IMPLEMENTATION OF DIFFERENT ALGORITHMS
IN LINEAR MIXED MODELS: CASE STUDIES WITH TIMSS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURCU KOCA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
STATISTICS

SEPTEMBER 2021






Approval of the thesis:

IMPLEMENTATION OF DIFFERENT ALGORITHMS
IN LINEAR MIXED MODELS: CASE STUDIES WITH TIMSS

submitted by BURCU KOCA in partial fulfillment of the requirements for the
degree of Master of Science in Statistics, Middle East Technical University by,

Prof. Dr. Halil Kalipgilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ozlem Ilk Dag
Head of the Department, Statistics

Assist. Prof. Dr. Fulya Gokalp Yavuz
Supervisor, Statistics, METU

Examining Committee Members:

Prof. Dr. Olgay Arslan
Statistics, Ankara University

Assist. Prof. Dr. Fulya Gokalp Yavuz
Statistics, METU

Prof. Dr. Ozlem ilk Dag
Statistics, METU

Date: 06.09.2021



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name Last name : Burcu Koca

Signature :

v



ABSTRACT

IMPLEMENTATION OF DIFFERENT ALGORITHMS
IN LINEAR MIXED MODELS: CASE STUDIES WITH TIMSS

Koca, Burcu
Master of Science, Statistics
Supervisor: Assist. Prof. Dr. Fulya Gokalp Yavuz

September 2021, 82 pages

Mixed models are frequently used in longitudinal data types with time repetition over
the same subject and clustered data types formed by observations gathered around
certain groups. The modeling technique which models the dependency structure
between repetitions and observations in the same cluster is required to use algorithms
for parameter estimations. The same model can be solved with various algorithms
arising from setup, inference and approach differences. In this study, several
algorithms used for LMM, their development process and depending on what
differences and similarities they can be resolved are explained with a data set related
to an area that can contribute to society. In this sense, one of the sciences in which
mixed models find application is education. The Trends in International Mathematics
and Science Study (TIMSS) collects the most comprehensive and reliable
information in the field of education internationally, and it is carried out every four
years in 70 countries. With this data, several tests are prepared and applied to
measure the success of students in science and mathematics in different countries,
and demographic information about school, teacher, family and student is
systematically collected with questionnaires that measure students' perspectives on

lessons or parents' perspectives on schools. These results, beyond being a guide for



policy makers, can also guide the steps that countries will take in these areas. In this
study where a multi-layered approach is preferred, the variables that are effective in
students' mathematics achievement are determined as the student's gender, birth
status in Turkey, emotional thinking, mathematical tendency, socioeconomic status,
and family's thoughts about school. In addition, while many parameters give the
same value in the algorithm comparison results; the fast algorithm is faster than the
ecme algorithm. In terms of model setup, while Ime and Imer functions are easy to
implement and similar to each other; there are some differences in ecmeml, fastml
and fastmcmc algorithms. The analysis is implemented solely with Turkey and then
with England and South Africa for comparisons. While the same variables are
statistically significant for all countries, LMM proves the superiority of England over

others in math score when all situations are constant.

Keywords: EM Algorithm, Linear Mixed Model, Math Achievement, TIMSS
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0z

DOGRUSAL KARMA MODELLERDE FARKLI ALGORITMALARIN
UYGULANMASI: TIMSS ILE ORNEK OLAYLAR

Koca, Burcu
Yiiksek Lisans, Istatistik
Tez Yoneticisi: Dr. Ogretim Uyesi Fulya Gokalp Yavuz

Eyliil 2021, 82 sayfa

Karma modeller zaman tekrar1 bulunan boylamsal veri tiplerinde ve belirli gruplar
etrafinda toplanmis gozlemlerin olusturdugu kiimelenmis veri tiplerinde siklikla
kullanilmaktadir. Tekrarlar ve ayn1 kiime i¢cindeki gozlemler arasindaki bagimlilik
yapisint modelleyebilen bu modelleme teknigi; parametre ¢ikarimlart igin
algoritmalardan faydalanmay1 gerekli kilmaktadir. Ayni1 model, kurulum, ¢ikarim ve
yaklagim farkliliklarindan dogan ¢esitli algoritmalar ile ¢éziimlenebilmektedir. Bu
calisgmada, LMM i¢in kullanilan farkli algoritmalarin neler oldugu ve nasil bir
gelisim stireci ile hangi farklilik ve benzerliklere gore c¢oziimlenebildikleri
anlatilmaktadir. So6zii edilen algoritmalar karsilagtirilirken toplumsal katki
saglayabilecek bir alana iligkin veri seti tercih edilmistir. Bu anlamda, karma
modellerin uygulama alan1 bulacagi bilimlerden birisi egitimdir. Egitim alaninda en
kapsamli ve gilivenilir bilgiyi toplayan uluslararas1 bir ¢alisma olan Uluslararasi
Matematik ve Fen Egilimleri Arastirmasi (TIMSS), her dort yilda bir 70 iilkede
gerceklestirilmektedir. Bu veri ile farkli iilkelerdeki 6grencilerin, bilim ve matematik
alaninda basarilariin 6l¢iildiigi testler hazirlanip uygulanmakta ve bununla birlikte
ogrencilerin derslere bakis acisini veya velilerin okullara bakis acisini 6l¢en anketler

ile okul, 6gretmen, aile ve 6grenciye iliskin demografik bilgiler sistematik olarak

vil



toplanmaktadir. Bu sonugclar politika yapicilara yol gosterici olma niteligi tasimanin
oOtesinde iilkelerin bu alanlarda atacaklar1 adimlara da rehberlik edebilmektedir. Cok
katmanli bir yaklasimin tercih edildigi bu g¢alismada, Ogrencilerin matematik
basarisinda etkin olan degiskenler 6grencinin cinsiyeti, Tiirkiye’de dogma durumu,
duygusal diisiincesi, matematiksel egilimi, sosyoekonomik statiisii ve ailenin okul
hakkindaki diislinceleri olarak belirlenmistir. Ayrica algoritma karsilagtirma
sonuclarinda bir ¢ok parametre ayni degeri verirken; fast algoritmasi ecme
algoritmasindan daha hizli ¢alismaktadir. Model kurulumu agisindan, Ime ve Imer
fonksiyonlar1 kolay uygulanabilir olup birbirine benzerken; ecmeml, fastml ve
fastmemc algoritmalarinda bir takim farkliliklar olusmustur. Analizler oncelikle
Tiirkiye igin gerceklestirilmis, sonrasinda Ingiltere ve Giiney Afrika’yr kapsayan
iilke karsilagtirmalari ile devam ettirilmistir. Tiirkiye i¢in basariy1 etkileyen faktorler
ile ¢ tilkenin de birlikte incelendigi analizlerde etkin ¢ikan faktérler 6nemli 6l¢iide
benzerken; diger tiim faktorler sabit oldugunda, LMM Ingiltere’ nin diger iki iilkeye

gore basarisini desteklemektedir.

Anahtar Kelimeler: EM Algoritmasi, Dogrusal Karma Model, Matematik Basarisi,
TIMSS
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CHAPTER 1

INTRODUCTION

Linear mixed models (LMM) expose the relationships and the characteristics
between a response variable and explanatory variables, including the dependency
structure in repeated, hierarchical or clustered data sets. Parameter estimations in
LMM need some iterative algorithms such as Expectation-Maximization (EM)
algorithm or Newton-Raphson algorithm, since parameter estimations have no
closed form. Moreover, each parameter estimation includes some other unknown
parameters. When the algorithm reaches convergency, parameter estimations are

completed. This study shows implementation of appropriate algorithms for LMM.

