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ABSTRACT

AN INVESTIGATION OF DEVELOPMENT OF PROSPECTIVE
ELEMENTARY TEACHERS’ KNOWLEDGE TO TEACH ALGEBRA IN
EARLY GRADES THROUGH CASE DISCUSSIONS

Oztiirk, Nejla
Master of Science, Mathematics Education in Mathematics and Science Education
Supervisor : Assist. Prof. Dr. Isil Isler Baykal

September 2021, 132 pages

The purpose of this study was to investigate the development of prospective
elementary teachers’ subject matter and pedagogical content knowledge for teaching
algebra in elementary grades. Prospective elementary teachers attended a 5-week (10
hours) intervention as part of a method course, Teaching Mathematics |, that was
designed based on case discussions. The participants of the study were nine third-
year students who were enrolled in the course in the 2020-2021 fall semester as a
must course of the undergraduate primary school education program in a private
university. During the last 5 weeks of the 12-week course, the prospective
elementary teachers were presented with the big ideas of equivalence and equations,
generalized arithmetic, and functional thinking as the content of early algebra
through text-based classroom cases. In these lessons, the prospective teachers were
asked to discuss students’ thinking, the teacher’s instructions, and the tasks in the
given classroom cases. Data were collected through one-hour individual interviews
before and after the early algebra lessons. The interview questions were adapted from

the related literature to examine prospective elementary teachers’ subject matter and



pedagogical content knowledge. Qualitative methods were used to analyze data. The
analysis of the pre-interviews indicated that prospective elementary teachers did not
have the required subject matter knowledge to guide algebraic thinking in elementary
grades, such as the relational meaning of the equal sign, generalizing, representing,
or justifying arithmetic or functional relationships and reasoning with them.
Similarly, they were found not to have sufficient pedagogical content knowledge
related to students’ conception/misconceptions and appropriate instruction to foster
early algebra. However, after the early algebra lessons based on case discussions, the
prospective elementary teachers were found to progress in various aspects of
teaching algebra in early grades, as both subject matter and pedagogical content

knowledge related to teaching.

Keywords: Early Algebra, Prospective Elementary Teachers, Teacher Knowledge,

Case Discussion
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SINIF OGRETMENi ADAYLARININ DURUM TARTISMALARI
YOLUYLA ERKEN CEBIiR OGRETIMINE YONELIK BiLGILERININ
GELISIMININ INCELENMESI

Oztiirk, Nejla
Yiiksek Lisans, Matematik Egitimi, Fen ve Matematik Bilimleri Egitimi
Tez Yoneticisi: Dr. Ogr. Uyesi Isil Isler Baykal

Eyliil 2021, 132 sayfa

oz
Bu calismanin amaci, durum tartismalari temelli olarak tasarlanmis erken cebir
derslerine katilan siif 6gretmeni adaylarinin, ilkokul seviyesinde cebir 6gretimine
yonelik alan ve pedagojik alan bilgilerinin gelisimini incelemektir. Calismanin
katilimcilari, 2020-2021 giiz doneminde smif 6gretmenligi programinin zorunlu
dersi olan Matematik Ogretimi I dersini alan dokuz dgretmen adayidir. Bu 12
haftalik dersin son 5 haftasinda, siif 6gretmeni adaylarina metin formundaki sinif
durumlar araciliiyla erken cebir igerigi olarak esitlik ve denklem, genellestirilmis
aritmetik ve fonksiyonel diisiinme konulari sunulmustur. Bu derslerde, 6gretmen
adaylarindan verilen siif durumlarindaki 6grenci diislinceleri, 6gretmen yonergeleri
ve etkinlikler {izerine tartismalari istenmistir. Veriler, erken cebir derslerinden 6nce
ve sonra yapilan birer saatlik bireysel goriismelerle toplanmistir. Griigme sorulart,
siif 6gretmeni adaylarinin alan ve pedagojik alan bilgilerini incelemek i¢in ilgili
alan yazindan uyarlanmistir. Verileri analiz etmek i¢in nitel yontemler kullanilmistir.
On goriismelerin  analizi, 6gretmen adaylarmin, ilkokul seviyesinde cebirsel

diisiinmeye rehberlik edecek, esit isaretinin iliskisel anlami, aritmetik veya
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fonksiyonel iliskileri genelleme, temsil etme, gerekcelendirme ve bu iligkiler
iizerinde akil yiiriitme gibi gerekli alan bilgisine sahip olmadiklarini gostermistir.
Benzer sekilde, erken cebir alaninda 6grenci diisiinmeleri/kavram yanilgilart ve
uygun Ogretim yollar ile ilgili yeterli pedagojik alan bilgisine sahip olmadiklar
bulunmustur. Ancak durum tartismalarina dayali erken cebir derslerinden sonra sinif
ogretmeni adaylarinin ilkokul seviyesinde cebir 6gretiminin ¢esitli yonlerinde hem

alan hem de pedagojik alan bilgisi olarak ilerleme kaydettikleri tespit edilmistir.

Anahtar Kelimeler: Erken Cebir, Siif Ogretmeni Aday1, Ogretmen Bilgisi, Durum

Tartismasi
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CHAPTER 1

INTRODUCTION

Twenty-six years ago, Schoenfeld (1995) stated that;

Algebra today plays the role that reading and writing did in the industrial
age. If one does not have algebra, one cannot understand much of science,
statistics, business, or todays’ technology. Thus, algebra has become an
academic passport for passage into virtually every avenue of the job
market and every street of schooling (p.11).

This fact is still accurate and might be more valid for our technology-wrapped era.
To gain significant mathematics knowledge and reach future educational and
employment opportunities, algebra is seen as a “gateway” (Kaput, 1998; National
Mathematics Advisory Panel, 2008) and is located in the mathematics curriculum as

a central learning domain.

Traditionally, mathematics education is on the grounds of arithmetic then algebra
approach. More explicitly, students are first expected to gain procedural fluency for
arithmetic in elementary grades; then, they face algebra, mostly based on a
procedural approach in the middle grades (Blanton et al., 2007). Parallel with this
approach, algebra does not appear in the Turkish mathematics curriculum as a
learning domain for elementary grades (MoNE, 2018). However, the transition from
concrete arithmetic thinking to increasingly abstract algebraic reasoning, which is
required in secondary school and later grades, became a hurdle for students’
mathematics learning (Bekdemir & Isik, 2007; Carpenter et al., 2000; Knuth et al.,
2016). This problem led educators and mathematics education researchers to
consider the “deep, long-term algebra reform” (Kaput, 1999, p. 134). Kaput (1999)
described a route to that reform as “infusing algebra throughout the mathematics

curriculum from the very beginning of the school” (p. 134). Teachers can provide



students with a more sophisticated algebra background, which involves solid
understandings and experiences for middle grades and high school, by placing
algebra in the curriculum from kindergarten onward (NCTM, 2000). This new

approach is currently known as “Early Algebra.”

Early algebra does not mean serving common algebraic concepts and procedures
addressed in the middle grades to the elementary students earlier (Carraher et al.,
2008) Besides, early algebra is not an attempt to make the elementary curriculum
bigger (Kaput et al., 2008). Early algebra is a way of thinking to provide students
opportunities to generalize relationships and mathematical facts by delving into the
concepts already in the curriculum to provide a deep and coherent mathematical
understanding (Blanton et al., 2007).

Although integrating algebra in the elementary grades is a relatively new idea, recent
research findings enable us to recognize the capability of elementary students (e.g.,
Blanton, Stephens, et al., 2015) and kindergarten students (e.g., Stephens et al., 2020)
to think algebraically, gain insight into a classroom environment for early algebraic
thinking (e.g., Bastable & Schifter, 2008) and teacher practices and necessary
algebra knowledge (e.g., Blanton & Kaput, 2003). However, this situation is not
valid in our national context. Although there are some studies related to elementary
students’ algebraic thinking process (e.g., Tanisli, 2011; Turgut & Temur, 2017), we
still need to know more about algebraic thinking in Turkish elementary grades. On
the other hand, in both national and international contexts, the question: “How can
prospective teachers be given a good start on developing essential knowledge of
algebra for teaching?” (Fey et al., 2007, p. 27) has not been answered sufficiently.
Prospective teachers’ subject matter knowledge and knowledge to teach is at the
center of the complex landscape of prospective teacher education (da Ponte &
Chapman, 2008), and while investigating prospective teachers’ preparation and their
development of knowledge to teach is so critical, the number of studies that focused

on prospective teachers’ knowledge to teach algebra in early grades is quite limited.



The theory and practice gap, as a perennial issue related to prospective teacher
education, has been discussed several times (Darling-Hammond, 2006; Gravett,
Henning & Eiselen, 2011; Korthagen, 2001), and various solutions have been
proposed to eliminate this gap. As one of them, since they take hold of the
authenticity and complication of the instructional practice, classroom cases in
teacher education are seen as an antidote to an overly theoretical approach (Smith &
Friel, 2008). L. Shulman (1996) stated that “case-based teacher education offers safe
contexts within which teachers can explore their alternatives and judge their

consequences” (p. 214).

In the scope of these considerations, this study investigated the development of
prospective elementary teachers’ knowledge to teach algebra in elementary grades

through case discussions.

1.1  Purpose of The Study

The purpose of this study was to investigate the development of prospective
elementary teachers' (PET) “subject matter knowledge” and “pedagogical content
knowledge” (L. Shulman, 1987) to teach algebra in the elementary grades during
their participation in the case discussions that focused on early algebra contents.
More clearly, the study aimed to find out the change in PETs’ knowledge related to
equivalence and equations, generalized arithmetic, and functional thinking as part of
“subject matter knowledge” and their knowledge to teach these contents in terms of
knowledge of students’ thinking, instructional strategies, and representations as part
of “pedagogical content knowledge,” after participating in early algebra lessons

including case discussions.



1.2 Research Questions

The specific research question that guided this study was the following:

How does the prospective elementary teachers’ knowledge to teach early algebra

develop after attending early algebra lessons including case discussions?

a. In what aspects does PETs’ subject matter knowledge related to
equivalence and equations, generalized arithmetic, functional thinking,
and the concept of variable change after attending early algebra lessons
including case discussions?

b. In what aspects does PETs’ pedagogical content knowledge in terms of
knowledge of students’ thinking, instructional strategies, and
representations for algebra in early grades change after attending early

algebra lessons including case discussions?

1.3  Significance of The Study

“All students should learn algebra” (NCTM, 2000, p. 37) and early algebra studies
conjecture that when young students have some sustained experiences related to
algebraic reasoning, they develop “important habits of mind” and gain much deeper
mathematical understanding, by comparison with the ones who have experiences
focused on arithmetical competence and so they become better prepared for
secondary algebra learning (Blanton et al., 2007, p. 8). Moreover, everyone accepts
that one of the most critical factors on student learning is teacher knowledge
(Fennema & Franke, 1992). Therefore, to provide better mathematics education,
particularly algebra education, investigating prospective teachers’ early algebra
related knowledge development has significance. Exploring how prospective
teachers make sense of early algebra and teaching algebra in early grades might help
us gain insight into designing future teacher education courses and professional

development programs.



Among early algebra researches, the ones focused on prospective teachers’
knowledge are scarce, especially in the national context. Thus, the current study
comes into prominence in terms of its contribution to the related literature. In
addition, different from the existing research (e.g., Hohensee, 2017; McAuliffe &
Vermeulen, 2018) which focus on the prospective teachers’ subject matter
knowledge, this study was designed to examine mainly the development of
prospective teachers’ pedagogical content knowledge. However, since subject matter
knowledge is considered as a prerequisite for pedagogical content knowledge
development (Agathangelou & Charalambous, 2020; Ball et al., 2005), prospective
teachers’ subject matter knowledge is also examined within the scope of the study.
In other words, while previous studies focused on prospective teachers’
comprehension of early algebra, this study also aimed to focus on examining their
learning to teach early algebra. Moreover, similar to studies conducted by McAuliffe
and Vermeulen; and Hohensee in which prospective teachers’ knowledge is
examined in a content course, the intervention in this study is designed as including
case discussions. Case-based teaching, as compared to the conventional method,
assists prospective teachers in comprehending the complexity of teaching and allows
them to connect theory-based principles to practical impasses (Gravett et al., 2017).
Therefore, the study is also important because of the scarcity of the studies using
case discussions in this area. This feature of the study distinguishes it from the others.

1.4 Definition of Important Terms

Early Algebra

Early algebra refers to providing students with opportunities to make generalizations
and examine mathematical relationships within the current curriculum to provide
students with a deep and coherent understanding of mathematics and ultimately

prepare them for learning advanced algebra (Blanton et al., 2007).



Prospective Elementary Teachers

Prospective Elementary Teachers are college students who were in their third year
in a four-year primary school education (PSE) program at a private university in
Ankara, Turkey. The graduates of the program are certified to teach 1% to 4™ grades

(elementary school).
Classroom Cases

Classroom cases are “an account of an experience in which our intentions have been
unexpectedly obstructed, and the surprising event has triggered the need to examine
alternative courses of action” (L. Shulman, 2004, p. 474). Cases attempt to provide
a multidimensional representation of the situation's context, participants, and reality
(Gravett et al., 2017). They are seen as “a way to bridge the abstract nature of
principles and teaching standards to classroom practice” (J. Shulman, 2002, p. 2). In
this study, classroom case refers to a classroom narrative that includes the
descriptions of lessons’ context, teacher’ decisions, students’ thinking and teacher-
students interactions. In other words, a classroom case is a written account of what

occurred during a lesson.
Case-Based Instruction

Case-based instruction entails utilizing real-world examples to assist teachers in
gaining the knowledge and skills they need to respond to the complexities and
authenticity of real-world classrooms (Merseth, 1996; Sykes & Bird, 1992). It is an
instruction method in which students read, analyze, and reflect on the classroom
cases (Ertmer & Stepich, 1999; Kowalski,1999). In the current study, case-based
instruction refers to a way in which prospective elementary teachers discuss and
reflect their ideas related to mathematical understanding, students' thinking, and

teachers' moves on a classroom case.
Big Ideas

Big ideas are “key ideas that underlie numerous concepts and procedures across

topics” (Baroody, Cibulskis, Lai, & Li, 2004, p. 24).



CHAPTER 2

LITERATURE REVIEW

This study investigates the development of prospective elementary teachers'
knowledge to teach algebra in the early grades through case discussions. In this
chapter, the related literature will be introduced in three parts. The first part will give
information about the framework used for teacher knowledge. The second part will
focus on the need for early algebra studies, the reconceptualization of algebra, and
the nature and content of early algebra. Lastly, the use of case-based instruction in

teacher education will be explained in the third part.

2.1  Teacher Knowledge

It is indeed beyond doubt that "to be a teacher requires extensive and highly
organized bodies of knowledge" (L. Shulman, 1985, p. 447). Nevertheless, there is
no agreement on what teachers need to know or what constitutes the teacher
knowledge (Even & Tirosh, 2008), neither on pre-service teacher development and
assessment (Hill et al., 2004) nor on what should be investigated in studies related to
teacher knowledge (Petrou & Goulding, 2011). On the other hand, while knowledge
and pedagogy were previously considered separately, Lee Shulman (1986, 1987)
initiated a new wave by pointing out the content dimensions of teaching.

L. Shulman (1987) proposed seven dimensions of teacher knowledge by referring to
content as a missing paradigm in teaching research. These dimensions are introduced
in Table 2.1.



Table 2.1

L. Shulman’s (1986,1987) Dimensions of Teacher Knowledge

General Dimensions Content Dimensions

General pedagogical knowledge Subject matter knowledge

Knowledge of learners Pedagogical content
knowledge

Knowledge of the educational context Curricular knowledge

Knowledge of educational ends, purposes, and

values

According to L. Shulman's (1986) conceptualization, subject matter knowledge is
"the amount and organization of the knowledge per se in mind of the teacher” (p. 9),
and it involves not only knowing the subject related facts, principles, or rules and
also knowing the reasons under the structures. Besides, L. Shulman identifies
pedagogical content knowledge as knowing "ways of representing and formulating
the subject that make it comprehensible to others” and "what makes the learning of
specific topics easy or difficult” (p. 9). Moreover, understanding related to students'
thinking or misconceptions is an essential component of pedagogical content
knowledge. The last dimension of L. Shulman's conceptualization of teacher
knowledge is curricular knowledge, and it is the knowledge of available instructional

materials, scope, and sequence of the current curriculum.

Although L. Shulman's conceptualization still maintains its influence on teacher
education and research, it is criticized because of a lack of clear distinction between
content and pedagogical content knowledge (Ball et al., 2008) and ignorance of the
dynamic nature of teaching (Fennema & Franke, 1992). Then, based on his work,
several conceptualizations or frameworks for teacher knowledge were put forward
(e.g., Ball et al., 2008; Fennema & Franke, 1992; Grossman, 1995; Peterson, 1988).
Among them, the model of "Mathematical Knowledge for Teaching (MKIfT)," which
was introduced by Ball, Thames, and Phelps (2008), guided this study and will be
explained in the following section.



211 Mathematical Knowledge for Teaching Framework

Ball, Thames, and Phelps (2008) generated the Mathematical Knowledge for
Teaching framework as a detailed categorization of L. Shulman's (1986,1987)
conceptualization and the framework composed of two main domains, which are
subject matter knowledge (SMK) and pedagogical content knowledge (PCK). Then,
while the domain of SMK is divided into three subdomains as common content
knowledge (CCK), specialized content knowledge (SCK), and horizon content
knowledge, the domain of PCK is also divided into three subdomains as knowledge
of content and students (KCS), knowledge of content and teaching (KCT) and

knowledge of content and curriculum (see Figure 2.1).

Figure 2.1

Domains of mathematical knowledge for teaching (Ball et al., 2008, p.403)

SUBJECT MATTER KNOWLEDGE PEDAGOGICAL CONTENT KNOWLEDGE

/\

Common

content Knowledge of

content and

knowledge
(CCK) Specialized students (KGS) Knowledge
content of content
knowledge (SCK) and
Horizon curriculum
content
Knowledge of
knowledge content and
teaching (KCT)
k_/”’/

According to Ball et al. (2008), under subject matter knowledge, while common
content knowledge refers to knowledge and skills that are not specific for teaching
and used in other settings, specialized content knowledge refers to teaching specific
knowledge and skills. For instance, to expect and respond to students' “why”
questions such as why we need a common denominator to add two fractions, might
be categorized under SCK. Furthermore, as the last component of SMK, horizon

content knowledge is "an awareness of how mathematical topics are related over the



span of mathematics included in the curriculum™ (p. 403). Concerning the
components of pedagogical content knowledge, firstly, knowledge of content and
students includes the knowledge about students' conceptions and misconceptions by
combining knowledge about content and students. Secondly, knowledge of content
and teaching refers to the knowledge such as selecting and sequencing mathematical
tasks with an awareness of decisions' advantages and disadvantages, orchestrating
classroom discussion, or using students' strategies and responses to provide
mathematical understanding. KCT is shortly a combination of knowledge about
content and teaching. The third and last component of PCK, similar to L. Shulman's
curricular knowledge, knowledge of content and curriculum refers to teachers'
knowledge about what students have learned in previous years and what they will

learn in the future related to their current learning area.

Hohensee (2017), asserted that in the learning and teaching process of early algebra,
while elementary students need to transition from arithmetic to algebra, prospective
elementary teachers need to transition from formal algebra back to early algebra.
This is because early algebra is a relatively new idea and that most prospective
teachers do not have early algebra related experience in their elementary education.
Based on this, “if prospective elementary teachers are going through a similar
process as elementary students (although in reverse), then it makes sense for
prospective elementary teachers to first learn about early algebra as content before
learning how to teach early algebra” (Hohensee, 2017, p. 233). Therefore, the current
study, which aimed to investigate the development of prospective elementary
teachers' knowledge to teach algebra in early grades, focused on KCS and KCT
dimensions in terms of (a) students' conceptions and misconceptions and (b)
instructional strategies and representations, respectively, as part of PCK, and as well
as CCK as part of SMK. Assuming that PETs go through a similar learning process
with elementary students, the knowledge and skills that elementary students should
acquire, which early algebra studies have put forward, are regarded as common
content knowledge related to the early algebra content, which PETs were expected

to learn in this study.
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2.2 Early Algebra

The primary purpose of elementary school mathematics is to provide young students
with fundamental mathematical knowledge and skills and preparing them for higher
mathematics. Algebra is one of the significant components of mathematics that
students encounter in middle and high school (Kieran, 2004). Therefore, elementary
school mathematics should offer young students content to develop necessary
concepts and skills related to algebra. Nevertheless, because of the traditional
"arithmetic-then-algebra™ approach, students' studying for competence in arithmetic
and procedural fluency in early grades is followed by learning algebra in middle
grades as a "distinct subject matter standing in a particular order" (Schliemann et al.,
2007, p. x). The distinction of arithmetic and algebra and the abrupt transition
between them deprives students of developing significant mathematical schemes and
makes learning algebra difficult in later grades (Kaput, 1998; Kieran, 2004). Hence,
recently a consensus has emerged on the substantial role of algebra at all grades, and
the necessity of reformulation of school algebra from kindergarten to higher grades
has risen (e.g., NCTM, 2000). Supporting this idea, the curricula of countries such
as Singapore and Korea, which have high success in mathematics in international
exams (see results of TIMMS 2019 in Mullis et al., 2020), include content to support
algebraic thinking at early grades. According to Ferrucci’s (2004) overview,
although it is not explicitly referenced, Singapore’s curriculum provides activities to
contribute to the algebraic thinking in early grades. Similarly, while Korean students
begin to study formal algebra in grade 7, algebraic thinking is supported by several

prerequisite activities at early elementary school levels.

As Carraher and his colleagues (2008) state, "early algebra is not the same as algebra
early” (p. 235). In other words, early algebra means neither to down the traditional
algebra curriculum into elementary grades nor to replace arithmetic with algebra. It
means reforming our way of teaching arithmetic (Carpenter et al., 2005) to help
students recognize and reason with underlying mathematical structures and

properties and develops the ability to identify, describe, and analyze the relationships
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between varying quantities (Knuth et al., 2016). In a word, early algebra seeks an
answer to the question, "What kinds of algebraic concepts can children learn in
instructional settings that support algebraic thinking?" (Kaput et al., 2008, p. xviii),
in order to prepare them for formal algebra in later grades.

