young learners—from approximately 6 to 12 years of age" 

(Carraher & Schliemann, 2007, p. 670) and "immersing them in the culture of 

algebra" (Lins & Kaput, 2004, p. 47; italics in the original). It is believed that 

throughout the first six years of elementary school, developing arithmetic and 

algebraic thinking simultaneously provides the later algebra learning become a 

"natural and non-threatening extension of mathematics of elementary school 

curriculum" (Cai & Moyer, 2008, p. 3). Although there is no consensus about what 

early algebra contains, whatever content or activity helps students go beyond the 

arithmetic and computational fluency to understanding mathematical structures 

could be a part of early algebra (Cai & Knuth, 2005; Lins & Kaput, 2004).  Algebraic 

thinking in early grades is defined by Kieran (2004) as: 

Algebraic thinking in the early grades involves the development of ways of 

thinking within activities for which letter-symbolic algebra can be used as a 

tool but which are not exclusive to algebra and which could be engaged in 

without using any letter-symbolic algebra at all, such as analyzing 

relationships between quantities, noticing structure, studying change, 

generalizing, problem solving, modeling, justifying, proving, and predicting 

(p. 149). 
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Later on, based on Kaput's (2008) core aspects, Blanton and her colleagues (2011) 

proposed the four core algebraic practices as generalizing, representing, justifying, 

and reasoning with mathematical relationships. These core algebraic practices were 

regarded as a skeleton for planning early algebra lessons and developing questions 

of data instrument. Besides, five big ideas for algebra in early grades were identified 

in the light of core content strands and previous early algebra studies. These five big 

ideas are (i) equivalence, expressions, equations, and inequalities; (ii) generalized 

arithmetic;  (iii) variable; (iv) proportional reasoning; and (v) functional thinking 

(Blanton, Stephens, et al., 2015).  

In the scope of this study, the development of prospective elementary teachers’ SMK 

and PCK were investigated in three big ideas, which are (a) equivalence and 

equations, (b) generalized arithmetic, and (c) functional thinking. Each of these will 

be elaborated on in the following sections. The other big ideas, variable, proportional 

reasoning, and the inequalities and expressions as the component of a big idea were 

not investigated in the scope of this study. However, since variable notation is a 

powerful tool for expressing generalizations (Carraher & Schliemann, 2007), the 

prospective teachers were expected to use variables while representing the 

generalizations related to generalized arithmetic and functional thinking. Thus, 

PETs' conceptions of variables were also examined under the common content 

knowledge.  

2.2.2.1 Equivalence and Equations 

NCTM (2000) regards that "equality is an important algebraic concept that students 

must encounter and begin to understand in the lower grades" (p. 94). The equation is 

"a mathematical statement that uses an equal sign to show that two quantities are 

equivalent," and "using equations to reason about, represent, and communicate 

relationships between quantities is a cornerstone of algebra" (Blanton et al., 2011, p. 

25).  Studies suggest that the notion of equality and relational view of the equal sign 

(i.e., as a symbol showing the relation between quantities that are the same on both 
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sides of the symbol) become significant for solving equations (e.g., 3x-5 = 2x +1) 

(Knuth et al., 2005) and operating on the structure of equations (i.e., carry out the 

same operations both sides) (Kieran, 1992) and solving equations with an 

understanding rather than memorizing a series of rules (Falkner et al., 1999). 

Moreover, according to the national mathematics curriculum by MoNE (2018), 

students are expected to realize the meaning of the equal sign as an “equality” 

between the mathematical expressions at 2nd grade (see M.2.1.3.5. in MoNE, 2018).  

However, it is well documented that students do not view the equal sign as a symbol 

of equivalence; instead, they think that the equal sign is a signal to "do something" 

or an announcement of the result of an arithmetic operation (Falkner et al., 1999; 

Knuth et al., 2006; McNeil & Alibali, 2005). For example, in the study by Falkner 

et al. (1999), when the students at 1st to 6th grade were asked to find the missing value 

in the equation 8 + 4 = __ + 5, the majority of the students in each grade level thought 

that the missing value was either 12 or 17. Less than 10% of students at each grade 

level found the correct answer of 7. While the students’ thinking who ignored 5 and 

answered 12 by adding 8 + 4 or answered 17 by adding all given numbers is defined 

as "operational thinking," the students’ thinking who considered the equality on each 

side of the symbol and answered 7 is defined as "relational thinking.” In the studies 

conducted in the national context, similarly, students were found to have an 

operational conception towards the equal sign (e.g., Bulut et al., 2018; Isler-Baykal 

et al., 2019; Yaman et al., 2003). For example, in the study of Isler-Baykal et al. 

(2019), about 60% of 3rd grade students, 30% of 4th grade students, and 23% of 5th 

grade students found the missing value in the equation 7 + 3 = __ + 4 as 10 or 14 

with operational thinking.  

Besides the students' conception of the equal sign, operational or relational, 

Carpenter et al. (2003) described students' strategies to find the missing value in the 

equation 8 + 4 = __ + 5. The students who thought operationally, as mentioned 

earlier, wrote 12 in the blank by considering "the answer comes next" to the equal 

sign and added 8 and 4, or they found the answer as 17 by ignoring where the equal 

sign appeared in the number sentence and "added all numbers," 8 + 4 + 5 = 17. On 
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the other hand, the students who thought relationally found 7 as the correct answer 

either by computing or by recognizing the structure of the equation. The students 

who used the strategy of "computation" added 8 and 4 on the left side and found the 

number 7 thinking of what number  would give 12 when added to 5 which was on 

the right side. As a more sophisticated and more flexible strategy, some students 

considered the "structure" of the equation and the relation between the numbers on 

both sides by recognizing that 5 is one more than 4 and that the missing value must 

be one less than 8.  

One of the major stumbling blocks in learning algebra is students' poor 

understanding of the equal sign (Carpenter et al., 2003). Further, the misleading view 

of the equal sign does not improve with time or mathematical maturity (Freiman & 

Lee, 2004), and telling the meaning of the equal sign directly is not enough for 

students to develop a relational conception towards the equal sign (Falkner et al., 

1999). However, studies have shown that student's conception of the equal sign can 

develop from operational to relational (e.g., Blanton, Stephens, et al., 2015; Warren 

et al., 2009). In order for it to happen, teachers themselves need to have a relational 

view of the equal sign and the required pedagogical content knowledge to support 

students to develop meaningful understanding and use of the equal sign.  

The studies that focused on prospective or in-service teachers' knowledge for 

teaching equal sign, equivalence is quite limited. In one of the studies, Stephens 

(2006) assessed 30 prospective elementary teachers' preparedness to engage students 

in relational thinking and equivalence tasks. The findings of her study indicated that 

the majority of the prospective teachers showed awareness of relational thinking in 

identifying tasks' goals and sample students' work. Few participants, however, 

exhibited an awareness of the fact that many elementary school students had 

misconceptions regarding the meaning of the equal sign. Similar findings were 

recorded in Asquith et al. (2007) 's study. When they interviewed 20 middle school 

teachers, they found that teachers did not expect students to have misconceptions 

related to the equal sign, and they predicted that their students "have a stronger 

relational understanding of the equal sign than was actually demonstrated by student 
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responses" (p. 262).  Another study showed that teachers might not have the 

necessary knowledge for teaching equal sign. Vermeulen and Meyer (2017) 

interviewed three fifth and sixth grade teachers and concluded that teachers "lacked 

the knowledge and skills to identify, prevent, reduce, or correct students' 

misconceptions about the equal sign" (p. 136). In addition to the studies investigating 

the prospective or in-service teachers' initial knowledge for teaching equal sign, 

Santarone et al. (2020) assessed the development of prospective teachers' KCS and 

KCT related to the meaningful use of the equal sign by designing an intervention. 

Their study provided the prospective teachers with a research-based teacher 

intervention and assessed the development of knowledge for teaching equivalence 

through their practice-based experiences where they had opportunities to practice 

instructional strategies with students. They found that although the prospective 

teachers still demonstrated some difficulty to distinguish students' computational and 

relational views, and prompting the ways to entirely further students' relational 

thinking, the teacher intervention was found to help them to develop their KCS and 

KCT related to the equal sign.  

In the current research, the development of the prospective elementary teachers' 

CCK, KCS, and KCT related to equivalence and equations were investigated in a 

learning environment including case discussions. The findings might contribute to 

the literature about preparing prospective teachers to teach equivalence and 

equations as a cornerstone for algebra learning. 

2.2.2.2 Generalized Arithmetic 

Traditionally, elementary school students spend most of their time performing 

computations, learning algorithms, and finding correct answers. Their experience 

with generalizations, studying the fundamental properties' structure, and searching 

regularities and patterns in numbers and operations are pretty limited. However, 

NCTM (2000) emphasizes the significance of generalization in arithmetic by stating 

that "analyzing the properties of the basic operations gives students opportunities to 
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extend their thinking and to build a foundation for applying these understanding to 

other situations" (p. 161). Parallel with this idea, generalized arithmetic refers to 

"helping children see, describe, and justify patterns and regularities in operations and 

properties of numbers" in order to "move beyond arithmetic to algebraic thinking" 

(Blanton, 2008, p. 12). The development of algebraic thinking requires making and 

representing conjectures, as well as generalizing and justifying them (Kaput, 1999), 

and those activities "can bring a deeper purpose to arithmetic and children's 

arithmetic understanding" (Blanton, 2008, p. 12). In the national mathematics 

curriculum by MoNE (2018), several learning objectives under the domain of 

number and operations could be used to provide elementary students with 

opportunities to conjecture, represent, justify and generalize arithmetic relationships, 

and ultimately think algebraically. For example, the 2nd-grade learning objective that 

expects students to notice that changing the order of the multipliers would not change 

the product could be used to engage students in generalizing process.  

The studies on generalized arithmetic mainly focuses on a) the fundamental 

properties of number and operations (e.g., commutative property of addition or zero 

is additive identity), b) the relationships among operations (e.g., inverse relationship 

between addition and subtraction), and c) the relationships in a class of numbers and 

outcomes of calculations (e.g., operations with odd and even numbers). Making 

conjectures, justifying, and generalizing mathematical reasoning about these 

arithmetic aspects is significant for the unification of arithmetic and algebra (Hunter, 

2010). However, research showed that elementary students have limited experiences 

related to engaging in generalizations in arithmetic. For example, Anthony and 

Walshaw's (2002) study with the year 4 and year 8 students revealed that students 

struggle to reach correct generalizations related to commutativity. Although students 

were confident about the commutative property under addition and multiplication, 

they were not sure about the commutativity for subtraction. Moreover, they also 

found that students were not able to justify their conjectures with the models. Similar 

findings were recorded by Warren's (2001) study investigating elementary students' 

generalizations related to commutativity. Her study revealed that elementary school 
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students were capable of generalizing, but because of incorrect sense-making, 

misleading teaching materials, and over generalizations of new learning, they had 

difficulties in reaching correct generalizations.  

The studies so far also show us that thanks to the appropriate instruction, the 

difficulties that elementary students face while conjecturing, justifying, and 

generalizing can be eliminated, and the students can learn to construct and justify 

arithmetical generalizations. For example, in the study with students who were 9-11 

years old, Hunter (2010) concluded that "opportunities to develop explanations with 

concrete material and use notation to represent conjectures led to students developing 

further generalizations" (p. 111). Likewise, in the study of Blanton, Stephens, et al. 

(2015), when the 3rd grade students were asked whether 39 + 121 = 121 + 39 was 

true or false, none of the students who thought that the statement was true could 

explain by relying on the structure of the equation in the pre-test. However, after the 

intervention including the activities that guide students to make arithmetic 

generalizations, in the post-test, 66% of the students provided such an explanation, 

including recognition of commutativity (e.g., "True, because 121 + 39 is just 39 + 

121 in reverse"). In addition, Isler et al.'s (2013) study also showed that instruction 

could improve students' ways of justification. Their study noted that students were 

beginning to build representation-based arguments and provide generalizations using 

facts about the sum of even and odd numbers during the classroom intervention, 

despite their generally poor performance on the pre-assessment. Thus, it is teachers 

who can create instructional settings to encourage generalizations and "algebrafy" 

their resources (Blanton & Kaput, 2003, p. 76).  

The studies that investigated teachers' knowledge related to teaching arithmetic 

generalizations is quite limited. The existing research focused on how prospective 

teachers make sense of fundamental properties and represent them. Monandi (2018) 

state that pre-service elementary teachers who took part in the study did not 

understand associative and distributive properties' use in simplifying numerical 

statements well by analyzing their performances on pre- and post-teaching algebra 

tests. Similarly, Ding et al. (2013), examining pre-service elementary teachers' 



 

 

21 

knowledge to teach associative property of multiplication, found that only 14% of 

PETs defined the associative property accurately, about 30% could generate a correct 

algebraic formula, and 25% provided an arithmetic example correctly. Moreover, 

they noted that most participants could not use concrete contexts (e.g., pictorial 

representations and word problems) to represent the associativity of multiplication 

conceptually. Such results and the paucity of studies examining teacher subject 

matter knowledge and pedagogical content knowledge regarding arithmetic 

generalizations may indicate that there is still much needed to know to bridge the 

gap between teaching arithmetic and algebra. 

2.2.2.3 Functional Thinking  

Functional thinking is closely related to the early algebraic thinking practices of 

generalizing, representing, justifying, and reasoning with mathematical relationships 

(Blanton et al., 2011; Kaput, 2008). Thus, functional thinking is seen as a critical 

route to learning and teaching early algebra (Carraher & Schliemann, 2007). 

According to Blanton, Brizuela, et al. (2015), functional thinking involves a) 

generalizing relationships between covarying quantities; b) representing and 

justifying these relationships in multiple ways such as using natural language, 

variable notation, tables, and graphs; and c) reasoning with these generalized 

representations (p. 512). Parallel with these practices, NCTM (2000) states that 

elementary students should learn to describe and extend generalizations about 

patterns; using words, symbols, tables, and graphs to represent patterns, and 

investigate the relationship between the variables change together. Similarly, in the 

national mathematics curriculum (MoNE, 2018), elementary students are expected 

to study patterns. Although the objectives do not directly ask students to focus on the 

relationship between the variables changing together, the elementary teachers could 

create an environment to guide students to think functionally. For example, the 3rd-

grade learning objective that expects students to expand and generate the number 
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patterns that have a constant difference could be used to encourage functional 

thinking.  

Confrey and Smith (1991) propounded that students show three different modes of 

thinking when they generalize the functional relationships: recursive, covariation 

and correspondence. Recursive patterns represent variation in a single series of 

values, demonstrating how to get the following number in the sequence from the 

previous number (e.g., in the context of a varying number of dogs and the total 

number of the dogs' eyes; the number of dogs' eyes goes by 2); covariational thinking 

entails examining how two quantities vary in respect to one another and including 

that variation in the function's description (e.g., as the number of dog increases by 1, 

the total number of dogs' eyes increases by 2); and correspondence relationship is a 

function rule that expresses a coordination between two variables (e.g., the total 

number of dog eyes is twice the number of dogs) (Blanton et al., 2011).  

Based on these three modes of generalizing functional relationships, researchers 

developed several frameworks related to the level of representing generalizations 

(e.g., Barbosa, 2010; Blanton, Brizuela, et al., 2015; Stephens et al., 2017). Stephens 

et al.'s framework of "Levels of sophistication describing generalization and 

representation of functional relationships" (2017, p. 153; see Figure 2.3) was taken 

as a reference in the functional thinking dimension of this study because it was more 

up-to-date and comprehensive. 
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Figure 2.3  

Levels of sophistication describing generalization and representation of functional 

relationships (Stephens et al., 2017, p. 153) 

 

There is plenty of research which indicated that elementary students could engage in 

functional thinking, even at the kindergarten level. For instance, research showed 

that elementary students could use tables to represent and reason with the 

relationships (e.g., Brizuela & Lara-Roth, 2002, grade 2; Tanışlı, 2011, grade 5); 

although students initially tended to focus on recursive patterns, not on the 

relationships between variables (e.g., Lannin et al., 2006, grade 6), they were found 

to be capable of correspondence thinking that went beyond what was typically taught 

in elementary school (Blanton & Kaput, 2004, grades K-5; Turkmen & Tanışlı, 2019; 

grades 3-5). Furthermore, elementary students could express the correspondence 

relationships in words (e.g., Martinez & Brizuela, 2006, grades 2–5; Moss & McNab, 

2011, grade 2) and in variables (Blanton et al., 2017, grade 1; Isler et al., 2015, grades 

3-5). Studies in both national and international contexts indicated that supportive 

instruction could help elementary students to engage in covariational and 
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correspondence thinking (e.g., Akin, 2020, grade 5; Blanton, Stephens, et al., 2015, 

grade 3; Canadas et al., 2016, grade 2; Isler et al., 2017, grade 3-5; Ozturk et al., 

2020, grade 3). Thus, to create a learning environment that supports functional 

thinking, teachers need to have subject matter knowledge and pedagogical content 

knowledge related to functional thinking.  

Previous research showed that prospective teachers had difficulties in generalizing 

the functional relationships. Oliveria et al. (2021) examined Spanish and Portuguese 

prospective elementary teachers' functional thinking at the beginning of their teacher 

education program and found that successful strategies to generalize functional 

relationships were infrequent. When PETs were asked to find a distant term of a 

geometric pattern, %32 of Spanish PETs and %17 of Portuguese PETs were able to 

use correspondence strategies to find correct answers. Then, when they were asked 

to express the general term of the geometric pattern, only 30% of Portuguese PETs 

and 34% of Spanish PETs provided a correct general term. Strikingly, the majority 

of Portuguese PETs' strategies (47%) were recursive which did not lead to the 

generic term, as was the case with Spanish PETs' responses (35% of the strategies). 

Similarly, Alajmi (2016) found that prospective elementary and middle school 

mathematics teachers were not confident in developing general rules for the tasks 

that involved linear, exponential, and quadratic situations. In his study, prospective 

elementary teachers preferred drawing or counting to support their thinking and 

mainly used recursive strategies rather than explicit rules. Likewise, Yesildere and 

Akkoc (2010) found that prospective elementary mathematics teachers used 

recursive strategies while generalizing the patterns that were non-linear (quadratic) 

in nature. Furthermore, the existing research showed that prospective teachers faced 

challenges when using symbolic notations for generalizing (Zazkis & Liljedahl, 

2002) and had difficulties while providing justifications for their reasoning 

(Richardson et al., 2009). In the study conducted by  Richardson et al. (2009) in 

which prospective elementary teachers were asked to complete pattern-finding tasks, 

the researchers concluded that "while the generalizations were valid in terms of a 

rule, attempts to explain the algebraic symbols of the rules were incomplete with 
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respect to explaining the origins of the coefficient and/or the y-intercept of the rule" 

(p. 193). Besides those findings, we need to learn more about prospective teachers' 

algebraic thinking abilities, particularly their methods, misunderstandings, and 

challenges with a wide range of functional thinking topics (Yemen-Karpuzcu et al., 

2017).  

2.2.3 The Studies That Focus on Development of Teacher Knowledge 

Related to Early Algebra 

As already noted, except for those focusing on the meaning of the equal sign, most 

of the studies investigating prospective teachers' early algebra-related knowledge 

focused on initial subject matter knowledge. This was also true in the limited studies 

that examined the development of prospective teachers' early algebra-related 

knowledge. Hohensee (2017) examined prospective teachers' thinking after 

participating in a method course that focused on generalized arithmetic, functional 

relationship, and the meaning of the equal sign as the content of early algebra. The 

purpose of his study was "to examine how PSTs [pre-service teachers] learn about 

early algebra rather than how they learn to teach early algebra" (Hohensee, 2017, p. 