Data structures in which dependencies exist between repeated measurements or
between the subjects within a cluster are encountered in many areas. The most
beneficial to society of these areas is education, which is now almost a necessity to
cover science, technology, engineering and mathematics (STEM), and its continuous
development is very crucial for national development (Langdon et al. 2011; Liou and
Bulut, 2020). In the field of education, the Trends in International Mathematics and
Science Study (TIMSS) is the most comprehensive international study that has been
carried out for a long time and in a large-scale, allowing country comparisons, too.
As it is known, like TIMSS, the Programme of International Student Achievement
(PISA) is also a very comprehensive test that provides international comparison and
also directs education policies (OECD, 2010). However, PISA is a test based on
measuring how well learned skills can be applied to real life problems, while TIMSS
measures how well conceptual skills are learned at school (Gronmo and Olsen,
2006). Since the latter has a more direct approach to measuring the achievement,

TIMSS is chosen to identify the factors affecting success in this area.



Several studies related to the TIMSS concentrate on the measurement theory or
validation of the test scores (e.g., Haladyna and Downing, 2004; Liou and Bulut,
2020). Since TIMSS results are important for national and international studies,
academic researches, the development and regulation of education policies (Schmidt
and Burroughs, 2016; Carnoy, Khavenson and Ivanova, 2015), it is essential to
understand the result of this large-scale study and to understand the factors affecting

the final scores.

LMM finds a place in several educational studies (for examples, see Mullis & Martin
et al., 2012; Wiberg, 2019). Since the students are nested into the schools in TIMSS,

the data structure is suitable to be analyzed with the mixed model.

The aim of this study is to examine different algorithm types in LMM that works for
the nested structures and to test the performance of these analyzes on different
models with a strong data set. And, by doing so, we try to understand what affects
the achievement of students. For this aim, TIMSS 2019 database developed by the
International Association for the Evaluation of Educational Achievement (IEA) from
Turkey, England and South Africa national samples are used to understand the
cognitive mathematics performances of students with demographic and affective
(attitude, perception, self-confidence, motivation, etc.) latent traits. 4028, 3396, and
11891 number of students participated from Turkey, England and South Africa,
respectively. The committees have some restrictions (TIMSS Technical Report,
2019) while working with students. For example, for fourth grade students, the mean
age of students should be at least 9.5 at the time of test. However, some countries
have different curriculum for fourth grade students. In this case, these countries
participate with fifth or sixth grade students for fourth grade’s test. In order not to
make wrong inference, these countries are kept separate from other countries in the
success comparisons. Turkey, England and South Africa are the examples of such

countries.

While looking at the causes of success with a nested modeling technique, different

types of algorithms of LMM are used to compare the results. Since the first



inferences proposed for LMM (Eisenhart,1947; Hendersen, 1950), several
approaches have been developed for the implementation of it (e.g. Laird and Ware,
1982; Laird et al., 1987; Lindstrom and Bates, 1988). Although these different
approaches have been used separately in many studies, they have not been examined
together on a comprehensive and reliable data set like TIMSS. Since the inferences
of fixed effects are more robust in these methods, it is anticipated that the main
difference will arise from random effects. Although large differences are not
expected, the results of the algorithms will be presented comprehensively to explain
which algorithm will be more effective in which situations or the differences in the

use and modeling of algorithms.

We use multiple countries with different achievement scores for jurisdiction.
Besides, each country is from a different type of development scale. While England
is a fully developed country, Turkey and South Africa are developing countries.
Because each Turkish school is represented by one class in the TIMSS 2019 sample
design, achievement gaps between schools could not be differentiated from
achievement differences between classes from the same schools. As a result, in this

study, schools and classes are referred to as the school/class level or unit.

Since this study uses the data from different cultures and family backgrounds, the
understanding of a question may be different for each subject. We will assume that
there is a measurement invariance which indicates that each individual from different
countries has the same perception and interpretation of the items (Byrne and
Watkins, 2003). In fact, the main goal is not to compare these cultures with each
other. The main aim is to understand the factors that will affect this success by
including different levels of success and to contribute a more generalized
interpretation. By adding the country variable to the models as a covariate, the

variability between these countries will be included in the model calculation.






CHAPTER 2

LITERATURE REVIEW

The first studies about linear mixed models (LMM) are implemented on animal
breeding by Eisenhart (1947) and Hendersen (1950). LMM is applied over
longitudinal and clustered data types. Clustered data includes a number of different
data groups (Galbraith et al., 2010). Each group consists of multiple observations in
nested or hierchical layers. Longitudinal data consists of repeated measurements of
each unit and many longitudinal researches examine the changes in these
characteristics over time or repeats (Laird and Ware, 1982). However, the
measurements may have a significant variation due to the wuncontrolled
circumstances. Therefore, it is not suitable to perform general multivariate model
analysis. Also, the general multivariate analysis may not be preferable or even
inferences are not realizable for the unbalanced data sets (Laird and Ware, 1982).
Laird and Ware (1982) indicate that two-stage models are more convenient for the
longitudinal data analysis because it is not mandatory to provide balance in the data
set. Additionally, explicit modelling and analysis of between- and within-individual
variation are permitted in two-stage models. Laird and Ware (1982) provide with
two-stage models known as LMMs with the EM Algorithm for parameter
estimations.

Similarly, application of the EM Algorithm for repeated measures is discussed by
Laird et al. (1987). They report that it is possible to use the EM Algorithm utilized
with random-effect models for multivariate normal models with an arbitrary
covariance structure and missing data. According to them, general formulation usage
provides less messy applications (e.g., in terms of number of iterations) because the

closed form solutions may exist for a much broader class of models.



Along with the EM Algorithm, parameter estimations may be implemented with
other algorithms such as the Newton-Raphson Algorithm. For instance, Lindstrom
and Bates (1988) implemented the Newton-Raphson and the EM Algorithm to LMM
for repeated measures design. They provide with the formulation of derivatives for
both maximum likelihood estimation (MLE) and restricted maximum likelihood
estimation (RMLE). Then, they compare the two algorithms which are the Newton-
Raphson and the EM Algorithms in the sense of convergency speed and overall
performance. Lindstrom and Bates (1988) discuss that the EM algorithm is preferred
over the NR algorithm because of the fast computation property. Also, EM
guarantees to have parameter estimations in the parameter space and increases the
likelihood at each step of the algorithm. However, they argue that NR is more
amenable to handle the most of the extensions of the mixed models and the number
of NR algorithm iterations is quite small than the number of EM iterations.
Lindstrom and Bates (1988) finalize the study with discussing the extensions of the
mixed effects model to integrate non-independent conditional error structure and the
nested-type designs.

Expectation-Conditional Maximization Algorithm (ECM) which is a generalized
EM is proposed by Meng and Rubin (1993). They attribute the popularity of the EM
to its advantages of computations and convergency. However, in certain
circumstances like computationally complicated MLE cases, these advantages
cannot be applicable. Therefore, the estimation of complete data maximum
likelihood is simpler with the conditional estimation of parameters. According to the
proposed method (ECM), it is more beneficial to replace a complicated M-step of
the EM algorithm with several CM-steps. They also support the ECM algorithm by
showing all the properties that both the algorithms EM and ECM satisfy.