The distinction between algebra in early grades and traditional school algebra
brought the questions of what algebra is and what kind of thinking should be
considered algebraic (e.g., Bell, 1996) and the need for the reconceptualization of
those concepts (Kaput, 1998). To that end, various characterizations of algebra that
highlight important aspects have been asserted (e.g., Bednarz et al., 1996; Kaput,
2008; Kieran, 1996; Usiskin, 1988). Among these characterizations, Kaput, who is
the pioneer of the early algebra approach, introduced a useful framework, which

guided this study.

This section in the literature review intends to present the rationale behind the early
algebra studies. Next section will detail Kaput's (2008) framework, and it will be
followed by the nature and content of early algebra. Lastly, the studies related to

teaching early algebra will be overviewed.

221 Kaput’s Algebraic Reasoning Framework

According to Kaput (2008), algebraic reasoning has two core aspects (Core Aspect
A & B), and these two aspects run through three content strands (Strand 1, 2 & 3).

Figure 2.2 presents each core aspects and strands.
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Figure 2.2

Kaput’s core aspects and strands (Kaput, 2008, p.11)

The Two Core Aspects

(A) Algebra as systematically symbolizing generalizations of regularities and
constraints.

(B) Algebra as syntactically guided reasoning and actions on generalizations
expressed in conventional symbol systems.

Core Aspects A & B Are Embodied in Three Strands

1. Algebra as the study of structures and systems abstracted from computations
and relations, including those arising in arithmetic (algebra as generalized
arithmetic) and in quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.

Algebra as the application of a cluster of modeling languages both mnside and

outside of mathematics.

b

As stated in Figure 2.2, while Core Aspect A focuses on regularities and relations to
make generalizations and using symbols for generalizations, Core Aspect B focuses
on symbol manipulations and following rules. Kaput (2008) explained that Core
Aspect B is usually developed after Core Aspect A is developed. Stated another way,
during the algebraic reasoning process, by using symbols as a tool, a relational
understanding should be advanced first, then skills for acting on symbols should be
considered. These two core algebraic thinking aspects are embodied in three content
strands, and despite the presence of the strands as single entities in the figure, they
overlap (Kaput, 2008). Strand 1 refers to generalized arithmetic, which is the "heart
of algebra” (Kaput, 2008, p. 12). It could be explained as seeing how "algebra is
inherent to arithmetic" (Carraher & Schliemann, 2007). It involves building
generalization from structures of arithmetic (e.g., structures of arithmetic operations
and properties) in terms of their form rather than their computed value. The next
strand, Strand 2, refers to functions and focuses on reaching generalizations that
describe systematic variation of samples in a domain and acting on the forms of these
generalizations. Lastly, Strand 3 refers to modeling and is explained in three types.

The first type is the number or quantity specific modeling, and it reflects the usage
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of the syntactic aspect of algebra to solve an arithmetic problem in which the variable
regards as an unknown. The second type of modeling is expressing and generalizing
regularities in situations as a form of function. The last one refers to generalizations
as single-answer modeling, which builds on solutions to arithmetic problems by

nature.

To investigate the development of prospective elementary teachers' knowledge to
teach algebra in early grades, this study concentrates on using symbols for
generalization (Core Aspect A) and acting on symbols (Core Aspect B) in the

contents of generalized arithmetic (Strand 1) and functions (Strand 2).

2.2.2 The Content of Early Algebra

To put it merely, early algebra refers to "encompass algebraic reasoning and algebra-
related instruction among young learners—from approximately 6 to 12 years of age"
(Carraher & Schliemann, 2007, p. 670) and "immersing them in the culture of
algebra™ (Lins & Kaput, 2004, p. 47; italics in the original). It is believed that
throughout the first six years of elementary school, developing arithmetic and
algebraic thinking simultaneously provides the later algebra learning become a
"natural and non-threatening extension of mathematics of elementary school
curriculum” (Cai & Moyer, 2008, p. 3). Although there is no consensus about what
early algebra contains, whatever content or activity helps students go beyond the
arithmetic and computational fluency to understanding mathematical structures
could be a part of early algebra (Cai & Knuth, 2005; Lins & Kaput, 2004). Algebraic
thinking in early grades is defined by Kieran (2004) as:
Algebraic thinking in the early grades involves the development of ways of
thinking within activities for which letter-symbolic algebra can be used as a
tool but which are not exclusive to algebra and which could be engaged in
without using any letter-symbolic algebra at all, such as analyzing
relationships between quantities, noticing structure, studying change,

generalizing, problem solving, modeling, justifying, proving, and predicting
(p. 149).
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Later on, based on Kaput's (2008) core aspects, Blanton and her colleagues (2011)
proposed the four core algebraic practices as generalizing, representing, justifying,
and reasoning with mathematical relationships. These core algebraic practices were
regarded as a skeleton for planning early algebra lessons and developing questions
of data instrument. Besides, five big ideas for algebra in early grades were identified
in the light of core content strands and previous early algebra studies. These five big
ideas are (i) equivalence, expressions, equations, and inequalities; (ii) generalized
arithmetic; (iii) variable; (iv) proportional reasoning; and (v) functional thinking
(Blanton, Stephens, et al., 2015).

In the scope of this study, the development of prospective elementary teachers’ SMK
and PCK were investigated in three big ideas, which are (a) equivalence and
equations, (b) generalized arithmetic, and (c) functional thinking. Each of these will
be elaborated on in the following sections. The other big ideas, variable, proportional
reasoning, and the inequalities and expressions as the component of a big idea were
not investigated in the scope of this study. However, since variable notation is a
powerful tool for expressing generalizations (Carraher & Schliemann, 2007), the
prospective teachers were expected to use variables while representing the
generalizations related to generalized arithmetic and functional thinking. Thus,
PETSs' conceptions of variables were also examined under the common content

knowledge.

2.2.2.1  Equivalence and Equations

NCTM (2000) regards that "equality is an important algebraic concept that students
must encounter and begin to understand in the lower grades” (p. 94). The equation is
"a mathematical statement that uses an equal sign to show that two quantities are
equivalent,” and "using equations to reason about, represent, and communicate
relationships between quantities is a cornerstone of algebra™ (Blanton et al., 2011, p.
25). Studies suggest that the notion of equality and relational view of the equal sign

(i.e., as a symbol showing the relation between quantities that are the same on both
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sides of the symbol) become significant for solving equations (e.g., 3x-5 = 2x +1)
(Knuth et al., 2005) and operating on the structure of equations (i.e., carry out the
same operations both sides) (Kieran, 1992) and solving equations with an
understanding rather than memorizing a series of rules (Falkner et al., 1999).
Moreover, according to the national mathematics curriculum by MoNE (2018),
students are expected to realize the meaning of the equal sign as an ‘“equality”
between the mathematical expressions at 2" grade (see M.2.1.3.5. in MoNE, 2018).
However, it is well documented that students do not view the equal sign as a symbol
of equivalence; instead, they think that the equal sign is a signal to "do something"
or an announcement of the result of an arithmetic operation (Falkner et al., 1999;
Knuth et al., 2006; McNeil & Alibali, 2005). For example, in the study by Falkner
etal. (1999), when the students at 1% to 6" grade were asked to find the missing value
inthe equation 8 +4 =__ +5, the majority of the students in each grade level thought
that the missing value was either 12 or 17. Less than 10% of students at each grade
level found the correct answer of 7. While the students’ thinking who ignored 5 and
answered 12 by adding 8 + 4 or answered 17 by adding all given numbers is defined
as "operational thinking," the students’ thinking who considered the equality on each
side of the symbol and answered 7 is defined as "relational thinking.” In the studies
conducted in the national context, similarly, students were found to have an
operational conception towards the equal sign (e.g., Bulut et al., 2018; Isler-Baykal
et al., 2019; Yaman et al., 2003). For example, in the study of Isler-Baykal et al.
(2019), about 60% of 3™ grade students, 30% of 4™ grade students, and 23% of 5™
grade students found the missing value in the equation 7+ 3=__ + 4 as 10 or 14
with operational thinking.

Besides the students' conception of the equal sign, operational or relational,
Carpenter et al. (2003) described students' strategies to find the missing value in the
equation 8 + 4 =+ 5. The students who thought operationally, as mentioned
earlier, wrote 12 in the blank by considering "the answer comes next" to the equal
sign and added 8 and 4, or they found the answer as 17 by ignoring where the equal

sign appeared in the number sentence and "added all numbers,” 8 + 4 + 5 =17. On
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the other hand, the students who thought relationally found 7 as the correct answer
either by computing or by recognizing the structure of the equation. The students
who used the strategy of "computation” added 8 and 4 on the left side and found the
number 7 thinking of what number would give 12 when added to 5 which was on
the right side. As a more sophisticated and more flexible strategy, some students
considered the "structure™ of the equation and the relation between the numbers on
both sides by recognizing that 5 is one more than 4 and that the missing value must
be one less than 8.

One of the major stumbling blocks in learning algebra is students’ poor
understanding of the equal sign (Carpenter et al., 2003). Further, the misleading view
of the equal sign does not improve with time or mathematical maturity (Freiman &
Lee, 2004), and telling the meaning of the equal sign directly is not enough for
students to develop a relational conception towards the equal sign (Falkner et al.,
1999). However, studies have shown that student's conception of the equal sign can
develop from operational to relational (e.g., Blanton, Stephens, et al., 2015; Warren
et al., 2009). In order for it to happen, teachers themselves need to have a relational
view of the equal sign and the required pedagogical content knowledge to support

students to develop meaningful understanding and use of the equal sign.

The studies that focused on prospective or in-service teachers' knowledge for
teaching equal sign, equivalence is quite limited. In one of the studies, Stephens
(2006) assessed 30 prospective elementary teachers' preparedness to engage students
in relational thinking and equivalence tasks. The findings of her study indicated that
the majority of the prospective teachers showed awareness of relational thinking in
identifying tasks' goals and sample students' work. Few participants, however,
exhibited an awareness of the fact that many elementary school students had
misconceptions regarding the meaning of the equal sign. Similar findings were
recorded in Asquith et al. (2007) 's study. When they interviewed 20 middle school
teachers, they found that teachers did not expect students to have misconceptions
related to the equal sign, and they predicted that their students "have a stronger
relational understanding of the equal sign than was actually demonstrated by student
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responses” (p. 262). Another study showed that teachers might not have the
necessary knowledge for teaching equal sign. Vermeulen and Meyer (2017)
interviewed three fifth and sixth grade teachers and concluded that teachers "lacked
the knowledge and skills to identify, prevent, reduce, or correct students'
misconceptions about the equal sign” (p. 136). In addition to the studies investigating
the prospective or in-service teachers' initial knowledge for teaching equal sign,
Santarone et al. (2020) assessed the development of prospective teachers' KCS and
KCT related to the meaningful use of the equal sign by designing an intervention.
Their study provided the prospective teachers with a research-based teacher
intervention and assessed the development of knowledge for teaching equivalence
through their practice-based experiences where they had opportunities to practice
instructional strategies with students. They found that although the prospective
teachers still demonstrated some difficulty to distinguish students' computational and
relational views, and prompting the ways to entirely further students' relational
thinking, the teacher intervention was found to help them to develop their KCS and
KCT related to the equal sign.

In the current research, the development of the prospective elementary teachers'
CCK, KCS, and KCT related to equivalence and equations were investigated in a
learning environment including case discussions. The findings might contribute to
the literature about preparing prospective teachers to teach equivalence and

equations as a cornerstone for algebra learning.

22272 Generalized Arithmetic

Traditionally, elementary school students spend most of their time performing
computations, learning algorithms, and finding correct answers. Their experience
with generalizations, studying the fundamental properties' structure, and searching
regularities and patterns in numbers and operations are pretty limited. However,
NCTM (2000) emphasizes the significance of generalization in arithmetic by stating

that "analyzing the properties of the basic operations gives students opportunities to
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extend their thinking and to build a foundation for applying these understanding to
other situations™ (p. 161). Parallel with this idea, generalized arithmetic refers to
"helping children see, describe, and justify patterns and regularities in operations and
properties of numbers" in order to "move beyond arithmetic to algebraic thinking"
(Blanton, 2008, p. 12). The development of algebraic thinking requires making and
representing conjectures, as well as generalizing and justifying them (Kaput, 1999),
and those activities "can bring a deeper purpose to arithmetic and children's
arithmetic understanding” (Blanton, 2008, p. 12). In the national mathematics
curriculum by MoNE (2018), several learning objectives under the domain of
number and operations could be used to provide elementary students with
opportunities to conjecture, represent, justify and generalize arithmetic relationships,
and ultimately think algebraically. For example, the 2"9-grade learning objective that
expects students to notice that changing the order of the multipliers would not change
the product could be used to engage students in generalizing process.

The studies on generalized arithmetic mainly focuses on a) the fundamental
properties of number and operations (e.g., commutative property of addition or zero
is additive identity), b) the relationships among operations (e.g., inverse relationship
between addition and subtraction), and c) the relationships in a class of numbers and
outcomes of calculations (e.g., operations with odd and even numbers). Making
conjectures, justifying, and generalizing mathematical reasoning about these
arithmetic aspects is significant for the unification of arithmetic and algebra (Hunter,
2010). However, research showed that elementary students have limited experiences
related to engaging in generalizations in arithmetic. For example, Anthony and
Walshaw's (2002) study with the year 4 and year 8 students revealed that students
struggle to reach correct generalizations related to commutativity. Although students
were confident about the commutative property under addition and multiplication,
they were not sure about the commutativity for subtraction. Moreover, they also
found that students were not able to justify their conjectures with the models. Similar
findings were recorded by Warren's (2001) study investigating elementary students'

generalizations related to commutativity. Her study revealed that elementary school
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students were capable of generalizing, but because of incorrect sense-making,
misleading teaching materials, and over generalizations of new learning, they had
difficulties in reaching correct generalizations.

The studies so far also show us that thanks to the appropriate instruction, the
difficulties that elementary students face while conjecturing, justifying, and
generalizing can be eliminated, and the students can learn to construct and justify
arithmetical generalizations. For example, in the study with students who were 9-11
years old, Hunter (2010) concluded that "opportunities to develop explanations with
concrete material and use notation to represent conjectures led to students developing
further generalizations” (p. 111). Likewise, in the study of Blanton, Stephens, et al.
(2015), when the 3" grade students were asked whether 39 + 121 = 121 + 39 was
true or false, none of the students who thought that the statement was true could
explain by relying on the structure of the equation in the pre-test. However, after the
intervention including the activities that guide students to make arithmetic
generalizations, in the post-test, 66% of the students provided such an explanation,
including recognition of commutativity (e.g., "True, because 121 + 39 is just 39 +
121 in reverse"). In addition, Isler et al.'s (2013) study also showed that instruction
could improve students' ways of justification. Their study noted that students were
beginning to build representation-based arguments and provide generalizations using
facts about the sum of even and odd numbers during the classroom intervention,
despite their generally poor performance on the pre-assessment. Thus, it is teachers
who can create instructional settings to encourage generalizations and "algebrafy"
their resources (Blanton & Kaput, 2003, p. 76).

The studies that investigated teachers' knowledge related to teaching arithmetic
generalizations is quite limited. The existing research focused on how prospective
teachers make sense of fundamental properties and represent them. Monandi (2018)
state that pre-service elementary teachers who took part in the study did not
understand associative and distributive properties' use in simplifying numerical
statements well by analyzing their performances on pre- and post-teaching algebra

tests. Similarly, Ding et al. (2013), examining pre-service elementary teachers'

20



knowledge to teach associative property of multiplication, found that only 14% of
PETSs defined the associative property accurately, about 30% could generate a correct
algebraic formula, and 25% provided an arithmetic example correctly. Moreover,
they noted that most participants could not use concrete contexts (e.g., pictorial
representations and word problems) to represent the associativity of multiplication
conceptually. Such results and the paucity of studies examining teacher subject
matter knowledge and pedagogical content knowledge regarding arithmetic
generalizations may indicate that there is still much needed to know to bridge the

gap between teaching arithmetic and algebra.

2.2.2.3  Functional Thinking

Functional thinking is closely related to the early algebraic thinking practices of
generalizing, representing, justifying, and reasoning with mathematical relationships
(Blanton et al., 2011; Kaput, 2008). Thus, functional thinking is seen as a critical
route to learning and teaching early algebra (Carraher & Schliemann, 2007).
According to Blanton, Brizuela, et al. (2015), functional thinking involves a)
generalizing relationships between covarying quantities; b) representing and
justifying these relationships in multiple ways such as using natural language,
variable notation, tables, and graphs; and c) reasoning with these generalized
representations (p. 512). Parallel with these practices, NCTM (2000) states that
elementary students should learn to describe and extend generalizations about
patterns; using words, symbols, tables, and graphs to represent patterns, and
investigate the relationship between the variables change together. Similarly, in the
national mathematics curriculum (MoNE, 2018), elementary students are expected
to study patterns. Although the objectives do not directly ask students to focus on the
relationship between the variables changing together, the elementary teachers could
create an environment to guide students to think functionally. For example, the 3'-

grade learning objective that expects students to expand and generate the number
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patterns that have a constant difference could be used to encourage functional
thinking.

Confrey and Smith (1991) propounded that students show three different modes of
thinking when they generalize the functional relationships: recursive, covariation
and correspondence. Recursive patterns represent variation in a single series of
values, demonstrating how to get the following number in the sequence from the
previous number (e.g., in the context of a varying number of dogs and the total
number of the dogs' eyes; the number of dogs' eyes goes by 2); covariational thinking
entails examining how two quantities vary in respect to one another and including
that variation in the function's description (e.g., as the number of dog increases by 1,
the total number of dogs' eyes increases by 2); and correspondence relationship is a
function rule that expresses a coordination between two variables (e.g., the total
number of dog eyes is twice the number of dogs) (Blanton et al., 2011).

Based on these three modes of generalizing functional relationships, researchers
developed several frameworks related to the level of representing generalizations
(e.g., Barbosa, 2010; Blanton, Brizuela, et al., 2015; Stephens et al., 2017). Stephens
et al.'s framework of "Levels of sophistication describing generalization and
representation of functional relationships” (2017, p. 153; see Figure 2.3) was taken
as a reference in the functional thinking dimension of this study because it was more

up-to-date and comprehensive.
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Figure 2.3

Levels of sophistication describing generalization and representation of functional
relationships (Stephens et al., 2017, p. 153)

NO EVIDENCE OF FUNCTIONAL THINKING
LO: No response or restatement of given. Two people can sit at a table.
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E |

VARIATIONAL THINKING
L1: Recursive Pattern-Particular: Student identifies a recursive pattern in either or both
variables by referring to particular numbers only. Jt goes 2, 4, 6, 8, ...

L2: Recursive Pattern-General: Student identifies a correct recursive pattern in either or both =
F variables. The number of people goes up by 2 each time. J
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COVARIATION THINKING CORRESPONDENCE THINKING
L3: Covariation Relationship: L4:  Single Instantiation: Student writes expression or equation with numbers
Student identifies 3 and/or unknowns that provides one instantiation of the function rule but
covariation relationship. v ;/\f' does not generally relate the two variables. 2 x 2 =4
The two variables are || L3:  Functional-Particular: Student identifies a functional relationship using
coordinated rather than %7 particular numbers but does not make a general statement relating the
mentioned separately. variables. I x2=2,2%2=4,3x2=0,4x2=8, ..
Every time vou add a desk, L6:  Functional-Basic: Student identifies general relationship between
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L7/3: Functional-Emergent: Student identifies incomplete function rule in
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or words (L10) that describes a generalized relationship between the two
variables.
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There is plenty of research which indicated that elementary students could engage in
functional thinking, even at the kindergarten level. For instance, research showed
that elementary students could use tables to represent and reason with the
relationships (e.g., Brizuela & Lara-Roth, 2002, grade 2; Tanish, 2011, grade 5);
although students initially tended to focus on recursive patterns, not on the
relationships between variables (e.g., Lannin et al., 2006, grade 6), they were found
to be capable of correspondence thinking that went beyond what was typically taught
in elementary school (Blanton & Kaput, 2004, grades K-5; Turkmen & Tanisli, 2019;
grades 3-5). Furthermore, elementary students could express the correspondence
relationships in words (e.g., Martinez & Brizuela, 2006, grades 2-5; Moss & McNab,
2011, grade 2) and in variables (Blanton et al., 2017, grade 1; Isler et al., 2015, grades
3-5). Studies in both national and international contexts indicated that supportive

instruction could help elementary students to engage in covariational and
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correspondence thinking (e.g., Akin, 2020, grade 5; Blanton, Stephens, et al., 2015,
grade 3; Canadas et al., 2016, grade 2; Isler et al., 2017, grade 3-5; Ozturk et al.,
2020, grade 3). Thus, to create a learning environment that supports functional
thinking, teachers need to have subject matter knowledge and pedagogical content
knowledge related to functional thinking.

Previous research showed that prospective teachers had difficulties in generalizing
the functional relationships. Oliveria et al. (2021) examined Spanish and Portuguese
prospective elementary teachers' functional thinking at the beginning of their teacher
education program and found that successful strategies to generalize functional
relationships were infrequent. When PETs were asked to find a distant term of a
geometric pattern, %32 of Spanish PETs and %17 of Portuguese PETs were able to
use correspondence strategies to find correct answers. Then, when they were asked
to express the general term of the geometric pattern, only 30% of Portuguese PETs
and 34% of Spanish PETSs provided a correct general term. Strikingly, the majority
of Portuguese PETS' strategies (47%) were recursive which did not lead to the
generic term, as was the case with Spanish PETS' responses (35% of the strategies).
Similarly, Alajmi (2016) found that prospective elementary and middle school
mathematics teachers were not confident in developing general rules for the tasks
that involved linear, exponential, and quadratic situations. In his study, prospective
elementary teachers preferred drawing or counting to support their thinking and
mainly used recursive strategies rather than explicit rules. Likewise, Yesildere and
Akkoc (2010) found that prospective elementary mathematics teachers used
recursive strategies while generalizing the patterns that were non-linear (quadratic)
in nature. Furthermore, the existing research showed that prospective teachers faced
challenges when using symbolic notations for generalizing (Zazkis & Liljedahl,
2002) and had difficulties while providing justifications for their reasoning
(Richardson et al., 2009). In the study conducted by Richardson et al. (2009) in
which prospective elementary teachers were asked to complete pattern-finding tasks,
the researchers concluded that "while the generalizations were valid in terms of a

rule, attempts to explain the algebraic symbols of the rules were incomplete with
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respect to explaining the origins of the coefficient and/or the y-intercept of the rule”
(p. 193). Besides those findings, we need to learn more about prospective teachers'
algebraic thinking abilities, particularly their methods, misunderstandings, and
challenges with a wide range of functional thinking topics (Yemen-Karpuzcu et al.,
2017).