233). In the scope of the study, 13 prospective teachers firstly worked in groups on 

the activities that explored algebraic thinking, then they engaged in whole-class 

discussions during the 20 lessons (10 lessons for generalized arithmetic, 5 lessons 

for functional relationships, and 5 lessons for the meaning of the equal sign). Data 

of the study was collected through the meetings of the researcher and participants' 

groups of twos and threes. In those meetings, the prospective teachers worked on 

tasks that assessed their SCK related to the themes of the lessons. In the data analysis, 

participants' verbal responses were examined to figure out their meaningful insights 

and conceptional challenges after they attended the course. The findings indicated 

that the participants experienced the transition "from knowledge they had about 

formal algebra from high school to new knowledge about early algebra" (p. 242), 

they had new insights about identifying the operational and relational meaning of the 
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equal sign and representing quantities which are unknown or variable in informal 

ways without using algebraic symbols. On the other hand, although the participants 

made significant progress in representing functional relationships, identifying 

functional relationships and conceiving variables as being different from unknowns 

remained challenging for them.  

Another study that investigated the development of prospective teachers' early 

algebra-related knowledge in a course, like the current study, was conducted by 

McAuliffe and Vermeulen (2018), focusing on functional thinking. Their study 

aimed to investigate the prospective teachers' knowledge for teaching functional 

thinking during their teaching practicum. In the study, 26 prospective teachers were 

enrolled in an Early Algebra course lasting 24 weeks, 8 of which were teaching 

practicum in schools. Early Algebra course involved reading and discussing early 

algebra-related journal articles and planning an early algebra lesson for their teaching 

practicum. The study's data comprised participants' written lesson reflections, and 

video-recorded lessons were analyzed by considering four aspects of their SCK: 

representations, working with students' responses, restructuring tasks, and 

questioning. The findings revealed that the Early Algebra course helped prospective 

teachers develop their SCK for using different representations of functions, but they 

still needed support to encourage students to generalize and describe  functional 

relationships.  

The findings of these studies provide insight into the development of prospective 

teachers' knowledge related to early algebra and inform the teacher education 

courses. However, we still need to know further about this issue. The current study 

aimed to build on the existing research findings and, different from them, 

investigated the prospective elementary teachers' early algebra-related knowledge 

more comprehensively by focusing on SMK and PCK together.  
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2.3 Case-Based Teacher Education  

Lee Shulman (2004) voiced that teaching has an uncertain and unpredictable nature. 

Therefore, to prepare teachers for the dynamic teaching work, teacher education 

programs must provide them such skills to analyze the situations and make quick 

decisions. However, teacher education programs are criticized because of the 

distinction between theory and practice (Ball & Cohen, 1999). Due to the theory and 

practice gap, novice teachers face practice shock (Stokking et al., 2003) and 

complain that the overly theoretical courses of their professional education do not 

provide necessary practical knowledge for real-life situations (Lambert, 2010). As 

part of the endeavor to eliminate that problem, using an instructional method in 

teacher education is asserted: case-based instruction, which is also referred to as 

case-study pedagogy (Heitzmann, 2008).   

The use of cases in the education of professions such as law, medicine, and business 

goes a long way back. Nevertheless, an alternative to traditional teaching methods 

(e.g., lecture-based instruction) was offered to be case-based instruction in teacher 

education (Merseth, 1996), and it started to be used after the 1980s. With the 

emphasis on the complex nature of teaching, Hutchings (1993) provided a rationale 

for using cases in teacher education as: 

Cases have the ability to situate the conversation about teaching on this 

middle ground between process and content (technique and substance) where 

a particular teacher, with particular goals, teaches a particular piece of 

literature (in this instance) to a particular student (p. 10).   

Judith Shulman (2002) considered the use of cases as "a way to bridge the abstract 

nature of principles and teaching standards to classroom practice" (p. 2) and defined 

a classroom case as "… a piece of controllable reality, more vivid and contextual 

than textbook discussion, yet more disciplined and manageable than observing or 

doing work in the world itself" (1992, p. xiv). In case-based instruction, on the other 

hand, students read, analyze, and reflect on the cases (Ertmer & Stepich, 1999; 

Kowalski, 1999). Mostly this process starts with individually reading or observing 
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the case and taking notes, and then it is followed by small group discussion and 

eventually finishes with whole group discussion (Morris, 2008).  

It is well documented that cases can be an effective tool in teacher education (e.g., 

Lundeberg et al., 2000; J. Shulman, 1992; Smith & Friel, 2008; Sudzina, 1999). 

Since cases can reflect the multidimensional representation of real-life situations 

with the context and participants (Gravett et al., 2017) and have the power to 

integrate theory and practice (Mitchell, 2001), cases help teachers to create a 

repertoire of solutions for everyday problems in teaching (Kleinfeld, 1992), 

encourage critical thinking and decision-making abilities (Butler et al., 2006), assist 

to reason about dilemmas in instruction (Markovits & Even, 1999) and provide 

opportunities to enhance subject matter and pedagogical content knowledge 

(Henningsen, 2008). In a word, case-based instruction enables teacher candidates to 

"think like a teacher" (Kleinfeld, 1992, p. 33). 

Merseth (1996) divided case purpose into three categories: (a) cases as exemplars, 

(b) cases as opportunities to practice analysis and contemplate actions, and (c) cases 

as stimulants to personal reflection. The exemplar cases are generic examples of 

practice, theory, instructional method, or principle supplied to students' discussion. 

Moreover, exemplar cases can be used "to honor 'best practice' or to make effective 

teaching more public" (p. 728). The second category of cases provides opportunities 

to practice actions rather than being confirmed or specified practice. In the light of 

their own experiences, emotions, and prior knowledge (Merseth & Lancey, 1993), 

during the analysis of cases, students are expected to practice decision making and 

problem-solving. Lastly, cases in the third category involve multiple perspectives 

and aims to foster the interpretation of students' reflectivity.  

Besides the purposes and uses of cases, the forms of cases are also various in the 

literature, such as text-based cases, video-based cases, and multi-media cases. In this 

study, prospective teachers' knowledge development was investigated in a learning 

environment that involves text-based cases and case discussions. The cases were 

selected as content-specific and used as exemplars and opportunities to practice 
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analysis and consider actions, according to Merseth's (1996) categorization. 

Although some studies asserted that video-based cases could be a more powerful tool 

than text-based cases in teacher education (e.g., Moreno & Valdez, 2007), text-based 

cases are also used as an effective tool in teacher education (e.g., Henningsen, 2008) 

since the nature of human thought is narrative and narrative knowledge is linked to 

memorable occasions in a person's life (Bruner, 1987). Based on this idea and 

because it was not feasible to produce video-based or multimedia cases during this 

study, the case discussions were carried out through text-based cases. 
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CHAPTER 3  

3 METHODOLOGY 

This study investigated the development of prospective elementary teachers' subject 

matter and pedagogical content knowledge to teach algebra in elementary grades 

through case discussion. The methodology will be presented in this chapter. Firstly, 

the design of the study will be introduced, and then the participants and the context 

of the study will be described.  These sections will be followed by an explanation of 

the data collection tool, the data collection procedure, and data analysis. After that, 

issues related to the trustworthiness of the study will be presented. Lastly, the 

limitations of the study will be adverted.  

3.1 Design of The Study 

The current study aimed to investigate the development of PETs' knowledge to teach 

algebra in early grades by analyzing their individual interviews before and after their 

participation in the early algebra lessons in a method course. The research process 

was performed to understand PETs' knowledge development and examine their 

experiences. The design of the study was qualitative since "qualitative researchers 

are interested in understanding how people interpret their experiences, how they 

construct their world and what meaning they attribute to their experiences" (Merriam 

& Tisdell, 2016, p. 6). 

There are several qualitative research approaches. Among all, the case study 

approach was performed in this study since the investigation was "an in-depth 

description and analysis of a bounded system" (Merriam & Tisdell, 2016, p. 37). In 

parallel with the purpose and design of this study, Yin (2003) defined the case study 

as " an empirical inquiry that investigates a contemporary phenomenon in depth and 

within its real-life context, especially when the boundaries between phenomenon and 
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context may not be clearly evident" (p. 13). The current study used individual 

interviews as the data source to investigate the case of PETs' early algebra-related 

knowledge development in a learning environment, including case discussions.  

While this study can be categorized as an instrumental case study, according to Stake 

(2005), it is categorized as a descriptive case study, according to Yin (2003). A case 

study that a researcher aims to "describe an intervention or phenomenon and real-

life context in which it occurred" (Yin, 2003, p. 15) is called a descriptive case study. 

On the other hand, an instrumental case study examines a particular case "mainly to 

provide insight into an issue or to redraw a generalization. The case is of secondary 

interest; it plays a supportive role, and it facilitates our understanding of something 

else" (Stake, 2005, p. 437).  Both aspects fit the nature of the current study.  

3.2 Context of The Sudy  

The data for answering the research questions of this study was collected during the 

particular five weeks of an undergraduate course in the primary school education 

program. Therefore, the study's context comprises of the teacher education program, 

the undergraduate course, and intervention implemented during the course, the early 

algebra lessons. Each of them will be explained in the following sections.  

3.2.1 The Teacher Education Program 

The participants of the study were enrolled in an undergraduate primary school 

education (PSE) program in a private university in Ankara, Turkey. The program of 

PSE is a 4-year undergraduate teacher education program. In this Turkish-medium 

program, the students are offered an option to take English language preparation 

education. The PSE program trains prospective teachers working with primary 

school students (grades 1-4).  
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In general terms, the primary school education program offers subject matter 

knowledge, the teaching profession, practice, and general culture courses. The 

subject matter knowledge courses include theoretical courses such as basic 

mathematics and basic science for primary school, drama, games, and physical 

activities and several teaching methods courses for all disciplines at the primary 

school (e.g., mathematics, science, social studies, Turkish language, foreign 

language, music, visual arts).  These subject matter knowledge-related courses are 

spread to four-year education. Besides, the courses of educational sciences 

(Psychology of Education, Educational Philosophy, Sociology of Education), 

Educational Technology, Instructional Principles and Methods, Classroom 

Management, Measurement and Assessment, and Guidance are offered as teaching 

profession courses, and most of those are completed by the end of the third year. In 

the last year, the students are expected to complete the courses of teaching practice 

during the two semesters. The teaching practice courses are carried out in the training 

schools with the supervision of course instructors and teachers in training schools. 

Lastly, besides the subject matter knowledge and teaching profession courses, the 

primary school education (PSE) program offers some general culture courses related 

to Ataturk's Principles and History of Turkish Revolution, Turkish Language, 

Foreign Language, Information Technologies, Community Service, and some 

elective courses which are depended on students' interest.  

Among the courses in the PSE program, Basic Mathematics in Primary School and 

Teaching Mathematics courses are the ones related to prospective teachers' 

knowledge to teach mathematics, which is the focus of this study. Basic Mathematics 

in Primary School course is offered in the fall semester of the program's 1st year. 

Within the scope of this course, content such as basic operations, various number 

systems, functions, sets, and data analysis are focused on. In the Teaching 

Mathematics course, methods, and techniques for teaching mathematics at the 

primary school level are presented. Since the development of PETs' knowledge to 

teach algebra in early grades was investigated through the last five weeks of the 
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Teaching Mathematics I course, in the following section, detailed information about 

the course will be provided.  

3.2.2 Teaching Mathematics Course  

The Teaching Mathematics course is offered to 3rd year prospective elementary 

teachers in both fall and spring semesters as Teaching Mathematics I and Teaching 

Mathematics II. These courses are compulsory and do not have any prerequisite 

courses. In a general manner, the purpose of the courses is to provide prospective 

teachers with insight and knowledge related to the principles of mathematics 

teaching, the teaching and learning strategies, fundamental learning theories, basic 

mathematical skills, measurement, and assessment in mathematics teaching. 

Moreover, as one of the main objectives, the PETs are expected to gain the necessary 

knowledge to teach the contents and objectives in the primary school mathematics 

curriculum at the end of Teaching Mathematics courses. The detailed learning 

outcomes for these courses are presented in Table 3.1.  

Table 3.1   

The learning outcomes of Teaching Mathematics courses 

Course  Learning Outcomes 

Teaching 

Mathematics I 

Know the goals and basic principles of mathematics education  

Know the teaching and learning principles in mathematics 

education 

Apply mathematics teaching and learning strategies 

Know the goals and philosophy of elementary education 

Use the basic abilities of relation, communication, reasoning 

Use information technologies in mathematics teaching 

Know the steps of number concept development 

Develop activities on 1., 2. and 3. grades mathematics program 

Teaching 

Mathematics 

II 

Take precautions for the misconceptions of fractions 

Prepare activities related to fractions 

Know the steps of the development of geometric thinking 

Prepare activities for geometry concepts 

Develop activities for measurement concepts 

Develop activities for data analysis 

Know the assessment strategies in mathematics education 

Note: This information was taken from the related official webpage of the university.  
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As mentioned earlier, according to the Turkish mathematics curriculum, algebra is 

not a learning domain for elementary grades, and there is no emphasis on algebraic 

thinking. Similarly, in the Primary School Education Program and particularly in 

Teaching Mathematics courses, the prospective elementary teachers have not been 

presented any algebra and teaching algebra-related content. Teaching Mathematics I 

course would be offered in the fall semester when the researcher contacted the course 

instructor, and its content was found appropriate to conduct this study. 

The five-week early algebra content was added to the Teaching Mathematics I course 

schedule in the 2020-2021 fall semester. The details of the early algebra lessons will 

be given in the following section. 

3.2.3 Early Algebra Lessons 

The last five weeks of the 12-week Teaching Mathematics I course were devoted to 

introducing early algebra content to prospective elementary teachers, which 

comprised the intervention for this study. Each week, there were 2 lesson hours. The 

researcher guided these lessons on Microsoft Teams during distance education. 

Throughout the 10 hours of the intervention, the prospective elementary teachers 

were expected to develop their subject matter knowledge and pedagogical content 

knowledge for teaching algebra in elementary grades. The learning goals were 

adapted for each big idea in two groups: subject matter knowledge (particularly 

CCK) and pedagogical content knowledge (particularly KCT and KCS). Moreover, 

three more learning goals were adapted for the concept of variable, which was 

significant to represent the relationships related to the big ideas. These three learning 

goals were also categorized under the common content knowledge. The learning 

goals for CCK were adapted from the LEAP project (see Blanton, Stephens, et al., 

2015) with permission. The LEAP project focused on understanding the impact of a 

systematic, multi-year approach to teaching and learning algebra in the elementary 

grades. In the different phases of the project, the researchers developed a curricular 

framework for early algebra, an instructional sequence, and grade-level assessment 
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tools. They investigated the effectiveness of instructional sequence in grades 3-5 

overtime in terms of students’ algebra understanding. Hence, the order and the 

learning goals were appropriate for providing prospective elementary teachers with 

early algebra content in this study. On the other hand, the learning goals for KCT 

and KCS were adapted from Ball et al. (2008)'s descriptions of teacher knowledge 

categories. The learning goals that guided the early algebra lessons are presented in 

Table 3.2.   

Table 3.2  

The learning goals for the Early algebra lessons 

Big Ideas / 

Concept 
Learning Goals 

Equivalence 

and Equations  

CCK1. Develop a relational understanding of the equal sign 

by identifying and reasoning with structural relationships in 

the equation or by using arithmetic strategies 

KCS1. Analyze students' possible conceptions and 

misconceptions. Identify students’ conceptions of the equal 

sign as relational or operational.   

KCS2. Expect students to use different strategies to find a 

missing value in a number sentence. 

KCT. Design a lesson with appropriate strategies and 

representations to guide students to gain a relational 

understanding of the equal sign 

Variable  CCK1. Understand that a variable represents the measure or 

amount of the object, not the object itself 

CCK2. Understand that the role of a variable in a functional 

relationship is that of varying quantity  

CCK3. Understand how to use variables to stand for 

unknowns in equations 
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Table 3.2 (continued) 

Generalized 

Arithmetic 

CCK1. Identify and generalize arithmetic relationships 

• fundamental properties in use in computation 

• the relationships among operations and their 

inverse relationships 

• arithmetic relationships in a context such as 

classes of numbers or outcomes of calculations 

CCK2. Describe arithmetic generalizations in words and 

variables 

CCK3. Understand that arithmetic generalizations are 

true for all values of variables in a specified number 

domain. 

CCK4. Justify arithmetic generalizations by empirically, 

by using representation-based reasoning, by using general 

arguments, or by using algebraic arguments 

CCK5.  Reason with the arithmetic generalization 

KCS. Analyze students' possible conceptions and 

misconceptions in the processes of conjecturing, 

representing, justifying, and generalizing arithmetic 

relationships 

KCT. Design a lesson with appropriate strategies and 

representations to provide students to engage in 

conjecturing and generalizing and to experience core 

algebraic thinking practices 

Functional 

Thinking 

CCK1. Identify and describe recursive, covariational, and 

correspondence relationships in words 

CCK2. Describe correspondence relationships, or 

function rules using variables 

CCK3. Justify relationships represented in words and 

variables using function rules, tables, or problem context 

CCK5. Reason with generalization by interpreting 

representations (graph, table, function rule) and linking 

representations 

KCS. Analyze students' functional thinking approaches 

while generalizing and representing the relationships 

between two variables that change together.  

KCT. Design a lesson with appropriate strategies and 

representations to provide students to think functionally 

by coordinating the relations between the variables, 

instead of focusing on the change in one variable 

Note: The CCK learning goals were adapted from the LEAP project (see 

http://algebra.wceruw.org) 
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In line with these learning goals, in the early algebra lessons, the prospective 

elementary teachers were involved in case discussions on the learning and teaching 

early algebra. Besides, they worked on the activities that can be used with elementary 

school students to support their algebraic thinking. Each week, usually, the first 

lesson focused on PETs' common content knowledge and activities were 

implemented to enable them to experience core algebraic thinking practices of 

generalizing, representing, justifying, and reasoning. Then, in the second lesson, 

through case discussions, PETs were provided to enhance their pedagogical content 

knowledge in terms of possible student thinking, instructional strategies, and 

representations to be used. More specifically, PETs were asked to read, analyze, and 

discuss the cases from the point of mathematical understanding, students' thinking, 

and teachers' moves (Schifter & Bastable, 2008) to improve their knowledge for 

teaching the core algebraic thinking practices in the particular content areas. For 

example, while reading the given classroom cases, they were asked questions 

including “How do you interpret those students' answers?” “Why does the teacher 

need to ask this question?” “What do you think about the teacher's move?” “As a 

teacher, would you prefer a different strategy?” “Besides this student's explanation, 

what kind of student response might be expected for that question?” The activities 

and the classroom cases in which the case discussions were carried out were chosen 

from the literature according to the learning goals. In determining the classroom 

cases, the presence or absence of a knowledge or skill specified in the learning goal 

in the classroom vignette was taken into consideration. For example, in the classroom 

case named Two of Everything (Wickett et al., 2008, pp. 4-12), the students examine 

a growth pattern, record the data on a table, describe the relationships they see in the 

table, in words and in variables. This classroom vignette was considered as 

appropriate exemplar case for discussing how patterns could be used to encourage 

functional thinking. In the case of Two of Everything, not only the appearance of the 

knowledge and skills specified in the learning goal (e.g., describing a recursive 

pattern, creating a table, justifying the correspondence relationship) but also their 

absence was considered important for the case discussions. For example, none of the 
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students in that case described the relationship between the variables using 

covariational thinking. This situation was used as an opportunity to engage 

prospective elementary teachers in a discussion about other possible student thinking 

and the teacher strategies to guide students think covariationally. The other 

classroom cases were determined in a similar way and presented to the participants 

to have reflection and discussion related to the content specified for that lesson. Table 

3.3 shows the schedule and contents of the early algebra lessons.  

Table 3.3  

The Schedule and Content of the Early algebra lessons 

Week Big Idea Lesson Topic  Task / Case 

1 Equivalence 

and 

Equations 

1 What is early 

algebra?   

 

Lecture, classroom 

discussion (Blanton, 

2008; Kaput, 2008)  

 

2 The meaning of the 

equal sign  

Case Discussion – 

Students’ responses to 

the missing value item 8 

+ 4 = __ + 5 (Carpenter 

et al., 2003, pp. 10-13) 

2 Generalized 

Arithmetic 

3 Arithmetic 

relations of the 

fundamental 

properties of 

number and 

operation 

 

Commutative Property 

Task 

  

4 Arithmetic 

relationships in a 

context such as 

classes of numbers 

or outcomes of 

calculations 

 

Case Discussion – 

Defining Even Numbers 

(Schifter et al., 2018, pp. 