Another generalized EM algorithm is Expectation-Conditional Maximization Either
(ECME) algorithm. Liu and Rubin (1994) present ECME by contributing to EM and
ECM algorithms. According to the ECME, some or all steps of the ECM algorithm
are replaced with the expectation of complete-data likelihood. Liu and Rubin (1994)
report that ECME has two major advantages. The first one is having higher



maximization rate for some steps of the ECME. The second one is that ECME is
faster than EM and ECM algorithms.

Jennrich and Schluchter published an article about unbalanced repeated measures
models in 1982. The article mainly concentrates the point about the analysis of
unbalanced or incomplete repeated measures data. Jennrich and Schluchter(1982)
discuss the maximum likelihood analysis by using some iterative procedures. These
procedures are Newton-Raphson algorithm, Fisher Scoring algorithm and Hybrid
EM Scoring algorithm which is a generalized EM algorithm. Also, the article gives
the examples of some certain covariance matrices structures to provide various ideas.
One of the recent studies about linear mixed-effects models and the EM algorithm is
conducted by Gokalp Yavuz and Arslan (2018). Unlike other studies, Laplace
distribution which is a member of the exponential power family is imposed into
LMM to robustify the model. In this study, Gokalp Yavuz and Arslan (2018) use
EM-type algorithm for parameter estimations with a robust distribution. Before this
study, Pinheiro et al. (2001) also conduct a study related to LMM by imposing t-
distribution into LMM and use an EM-type algorithm for the implementations. In
both studies, the parameter estimations and predictions overcome the classical LMM
approach.

Although there are some studies that apply LMM on the TIMSS data set, a study
develops in line with this study has not been found in the literature. In the study of
Ramirez (2006) the mathematical achievement of Chilean students is examined with
a hierarchical modeling method and they compare three countries using TIMSS
1998/99 data. The main finding of this study is that the educational status of the
family is very effective in the success of the students and students' mathematics
achievement is higher, especially in advantageous regions, in schools that can
determine their own curriculum. In the study of Liou and Bulut (2020), the science
performance of eight-grade students is examined with TIMSS 2011 data according
to the question types and domains. In addition to item difficulty analysis, they use
cumulative link mixed modeling approach to find item format, cognitive domain

impacts on the science scores. In the study of Carnoy et al. (2015), they try to



compare the TIMSS and PISA performance of Russian students from different level
of family academic resources with the neighbors of the country in a cross-country

comparison with descriptive statistics without any modeling approach.

We aim to decrease the separate modeling for each indicator to reduce the error
arising from the modeling and so we combine and include several indicators in the
model in a nested structure. Besides, it is aimed to use a technique that can model
the dependency structure among students in the same school and that can consider
the nested structure of the data. For these purposes, the 2019 TIMSS data is examined
primarily in terms of explanatory variables, and the large number of variables are
reduced by correlation and dimension reduction analysis. Finally, the obtained data

structure is analyzed with several algorithm techniques of LMM.

The following chapter covers methodologies and technical background of LMM and
iterative estimation algorithms. Chapter 4 introduces the TIMSS data set used for
modelling. Chapter 5 includes descriptive statistics, data analysis with linear model,
LMM types methods and algorithm implementations and results. Chapter 6 examines
the achievement by considering the country effect. The last chapter which is

numbered as 7 summarizes the study and give a conclusion about the modelling part.



CHAPTER 3

METHODOLOGY

3.1 Linear Mixed Models

Linear mixed model, introduced by Laird and Ware (1982), is an extended form of
linear models with a random effect term. They are mainly applied for longitudinal
and clustered data sets. The data has repeated measures over the same individual in
logitudinal data. Datasets in health sciences can be shown as a suitable set of
longitudinal data. Most of the time, doctor-patient example is another longitudinal
data example. For example, assume that a group of patients routinely visit a clinic to
check their blood values such as glicose level or hormone level. Assume that the
clinic has 10 doctors and 10 patients from each doctor are randomly selected. In such
cases, it is crucial to consider variation between patients and within patient groups
for the same doctor. By doing so, we need some parameters to explain such kind of
variability. On the other hand, a clustered data set is a data structure in which a group
of individuals/observations can be considered together. As in the example of TIMSS
2019, each school represents a cluster; while students are the elements within the
cluster. In this type of data, the dependency structure among the elements within a

cluster should be considered while modeling the data.

In addition to the response variable, coefficients, parameters and error terms in a
linear model, LMM has one extra parameter which is the random effect. That is why
LMMs are also known as linear models with random effects. The general formula of

LMM is shown below:

inXiﬁ+Ziui+€i, i = 1,...,Tl, (31)



where y; is (n; X 1) vector of response, X; is (n; X p) design matrix for the fixed
effects of the i-th subject, 5 is (p x 1) unknown fixed effect vector, €; is (n; X 1)
vector of within-subject error for the i-th subject, Z; is (n; X q) design matrix for the

random effects of the i-th subject, u; is (¢ x 1) unknown random effect vector.
The random effects are normally distributed as:

u; ~ N(0,D), (3.2)

where D is the positive-definite covariance matrix. The error terms are normally

distributed as:

€~ N(O,Ry), (3.3)

where R; is the covariance matrix. Also, y; is normally distributed as:

yi ~ N(X;B,Z,DZ{ + R;). (3.4)

3.2 Algorithms

To make an inference about the data of interest, it is necessary to know the model
coefficients. There are several parameter estimation techniques in statistical
modeling methods. For example, estimation techniques such as MLE, least square
estimation and method of moment estimation are commonly used. These methods
are mainly applied for classical regression techniques. However, for LMM, those are
not suitable due to the complexity of LMM. Firstly, LMM has no closed form
solutions. Hence, the derivation process for parameter estimations is unique for each
parameter. Secondly, parameter estimation in LMM needs iterative estimation
algorithms such as the Expectation-Maximization algorithm or the Newton-Raphson
algorithm since each parameter estimation includes some other unknown parameters.
Therefore, iterative algorithms assign some initial values and run all the process until
the convergence occurs. In the following subsections, the corresponding iterative

algorithms are given in detail.
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3.2.1 Expectation-Maximization Algorithm

Expectation-Maximization (EM) algorithm, which is introduced by A.P. Dempster
etal. (1977), is an iterative method for implementing maximum likelihood parameter
estimations in incomplete datasets. The EM algorithm consists of two main steps.
The first one is the expectation step that calculates the expected probability of the
corresponding function. The second one is the maximization step that tries to
maximize the parameter values from the first step. This cycle is repeated until

convergency.
Let us define L(0; X) as the log likelihood function of the unknown parameter 6:

LX) = p(X10) = [ px, 210 dz (3:5)

where X and Z represent the observed and the missing data, respectively. Dempster

et al. (1977) describe the two steps of EM as follows:

Expectation Step (E-Step): The E-step of the EM algorithm aims to estimate the
expectation of L(6; X).