2.2.3 The Studies That Focus on Development of Teacher Knowledge
Related to Early Algebra

As already noted, except for those focusing on the meaning of the equal sign, most
of the studies investigating prospective teachers' early algebra-related knowledge
focused on initial subject matter knowledge. This was also true in the limited studies
that examined the development of prospective teachers' early algebra-related
knowledge. Hohensee (2017) examined prospective teachers' thinking after
participating in a method course that focused on generalized arithmetic, functional
relationship, and the meaning of the equal sign as the content of early algebra. The
purpose of his study was "to examine how PSTs [pre-service teachers] learn about
early algebra rather than how they learn to teach early algebra” (Hohensee, 2017, p.
233). In the scope of the study, 13 prospective teachers firstly worked in groups on
the activities that explored algebraic thinking, then they engaged in whole-class
discussions during the 20 lessons (10 lessons for generalized arithmetic, 5 lessons
for functional relationships, and 5 lessons for the meaning of the equal sign). Data
of the study was collected through the meetings of the researcher and participants'
groups of twos and threes. In those meetings, the prospective teachers worked on
tasks that assessed their SCK related to the themes of the lessons. In the data analysis,
participants' verbal responses were examined to figure out their meaningful insights
and conceptional challenges after they attended the course. The findings indicated
that the participants experienced the transition "from knowledge they had about
formal algebra from high school to new knowledge about early algebra” (p. 242),
they had new insights about identifying the operational and relational meaning of the
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equal sign and representing quantities which are unknown or variable in informal
ways without using algebraic symbols. On the other hand, although the participants
made significant progress in representing functional relationships, identifying
functional relationships and conceiving variables as being different from unknowns
remained challenging for them.

Another study that investigated the development of prospective teachers' early
algebra-related knowledge in a course, like the current study, was conducted by
McAuliffe and Vermeulen (2018), focusing on functional thinking. Their study
aimed to investigate the prospective teachers' knowledge for teaching functional
thinking during their teaching practicum. In the study, 26 prospective teachers were
enrolled in an Early Algebra course lasting 24 weeks, 8 of which were teaching
practicum in schools. Early Algebra course involved reading and discussing early
algebra-related journal articles and planning an early algebra lesson for their teaching
practicum. The study's data comprised participants’ written lesson reflections, and
video-recorded lessons were analyzed by considering four aspects of their SCK:
representations, working with students' responses, restructuring tasks, and
questioning. The findings revealed that the Early Algebra course helped prospective
teachers develop their SCK for using different representations of functions, but they
still needed support to encourage students to generalize and describe functional
relationships.

The findings of these studies provide insight into the development of prospective
teachers' knowledge related to early algebra and inform the teacher education
courses. However, we still need to know further about this issue. The current study
aimed to build on the existing research findings and, different from them,
investigated the prospective elementary teachers' early algebra-related knowledge

more comprehensively by focusing on SMK and PCK together.

26



2.3 Case-Based Teacher Education

Lee Shulman (2004) voiced that teaching has an uncertain and unpredictable nature.
Therefore, to prepare teachers for the dynamic teaching work, teacher education
programs must provide them such skills to analyze the situations and make quick
decisions. However, teacher education programs are criticized because of the
distinction between theory and practice (Ball & Cohen, 1999). Due to the theory and
practice gap, novice teachers face practice shock (Stokking et al., 2003) and
complain that the overly theoretical courses of their professional education do not
provide necessary practical knowledge for real-life situations (Lambert, 2010). As
part of the endeavor to eliminate that problem, using an instructional method in
teacher education is asserted: case-based instruction, which is also referred to as
case-study pedagogy (Heitzmann, 2008).

The use of cases in the education of professions such as law, medicine, and business
goes a long way back. Nevertheless, an alternative to traditional teaching methods
(e.g., lecture-based instruction) was offered to be case-based instruction in teacher
education (Merseth, 1996), and it started to be used after the 1980s. With the
emphasis on the complex nature of teaching, Hutchings (1993) provided a rationale
for using cases in teacher education as:

Cases have the ability to situate the conversation about teaching on this

middle ground between process and content (technique and substance) where

a particular teacher, with particular goals, teaches a particular piece of
literature (in this instance) to a particular student (p. 10).

Judith Shulman (2002) considered the use of cases as "a way to bridge the abstract
nature of principles and teaching standards to classroom practice” (p. 2) and defined
a classroom case as "... a piece of controllable reality, more vivid and contextual
than textbook discussion, yet more disciplined and manageable than observing or
doing work in the world itself" (1992, p. xiv). In case-based instruction, on the other
hand, students read, analyze, and reflect on the cases (Ertmer & Stepich, 1999;

Kowalski, 1999). Mostly this process starts with individually reading or observing
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the case and taking notes, and then it is followed by small group discussion and

eventually finishes with whole group discussion (Morris, 2008).

It is well documented that cases can be an effective tool in teacher education (e.g.,
Lundeberg et al., 2000; J. Shulman, 1992; Smith & Friel, 2008; Sudzina, 1999).
Since cases can reflect the multidimensional representation of real-life situations
with the context and participants (Gravett et al., 2017) and have the power to
integrate theory and practice (Mitchell, 2001), cases help teachers to create a
repertoire of solutions for everyday problems in teaching (Kleinfeld, 1992),
encourage critical thinking and decision-making abilities (Butler et al., 2006), assist
to reason about dilemmas in instruction (Markovits & Even, 1999) and provide
opportunities to enhance subject matter and pedagogical content knowledge
(Henningsen, 2008). In a word, case-based instruction enables teacher candidates to
"think like a teacher™" (Kleinfeld, 1992, p. 33).

Merseth (1996) divided case purpose into three categories: (a) cases as exemplars,
(b) cases as opportunities to practice analysis and contemplate actions, and (c) cases
as stimulants to personal reflection. The exemplar cases are generic examples of
practice, theory, instructional method, or principle supplied to students’ discussion.
Moreover, exemplar cases can be used "to honor 'best practice' or to make effective
teaching more public” (p. 728). The second category of cases provides opportunities
to practice actions rather than being confirmed or specified practice. In the light of
their own experiences, emotions, and prior knowledge (Merseth & Lancey, 1993),
during the analysis of cases, students are expected to practice decision making and
problem-solving. Lastly, cases in the third category involve multiple perspectives

and aims to foster the interpretation of students' reflectivity.

Besides the purposes and uses of cases, the forms of cases are also various in the
literature, such as text-based cases, video-based cases, and multi-media cases. In this
study, prospective teachers' knowledge development was investigated in a learning
environment that involves text-based cases and case discussions. The cases were

selected as content-specific and used as exemplars and opportunities to practice
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analysis and consider actions, according to Merseth's (1996) categorization.
Although some studies asserted that video-based cases could be a more powerful tool
than text-based cases in teacher education (e.g., Moreno & Valdez, 2007), text-based
cases are also used as an effective tool in teacher education (e.g., Henningsen, 2008)
since the nature of human thought is narrative and narrative knowledge is linked to
memorable occasions in a person's life (Bruner, 1987). Based on this idea and
because it was not feasible to produce video-based or multimedia cases during this
study, the case discussions were carried out through text-based cases.
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CHAPTER 3

METHODOLOGY

This study investigated the development of prospective elementary teachers' subject
matter and pedagogical content knowledge to teach algebra in elementary grades
through case discussion. The methodology will be presented in this chapter. Firstly,
the design of the study will be introduced, and then the participants and the context
of the study will be described. These sections will be followed by an explanation of
the data collection tool, the data collection procedure, and data analysis. After that,
issues related to the trustworthiness of the study will be presented. Lastly, the

limitations of the study will be adverted.

3.1  Design of The Study

The current study aimed to investigate the development of PETs' knowledge to teach
algebra in early grades by analyzing their individual interviews before and after their
participation in the early algebra lessons in a method course. The research process
was performed to understand PETs' knowledge development and examine their
experiences. The design of the study was qualitative since "qualitative researchers
are interested in understanding how people interpret their experiences, how they
construct their world and what meaning they attribute to their experiences™ (Merriam
& Tisdell, 2016, p. 6).

There are several qualitative research approaches. Among all, the case study
approach was performed in this study since the investigation was "an in-depth
description and analysis of a bounded system™ (Merriam & Tisdell, 2016, p. 37). In
parallel with the purpose and design of this study, Yin (2003) defined the case study
as " an empirical inquiry that investigates a contemporary phenomenon in depth and

within its real-life context, especially when the boundaries between phenomenon and
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context may not be clearly evident” (p. 13). The current study used individual
interviews as the data source to investigate the case of PETS' early algebra-related

knowledge development in a learning environment, including case discussions.

While this study can be categorized as an instrumental case study, according to Stake
(2005), it is categorized as a descriptive case study, according to Yin (2003). A case
study that a researcher aims to "describe an intervention or phenomenon and real-
life context in which it occurred” (Yin, 2003, p. 15) is called a descriptive case study.
On the other hand, an instrumental case study examines a particular case "mainly to
provide insight into an issue or to redraw a generalization. The case is of secondary
interest; it plays a supportive role, and it facilitates our understanding of something
else” (Stake, 2005, p. 437). Both aspects fit the nature of the current study.

3.2  Context of The Sudy

The data for answering the research questions of this study was collected during the
particular five weeks of an undergraduate course in the primary school education
program. Therefore, the study's context comprises of the teacher education program,
the undergraduate course, and intervention implemented during the course, the early

algebra lessons. Each of them will be explained in the following sections.

3.2.1 The Teacher Education Program

The participants of the study were enrolled in an undergraduate primary school
education (PSE) program in a private university in Ankara, Turkey. The program of
PSE is a 4-year undergraduate teacher education program. In this Turkish-medium
program, the students are offered an option to take English language preparation
education. The PSE program trains prospective teachers working with primary

school students (grades 1-4).

32



In general terms, the primary school education program offers subject matter
knowledge, the teaching profession, practice, and general culture courses. The
subject matter knowledge courses include theoretical courses such as basic
mathematics and basic science for primary school, drama, games, and physical
activities and several teaching methods courses for all disciplines at the primary
school (e.g., mathematics, science, social studies, Turkish language, foreign
language, music, visual arts). These subject matter knowledge-related courses are
spread to four-year education. Besides, the courses of educational sciences
(Psychology of Education, Educational Philosophy, Sociology of Education),
Educational Technology, Instructional Principles and Methods, Classroom
Management, Measurement and Assessment, and Guidance are offered as teaching
profession courses, and most of those are completed by the end of the third year. In
the last year, the students are expected to complete the courses of teaching practice
during the two semesters. The teaching practice courses are carried out in the training
schools with the supervision of course instructors and teachers in training schools.
Lastly, besides the subject matter knowledge and teaching profession courses, the
primary school education (PSE) program offers some general culture courses related
to Ataturk's Principles and History of Turkish Revolution, Turkish Language,
Foreign Language, Information Technologies, Community Service, and some

elective courses which are depended on students' interest.

Among the courses in the PSE program, Basic Mathematics in Primary School and
Teaching Mathematics courses are the ones related to prospective teachers'
knowledge to teach mathematics, which is the focus of this study. Basic Mathematics
in Primary School course is offered in the fall semester of the program's 1% year.
Within the scope of this course, content such as basic operations, various humber
systems, functions, sets, and data analysis are focused on. In the Teaching
Mathematics course, methods, and techniques for teaching mathematics at the
primary school level are presented. Since the development of PETs' knowledge to

teach algebra in early grades was investigated through the last five weeks of the
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Teaching Mathematics I course, in the following section, detailed information about

the course will be provided.

3.2.2 Teaching Mathematics Course

The Teaching Mathematics course is offered to 3™ year prospective elementary
teachers in both fall and spring semesters as Teaching Mathematics | and Teaching
Mathematics Il. These courses are compulsory and do not have any prerequisite
courses. In a general manner, the purpose of the courses is to provide prospective
teachers with insight and knowledge related to the principles of mathematics
teaching, the teaching and learning strategies, fundamental learning theories, basic
mathematical skills, measurement, and assessment in mathematics teaching.
Moreover, as one of the main objectives, the PETs are expected to gain the necessary
knowledge to teach the contents and objectives in the primary school mathematics
curriculum at the end of Teaching Mathematics courses. The detailed learning

outcomes for these courses are presented in Table 3.1.

Table 3.1
The learning outcomes of Teaching Mathematics courses
Course Learning Outcomes
Teaching Know the goals and basic principles of mathematics education
Mathematics I  Know the teaching and learning principles in mathematics
education

Apply mathematics teaching and learning strategies
Know the goals and philosophy of elementary education
Use the basic abilities of relation, communication, reasoning
Use information technologies in mathematics teaching
Know the steps of number concept development
Develop activities on 1., 2. and 3. grades mathematics program
Teaching Take precautions for the misconceptions of fractions
Mathematics  Prepare activities related to fractions
] Know the steps of the development of geometric thinking
Prepare activities for geometry concepts
Develop activities for measurement concepts
Develop activities for data analysis
Know the assessment strategies in mathematics education

Note: This information was taken from the related official webpage of the university.
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As mentioned earlier, according to the Turkish mathematics curriculum, algebra is
not a learning domain for elementary grades, and there is no emphasis on algebraic
thinking. Similarly, in the Primary School Education Program and particularly in
Teaching Mathematics courses, the prospective elementary teachers have not been
presented any algebra and teaching algebra-related content. Teaching Mathematics |
course would be offered in the fall semester when the researcher contacted the course

instructor, and its content was found appropriate to conduct this study.

The five-week early algebra content was added to the Teaching Mathematics | course
schedule in the 2020-2021 fall semester. The details of the early algebra lessons will

be given in the following section.

3.2.3 Early Algebra Lessons

The last five weeks of the 12-week Teaching Mathematics | course were devoted to
introducing early algebra content to prospective elementary teachers, which
comprised the intervention for this study. Each week, there were 2 lesson hours. The
researcher guided these lessons on Microsoft Teams during distance education.
Throughout the 10 hours of the intervention, the prospective elementary teachers
were expected to develop their subject matter knowledge and pedagogical content
knowledge for teaching algebra in elementary grades. The learning goals were
adapted for each big idea in two groups: subject matter knowledge (particularly
CCK) and pedagogical content knowledge (particularly KCT and KCS). Moreover,
three more learning goals were adapted for the concept of variable, which was
significant to represent the relationships related to the big ideas. These three learning
goals were also categorized under the common content knowledge. The learning
goals for CCK were adapted from the LEAP project (see Blanton, Stephens, et al.,
2015) with permission. The LEAP project focused on understanding the impact of a
systematic, multi-year approach to teaching and learning algebra in the elementary
grades. In the different phases of the project, the researchers developed a curricular

framework for early algebra, an instructional sequence, and grade-level assessment
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tools. They investigated the effectiveness of instructional sequence in grades 3-5
overtime in terms of students’ algebra understanding. Hence, the order and the
learning goals were appropriate for providing prospective elementary teachers with
early algebra content in this study. On the other hand, the learning goals for KCT
and KCS were adapted from Ball et al. (2008)'s descriptions of teacher knowledge
categories. The learning goals that guided the early algebra lessons are presented in
Table 3.2.

Table 3.2

The learning goals for the Early algebra lessons

Big Ideas / _
Concept Learning Goals
Equivalence CCK1. Develop a relational understanding of the equal sign

and Equations by identifying and reasoning with structural relationships in
the equation or by using arithmetic strategies
KCSL1. Analyze students' possible conceptions and
misconceptions. Identify students’ conceptions of the equal
sign as relational or operational.
KCS2. Expect students to use different strategies to find a
missing value in a number sentence.
KCT. Design a lesson with appropriate strategies and
representations to guide students to gain a relational
understanding of the equal sign

Variable CCKJ1. Understand that a variable represents the measure or
amount of the object, not the object itself
CCK2. Understand that the role of a variable in a functional
relationship is that of varying quantity
CCKa3. Understand how to use variables to stand for
unknowns in equations
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Table 3.2 (continued)

Generalized
Arithmetic

CCK1. Identify and generalize arithmetic relationships

e fundamental properties in use in computation

o the relationships among operations and their

inverse relationships
e arithmetic relationships in a context such as
classes of numbers or outcomes of calculations

CCK2. Describe arithmetic generalizations in words and
variables
CCKa3. Understand that arithmetic generalizations are
true for all values of variables in a specified number
domain.
CCKA4. Justify arithmetic generalizations by empirically,
by using representation-based reasoning, by using general
arguments, or by using algebraic arguments
CCKS5. Reason with the arithmetic generalization
KCS. Analyze students' possible conceptions and
misconceptions in the processes of conjecturing,
representing, justifying, and generalizing arithmetic
relationships
KCT. Design a lesson with appropriate strategies and
representations to provide students to engage in
conjecturing and generalizing and to experience core
algebraic thinking practices

Functional
Thinking

CCK1. Identify and describe recursive, covariational, and
correspondence relationships in words

CCK2. Describe correspondence relationships, or
function rules using variables

CCKa. Justify relationships represented in words and
variables using function rules, tables, or problem context
CCKS5. Reason with generalization by interpreting
representations (graph, table, function rule) and linking
representations

KCS. Analyze students' functional thinking approaches
while generalizing and representing the relationships
between two variables that change together.

KCT. Design a lesson with appropriate strategies and
representations to provide students to think functionally
by coordinating the relations between the variables,
instead of focusing on the change in one variable

Note: The CCK learning goals were adapted from the LEAP project (see
http://algebra.wceruw.org)
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In line with these learning goals, in the early algebra lessons, the prospective
elementary teachers were involved in case discussions on the learning and teaching
early algebra. Besides, they worked on the activities that can be used with elementary
school students to support their algebraic thinking. Each week, usually, the first
lesson focused on PETs' common content knowledge and activities were
implemented to enable them to experience core algebraic thinking practices of
generalizing, representing, justifying, and reasoning. Then, in the second lesson,
through case discussions, PETs were provided to enhance their pedagogical content
knowledge in terms of possible student thinking, instructional strategies, and
representations to be used. More specifically, PETs were asked to read, analyze, and
discuss the cases from the point of mathematical understanding, students' thinking,
and teachers' moves (Schifter & Bastable, 2008) to improve their knowledge for
teaching the core algebraic thinking practices in the particular content areas. For
example, while reading the given classroom cases, they were asked questions
including “How do you interpret those students' answers?” “Why does the teacher
need to ask this question?” “What do you think about the teacher's move?” “As a
teacher, would you prefer a different strategy?” “Besides this student's explanation,
what kind of student response might be expected for that question?”” The activities
and the classroom cases in which the case discussions were carried out were chosen
from the literature according to the learning goals. In determining the classroom
cases, the presence or absence of a knowledge or skill specified in the learning goal
in the classroom vignette was taken into consideration. For example, in the classroom
case named Two of Everything (Wickett et al., 2008, pp. 4-12), the students examine
a growth pattern, record the data on a table, describe the relationships they see in the
table, in words and in variables. This classroom vignette was considered as
appropriate exemplar case for discussing how patterns could be used to encourage
functional thinking. In the case of Two of Everything, not only the appearance of the
knowledge and skills specified in the learning goal (e.g., describing a recursive
pattern, creating a table, justifying the correspondence relationship) but also their

absence was considered important for the case discussions. For example, none of the
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students in that case described the relationship between the variables using
covariational thinking. This situation was used as an opportunity to engage
prospective elementary teachers in a discussion about other possible student thinking
and the teacher strategies to guide students think covariationally. The other
classroom cases were determined in a similar way and presented to the participants
to have reflection and discussion related to the content specified for that lesson. Table

3.3 shows the schedule and contents of the early algebra lessons.

Table 3.3

The Schedule and Content of the Early algebra lessons

Week Big ldea Lesson Topic Task / Case
1 Equivalence 1 What is early Lecture, classroom
and algebra? discussion (Blanton,
Equations 2008; Kaput, 2008)
2 The meaning of the Case Discussion —
equal sign Students’ responses to
the missing value item 8
+4=__ +5 (Carpenter
et al., 2003, pp. 10-13)
2 Generalized 3 Arithmetic Commutative Property
Arithmetic relations of the Task
fundamental
properties of
number and
operation
4 Arithmetic Case Discussion —

relationships in a
context such as
classes of numbers
or outcomes of
calculations

Defining Even Numbers
(Schifter et al., 2018, pp.
15-19)
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Table 3.3 (continued)

3 Generalized 5 The concept of The adapted version of
Arithmetic variable the Candy Problem
(Blanton, 2008, p. 161)

6 Justification of Discussing the
arithmetic relations justification ofa+ b —b
= a (Carpenter et al.,
2003, pp. 98-101)

4 Functional 7 Identifying and The adapted version of
Thinking describing the Outfit Problem
8 recursive, (Blanton, 2008, p. 177)
covariational, and
correspondence
5 9 relationships in Case Discussion — Two
words and of Everything (Wickett et
10 variables. al., 2008, pp. 4-12)
Justifying

relationships
represented in
words or variables
using function
rules, tables, or
problem context

The early algebra lessons started with the ones focused on the big idea of equivalence
and equations. Before discussing the meaning of the equal sign and the structures of
equations, firstly, prospective elementary teachers were asked to think and discuss
whether teaching algebra in elementary school is necessary and how algebra teaching
should be at that level. After that, they were presented with the core algebraic
practices and content strands for algebra learning in elementary grades. In the second
lesson of the first week, PETs were asked to engage in a case discussion. They read
the classroom cases in which students showed different conceptions of the equal
sign, relational or operational, while finding the missing value inthe8+4=__ +5
(see Carpenter et al., 2003, pp. 10-13). Then PETs discussed the students’ ways of

thinking, what the equal sign means to them, questions to be asked to students who
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show operational thinking, and teaching methods that can be used to lead students to

relational thinking.