15-19) 
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Table 3.3 (continued) 

3 Generalized 

Arithmetic 

5 The concept of 

variable  

The adapted version of 

the Candy Problem 

(Blanton, 2008, p. 161) 

6 Justification of 

arithmetic relations  

Discussing the 

justification of a + b – b 

= a (Carpenter et al., 

2003, pp. 98-101) 

4 Functional 

Thinking  

7 Identifying and 

describing 

recursive, 

covariational, and 

correspondence 

relationships in 

words and 

variables. 

Justifying 

relationships 

represented in 

words or variables 

using function 

rules, tables, or 

problem context 

The adapted version of 

the Outfit Problem 

(Blanton, 2008, p. 177) 
8 

5 9 Case Discussion – Two 

of Everything (Wickett et 

al., 2008, pp. 4-12) 
10 

 

The early algebra lessons started with the ones focused on the big idea of equivalence 

and equations. Before discussing the meaning of the equal sign and the structures of 

equations, firstly, prospective elementary teachers were asked to think and discuss 

whether teaching algebra in elementary school is necessary and how algebra teaching 

should be at that level. After that, they were presented with the core algebraic 

practices and content strands for algebra learning in elementary grades. In the second 

lesson of the first week, PETs were asked to engage in a case discussion. They read 

the classroom cases in which students showed different conceptions of the equal 

sign, relational or operational, while finding the missing value in the 8 + 4 = __ + 5 

(see Carpenter et al., 2003, pp. 10-13). Then PETs discussed the students’ ways of 

thinking, what the equal sign means to them, questions to be asked to students who 
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show operational thinking, and teaching methods that can be used to lead students to 

relational thinking. 

The second week of early algebra lessons focused on the big idea of generalized 

arithmetic. In the first lesson, they worked on the commutative property task, which 

involves some multiplication problems that includes an opposite different number of 

groups and group size (e.g., 7 soccer teams with 5 players vs. 5 soccer teams with 7 

players). While working on that task, the PETs were asked to come up with a 

conjecture from the result of multiplications, generalize, represent in word and 

variable and justify why these conjectures are true. In this way, the PETs were 

provided to engage in core algebraic practices. Then, in the second lesson, they were 

asked to participate in the case discussion by analyzing a classroom case in which 

elementary students define the even numbers, justify why their definitions are true 

for each even number, and lastly discuss the sum of even numbers (see Schifter et 

al., 2018, pp. 15-19). In a word, in the classroom case, the students were going 

through a conjecturing process. While reading that classroom case, PETs discussed 

the students’ conjectures related to even numbers and other possible conjectures, 

evaluated the questions that asked by the teacher in the case, explained what they 

would do if they were the teacher of this class and discussed how this kind of lesson 

could lead students to think algebraically.  

The third week of the lessons was also revolved around generalized arithmetic. In 

the first lesson of this week, PETs worked on the adapted version of the Candy 

Problem (see Blanton, 2008, p. 161) and discussed the roles of variables (varying 

quantity or unknown) in an equation. After that, in the second lesson, they read a 

case in which a student tries to justify why the conjecture of a + b – b = a is true 

(see Carpenter et al., 2003, pp. 98-101). During the discussion of that student and 

her teacher in the case, the student first uses some empirical strategies for 

justification. Then she justifies the truthiness of a + b – b = a with general arguments 

thanks to her teacher’s guiding questions. While discussing the case, PETs were 

asked to think about the student’s ways of justification, how the teacher’s questions 

challenge the student, how they would respond to the student’s different thinking, 
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and how elementary teachers can guide students to use general arguments while 

justifying conjectures.  

The last two weeks of the early algebra lessons concentrated on the big idea of 

functional thinking. In the 4th week, during the two lessons, PETs worked on the 

adapted version of the Outfit Problem (see Blanton, 2008, p. 177). They were asked 

to examine a functional relationship, generalize, and represent in words and 

variables. Then they were also asked to justify the truthiness of that functional 

generalization and reason with it. By this task, PETs were provided to engage in core 

algebraic practices with a functional relationship and compare their different level 

generalizations (variational, covariational, and correspondence). In the 5th week, 

during the two lessons, PETs were asked to participate in the case discussion through 

the case of Two of Everything (see Wickett et al., 2008, pp. 4-12). As mentioned 

earlier, in this classroom case, the students examine a growth pattern, which could 

be represented as a linear function rule, a = 2b, record the data on a table, describe 

the relationships they see in the table in words and variables. While analyzing that 

classroom case, PETs were led to think and discuss the possible purposes of 

advantages of constructing a table, students’ ways of examining patterns in the table, 

students’ ways of generalizing and describing functional relationships, students’ 

other possible answers, the purposes and effectiveness of the questions that were 

asked by the teacher and how to use the number patterns to guide elementary students 

to think functionally.  

3.2.4 Role of the Researcher  

The researcher designed the interview protocol and the plans of early algebra lessons. 

Then, she implemented the early algebra lessons and took the role of facilitator while 

carrying out the case discussions. Moreover, the role of the interviewer was also taken 

on by the researcher for the pre-and post-interviews. In the data analysis process, she 

was the main coder.  
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3.3 Participants of the Study  

The participants of the study were selected among the 3rd-year students who attended 

the primary school program and took the Mathematics Teaching I course in the fall 

semester of 2020-2021. Forty-three prospective elementary teachers were enrolled 

in the Teaching Mathematics I course, and all of them attended the early algebra 

lessons. None of the prospective teachers have an experience related to early algebra 

in both their elementary school education and teacher education. Eighteen of these 

43 students volunteered to participate in the pre-and post-interviews. Among the 

volunteer prospective teachers, nine people who had completed the Basic 

Mathematics course were selected as the research participants. The selection of the 

participants was performed by a purposive sampling method by considering the 

PETs’ GPA and Basic Mathematics course grades. A final score out of 100 was 

formed by calculating the mean of each participant's GPA and passing grades of the 

Basic Mathematics course. Except for one, the final scores of the participants were 

over 65. According to the final scores, the participants were divided into four groups 

as below 65 points (group 1), between 65-75 points (group 2), between 75-85 (group 

3), and above 85 points (group 4). There were 1, 3, 7, and 7 participants in the groups, 

respectively. Then, the research participants were selected as nine people, one person 

from group 1, 2 people from group 2, and three people from both groups 3 and 4. In 

this way, a mixed group was aimed to be created in terms of achievement. All 

participants were female. The details about the participants of the study are presented 

in Table 3.4. 
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Table 3.4   

Participants’ Information 

ID Gender GPA (out of 100) 

Basic 

Mathematics 

course grade 

PET1 F 40 45 

PET2 F 60 85 

PET3 F 60 85 

PET4 F 80 77 

PET5 F 80 84 

PET6 F 80 85 

PET7 F 80 92 

PET8 F 80 95 

PET9 F 80 100 

 

3.4 Data Collection Tool and Procedure  

The data of the current study was collected through individual interviews before and 

after the early algebra lessons. The purpose of the data collection was to examine the 

change in the prospective elementary teachers' subject matter knowledge and 

pedagogical content knowledge related to big ideas of equivalence and equations, 

generalized arithmetic, and functional thinking as the content of early algebra, and 

their conception of variable. As Patton (2002) stated we need to ask questions for the 

thing we cannot directly observe, and interviewing provides to "find out what is in 

and on someone else's mind" (p. 341); thus, the individual interviews was used as 

the data collection tool. The individual interviews lasted about one hour and were 

conducted on Zoom by the researcher.  

The identical interview protocol was used in pre- and post-interviews. The protocol 

was prepared as semi-structured and consisted of three parts. In each part there were 

questions about the subject matter knowledge and pedagogical content knowledge 

related to a big idea (see Appendix A). More specifically, part A focused on 

equivalence and equation in terms of the meaning of the equal sign and the structure 
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of equations; part B focused on generalized arithmetic, and part C on functional 

thinking. In part A of the protocol there was also a question for the participants’ 

conception of variable.  

While developing the interview protocol, the questions for the subject matter 

knowledge, particularly common content knowledge, were taken or adapted from the 

literature by considering the learning goals that guided the early algebra lessons. For 

the big idea of equivalence, prospective elementary teachers were expected to 

develop a relational understanding of the equal sign by identifying and reasoning 

with structural relationships in the equation. Correspondingly, the questions asked 

for the same purpose in the literature, Interpreting Equal Sign Item (Knuth et al., 

2005, p. 70; see Table 4.1), Missing Value Item (Carpenter et al., 2003; see Table 

4.2), and True/False Items (Stephens, 2006; see Table 4.4) were asked to examine 

participants’ common content knowledge related to the meaning of the equal sign 

and the structure of equations . For the concept of variable, the PETs were expected 

to understand that a variable represents the measure or amount of the object and may 

stand for a varying quantity or an unknown in an equation. In line with that objective, 

Which Is Larger Item (Knuth et al., 2005, p. 70; see Table 4.5) took part in the 

interview protocol to investigate participants' conception of the variable. For the big 

idea of generalized arithmetic, PETs were asked to develop their knowledge of 

identifying and generalizing arithmetic relationships, defining arithmetic 

generalizations in words and variables, verifying generalizations' validity, and 

reasoning with them. In order to investigate their knowledge and ways of thinking 

on these topics, as suggested by Blanton (2008), the prospective elementary teachers 

were presented with a set of computations (see Figure 4.1) to lead them to make 

arithmetic generalizations. Then, they were asked to make a conjecture from this set 

of computations, describe their conjecture in variables, explain why they think their 

conjecture is true and reason about whether their conjecture is valid for all numbers 

or not. Finally, for the big idea of functional thinking, PETs were expected to identify 

and describe recursive, covariational, and correspondence relationships in words, 

describe a function rule in variables, justify the correctness of the relationships and 



 

 

46 

reason with these relationships. Therefore, similar to the studies of Stephens et al. 

(2017) and Blanton et al. (2015), in the interview, PETs were provided a problem, 

Saving for a Bicycle (adapted from Blanton, 2008, p. 179; see Figure 4.2), which 

includes the quantities that change together, and they were asked to respond to the 

questions focused on the relationship between the quantities in the problem.  

Besides the common content knowledge, the questions to investigate prospective 

elementary teachers' pedagogical content knowledge, namely knowledge of content 

and students and knowledge of content and teaching, were developed by the 

researcher based on the literature. The current study aimed to investigate the PETs' 

knowledge of content and students in terms of students' conceptions and 

misconceptions. Following this purpose, in the interviews, the participants were 

asked to explain their expected students' responses for a given problem, and then 

they were provided with some possible students' responses and were asked to explain 

students' ways of thinking. In the similar way, Tanisli and Kose (2013) and Asquith 

et al. (2007) asked prospective teachers to reflect on the sample students’ response 

in their studies which focus on knowledge of content and students. In more detail, in 

part A, The Missing Value Item, 8 + 4 = [    ]  + 5, was presented to participants 

again and asked how elementary students could respond to the question. After that, 

as has been reported in the literature (e.g., Carpenter et al., 2003; Knuth et al., 2005), 

student answers to the same question that can be given through operational and 

relational thinking were presented (see Table 4.24) to the participants to observe how 

they interpret students' thinking. In part B, PETs were asked to develop a conjecture 

that elementary students might make from the set of computations (Figure 4.3). 

Then, based on the justification approaches proposed by Carpenter et al. (2003, p. 

87), the student responses justifying an arithmetic relationship empirically or using 

general arguments were presented to the participants, and they were asked to 

interpret them. Lastly, in part C, Saving for a Bicycle Problem, was provided to 

participants again, and they were asked what patterns the elementary students would 

notice after completing the table and how they could establish relationships between 

the number of weeks and the total amount of money. After that, based on Stephens 
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et al.'s framework of "Levels of sophistication describing generalization and 

representation of functional relationships" (2017, p. 153), the students' possible 

responses that are in the variational, covariational, and correspondence thinking 

levels were presented to participants to interpret.  

The second component of pedagogical content knowledge that the study focused on 

was knowledge of content and teaching. The prospective elementary teachers' KCT 

was investigated in terms of instructional strategies and representations. To 

investigate PETs’ knowledge, they were given an objective from the curriculum 

developed by the Ministry of National Education (MoNE, 2018) related to each big 

idea and asked to explain what kind of lesson they would plan to address those 

objectives and what they would consider. In this way, the aim was to observe what 

kind of opportunities PETs create for algebraic thinking in the lessons they plan. 

In the process of the development of interview questions, after receiving expert 

opinion from a mathematics education researcher focusing on early algebra, the pilot 

study of the interview was conducted. A 3rd-year student from a Primary School 

Education program in a different university volunteered for the pilot interview. The 

pilot interview gave the researcher a chance to test the interview questions and see 

whether they were understood as intended. After the pilot study, some changes were 

made to the order of the questions in the interview protocol. For example, the 

question that asked the participants to describe a lesson for a given learning goal was 

ordered before the ones that included activities and problems that can be used for 

this purpose. In this way, it was ensured that the prospective teachers were not 

affected by other questions while describing their lesson. 

3.5 Data Analysis  

The current study aimed to investigate the development of prospective elementary 

teachers' knowledge for teaching early algebra, and the data of the study was the 

participants' verbal responses to the interview questions. Therefore, the study was 
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qualitative in nature. According to Merriam (2009), all qualitative data analysis is 

content analysis in the sense that it analyzes the content of the data source. Thus, the 

content analysis was utilized for the individual interviews. 

Firstly, all video recorded individual interviews were transcribed. Then, the data 

analysis process was carried out in two parts: subject matter knowledge and 

pedagogical content knowledge. The prospective teachers’ responses to the 

interview questions in these two parts were read, categorized, and coded several 

times. During this process, while some codes were taken or adapted from the 

literature, the analysis of some questions were performed by emerging codes. Since 

most of the interview questions to investigate the PETs' common content knowledge 

were adapted from the related literature, these questions were mostly analyzed with 

the existing codes. On the other hand, the analysis of the questions for pedagogical 

content knowledge was carried with emerging codes guided by the stated framework. 

For example, the question, “which is the larger problem” (Knuth et al., 2005, p.70) 

was adapted from the literature and the approaches for answering that question was 

already determined with the existing codes as “variable explanation,” “single value 

explanation” and “operation.” On the other hand, in the questions such as asking 

participants to come up with a conjecture from a set of computations, participant 

responses were examined, grouped, and coded with the emerging codes. All the 

codes and explanations are provided in Chapter 4. 

3.6 The Trustworthiness of The Study  

Both qualitative and quantitative studies should persuade the readers about the 

study's reliability and validity. According to Merriam (2009), regardless of the type 

of research, this can be achieved by paying attention to the conceptualization of the 

study, how data is collected, analyzed, and interpreted, and how findings are 

presented. However, since qualitative and quantitative studies are different in nature, 

while the quantitative study could convince the readers with some procedures and 

short descriptions, the qualitative study should provide enough detail "to show that 
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the author's conclusion 'makes sense'" (Firestone, 1987, p. 19).  Therefore, instead 

of validity and reliability, it is widely accepted to use the different terminology 

suggested by Lincoln and Guba (1985) for qualitative research. They proposed 

replacing the terms internal validity with credibility, external validity with 

transferability, and reliability with consistency or dependability. In order to ensure 

the trustworthiness of the study, credibility, transferability, and consistency or 

dependability of the study will be explained in the following sections.  

3.6.1 Credibility and Transferability  

Credibility refers to the internal validity. According to Merriam (2009), internal 

validity in all research is dependent on the meaning of reality, and internal validity 

deals with "how research findings match reality" and if "the findings capture what is 

really there" (p. 213). In this study, peer examination as a proposed strategy by 

Merriam (2009) was performed to enhance credibility. Peer examination or peer 

debriefing involves the researcher discussing the research process and findings with 

a colleague who have used qualitative methods before (Krefting, 1990). Lincoln and 

Guba (1985) stated that this process helps the researcher be 'honest', and the 

researcher's biases be probed, providing the basis for the interpretation to be clarified.  

To perform peer examination in this study, a researcher who was experienced in 

qualitative research was involved in all the research process. At the beginning of the 

study, she shares her opinions and critics about the study's significance and 

feasibility. Related to methodology, particularly the development of the data 

collection tool, the questions' quality and purposes were debriefed. Then during the 

data collection, each week, the research process was discussed together. The strategy 

codes used were discussed in terms of their convenience and comprehensibility in 

the data analysis process. Moreover, at the end of the study, the correctness of the 

presentation and the interpretation of findings were examined by that experienced 

researcher.  
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Transferability refers to the external validity. Merriam (2009) describes the extent of 

the external validity as "the findings of one study can be applied to other situations" 

(p. 223).  Although the current study is qualitative and aimed to investigate the 

development of the prospective elementary teachers' knowledge to teach early 

algebra in a particular learning environment rather than making a generalization, it 

is accepted that researchers need to provide "sufficient descriptive data to make 

transferability possible" (Lincoln & Guba, 1985, p. 298).  Thus, the current study's 

thick description, which involves the theoretical and methodological approaches 

may enable the readers to understand and compare with other studies.  

3.6.2 Consistency or Dependability   

Consistency or dependability refers to the reliability. According to Merriam (2009), 

reliability deals with "whether the results are consistent with the data collected" (p. 

221) and the "research findings can be replicated" (p. 220). To that end, the study's 

procedures should be described in-depth and allow the reader to evaluate the degree 

to which acceptable research methods were followed (Shenton, 2004). Peer review 

is suggested by Merriam (2009) as one of the strategies that can be performed to 

provide consistency in qualitative studies. As detailed in the previous section, peer 

review helped the researcher to ensure the consistency of the findings and the data 

collected in this study. 

Furthermore, in the data analysis process, while coding participants' responses, 

reaching an intercoder agreement helps interpreting the participants' responses 

correctly. A second coder who was a mathematics educator researcher coded the 

randomly selected 20% of the data independently to assess the reliability of coding. 

When the agreement between the two coders was less than 80%, the codes were 

debated, and adjustments were recorded in the analysis until the two coders reached 

an agreement of 80%. 
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3.7 Ethical Issues  

While conducting the current study, the ethical issues were considered, and it was 

ensured that the participants were not physically or psychologically harmed in any 

part of the study. Firstly, before starting the research, the required permission was 

received from Human Subjects Ethics Committee (HSEC) (see Appendix B). In 

addition, the permission was obtained from the dean of the faculty of education, 

where the PSE program is offered, and from the instructor who delivered the 

Teaching Mathematics course. At the beginning of the study, the participants were 

informed about the purpose of the study and the process. All prospective teachers 

who attended the early algebra lessons and to those who participated in the individual 

interviews were explained that the participation was entirely voluntary and that there 

would be no evaluation or grading after the lessons or interviews. A consent form 

explaining this information in detail was presented to the participants, and they 

signed it before the study. 

In the data collection process, with the permission of the participants, the interviews 

were video recorded. Before starting the interviews, the participants were reminded 

that they could end the interview at any time and that they did not have to answer the 

questions they did not want. The researcher took care not to create a judgmental 

environment both in the lessons and in the individual interviews. 

Participants were told that their responses to the questions would be kept confidential 

and that only the researcher and her supervisor would have access to the data. 

Additionally, while presenting the study's findings, the names of the participants 

were coded as pseudonyms, such as PET1, to ensure that the data and the participants' 

identities were not linked directly. 

 



 

 

52 

3.8 Limitations  

This study has some limitations. The first one is the way lessons are delivered. Due 

to the pandemic conditions in the 2020-2021 academic year, the lessons were 

implemented through distance education. The five-week early algebra lessons 

offered to prospective teachers within the scope of the study were also held online, 

contrary to what was planned before the study. In this case, the inexperience of both 

the prospective teachers and the researcher in online courses may have affected the 

learning and teaching processes. 