QB 10°) = Ey 1 gellog L(8; X, 2)] (3.6)
Maximization Step (M-Step): The M-Step of the EM algorithm aims to compute
unknown parameter 8 by using outputs from E-step.
O+l = argmax,y Q(6|6Y) (3.7)

For example, X is a set of observable measures such as X = (x4, x5, ..., x,) while Z
is a set of unobservable measures such as Z = (zy, 2, ..., Z,,). Also, Y denotes a joint

set of X and Z.

In LMM, the set Z represents unknown random effects. In E-Step of the EM
algorithm, the expected value of these random effects cannot be computed.
Therefore, its conditional expectations are estimated with respect to the unknown

parameters such as B;, D and R;. Since the log-likelihood function is not solved
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easily, the conditional expectation is used instead of individual statistics. In E-Step
the expectation of conditional case is computed. In M-Step the parameters are

updated by maximizing the function.
Let 6= (B;, D, R;) be a set of parameters.
In the E-Step of the EM Algorithm,
E[(u; | Y;6%)] and E(u;u; | y; 8°),
are computed.
M-Step of the EM Algorithm:

BV = (X'X)X'(y — ZE (uly; 69)) (3.8)

L& (3.9)
DED = 23" Bugly; 09
i=0

1 o (3.10)
RE+D? _ - (||y _ Xﬁ(“l)”) + Z Tr(Z{Z;E(uwuj | y;01))

=0

N
-2 Z()’i - Xiﬁ(tﬂ))’ ZE (uly; 6%)
0
0'*1= (B;, D, R;) is estimated until the convergency of L(0'*1 | X)—L(8'|X)
occurs (Meng & Rubin, 1993).
E-Step and M-Step are iterative. The loop continues until 8 reaches convergency.

The EM algorithm has become prominent thanks to its certain features such as
adaptation, convergency and being able to handle with missing data. Wu (1983)
mentions that EM algorithm is used easily for many problems because it has a nice

form of the complete-data likelihood function. Moreover, Dempster et al. (1981)
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report that EM method guarantees the increase in the likelihood function in each step

of the iteration.

On the other hand, it is important to keep in mind that the EM algorithm is so
sensitive to initial points. Wu (1983) indicates that if the log-likelihood function has
more than one maximum global or maximum local points, the convergence of the
algorithm depends on the selected starting values. Therefore, it is advisable to run

the EM algorithm several times at different starting points and observe the result.

3.2.2 Expectation-Conditional Maximization Algorithm

Expectation-Conditional Maximization which is known as ECM in short is
introduced by Meng and Rubin (1993). The EM algorithm is popular due to its
simplicity in implementations and stability in convergency. However, in the case of
complicated MLEs, the EM may lose its power due to the unattractive structure of
the M-Step. According to them, if the data has missing observations the ECM

algorithm is more suitable than the EM algorithm.

In case of random effects (u;) are known, the least square estimation technique could
be used for the parameter estimation in LMM. However, due to unknown random
effects, extended estimation techniques should be used, instead. In this section, the
ECM algorithm which is a Generalized Expectation-Maximization algorithm is used
for LMM. While E-step of the algorithm is the same with E-step of EM,
maximization step (M-step) is a little bit different. M-step is replaced with several
CM-steps. In some cases, computing conditional states of the parameters by ECM is
relatively simple because it is more complicated to estimate with EM algorithm. CM
step of ECM is completed when the convergency is satisfied. Convergency

properties like increasing the likelihood of ECM are the same as the EM.

Assume that 0 is a set of parameters and S is a total number of cycles occurred in

CM-steps. s cycle of the iteration t+1, E-step computes the following:
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Q(60t+G-1/s}hy = fL(BIY)f(YmiSIYobs;B = lt+6-D/Shgy, . (3.11)

Moreover, CM-step of ECM computes 6 ¢*5/S)in order to maximize the following:

Q (9 (t+s/S) Ig{t+(s—1)/5} > Q (9 I 9{t+(s—1)/5‘}) (3 12)

for all 0e@,(9E+E-1/S},
The parameter set 0,4 is estimated until the convergency of

occurs (Meng and Rubin, 1993).

In LMM, random effects are assumed as missing values. Let 8 = (58, D, d?) is a set
of parameters and u = (uj, uj, ..., uy) isavector of missing values. 6% is the
estimation of parameter 6 at t" iteration. Q(8|6®) =E uly,0=t Trepresents the
conditional expectation of u given observation y at iteration t. In E-step of ECM, the
aforementioned conditional expectations which are necessary are computed. Bi(k) =
E(b;|Y,0%), RS = E(b;b]|Y,01), 6! = E(e;|Y,0®) are such conditional
expectations.

The number of CM steps of ECM belongs to the number of parameters. For example,
we have 3 parameters in parameter space 8. Therefore, CM-steps are conducted for

each parameter, separately. This process goes until the convergency satisfies (Wang

and Fan, 2010).
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3.23 Newton-Raphson Algorithm

Newton-Raphson Algorithm, also known as Newton's Method, which is introduced
by Isaac-Newton and Joseph Raphson is an algorithm that enables to find the roots
of a mathematical equation. Assume that there is a curve as y = f(x). Firstly, the
tangent line of the function at x, which means slope of the function is obtained. Here,
X, 1s a random initial point which affects the convergency speed. Later, the point
touches upon the x-axis is defined as new x;. The loop continues until convergency

occurs.

Due to the geometric explanation and the Taylor Series Expansion, the algorithm's

formula has become as the following:

) (3.14)
! ° f’(xo).

And the Newton-Raphson General Formula is as the following:

f(xn) (3.15)

xTL+1 = le _f,(x )
n

The starting value for x, decides the convergency speed. Sometimes, the function

may not reach convergency.

3.24 Newton-Raphson and Fisher Scoring Algorithm

The study of Jennrich and Schluchter (1986) focuses primarily on how incomplete
or unbalanced repeated-measures data is analyzed. In doing so, Jennrich and
Schluchter (1986) use Newton Raphson algorithm, Fisher algorithm and Hybrid EM

Scoring algorithm to compute the maximum likelihood estimates.
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In order to use given algorithms, it is needed to know the score vector, s and the
Hessian matrix, H. The s vector is defined as the derivatives of log-likelihood, A of

the given data and it is calculated as:
Sg1 _ [0A/ OB (3.16)
ol oA/ 00]
On the basis of the s vector, Hessian matrix is computed as follows:

HBﬁHBG] [2/1/0/305 9%1/0B06 (3.17)
HgpHgg 0%21/0008 0°1/0606]

From that point, Newton Raphson and Fisher algorithms are taken into account. The

new parameters are calculated by using the formula below:

- 0-Geni] G

The algorithm suggests to replace the Hessian matrix by its expectation. Therefore,

E[Hgg] = ZX =71x,,

it equals

(3.19)

Due to E [Hﬂ9]=0, the new parameters 8 and 8 are computed by solving different

equations. Finally, the final parameter § can be computed from the following:
It It (3.20)
= Zx'z-lx ZX’Z‘lyi ,
i=1 i=1

Additionally, the final parameter 6 can be obtained from the equation below until
convergency is satisfied.

0 =0+Iy5sg (3.21)
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3.2.5 Hybrid EM Scoring Algorithm

Jennrich and Schluchter (1986) define the Hybrid EM Scoring algorithm for
incomplete data-oriented models. According to the Jennrich and Schlucter (1986),
the algorithm has an advantage over the Newton Raphson and Scoring algorithms
because of being able to fit covariance matrices with large number of parameters. In

this algorithm, there are two main parts. In the first part, S is calculated using the

g = <Zn: X’Z‘1X> (i X’Z‘lyi>.