The second week of early algebra lessons focused on the big idea of generalized
arithmetic. In the first lesson, they worked on the commutative property task, which
involves some multiplication problems that includes an opposite different number of
groups and group size (e.g., 7 soccer teams with 5 players vs. 5 soccer teams with 7
players). While working on that task, the PETs were asked to come up with a
conjecture from the result of multiplications, generalize, represent in word and
variable and justify why these conjectures are true. In this way, the PETs were
provided to engage in core algebraic practices. Then, in the second lesson, they were
asked to participate in the case discussion by analyzing a classroom case in which
elementary students define the even numbers, justify why their definitions are true
for each even number, and lastly discuss the sum of even numbers (see Schifter et
al., 2018, pp. 15-19). In a word, in the classroom case, the students were going
through a conjecturing process. While reading that classroom case, PETs discussed
the students’ conjectures related to even numbers and other possible conjectures,
evaluated the questions that asked by the teacher in the case, explained what they
would do if they were the teacher of this class and discussed how this kind of lesson
could lead students to think algebraically.

The third week of the lessons was also revolved around generalized arithmetic. In
the first lesson of this week, PETs worked on the adapted version of the Candy
Problem (see Blanton, 2008, p. 161) and discussed the roles of variables (varying
quantity or unknown) in an equation. After that, in the second lesson, they read a
case in which a student tries to justify why the conjecture of a + b — b = a is true
(see Carpenter et al., 2003, pp. 98-101). During the discussion of that student and
her teacher in the case, the student first uses some empirical strategies for
justification. Then she justifies the truthiness of a + b — b = a with general arguments
thanks to her teacher’s guiding questions. While discussing the case, PETs were
asked to think about the student’s ways of justification, how the teacher’s questions

challenge the student, how they would respond to the student’s different thinking,
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and how elementary teachers can guide students to use general arguments while

justifying conjectures.

The last two weeks of the early algebra lessons concentrated on the big idea of
functional thinking. In the 4™ week, during the two lessons, PETs worked on the
adapted version of the Outfit Problem (see Blanton, 2008, p. 177). They were asked
to examine a functional relationship, generalize, and represent in words and
variables. Then they were also asked to justify the truthiness of that functional
generalization and reason with it. By this task, PETs were provided to engage in core
algebraic practices with a functional relationship and compare their different level
generalizations (variational, covariational, and correspondence). In the 5" week,
during the two lessons, PETs were asked to participate in the case discussion through
the case of Two of Everything (see Wickett et al., 2008, pp. 4-12). As mentioned
earlier, in this classroom case, the students examine a growth pattern, which could
be represented as a linear function rule, a = 2b, record the data on a table, describe
the relationships they see in the table in words and variables. While analyzing that
classroom case, PETs were led to think and discuss the possible purposes of
advantages of constructing a table, students’ ways of examining patterns in the table,
students’ ways of generalizing and describing functional relationships, students’
other possible answers, the purposes and effectiveness of the questions that were
asked by the teacher and how to use the number patterns to guide elementary students

to think functionally.

3.24 Role of the Researcher

The researcher designed the interview protocol and the plans of early algebra lessons.
Then, she implemented the early algebra lessons and took the role of facilitator while
carrying out the case discussions. Moreover, the role of the interviewer was also taken
on by the researcher for the pre-and post-interviews. In the data analysis process, she

was the main coder.
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3.3  Participants of the Study

The participants of the study were selected among the 3™-year students who attended
the primary school program and took the Mathematics Teaching I course in the fall
semester of 2020-2021. Forty-three prospective elementary teachers were enrolled
in the Teaching Mathematics | course, and all of them attended the early algebra
lessons. None of the prospective teachers have an experience related to early algebra
in both their elementary school education and teacher education. Eighteen of these
43 students volunteered to participate in the pre-and post-interviews. Among the
volunteer prospective teachers, nine people who had completed the Basic
Mathematics course were selected as the research participants. The selection of the
participants was performed by a purposive sampling method by considering the
PETs’ GPA and Basic Mathematics course grades. A final score out of 100 was
formed by calculating the mean of each participant's GPA and passing grades of the
Basic Mathematics course. Except for one, the final scores of the participants were
over 65. According to the final scores, the participants were divided into four groups
as below 65 points (group 1), between 65-75 points (group 2), between 75-85 (group
3), and above 85 points (group 4). There were 1, 3, 7, and 7 participants in the groups,
respectively. Then, the research participants were selected as nine people, one person
from group 1, 2 people from group 2, and three people from both groups 3 and 4. In
this way, a mixed group was aimed to be created in terms of achievement. All
participants were female. The details about the participants of the study are presented
in Table 3.4.
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Table 3.4

Participants’ Information

Basic

ID Gender GPA (out of 100) Mathematics

course grade
PET1 F 40 45
PET2 F 60 85
PET3 F 60 85
PET4 F 80 77
PET5 F 80 84
PET6 F 80 85
PET7 F 80 92
PET8 F 80 95
PET9 F 80 100

3.4 Data Collection Tool and Procedure

The data of the current study was collected through individual interviews before and
after the early algebra lessons. The purpose of the data collection was to examine the
change in the prospective elementary teachers' subject matter knowledge and
pedagogical content knowledge related to big ideas of equivalence and equations,
generalized arithmetic, and functional thinking as the content of early algebra, and
their conception of variable. As Patton (2002) stated we need to ask questions for the
thing we cannot directly observe, and interviewing provides to "find out what is in
and on someone else's mind" (p. 341); thus, the individual interviews was used as
the data collection tool. The individual interviews lasted about one hour and were

conducted on Zoom by the researcher.

The identical interview protocol was used in pre- and post-interviews. The protocol
was prepared as semi-structured and consisted of three parts. In each part there were
questions about the subject matter knowledge and pedagogical content knowledge
related to a big idea (see Appendix A). More specifically, part A focused on

equivalence and equation in terms of the meaning of the equal sign and the structure
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of equations; part B focused on generalized arithmetic, and part C on functional
thinking. In part A of the protocol there was also a question for the participants’

conception of variable.

While developing the interview protocol, the questions for the subject matter
knowledge, particularly common content knowledge, were taken or adapted from the
literature by considering the learning goals that guided the early algebra lessons. For
the big idea of equivalence, prospective elementary teachers were expected to
develop a relational understanding of the equal sign by identifying and reasoning
with structural relationships in the equation. Correspondingly, the questions asked
for the same purpose in the literature, Interpreting Equal Sign Item (Knuth et al.,
2005, p. 70; see Table 4.1), Missing Value Item (Carpenter et al., 2003; see Table
4.2), and True/False Items (Stephens, 2006; see Table 4.4) were asked to examine
participants’ common content knowledge related to the meaning of the equal sign
and the structure of equations . For the concept of variable, the PETs were expected
to understand that a variable represents the measure or amount of the object and may
stand for a varying quantity or an unknown in an equation. In line with that objective,
Which Is Larger Item (Knuth et al., 2005, p. 70; see Table 4.5) took part in the
interview protocol to investigate participants' conception of the variable. For the big
idea of generalized arithmetic, PETs were asked to develop their knowledge of
identifying and generalizing arithmetic relationships, defining arithmetic
generalizations in words and variables, verifying generalizations' validity, and
reasoning with them. In order to investigate their knowledge and ways of thinking
on these topics, as suggested by Blanton (2008), the prospective elementary teachers
were presented with a set of computations (see Figure 4.1) to lead them to make
arithmetic generalizations. Then, they were asked to make a conjecture from this set
of computations, describe their conjecture in variables, explain why they think their
conjecture is true and reason about whether their conjecture is valid for all numbers
or not. Finally, for the big idea of functional thinking, PETs were expected to identify
and describe recursive, covariational, and correspondence relationships in words,

describe a function rule in variables, justify the correctness of the relationships and

45



reason with these relationships. Therefore, similar to the studies of Stephens et al.
(2017) and Blanton et al. (2015), in the interview, PETs were provided a problem,
Saving for a Bicycle (adapted from Blanton, 2008, p. 179; see Figure 4.2), which
includes the quantities that change together, and they were asked to respond to the

questions focused on the relationship between the quantities in the problem.

Besides the common content knowledge, the questions to investigate prospective
elementary teachers' pedagogical content knowledge, namely knowledge of content
and students and knowledge of content and teaching, were developed by the
researcher based on the literature. The current study aimed to investigate the PETS'
knowledge of content and students in terms of students' conceptions and
misconceptions. Following this purpose, in the interviews, the participants were
asked to explain their expected students' responses for a given problem, and then
they were provided with some possible students' responses and were asked to explain
students' ways of thinking. In the similar way, Tanisli and Kose (2013) and Asquith
et al. (2007) asked prospective teachers to reflect on the sample students’ response
in their studies which focus on knowledge of content and students. In more detail, in
part A, The Missing Value Item, 8 + 4 =[ ] + 5, was presented to participants
again and asked how elementary students could respond to the question. After that,
as has been reported in the literature (e.g., Carpenter et al., 2003; Knuth et al., 2005),
student answers to the same question that can be given through operational and
relational thinking were presented (see Table 4.24) to the participants to observe how
they interpret students’ thinking. In part B, PETs were asked to develop a conjecture
that elementary students might make from the set of computations (Figure 4.3).
Then, based on the justification approaches proposed by Carpenter et al. (2003, p.
87), the student responses justifying an arithmetic relationship empirically or using
general arguments were presented to the participants, and they were asked to
interpret them. Lastly, in part C, Saving for a Bicycle Problem, was provided to
participants again, and they were asked what patterns the elementary students would
notice after completing the table and how they could establish relationships between

the number of weeks and the total amount of money. After that, based on Stephens
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et al.'s framework of "Levels of sophistication describing generalization and
representation of functional relationships™ (2017, p. 153), the students' possible
responses that are in the variational, covariational, and correspondence thinking
levels were presented to participants to interpret.

The second component of pedagogical content knowledge that the study focused on
was knowledge of content and teaching. The prospective elementary teachers' KCT
was investigated in terms of instructional strategies and representations. To
investigate PETs’ knowledge, they were given an objective from the curriculum
developed by the Ministry of National Education (MoNE, 2018) related to each big
idea and asked to explain what kind of lesson they would plan to address those
objectives and what they would consider. In this way, the aim was to observe what

kind of opportunities PETs create for algebraic thinking in the lessons they plan.

In the process of the development of interview questions, after receiving expert
opinion from a mathematics education researcher focusing on early algebra, the pilot
study of the interview was conducted. A 3rd-year student from a Primary School
Education program in a different university volunteered for the pilot interview. The
pilot interview gave the researcher a chance to test the interview questions and see
whether they were understood as intended. After the pilot study, some changes were
made to the order of the questions in the interview protocol. For example, the
question that asked the participants to describe a lesson for a given learning goal was
ordered before the ones that included activities and problems that can be used for
this purpose. In this way, it was ensured that the prospective teachers were not

affected by other questions while describing their lesson.

3.5  Data Analysis

The current study aimed to investigate the development of prospective elementary
teachers' knowledge for teaching early algebra, and the data of the study was the

participants' verbal responses to the interview questions. Therefore, the study was
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qualitative in nature. According to Merriam (2009), all qualitative data analysis is
content analysis in the sense that it analyzes the content of the data source. Thus, the

content analysis was utilized for the individual interviews.

Firstly, all video recorded individual interviews were transcribed. Then, the data
analysis process was carried out in two parts: subject matter knowledge and
pedagogical content knowledge. The prospective teachers’ responses to the
interview questions in these two parts were read, categorized, and coded several
times. During this process, while some codes were taken or adapted from the
literature, the analysis of some questions were performed by emerging codes. Since
most of the interview questions to investigate the PETs' common content knowledge
were adapted from the related literature, these questions were mostly analyzed with
the existing codes. On the other hand, the analysis of the questions for pedagogical
content knowledge was carried with emerging codes guided by the stated framework.
For example, the question, “which is the larger problem” (Knuth et al., 2005, p.70)
was adapted from the literature and the approaches for answering that question was

29 ¢¢

already determined with the existing codes as “variable explanation,” “single value
explanation” and “operation.” On the other hand, in the questions such as asking
participants to come up with a conjecture from a set of computations, participant
responses were examined, grouped, and coded with the emerging codes. All the

codes and explanations are provided in Chapter 4.

3.6 The Trustworthiness of The Study

Both qualitative and quantitative studies should persuade the readers about the
study's reliability and validity. According to Merriam (2009), regardless of the type
of research, this can be achieved by paying attention to the conceptualization of the
study, how data is collected, analyzed, and interpreted, and how findings are
presented. However, since qualitative and quantitative studies are different in nature,
while the quantitative study could convince the readers with some procedures and

short descriptions, the qualitative study should provide enough detail "to show that
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the author's conclusion 'makes sense™ (Firestone, 1987, p. 19). Therefore, instead
of validity and reliability, it is widely accepted to use the different terminology
suggested by Lincoln and Guba (1985) for qualitative research. They proposed
replacing the terms internal validity with credibility, external validity with
transferability, and reliability with consistency or dependability. In order to ensure
the trustworthiness of the study, credibility, transferability, and consistency or

dependability of the study will be explained in the following sections.

3.6.1 Credibility and Transferability

Credibility refers to the internal validity. According to Merriam (2009), internal
validity in all research is dependent on the meaning of reality, and internal validity
deals with "how research findings match reality™ and if "the findings capture what is
really there” (p. 213). In this study, peer examination as a proposed strategy by
Merriam (2009) was performed to enhance credibility. Peer examination or peer
debriefing involves the researcher discussing the research process and findings with
a colleague who have used qualitative methods before (Krefting, 1990). Lincoln and
Guba (1985) stated that this process helps the researcher be 'honest’, and the

researcher's biases be probed, providing the basis for the interpretation to be clarified.

To perform peer examination in this study, a researcher who was experienced in
qualitative research was involved in all the research process. At the beginning of the
study, she shares her opinions and critics about the study's significance and
feasibility. Related to methodology, particularly the development of the data
collection tool, the questions' quality and purposes were debriefed. Then during the
data collection, each week, the research process was discussed together. The strategy
codes used were discussed in terms of their convenience and comprehensibility in
the data analysis process. Moreover, at the end of the study, the correctness of the
presentation and the interpretation of findings were examined by that experienced

researcher.
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Transferability refers to the external validity. Merriam (2009) describes the extent of
the external validity as "the findings of one study can be applied to other situations™
(p. 223). Although the current study is qualitative and aimed to investigate the
development of the prospective elementary teachers' knowledge to teach early
algebra in a particular learning environment rather than making a generalization, it
is accepted that researchers need to provide "sufficient descriptive data to make
transferability possible™ (Lincoln & Guba, 1985, p. 298). Thus, the current study's
thick description, which involves the theoretical and methodological approaches

may enable the readers to understand and compare with other studies.

3.6.2 Consistency or Dependability

Consistency or dependability refers to the reliability. According to Merriam (2009),
reliability deals with "whether the results are consistent with the data collected” (p.
221) and the "research findings can be replicated" (p. 220). To that end, the study's
procedures should be described in-depth and allow the reader to evaluate the degree
to which acceptable research methods were followed (Shenton, 2004). Peer review
is suggested by Merriam (2009) as one of the strategies that can be performed to
provide consistency in qualitative studies. As detailed in the previous section, peer
review helped the researcher to ensure the consistency of the findings and the data

collected in this study.

Furthermore, in the data analysis process, while coding participants' responses,
reaching an intercoder agreement helps interpreting the participants' responses
correctly. A second coder who was a mathematics educator researcher coded the
randomly selected 20% of the data independently to assess the reliability of coding.
When the agreement between the two coders was less than 80%, the codes were
debated, and adjustments were recorded in the analysis until the two coders reached

an agreement of 80%.
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3.7 Ethical Issues

While conducting the current study, the ethical issues were considered, and it was
ensured that the participants were not physically or psychologically harmed in any
part of the study. Firstly, before starting the research, the required permission was
received from Human Subjects Ethics Committee (HSEC) (see Appendix B). In
addition, the permission was obtained from the dean of the faculty of education,
where the PSE program is offered, and from the instructor who delivered the
Teaching Mathematics course. At the beginning of the study, the participants were
informed about the purpose of the study and the process. All prospective teachers
who attended the early algebra lessons and to those who participated in the individual
interviews were explained that the participation was entirely voluntary and that there
would be no evaluation or grading after the lessons or interviews. A consent form
explaining this information in detail was presented to the participants, and they

signed it before the study.

In the data collection process, with the permission of the participants, the interviews
were video recorded. Before starting the interviews, the participants were reminded
that they could end the interview at any time and that they did not have to answer the
questions they did not want. The researcher took care not to create a judgmental

environment both in the lessons and in the individual interviews.

Participants were told that their responses to the questions would be kept confidential
and that only the researcher and her supervisor would have access to the data.
Additionally, while presenting the study's findings, the names of the participants
were coded as pseudonyms, such as PET1, to ensure that the data and the participants'

identities were not linked directly.
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3.8 Limitations

This study has some limitations. The first one is the way lessons are delivered. Due
to the pandemic conditions in the 2020-2021 academic year, the lessons were
implemented through distance education. The five-week early algebra lessons
offered to prospective teachers within the scope of the study were also held online,
contrary to what was planned before the study. In this case, the inexperience of both
the prospective teachers and the researcher in online courses may have affected the
learning and teaching processes.

Another limitation of the study is related to the data collection tool. In this study,
only individual interviews were used as a data collection tool. Not using more than

one data tool may limit the study's findings.
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CHAPTER 4

FINDINGS

This study was conducted to investigate the development of prospective elementary
teachers' knowledge for teaching early algebra through case discussion. The subject
matter knowledge and pedagogical content knowledge of participants were aimed to
be examined in the study. In this chapter, findings related to the change in
prospective elementary teachers' knowledge before and after early algebra lessons
will be presented. The chapter consists of two main sections. In the first section, the
findings related to prospective elementary teachers' common content knowledge as
the subject matter knowledge will be introduced. The findings related to prospective
teachers' pedagogical content knowledge will be presented in the second section.
Moreover, findings related to each category of knowledge will be shared according
to the big ideas: equivalence and equations, variable, generalized arithmetic, and
functional thinking (Blanton, Stephens, et al., 2015). While presenting the findings,
the codes used in the data analysis will also be shared. During the data analysis,
different categories were used for each interview question but there were two
common categories for all questions: Other and No response. No response (NR) code
was used when the participant did not respond or replied as "I have no idea." Other
(O) code was used when the participant answered with a strategy other than the
determined ones or when the strategy was not discerned. Throughout this chapter,
the findings will be presented by detailing the major categories.

4.1 Development of Prospective Elementary Teachers' Subject Matter

Knowledge

This study aimed to investigate the development of prospective elementary teachers'
knowledge of early algebra, and that development was examined through pre-and
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post-interviews before and after the early algebra lessons. During the early algebra
lessons, as part of the common content knowledge, PETs were expected to a)
comprehend the relational meaning of equal sign and concept of variable, b) identify,
express in words and variables, justify and reason with arithmetic generalization and
c) identify, express in words and variables, justify and reason with recursive,
covariational and correspondence relationships (see Table 3.2 for all learning goals).
The change in their knowledge related to these big ideas was examined with
corresponding interview questions. The codes used to analyze PETSs' verbal

responses to those questions will be presented first in each section.

4.1.1 Equivalence and Equations

There were three interview questions related to the meaning of the equal sign and
one question related to the concept of variable. These questions and the codes used

in the analysis were taken or adapted from the related literature.

For the meaning of the equal sign, the first item was "interpreting the equal sign"
(Knuth et al., 2005, p. 70). The item and the codes are shown in Table 4.1.

Table 4.1

Interpreting the Equal Sign Item and Codes

3+4=7
T
A2. What is the name of the symbol indicated by the arrow?
What does this symbol mean?

Strategy Codes Definition Example
Relational — RL Participant expresses the The values of 3 + 4 and 7 are
general idea that the equal  the same/equal.
sign means "the same as"  Both sides of the equal sign
have the same value

Operational — OP  Participants express the It expresses the solution. It
general idea that the equal means the result of 3 + 4 is 7.
sign means "add the It shows the result of the

numbers™ or "the answer."  addition.
Note: The problem and the codes were taken from Knuth et al. (2005, p. 70).
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In the pre-interviews before the early algebra lessons, when PETs were asked what
equal sign means to them, 5 out of 9 participants showed an operational
understanding of the equal sign (see Table 4.2). For example, PET4 said that "At the
end of the computation, we use the equal sign to show the result,” and PET9
explained the meaning of the equal sign as "It says that the sum of 3 plus 4 is 7, so
as a result, it reaches the sum of 7." After the early algebra lessons, when the same
question is asked to prospective teachers in the post-interviews, except one PET, 8
out of 9 of them showed a relational understanding of the equal sign. While PET4
still thought that "The equal sign is to show the result here, 3 plus 4 equals 7", the
others described the equal sign as a relational symbol. For example, PET1 said that
"It means the two sides are equal to each other,” and PET5 said that "There are
values on the right side of the equal sign and the left side of the equals sign. It shows
that these are equal to each other” Besides this kind of expression, some preservice
teachers emphasized the "sameness." For example, PET7 explained the equal sign's

meaning as "It shows they have the same value."

Table 4.2

The Frequencies of the Strategies in Interpreting the Equal Sign Item

Pre (n=9) Post (n=9)
Operational 5 1
Relational 4 8

The second interview question related to the relational meaning of the equal sign was
the missing value problem that was taken (A3.1) and adapted (A3.2) from Carpenter
et al. (2003). The items and the codes are shown in Table 4.3. The codes for this item

are taken from Blanton et al. (2015).
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Table 4.3

Missing Value Item and Codes

A3. Find the values of [ ] that make each number sentence true. Explain your

answer.

a) 8+4=[ ] +5
b) 67+83=[ ] +82

Strategy Codes Definition Example
Operational — OP  The participant adds the 8+4=12
two numberstoontheleft 8+4+5=17
and stops or adds all the
numbers. 67 + 83 =150

67 + 83 + 82 = 232

Computational — C

To balance the two sides,
the participant adds the two
numbers on the left side and
subtracts the number on the
right side.

8+5=12,12-5=7

67 + 83 =150, 150 - 82 =
68

Structural - S

The participant recognizes
the structure in the equation
and solves it without the
need for a calculation.

5 is one more than 4, so
the number in the blank
must be one less than 8

82 is one less than 83, so
the number in the blank
must be one more than 67

Note: The codes were taken from Blanton, Stephens, et al., 2015, p. 51.