Another limitation of the study is related to the data collection tool. In this study, 

only individual interviews were used as a data collection tool. Not using more than 

one data tool may limit the study's findings.  
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CHAPTER 4  

4 FINDINGS 

This study was conducted to investigate the development of prospective elementary 

teachers' knowledge for teaching early algebra through case discussion. The subject 

matter knowledge and pedagogical content knowledge of participants were aimed to 

be examined in the study. In this chapter, findings related to the change in 

prospective elementary teachers' knowledge before and after early algebra lessons 

will be presented. The chapter consists of two main sections. In the first section, the 

findings related to prospective elementary teachers' common content knowledge as 

the subject matter knowledge will be introduced. The findings related to prospective 

teachers' pedagogical content knowledge will be presented in the second section. 

Moreover, findings related to each category of knowledge will be shared according 

to the big ideas: equivalence and equations, variable, generalized arithmetic, and 

functional thinking (Blanton, Stephens, et al., 2015). While presenting the findings, 

the codes used in the data analysis will also be shared. During the data analysis, 

different categories were used for each interview question but there were two 

common categories for all questions: Other and No response. No response (NR) code 

was used when the participant did not respond or replied as "I have no idea." Other 

(O) code was used when the participant answered with a strategy other than the 

determined ones or when the strategy was not discerned. Throughout this chapter, 

the findings will be presented by detailing the major categories.   

4.1 Development of Prospective Elementary Teachers' Subject Matter 

Knowledge 

This study aimed to investigate the development of prospective elementary teachers' 

knowledge of early algebra, and that development was examined through pre-and 
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post-interviews before and after the early algebra lessons. During the early algebra 

lessons, as part of the common content knowledge, PETs were expected to a) 

comprehend the relational meaning of equal sign and concept of variable, b) identify, 

express in words and variables, justify and reason with arithmetic generalization and 

c) identify, express in words and variables, justify and reason with recursive, 

covariational and correspondence relationships (see Table 3.2 for all learning goals). 

The change in their knowledge related to these big ideas was examined with 

corresponding interview questions. The codes used to analyze PETs' verbal 

responses to those questions will be presented first in each section. 

4.1.1 Equivalence and Equations 

There were three interview questions related to the meaning of the equal sign and 

one question related to the concept of variable. These questions and the codes used 

in the analysis were taken or adapted from the related literature.  

For the meaning of the equal sign, the first item was "interpreting the equal sign" 

(Knuth et al., 2005, p. 70). The item and the codes are shown in Table 4.1.  

Table 4.1   

Interpreting the Equal Sign Item and Codes 

3 + 4 = 7 

               ↑ 

A2. What is the name of the symbol indicated by the arrow? 

       What does this symbol mean? 

Strategy Codes Definition  Example  

Relational – RL Participant expresses the 

general idea that the equal 

sign means "the same as" 

 

The values of 3 + 4 and 7 are 

the same/equal. 

Both sides of the equal sign 

have the same value 

Operational – OP Participants express the 

general idea that the equal 

sign means "add the 

numbers" or "the answer." 

It expresses the solution. It 

means the result of 3 + 4 is 7. 

It shows the result of the 

addition. 

Note: The problem and the codes were taken from Knuth et al. (2005, p. 70). 
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In the pre-interviews before the early algebra lessons, when PETs were asked what 

equal sign means to them, 5 out of 9 participants showed an operational 

understanding of the equal sign (see Table 4.2). For example, PET4 said that "At the 

end of the computation, we use the equal sign to show the result," and PET9 

explained the meaning of the equal sign as "It says that the sum of 3 plus 4 is 7, so 

as a result, it reaches the sum of 7." After the early algebra lessons, when the same 

question is asked to prospective teachers in the post-interviews, except one PET, 8 

out of 9 of them showed a relational understanding of the equal sign. While PET4 

still thought that "The equal sign is to show the result here, 3 plus 4 equals 7", the 

others described the equal sign as a relational symbol. For example, PET1 said that 

"It means the two sides are equal to each other," and PET5 said that "There are 

values on the right side of the equal sign and the left side of the equals sign. It shows 

that these are equal to each other" Besides this kind of expression, some preservice 

teachers emphasized the "sameness." For example, PET7 explained the equal sign's 

meaning as "It shows they have the same value." 

Table 4.2   

The Frequencies of the Strategies in Interpreting the Equal Sign Item 

 Pre (n=9) Post (n=9) 

Operational 5 1 

Relational 4 8 

 

The second interview question related to the relational meaning of the equal sign was 

the missing value problem that was taken (A3.1) and adapted (A3.2) from Carpenter 

et al. (2003). The items and the codes are shown in Table 4.3. The codes for this item 

are taken from Blanton et al. (2015).  
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Table 4.3   

Missing Value Item and Codes 

A3. Find the values of [    ]  that make each number sentence true. Explain your 

answer. 

a) 8 + 4 = [    ]  + 5        

b) 67 + 83 = [    ]  + 82       

Strategy Codes Definition  Example  

Operational – OP The participant adds the 

two numbers to on the left 

and stops or adds all the 

numbers. 

8 + 4 = 12   

8 + 4 + 5 = 17 

 

67 + 83 = 150 

67 + 83 + 82 = 232 

Computational – C  

 

To balance the two sides, 

the participant adds the two 

numbers on the left side and 

subtracts the number on the 

right side. 

8 + 5 = 12, 12 – 5 = 7 

 

67 + 83 = 150, 150 – 82 = 

68 

Structural – S The participant recognizes 

the structure in the equation 

and solves it without the 

need for a calculation.  

5 is one more than 4, so 

the number in the blank 

must be one less than 8 

 

82 is one less than 83, so 

the number in the blank 

must be one more than 67 

Note: The codes were taken from Blanton, Stephens, et al., 2015, p. 51. 

The frequencies of PETs’ usage of these strategies for missing value problem are 

presented in Table 4.4. 

Table 4.4   

The Frequencies of the Strategies in The Missing Value Question  

 A3.1 

8 + 4 = [ ] + 5 

A3.2 

67 + 83 = [ ] + 82 

 Pre (n=9) Post (n=9) Pre (n=9) Post (n=9) 

Operational 1 0 1 0 

Computational  6 4 5 4 

Structural  2 5 3 5 
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As shown in Table 4.4, in the pre-interviews, one prospective teacher showed an 

operational understanding and thought that missing values should be 12 and 150, 

respectively. Moreover, before the early algebra lessons, most of the PETs found the 

missing values by computation. For example, PET2 explained how she found the 

missing value for item A3.1: "First I added eight to four, it is twelve. When we 

subtract five from twelve, it is seven." On the other hand, in the post-interviews, the 

operational understanding was not observed in PETs' responses, and this time, the 

most commonly used strategy was structural. In both items, 5 out of 9 PETs found 

the missing value without computation. For example, PET6, who used the 

computational strategy for item A3.2 in the pre-interview, explained her strategy in 

the post-interview as "There is 83 here, on the opposite side there is 82, that is one 

less. Then there is 67, so that [the missing value] must be one more than the one on 

the opposite side". 

True/False Problem was the last question for the meaning of the equal sign. The 

participants were asked to evaluate whether the given statements were true or false. 

The items A4.1 and A4.2 were adapted from Stephens (2006), and item A4.3 was 

developed by the researcher. Moreover, the codes used for the analysis of those items 

were generated by drawing on the articles and emergent codes from the data. The 

items and the codes are shown in Table 4.5. 

Table 4.5   

True/False Item and Codes 

A4.1 If 16 + 15 = 31, the expression of 16 + 15 – 9 = 31– 9 is also true.  

        The statement is TRUE / FALSE. Because... 

Strategy Codes Definition  Example  

Compute – C  Participant makes the 

operations on both sides of 

the equation to show that 

they have the same value.  

It is true because both of 

the operations 16 + 15 – 9 

and  

31 – 9 results in 22. 
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Table 4.5 (continued) 

Same Expression – 

SE 

 

To justify the truth of the 

statement, participant 

asserts that 16 + 15 and 31 

are the same value. 

Both 16 + 15 and 31 are 

the same. It does not 

matter which one you 

write. They are the same 

value. 

 

Structure – S Participant recognizes the 

equivalence of the two 

equations and states that the 

same operation is 

performed on both sides of 

the equal sign in the second 

one, and the balance is 

preserved.  

 

The same number is 

subtracted from both sides 

of the equation. 

 

A4.2 The equations 3x – 12 = 51 and 3x – 12 + 3 = 51 + 3 have the same 

solution. The statement is TRUE / FALSE. Because... 

Strategy Codes Definition  Example  

Structure – S Participant recognizes the 

equivalence of the two 

equations and states that the 

same operation is 

performed on both sides of 

the equal sign in the second 

one, and the balance is 

preserved.  

 

The same number is added 

to both sides of the 

equation. 

 

Variable 

Misconception – 

VM 

 

Participant thinks that these 

two equations are different 

and that different values of 

the variable x results in 

different solutions.  

 

The letter x is a variable, 

and if we assign different 

values to them, they will 

not be the same. 

 

Solving Equations 

– SOL 

 

Participant solves both of 

the equations correctly or 

incorrectly to see whether 

the values of x in these 

equations are the same or 

not. 

When we solve both of 

these equations, the value 

of x is found to be 21 each 

time. 
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Table 4.5 (continued) 

A4.3 The expression of 17 = 17 is mathematically meaningful. 

         The statement is TRUE / FALSE. Because... 

Strategy Codes Definition  Example  

Expression of 

Equality – 

EOE 

 

Participant thinks that the 

statement is meaningful because 

it is an expression of equality. 

 

It is true since they are 

equal.  

17 is equal to 17, so it is 

equality.  

 

The need of the 

operation – 

NOP  

 

Participant thinks that the 

expression is meaningless in 

this form; it must be rewritten as 

including an operation. 

 

It is not meaningful; if 

written as 15 + 2 = 17 for 

example, it could be. 

 

Trivial – T 

 

Participant thinks that it is 

already known; we do not need 

to write such an expression. So, 

it is meaningless. 

17 is already equal to 17, it 

is known. Writing such an 

expression is meaningless. 

 

 

In both the pre-and post-interviews, all prospective elementary teachers thought that 

if 16 +1 5 = 31, the expression of 16 + 15 – 9 = 31 – 9 is also true, but their reasonings 

varied. In the pre-interviews, 5 out of 9 participants thought this statement was true 

because 16 + 15 and 31 are the same expression (see Table 4.6). Three of them made 

computations to see the equality. Only one participant, PET6, could recognize the 

structure of the equation and stated that "the same numbers subtracted from both 

sides of the equation" in the pre-interviews. Similarly, in the post-interviews, most 

participants, 5 out of 9, explained their reasoning based on “the same expression”. 

Also, the number of prospective teachers who could see the structure of the equality 

increased to 3.  
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Table 4.6   

The Frequencies of the Strategies in The True/ False Item – A4.1 

 Pre (n=9) Post (n=9) 

Compute 3 1 

Same Expression  5 5 

Structure 1 3 

 

As for the item A4.2 of the true/false problem, in the pre-interviews 5 PETs stated 

that the solutions of the equations 3x – 12 = 51 and 3x – 12 + 3 = 51 + 3 are not the 

same. Three of these participants' incorrect answers were due to the variable 

misconception (see Table 4.7). For example, PET9 said that "The value we substitute 

to x in the first expression and the value we substitute to x in the second expression 

may be different. That is why they do not have the same solution". Before the early 

algebra lessons, only PET2 explained that these two equations have the same 

solution by considering the structure of the equation. On the other hand, in the post-

interviews, all participants except 1 thought that the statement was true. The 

participant who thought that the statement was false used the strategy of solving the 

equations but found different solutions for both equations because she made an error 

while solving them. Different from the pre-interviews, no variable misconceptions 

were observed in the post-interviews, and 4 PETs explained the correctness of the 

statement by noticing the structure of the equation. For instance, PET9 stated that "It 

is true because the same number is added to both sides of the equation." Besides, the 

other 3 PETs detected the equivalence of the equations by solving them.  

 

 

 

 

 



 

 

61 

Table 4.7   

The Frequencies of the Strategies in The True/ False Item – A4.2 

 Pre (n=9) Post (n=9) 

Variable Misconception 3 0 

Solving Equations 3 4 

Structure 1 4 

Other 2 1 

 

When participants were asked whether “the expression of 17 = 17 is mathematically 

meaningful” true or not, 3 prospective teachers found that expression is meaningless 

in pre-interviews (see Table 4.8). Two PETs thought that it was a trivial expression 

and one of them asserted that it needs to be written with an operation by saying "It 

did not really make much sense to me. For example, it would make more sense to say 

17 equals 15 plus 2 or say 10 plus 7." However, after early algebra lessons, all 

participants affirmed the correctness of the statement by recognizing it as an 

expression of equality. For example, PET9 said that "I think it makes sense. It has 

the same number on both sides, showing that they are both equal." 

Table 4.8   

The Frequencies of the Strategies in The True/ False Item – A4.3 

 Pre (n=9) Post (n=9) 

T 2 0 

NOP 1 0 

EOE 6 9 
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4.1.2 Variable  

In the interviews, one question, “which is the larger problem” (Knuth et al., 2005, 

p.70) was asked to examine prospective elementary teachers’ conceptions of the 

variable. The items and the codes are shown in Table 4.9. 

Table 4.9   

Which Is Larger Item and Codes 

A7. Can you tell which is larger, 3n or n + 6? Please explain your answer. 

Codes Definition  Example  

Variable 

explanation – 

VEX  

 

Participant expresses the 

general idea that one cannot 

determine which quantity is 

larger because the variable can 

take on multiple values. 

 

We cannot decide because 

it depends on the value of 

n. 

 

When the value of n 

changes, the big one also 

changes. 

 

Single Value 

Explanation – 

SVEX  

 

Participant tests a single value 

and draws a conclusion on that 

basis; thus, the conclusions vary 

depending on the value tested. 

If the value of n is one, then 

3n is equal to 3, and n + 6 

is equal to 7. Thus n + 6 is 

the bigger one. 

 

Operation – 

OP 

 

Participant expresses the 

general idea that one type of 

operation leads to larger values 

than the other (for example, 

multiplication produces larger 

values than addition). 

3n is bigger since it is 

multiplication, and 

multiplication gives us 

bigger results than the 

addition does.  

 

Note: The item and the codes were taken from Knuth et al., 2005, pp. 70-71. 

Before the early algebra lessons, when prospective elementary teachers were asked 

if they can decide which of 3n or n+6 is larger, 4 out of 9 PETs stated that 3n was 

the bigger one because of the idea that multiplication produces larger values than 

addition (see Table 10). For instance, PET5 said that “we can say that while addition 

has fewer results, multiplication results in larger numbers.” Moreover, 2 participants 
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stated that n + 6 was the bigger one by testing a single value. For example, PET8 

stated that “If we substitute one for n, it becomes 3 (for 3n), the other becomes 7 (for 

n + 6), so n+ 6 is larger.” On the other hand, in the post-interviews, 8 out of 9 

participants asserted that we could not determine which quantity is larger because 

the variable can take on multiple values using VEX. For example, PET6 said that; 

We can decide by substituting numbers. For example, when we substitute 1 

for n, the value of 3n is 3 and the value of n +6 is 7. However, when we 

substitute 4 for n, the value of 3n is 12, and the value of the expression n + 6 

becomes 10. I think it depends on the values we give. That's why we can't 

use an exact expression. 

Table 4.10   

The Frequencies of the Strategies in Which is Larger Item  

 Pre (n=9) Post (n=9) 

SVEX 2 1 

OP 4 0 

VEX 3 8 

 

4.1.3 Generalized Arithmetic 

In the area of generalized arithmetic, prospective elementary teachers were expected 

to identify and generalize arithmetic relationships. Moreover, during that 

generalizing process, they were expected to describe those relationships in words 

and variables, justify and reason with them. In this direction, the prospective teachers 

were asked to make a conjecture from a set of computations (see Figure 4.1). 
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Figure 4.1    

Set of Computation for Conjecturing 

 

After completing the computations, the prospective elementary teachers were asked, 

“What do you notice in computations? Describe your conjecture in words” (item B2). 

The conjectures made by the participants were grouped into four different categories, 

one of which (OOP) was mathematically incorrect. These categories are shown in 

Table 4.11.  

Table 4.11   

Participants’ Generalizations from Computation Task  

B2. What do you notice in computations? Describe your conjecture in words. 

Codes Definition  Example  

Getting Zero – 

GEZ 

 

After completing 

computations, participant 

recognizes that if a number 

is subtracted from itself, we 

get zero OR opposite signs 

of the same number cancel 

each other out. 

The values with opposite 

signs cancel each other 

out. 

 

Subtracting a number from 

itself results in zero 

Getting the same 

number that was 

started with – 

GSN 

 

After completing 

computations, participant 

recognizes that adding and 

then subtracting the same 

number in a computation 

does not change the result.  

 

If we subtract a number 

from another number and 

add it, the result will be the 

first number. 

 

Order of 

Operations – 

OOP  

 

Participant states some 

incorrect conjectures related 

to the order of operation. 

 

In such a computation, the 

addition should be done 

first. 
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As a result of the analysis made in this way, it was noted that three of the participants 

made mathematically incorrect conjecture in the pre-interviews by considering the 

order of the operations (see Table 4.12). For example, PET2 stated her conjecture as 

“first, addition operations should be performed, not subtraction operations.” While 

one of the remaining participants could not come up with a conjecture, two of them 

made the conjecture of getting zero, and three of them made the conjecture of getting 

the same number that was started with. As for the post-interviews, 7 out of 9 

prospective teachers stated mathematically correct conjectures. Only one PET’s 

conjecture was incorrect. Five of the correct conjectures PETs stated related to the 

computations were “getting zero.” For example, PET7 stated her conjecture as “when 

we subtract a number from itself, we get zero.” The remaining three correct 

conjectures were about recognizing that adding and then subtracting the same 

number does not change the result. For instance, PET9 said that “If we add the same 

number to a number and then subtract it, the result will be our first number.” In 

short, 5 out of 9 prospective teachers made mathematically correct conjectures in the 

pre-interviews, while this number was recorded as 7 in the post-interviews.  

Table 4.12   

The Frequencies of the Conjectures from Computation Task 

 Pre (n=9) Post (n=9) 

GEZ 2 5 

GSN 3 2 

OPP 3 1 

O 0 1 

NR 1 0 

 

In the interviews, after prospective teachers asserted their conjectures, they were 

asked to reason with them, describe in variables, and justify. Hence, the analysis 

process was continued for the correct conjectures (for 5 PETs in the pre-interviews, 

for 7 PETs in the post-interviews). The first question the participants were asked to 
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answer about their conjecture was: For what numbers is your conjecture true? Is it 

true for all numbers? (item B3). The participants’ strategies for this question are 

presented in Table 4.13. 

Table 4.13   

Participants’ Strategies for Reasoning with The Conjectures  

B3. For what numbers is your conjecture true? Is it true for all numbers? 

Codes Definition  Example  

Structure – S  Participant makes a 

statement showing the 

recognition of the 

underlying structure and 

provides a general 

argument which shows that 

the conjecture is true for all 

numbers. 

 

It is true for all numbers 

because adding a number and 

then subtracting the same 

number means adding zero. 

And adding zero always gives 

the starting number. 

 

It is true for all numbers 

because adding a number with 

its opposite sign means 

subtracting a number from 

itself and equals zero. 

 

Compute – C 

 

Participant computes or 

uses specific examples in 

response without referring 

to the structure using some 

numbers from a number set 

to test the correctness of 

her conjecture.  

I think it is true. It can be a 

rational number; -2/5 and +2/5 

will cancel out again. 

 

Note: The codes were adapted from Blanton, Stephens, et al., 2015, p. 64. 