At the beginning of the second part, e; and R; are estimated with the help of updated

equation below:

(3.22)

estimates 8 and the current estimates of 6, where

e; =E(e; | ) (3.23)

and

R; = cov(e] | e;). (3.24)

At the middle of the second part, e; and R; are estimated by using the formula below:

T (3.25)
S = HZ(ei el' + Rl)
i=1

At the final step of the second part, the updated 6 is computed as:
AB =171, (3.26)

where

(3.27)

[s]r%tri(s—miz,
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and

1 ) ) 3.28
[1s = 5 tr2 15,3715, (3-28)
where

¥, = 0%;/00, (3.29)
This process continues until convergency occurs (Jennrich & Schluchter, 1986).

3.2.6 ECME and FAST Algorithms

Schafer (1998) offers new improvements for the derivation of MLE which are easy
to implement and their requirements are similar with the EMs. In the continuation of
these derivations, three different algorithms are developed for LMM. The first
application is the combination of the EM and Fisher Scoring algorithms. The second
one is for correcting empirical Bayes interval estimation which is irrelevant for this
study. The last one is Markov Chain Monte Carlo algorithm for Bayesian posterior
simulation. Schafer (1998) uses SAS, S-PLUS, MLn and HLM for expressing the

algorithms.

By applying such algorithms, it is assumed that each Vi which is error variance is
identity matrix and the subunits in the matrix include exchangeable errors.

Additionally, it is assumed that Vis are known.

Remind that, the likelihood function below needs maximization to estimate the

parameters 8,02 and «.

) ) _E m l 1 (330)
Lo(B,0%,2) o (o272 | [IWilzexn |- —— (v
i=1

- XiB) Wi (y; — Xiﬁ)},

where N = Y7 n;, W = (Z;eZ] + V) L and € = 67 2¢.
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Schafer (1998) proposes to add new function which is the inverse of €. The additional
function includes free parameters such as unknown covariance parameters and

known symmetric matrices with dimension q X q. The error term seems like

9 (3.31)
e = Z w;G;
j=1
where w = (Wy, wy,. ..,wg)Trepresents a vector of unknown covariance matrices

and g = q(q +1)/2.

Using some other relationships, logarithm of the L, is shown as the following

equation:
o = YlogT — 2 1N g U (32
o =7 logT ~Zlogle| +3 ) 10g|U|
=1
m
T
- EZ(YL' - XiB)W(yi — XiB)
i=1
The first and the second derivatives give the following functions below:
921, N (3.33)
= —F_l — ,
afot ('8 ﬁ)
921, (3.34)

opow; —o~? <; ViTUiGjUiVi> (B —B).

These two functions are crucial for the algorithm, since FS algorithm needs the

expectations of the second derivatives of the function y for fixed parameters. £ is an
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unbiased estimator of . Therefore, the expectations of them are equal to zero.

Additionally, we need to know that E(b;) = 0 and E(b;b]) = o?(e — U;).

The EM algorithm in LMM assumes random effects as missing data. Moreover,

when ¢ is constant L is proportional to the following expression:

(3.35)

N

1 m
(6%) Zexp —ﬁZ(% - X)W, (y; — Xip),

where W; is fixed.

By using this function, it is possible to maximize L in terms of (f,0?%) while ¢ is

fixed at its current value. This algorithm is known as ECME.

ECME formulas for MLE are explained by Schafer (1998). The current estimations
are updated by using the followings:

- -1
v = (97 +2Iv1z,) (3-30)

I/Vi(t) —y-1— V_lini(t)ZiTViTr (3.37)

m “lym (3.38)
i=1 i=1
s 3.39)
¢+ 1 T (
o? = NZ(yi - XiBO) WO (y; — X;®),
i=1
b = UPZIV (v - XB©), (3.40)
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m 3.41
S(t+1) = iz(a_z(t)l;i(t)l;i(t)T + Ui(t)' (3.41)
m
i=1

The log-likelihood function of the algorithm at each iteration after equation 3.39 can

be obtained with almost zero-additional cost (Schafer, 1998).

A type of NR algorithm is the FS algorithm. In NR, the loglikelihood function [ is

tried to maximize at 8 = 8® by iteratively solving the equation:

CoOt+D =g, (3.42)

where C = —021/80007, d = CO® + 31/06. While applying the process, there is
no need to use the second derivatives because C is replaced as C = —921/960607 +
R and the convergency properties are still satisfied. In new representation C, R means
0, (1) where n is proportionally sample size. If C is equal to —E(0%1/9606"), then,
the algorithm is called as FS. Using the expectation of the value rather than the exact
value of the second derivatives, FS algorithm similarly converges with NR in terms

of speed.

The algorithm FS computes & similar to the ECME does. Therefore, it is said that
the ECME already implements the scoring algorithm for . Variance components
which are obtained via scoring algorithm are closer to the value obtained from MLE
rather than the ECME parts (Schafer, 1998). Unfortunately, scoring algorithm does

not precisely guarantee to increase the loglikelihood function at each cycle.

t+1
However, ECME does. Therefore, 62" = oo and et+D) = S(ZB}Q)E are set and
the ECME estimations are stored.

So, the loglikelihood function becomes
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lo(ﬁ(t+1),0'2(t+1), g(t+1)) (343)

N (t+1)
= ——logg?
) (0]
m (t+2)
m 1 t+1 N Ofcme
— ?log Ig(t‘l‘l)l + EZ log IUl( + )l _ 5 (—02(t+1)).

=1

In case that [ydecreases, ECME estimates get involved to the process. For example,

t+1) . . . .
o2V s replaced with agét,;}; and £(*1) is replaced with sg,r;; Then, parameter

estimation formulas are rerun. However, the solution of Cp = d may fall into outside
of the parameter space. Moreover, if the matrix C does not seem positive definite,
then, Schafer (1998) offers ignoring the scoring part for the related cycle and
considering the ECME estimates.

Scoring algorithm is faster than other known EM algorithms. Scoring algorithm
reaches convergency in 10-15 iterations, but the EM needs hundreds or thousands
cycles for the same dataset. On the other hand, in the absence of large number of
variance parameters, these new algorithms are 1.5 times higher than EM algorithm

in terms of per-iteration cost (Schafer, 1998).

3.2.7 MCMC Algorithm

Markov Chain Monte Carlo (MCMC) algorithm is a Bayesian technique that
simulates draws from the posterior distribution. In LMM, MCMC randomly
generates a sample from the conditional posterior distributions for each unknown
parameter. For example, assume that the parameter space is (8,02, ¢, B) where 3,
a2, @ and B represent fixed effects parameters, variance of the error terms, variance

of the random effects and random terms, respectively. The current parameters

(B, a2®, »®) and random effects B® are updated in turn by considering the

following rules.
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(t+1)
o2 ~P(O.2|y,ﬁ(t)’ (p(t)'B(t))’ (3.44)

(t+1)
pt+Dp (/3|y,02 ’(p(t)’B(t))’ (3.45)
B+ _p (B|y,ﬁ(t+1),o_2(t+1)' <p(t)), (3.46)
PG (<p|y, B+ 20D, B(m)). (3.47)

The rules are determined by Gibbs sampling algorithm which is a subset of MCMC
algorithm. The function of (,B(t), az(t), p®, B(t)) reaches convergency and becomes

P(B,0% ¢,Bly) as t = oo. However, when n is large and random effects are badly
estimated, Gibbs sampler which slowly converges becomes much slower. But, still,

it is accepted that Gibbs sampler has easy implementation.