The frequencies of PETs’ usage of these strategies for missing value problem are

presented in Table 4.4,

Table 4.4

The Frequencies of the Strategies in The Missing Value Question

A3.1 A3.2
8+4=[]1+5 67+83=[]+82
Pre (n=9) Post (n=9) Pre (n=9) Post (n=9)
Operational 1 0 1 0
Computational 6 4 5 4
Structural 2 5 3 5
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As shown in Table 4.4, in the pre-interviews, one prospective teacher showed an
operational understanding and thought that missing values should be 12 and 150,
respectively. Moreover, before the early algebra lessons, most of the PETs found the
missing values by computation. For example, PET2 explained how she found the
missing value for item A3.1: "First | added eight to four, it is twelve. When we
subtract five from twelve, it is seven.” On the other hand, in the post-interviews, the
operational understanding was not observed in PETS' responses, and this time, the
most commonly used strategy was structural. In both items, 5 out of 9 PETs found
the missing value without computation. For example, PET6, who used the
computational strategy for item A3.2 in the pre-interview, explained her strategy in
the post-interview as "There is 83 here, on the opposite side there is 82, that is one
less. Then there is 67, so that [the missing value] must be one more than the one on

the opposite side".

True/False Problem was the last question for the meaning of the equal sign. The
participants were asked to evaluate whether the given statements were true or false.
The items A4.1 and A4.2 were adapted from Stephens (2006), and item A4.3 was
developed by the researcher. Moreover, the codes used for the analysis of those items
were generated by drawing on the articles and emergent codes from the data. The

items and the codes are shown in Table 4.5.

Table 4.5

True/False Item and Codes

A4.11f 16 + 15 = 31, the expression of 16 + 15— 9 = 31- 9 is also true.
The statement is TRUE / FALSE. Because...

Strategy Codes Definition Example

Compute-C Participant makes the It is true because both of
operations on both sides of  the operations 16 + 15 -9
the equation to show that and
they have the same value. 31 -9 results in 22.
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Table 4.5 (continued)

Same Expression —
SE

Structure - S

To justify the truth of the
statement, participant
asserts that 16 + 15 and 31
are the same value.

Participant recognizes the
equivalence of the two
equations and states that the
same operation is
performed on both sides of
the equal sign in the second
one, and the balance is
preserved.

Both 16 + 15 and 31 are
the same. It does not
matter which one you
write. They are the same
value.

The same number is
subtracted from both sides
of the equation.

A4.2 The equations 3x — 12 =51 and 3x — 12 + 3 = 51 + 3 have the same
solution. The statement is TRUE / FALSE. Because...

Strategy Codes

Definition

Example

Structure — S

Variable
Misconception —
VM

Solving Equations
-SOL

Participant recognizes the
equivalence of the two
equations and states that the
same operation is
performed on both sides of
the equal sign in the second
one, and the balance is
preserved.

Participant thinks that these
two equations are different
and that different values of
the variable x results in
different solutions.

Participant solves both of
the equations correctly or
incorrectly to see whether
the values of x in these
equations are the same or
not.

The same number is added
to both sides of the
equation.

The letter x is a variable,
and if we assign different
values to them, they will
not be the same.

When we solve both of
these equations, the value
of x is found to be 21 each
time.
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Table 4.5 (continued)

A4.3 The expression of 17 = 17 is mathematically meaningful.
The statement is TRUE / FALSE. Because...

Strategy Codes Definition Example

Expression of  Participant thinks that the It is true since they are

Equality — statement is meaningful because equal.

EOE it is an expression of equality. 17 isequal to 17, so it s
equality.

The need of the Participant thinks that the It is not meaningful; if

operation — expression is meaningless in written as 15 + 2 = 17 for

NOP this form; it must be rewritten as  example, it could be.

including an operation.

Trivial - T Participant thinks that it is 17 is already equal to 17, it
already known; we do not need is known. Writing such an
to write such an expression. So,  expression is meaningless.
it is meaningless.

In both the pre-and post-interviews, all prospective elementary teachers thought that
If 16 +1 5 =31, the expression of 16 + 15 -9 = 31— 9 is also true, but their reasonings
varied. In the pre-interviews, 5 out of 9 participants thought this statement was true
because 16 + 15 and 31 are the same expression (see Table 4.6). Three of them made
computations to see the equality. Only one participant, PET6, could recognize the
structure of the equation and stated that "the same numbers subtracted from both
sides of the equation” in the pre-interviews. Similarly, in the post-interviews, most
participants, 5 out of 9, explained their reasoning based on “the same expression”.
Also, the number of prospective teachers who could see the structure of the equality

increased to 3.
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Table 4.6

The Frequencies of the Strategies in The True/ False Item — A4.1

Pre (n=9) Post (n=9)
Compute 3 1
Same Expression 5 5
Structure 1 3

As for the item A4.2 of the true/false problem, in the pre-interviews 5 PETSs stated
that the solutions of the equations 3x — 12 =51 and 3x — 12 + 3 =51 + 3 are not the
same. Three of these participants' incorrect answers were due to the variable
misconception (see Table 4.7). For example, PET9 said that "The value we substitute
to x in the first expression and the value we substitute to x in the second expression
may be different. That is why they do not have the same solution™. Before the early
algebra lessons, only PET2 explained that these two equations have the same
solution by considering the structure of the equation. On the other hand, in the post-
interviews, all participants except 1 thought that the statement was true. The
participant who thought that the statement was false used the strategy of solving the
equations but found different solutions for both equations because she made an error
while solving them. Different from the pre-interviews, no variable misconceptions
were observed in the post-interviews, and 4 PETs explained the correctness of the
statement by noticing the structure of the equation. For instance, PET9 stated that "It
is true because the same number is added to both sides of the equation.” Besides, the

other 3 PETs detected the equivalence of the equations by solving them.
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Table 4.7

The Frequencies of the Strategies in The True/ False Item — A4.2

Pre (n=9) Post (n=9)
Variable Misconception 3 0
Solving Equations 3 4
Structure 1 4
Other 2 1

When participants were asked whether “the expression of 17 = 17 is mathematically
meaningful” true or not, 3 prospective teachers found that expression is meaningless
in pre-interviews (see Table 4.8). Two PETSs thought that it was a trivial expression
and one of them asserted that it needs to be written with an operation by saying "It
did not really make much sense to me. For example, it would make more sense to say
17 equals 15 plus 2 or say 10 plus 7." However, after early algebra lessons, all
participants affirmed the correctness of the statement by recognizing it as an
expression of equality. For example, PET9 said that "I think it makes sense. It has
the same number on both sides, showing that they are both equal.”

Table 4.8

The Frequencies of the Strategies in The True/ False Item — A4.3

Pre (n=9) Post (n=9)
T 2 0
NOP 1 0
EOE 6 9
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41.2 Variable

In the interviews, one question, “which is the larger problem” (Knuth et al., 2005,

p.70) was asked to examine prospective elementary teachers’ conceptions of the

variable. The items and the codes are shown in Table 4.9.

Table 4.9

Which Is Larger Item and Codes

AT. Can you tell which is larger, 3n or n + 6? Please explain your answer.

Codes Definition Example
Variable Participant expresses the We cannot decide because
explanation —  general idea that one cannot it depends on the value of
VEX determine which quantity is n.
larger because the variable can
take on multiple values. When the value of n
changes, the big one also
changes.
Single Value Participant tests a single value If the value of n is one, then
Explanation —  and draws a conclusion on that  3nisequal to 3, and n + 6
SVEX basis; thus, the conclusions vary is equal to 7. Thusn + 6 is
depending on the value tested.  the bigger one.
Operation — Participant expresses the 3n is bigger since it is
OP general idea that one type of multiplication, and

operation leads to larger values
than the other (for example,
multiplication produces larger
values than addition).

multiplication gives us
bigger results than the
addition does.

Note: The item and the codes were taken from Knuth et al., 2005, pp. 70-71.

Before the early algebra lessons, when prospective elementary teachers were asked
if they can decide which of 3n or n+6 is larger, 4 out of 9 PETSs stated that 3n was
the bigger one because of the idea that multiplication produces larger values than
addition (see Table 10). For instance, PETS5 said that “we can say that while addition

has fewer results, multiplication results in larger numbers.” Moreover, 2 participants
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stated that n + 6 was the bigger one by testing a single value. For example, PET8
stated that “If we substitute one for n, it becomes 3 (for 3n), the other becomes 7 (for
n + 6), so n+ 6 is larger.” On the other hand, in the post-interviews, 8 out of 9
participants asserted that we could not determine which quantity is larger because
the variable can take on multiple values using VEX. For example, PET6 said that;
We can decide by substituting numbers. For example, when we substitute 1
for n, the value of 3n is 3 and the value of n +6 is 7. However, when we
substitute 4 for n, the value of 3n is 12, and the value of the expression n + 6

becomes 10. | think it depends on the values we give. That's why we can't
use an exact expression.

Table 4.10

The Frequencies of the Strategies in Which is Larger Item

Pre (n=9) Post (n=9)
SVEX 2 1
OP 4 0
VEX 3 8

4.1.3 Generalized Arithmetic

In the area of generalized arithmetic, prospective elementary teachers were expected
to identify and generalize arithmetic relationships. Moreover, during that
generalizing process, they were expected to describe those relationships in words
and variables, justify and reason with them. In this direction, the prospective teachers

were asked to make a conjecture from a set of computations (see Figure 4.1).
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Figure 4.1

Set of Computation for Conjecturing

Computation Task
Do the following computations
17-8+8 = 08 -29+29 =
12-12+71-= 13-13+72=

After completing the computations, the prospective elementary teachers were asked,
“What do you notice in computations? Describe your conjecture in words” (item B2).
The conjectures made by the participants were grouped into four different categories,
one of which (OOP) was mathematically incorrect. These categories are shown in
Table 4.11.

Table 4.11

Participants’ Generalizations from Computation Task

B2. What do you notice in computations? Describe your conjecture in words.

Codes Definition Example
Getting Zero - After completing The values with opposite
GEZ computations, participant signs cancel each other

recognizes that if a number  out.

is subtracted from itself, we

get zero OR opposite signs  Subtracting a number from
of the same number cancel itself results in zero

each other out.

Getting the same  After completing If we subtract a number
number that was  computations, participant from another number and
started with — recognizes that adding and  add it, the result will be the
GSN then subtracting the same first number.

number in a computation
does not change the result.

Order of Participant states some In such a computation, the
Operations — incorrect conjectures related addition should be done
OOP to the order of operation. first.
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As a result of the analysis made in this way, it was noted that three of the participants
made mathematically incorrect conjecture in the pre-interviews by considering the
order of the operations (see Table 4.12). For example, PET2 stated her conjecture as
“first, addition operations should be performed, not subtraction operations.” While
one of the remaining participants could not come up with a conjecture, two of them
made the conjecture of getting zero, and three of them made the conjecture of getting
the same number that was started with. As for the post-interviews, 7 out of 9
prospective teachers stated mathematically correct conjectures. Only one PET’s
conjecture was incorrect. Five of the correct conjectures PETS stated related to the
computations were “getting zero.” For example, PET7 stated her conjecture as “when
we subtract a number from itself, we get zero.” The remaining three correct
conjectures were about recognizing that adding and then subtracting the same
number does not change the result. For instance, PET9 said that “If we add the same
number to a number and then subtract it, the result will be our first number.” In
short, 5 out of 9 prospective teachers made mathematically correct conjectures in the

pre-interviews, while this number was recorded as 7 in the post-interviews.

Table 4.12

The Frequencies of the Conjectures from Computation Task

Pre (n=9) Post (n=9)
GEZ 2 5
GSN 3 2
OPP 3 1
O 0 1
NR 1 0

In the interviews, after prospective teachers asserted their conjectures, they were
asked to reason with them, describe in variables, and justify. Hence, the analysis
process was continued for the correct conjectures (for 5 PETS in the pre-interviews,

for 7 PETs in the post-interviews). The first question the participants were asked to
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answer about their conjecture was: For what numbers is your conjecture true? Is it
true for all numbers? (item B3). The participants’ strategies for this question are

presented in Table 4.13.

Table 4.13

Participants’ Strategies for Reasoning with The Conjectures

B3. For what numbers is your conjecture true? Is it true for all numbers?

Codes Definition Example

Structure — S Participant makes a It is true for all numbers
statement showing the because adding a number and
recognition of the then subtracting the same
underlying structure and number means adding zero.
provides a general And adding zero always gives

argument which shows that  the starting number.

the conjecture is true for all

numbers. It is true for all numbers
because adding a number with
its opposite sign means
subtracting a number from
itself and equals zero.

Compute-C Participant computes or I think it is true. It can be a
uses specific examples in rational number; -2/5 and +2/5
response without referring  will cancel out again.
to the structure using some
numbers from a number set
to test the correctness of
her conjecture.

Note: The codes were adapted from Blanton, Stephens, et al., 2015, p. 64.

Two of the five prospective elementary teachers who asserted correct conjectures in
the pre-interviews thought that their conjectures, “getting the same number that was
started with,” was not true for all numbers (See Table 4.14). One of the remaining
PETs who thought that her conjecture was true for all numbers, PET6, explained her
reasoning by showing the recognition of the underlying structure stating, “adding
and subtracting the same number means adding zero for me because they cancel

each other out.” The other participant who thought that her conjecture, GSN, was
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true for all numbers, PET9, explained her reasoning by using some numbers from a
number set to test the correctness of her conjecture. The remaining participant’s
justification, who also stated that the conjecture was true for all numbers, was not

coded as using one of the strategies above and was coded as Other.

In the post-interviews, all 7 participants who made correct conjectures stated that
their conjectures were correct for all numbers. While making this decision, 3 of the
7 participants drew attention to the mathematical structure, and 2 made computations
with numbers from different number sets. For example, PETS5, who asserted her
conjecture as getting zero, explained her reasoning by recognizing the structure and
said, “Because when we add a number, we subtract it again. So, it will be zero”. On
the other hand, PET6, one of the participants, who explained her reasoning with
computations, stated, “Natural numbers, rational numbers, irrational numbers... |
was satisfied to see that when | added and subtracted the same number as the
numbers representing those numbers, it gave that expression. So, | tried one example

from each set of numbers”.

Table 4.14

The Frequencies of the Strategies for Reasoning with The Conjectures

Pre (n=5) Post (n=7)
Structure 1 3
Compute 1 2
Other 3 2

The second question the participants were asked to answer about their conjecture
was: “How do you write your conjecture using variables?” (item B4). The
prospective elementary teachers who made a correct conjecture in item B2 were
expected to write a complete equation corresponding to their conjectures. However,
the participants were observed to create equations which were not corresponding to
their conjecture they stated or was not complete (they were expressions instead of

equations and/or included numbers instead of variables). Therefore, in the strategy
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codes, distinctions have been made for these situations. The codes and details are
presented in Table 4.15.

Table 4.15

Participants’ Strategies for Representing Conjectures in Variables

B4. How do you write your conjecture using variables?

Codes Definition Example

Corresponding — Participant states a complete For the conjecture GEZ:
Complete — CC  equation which is corresponding a—a=20
to the conjecture generated in For the conjecture GSN:

Item B2. a-b+b=a
Corresponding — Participant states an incomplete  For the conjecture GEZ:
Incomplete — equation which is corresponding a-—a
CIC to the conjecture generated in For the conjecture GSN:
Item B2. a—-b+hb,
18-b+b=18,18-b
+b
Not Participant states a complete For the conjecture GEZ:
Corresponding — equation which is not a-b+b=a
complete — NCC corresponding to the conjecture  For the conjecture GSN:
generated in Item B2. a-a=20
Not Participant states an incomplete  For the conjecture GEZ:
Corresponding — equation which is not a-b+b,18-a+a, 18
incomplete — corresponding to the conjecture —a+a=18
NCIC generated in Item B2. For the conjecture GSN:
a—-a

In the pre-interviews, none of the 5 participants who made correct conjectures in
item B2 could describe their conjecture in variables as “corresponding — complete”
(see Table 4.16). While the responses of 2 of these participants were coded as
corresponding — incomplete, the responses of the remaining 3 participants were
coded as not corresponding — incomplete. For example, PET7 described the
conjecture of getting the same number you started with, GSN, in variables as 18 + x
— x = 18. This expression corresponded to her conjecture but was not complete

because of the using numbers instead of variables. PET8, whose conjecture was
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getting zero, GEZ, described her conjecture in variables as -a + a + 12 = 12. However,
since this expression corresponded to the conjecture GSN, not GEZ, and included

numbers, it was coded as “not corresponding — incomplete.”

On the other hand, in the post-interviews, 2 of the 7 participants whose conjectures
were mathematically correct could describe them in variables as “corresponding —
complete.” For example, PET9 stated “x + y —y = x” to get the same number
conjecture. That expression was a complete equation and corresponded to her stated
conjecture in item B2. Four of the remaining 5 participants’ responses were coded
as “corresponding — incomplete,” and one response was coded as “not corresponding

- complete.”

Table 4.16

The Frequencies of the Strategies for Representing Conjectures in Variables

Strategies Pre (n=5) Post (n=7)
CC 0 2
CIC 2 4
NCC 0 1
NCIC 3 0

Related to the generalized arithmetic big idea, lastly, prospective elementary teachers
were asked to justify their conjectures. Question B5 was: “Explain why your
conjecture is correct.” The codes used for the analysis of this item were adapted from
the related literature, which focused on the justification of conjectures (e.g., Blanton,
Stephens, et al., 2015; Carpenter et al., 2003). The codes and details are presented in
Table 4.17.
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Table 4.17

Participants’ Strategies for Justifying Conjectures

B5. Explain why your conjecture is correct.

Codes Definition Example

Authority Participant justifies the This is how we were taught
Information —  conjecture by relying on

AUI information from an authority  This is how we learned in

(i.e., teacher or books).

Empirical - E  Participant justifies the
conjecture by showing it
works for one or more
examples.

Generic Participant justifies the

Example — GE conjecture by showing the
structure or relationship using
a particular example as a
generic example.

Using a Participant justifies the
General conjecture by using accepted
Argument — mathematical arguments or
GA definitions.

lessons

| have tried on some numbers
and seen it works.

Subtracting a number from
itself results in zero. Since
let's say | have 17 pens. I'll
throw those pens later. | have
nothing left. So, it is zero.

If we subtract another number
from one number and then
add it, the result will be the
first number. Because that
also means adding zeros and
adding zeros to any number
gives the number itself.

The frequencies of PETs’ usage of these strategies for justifying their conjectures are

presented in Table 4.18.

Table 4.18

The Frequencies of the Strategies for Justifying Conjectures

Strategies Pre (n=5) Post (n=7)
AUI 0 1
E 2 3
GE 2 2
GA 0 1
Other 1 0

70



As seen in Table 4.18, different from the pre-interviews, in the post-interviews, one
participant, PET®6, justified her conjecture using a general argument, GA, by stating
that “Because when we add and subtract the same number, they create a zero. That's

why it gives the first number.”

4.1.4 Functional Thinking

The last content that prospective elementary teachers were expected to develop
related to algebraic thinking was functional thinking. PETs were expected to
identify, describe, justify, and reason with recursive, covariational, and
correspondence relationships as common content knowledge. In this direction, to
evaluate their knowledge related to quantities that change together, they were asked
to reason on the “Saving for a Bicycle” problem (see Figure 4.2; adapted from

Blanton, 2008, p. 179).

Figure 4.2

Saving for a Bicycle Problem

Saving for a Bicycle Problem

Every week Mert's dad gives him 3% for helping with chores around the
house. Mert is saving his money to buy a bicycle. How much money has he
saved after two weeks? Three weeks? Fill in the table below.

Week Total Money
1

LA P [ L | B

After the participants filled the given table, they were asked to check over the data
and to answer the following two questions, respectively: “Describe the patterns that
you see in the table,” (item C2), and “How do you describe the relationship between

the number of weeks and the total amount of money?” (item C3). In the analysis of
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these items, Stephens et al.’s framework of “Levels of sophistication describing
generalization and representation of functional relationships” (2017, p. 153) was

taken as reference. The strategy codes are introduced in Table 4.19.

Table 4.19

Strategies for Describing Generalization and Representing Functional
Relationships in Words

C2. Describe the patterns that you see in the table.
C3. How do you describe the relationship between the number of weeks and the

total amount of money in words?

Codes Definition Example
Variational Recursive The participant defines the It goes as 3, 6, 9,
Thinking Pattern recursive pattern only with ~ 12...

Particular  particular numbers.

- RP-P

Recursive Participant identifies a The amount of

Pattern correct general recursive total money goes

General pattern. up by 3

- RP-G

Covariational Thinking - CR

Participant identifies a
correct covariational
relationship. The two
variables (number of weeks

When the
number of weeks
goes up 1, the
amount of money

and amount of total money) goes up by 3.
need to be coordinated
rather than mentioned
separately.
Correspondence Functional Participant identifies a Ix3, 2x3, 3x3...
Thinking Particular  functional relationship
-FR-P using particular numbers
but does not make a general
statement relating to the
variables.
Functional Participant identifies a X3
Basic general relationship multiply by 3
- FR-B between the two variables

but does not identify the
transformation between
them.

72



Table 4.19 (continued)

Functional Participant identifies an It is three times
Emergent incomplete function rule in  the number of
-FR-E words, often describing a weeks.

transformation on one

variable but not explicitly They are just
relating it to the other or not multiplying the
clearly identifying one of number of weeks

the variables. by 3.
Functional Participant identifies a The amount of
Condensed function rule in words that  total money is
-FR-C describes a generalized three times the

relationship between the number of

two variables, including the  weeks.

transformation of one that

would produce the second.  If you multiply
the number of
weeks by three,
you get the
amount of total
money.

Note: The codes were adapted from Stephens et al., 2017, p. 153.

In the pre-interviews, 6 out of 9 prospective teachers described the pattern they saw
in the table as a recursive pattern (see table 4.20). For example, PET2 answered item
C2 by stating that “here their difference is the same, increasing by three.” The
remaining 3 participants' responses were coded at the correspondence thinking level
(one as FR-B, two as FR-C). On the other hand, in the post-interviews, all
prospective teachers described patterns at the correspondence level, and 5 of these
nine responses were recorded as FR-C. For instance, PET1 expressed “three times
the number of weeks equals the total money each week.” Moreover, while one of the
remaining responses was FR-P, three of them were recorded as FR-B. For example,

the answer of PST8, “it always goes as multiple of three,” at the level of FR-B.