Two of the five prospective elementary teachers who asserted correct conjectures in 

the pre-interviews thought that their conjectures, “getting the same number that was 

started with,” was not true for all numbers (see Table 4.14). One of the remaining 

PETs who thought that her conjecture was true for all numbers, PET6, explained her 

reasoning by showing the recognition of the underlying structure stating, “adding 

and subtracting the same number means adding zero for me because they cancel 

each other out.” The other participant who thought that her conjecture, GSN, was 
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true for all numbers, PET9, explained her reasoning by using some numbers from a 

number set to test the correctness of her conjecture. The remaining participant’s 

justification, who also stated that the conjecture was true for all numbers, was not 

coded as using one of the strategies above and was coded as Other.  

In the post-interviews, all 7 participants who made correct conjectures stated that 

their conjectures were correct for all numbers. While making this decision, 3 of the 

7 participants drew attention to the mathematical structure, and 2 made computations 

with numbers from different number sets. For example, PET5, who asserted her 

conjecture as getting zero, explained her reasoning by recognizing the structure and 

said, “Because when we add a number, we subtract it again. So, it will be zero”. On 

the other hand, PET6, one of the participants, who explained her reasoning with 

computations, stated, “Natural numbers, rational numbers, irrational numbers... I 

was satisfied to see that when I added and subtracted the same number as the 

numbers representing those numbers, it gave that expression. So, I tried one example 

from each set of numbers”.  

Table 4.14  

The Frequencies of the Strategies for Reasoning with The Conjectures 

 Pre (n=5) Post (n=7) 

Structure 1 3 

Compute 1 2 

Other 3 2 

 

The second question the participants were asked to answer about their conjecture 

was: “How do you write your conjecture using variables?” (item B4). The 

prospective elementary teachers who made a correct conjecture in item B2 were 

expected to write a complete equation corresponding to their conjectures. However, 

the participants were observed to create equations which were not corresponding to 

their conjecture they stated or was not complete (they were expressions instead of 

equations and/or included numbers instead of variables). Therefore, in the strategy 
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codes, distinctions have been made for these situations. The codes and details are 

presented in Table 4.15. 

Table 4.15   

Participants’ Strategies for Representing Conjectures in Variables  

B4. How do you write your conjecture using variables? 

Codes Definition  Example  

Corresponding – 

Complete – CC  

Participant states a complete 

equation which is corresponding 

to the conjecture generated in 

Item B2.  

For the conjecture GEZ:  

a – a = 0 

For the conjecture GSN:  

a – b + b = a 

Corresponding – 

Incomplete – 

CIC 

Participant states an incomplete 

equation which is corresponding 

to the conjecture generated in 

Item B2.  

For the conjecture GEZ:  

a – a  

For the conjecture GSN:  

a – b + b,  

18 – b +b = 18, 18 – b 

+b 

Not 

Corresponding – 

complete – NCC  

 

Participant states a complete 

equation which is not 

corresponding to the conjecture 

generated in Item B2.  

 

For the conjecture GEZ:  

a – b + b = a 

For the conjecture GSN:  

a – a = 0 

Not 

Corresponding – 

incomplete – 

NCIC 

Participant states an incomplete 

equation which is not 

corresponding to the conjecture 

generated in Item B2.  

For the conjecture GEZ:  

a – b + b, 18 – a + a, 18 

– a + a = 18 

For the conjecture GSN:  

a – a  

 

In the pre-interviews, none of the 5 participants who made correct conjectures in 

item B2 could describe their conjecture in variables as “corresponding – complete” 

(see Table 4.16). While the responses of 2 of these participants were coded as 

corresponding – incomplete, the responses of the remaining 3 participants were 

coded as not corresponding – incomplete. For example, PET7 described the 

conjecture of getting the same number you started with, GSN, in variables as 18 + x 

– x = 18. This expression corresponded to her conjecture but was not complete 

because of the using numbers instead of variables. PET8, whose conjecture was 
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getting zero, GEZ, described her conjecture in variables as -a + a + 12 = 12. However, 

since this expression corresponded to the conjecture GSN, not GEZ, and included 

numbers, it was coded as “not corresponding – incomplete.” 

On the other hand, in the post-interviews, 2 of the 7 participants whose conjectures 

were mathematically correct could describe them in variables as “corresponding – 

complete.” For example, PET9 stated “x + y – y = x” to get the same number 

conjecture. That expression was a complete equation and corresponded to her stated 

conjecture in item B2. Four of the remaining 5 participants’ responses were coded 

as “corresponding – incomplete,” and one response was coded as “not corresponding 

- complete.”  

Table 4.16   

The Frequencies of the Strategies for Representing Conjectures in Variables 

Strategies Pre (n=5) Post (n=7) 

CC 0 2 

CIC 2 4 

NCC 0 1 

NCIC 3 0 

 

Related to the generalized arithmetic big idea, lastly, prospective elementary teachers 

were asked to justify their conjectures. Question B5 was: “Explain why your 

conjecture is correct.” The codes used for the analysis of this item were adapted from 

the related literature, which focused on the justification of conjectures (e.g., Blanton, 

Stephens, et al., 2015; Carpenter et al., 2003). The codes and details are presented in 

Table 4.17. 
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Table 4.17   

Participants’ Strategies for Justifying Conjectures  

B5. Explain why your conjecture is correct.  

Codes Definition  Example 

Authority 

Information – 

AUI  

 

Participant justifies the 

conjecture by relying on 

information from an authority 

(i.e., teacher or books). 

This is how we were taught 

 

This is how we learned in 

lessons 

Empirical – E  

 

Participant justifies the 

conjecture by showing it 

works for one or more 

examples.  

I have tried on some numbers 

and seen it works. 

Generic 

Example – GE   

 

Participant justifies the 

conjecture by showing the 

structure or relationship using 

a particular example as a 

generic example.  

 

Subtracting a number from 

itself results in zero. Since 

let's say I have 17 pens. I'll 

throw those pens later. I have 

nothing left. So, it is zero. 

Using a 

General 

Argument – 

GA   

 

Participant justifies the 

conjecture by using accepted 

mathematical arguments or 

definitions. 

 

If we subtract another number 

from one number and then 

add it, the result will be the 

first number. Because that 

also means adding zeros and 

adding zeros to any number 

gives the number itself. 

The frequencies of PETs’ usage of these strategies for justifying their conjectures are 

presented in Table 4.18.  

Table 4.18   

The Frequencies of the Strategies for Justifying Conjectures  

Strategies Pre (n=5) Post (n=7) 

AUI 0 1 

E 2 3 

GE 2 2 

GA 0 1 

Other 1 0 
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As seen in Table 4.18, different from the pre-interviews, in the post-interviews, one 

participant, PET6, justified her conjecture using a general argument, GA, by stating 

that “Because when we add and subtract the same number, they create a zero. That's 

why it gives the first number.”  

4.1.4 Functional Thinking  

The last content that prospective elementary teachers were expected to develop 

related to algebraic thinking was functional thinking. PETs were expected to 

identify, describe, justify, and reason with recursive, covariational, and 

correspondence relationships as common content knowledge. In this direction, to 

evaluate their knowledge related to quantities that change together, they were asked 

to reason on the “Saving for a Bicycle” problem (see Figure 4.2; adapted from 

Blanton, 2008, p. 179).  

Figure 4.2   

Saving for a Bicycle Problem   

After the participants filled the given table, they were asked to check over the data 

and to answer the following two questions, respectively: “Describe the patterns that 

you see in the table,” (item C2), and “How do you describe the relationship between 

the number of weeks and the total amount of money?” (item C3). In the analysis of 
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these items, Stephens et al.’s framework of “Levels of sophistication describing 

generalization and representation of functional relationships” (2017, p. 153) was 

taken as reference. The strategy codes are introduced in Table 4.19. 

Table 4.19   

Strategies for Describing Generalization and Representing Functional 

Relationships in Words 

C2. Describe the patterns that you see in the table. 

C3. How do you describe the relationship between the number of weeks and the 

total amount of money in words? 

Codes Definition  Example  

Variational 

Thinking  

Recursive 

Pattern 

Particular 

 – RP-P 

The participant defines the 

recursive pattern only with 

particular numbers. 

It goes as 3, 6, 9, 

12… 

Recursive 

Pattern 

General  

– RP-G 

Participant identifies a 

correct general recursive 

pattern. 

The amount of 

total money goes 

up by 3 

Covariational Thinking – CR Participant identifies a 

correct covariational 

relationship. The two 

variables (number of weeks 

and amount of total money) 

need to be coordinated 

rather than mentioned 

separately. 

 

When the 

number of weeks 

goes up 1, the 

amount of money 

goes up by 3.  

Correspondence 

Thinking 

Functional 

Particular 

– FR-P 

Participant identifies a 

functional relationship 

using particular numbers 

but does not make a general 

statement relating to the 

variables. 

1x3, 2x3, 3x3… 

 

Functional 

Basic 

 – FR-B 

Participant identifies a 

general relationship 

between the two variables 

but does not identify the 

transformation between 

them. 

x3 

multiply by 3 
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Table 4.19 (continued) 

 Functional 

Emergent 

– FR- E 

Participant identifies an 

incomplete function rule in 

words, often describing a 

transformation on one 

variable but not explicitly 

relating it to the other or not 

clearly identifying one of 

the variables. 

It is three times 

the number of 

weeks.   

 

They are just 

multiplying the 

number of weeks 

by 3. 

 

Functional 

Condensed 

– FR-C 

Participant identifies a 

function rule in words that 

describes a generalized 

relationship between the 

two variables, including the 

transformation of one that 

would produce the second. 

 

 

The amount of 

total money is 

three times the 

number of 

weeks. 

 

If you multiply 

the number of 

weeks by three, 

you get the 

amount of total 

money. 

Note: The codes were adapted from Stephens et al., 2017, p. 153.  

In the pre-interviews, 6 out of 9 prospective teachers described the pattern they saw 

in the table as a recursive pattern (see table 4.20). For example, PET2 answered item 

C2 by stating that “here their difference is the same, increasing by three.” The 

remaining 3 participants' responses were coded at the correspondence thinking level 

(one as FR-B, two as FR-C). On the other hand, in the post-interviews, all 

prospective teachers described patterns at the correspondence level, and 5 of these 

nine responses were recorded as FR-C. For instance, PET1 expressed “three times 

the number of weeks equals the total money each week.” Moreover, while one of the 

remaining responses was FR-P, three of them were recorded as FR-B. For example, 

the answer of PST8, “it always goes as multiple of three,” at the level of FR-B.  

As for item C3, when participants were asked to describe the relationship between 

the number of weeks and the total amount of money in words, two participants 

described the relationship as FR-C in the pre-interviews. The number of participants 
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who responded at this level was recorded as 3 in the post-interviews. Moreover, the 

number of participants who defined the relationship as CR increased from 1 in the 

pre-interviews to 4 in the post-interviews. 

Table 4.20   

The Frequencies of the Strategies for Describing Generalization and Representing 

Functional Relationships in Words 

  C2 C3 

Levels  Pre 

(n=9) 

Post 

(n=9) 

Pre 

(n=9) 

Post 

(n=9) 

Variational  RP-P     

RP-G 6  1  

Covariational  CR   1 4 

Correspondence FR-P  1   

FR-B 1 2 2  

FR-E     

FR-C 2 5 2 3 

Other    1 3 2 

 

After describing the relationship between the number of weeks and the total amount 

of money in words, the participants were asked to describe those relationships in 

variables. Item C4 was: “How do you describe the relationship between the number 

of weeks and the total amount of money by using variables?” In the analysis of this 

item, similar to the previous one, Stephens et al. (2017, p. 153)’s framework was 

taken as reference. The strategy codes are shown in Table 4.21. 
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Table 4.21   

Participants’ Strategies for Representing the Relationship in Variables  

C4. How do you describe the relationship between the number of weeks and the 

total amount of money by using variables? 

Codes Definition  Example  

Incorrect 

Function Rule – 

INFR 

 

Participant identifies an incorrect 

function rule using variable by 

identifying the relationship as an 

additive pattern.  

 

n + 3  

 

Functional – 

Emergent – 

FR – E 

 

Participant identifies an incomplete 

function rule using variables, often 

describing a transformation on one 

variable but not explicitly relating it 

to the other. 

 

3n 

3 x 

 

Functional – 

Condensed –  

FR – C  
 

 

Participant identifies a function rule 

using variables in an equation that 

describes a generalized relationship 

between the two variables, including 

the transformation of one that would 

produce the second.  
 

y = 3x 
a = b 3  

 

Note: The codes were adapted from Stephens et al., (2017), p. 153. 

In the pre-interviews, 7 out of 9 prospective teachers’ responses were recorded as 

incorrect function rule-INFR or Other (see Table 4.22). Only 2 participants could 

express a correct function rule in variables, but they were emergent–function rules. 

In other words, the variables were not related to each other directly. For example, 

PET7 described the relationship between the number of weeks and the total amount 

of money as n  3, where n referred to the number of weeks. On the other hand, 3 

participants’ expressions were coded as INFR or Other in the post-interviews. 

Moreover, while 4 of the remaining 6 participants’ responses were coded as FR-E, 

two participants could describe the relationship as FR-C in the post-interviews. For 

instance, PET7 described the relationship as “3x = y,” where x referred to the number 

of weeks, y referred to the amount of total money.  
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Table 4.22  

The Frequencies of the Strategies for Representing the Relationship in Variables 

The next item, item C5, was asked to examine how the prospective teachers justified 

the functional relationships they formed. The question was: “How do you know your 

relationship works?” Based on the learning goal (see Table 3.2 for all learning goals), 

prospective elementary teachers were expected to use the function rules, tables, or 

problem context while justifying relationships. Therefore, the codes used in the 

analysis of item C5 were generated by the guidance of that learning goal. The codes 

are presented in Table 4.23.  

Table 4.23  

Participants’ Strategies for Justifying the Functional Relationship 

C5. How do you know your relationship works? 

Codes Definition  Example  

Using 

Problem 

Context – PC 

 

Participant uses the information 

or conditions in the problem to 

show that the relationship/rule 

is true. 

It goes by three because his 

father gives him 3 liras each 

week. 

Using Table – 

T 

Participant extends the table by 

adding more data to show that 

the relationship/rule works for 

more data OR uses the data on 

the given table to show the 

stated relationship/rule is true. 

We can continue to generate 

the table with more weeks 

and see the rule works.  

 

 

Using 

Function 

Rule – FR 

Participant substitutes a chosen 

number of weeks and amount 

of total money on function rule 

(algebraic expression/equation 

of the relationship) to show that 

the inferred relationship/rule is 

true. 

We know that in the fifth 

week, he has 15 liras. When 

we substitute these numbers 

to the rule, which is 3x=y 

where x refers to the number 

of weeks, y refers to the total 

amount of money, and we 

can see it works.  

Strategies Pre (n=9) Post (n=9) 

INFR 4 1 

FR-E 2 4 

FR-C 0 2 

Other 3 2 
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The frequencies of PETs’ usage of these strategies to justify why their relationships 

work are presented in Table 4.24.  

Table 4.24   

The Frequencies of the Strategies for Justifying Conjectures  

Strategies Pre (n=9) Post (n=9) 

PC 2 0 

T 3 3 

FR 3 5 

Other  1 1 

 

As seen in Table 4.24, there was an increase in the number of participants who used 

the function rule in the post-interviews to show that the relationship is correct and 

working. For example, PET3, who used the table to justify her relationship in the 

pre-interview, explained her thinking by using the function rule in the post-interview 

and stated that “I'll substitute it. I said x refers to total money. Our total money is 

equal to 3 at first… We said y refers to the number of weeks; I substitute 1 in y, then 

three equals three. This way, we can see that it is correct when we try all the weeks.” 

Lastly, prospective elementary teachers were expected to reason with the 

relationships they formed. In the last question, which was a multiple-choice item, 

related to functional thinking, participants were provided prices and asked whether 

they could decide the price of the bicycle that Mert bought at the end of any week. 

The question and the strategy codes used in the analysis are presented in Table 4.25.  
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Table 4.25   

Participants’ Strategies for Reasoning with the Relationships 

C6. If it is known that at the end of any week Mert spent all his money to buy a 

bicycle, which of the following might be the price of that bicycle? In what week 

he bought his bicycle? Explain your answer. 

a)110 TL                b)120 TL             c)130 TL                d)140 TL 

Codes Definition  Example  

Need of 

Information – 

NI 

 

The participant thinks that the 

information given is not 

sufficient to decide on the price 

of the bicycle and states that 

the number of weeks that Mert 

bought the bicycle should be 

known. 

 

If we knew what week he 

bought the bicycle, we 

could find the price of it.  

 

 

Multiple of 

Three – M3  

 

 

The participant thinks that 

regardless of the week he 

bought the bicycle, the price 

must be a multiple of three. 

It is 120 because the 

amount of total money goes 

up by three and each week 

it is multiple of three. 

 

In the pre-interviews, while 3 out of 9 prospective teachers thought that the price 

should be multiple of three and said that the price might be 120 TL, the other 3 of 

them thought that to decide the price of the bicycle, we need more information. For 

example, PET4 thought that we could not decide the price because “the number of 

weeks should be given in the question.” On the other hand, in the post-interviews, no 

participant thought that the information provided was insufficient. Six out of 9 

prospective teachers could reason that the price should be a multiple of three, no 

matter what week it is. For example, PET7 stated that “It was going up as multiple 

of three. So, it must be a number that is divisible by three without a remainder. Since 

120 is a number that is divisible by three without a remainder, it is 120.”   
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4.2 Development of Prospective Elementary Teachers' Pedagogical 

Content Knowledge 

In the early algebra lessons through case discussion, besides the common content 

knowledge related to early algebra, the prospective elementary teachers were also 

expected to develop their knowledge for teaching algebra in the elementary grades. 

Therefore, prospective elementary teachers’ pedagogical content knowledge was 

also examined in the pre-and post-interviews before and after the early algebra 

lessons. The change in participants’ PCK as knowledge of content and students 

(KCS) and knowledge of content and teaching (KCT) will be presented in two 

subsections. Each section will start with the codes used to analyze the PETs' verbal 

responses, and then the corresponding findings will be shared.  

4.2.1 Knowledge of Content and Teaching (KCT) 

To integrate algebraic thinking into the elementary curriculum, teachers need to 

develop their knowledge related to instructional strategies and representations as a 

component of pedagogical content knowledge, namely knowledge of content and 

teaching. In this study, to examine the prospective elementary teachers’ knowledge 

of content and teaching, they were provided one objective related to each big idea 

from the mathematics curriculum. Then they were asked to explain what kind of 

lesson they would plan to meet those objectives and what they would consider.  

First, the participants were provided an objective related to the meaning of the equal 

sign and asked how they would construct this lesson and what activities they would 

do. In the analysis process, strategy codes were developed by the researcher 

according to the meanings of the equal sign the participants focused on in the lessons 

they designed. The objective and the strategy codes are presented in Table 4.26. 
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Table 4.26   

Participants’ Strategies for Planning a Lesson Regarding the Meaning of the Equal 

Sign 

A1. How would you design a lesson for the second-grade objective below? What 

would be your strategies and representations? 

 

M.2.1.3.5. Students notice the meaning of equal sign that refers to the 

equality between mathematical expressions. 

Codes Definition  Example  

Referring to the 

Result – R 

 

The participant emphasizes that 

the equal sign indicates the 

result of an operation in the 

activity she developed for the 

objective.  

Ali had three pens. Ayşe 

gave Ali 5 more. We ask 

how many pencils Ali has. 

We can teach it by showing 

the result. 

Referring to the 

Same Objects – 

SO 

The participant emphasizes the 

"same objects" in the activity 

she developed for the objective. 

She shows students that objects 

placed on two different sides 

are the same. 

We put bananas and 

apples on one side. We put 

bananas and apples on the 

other side in the same way 

and show that they are 

equal. 

Referring to the 

Same Amount – 

SA 

 

The participant emphasizes the 

"same amount" (number, 

weight, etc.) in the activity she 

developed for the objective. She 

shows that the objects placed on 

two different sides have the 

same number/weight. 

I would put 10 counting 

beans on one side and 10 

on the other side. I would 

have the students count it. 

They would count. They 

would say there were ten 

and the other had 10. 