Schafer (1998) proposes new MCMC method which reaches convergency faster and
runs the process using Restricted Maximum Likelihood Estimation (RMLE). The
new technique covers Metropolis-Hasting (MH) algorithm that is one of the MCMC

methods.

Assume that n®) is a current version of variance parameters 1 = (T, W1, er) Wg)T and
a value ' is drawn from the density function h(n™) by considering P(n|y) «
L,(m)m(n), where m(n) is the prior density and L, is the RML. Then, the acceptance

ratio is calculated as

p@ _ A’y () (3.48)
P(n®ly) h(m")

The rule of updated estimates is set as

wrn _ [T if u<RO, (3.49)
7 @ ifu>RO,
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where u~U(0,1).

Running the process repeatedly creates a chain and its stationary distribution is
P(n|y). In case of good approximation to the P(n|y) from h, convergency occurs
rapidly. Schafer (1998) approximates P(n|y) by using multivariate t-distribution.
This is calculated by modifying FS algorithm for RMLE.

The distribution P(n|y) may be evaluated by some iteration cycles of modified

Gibbs sampler. In some cases, a value from MH algorithm may be rejected.

(t+1) (t+1)

Therefore, we compute Gibbs updated versions 6&;555 and €Z;5ps given

. . t+1 t+1
the current simulated values o2 and £2 . At the same time, Uzzvm( *Y and ef,,H( )
are taken into account by drawing a new candidate value. After all, P(n*V|y) is

drawn and R® is calculated. According to the calculation of R®, continuation of

(t+2)

the process is decided. If the process retains, then, we obtained 0255 and

SEIBBS(HZ) at the end of the cycle.

The combination of MH and Gibbs is more attractive and effective. The main
advantage of these hybrid algorithms for LMM is that the loglikelihood function can
be easily obtained. However, for LMM with non-normal errors, the algorithms may

be more complicated because the likelihood function cannot be easily evaluated
(Schafer, 1998).
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CHAPTER 4

DATA: TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE
STUDY (TIMSS)

4.1 Trends in International Mathematics and Science Study (TIMSS)

The Trends in International Mathematics and Science Study (TIMSS) is a
comprehensive study that aims to evaluate the fourth and eighth grade students
achievement in the area of Mathematics and Science (Fishbean et al., 2019). The
survey is conducted approximately in 70 countries by International Association for
the Evaluation of Educational Achievement every four years since 1995. TIMSS
2019 is the seventh assessment and it is open-source. The data-base provides
information about students’ home, teacher, school and national context beside
students’ achievement scores. By mixing all the information, TIMSS produces the
comparable perspectives to the students’ mathematics and science achievement

SCores.

4.2 TIMSS Dataset

TIMSS has four main datasets as student, home, teacher and school. The teacher data
set is excluded from the study, since its missing values are highly prodominant for
some countries of interest of this study. Student dataset is on a student basis and
comprise personal information, socioeconomic measures for each student and
tendency to mathematics and science of participants etc. Home dataset is also on a
student basis and mainly covers early learning information of the students. The
school data set is on a school basis. The data set includes school based information
such as the number of books in the school and the thoughts of parents about the

school. Each dataset contains the unique key column like student id or school id.
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4.3 Turkey Achievement Example

In TIMSS 2019, Turkey participates with fifth grade and eight grade students to
mathematics and science achievement surveys. Turkey ranked 23rd among 58
participating countries with an average score of 523 in mathematics achievement at
the fourth-grade level (even Turkey works with fifth grades for TIMSS 2019, the
term is used as fourth-grade for the ease of explanation). With this performance,
Turkey is above the TIMSS scale midpoint (500 points) and outperforms many

participating countries according to the 2019 results.

In this study, we try to understand the effective factors on mathematics achievement
of fifth grade students in Turkey. To explain these factors, we use LMM, which takes
into account the inter-school variability in addition to the several coefficients related
to schools and students. To construct the model, mathematics (math) score is used as
a response variable. However, TIMSS does not provide the real scores of the student
participants. It supplies five plausible values for each area and they are drawn from
the resulting posterior distribution for each observation (Fishbean et al., 2019).
TIMSS 2019 Technical Report particularly highlights that these plausible values are
not individual test scores and they only should be used for group-level analyses.
Similarly, Programme for International Student Assesment (PISA) has an analogous
way to present achievement scores of the individuals. For example, PISA divides the
one long booklet into sub booklets in order to shorten the test length (Uysal, 2015).
So, the booklets that participants have are not totally the same. To make fair
competition, the test scores are not evaluated by the traditional methods. It is
represented by plausible values which are imputations of latent variables. As it is
mentioned before, plausible values are randomly drawn from a probability
distribution for each individual. Additionally, for TIMSS, these values are drawn
from a conditional normal distribution. Plausible values are represented with column
names as ASMMATO01 to ASMMATO5 in the database. To make a reliable inference,

TIMSS (2011) recommends that average of five plausible values can be used.
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Considering this suggestion, we perform the analysis by using average of them as a

dependent variable.

In preprocessing step of the analysis, student, home and school data sets are merged
via unique columns which are student id and school id. Therefore, we have one
clustered data set with students are nested in schools. The set has 180 different
schools and 181 different classes. Additionally, it includes 4028 observations.
However, as each school includes one class (except one of them), it is not possible
to add class level effects in the model and see the differences between classes within

schools.

4.3.1 Preprocessing Step

4.3.1.1 Reducing the Variables

The merged TIMSS data has approximately 450 columns such as gender of student,
whether student has an internet connection or own room, whether student likes
science or mathematics, the number of books that student has, etc. While some of
them are related with science achievement; others are related with mathematics
achievement which we interest. This means that student responses a booklet for both
mathematics and science achievement. Therefore, all answers take places in one
dataset. Some columns have higher number of missing values because the questions
which may be irrelevant with the participants or maybe participants do not want to
answer the questions. Additionally, there may be a correlation between some
variables. The correlation plot (Figure 1) is added to examine the extent of the

correlations.
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Figure 1 Correlation plot (heatmap) of explanatory variables
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According to the plot above, we drop the variable ASBHO9H which is more

associated with science achievement due to the high (0.73) correlation. As a result,

the following variables given at Table 1 are used for the analysis.