As for item C3, when participants were asked to describe the relationship between
the number of weeks and the total amount of money in words, two participants

described the relationship as FR-C in the pre-interviews. The number of participants
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who responded at this level was recorded as 3 in the post-interviews. Moreover, the
number of participants who defined the relationship as CR increased from 1 in the

pre-interviews to 4 in the post-interviews.

Table 4.20

The Frequencies of the Strategies for Describing Generalization and Representing
Functional Relationships in Words

Cc2 C3
Levels Pre Post Pre Post
(n=9) (n=9) (n=9) (n=9)

Variational RP-P

RP-G 6 1
Covariational CR 1 4
Correspondence FR-P 1

FR-B 1 2 2

FR-E

FR-C 2 5 2 3
Other 1 3 2

After describing the relationship between the number of weeks and the total amount
of money in words, the participants were asked to describe those relationships in
variables. Item C4 was: “How do you describe the relationship between the number
of weeks and the total amount of money by using variables?” In the analysis of this
item, similar to the previous one, Stephens et al. (2017, p. 153)’s framework was

taken as reference. The strategy codes are shown in Table 4.21.

74



Table 4.21

Participants’ Strategies for Representing the Relationship in Variables

C4. How do you describe the relationship between the number of weeks and the

total amount of money by using variables?

Codes Definition Example
Incorrect Participant identifies an incorrect n+3
Function Rule — function rule using variable by
INFR identifying the relationship as an

additive pattern.
Functional - Participant identifies an incomplete 3n
Emergent — function rule using variables, often 3xX
FR-E describing a transformation on one

variable but not explicitly relating it

to the other.
Functional - Participant identifies a function rule  y = 3x
Condensed — using variables in an equation that a=bx3
FR-C describes a generalized relationship

between the two variables, including
the transformation of one that would
produce the second.

Note: The codes were adapted from Stephens et al., (2017), p. 153.

In the pre-interviews, 7 out of 9 prospective teachers’ responses were recorded as
incorrect function rule-INFR or Other (see Table 4.22). Only 2 participants could
express a correct function rule in variables, but they were emergent—function rules.
In other words, the variables were not related to each other directly. For example,
PET?7 described the relationship between the number of weeks and the total amount
of money as n x 3, where n referred to the number of weeks. On the other hand, 3
participants’ expressions were coded as INFR or Other in the post-interviews.
Moreover, while 4 of the remaining 6 participants’ responses were coded as FR-E,
two participants could describe the relationship as FR-C in the post-interviews. For

instance, PET7 described the relationship as “3x =y,” where x referred to the number

of weeks, y referred to the amount of total money.
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Table 4.22

The Frequencies of the Strategies for Representing the Relationship in Variables

Strategies Pre (n=9) Post (n=9)
INFR 4 1
FR-E 2 4
FR-C 0 2
Other 3 2

The next item, item C5, was asked to examine how the prospective teachers justified

the functional relationships they formed. The question was: “How do you know your

relationship works?”” Based on the learning goal (see Table 3.2 for all learning goals),

prospective elementary teachers were expected to use the function rules, tables, or

problem context while justifying relationships. Therefore, the codes used in the

analysis of item C5 were generated by the guidance of that learning goal. The codes

are presented in Table 4.23.

Table 4.23

Participants’ Strategies for Justifying the Functional Relationship

C5. How do you know your relationship works?

Example

Codes Definition
Using Participant uses the information
Problem or conditions in the problem to

Context — PC  show that the relationship/rule

is true.

Using Table — Participant extends the table by

T adding more data to show that
the relationship/rule works for
more data OR uses the data on
the given table to show the
stated relationship/rule is true.

Using Participant substitutes a chosen
Function number of weeks and amount
Rule - FR of total money on function rule

(algebraic expression/equation
of the relationship) to show that
the inferred relationship/rule is

true.

It goes by three because his
father gives him 3 liras each
week.

We can continue to generate
the table with more weeks
and see the rule works.

We know that in the fifth
week, he has 15 liras. When
we substitute these numbers
to the rule, which is 3x=y
where X refers to the number
of weeks, y refers to the total
amount of money, and we
can see it works.
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The frequencies of PETs’ usage of these strategies to justify why their relationships

work are presented in Table 4.24.

Table 4.24

The Frequencies of the Strategies for Justifying Conjectures

Strategies Pre (n=9) Post (n=9)
PC 2 0
T 3 3
FR 3 5
Other 1 1

As seen in Table 4.24, there was an increase in the number of participants who used
the function rule in the post-interviews to show that the relationship is correct and
working. For example, PET3, who used the table to justify her relationship in the
pre-interview, explained her thinking by using the function rule in the post-interview
and stated that “I'll substitute it. | said x refers to total money. Our total money is
equal to 3 at first... We said y refers to the number of weeks, I substitute 1 in y, then

three equals three. This way, we can see that it is correct when we try all the weeks. ”

Lastly, prospective elementary teachers were expected to reason with the
relationships they formed. In the last question, which was a multiple-choice item,
related to functional thinking, participants were provided prices and asked whether
they could decide the price of the bicycle that Mert bought at the end of any week.

The question and the strategy codes used in the analysis are presented in Table 4.25.
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Table 4.25

Participants’ Strategies for Reasoning with the Relationships

C6. If it is known that at the end of any week Mert spent all his money to buy a
bicycle, which of the following might be the price of that bicycle? In what week
he bought his bicycle? Explain your answer.

a)110 TL b)120 TL €)130 TL d)140 TL

Codes Definition Example

Need of The participant thinks that the  If we knew what week he
Information — information given is not bought the bicycle, we
NI sufficient to decide on the price could find the price of it.

of the bicycle and states that
the number of weeks that Mert
bought the bicycle should be

known.
Multiple of The participant thinks that It is 120 because the
Three — M3 regardless of the week he amount of total money goes
bought the bicycle, the price up by three and each week
must be a multiple of three. it is multiple of three.

In the pre-interviews, while 3 out of 9 prospective teachers thought that the price
should be multiple of three and said that the price might be 120 TL, the other 3 of
them thought that to decide the price of the bicycle, we need more information. For
example, PET4 thought that we could not decide the price because “the number of
weeks should be given in the question.” On the other hand, in the post-interviews, no
participant thought that the information provided was insufficient. Six out of 9
prospective teachers could reason that the price should be a multiple of three, no
matter what week it is. For example, PET7 stated that “It was going up as multiple
of three. So, it must be a number that is divisible by three without a remainder. Since

120 is a number that is divisible by three without a remainder, it is 120.”
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4.2  Development of Prospective Elementary Teachers' Pedagogical

Content Knowledge

In the early algebra lessons through case discussion, besides the common content
knowledge related to early algebra, the prospective elementary teachers were also
expected to develop their knowledge for teaching algebra in the elementary grades.
Therefore, prospective elementary teachers’ pedagogical content knowledge was
also examined in the pre-and post-interviews before and after the early algebra
lessons. The change in participants’ PCK as knowledge of content and students
(KCS) and knowledge of content and teaching (KCT) will be presented in two
subsections. Each section will start with the codes used to analyze the PETS' verbal

responses, and then the corresponding findings will be shared.

4.2.1 Knowledge of Content and Teaching (KCT)

To integrate algebraic thinking into the elementary curriculum, teachers need to
develop their knowledge related to instructional strategies and representations as a
component of pedagogical content knowledge, namely knowledge of content and
teaching. In this study, to examine the prospective elementary teachers’ knowledge
of content and teaching, they were provided one objective related to each big idea
from the mathematics curriculum. Then they were asked to explain what kind of

lesson they would plan to meet those objectives and what they would consider.

First, the participants were provided an objective related to the meaning of the equal
sign and asked how they would construct this lesson and what activities they would
do. In the analysis process, strategy codes were developed by the researcher
according to the meanings of the equal sign the participants focused on in the lessons

they designed. The objective and the strategy codes are presented in Table 4.26.

79



Table 4.26

Participants’ Strategies for Planning a Lesson Regarding the Meaning of the Equal
Sign

Al. How would you design a lesson for the second-grade objective below? What
would be your strategies and representations?

M.2.1.3.5. Students notice the meaning of equal sign that refers to the
equality between mathematical expressions.

Codes Definition Example

Referring to the The participant emphasizes that  Ali had three pens. Ayse

Result-R the equal sign indicates the gave Ali 5 more. We ask
result of an operation in the how many pencils Ali has.
activity she developed for the We can teach it by showing
objective. the result.

Referring to the The participant emphasizes the ~ We put bananas and

Same Objects — "same objects™ in the activity apples on one side. We put

SO she developed for the objective. bananas and apples on the
She shows students that objects  other side in the same way
placed on two different sides and show that they are
are the same. equal.

Referring to the The participant emphasizes the 1 would put 10 counting

Same Amount — "same amount™ (number, beans on one side and 10

SA weight, etc.) in the activity she  on the other side. | would

developed for the objective. She have the students count it.
shows that the objects placed on  They would count. They

two different sides have the would say there were ten

same number/weight. and the other had 10.
Referring to the The participant emphasizes | would put the same
Balance — BAL  "balance™ in the activity she number of objects on both

developed for the objective. She arms of the pan balance so
shows the students the state of  that the students could see

being in balance between the the equality between those
numbers/quantities of the objects. I would let them
objects placed on two different  see it was equal when | put
sides. the same number objects,

and it was equal when it
was in balance.
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The frequencies of the prospective elementary teachers’ usage of these strategies to

teach the meaning of the equal sign are presented in Table 4.27.

Table 4.27

The Frequencies of The Strategies for Planning a Lesson Regarding the Meaning
of the Equal Sign

Strategies Pre (n=9) Post (n=9)
R 2 0
SO 1 1
SA 3 2
BAL 1 6
Other 2 0

As shown in Table 4.27, 2 participants designed a task in the pre-interviews that have
students think that an equal sign is a command to write a result. For example, PET8
explained that she could set up a lesson for this objective as:

“I get the students on the board. Ali has three pens. Ayse gave Ali 5 more.
How many pens did Ali have? [...] Then, when you go to mathematical
notation, you prepare the numbers with magnets, you show them by sticking
them on the board. You write both 3 and 5. As a result of these, I think we
can teach equals as the result is the following.”

Besides, 3 participants describe a lesson in which the equal sign referred to the same
amount. For instance, PET7 stated that:

“For example, I would put 10 counting beans here on one side and 10 on the
other. I would have the students count it. They also counted. They would say
there were 10, and the other would say there were 10. In this way, they would
be made to realize that they were equal in the same amount.”

While one of the remaining participants’ response was coded as “referring to the
balance”, another one’s response referred to same objects in the pre-interviews. On
the other hand, in the post-interviews, 6 out of 9 prospective elementary teachers
created activities to show the balance meaning of the equal sign in the lessons they
described. The number of participants who created a lesson in this way was recorded
as 1 in the pre-interviews. As an example, PET5 explained her lesson design in the

post-interview as:
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“I'd bring a pan balance to class because it's an expression of equality. For
example, when we put a mass on one side, let's say the simplest example is
10 kilos; when 2 kilos are put on the other side, equality is not achieved, one
side is outweighed. I could show it as an equation that the scales balance
when we put in a value that weighs an equal amount of 10 kilograms.”

Furthermore, while only 1 prospective teacher considered using a pan balance for
that objective in the pre-interviews, 6 participants thought to use the pan balance in

their lessons in the post interviews.

To investigate the change in the prospective elementary teachers’ knowledge of
content and teaching, the second objective that was provided to them was related to
the generalized arithmetic big idea. The objective and the codes of strategies that

participants used in their lessons are provided in Table 4.28.

Table 4.28

Participants’ Strategies for Planning a Lesson Regarding the Arithmetic
Generalization

B1. How would you design a lesson for the fourth-grade objective below? What
would be your strategies and representations?

M.4.1.4.2. Students show that changing the order of the multipliers in
multiplication with three natural numbers does not change the result.

Codes Definition Example
Showing Participant uses one or more For example, let's say 5 times
through examples to show students this 2, it equals 10; when | switch
Example(s) fact works. She may use 2 and 5, the result does not
-EX manipulatives. change. I can show it like this.
Leading Rather than showing that this fact | would create a discussion
students to  works, participant leads students  environment and let students
make a to consider whether such a fact to think about why the result
conjecture  exists. She creates an did not change when we switch
- CON environment to make conjectures. the numbers. | would ask them
For this purpose, she may use to think about whether this fact

problem contexts or ask leading is always true or not.
questions such as “Why did not

the result change?”, “How do you

know this is true?”, “Is it always

true?” etc.
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When participants’ verbal responses were analyzed, it was detected that in the pre-
interviews, all prospective teachers tended to use one or more examples to show that
this relationship works, rather than enabling students to make an arithmetic

generalization. For instance, PET6 reported her lesson design as:

“I would write it on the board and show it. 2 x 3 x 5. | used to have them
multiply one by one, actually. I'd want them to multiply 2 by 3 and then
multiply by 5. Then I would have them multiply 2 by 5 and then multiply by
3. This is a somewhat classical method, but they would see that the results
were the same.”

However, in the post-interviews that were conducted after the early algebra lessons,
6 prospective teachers designed a lesson to provide students an environment to make
conjectures by thinking that “I wouldn't give the rule of multiplication directly. |
want them to reach it at the end” (PETS8). They considered asking questions to lead
students to generalize the arithmetic relationship. For example, “Will this be the same
for every number?” (PET4), “Why did you do that? How do you think? How do you
know it is? Is it true for all numbers?” (PETS). The remaining 3 prospective teachers

used examples to show students that this fact works.

The last objective was related to the functional thinking big idea. To understand how
prospective elementary teachers present varying quantities and whether they
consider guiding students to investigate relationships between quantities, they were
given an objective related to number patterns and asked to plan a lesson. Table 4.29

shows the objective of the lesson and also the codes of strategies.
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Table 4.29

Participants’ Strategies for Planning a Lesson Regarding Functional Thinking

C1. How would you design a lesson for the third-grade objective below? What
would be your strategies and representations?

M.3.1.1.7. Students expand and generate the number patterns that have a
constant rate.

Codes

Definition

Example

Expanding the
Pattern — EXP

Finding the
Missing Term
- MIS

Attempting to
Guide to
Functional
Thinking - FT

The participant asks students to
find the next term of the given
pattern and expand the pattern in
the activity she developed for the
objective.

The participant expects the
students to find the missing terms
of the given pattern and to place
the appropriate terms in the blank
spaces in the pattern in the activity
she developed for the objective.

The participant not only creates
and expands the number pattern in
the activity she develops for the
objective but also attempts to
create a functional thinking
environment. She may have used a
problem situation or a table with
quantities that change together.

We can write 2, 4, 6, and
put three dots, and ask
them to continue.

| would write 2, 4, 6,
8..., 12. I would ask the
student to find the
number to fill in the
blank there. Then |
would repeat. | would
like them to fill in the
pattern by putting spaces
in between.

There was the question
of the chair. If a chair
has 4 legs, how many
legs do 2 chairs have?
We then convert this into
a table. We let them see
through the table.

Table 4.30 shows the frequencies of prospective elementary teachers’ usage of these

strategies to teach number patterns.
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Table 4.30

The Frequencies of The Strategies for Planning a Lesson Regarding Functional
Thinking

Strategies Pre (n=9) Post (n=9)
EXP 7 4
MIS 2 1
FT 0 4
Other 0 0

In the pre-interviews, as shown in Table 4.21, most participants thought of asking
the students to find the next term of the given pattern, not going further than what
was stated in the objective. For example, PET4 described a lesson for the objective
as:

“I would have students come the board. I would call two students first. Then
I would add two more students, and it would be four. Later, when | added
two more students, it would be 6. They would see that it increased and
expanded as two students are added [...]. All students would be on the board,
and they would see it increased by two.”

Moreover, two prospective teachers thought of using an activity that asked students
to find the missing term in a number pattern. One of these participants, PET5, said
that:
“For example, it might go as 1, 3, 5. The differences always Increase by two.
[...]. It could be something like a puzzle where they would notice such
patterns and then reach a conclusion. [...] [Like a] fill-in-the-blank puzzle.

[In that puzzle, we] would write 1, not 3, but write 5. [The students] will write
3 there.”

On the other hand, different from the pre-interviews, in the post-interviews, 4
prospective elementary teachers were observed to go further than what was stated in
the objective. They intended to create an activity that encourages functional thinking.
Among these participants, some considered presenting a problem situation with
quantities that vary together, rather than directly giving a number pattern to students.
For instance, PET6 reported as:
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PET®6: | would show this through a problem. There was the question of the
chair. If a chair has 4 legs, how many legs do 2 chairs have? We then
convert this into a table. We let them see through the table. We can
formagraph [...].

R: What do you want students to do when you make a table or graph?
What do you expect to hear?

PET®6: Here, the students continue the pattern by counting at the beginning.
This is what is desired in the objective. But other than that, 1 would
make them see the amount of increase between them relationally.
How many do you think increases when there are two chairs? How
many will it increase compared to the first chair and two chairs, or
how many will it increase for the other three chairs? They could see
the difference between them and express themselves by establishing
relationships [...]. I would also ask the students questions and make
them establish relationships, but | would make them establish
covariational relationships.

As PET6 did, using problem situations or tables in a lesson for an objective that
expects students to expand a number pattern was interpreted as an attempt to provide

students with opportunities for functional thinking.

4.2.2 Knowledge of Content and Students (KCS)

During the early algebra lessons, besides the knowledge of instruction and
representation, the prospective elementary teachers were expected to develop their
knowledge related to students’ possible conceptions and misconceptions as part of
pedagogical content knowledge, namely knowledge of content and students. To
understand the change in the participants’ knowledge, they were asked to provide
students’ possible responses for some questions and interpret given students’
responses. They responded to the questions for each big idea: equivalence and
equation, generalized arithmetic, and functional thinking. The questions and the

strategy codes used in the analysis will be presented in the order of big ideas.

For the first big idea, equivalence and equations, the missing value problem,
8+4=[ ] +5, was given to the prospective elementary teachers, and they were
asked what kind of responses they expected from the students. The missing value
problem and the common students’ strategies are detailed in Table 4.31.
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Table 4.31

Missing Value Item and Common Students’ Strategies

A5. What correct and incorrect answers would you expect elementary students to
the following question, and what would be their strategies for those answers?

8+4=[ ]+5
Codes Definition Example
Answer Comes  Student thinks that the answer 8 +4 =12
Next — ACN is the result of the operation
that comes right after the equal
sign.
Add All the Student adds all the numbers 8+4+5=17

Numbers - ALL and does not consider where
the equal sign appeared in the
number sentences.

Compute-C Student calculates the sumon  8+4=12;12-5=7
the left side of the equationand 8+ 4 =12and7+5=12
finds a number to put in the
box that when added to 5, it
would give the same total.

Structure — S Student considers the relation 5is 1 more than 4, so the
between the two addition number in the blank must
expressions in the equation, not be 1 less than 8.
just the relation between the
answers to the two
calculations.

Note: The problem and the codes were taken from Carpenter et al., 2003, pp. 9-13.

During the analysis of the item, all the student strategies expressed by the participants
were coded. In this case, 9 participants put forward 18 possible student responses in
the pre-interviews and 21 in the post-interviews. The distribution of the responses
according to the strategies is presented in Table 4.32.
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Table 4.32

The Distribution of the Answers According to the Strategies

Strategies Pre (n=16) Post (n=21)
ACN 5 7
ALL 0 4
C 7 8
S 3 2
Other 1 0

As shown in Table 4.32, “the answer comes next,” “compute,” and “structure”
strategies were expected student responses for prospective teachers in both the pre-
and post-interviews. While, in the pre-interviews, none of the participants expected
students to add all the numbers, the number of participants who thought that the
students could answer 17 using this strategy was recorded as 4 in the post-interviews.
After asking participants’ expected student responses, they were presented with
some student responses for the missing value problem, and they were asked to
interpret them. In this way, the aim was to observe whether the prospective teachers
noticed student’s way of thinking or approaches behind the student answers. Table

4.33 shows the students' sample responses and the participants' strategies.

Table 4.33

Participants Strategies of Interpretation of the Equality Item Responses

A6. What way of thinking might be behind the students' responses to the
questions below?

AB.1) 8+4=[12]+5
AB.2) 8+4=[17]+5

A6.3) 8+ 4 =[7]+5 because if you take 1 away from the 8 and add it to
the 4, you have 7 left
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Table 4.33 (continued)

Codes Definition Example
Explaining Participant explains the The student found 12 by
Procedural mathematical adding 4 + 8 and did
Approach - P procedures/steps correctly not consider 5.

that the student follows to

respond without mentioning

the student's conception of

the equal sign.
Identifying Participant explains the They thought of writing

Conceptions of
Equal Sign - EQS

Misunderstanding
Procedural/Thinking
Approach — MISUN

ways of thinking behind the
given answers. Besides how
students found 12, 17, and 7
as an answer, she explains
how the student makes sense
of the equal sign.

Participant provides an
explanation that is not
correspondence of given
students’ thinking. They
may misinterpret the
student's way of thinking.

the direct result by
considering only one
side, not the equality on
both sides.

Knows that both sides
of the equal sign are
equal, balancing on
both sides.

| think the students who
answered 17 rounded
the numbers.

The frequencies of prospective elementary teachers’ usage of these strategies are

presented in Table 4.34.

Table 4.34

Frequencies of Participants’ Interpretation Strategies for the Equality Item

A6.1 A6.2 A6.3
Pre Post Pre Post Pre Post
(n=9) (n=9) (n=9) (n=9) (n=9) (n=9)
P 7 1 8 5 5 5
EQS 2 8 0 4 0 2
MISUN 0 0 1 0 2 2
NR 2
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For item A6.1, the answer of 12, which was due to the operational understanding of
the equal sign, there were no participants who misunderstood the students’ thinking
or procedural approach in both the pre-and post-interviews. However, when they
were asked how the student thinks while giving this answer, most of the participants,
7 out of 9, explained the mathematical procedures that the student followed without
mentioning the student's conception of the equal sign. For example, PET3 interpreted
this student’s response as “/the student] summed up 8 and 4. He may have seen the
equality, but not the 5, or he may not have cared.” On the other hand, in the post-
interviews, 8 out of 9 prospective teachers explained the ways of thinking behind the
given answers and identified the student’s conception of the equal sign. For instance,
PETS3 interpreted the student’s answer this time as follows:

The student looking at 8 + 4 thinks that equality does not help balance both

sides, but it gives the result of the computation. In other words, s/he thinks

that we will write the result directly without looking at the other side when
we see an equality.