Referring to the 

Balance – BAL  

 

 

The participant emphasizes 

"balance" in the activity she 

developed for the objective. She 

shows the students the state of 

being in balance between the 

numbers/quantities of the 

objects placed on two different 

sides. 

I would put the same 

number of objects on both 

arms of the pan balance so 

that the students could see 

the equality between those 

objects. I would let them 

see it was equal when I put 

the same number objects, 

and it was equal when it 

was in balance.  
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The frequencies of the prospective elementary teachers’ usage of these strategies to 

teach the meaning of the equal sign are presented in Table 4.27.  

Table 4.27   

The Frequencies of The Strategies for Planning a Lesson Regarding the Meaning 

of the Equal Sign 

Strategies Pre (n=9) Post (n=9) 

R 2 0 

SO 1 1 

SA 3 2 

BAL 1 6 

Other  2 0 

 

As shown in Table 4.27, 2 participants designed a task in the pre-interviews that have 

students think that an equal sign is a command to write a result. For example, PET8 

explained that she could set up a lesson for this objective as: 

“I get the students on the board. Ali has three pens. Ayşe gave Ali 5 more. 

How many pens did Ali have? […] Then, when you go to mathematical 

notation, you prepare the numbers with magnets, you show them by sticking 

them on the board. You write both 3 and 5. As a result of these, I think we 

can teach equals as the result is the following.” 

Besides, 3 participants describe a lesson in which the equal sign referred to the same 

amount. For instance, PET7 stated that: 

“For example, I would put 10 counting beans here on one side and 10 on the 

other. I would have the students count it. They also counted. They would say 

there were 10, and the other would say there were 10. In this way, they would 

be made to realize that they were equal in the same amount.” 

While one of the remaining participants’ response was coded as “referring to the 

balance”, another one’s response referred to same objects in the pre-interviews. On 

the other hand, in the post-interviews, 6 out of 9 prospective elementary teachers 

created activities to show the balance meaning of the equal sign in the lessons they 

described. The number of participants who created a lesson in this way was recorded 

as 1 in the pre-interviews. As an example, PET5 explained her lesson design in the 

post-interview as:  
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“I'd bring a pan balance to class because it's an expression of equality. For 

example, when we put a mass on one side, let's say the simplest example is 

10 kilos; when 2 kilos are put on the other side, equality is not achieved, one 

side is outweighed. I could show it as an equation that the scales balance 

when we put in a value that weighs an equal amount of 10 kilograms.” 

Furthermore, while only 1 prospective teacher considered using a pan balance for 

that objective in the pre-interviews, 6 participants thought to use the pan balance in 

their lessons in the post interviews.  

To investigate the change in the prospective elementary teachers’ knowledge of 

content and teaching, the second objective that was provided to them was related to 

the generalized arithmetic big idea. The objective and the codes of strategies that 

participants used in their lessons are provided in Table 4.28.  

Table 4.28   

Participants’ Strategies for Planning a Lesson Regarding the Arithmetic 

Generalization 

B1. How would you design a lesson for the fourth-grade objective below? What 

would be your strategies and representations? 

 

M.4.1.4.2. Students show that changing the order of the multipliers in 

multiplication with three natural numbers does not change the result. 

Codes Definition  Example  

Showing 

through 

Example(s) 

– EX 

Participant uses one or more 

examples to show students this 

fact works. She may use 

manipulatives.  

For example, let's say 5 times 

2, it equals 10; when I switch 

2 and 5, the result does not 

change. I can show it like this. 

 

Leading 

students to 

make a 

conjecture 

– CON 

Rather than showing that this fact 

works, participant leads students 

to consider whether such a fact 

exists. She creates an 

environment to make conjectures. 

For this purpose, she may use 

problem contexts or ask leading 

questions such as “Why did not 

the result change?”, “How do you 

know this is true?”, “Is it always 

true?” etc.  

I would create a discussion 

environment and let students 

to think about why the result 

did not change when we switch 

the numbers. I would ask them 

to think about whether this fact 

is always true or not.  
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When participants’ verbal responses were analyzed, it was detected that in the pre-

interviews, all prospective teachers tended to use one or more examples to show that 

this relationship works, rather than enabling students to make an arithmetic 

generalization. For instance, PET6 reported her lesson design as:  

“I would write it on the board and show it. 2  3  5. I used to have them 

multiply one by one, actually. I'd want them to multiply 2 by 3 and then 

multiply by 5. Then I would have them multiply 2 by 5 and then multiply by 

3. This is a somewhat classical method, but they would see that the results 

were the same.” 

However, in the post-interviews that were conducted after the early algebra lessons, 

6 prospective teachers designed a lesson to provide students an environment to make 

conjectures by thinking that “I wouldn't give the rule of multiplication directly. I 

want them to reach it at the end” (PET8). They considered asking questions to lead 

students to generalize the arithmetic relationship. For example, “Will this be the same 

for every number?” (PET4), “Why did you do that? How do you think? How do you 

know it is? Is it true for all numbers?” (PET8). The remaining 3 prospective teachers 

used examples to show students that this fact works. 

The last objective was related to the functional thinking big idea. To understand how 

prospective elementary teachers present varying quantities and whether they 

consider guiding students to investigate relationships between quantities, they were 

given an objective related to number patterns and asked to plan a lesson. Table 4.29 

shows the objective of the lesson and also the codes of strategies. 
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Table 4.29   

Participants’ Strategies for Planning a Lesson Regarding Functional Thinking 

C1. How would you design a lesson for the third-grade objective below? What 

would be your strategies and representations? 

 

M.3.1.1.7. Students expand and generate the number patterns that have a 

constant rate. 

Codes Definition  Example  

Expanding the 

Pattern – EXP  

 

The participant asks students to 

find the next term of the given 

pattern and expand the pattern in 

the activity she developed for the 

objective. 

We can write 2, 4, 6, and 

put three dots, and ask 

them to continue.  

Finding the 

Missing Term 

– MIS  

 

 

The participant expects the 

students to find the missing terms 

of the given pattern and to place 

the appropriate terms in the blank 

spaces in the pattern in the activity 

she developed for the objective. 

I would write 2, 4, 6, 

8…, 12. I would ask the 

student to find the 

number to fill in the 

blank there. Then I 

would repeat. I would 

like them to fill in the 

pattern by putting spaces 

in between. 

Attempting to 

Guide to 

Functional 

Thinking – FT  

 

The participant not only creates 

and expands the number pattern in 

the activity she develops for the 

objective but also attempts to 

create a functional thinking 

environment. She may have used a 

problem situation or a table with 

quantities that change together. 

There was the question 

of the chair. If a chair 

has 4 legs, how many 

legs do 2 chairs have? 

We then convert this into 

a table. We let them see 

through the table. 

 

Table 4.30 shows the frequencies of prospective elementary teachers’ usage of these 

strategies to teach number patterns. 
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Table 4.30   

The Frequencies of The Strategies for Planning a Lesson Regarding Functional 

Thinking 

 

In the pre-interviews, as shown in Table 4.21, most participants thought of asking 

the students to find the next term of the given pattern, not going further than what 

was stated in the objective. For example, PET4 described a lesson for the objective 

as:  

“I would have students come the board. I would call two students first. Then 

I would add two more students, and it would be four. Later, when I added 

two more students, it would be 6. They would see that it increased and 

expanded as two students are added […]. All students would be on the board, 

and they would see it increased by two.” 

Moreover, two prospective teachers thought of using an activity that asked students 

to find the missing term in a number pattern. One of these participants, PET5, said 

that: 

“For example, it might go as 1, 3, 5. The differences always Increase by two. 

[…]. It could be something like a puzzle where they would notice such 

patterns and then reach a conclusion. […] [Like a] fill-in-the-blank puzzle. 

[In that puzzle, we] would write 1, not 3, but write 5. [The students] will write 

3 there.”  

On the other hand, different from the pre-interviews, in the post-interviews, 4 

prospective elementary teachers were observed to go further than what was stated in 

the objective. They intended to create an activity that encourages functional thinking. 

Among these participants, some considered presenting a problem situation with 

quantities that vary together, rather than directly giving a number pattern to students. 

For instance, PET6 reported as:  

Strategies Pre (n=9) Post (n=9) 

EXP 7 4 

MIS 2 1 

FT 0 4 

Other  0 0 
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PET6: I would show this through a problem. There was the question of the  

chair. If a chair has 4 legs, how many legs do 2 chairs have? We then 

convert this into a table. We let them see through the table. We can 

form a graph […].  

R:  What do you want students to do when you make a table or graph? 

What do you expect to hear? 

PET6: Here, the students continue the pattern by counting at the beginning.  

This is what is desired in the objective. But other than that, I would 

make them see the amount of increase between them relationally. 

How many do you think increases when there are two chairs? How 

many will it increase compared to the first chair and two chairs, or 

how many will it increase for the other three chairs? They could see 

the difference between them and express themselves by establishing 

relationships […]. I would also ask the students questions and make 

them establish relationships, but I would make them establish 

covariational relationships. 

As PET6 did, using problem situations or tables in a lesson for an objective that 

expects students to expand a number pattern was interpreted as an attempt to provide 

students with opportunities for functional thinking.  

4.2.2 Knowledge of Content and Students (KCS) 

During the early algebra lessons, besides the knowledge of instruction and 

representation, the prospective elementary teachers were expected to develop their 

knowledge related to students’ possible conceptions and misconceptions as part of 

pedagogical content knowledge, namely knowledge of content and students. To 

understand the change in the participants’ knowledge, they were asked to provide 

students’ possible responses for some questions and interpret given students’ 

responses. They responded to the questions for each big idea: equivalence and 

equation, generalized arithmetic, and functional thinking. The questions and the 

strategy codes used in the analysis will be presented in the order of big ideas.  

For the first big idea, equivalence and equations, the missing value problem,                              

8 + 4 = [     ]  + 5, was given to the prospective elementary teachers, and they were 

asked what kind of responses they expected from the students. The missing value 

problem and the common students’ strategies are detailed in Table 4.31.  
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Table 4.31   

Missing Value Item and Common Students’ Strategies 

A5. What correct and incorrect answers would you expect elementary students to 

the following question, and what would be their strategies for those answers? 

 

                              8 + 4 = [     ]  + 5        

Codes Definition  Example  

Answer Comes 

Next – ACN 

Student thinks that the answer 

is the result of the operation 

that comes right after the equal 

sign. 

8 + 4 = 12 

 

Add All the 

Numbers - ALL  

 

Student adds all the numbers 

and does not consider where 

the equal sign appeared in the 

number sentences.  

8 + 4 + 5 = 17 

 

Compute – C 

 

Student calculates the sum on 

the left side of the equation and 

finds a number to put in the 

box that when added to 5, it 

would give the same total.  

 

8 + 4 = 12; 12 – 5 = 7 

8 + 4 = 12 and 7 + 5 = 12 

 

Structure – S 

 

 

Student considers the relation 

between the two addition 

expressions in the equation, not 

just the relation between the 

answers to the two 

calculations. 

5 is 1 more than 4, so the 

number in the blank must 

be 1 less than 8. 

 

Note: The problem and the codes were taken from Carpenter et al., 2003, pp. 9-13. 

During the analysis of the item, all the student strategies expressed by the participants 

were coded. In this case, 9 participants put forward 18 possible student responses in 

the pre-interviews and 21 in the post-interviews. The distribution of the responses 

according to the strategies is presented in Table 4.32.  
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Table 4.32   

The Distribution of the Answers According to the Strategies 

Strategies Pre (n=16) Post (n=21) 

ACN 5 7 

ALL 0 4 

C 7 8 

S 3 2 

Other  1 0 

 

As shown in Table 4.32, “the answer comes next,” “compute,” and “structure” 

strategies were expected student responses for prospective teachers in both the pre-

and post-interviews. While, in the pre-interviews, none of the participants expected 

students to add all the numbers, the number of participants who thought that the 

students could answer 17 using this strategy was recorded as 4 in the post-interviews. 

After asking participants’ expected student responses, they were presented with 

some student responses for the missing value problem, and they were asked to 

interpret them. In this way, the aim was to observe whether the prospective teachers 

noticed student’s way of thinking or approaches behind the student answers. Table 

4.33 shows the students' sample responses and the participants' strategies. 

 

Table 4.33   

Participants Strategies of Interpretation of the Equality Item Responses 

A6. What way of thinking might be behind the students' responses to the 

questions below?  

       A6.1)    8 + 4 = [12] + 5   

       A6.2)    8 + 4 = [17] + 5      

       A6.3)    8 + 4 = [7] + 5 because if you take 1 away from the 8 and add it to 

the 4, you have 7 left 
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Table 4.33 (continued) 

Codes Definition  Example  

Explaining 

Procedural 

Approach – P  

Participant explains the 

mathematical 

procedures/steps correctly 

that the student follows to 

respond without mentioning 

the student's conception of 

the equal sign.  

 

The student found 12 by 

adding 4 + 8 and did 

not consider 5. 

Identifying 

Conceptions of 

Equal Sign – EQS  

 

Participant explains the 

ways of thinking behind the 

given answers. Besides how 

students found 12, 17, and 7 

as an answer, she explains 

how the student makes sense 

of the equal sign.  

They thought of writing 

the direct result by 

considering only one 

side, not the equality on 

both sides. 

 

Knows that both sides 

of the equal sign are 

equal, balancing on 

both sides. 

 

Misunderstanding 

Procedural/Thinking 

Approach – MISUN 

Participant provides an 

explanation that is not 

correspondence of given 

students’ thinking. They 

may misinterpret the 

student's way of thinking.  

I think the students who 

answered 17 rounded 

the numbers. 

 

The frequencies of prospective elementary teachers’ usage of these strategies are 

presented in Table 4.34.  

Table 4.34   

Frequencies of Participants’ Interpretation Strategies for the Equality Item   

 A6.1 A6.2 A6.3 

 Pre 

(n=9) 

Post 

(n=9) 

Pre  

(n=9) 

Post 

(n=9) 

Pre 

 (n=9) 

Post 

(n=9) 

P 7 1 8 5 5 5 

EQS  2 8 0 4 0 2 

MISUN 0 0 1 0 2 2 

NR     2  
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For item A6.1, the answer of 12, which was due to the operational understanding of 

the equal sign, there were no participants who misunderstood the students’ thinking 

or procedural approach in both the pre-and post-interviews. However, when they 

were asked how the student thinks while giving this answer, most of the participants, 

7 out of 9, explained the mathematical procedures that the student followed without 

mentioning the student's conception of the equal sign. For example, PET3 interpreted 

this student’s response as “[the student] summed up 8 and 4. He may have seen the 

equality, but not the 5, or he may not have cared.” On the other hand, in the post-

interviews, 8 out of 9 prospective teachers explained the ways of thinking behind the 

given answers and identified the student’s conception of the equal sign. For instance, 

PET3 interpreted the student’s answer this time as follows: 

The student looking at 8 + 4 thinks that equality does not help balance both 

sides, but it gives the result of the computation. In other words, s/he thinks 

that we will write the result directly without looking at the other side when 

we see an equality. 

For item A6.2, the student adds all the numbers in the equation, 8 + 4 = __ + 5, and 

then gives the answer of 17, again due to the operational understanding of the equal 

sign. None of the prospective teachers mentioned how the student made sense of the 

equal sign in the pre-interviews. The number of participants who were able to do that 

was recorded as 4 in the post-interviews. For example, PET7 interpreted this 

students’ thinking as: 

[The student] summed up all the numbers he saw. In other words, s/he says 

there is an addition operation, and whatever number I see in the addition 

operation, I must add before the equal sign. S/he saw 5 there. Maybe s/he 

thought we should add this too. He wrote 17 after the equal sign.  

Lastly, for item A6.3, in which the student answers as 7 by recognizing the structure 

of the equation, participants were observed to have difficulty interpreting this student 

answer. Four participants in the pre-interviews and 2 participants in the post-

interviews misinterpreted or did not understand the student's way of thinking. For 

example, in the pre-interviews, PET2 thought that the student rounded up the 

numbers. Nevertheless, while no participants identified that student’s conception of 
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the equal sign in the pre-interviews, 2 of them were able to do in the post-interviews. 

One of those participants, PET3, said that “I think [this student] thought relationally. 

He also understands equality. He understands that both sides are equal. I think he 

knows that both sides of the equal sign are equal, keeping both sides balanced.” 

The second big idea in which prospective elementary teachers’ knowledge of content 

and students were examined was generalized arithmetic. Firstly, for this big idea, a 

set of operations were presented to the participants, and they were asked what they 

expected elementary students to notice when they completed these operations (item 

B6, see Figure 4.3). Regarding this question, all participants expressed that they 

expected students to realize that changing the order of numbers in addition does not 

change the result in both the pre-and post-interviews.  

Figure 4.3  

Set of Computation for Students’ Thinking 

Note: The task was taken from Blanton (2008, p. 13). 

After that, the prospective elementary teachers were provided with some student 

responses to justify an arithmetic generalization that focused on the sum of three odd 

numbers. The aim was to examine whether the participants identified students’ ways 

of justification by asking how they interpreted given students’ responses. Similar to 

item A6, in the analysis of this item, item B7, whether the participants understood 

the responses and, if so, whether they noticed the justification approaches beyond 

the procedural steps while interpreting the ways of thinking were examined. 

However, as it was realized, some student responses presented were understood in 

different ways; only the participant responses that correctly addressed the student's 

justification approaches were coded during the analysis process. Table 4.35 shows 
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the presented student responses and the justification approaches that expected the 

prospective teachers to address.  

Table 4.35   

Student Responses and the Justification Approaches 

“Derya says that the sum of any three odd numbers will be odd. Explain why this 

is true.” 

 

B7. Suppose the question of the sum of three odd numbers above was asked to 

elementary school students, and they gave the following responses. What kind of 

thinking might be behind these student responses? 

Student Answer  Justification Approach  

B7.1)   3 + 5 + 7 = 15 and 15 are 

odd, so Derya is right 

EMPIRICAL: 

The student thinks that the statement is 

correct because it works for one or more 

examples.  

B7.2)   This is always true since an 

odd number is always one more 

than an even number. For example, 

if three 1s are put together, you get 

3, which is an odd number because 

3 added to an even is always an 

odd number. 

GENERAL ARGUMENT:  

The student uses general arguments to 

justify the argument. The student could use 

accepted arguments concerning the sums 

of even and odd numbers, the relation 

between odd and even numbers, or the 

definitions of even and odd numbers for 

justification.   

 
 

B7.3)   This is true because two 

odd numbers equal an even plus 

another equals an odd because an 

even plus odd equals odd 

Note: “The three odd numbers” problem was adapted from Isler et al. (2013, p. 141) 

and the justification approaches were adapted from Carpenter et al. (2003, p. 87).  

For the response in which the student justifies the fact empirically, while in the pre-

interviews, only 1 prospective teacher identified that the student was generalizing 

based on an example, in the post-interviews, 5 out of 9 participants identified the 

student thinking. For example, PET9 stated, “It is interesting that s/he came to this 

conclusion directly from an example. I would probably ask the question: how do you 

know it will be the same for all numbers?” Similarly, for the student responses that 

included general arguments, in the pre-interviews, while 1 prospective teacher 
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correctly mentioned the student’s way of justification for the response B7.2, none of 

them did that for the response B7.3. However, in the post-interviews, 6 participants 

for the response B7.2 and 2 participants for the response B7.3 correctly identified 

the students’ justification ways. For instance, for B7.2, PET6 stated that “This 

student saw the relationship between odd and even numbers. I understand that from 

his statement. He thought relationally and made sense of odd and even numbers.”  

Lastly, the prospective elementary teachers’ knowledge of content and students was 

examined for the big idea of functional thinking. For this, the Saving for a Bicycle 

Problem was presented to the participants again, and it was asked what kind of 

responses they expected from the students to respond to the questions about this 

problem. The two questions prospective teachers were shown were: item C7.1. 

“Describe the patterns you see in the table” and item C7.2 “How do you describe the 

relationship between the number of weeks and the total amount of money?” While 

stating possible student responses, prospective teachers were anticipated to mention 

students' responses varying in the “Levels of sophistication describing generalization 

and representation of functional relationships” (Stephens et al., 2017, p. 153; see 

Table 4.19). 