Table 1: TIMSS variables of the study

Variable Name  Variable Explanation Encoding

IDSCHOOL School ID
. IDSTUD Student ID
% ASBGO1 Gender of Student 1: Girl | 2: Boy
é ASBG04 Number of Books in Your 1: 0-10 | 2: 11-25 | 3: 26~
%E Home 100 | 4: 101-200 | 5: More
Z than 200

ASBGOSA A Computer or Tablet
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Table 1 (continued)

ASBGO05B Study Desk/Table for Your Use Do you have any of these
ASBGO5C Your Own Room things at your home?
ASBGO05D Internet Connection 1: Yes | 2: No
ASBGOSE Your Own Mobile Phone
ASBGOSF Central Heating
ASBGO05G Air Conditioning
ASBGO5H Washing Machine
ASBGO5I Dishwasher
ASBGO07 Were You Born in Turkey? 1: Yes | 2: No | 3: I do not
know | 4: Not applicable
ASBMO2A I enjoy learning mathematics 1: Agree a lot | 2: Agree a
ASBMO02B I wish I did not have to study little | 3: Disagree a little |
mathematics 4: Disagree a lot
ASBMO02C Mathematics is boring
ASBMO02D I learn many interesting things
in mathematics
ASBMO2E I like mathematics
ASBMO2F I like any schoolwork that
involves numbers
ASBMO02G I like to solve mathematics
problems
ASBMO02H I'look forward to mathematics
lessons
ASBMO02I Mathematics is one of my
favorite subjects
ASBMO5SA [ usually do well in mathematics 1: Agree a lot | 2: Agree a
ASBMO05B Mathematics is harder for me little | 3: Disagree a little |

than for many of my classmates

4: Disagree a lot
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Table 1 (continued)

ASBMO05C I am just not good at
mathematics
ASBMO05D I learn things quickly in
mathematics
ASBMOSE Mathematics makes me nervous
ASBMOSF I am good at working out
difficult mathematics problems
ASBMO05G My teacher tells me I am good
at mathematics
ASBMOSH Mathematics is harder for me
than any other subject
ASBMOSI Mathematics makes me
confused
IDSTUD Student ID
ASBHO09A My child’s school does a good 1: Agree a lot | 2: Agree a
job including me in my child’s little | 3: Disagree a little |
education 4: Disagree a lot
ASBHO09B My child’s school provides a
safe environment
= ASBH09C My child’s schoolcares about
*§ my child’s progress in school
?E) ASBH09D My child’s school does a good
E job informing me of his/her
progress
ASBHO9E My child’s school promotes
high academic standards
ASBHO9F My child’s school does a good

job in helping him/her become

better in reading
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Table 1 (continued)

ASBHO09G My child’s school does a good
job in helping him/her become
better in mathematics
ASBHO9H My child’s school does a good
job in helping him/her become
better in science
ASBHI11 Amounts of Books for Children  1: 0-10 | 2: 11-25 | 3: 26-
at Home 501|4:51-100 | 5: More
than 100
ASDHEDUP Parents’ Highest Education 1: Finished some primary
Level or lower secondary or did
not go to school | 2:
Finished Lower
Secondary | 3: Finished
Upper Secondary | 4:
Finished Post-Secondary
Education | 5: Finished
University or Higher
ASBH16 How far in his/her education do  1: Finish Lower
you expect your child to go? Secondary Education | 2:
Finish Upper Secondary
Education | 3: Finish Post-
Secondary Vocational
Courses | 4: Finish Short-
cycle Tertiary Education |
5: Finish Bachelor’s
Level | 6: Finish Master’s
or Doctor
ASDHOCCP Parent’s Highest Occupation 1: Has never worked

Level

outside home for pay,
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Table 1 (continued)

general laborer, or semi-
professional (skilled
agricultural or fishery
worker, craft or trade
worker, plant or machine
operator) | 2: Clerical
(clerk or service or sales
worker) | 3: Small
Business Owner | 4:
Professional (Corporate
Manager or Senior
Official, Professional, or

Technician or Associate

School Dataset

Professional)
IDSCHOOL School ID
ACBGO05B Which best describes the 1: Urban-Densely
immediate area in which your Populated | 2: Suburban-
school is located? On fringe or outskirts of
urban area | 3: Medium
Size City or Large Town |
4: Small Town or Village
| 5: Remote Rural
ACBGO07 How many computers
(including tablets) does your
school have for use by fourth
grade students?
ACBGI10A Does your school have library?  1: Yes|2: No
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4.3.1.2 Derived Variables

For the ease of interpretation and more reliable results, it may be preferable to use
transformed variables when it is possible and coherent. Most of the time, converted
variables are more explanative than raw variables. For example, only height value or
only weight value is meaningless about obesity. However, the combination of the
two creates the body mass index which gives an insight into the measure of body fat.
Similarly, it will be conceptually more beneficial and explanatory to present a
combination of some information, rather than giving the information about a
particular concept separately. For example, SES scores are created in order to
interpret the socio-economic status of individuals as a whole with the help of an
index, instead of interpreting the several variables separately. Hence, we prefer such
explanatory variables for our analysis. In addition to that, to obtain reliable outputs
all variable encodings are modified. For instance, while 1 means yes in the original
form, 1 represents no in the modified form. Similarly, 2 shows us yes for variables
that have positive meaning. More clearly, for the variable whether student has own
room, 1 means no and 2 is yes which is expected to give good effects for students.
Also, emotional columns are coded as 1, 2, 3 and 4, like Likert scale, from agree a
lot to disagree a lot. To illustrate, for the variable that he or she enjoys learning
mathematics, 1 is changed with 4. On the other hand, for the variable that he or she
wishes he/she did not have to study mathematics, 1 is remained the same. Therefore,
we think if coding is 4, then, it is expected to have a good effect to the student
achievements. In short, the raw Likert scale is modified according to whether the

column is expected to affect student achievement positively or negatively.

4.3.1.2.1 SES Score
The data has certain columns that represent socio-economic status of a student. Some

of the status variables change from country to country while some of them remain

constant. For instance, the data includes nine columns in terms of wealth status. Five
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of them are the same for all countries. They are whether a student has a computer or
tablet, study desk, own room, internet connection and mobile phone. The other four
columns also represent socio-economic status indicators for a specific country. For
example, they are central heating, air conditioning, washing machine and dishwasher
for Turkey while they are gaming system, smartphone, luxury watch and luxury car
for United Arab Emirates. If a student has the related indicator, then, he or she
answers as 2 which represents having it. Otherwise, he or she responses as 1 which
means not having it. We prefer to add them up to create SES score for Turkey. When
SES score increases, it is accepted that wealth status of the student also increases.

Hence, the wealth status is represented via only one derived variable.

4.3.1.2.2 Family Attitude Score

One of the important factors for students’ mathematics achievement is family
attitude. If families support their children, it is expected that the student has higher
achievement score. In TIMSS example, supporting is represented by the number of
books at home, the number of books for children at home and the highest level of
education expected by families. In addition to these indicators, parent’s highest
education level and parent’s highest occupation level are regarded as family

attitudes. By adding them up, we create a new family attitude score for the analysis.

4.3.1.2.3 School Status

To measure interschool variability, the variables that describe schools are needed.
These variables in our analysis are selected as the existence of school library and the
total number of computers per student in the school. The existence of school library
has two categories which are yes (1) and no (2) and its raw data is found in the
dataset. However, the total number of computers per student in the school should be
derived by using other variables. The data has the total number of computers.

Dividing it into the total number of students per school gives the indicator that is the
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number of computers per student. By doing this, we use more homogenized variable
for school. Assume that while school 1 has 50 computers and 25 students, school 2
has 50 computers and 10 students. If the number of computers was used directly
without taking into account the number of students in the corresponding school, the
misguided indicator would be taken into account. For this case, considering only
total number of computers gives the same results. However, we know the total
number of students and we can say that school 2 has more advantages in terms of the
number of computers. As while school 1 has 2 computers per student, school 2 has

5 ones per student.