For item A6.2, the student adds all the numbers in the equation, 8 +4=__ +5, and
then gives the answer of 17, again due to the operational understanding of the equal
sign. None of the prospective teachers mentioned how the student made sense of the
equal sign in the pre-interviews. The number of participants who were able to do that
was recorded as 4 in the post-interviews. For example, PET7 interpreted this

students’ thinking as:

[The student] summed up all the numbers he saw. In other words, s/he says
there is an addition operation, and whatever number | see in the addition
operation, | must add before the equal sign. S/he saw 5 there. Maybe s/he
thought we should add this too. He wrote 17 after the equal sign.

Lastly, for item A6.3, in which the student answers as 7 by recognizing the structure
of the equation, participants were observed to have difficulty interpreting this student
answer. Four participants in the pre-interviews and 2 participants in the post-
interviews misinterpreted or did not understand the student's way of thinking. For
example, in the pre-interviews, PET2 thought that the student rounded up the

numbers. Nevertheless, while no participants identified that student’s conception of
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the equal sign in the pre-interviews, 2 of them were able to do in the post-interviews.
One of those participants, PET3, said that “/ think [this student] thought relationally.
He also understands equality. He understands that both sides are equal. | think he

knows that both sides of the equal sign are equal, keeping both sides balanced.”

The second big idea in which prospective elementary teachers’ knowledge of content
and students were examined was generalized arithmetic. Firstly, for this big idea, a
set of operations were presented to the participants, and they were asked what they
expected elementary students to notice when they completed these operations (item
B6, see Figure 4.3). Regarding this question, all participants expressed that they
expected students to realize that changing the order of numbers in addition does not

change the result in both the pre-and post-interviews.

Figure 4.3

Set of Computation for Students’ Thinking

Computation Task
Do the following computations.

12 27 45 23
+ 27 +12 +23 +45

Note: The task was taken from Blanton (2008, p. 13).

After that, the prospective elementary teachers were provided with some student
responses to justify an arithmetic generalization that focused on the sum of three odd
numbers. The aim was to examine whether the participants identified students’ ways
of justification by asking how they interpreted given students’ responses. Similar to
item A6, in the analysis of this item, item B7, whether the participants understood
the responses and, if so, whether they noticed the justification approaches beyond
the procedural steps while interpreting the ways of thinking were examined.
However, as it was realized, some student responses presented were understood in
different ways; only the participant responses that correctly addressed the student's

justification approaches were coded during the analysis process. Table 4.35 shows
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the presented student responses and the justification approaches that expected the

prospective teachers to address.

Table 4.35

Student Responses and the Justification Approaches

“Derya says that the sum of any three odd numbers will be odd. Explain why this

1s true.”

B7. Suppose the question of the sum of three odd numbers above was asked to
elementary school students, and they gave the following responses. What kind of
thinking might be behind these student responses?

Student Answer

Justification Approach

B7.1) 3+5+7=15and 15 are
odd, so Derya is right

B7.2) This is always true since an
odd number is always one more
than an even number. For example,
if three 1s are put together, you get
3, which is an odd number because
3 added to an even is always an
odd number.

B7.3) This is true because two
odd numbers equal an even plus
another equals an odd because an
even plus odd equals odd

EMPIRICAL:

The student thinks that the statement is
correct because it works for one or more
examples.

GENERAL ARGUMENT:

The student uses general arguments to
justify the argument. The student could use
accepted arguments concerning the sums
of even and odd numbers, the relation
between odd and even numbers, or the
definitions of even and odd numbers for
justification.

Note: “The three odd numbers” problem was adapted from Isler et al. (2013, p. 141)
and the justification approaches were adapted from Carpenter et al. (2003, p. 87).

For the response in which the student justifies the fact empirically, while in the pre-
interviews, only 1 prospective teacher identified that the student was generalizing
based on an example, in the post-interviews, 5 out of 9 participants identified the
student thinking. For example, PET9 stated, “It is interesting that s/he came to this
conclusion directly from an example. I would probably ask the question: how do you
know it will be the same for all numbers?”” Similarly, for the student responses that

included general arguments, in the pre-interviews, while 1 prospective teacher
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correctly mentioned the student’s way of justification for the response B7.2, none of
them did that for the response B7.3. However, in the post-interviews, 6 participants
for the response B7.2 and 2 participants for the response B7.3 correctly identified
the students’ justification ways. For instance, for B7.2, PET6 stated that “This
student saw the relationship between odd and even numbers. | understand that from

his statement. He thought relationally and made sense of odd and even numbers.”

Lastly, the prospective elementary teachers’ knowledge of content and students was
examined for the big idea of functional thinking. For this, the Saving for a Bicycle
Problem was presented to the participants again, and it was asked what kind of
responses they expected from the students to respond to the questions about this
problem. The two questions prospective teachers were shown were: item C7.1.
“Describe the patterns you see in the table” and item C7.2 “How do you describe the
relationship between the number of weeks and the total amount of money?” While
stating possible student responses, prospective teachers were anticipated to mention
students' responses varying in the “Levels of sophistication describing generalization
and representation of functional relationships” (Stephens et al., 2017, p. 153; see
Table 4.19).

Similar to item A5, all expected student responses that were indicated by participants
were coded during the analysis of the item. In this circumstance, for C7.1, 9
participants put forward a total of 16 possible student responses in the pre-interviews
and 20 in the post-interviews. As for C7.2, 9 possible student responses in the pre-
interviews and 11 in the post-interviews were provided. The distribution of the
responses according to the functional thinking levels is presented in Table 4.36.
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Table 4.36

The Distribution of the Responses According to the Functional Thinking Levels

C7.1 C7.2
Levels Pre Post Pre Post
(n=16) (n=20) (n=9) (n=11)
Variational RP-P 3 2 0 0
RP-G 6 6 0 0
Covariational CR 0 3 1 2
Correspondence FR-P 0 0 0 0
FR-B 2 0 0 3
FR-E 1 1 3 2
FR-C 2 3 2 4
Other 2 5 3 0

As shown in Table 4.36, while working on the Saving for a Bicycle problem, for the
question which asked the pattern students could see in the table, the prospective
teachers expected student responses in the levels of variational and correspondence
thinking in both the pre-and post-interviews. However, in the pre-interviews, none
of the participants expected students to use covariational thinking. In the post-
interviews, 3 student responses put forward by the participants were coded as
covariational; for instance, "as the number of weeks increases by one, the total

amount of money increases by three" (PETS).

For the question which asked how students describe the relationship between the
number of weeks and the total amount of money, the student responses in variational
level were not provided as possible student response for the prospective teachers
neither in the pre- nor in the post-interviews. On the other hand, compared to the pre-
interviews, more participants expected to hear a student response categorized as FR-
C.
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After asking participants expected students’ responses for the Saving for a Bicycle
problem, they were shown student responses to the problem and were asked to
interpret them. In this way, participants were aimed to observe whether they could

decide the functional thinking levels of the students. Table 4.37 shows students’

responses and the participants' strategies of interpretation.

Table 4.37

Participants Strategies of Interpretation of the Functional Thinking Item

C8. What way of thinking might be behind the students’ following answers for
the question of how they describe the relationship between the number of weeks
and the total amount of money?

C8.1) The total amount of money goes by three

C8.2) Each week, the total money increases by three

C8.3) The total amount of money is equal to three times the number of weeks

Codes Definition Example
Explaining Participant explains the He added three each
Procedural mathematical week. He may have used
Approach - P procedures/steps correctly  rhythmic counting again
that the student follows to by adding three to it.
respond without
mentioning the student's
approach related to
functional thinking.
Identifying Participant explains the This student only thought

Functional Thinking
Approach - FT

students’ ways to establish
a relationship. She realizes
correctly which variable(s)
the student is considering.
She may also explain the
mathematical
procedures/steps that the
student follows to give that
response.

about the amount of
money and did not
establish a relationship
with the other.

The student established a
relationship between both
the week and the amount
of money.
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Table 4.37 (continued)

Misunderstanding
Procedural/Thinking
Approach - MISUN

Participant provides an
explanation that is not a
correspondence of given
students’ thinking. They
may think that the
student’s answer is wrong,
or they may misinterpret
the student's way of
thinking.

The student who said that
as the number of weeks
increases by one, the total
amount of money
increases by three,
thought that the total
amount of money
increased by three by
multiplying the number of

weeks by three.

Table 4.38 shows the frequencies of prospective elementary teachers’ usage of these

strategies.

Table 4.38

Frequencies of Participants’ Interpretation Strategies for the Functional Thinking
Item

Cc8.1 C8.2 C8.3
Pre Post Pre Post Pre Post
(n=9) (n=9) (n=9) (n=9) (n=9) (n=9)
P 9 4 6 2 4 1
FT 0 5 1 7 1 6
MISUN 0 0 1 0 3 2
Other 0 0 1 0 1 0

For item C8.1, the student answer that describes the relationship as “the total amount
of money goes by three” using the variational thinking, in both the pre- and post-
interviews, there were no participants who misunderstood the student thinking or
procedural approach. However, in the pre-interviews, all participants addressed the
student’s procedural approach without identifying the functional thinking approach
when asked to interpret that student’s answer. For example, PETS stated, “Since the
total amount of money goes up 3, 6, 9, [the student] might have given such an answer
because [s/he] saw that the difference between them was constantly increasing by

three.” On the other hand, 5 out of 9 prospective teachers explained the students'
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ways to establish a relationship in the post-interviews. For instance, PET8 reported
that “This student thinks recursively. So, he/she only goes through a single variable.
S/he only considers the total amount of money. She does not coordinate the number

of weeks with the total amount of money.”

For item C8.2, in which the student used covariational thinking, “each week the total
money increases by three,” in the pre-interviews, most participants, 6 out of 9, did
not identify that in the response the two variables (number of weeks and amount of
total money) were coordinated rather than mentioned separately. For example, PET4
stated, “S/he was adding three each week. [The student] may have used rhythmic
counting again by adding three to it.” Different from the pre-interviews, after the
early algebra lessons, in the post-interviews, 7 prospective teachers pointed out that
the number of weeks and the total amount of money were coordinated with this
student response. As an example, PET3 said, “[This student] also coordinated [the
total amount of money] with the week. In other words, she/he tried to show that the
total money is also related to the week. He looked at both sides and coordinated

’

them.’

Lastly, for item C8.3, the student answer stated that “the total amount of money is
equal to three times the number of weeks,” participants were expected to address that
the student coordinated the two variables. While reflecting on this student's answer,
the participants could elaborate on the coordination of variables and/or say that a
direct relationship/rule was established between the number of weeks and the total
amount of money. In this case, similar to previous items, more prospective teachers
were recorded to identify the student’s functional thinking in the post-interviews than
the pre-interviews. While in the post-interviews, 6 out of 9 prospective teachers
asserted that this student considered two variables together, the number of
participants who responded in this way in the pre-interviews was 1. For example,
after the early algebra lessons, PET7 explained the student’s thinking as “[This
student] completely coordinated the total amount of money with the number of
weeks. S/he said it as a rule.” In addition to these, in the pre-interviews, 5 out of 9

prospective teachers thought that the responses of the students who said that “the
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total amount of money is increasing by three” and “the total amount of money is
increasing by three each week” were the same. In other words, they did not identify
the differences between variational and covariational thinking in the pre-interviews.
However, the number of participants who thought in this way was recorded as 2 in

the post-interviews.
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CHAPTER 5

DISCUSSION AND IMPLICATIONS

The current study investigated how prospective elementary teachers' knowledge of
teaching algebra in early grades might have developed through case discussions. In
this regard, individual interviews examined participants' subject matter knowledge
and pedagogical content knowledge in the big ideas of equivalence and equations,
generalized arithmetic, and functional thinking. Following this purpose, in this
chapter, the findings will be discussed under the big ideas. Specifically, the first
section will discuss the development of prospective elementary teachers' (PETS)
knowledge to teach equivalence and equations as a core algebraic concept. The
second section will discuss the development of PETsS' knowledge to teach
generalized arithmetic. Then, development in PETs' knowledge to teach functional
relationships will be discussed in the third section. Lastly, the implications of the

findings will be presented.

51  The Developments in PETs’ Knowledge to Teach Equivalence and

Equations

In their study with the middle school students that focused on the equal sign's
meaning and its relation to their ability to solve algebraic equations, Knuth et al.
(2005) asked, "why might middle school students hold an operational view of the
equal sign?" (p. 309). They thought that the answer to this question might be that
traditionally the equal sign was only presented in the first years of elementary school,
and there is no direct instruction on the meaning of the equal sign in later grades.
Besides this, there might be another answer to this question: teachers, who are
expected to present to students the relational meaning of the equal sign, might see

the equal sign as a "do something" signal. The findings of this study showed that
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prospective teachers might hold an operational view of the equal sign. Before the
early algebra lessons, 5 out of 9 prospective teachers displayed an operational
understanding of the equal sign when they were asked what the equal sign symbol
meant. Other findings supported this result. While they were thinking about the
correctness of the statement "If 16+15=31, the expression of 16+15-9=31-9 is also
true" or the statement "The equations 3x — 12 =51 and 3x — 12 +3 = 51 + 3 have the
same solution”, the fact that they need to do calculations to make a decision can be
interpreted as their lack of understanding of the equal sign as relational.

After the early algebra lessons in which prospective elementary teachers were
presented with some cases, including students' different conceptions of the equal sign
and discussion on students' thinking and possible instructional approaches, the
participants' views of the equal sign changed. In the post-interviews, 8 out of 9
prospective teachers explained the meaning of the equal sign with a relational
understanding. Different from the pre-interviews, the majority of the participants
found the missing values in the equations8+4 =] ]+5and67+83=[ ]+82
by recognizing the structure in the equations and responded them without the need
for a calculation. This development was also observed in the True / False items.
Moreover, in pre-interviews, three participants stated that the expression 17 = 17 was
not mathematically meaningful by thinking the same with Ana, who was a second-
grade student, and said that "Well, yes, eight equals eight, but you just shouldn't write
it that" (Falkner et al., 1999, p. 235). However, they changed their opinions in the
post-interviews and mostly thought that it was an expression of equality. Based on
these findings, it can be concluded that the early algebra lessons might have helped

pre-service teachers develop a relational understanding of the equal sign.

A similar conclusion can be made for the findings related to the pedagogical content
knowledge regarding equivalence. After reading and discussing classroom cases,
including different students' conceptions of the equal sign, the prospective teachers'
knowledge of content and students, specifically, their knowledge related to students'
conception and misconceptions of the equal sign, seemed to have been developed.
Since the problem 8 + 4 =[ ] + 5 was trivial for many teachers (Falkner et al.,
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1999), they may not have expected students to answer 12 or 17. For example, in the
study of Asquith et al. (2007), when teachers were asked to predict how middle
school students define the equal sign, they predicted that students would show the
relational understanding of the equal sign at all grade levels. Likewise, before the
early algebra lessons, no participants thought that 17 might be a student answer for
that problem. Different from the pre-interviews, more participants thought that
students could have an operational view of the equal sign and give the answer 12 or
17 for the missing value initem8+4=[ ]+5.

Furthermore, when they were presented with some student responses and asked to
explain the students' ways of thinking, in the pre-interviews, just a few of them could
deduce students' understanding of the equal sign from their answers; they instead
explained the mathematical procedures or steps. Similar findings were found by
Vermeulen and Meyer (2017). In their study, most prospective teachers could not
identify students' errors and misconceptions related to the equal sign due to a lack of
knowledge of content and students. However, in this study, after the early algebra
lessons, participants' knowledge related to students' thinking has been observed to
be improved. In the post-interviews, more participants could recognize the students'

conceptions and misconceptions of the equal sign based on their answers.

Besides students' thinking, the prospective teachers' knowledge of content and
teaching regarding the big idea of equivalence and equations was also enhanced after
the early algebra lessons. In the pre-interviews, 4 out of 9 prospective teachers
asserted an activity that was appropriate to provide students the relational meaning
of the equal sign. While, in the post-interviews, 8 out of 9 prospective teachers aimed
to guide students to recognize that the equal sign refers to the balance of quantities
in their activities regarding the objective related to the meaning of the equal sign.
Moreover, as Van de Walle et al. (2013) recommended, 6 prospective teachers, 5
more than the pre-interviews, considered using a pan balance to provide students the
relational meaning of the equal sign. Consequently, showing prospective teachers
different student understandings related to the meaning of the equal sign through

classroom cases and discussion on students' thinking and appropriate instruction
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might have helped them develop pedagogical content knowledge around teaching

equivalence.

5.2  The Developments in PETs’ Knowledge to Teach Generalized
Arithmetic

Helping children identify, describe, and justify patterns and regularities in operations
and properties of numbers is the basis of generalized arithmetic (Blanton, 2008). It
is believed that in elementary grades, which are dominated by arithmetic, creating a
learning environment focusing on these practices enables students to think
algebraically and prepare them for later algebra learning (Russell et al., 2011).
Studies have shown that with appropriate instruction, students' ability to generalize
over operations and numbers can be improved, and students' algebraic thinking can
be supported by teachers who offer opportunities for generalization in the elementary
school curriculum (e.g., Hunter, 2010; Russell et al., 2011). Thus, teachers should be
aware of these generalization processes and need the required knowledge to identify,
generalize, represent, and justify the arithmetic relationships. This study showed that
prospective elementary teachers might not be ready to create such a learning
environment because of their lack of knowledge and experiences in the conjecturing
and generalizing processes. Before the early algebra lessons, 4 out of 9 prospective
teachers could not make a mathematically correct conjecture from a set of
computations. Afterward, only 1 of these 4 participants answered whether the
arithmetic relationship was true for all numbers by considering the structure of the
relationships or using general arguments. When they were asked to describe the
relationship in variables, none of the prospective elementary teachers stated a
complete expression corresponding to their conjectures. Similarly, while justifying
the conjectures, most participants did not use general arguments or generic examples
identified as mathematically appropriate ways of justification (Carpenter et al.,

2003). These findings support previous studies which documented that prospective
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teachers struggle to generalize and describe arithmetic relationships (e.g., Ding et al.,
2013; Monandi, 2018).

On the other hand, it might be concluded that the early algebra lessons might have
helped prospective elementary teachers to develop their knowledge of generalizing,
representing, and justifying arithmetic relationships to some extent. In the post-
interviews, 2 more participants came up with mathematically correct conjectures, a
total of 7, and 2 more participants considered the mathematical structure with general
arguments to explain why that arithmetic relationship was true for all numbers. In
other words, after the early algebra lessons, relatively more participants described an
arithmetical relationship (e.g., if we subtract a number from another number and add
it, the result will be the first number) and showed that this holds true for all numbers,
not empirically but with general arguments (e.g., adding a number and then
subtracting the same number means adding zero and adding zero always gives the
starting number). Additionally, unlike the pre-interviews, 2 participants could
describe their complete conjectures using variables. Lastly, 1 more participant, a total
of 3 in the post-interviews, used generic examples or general arguments to justify
her conjecture in the post-interviews. However, from the pre-interviews to the post-
interviews, the increase in the number of prospective elementary teachers was
relatively low, and that most of the participants still did not reveal the required
knowledge and skills specified in the early algebra lessons’ learning goals. This may
indicate that the teaching offered may not have been effective enough in the field of

generalized arithmetic.

Building, expressing, and justifying conjectures about mathematical structure and
relationships are the requirement of algebraic thinking and are seen as a "habit of
mind"” (Blanton & Kaput, 2004, p. 142). Therefore, it can be said that the two weeks
(4 lessons) that focused on generalized arithmetic and including case discussions
related to generalizing and justifying arithmetic relationships might not have been
enough for developing such a habit of mind since most elementary teachers had little

experience related to algebra after high school algebra which focuses on symbol
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manipulations, solving equations, simplifying expressions, and so on (Blanton &
Kaput, 2003).

As for the prospective elementary teachers' knowledge of content and students, it can
be said that more data is needed to come up with a clear conclusion. The aim was to
observe the change in the participants' expectations related to students’ generalization
from a set of computations, but in both interviews, all participants expected to hear
from the students the same conjecture, changing the order of addends does not
change the sum. Therefore, it seemed not possible to talk about any change.
Changing the interview questions focusing on all processes of conjecturing,
describing, and justifying an arithmetical relationship, instead of only generalizing,
may be beneficial to gain insights about participants’ knowledge of content and
students related to arithmetic generalizations. On the other hand, prospective
elementary teachers made progress in identifying students' thinking for justification.
In the post-interviews, more participants could identify whether the given students'
justifications were based on empirical or general arguments. Whereas, in the pre-
interviews, almost all participants evaluated whether the students' thinking was true
or false without providing any insight related to students’ ways of justification.
Studies showed that although elementary students mostly tend to rely on the
examples to verify the truth of a statement (Knuth et al., 2002), they were found
capable of moving beyond the empirical justifications with a supportive instruction
(e.g., Bastable & Schifter, 2008; Isler et al., 2013). Thus, to create a learning
environment that students can learn to justify their thinking, teachers should be able
to identify students' ways of thinking. In this direction, “engaging teachers in
discussions focused on the details of students' competencies in justifying and proving
may provide a basis for enhancing both teachers' own understandings of proof and
their perspectives regarding proof in school mathematics” (Knuth et al., 2002, p.
1698). As a result, including such discussions in teacher education may be beneficial

to prospective teachers.

Besides the prospective elementary teachers' pedagogical content knowledge
regarding students' thinking, participants' knowledge of content and teaching related
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to generalized arithmetic was also the focus of this study. After the early algebra
lessons, the findings showed that prospective elementary teachers changed their
instructional approaches to address the arithmetic relationships. According to
Blanton, "instruction that supports children's algebraic thinking is marked by rich
conversation in which children make and explore mathematical conjectures, build
arguments to establish or refute these conjectures and treat established conjectures
(generalization) as important pieces of shared classroom knowledge™ (2008, p. 93).
Parallel with this idea, when the participants were asked to design a lesson for
teaching an arithmetic relationship, 6 out of 9 prospective teachers proposed creating
an environment to lead students to make conjectures in the post-interviews. In
contrast, all participants focused on using one or more examples to show that the
arithmetic relationship was true in the pre-interviews. Hence, it can be concluded
that the early algebra lessons might have helped prospective teachers develop

opportunities for their prospective students to conjecture, generalize, and justify.