Similar to item A5, all expected student responses that were indicated by participants 

were coded during the analysis of the item. In this circumstance, for C7.1, 9 

participants put forward a total of 16 possible student responses in the pre-interviews 

and 20 in the post-interviews. As for C7.2, 9 possible student responses in the pre-

interviews and 11 in the post-interviews were provided. The distribution of the 

responses according to the functional thinking levels is presented in Table 4.36.  
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Table 4.36   

The Distribution of the Responses According to the Functional Thinking Levels 

 C7.1 C7.2 

Levels  Pre  

(n=16) 

Post 

(n=20) 

Pre  

(n=9) 

Post 

(n=11) 

Variational  RP-P 3 2 0 0 

RP-G 6 6 0 0 

Covariational  CR 0 3 1 2 

Correspondence FR-P 0 0 0 0 

FR-B 2 0 0 3 

FR-E 1 1 3 2 

FR-C 2 3 2 4 

Other  2 5 3 0 

 

As shown in Table 4.36, while working on the Saving for a Bicycle problem, for the 

question which asked the pattern students could see in the table, the prospective 

teachers expected student responses in the levels of variational and correspondence 

thinking in both the pre-and post-interviews. However, in the pre-interviews, none 

of the participants expected students to use covariational thinking. In the post-

interviews, 3 student responses put forward by the participants were coded as 

covariational; for instance, "as the number of weeks increases by one, the total 

amount of money increases by three" (PET8).  

For the question which asked how students describe the relationship between the 

number of weeks and the total amount of money, the student responses in variational 

level were not provided as possible student response for the prospective teachers 

neither in the pre- nor in the post-interviews. On the other hand, compared to the pre-

interviews, more participants expected to hear a student response categorized as FR-

C.  
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After asking participants expected students’ responses for the Saving for a Bicycle 

problem, they were shown student responses to the problem and were asked to 

interpret them. In this way, participants were aimed to observe whether they could 

decide the functional thinking levels of the students. Table 4.37 shows students’ 

responses and the participants' strategies of interpretation. 

Table 4.37   

Participants Strategies of Interpretation of the Functional Thinking Item  

C8. What way of thinking might be behind the students’ following answers for 

the question of how they describe the relationship between the number of weeks 

and the total amount of money? 

 

C8.1)    The total amount of money goes by three 

C8.2)    Each week, the total money increases by three 

C8.3)    The total amount of money is equal to three times the number of weeks 

Codes Definition  Example  

Explaining 

Procedural 

Approach – P  

Participant explains the 

mathematical 

procedures/steps correctly 

that the student follows to 

respond without 

mentioning the student's 

approach related to 

functional thinking. 

He added three each 

week. He may have used 

rhythmic counting again 

by adding three to it. 

 

Identifying 

Functional Thinking 

Approach – FT 

Participant explains the 

students' ways to establish 

a relationship. She realizes 

correctly which variable(s) 

the student is considering. 

She may also explain the 

mathematical 

procedures/steps that the 

student follows to give that 

response. 

This student only thought 

about the amount of 

money and did not 

establish a relationship 

with the other. 

The student established a 

relationship between both 

the week and the amount 

of money.  

 

 

 

 



 

 

96 

Table 4.37 (continued) 

Misunderstanding 

Procedural/Thinking 

Approach – MISUN 

Participant provides an 

explanation that is not a 

correspondence of given 

students’ thinking. They 

may think that the 

student’s answer is wrong, 

or they may misinterpret 

the student's way of 

thinking.  

The student who said that 

as the number of weeks 

increases by one, the total 

amount of money 

increases by three, 

thought that the total 

amount of money 

increased by three by 

multiplying the number of 

weeks by three. 

 

Table 4.38 shows the frequencies of prospective elementary teachers’ usage of these 

strategies. 

Table 4.38   

Frequencies of Participants’ Interpretation Strategies for the Functional Thinking 

Item   

 C8.1 C8.2 C8.3 

 Pre 

(n=9) 

Post 

(n=9) 

Pre  

(n=9) 

Post 

(n=9) 

Pre  

(n=9) 

Post 

(n=9) 

P 9 4 6 2 4 1 

FT 0 5 1 7 1 6 

MISUN 0 0 1 0 3 2 

Other  0 0 1 0 1 0 

 

For item C8.1, the student answer that describes the relationship as “the total amount 

of money goes by three” using the variational thinking, in both the pre- and post-

interviews, there were no participants who misunderstood the student thinking or 

procedural approach. However, in the pre-interviews, all participants addressed the 

student’s procedural approach without identifying the functional thinking approach 

when asked to interpret that student’s answer. For example, PET5 stated, “Since the 

total amount of money goes up 3, 6, 9, [the student] might have given such an answer 

because [s/he] saw that the difference between them was constantly increasing by 

three.” On the other hand, 5 out of 9 prospective teachers explained the students' 
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ways to establish a relationship in the post-interviews. For instance, PET8 reported 

that “This student thinks recursively. So, he/she only goes through a single variable. 

S/he only considers the total amount of money. She does not coordinate the number 

of weeks with the total amount of money.”  

For item C8.2, in which the student used covariational thinking, “each week the total 

money increases by three,” in the pre-interviews, most participants, 6 out of 9, did 

not identify that in the response the two variables (number of weeks and amount of 

total money) were coordinated rather than mentioned separately. For example, PET4 

stated, “S/he was adding three each week. [The student] may have used rhythmic 

counting again by adding three to it.” Different from the pre-interviews, after the 

early algebra lessons, in the post-interviews, 7 prospective teachers pointed out that 

the number of weeks and the total amount of money were coordinated with this 

student response. As an example, PET3 said, “[This student] also coordinated [the 

total amount of money] with the week. In other words, she/he tried to show that the 

total money is also related to the week. He looked at both sides and coordinated 

them.”   

Lastly, for item C8.3, the student answer stated that “the total amount of money is 

equal to three times the number of weeks,” participants were expected to address that 

the student coordinated the two variables. While reflecting on this student's answer, 

the participants could elaborate on the coordination of variables and/or say that a 

direct relationship/rule was established between the number of weeks and the total 

amount of money. In this case, similar to previous items, more prospective teachers 

were recorded to identify the student’s functional thinking in the post-interviews than 

the pre-interviews. While in the post-interviews, 6 out of 9 prospective teachers 

asserted that this student considered two variables together, the number of 

participants who responded in this way in the pre-interviews was 1. For example, 

after the early algebra lessons, PET7 explained the student’s thinking as “[This 

student] completely coordinated the total amount of money with the number of 

weeks. S/he said it as a rule.” In addition to these, in the pre-interviews, 5 out of 9 

prospective teachers thought that the responses of the students who said that “the 
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total amount of money is increasing by three” and “the total amount of money is 

increasing by three each week” were the same. In other words, they did not identify 

the differences between variational and covariational thinking in the pre-interviews. 

However, the number of participants who thought in this way was recorded as 2 in 

the post-interviews. 
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CHAPTER 5  

5 DISCUSSION AND IMPLICATIONS 

The current study investigated how prospective elementary teachers' knowledge of 

teaching algebra in early grades might have developed through case discussions. In 

this regard, individual interviews examined participants' subject matter knowledge 

and pedagogical content knowledge in the big ideas of equivalence and equations, 

generalized arithmetic, and functional thinking. Following this purpose, in this 

chapter, the findings will be discussed under the big ideas. Specifically, the first 

section will discuss the development of prospective elementary teachers' (PETs) 

knowledge to teach equivalence and equations as a core algebraic concept. The 

second section will discuss the development of PETs' knowledge to teach 

generalized arithmetic. Then, development in PETs' knowledge to teach functional 

relationships will be discussed in the third section. Lastly, the implications of the 

findings will be presented.  

5.1 The Developments in PETs’ Knowledge to Teach Equivalence and 

Equations 

In their study with the middle school students that focused on the equal sign's 

meaning and its relation to their ability to solve algebraic equations, Knuth et al. 

(2005) asked, "why might middle school students hold an operational view of the 

equal sign?" (p. 309).  They thought that the answer to this question might be that 

traditionally the equal sign was only presented in the first years of elementary school, 

and there is no direct instruction on the meaning of the equal sign in later grades. 

Besides this, there might be another answer to this question: teachers, who are 

expected to present to students the relational meaning of the equal sign, might see 

the equal sign as a "do something" signal. The findings of this study showed that 
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prospective teachers might hold an operational view of the equal sign. Before the 

early algebra lessons, 5 out of 9 prospective teachers displayed an operational 

understanding of the equal sign when they were asked what the equal sign symbol 

meant. Other findings supported this result. While they were thinking about the 

correctness of the statement "If 16+15=31, the expression of 16+15-9=31-9 is also 

true" or the statement "The equations 3x – 12 = 51 and 3x – 12 +3 = 51 + 3 have the 

same solution", the fact that they need to do calculations to make a decision can be 

interpreted as their lack of understanding of the equal sign as relational. 

After the early algebra lessons in which prospective elementary teachers were 

presented with some cases, including students' different conceptions of the equal sign 

and discussion on students' thinking and possible instructional approaches, the 

participants' views of the equal sign changed. In the post-interviews, 8 out of 9 

prospective teachers explained the meaning of the equal sign with a relational 

understanding. Different from the pre-interviews, the majority of the participants 

found the missing values in the equations 8 + 4 = [     ] + 5 and 67 + 83 = [     ] + 82 

by recognizing the structure in the equations and responded them without the need 

for a calculation. This development was also observed in the True / False items. 

Moreover, in pre-interviews, three participants stated that the expression 17 = 17 was 

not mathematically meaningful by thinking the same with Ana, who was a second-

grade student, and said that "Well, yes, eight equals eight, but you just shouldn't write 

it that" (Falkner et al., 1999, p. 235). However, they changed their opinions in the 

post-interviews and mostly thought that it was an expression of equality. Based on 

these findings, it can be concluded that the early algebra lessons might have helped 

pre-service teachers develop a relational understanding of the equal sign.  

A similar conclusion can be made for the findings related to the pedagogical content 

knowledge regarding equivalence. After reading and discussing classroom cases, 

including different students' conceptions of the equal sign, the prospective teachers' 

knowledge of content and students, specifically, their knowledge related to students' 

conception and misconceptions of the equal sign, seemed to have been developed. 

Since the problem 8 + 4 = [     ] + 5 was trivial for many teachers (Falkner et al., 
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1999), they may not have expected students to answer 12 or 17. For example, in the 

study of Asquith et al. (2007), when teachers were asked to predict how middle 

school students define the equal sign, they predicted that students would show the 

relational understanding of the equal sign at all grade levels. Likewise, before the 

early algebra lessons, no participants thought that 17 might be a student answer for 

that problem. Different from the pre-interviews, more participants thought that 

students could have an operational view of the equal sign and give the answer 12 or 

17 for the missing value in item 8 + 4 = [     ] + 5. 

Furthermore, when they were presented with some student responses and asked to 

explain the students' ways of thinking, in the pre-interviews, just a few of them could 

deduce students' understanding of the equal sign from their answers; they instead 

explained the mathematical procedures or steps. Similar findings were found by 

Vermeulen and Meyer (2017). In their study, most prospective teachers could not 

identify students' errors and misconceptions related to the equal sign due to a lack of 

knowledge of content and students. However, in this study, after the early algebra 

lessons, participants' knowledge related to students' thinking has been observed to 

be improved. In the post-interviews, more participants could recognize the students' 

conceptions and misconceptions of the equal sign based on their answers. 

Besides students' thinking, the prospective teachers' knowledge of content and 

teaching regarding the big idea of equivalence and equations was also enhanced after 

the early algebra lessons. In the pre-interviews, 4 out of 9 prospective teachers 

asserted an activity that was appropriate to provide students the relational meaning 

of the equal sign. While, in the post-interviews, 8 out of 9 prospective teachers aimed 

to guide students to recognize that the equal sign refers to the balance of quantities 

in their activities regarding the objective related to the meaning of the equal sign. 

Moreover, as Van de Walle et al. (2013) recommended, 6 prospective teachers, 5 

more than the pre-interviews, considered using a pan balance to provide students the 

relational meaning of the equal sign. Consequently, showing prospective teachers 

different student understandings related to the meaning of the equal sign through 

classroom cases and discussion on students' thinking and appropriate instruction 



 

 

102 

might have helped them develop pedagogical content knowledge around teaching 

equivalence.  

5.2 The Developments in PETs’ Knowledge to Teach Generalized 

Arithmetic 

Helping children identify, describe, and justify patterns and regularities in operations 

and properties of numbers is the basis of generalized arithmetic (Blanton, 2008). It 

is believed that in elementary grades, which are dominated by arithmetic, creating a 

learning environment focusing on these practices enables students to think 

algebraically and prepare them for later algebra learning (Russell et al., 2011). 

Studies have shown that with appropriate instruction, students' ability to generalize 

over operations and numbers can be improved, and students' algebraic thinking can 

be supported by teachers who offer opportunities for generalization in the elementary 

school curriculum (e.g., Hunter, 2010; Russell et al., 2011). Thus, teachers should be 

aware of these generalization processes and need the required knowledge to identify, 

generalize, represent, and justify the arithmetic relationships. This study showed that 

prospective elementary teachers might not be ready to create such a learning 

environment because of their lack of knowledge and experiences in the conjecturing 

and generalizing processes. Before the early algebra lessons, 4 out of 9 prospective 

teachers could not make a mathematically correct conjecture from a set of 

computations. Afterward, only 1 of these 4 participants answered whether the 

arithmetic relationship was true for all numbers by considering the structure of the 

relationships or using general arguments. When they were asked to describe the 

relationship in variables, none of the prospective elementary teachers stated a 

complete expression corresponding to their conjectures. Similarly, while justifying 

the conjectures, most participants did not use general arguments or generic examples 

identified as mathematically appropriate ways of justification (Carpenter et al., 

2003). These findings support previous studies which documented that prospective 
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teachers struggle to generalize and describe arithmetic relationships (e.g., Ding et al., 

2013; Monandi, 2018).  

On the other hand, it might be concluded that the early algebra lessons might have 

helped prospective elementary teachers to develop their knowledge of generalizing, 

representing, and justifying arithmetic relationships to some extent. In the post-

interviews, 2 more participants came up with mathematically correct conjectures, a 

total of 7, and 2 more participants considered the mathematical structure with general 

arguments to explain why that arithmetic relationship was true for all numbers. In 

other words, after the early algebra lessons, relatively more participants described an 

arithmetical relationship (e.g., if we subtract a number from another number and add 

it, the result will be the first number) and showed that this holds true for all numbers, 

not empirically but with general arguments (e.g., adding a number and then 

subtracting the same number means adding zero and adding zero always gives the 

starting number). Additionally, unlike the pre-interviews, 2 participants could 

describe their complete conjectures using variables. Lastly, 1 more participant, a total 

of 3 in the post-interviews, used generic examples or general arguments to justify 

her conjecture in the post-interviews. However, from the pre-interviews to the post-

interviews, the increase in the number of prospective elementary teachers was 

relatively low, and that most of the participants still did not reveal the required 

knowledge and skills specified in the early algebra lessons’ learning goals. This may 

indicate that the teaching offered may not have been effective enough in the field of 

generalized arithmetic. 

Building, expressing, and justifying conjectures about mathematical structure and 

relationships are the requirement of algebraic thinking and are seen as a "habit of 

mind" (Blanton & Kaput, 2004, p. 142). Therefore, it can be said that the two weeks 

(4 lessons) that focused on generalized arithmetic and including case discussions 

related to generalizing and justifying arithmetic relationships might not have been 

enough for developing such a habit of mind since most elementary teachers had little 

experience related to algebra after high school algebra which focuses on symbol 
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manipulations, solving equations, simplifying expressions, and so on (Blanton & 

Kaput, 2003).  

As for the prospective elementary teachers' knowledge of content and students, it can 

be said that more data is needed to come up with a clear conclusion. The aim was to 

observe the change in the participants' expectations related to students' generalization 

from a set of computations, but in both interviews, all participants expected to hear 

from the students the same conjecture, changing the order of addends does not 

change the sum. Therefore, it seemed not possible to talk about any change. 

Changing the interview questions focusing on all processes of conjecturing, 

describing, and justifying an arithmetical relationship, instead of only generalizing, 

may be beneficial to gain insights about participants' knowledge of content and 

students related to arithmetic generalizations. On the other hand, prospective 

elementary teachers made progress in identifying students' thinking for justification. 

In the post-interviews, more participants could identify whether the given students' 

justifications were based on empirical or general arguments. Whereas, in the pre-

interviews, almost all participants evaluated whether the students' thinking was true 

or false without providing any insight related to students’ ways of justification. 

Studies showed that although elementary students mostly tend to rely on the 

examples to verify the truth of a statement (Knuth et al., 2002), they were found 

capable of moving beyond the empirical justifications with a supportive instruction 

(e.g., Bastable & Schifter, 2008; Isler et al., 2013). Thus, to create a learning 

environment that students can learn to justify their thinking, teachers should be able 

to identify students' ways of thinking. In this direction, "engaging teachers in 

discussions focused on the details of students' competencies in justifying and proving 

may provide a basis for enhancing both teachers' own understandings of proof and 

their perspectives regarding proof in school mathematics" (Knuth et al., 2002, p. 

1698). As a result, including such discussions in teacher education may be beneficial 

to prospective teachers.  

Besides the prospective elementary teachers' pedagogical content knowledge 

regarding students' thinking, participants' knowledge of content and teaching related 
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to generalized arithmetic was also the focus of this study. After the early algebra 

lessons, the findings showed that prospective elementary teachers changed their 

instructional approaches to address the arithmetic relationships. According to 

Blanton, "instruction that supports children's algebraic thinking is marked by rich 

conversation in which children make and explore mathematical conjectures, build 

arguments to establish or refute these conjectures and treat established conjectures 

(generalization) as important pieces of shared classroom knowledge" (2008, p. 93). 

Parallel with this idea, when the participants were asked to design a lesson for 

teaching an arithmetic relationship, 6 out of 9 prospective teachers proposed creating 

an environment to lead students to make conjectures in the post-interviews. In 

contrast, all participants focused on using one or more examples to show that the 

arithmetic relationship was true in the pre-interviews. Hence, it can be concluded 

that the early algebra lessons might have helped prospective teachers develop 

opportunities for their prospective students to conjecture, generalize, and justify. 

5.3 The Developments in PETs’ Knowledge to Teach Functional 

Relationships 

Functional thinking is a significant strand of algebraic thinking (Kaput, 2008). It is 

seen as a critical entry point into algebra for early graders (Carraher & Schliemann, 

2007). Contrary to this belief and the studies showing that elementary school 

students, even at kindergarten (Blanton & Kaput, 2011), can generalize and represent 

functional relationships (e.g., Blanton, 2008; Cooper & Warren, 2011), elementary 

school curriculum is not rich in terms of content to support functional thinking 

(Stephens et al., 2017), except for one topic: patterns. It is also true for the 

mathematics curriculum in Turkey (see MoNE, 2018). However, Smith (2003) stated 

that "elementary school teachers may create rich classroom experiences around 

patterns, yet not have a sense of how this topic ties into the ongoing mathematical 

development of their students, much less into the topic of functions" (p. 136). The 

findings of the pre-interviews conducted within the scope of this study showed that 
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this idea might be correct; moreover, teachers may not have sufficient knowledge to 

generalize and represent functional relationships themselves. When all of the 

prospective teachers were asked to describe the relationships in the table created for 

the Saving for a Bicycle problem, 5 of them described a relation as a recursive pattern 

without the coordination of two variables. Similarly, in studies conducted with 

students, it was seen that students focused on recursive patterns created with a single 

variable, not on the relationships between variables (e.g., Carraher et al., 2008; 

Lannin et al., 2006), and this was also the case for the studies with prospective 

teachers (e.g., Alajmi, 2016; Yesildere & Akkoc, 2010). For example, Polo-Blanco 

et al. (2019) figured out that teacher candidates tend to focus on recursive patterns 

while generalizing functional relationships. Their study investigated Spanish and 

Portuguese prospective elementary school teachers' ways of identifying and 

expressing generalization from a geometric pattern; recursive strategy for obtaining 

distant terms was quite common in both countries. Likewise, Yesildere and Akkoc 

(2010) found that prospective elementary mathematics teachers tend to find the 

general rules for linear and quadratic growing patterns by considering constant 

differences between the patterns' terms. 

In the current study, when the direct relationship between the number of weeks and 

the total amount of money was asked, 2 out of 9 participants stated a relation in the 

most sophisticated level, FR-C, in the pre-interviews. Furthermore, only 1 

prospective teacher described the relationship between these two variables using 

covariational thinking, which some researchers thought to define the concept of 

function more appropriately (Confrey & Smith, 1994). However, in the post-

interviews, all prospective elementary teachers defined the relationship they saw in 

the table regarding the problem situation with correspondence thinking, 5 of which 

were at the FR-C level. In addition, there was also an increase in the number of 

participants expressing the relationship as “when the number of weeks goes up by 1, 

the amount of money goes up by 3,” thus using covariational thinking. According to 

these findings, it can be concluded that prospective teachers might have made 
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progress in coordinating quantities that change together after the early algebra 

lessons.  

Although according to the mathematics curriculum (MoNE, 2018), students are 

expected to find the rule of the number patterns and express them with variables for 

the first time in the 6th grade, studies have shown that elementary school students can 

use variables to express quantities that change together (e.g., Brizuela et al., 2015). 

Expressing function rules with variables was also noted to be easier for students than 

using words (Blanton, Stephens, et al., 2015).  Therefore, to gradually prepare 

students for the use of algebraic notation, teachers are expected to have sufficient 

content knowledge in expressing relations and generalized pattern rules using 

variables. However, the current study's findings showed that prospective elementary 

teachers might not have the necessary background to guide elementary school 

students to express relationships using variables. In the pre-interviews, when the 

participants were asked to describe the relationship between the number of weeks 

and the total amount of money in variables, only 2 participants were able to do that, 

and they were FR-E, which involved description of the transformation on one 

variable but not explicitly relating it to the other. This result supports studies showing 

that prospective teachers have difficulty expressing pattern generalizations 

algebraically (e.g., Ozyildirim Gumus, 2021; Zazkis & Liljedahl, 2002). On the other 

hand, although only 2 out of 9 participants wrote a complete function rule in 

variables in the post-interviews, the increase from 2 to 4 in the number of stating the 

rule as an expression rather than an equation, using FR-E, can be interpreted as 

progress. Based on these findings, it can be said that after the early algebra lessons, 

the prospective teachers showed some improvement in expressing relationships with 

variables.  

Regarding the justification of the correctness of the relationships stated by the 

participants, 2 more participants were recorded to use the function rule instead of 

table or problem context in the post-interviews. Related to the generalized arithmetic 

big idea, it can be said that prospective elementary teachers were not familiar with 

justifications of functional relationships. A similar result emerged in Tanışlı et al.'s 
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(2017) study, examining pre-service elementary mathematics teachers' knowledge of 

generalizations and justifications about patterns. One of the conclusions of their 

study was that "the pre-service teachers' justifications were limited to using empirical 

evidence and taking support from external authority" (p. 195). Furthermore, in this 

study, when PETs were asked to reason with the relationship and think about the 

possible price of the bicycle, 2 more prospective teachers could recognize that 

regardless of the week Mert bought the bicycle, the price must be a multiple of three 

after the early algebra lessons. Whereas in the pre-interviews, those 2 participants 

had thought that the information given was not sufficient to decide on the price of 

the bicycle because the number of weeks that Mert bought the bicycle should be 

known. In the light of these findings, it may be concluded that the early algebra 

lessons, including case discussions, might have helped prospective elementary 

teachers enhance their knowledge related to reasoning with the relationships between 

the quantities that change together.  

Besides the prospective elementary teachers' common content knowledge related to 

functional thinking, their knowledge of content and students and knowledge of 

content and teaching were also investigated. In order to support elementary students' 

functional thinking processes, teachers need to know how the students coordinate the 

variables. It is well documented that elementary students can describe the 

relationship between the variables as variational, covariational, and correspondence 

relations (e.g., Martinez & Brizuela, 2006; Warren et al., 2006). Moreover, Confrey 

and Smith asserted that the covariational approach was "easier and more intuitive" 

for students (1994, p. 33).  Contrary to this idea, none of the prospective elementary 

teachers expected students to describe a pattern or relation that they see in the table 

created for the Saving for a Bicycle problem as covariational before the early algebra 

lessons. Nonetheless, it can be inferred that the early algebra lessons supported the 

participants' knowledge of students' functional thinking approaches, as 3 out of 9 

participants in the post-interviews expected the students to define a relationship 

covariationally. Another finding supporting this inference is that the prospective 

elementary teachers noticed the students' functional thinking approaches after the 
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early algebra lessons. When the PETs were asked to interpret the relationships 

formed by the students using variational, covariational, and correspondence 

approaches in the pre-interviews, while almost none of the participants have shown 

any awareness regarding them, most participants noticed students' different ways of 

approaching these relationships in the post-interviews. The fact that the participants 

could not identify the functional thinking approaches of the students in the 

preliminary interview supports the findings of the study examining the teachers' 

noticing skills. For example, the study by Dogan Coskun (2021), which investigated 

how prospective elementary teachers noticed students' ways of algebraic thinking in 

their written solutions, found that while the PETs attended to students' responses, 

they struggled to provide solid evidence from the students' works. Nonetheless, the 

current study revealed that such skills could be developed with supportive 

interventions, which provided a context for collaborative learning.  

As mentioned earlier, patterns can be used to create a learning environment to 

support students' functional thinking. However, as a single variable data set (Blanton 

& Kaput, 2004), commonly "patterns are used to find generalizations within the 

elements themselves: What comes next? Which part is repeating? Which part is 

missing?" (Warren & Cooper, 2006, p. 9). Similarly, in this study, when prospective 

elementary teachers were asked to design a lesson about the number patterns 

provided a learning objective, before the early algebra lessons, the participants 

mentioned activities in which students were expected to either extend a given pattern 

or find the terms that were not given in the pattern. This finding parallels Ozyildirim 

Gumus's (2021) study, which investigated pre-service  elementary mathematics 

teachers' use of pattern and pattern problems in lesson plans. She found that pre-

service mathematics teachers could not create pattern problems different from the 

routine ones found in textbooks. However, in the post-interviews of this study, even 

though the participants did not explicitly state that they aimed to support functional 

thinking, 4 prospective teachers attempted to guide their students to develop 

functional thinking using number patterns regarding the given objective. Although 

these lessons might be thought insufficient to create opportunities for functional 
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thinking, they were categorized as having the potential to support functional 

thinking. For instance, in proposed lessons including creating and expanding number 

patterns, using problem situations with quantities that change together (e.g., number 

of chairs and number of chair legs), or considering using tables with multiple 

variables and expanding data might be interpreted as the attempts to provide students 

with opportunities for functional thinking (Blanton, 2008).  

5.4 Implications, Recommendations and Further Research   

The current study was not conducted to "simply document teacher weaknesses but 

to inform the design of teacher education in particular aspects of early algebraic 

reasoning" (Stephens, 2008, p. 275). The findings provide researchers and teacher 

educators with information on the development of prospective elementary teachers' 

knowledge of teaching algebra in the early grades. This section will discuss some 

implications. 

According to the findings of this study, although elementary school students can 

think algebraically when they are provided with the appropriate instruction (e.g., 

Bastable & Schifter, 2008; Blanton et al., 2011; Carpenter et al., 2003), teachers may 

not be as ready as they are. This conclusion is parallel with the studies that revealed 

that prospective teachers do not have sufficient knowledge related to students’ ways 

of mathematical thinking and their conceptions/misconceptions (e.g., Philipp, 2008; 

Ubuz & Yayan, 2010). Early algebra studies have well revealed the necessity and 

importance of algebraic thinking at the elementary school level. However, we do not 

have enough information about the difficulties that prospective teachers may face. 

We expect them to create an entirely different algebraic thinking environment from 

the algebra learning they were exposed to in their student life and even during their 

teaching education program. Therefore, including teaching early algebra in teacher 

education and professional development programs is significant in enhancing 

elementary school teachers' learning and teaching. Regarding this necessity of 

searching the ways in which prospective elementary teachers have the opportunities 
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to develop their knowledge, the findings of the current study could inform the 

implications of preparing elementary teachers to teach algebra in early grades. The 

subjects of equivalence, equations, arithmetical relationships, and patterns are 

already provided in the national mathematics curriculum, and prospective teachers 

are prepared to teach them. However, the missing part is seeing these subjects as a 

big idea for teaching algebra and developing ways to create algebraic thinking 

opportunities using these contents. Hence, based on the findings, it is suggested that 

while designing the mathematics method courses in elementary school teacher 

education programs, the algebraic thinking opportunities in the existing contents, 

especially the ones that are determined as the big ideas for early algebra learning, 

should be considered and emphasized.  

Findings also indicated that engaging prospective elementary teachers in case 

discussions and enabling them to "think like a teacher" (Kleinfeld, 1992, p. 33) could 

develop their knowledge. This finding supports the previous studies, which revealed 

that cases could be used to provide opportunities for prospective teachers to develop 

their mathematical and pedagogical knowledge (Henningsen, 2008; Pang, 2011; 

Steele, 2008). Similar to the current study, Henningsen (2008) reported that reading 

and discussing narrative cases related to hexagon pattern tasks in mathematics 

method courses helped pre-service teachers enhance their mathematical knowledge. 

As before the case discussion, while 38% of participants could describe how the 

pattern was growing, 67% could do that after the discussion. Moreover, the excerpts 

presented by Steele (2008) were an example of how case discussions could 

encourage prospective teachers' pedagogical content knowledge. Additionally, the 

findings of this study support the idea that including case discussions in teacher 

education programs might be fruitful to engage prospective teachers in thinking 

about student thinking and instructional approaches. The reason for this conclusion 

is that classroom cases can be used for presenting the complex and dynamic nature 

of the learning and teaching environments and putting knowledge of teaching into 

practice (Butler et al., 2006). In other words, cases help prospective teachers to 

connect the theory and practices (J. Shulman, 2002). Besides being an alternative to 
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overly theoretical teacher education, the case discussions also provide prospective 

teachers a collaborative learning environment in which they share and compare 

knowledge with peers, discuss different perspectives, and ultimately develop a 

shared understanding (Cobb, 1994). Hence, teacher educators are suggested to use 

classroom cases and case discussions in their teacher education programs.  

There are also some recommendations for the teacher educators and the researchers 

who would like to implement the early algebra lessons developed in this study. 

Having the prospective elementary teachers engage in more case discussions related 

to each big idea, especially for the big idea of generalized arithmetic, might result in 

more salient development of knowledge. As documented in findings in this study, 

the development of the participants’ knowledge in some points related to common 

content knowledge or pedagogical content knowledge was less than hoped.  It is 

believed that the reason for such the result was that the course time was short for the 

content presented. Thus, spending more time on discussions related to early algebra 

content might be more beneficial for prospective elementary teachers. Besides, as 

mentioned earlier, this study mainly focused on the prospective teachers’ 

pedagogical content knowledge, but their common content knowledge was also 

examined as a prerequisite for this (Agathangelou & Charalambous, 2020). 

However, the participants’ mathematics backgrounds and so the readiness of 

studying on teaching algebra, namely common content knowledge, needed to be 

supported more than planned.  This situation caused more time to be devoted to 

content knowledge and less time to pedagogical content knowledge than scheduled 

during the intervention. Therefore, before designing a lesson that includes a 

discussion on how to teach algebra in early grades, getting explicit information 

related to prospective teachers’ general mathematics knowledge and algebra might 

be useful. 

Lastly, there are also some recommendations for future research. This study 

investigated the development of prospective elementary teachers' knowledge to teach 

early algebra through case discussion. Three of the five big ideas identified as the 

content of early algebra, equivalence, and equations, generalized arithmetic, and 
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functional thinking were examined within the scope of this study. Future research 

might consider investigating the prospective teachers' knowledge of all five big ideas 

to see a more comprehensive picture. On the other hand, focusing on only one big 

idea and examining the knowledge development of prospective teachers in this field 

can also provide us with more profound and detailed information. 

The participants of the current study constituted a mixed group in terms of 

achievement, and this situation may affect the development of their SMK and PCK. 

Further research could prefer to choose the participants at different levels of 

achievement.  
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APPENDICES 

A. APPENDIX A: INTERVIEW PROTOCOL 

PART A – EQUAL SIGN &VARIABLE 

A1.  Aşağıdaki ikinci sınıf kazanımı için nasıl bir ders planı hazırlamanız gerektiğini 

düşünün. Dersi planlarken neleri göz önüne alırdınız? Dersin giriş, orta ve sonuç 

kısımlarında neler yapardınız? Kullanacağız örnekler, materyaller neler olurdu?  

             M.2.1.3.5. Eşit işaretinin matematiksel ifadeler arasındaki "eşitlik" anlamını 

fark eder 

 

A2.        3 + 4 = 7 

                       ↑ 

Ok ile gösterilen sembolün adı nedir? 

Bu işaret ne anlama gelmektedir? Açıklayınız. 

 

A3.     Aşağıdaki eşitliklerin doğru olması için [     ] ile gösterilen değerleri 

bulunuz. Cevaplarınızı açıklayınız. 

8 + 4 = [     ]  + 5           

 

A4. Aşağıdaki ifadeler için Doğru veya Yanlış' olarak değerlendiriniz. 

Cevaplarınızın nedenini açıklayınız. 

• 16 + 15 = 31 ise 16 + 15-9 = 31-9 ifadesi de doğrudur 

• 3x - 12 = 51 ve 3x - 12 +3 = 51 + 3 denklemleri aynı çözüme sahiptir 

• 17 = 17 ifadesi matematiksel olarak anlamlıdır 

 

A5. Aşağıda verilen sorular için ilkokul öğrencilerinin verebileceği doğru veya 

yanlış cevaplar neler olabilir? Bu cevapları verirken kullandığı stratejiler neler 

olabilir?  

• 8 + 4 = [     ]  + 5   

                      

A6. Aşağıdaki sorulara verilen öğrenci cevaplarının arkasındaki düşünme şekilleri 

için neler söyleyebilirsiniz?  

• 8 + 4 = [ 12 ] + 5   

• 8 + 4 = [ 17  ]  + 5     

• 8 + 4 = [ 7 ] + 5,  çünkü 8'den bir alıp 4'e eklerseniz 7 kalır  

 

A7.   3n veya n + 6 ifadelerinden hangisinin daha büyük olduğunu söyleyebilir 

misiniz? Cevabınızı açıklayınız. 

 

 

 



 

 

130 

PART B – GENERALIZED ARITHMETIC 

B1. Aşağıdaki dördüncü sınıf kazanımı için nasıl bir ders planı hazırlamanız 

gerektiğini düşünün. Dersi planlarken neleri göz önüne alırdınız? Dersin giriş, orta 

ve sonuç kısımlarında neler yapardınız? Kullanacağız örnekler, materyaller neler 

olurdu? 

M.4.1.4.2. Üç doğal sayı ile yapılan çarpma işleminde sayıların birbirleriyle 

çarpılma sırasının değişmesinin, sonucu değiştirmediğini gösterir. 

 

 

 

 

 

 

 

B2. Hesaplamalarda ne fark ettiniz? Hesaplamalar ile ilgili varsayımınızı kelimelerle 

açıklayınız.  

B3. Varsayımınız hangi sayılar için doğrudur? Tüm sayılar için doğru mudur? 

B4. Varsayımınızı değişkenler kullanarak nasıl yazarsınız?  

B5. Varsayımınızın neden doğru olduğunu açıklayınız. 

B6. Aşağıdaki işlem etkinliğinin ilkokul öğrencilerine sunulduğunu ve aşağıdaki 

soruları cevaplamalarının istendiğini varsayalım. Öğrencilerin cevapları ve bu 

cevaplar için düşünme biçimleri ne olabilir? 

• Hesaplamalarda ne fark ettiniz? Hesaplamalar ile ilgili varsayımınızı 

kelimelerle açıklayınız 

• Varsayımınız hangi sayılar için doğrudur? Tüm sayılar için doğru mudur? 

 

B7. Üç tek sayı toplamı sorusunun ilkokul öğrencilerine sorulduğunu ve aşağıdaki 

cevapları verdiklerini varsayalım.  Bu öğrenci cevaplarının arkasında nasıl bir 

düşüme şekli olabilir? 

• 3 + 5 + 7 = 15 ve 15 tek, bu yüzden Derya haklı 

• Bu her zaman doğrudur, çünkü bir tek sayı her zaman bir çift sayıdan bir 

büyüktür, bu yüzden üç tane 1 toplanırsa, 3 elde edersiniz, bu da bir tek sayı 

oluşturur Çift sayılar toplamı her zaman çifttir ve çifte 3 eklendiğinde her 

zaman tek sayıdır. 

• Bu doğrudur çünkü iki tek sayı toplamı çift olur. Bir tek sayı daha 

eklendiğinde tek sayı olur çünkü çift sayı ile tek sayının toplamı tektir 

 

 

 İşlem Etkinliği 

Aşağıdaki işlemleri yapınız. 
 
17 – 8 + 8  =                                        98 – 29 + 29 = 
 
12 – 12 + 71 =                                     13 – 13 + 72 = 
 

 

İşlem Etkinliği 

Aşağıdaki işlemleri yapınız. 

    12                        27                          45                         23 

 + 27                     + 12                       + 23                     + 45 
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PART C – FUNCTIONAL THINKING 

C1. Aşağıdaki üçüncü sınıf kazanımı için nasıl bir ders planı hazırlamanız 

gerektiğini düşünün. Dersi planlarken neleri göz önüne alırdınız? Dersin giriş, orta 

ve sonuç kısımlarında neler yapardınız? Kullanacağız örnekler, materyaller neler 

olurdu?  

M.3.1.1.7. Aralarındaki fark sabit olan sayı örüntüsünü genişletir ve 

oluşturur. 

C2. Tabloda gördüğünüz örüntüyü açıklayınız. 

C3. Hafta sayısı ile toplam para miktarı arasındaki ilişkiyi (kuralı)  nasıl 

tanımlarsınız? 

C4. Değişkenler kullanarak hafta sayısı ile toplam para miktarı arasındaki ilişkiyi 

(kuralı) nasıl tanımlarsınız? 

C5. Tanımladığınız ilişkinizin doğru olduğunu nasıl anlarsınız? 

C6. Mert'in herhangi bir haftanın sonunda tüm parasını bir bisiklet almak için 

harcadığı biliniyorsa, bu bisikletin fiyatı aşağıdakilerden hangisi olabilir? 

Bisikletini hangi haftada aldı? Cevabınızı açıklayınız. 

                        a) 110 TL    b) 120 TL      c) 130 TL    d) 140 TL 

 

C7. Bisiklet probleminin ilkokul öğrencilerine sunulduğunu ve aşağıdaki soruları 

cevaplamalarının istendiğini varsayalım. Öğrencilerin cevapları ve bu cevaplar için 

düşünme biçimleri ne olabilir? 

• Tabloda gördüğünüz örüntüyü açıklayınız. 

• Hafta sayısı ile toplam para miktarı arasındaki ilişkiyi nasıl 

tanımlarsınız? 

C8. Hafta sayısı ile toplam para miktarı arasındaki ilişkiyi nasıl tanımlarsınız 

sorusuna verilen aşağıdaki öğrenci cevaplarının arkasında nasıl bir düşüme şekli 

olabilir? 

• Toplam para miktarı üçer üçer artıyor 

• Her hafta toplam para miktarı üçer artıyor 

• Toplam para miktarı hafta sayısının üç katıdır 
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B. APPENDIX B: APPROVAL OF THE UNIVERSITY HUMAN 

SUBJECTS ETHICS COMMITTEE 