5.3  The Developments in PETs’ Knowledge to Teach Functional
Relationships

Functional thinking is a significant strand of algebraic thinking (Kaput, 2008). It is
seen as a critical entry point into algebra for early graders (Carraher & Schliemann,
2007). Contrary to this belief and the studies showing that elementary school
students, even at kindergarten (Blanton & Kaput, 2011), can generalize and represent
functional relationships (e.g., Blanton, 2008; Cooper & Warren, 2011), elementary
school curriculum is not rich in terms of content to support functional thinking
(Stephens et al., 2017), except for one topic: patterns. It is also true for the
mathematics curriculum in Turkey (see MoNE, 2018). However, Smith (2003) stated
that "elementary school teachers may create rich classroom experiences around
patterns, yet not have a sense of how this topic ties into the ongoing mathematical
development of their students, much less into the topic of functions” (p. 136). The

findings of the pre-interviews conducted within the scope of this study showed that
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this idea might be correct; moreover, teachers may not have sufficient knowledge to
generalize and represent functional relationships themselves. When all of the
prospective teachers were asked to describe the relationships in the table created for
the Saving for a Bicycle problem, 5 of them described a relation as a recursive pattern
without the coordination of two variables. Similarly, in studies conducted with
students, it was seen that students focused on recursive patterns created with a single
variable, not on the relationships between variables (e.g., Carraher et al., 2008;
Lannin et al., 2006), and this was also the case for the studies with prospective
teachers (e.g., Alajmi, 2016; Yesildere & Akkoc, 2010). For example, Polo-Blanco
et al. (2019) figured out that teacher candidates tend to focus on recursive patterns
while generalizing functional relationships. Their study investigated Spanish and
Portuguese prospective elementary school teachers' ways of identifying and
expressing generalization from a geometric pattern; recursive strategy for obtaining
distant terms was quite common in both countries. Likewise, Yesildere and Akkoc
(2010) found that prospective elementary mathematics teachers tend to find the
general rules for linear and quadratic growing patterns by considering constant

differences between the patterns' terms.

In the current study, when the direct relationship between the number of weeks and
the total amount of money was asked, 2 out of 9 participants stated a relation in the
most sophisticated level, FR-C, in the pre-interviews. Furthermore, only 1
prospective teacher described the relationship between these two variables using
covariational thinking, which some researchers thought to define the concept of
function more appropriately (Confrey & Smith, 1994). However, in the post-
interviews, all prospective elementary teachers defined the relationship they saw in
the table regarding the problem situation with correspondence thinking, 5 of which
were at the FR-C level. In addition, there was also an increase in the number of
participants expressing the relationship as “when the number of weeks goes up by 1,
the amount of money goes up by 3,” thus using covariational thinking. According to

these findings, it can be concluded that prospective teachers might have made
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progress in coordinating quantities that change together after the early algebra

lessons.

Although according to the mathematics curriculum (MoNE, 2018), students are
expected to find the rule of the number patterns and express them with variables for
the first time in the 6™ grade, studies have shown that elementary school students can
use variables to express quantities that change together (e.g., Brizuela et al., 2015).
Expressing function rules with variables was also noted to be easier for students than
using words (Blanton, Stephens, et al., 2015). Therefore, to gradually prepare
students for the use of algebraic notation, teachers are expected to have sufficient
content knowledge in expressing relations and generalized pattern rules using
variables. However, the current study's findings showed that prospective elementary
teachers might not have the necessary background to guide elementary school
students to express relationships using variables. In the pre-interviews, when the
participants were asked to describe the relationship between the number of weeks
and the total amount of money in variables, only 2 participants were able to do that,
and they were FR-E, which involved description of the transformation on one
variable but not explicitly relating it to the other. This result supports studies showing
that prospective teachers have difficulty expressing pattern generalizations
algebraically (e.g., Ozyildirim Gumus, 2021; Zazkis & Liljedahl, 2002). On the other
hand, although only 2 out of 9 participants wrote a complete function rule in
variables in the post-interviews, the increase from 2 to 4 in the number of stating the
rule as an expression rather than an equation, using FR-E, can be interpreted as
progress. Based on these findings, it can be said that after the early algebra lessons,
the prospective teachers showed some improvement in expressing relationships with

variables.

Regarding the justification of the correctness of the relationships stated by the
participants, 2 more participants were recorded to use the function rule instead of
table or problem context in the post-interviews. Related to the generalized arithmetic
big idea, it can be said that prospective elementary teachers were not familiar with

justifications of functional relationships. A similar result emerged in Tanish et al.'s
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(2017) study, examining pre-service elementary mathematics teachers' knowledge of
generalizations and justifications about patterns. One of the conclusions of their
study was that "the pre-service teachers' justifications were limited to using empirical
evidence and taking support from external authority™ (p. 195). Furthermore, in this
study, when PETs were asked to reason with the relationship and think about the
possible price of the bicycle, 2 more prospective teachers could recognize that
regardless of the week Mert bought the bicycle, the price must be a multiple of three
after the early algebra lessons. Whereas in the pre-interviews, those 2 participants
had thought that the information given was not sufficient to decide on the price of
the bicycle because the number of weeks that Mert bought the bicycle should be
known. In the light of these findings, it may be concluded that the early algebra
lessons, including case discussions, might have helped prospective elementary
teachers enhance their knowledge related to reasoning with the relationships between

the quantities that change together.

Besides the prospective elementary teachers' common content knowledge related to
functional thinking, their knowledge of content and students and knowledge of
content and teaching were also investigated. In order to support elementary students'
functional thinking processes, teachers need to know how the students coordinate the
variables. It is well documented that elementary students can describe the
relationship between the variables as variational, covariational, and correspondence
relations (e.g., Martinez & Brizuela, 2006; Warren et al., 2006). Moreover, Confrey
and Smith asserted that the covariational approach was "easier and more intuitive"
for students (1994, p. 33). Contrary to this idea, none of the prospective elementary
teachers expected students to describe a pattern or relation that they see in the table
created for the Saving for a Bicycle problem as covariational before the early algebra
lessons. Nonetheless, it can be inferred that the early algebra lessons supported the
participants' knowledge of students’ functional thinking approaches, as 3 out of 9
participants in the post-interviews expected the students to define a relationship
covariationally. Another finding supporting this inference is that the prospective

elementary teachers noticed the students' functional thinking approaches after the
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early algebra lessons. When the PETs were asked to interpret the relationships
formed by the students using variational, covariational, and correspondence
approaches in the pre-interviews, while almost none of the participants have shown
any awareness regarding them, most participants noticed students' different ways of
approaching these relationships in the post-interviews. The fact that the participants
could not identify the functional thinking approaches of the students in the
preliminary interview supports the findings of the study examining the teachers'
noticing skills. For example, the study by Dogan Coskun (2021), which investigated
how prospective elementary teachers noticed students' ways of algebraic thinking in
their written solutions, found that while the PETs attended to students' responses,
they struggled to provide solid evidence from the students' works. Nonetheless, the
current study revealed that such skills could be developed with supportive

interventions, which provided a context for collaborative learning.

As mentioned earlier, patterns can be used to create a learning environment to
support students’ functional thinking. However, as a single variable data set (Blanton
& Kaput, 2004), commonly "patterns are used to find generalizations within the
elements themselves: What comes next? Which part is repeating? Which part is
missing?" (Warren & Cooper, 2006, p. 9). Similarly, in this study, when prospective
elementary teachers were asked to design a lesson about the number patterns
provided a learning objective, before the early algebra lessons, the participants
mentioned activities in which students were expected to either extend a given pattern
or find the terms that were not given in the pattern. This finding parallels Ozyildirim
Gumus's (2021) study, which investigated pre-service elementary mathematics
teachers' use of pattern and pattern problems in lesson plans. She found that pre-
service mathematics teachers could not create pattern problems different from the
routine ones found in textbooks. However, in the post-interviews of this study, even
though the participants did not explicitly state that they aimed to support functional
thinking, 4 prospective teachers attempted to guide their students to develop
functional thinking using number patterns regarding the given objective. Although

these lessons might be thought insufficient to create opportunities for functional
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thinking, they were categorized as having the potential to support functional
thinking. For instance, in proposed lessons including creating and expanding number
patterns, using problem situations with quantities that change together (e.g., number
of chairs and number of chair legs), or considering using tables with multiple
variables and expanding data might be interpreted as the attempts to provide students

with opportunities for functional thinking (Blanton, 2008).

5.4  Implications, Recommendations and Further Research

The current study was not conducted to "simply document teacher weaknesses but
to inform the design of teacher education in particular aspects of early algebraic
reasoning” (Stephens, 2008, p. 275). The findings provide researchers and teacher
educators with information on the development of prospective elementary teachers'
knowledge of teaching algebra in the early grades. This section will discuss some

implications.

According to the findings of this study, although elementary school students can
think algebraically when they are provided with the appropriate instruction (e.g.,
Bastable & Schifter, 2008; Blanton et al., 2011; Carpenter et al., 2003), teachers may
not be as ready as they are. This conclusion is parallel with the studies that revealed
that prospective teachers do not have sufficient knowledge related to students’ ways
of mathematical thinking and their conceptions/misconceptions (e.g., Philipp, 2008;
Ubuz & Yayan, 2010). Early algebra studies have well revealed the necessity and
importance of algebraic thinking at the elementary school level. However, we do not
have enough information about the difficulties that prospective teachers may face.
We expect them to create an entirely different algebraic thinking environment from
the algebra learning they were exposed to in their student life and even during their
teaching education program. Therefore, including teaching early algebra in teacher
education and professional development programs is significant in enhancing
elementary school teachers' learning and teaching. Regarding this necessity of

searching the ways in which prospective elementary teachers have the opportunities
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to develop their knowledge, the findings of the current study could inform the
implications of preparing elementary teachers to teach algebra in early grades. The
subjects of equivalence, equations, arithmetical relationships, and patterns are
already provided in the national mathematics curriculum, and prospective teachers
are prepared to teach them. However, the missing part is seeing these subjects as a
big idea for teaching algebra and developing ways to create algebraic thinking
opportunities using these contents. Hence, based on the findings, it is suggested that
while designing the mathematics method courses in elementary school teacher
education programs, the algebraic thinking opportunities in the existing contents,
especially the ones that are determined as the big ideas for early algebra learning,

should be considered and emphasized.

Findings also indicated that engaging prospective elementary teachers in case
discussions and enabling them to "think like a teacher” (Kleinfeld, 1992, p. 33) could
develop their knowledge. This finding supports the previous studies, which revealed
that cases could be used to provide opportunities for prospective teachers to develop
their mathematical and pedagogical knowledge (Henningsen, 2008; Pang, 2011,
Steele, 2008). Similar to the current study, Henningsen (2008) reported that reading
and discussing narrative cases related to hexagon pattern tasks in mathematics
method courses helped pre-service teachers enhance their mathematical knowledge.
As before the case discussion, while 38% of participants could describe how the
pattern was growing, 67% could do that after the discussion. Moreover, the excerpts
presented by Steele (2008) were an example of how case discussions could
encourage prospective teachers' pedagogical content knowledge. Additionally, the
findings of this study support the idea that including case discussions in teacher
education programs might be fruitful to engage prospective teachers in thinking
about student thinking and instructional approaches. The reason for this conclusion
is that classroom cases can be used for presenting the complex and dynamic nature
of the learning and teaching environments and putting knowledge of teaching into
practice (Butler et al., 2006). In other words, cases help prospective teachers to

connect the theory and practices (J. Shulman, 2002). Besides being an alternative to

111



overly theoretical teacher education, the case discussions also provide prospective
teachers a collaborative learning environment in which they share and compare
knowledge with peers, discuss different perspectives, and ultimately develop a
shared understanding (Cobb, 1994). Hence, teacher educators are suggested to use

classroom cases and case discussions in their teacher education programs.

There are also some recommendations for the teacher educators and the researchers
who would like to implement the early algebra lessons developed in this study.
Having the prospective elementary teachers engage in more case discussions related
to each big idea, especially for the big idea of generalized arithmetic, might result in
more salient development of knowledge. As documented in findings in this study,
the development of the participants’ knowledge in some points related to common
content knowledge or pedagogical content knowledge was less than hoped. It is
believed that the reason for such the result was that the course time was short for the
content presented. Thus, spending more time on discussions related to early algebra
content might be more beneficial for prospective elementary teachers. Besides, as
mentioned earlier, this study mainly focused on the prospective teachers’
pedagogical content knowledge, but their common content knowledge was also
examined as a prerequisite for this (Agathangelou & Charalambous, 2020).
However, the participants’ mathematics backgrounds and so the readiness of
studying on teaching algebra, namely common content knowledge, needed to be
supported more than planned. This situation caused more time to be devoted to
content knowledge and less time to pedagogical content knowledge than scheduled
during the intervention. Therefore, before designing a lesson that includes a
discussion on how to teach algebra in early grades, getting explicit information
related to prospective teachers’ general mathematics knowledge and algebra might

be useful.

Lastly, there are also some recommendations for future research. This study
investigated the development of prospective elementary teachers' knowledge to teach
early algebra through case discussion. Three of the five big ideas identified as the
content of early algebra, equivalence, and equations, generalized arithmetic, and
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functional thinking were examined within the scope of this study. Future research
might consider investigating the prospective teachers' knowledge of all five big ideas
to see a more comprehensive picture. On the other hand, focusing on only one big
idea and examining the knowledge development of prospective teachers in this field

can also provide us with more profound and detailed information.

The participants of the current study constituted a mixed group in terms of
achievement, and this situation may affect the development of their SMK and PCK.
Further research could prefer to choose the participants at different levels of

achievement.
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APPENDICES

A. APPENDIX A: INTERVIEW PROTOCOL

PART A - EQUAL SIGN &VARIABLE

Al. Asagidaki ikinci sinif kazanimi i¢in nasil bir ders plani hazirlamaniz gerektigini
diistinlin. Dersi planlarken neleri géz oniine alirdiniz? Dersin giris, orta ve sonug
kisimlarinda neler yapardiniz? Kullanacagiz 6rnekler, materyaller neler olurdu?

M.2.1.3.5. Esit isaretinin matematiksel ifadeler arasindaki "esitlik" anlamini
fark eder

A2. 3+4=7
T
Ok ile gosterilen semboliin ad1 nedir?
Bu isaret ne anlama gelmektedir? Agiklayiniz.

A3. Asagidaki esitliklerin dogru olmasi i¢in [ ] ile gosterilen degerleri
bulunuz. Cevaplariniz1 a¢iklayiniz.
8+4=[ ]+5

Ad. Asagidaki ifadeler icin Dogru veya Yanlis' olarak degerlendiriniz.
Cevaplarimizin nedenini agiklayimiz.
e 16+ 15=231ise 16 + 15-9 = 31-9 ifadesi de dogrudur
e 3x-12=51ve3x-12+3 =51+ 3 denklemleri ayn1 ¢6ziime sahiptir
e 17 =17 ifadesi matematiksel olarak anlamlidir

Ab5. Asagida verilen sorular i¢in ilkokul 6grencilerinin verebilecegi dogru veya
yanlis cevaplar neler olabilir? Bu cevaplari verirken kullandigi stratejiler neler
olabilir?

e 8+4=[ ] +5

A6. Asagidaki sorulara verilen 6grenci cevaplariin arkasindaki diisiinme sekilleri
icin neler sdyleyebilirsiniz?

e 8+4=[12]+5

e 8+4=[171] +5

e 8+4=[7]+5, ¢iinkii 8'den bir alip 4'e eklerseniz 7 kalir

AT7. 3nveyan + 6 ifadelerinden hangisinin daha biiyiik oldugunu soyleyebilir
misiniz? Cevabinizi agiklayiniz.
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PART B - GENERALIZED ARITHMETIC

Bl. Asagidaki dordiincii sinif kazanimi igin nasil bir ders plani hazirlamaniz
gerektigini digiiniin. Dersi planlarken neleri goz oniine alirdiniz? Dersin giris, orta
ve sonu¢ kisimlarinda neler yapardiniz? Kullanacagiz 6rnekler, materyaller neler
olurdu?
M.4.1.4.2. U¢ dogal sayi ile yapilan ¢carpma isleminde sayilarin birbirleriyle
carpilma swrasinin degismesinin, sonucu degistirmedigini gosterir.

islem Etkinligi
Asagidaki islemleri yapiniz.
17-8+8 = 98 -29+29=

12-12+71= 13-13+72=

B2. Hesaplamalarda ne fark ettiniz? Hesaplamalar ile ilgili varsayiminizi kelimelerle
aciklayiniz.

B3. Varsayiminiz hangi sayilar i¢in dogrudur? Tiim sayilar i¢in dogru mudur?

B4. Varsayimimizi degiskenler kullanarak nasil yazarsiniz?

B5. Varsayiminizin neden dogru oldugunu agiklayiniz.

B6. Asagidaki islem etkinliginin ilkokul 6grencilerine sunuldugunu ve asagidaki
sorulart cevaplamalarmin istendigini varsayalim. Ogrencilerin cevaplar1 ve bu
cevaplar i¢in diistinme bigimleri ne olabilir?

islem Etkinligi
Asagidaki islemleri yapiniz.
12 27 45 23
+27 +12 +23 +45

e Hesaplamalarda ne fark ettiniz? Hesaplamalar ile ilgili varsayiminizi
kelimelerle agiklayiniz
e Varsayiminiz hangi sayilar i¢in dogrudur? Tiim sayilar i¢in dogru mudur?

B7. Ug tek say1 toplami sorusunun ilkokul égrencilerine soruldugunu ve asagidaki
cevaplar1 verdiklerini varsayalim. Bu 06grenci cevaplarimin arkasinda nasil bir
diistime sekli olabilir?
o 3+5+7=15velS5 tek, bu yiizden Derya hakl
e Bu her zaman dogrudur, c¢iinkii bir tek sayr her zaman bir ¢ift sayidan bir
biiyiiktiir, bu yiizden ti¢ tane 1 toplanirsa, 3 elde edersiniz, bu da bir tek sayi
olusturur Cift sayilar toplami her zaman cifttir ve cifte 3 eklendiginde her
zaman tek sayidir.
o Bu dogrudur c¢iinkii iki tek sayr toplami c¢ift olur. Bir tek sayt daha
eklendiginde tek say1 olur ¢iinkii ¢ift sayi ile tek sayinin toplami tektir
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PART C - FUNCTIONAL THINKING

Cl. Asagidaki iigiincii smmif kazanimi i¢in nasil bir ders planit hazirlamaniz
gerektigini diigiiniin. Dersi planlarken neleri goz oniine alirdiniz? Dersin girig, orta
ve sonu¢ kisimlarinda neler yapardiniz? Kullanacagiz ornekler, materyaller neler
olurdu?

M.3.1.1.7. Aralarindaki fark sabit olan sayi oriintiistinii genisletir ve
olusturur.

Bisiklet Problemi

Mert'in babasi her hafta ev islerine yardim ettigi icin ona 3 lira veriyor.
Mert, bisiklet almak icin parasini biriktiriyor. iki hafta sonra ne kadar para
biriktirir? Ug hafta sonra? Asagidaki tabloyu doldurun.

Hafta Toplam Para

LA [ (k|

C2. Tabloda gordiigiiniiz oriintiiyii aciklayimiz.
C3. Hafta sayisi ile toplam para miktari arasindaki iligkiyi (kurali) nasil
tanimlarsiniz?
C4. Degiskenler kullanarak hafta sayisi ile toplam para miktar1 arasindaki iliskiyi
(kural1) nasil tanimlarsiniz?
C5. Tanimladiginiz iligkinizin dogru oldugunu nasil anlarsiniz?
C6. Mert'in herhangi bir haftanin sonunda tiim parasini bir bisiklet almak i¢in
harcadigi biliniyorsa, bu bisikletin fiyat1 asagidakilerden hangisi olabilir?
Bisikletini hangi haftada aldi1? Cevabinizi agiklayiniz.

a)110 TL b)120TL ¢)130TL d)140TL

C7. Bisiklet probleminin ilkokul 6grencilerine sunuldugunu ve asagidaki sorulari
cevaplamalarmin istendigini varsayalim. Ogrencilerin cevaplari ve bu cevaplar i¢in
diisiinme big¢imleri ne olabilir?

e Tabloda gordiigiiniiz 6riintiiyli agiklayimiz.

e Hafta sayisi ile toplam para miktar1 arasindaki iliskiyi nasil

tanimlarsiniz?

C8. Hafta sayisi ile toplam para miktari arasindaki iliskiyi nasil tanimlarsiniz
sorusuna verilen asagidaki 6grenci cevaplarinin arkasinda nasil bir diistime sekli
olabilir?

e Toplam para miktari iiger {iger artryor

e Her hafta toplam para miktar tiger artiyor

e Toplam para miktar1 hafta sayisinin {i¢ katidir
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B. APPENDIX B: APPROVAL OF THE UNIVERSITY HUMAN
SUBJECTS ETHICS COMMITTEE

UYGLILAMALI ETIK ARABTIRWA MERKET ORTA DOGU TEEMIK ONIVERSITESI
AFPLIED ETHICS RESEARCH CEMTER MIDOLE EAST TECHNICAL UNIVERSITY

Sayu: 28620816
26 TEMMUZ 2021
Konu: Degerlendirme Sonucu

Ginderen: ODTO insan Arasnrmalan Etik Kurulu (TAEK)

ilgis Insan Arastrmalan Etik Kuruhi Basvurusu
Saym Isal Fsler BAYEAL

Damsmanhgim vapnfimz Mejla GZTURKGin “Siuf Ofretmeni Adaylarmn Durum
Tartsmalam Yoluyla Erken Cehir Ofretimine Yénelik Bilgilerinin  Gelisiminin
incelenmesi ” bashkl arastrmamz insan Arastrmalan Etik Kurulu tarafindan uygun
gorilmiis ve 292-0DTU-2020 protokol numaras: ile onaylanmustir,

Saygilarimzla bilgilerinize sunanz.

(A /(

Prof.Dr. Mine MISIRLISOY
IAEK Baskam
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