After calculating the total number of computers per student in school, it is coded as
2 for the values greater than median 0.6. Otherwise, it is marked as 1. The existence
of library coding is interchanged for logical integrity. So, the response yes which has
positive meaning for existing library is represented with 2. In the last step, these two

categorical indicators are summed up.
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CHAPTER 5

DATA ANALYSIS

5.1 Exploratory Data Analysis

In this step, the main characteristics of the response and explanatory variables are
summarized. This gives an idea of the data and the motivation for the application
methods. The data has 180 different schools. Different number of students were
selected from these schools. For example, the highest number of students comes from
the school whose id number is 5122 with 34 students. The second school with the
highest rate is the school numbered as 5148 with 33 students. On the contrary, the
schools numbered 5013, 5039 and 5048 have only 3 representatives.
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Figure 2 Box-plots of math scores by schools
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The box-plots (Figure 2) depict the math scores by schools. It indicates the difference
amongst schools in terms of math scores. Moreover, the variation between schools
may have a crucial role in terms of modelling. Therefore, mixed-effect modelling
design is suitable for the case. In addition to that, we observe some outliers in the

data.

There are 3052 responses from 1639 girls and 1413 boys. 2971 of them were born in
Turkey. The variable immediate area which represents the area near the school has
4 categories. 1451 students’ schools belong to the area urban densely populated
while 871 of them are in a medium size city or a large town. According to the 460
students, their schools are located in a small town or a village. Only 270 of the

schools belong to the suburban which means on fringe or outskirts of urban area.

The factors which are emotional, mathematical tendency and school for family are
continuous indicators (the more detailed explanation related to factor analysis will
be given at the following section). Emotional factor takes values between -4.86 and
1.73. Its median value is greater than the mean value. So, it is expected that the
variable has left-skewed distribution shape. On the other hand, school for family
factor has the median value of -0.44. Its maximum and minimum values are 5.44 and
-0.96, respectively. So, its range is 6.39. Because the mean of the variable is 0 and
the median is less than the mean, probably, distribution shape of the variable looks
right-skewed. Additionally, mathematical tendency factor has a mean of 0 and a
median of 0.2. It takes values between -3.25 and 2.86. Distribution shapes of these

three variables can be seen at Figure 3.
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Histogram for Emotional Factor Histogram for School for Family Factor Histogram for Mathematical Tendency Factor
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Figure 3 Distribution shapes of the factor scores

As it is said before, the distribution shape of the emotional factor looks strongly left-
skewed. The highest frequency belongs to the value which is between 0 and 1. On
the other hand, the shape of the variable school for family factor seems strongly right

skewed as expected. The values are mostly gathered around -1 and -0.5.

The variables SES score, family attitude and school status are variables which take
discrete values. SES score values are in between 9 and 18. The highest number of
frequencies belongs to the value 15. Family attitude has median of 17. The maximum
and minimum values are 27 and 8, respectively. School status takes the values of 2,
3 and 4. The value 3 and 4 have the highest frequencies as 1247 and 1223,

respectively.
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Histogram of Mathematics Scores
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Figure 4: Histogram of mathematics scores

Figure 4 depicts the distribution shape of mathematics scores. They take values

between 200 and 800. The highest frequency belongs to the scores between 550-600.

5.2  Factor Analysis

Factor analysis is a data reduction technique and it is suitable for Likert scale type of
analysis. Therefore, it successfully fits with the TIMSS data. Some columns have
Likert scale type of answers. Also, they give the same meanings around the same
ideas which provide a conceptual integrity regarding the variables. For example, a
group of columns is related with student’s tendency to mathematics. Another group
of columns is about parent’s thoughts about children’s schools. Overall, 25 columns

are represented with fewer indicators by the help of the factor analysis.

After the implementation of factor analysis with promax rotation (which gives the

most cognitively logical results), three main groups are gathered around three
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different factors, separately. These factor scores are used at the rest of the analysis.

The table below shows us the factor loadings.

Table 2: Factor loadings

Variable Name Factor 1 Factor 2 Factor 3
(Emotional (School for Family (Mathematical
Factor) Factor) Tendency Factor)

ASBMO02A 0.848 -0.102

ASBM02B 0.373 0.224

ASBM02C 0.548 0.163

ASBM02D 0.467 -0.125

ASBMO2E 0.946 -0.105

ASBMO2F 0.675 -0.138

ASBMO02G 0.786

ASBMO02H 0.795

ASBMO021 0.827

ASBMO5SA 0.410 0.309

ASBMO05B -0.171 0.815

ASBMO05C 0.731

ASBMO05D 0.348 0.258

ASBMOSE 0.515

ASBMOSF 0.296 0.316

ASBMO05G 0.248 0.296

ASBMOSH 0.813

ASBMOSI 0.777

ASBH09A 0.763

ASBH09B 0.638

ASBH09C 0.772

ASBH09D 0.766

ASBHO09E 0.707
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ASBHO9F 0.805
ASBH09G 0.738

The following sections provide with more detailed information about the factor

results.

5.2.1 Emotional Factor

The variables from ASBMO02A to ASBMO02I are about students’ thoughts towards
mathematics. The question with these columns is how much a student agrees with
given statements about learning mathematics. For example, ASBMO02A says that “I
enjoy learning mathematics”. On the other hand, ASBMO02B stands for “I wish I did
not have to study mathematics”. According to Table 2, we understand that these
columns are gathered around Factor 1. Since these questions related to the emotions

of students, Factor 1 is entitled as emotional factor.

5.2.2 School for Family Factor

The survey includes not only students’ perspectives but also parents’ perspectives.
Questions about their children’s schools are asked to parents and results are included
in the dataset. These are represented from ASBHO9A to ASBH09G. The related
question for these columns is what parents think of their children’s schools. The
columns stand for the idea like “School provides a safe environment”, “School cares
about child’s progress in school” and “School promotes high academic standards”.
Parents give a score from 1 for strongly disagreeing to 4 for strongly agreeing. Factor
analysis reveals that these statements can be represented with Factor 2 and it is

entitled as school for family factor.
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5.2.3 Mathematical Tendency Factor

The variables from ASBHO5SA to ASBHOSI give an idea about student’s
mathematics anxiety. The question asked to students for these columns is how much
a student agrees with the given statements about mathematics. To illustrate, the
columns represent the ideas such as “I usually do well in mathematics”, “I am good
at working out difficult mathematics problems” and “Mathematics makes me
nervous”. These statements are mainly collected around Factor 3. So, this factor is

entitled as mathematical tendency factor.

5.3 Analyses

In this part, different modelling designs are built to compare and to find the most
suitable design for our case. In doing so, raw variables, that are gender, whether a
student born in Turkey or not, school immediate area, derived variables, which are
SES score, family attitude and school status and factor scores, that are emotional
factor, mathematical tendency factor and school for family factor are used. In total,
we have 12 variables including dependent variable math score and unique keys
which are student id and school id. Before modelling, the data is divided into train

and test sets with rates 0.8 and 0.2 for cross-validation, respectively.

5.3.1 Linear Model Analysis

The analysis part starts with a linear model. Linear model is built by using Im in R
with all the variables. The variables that are gender, born in Turkey and immediate
area are informed to the model as factor type. After the modelling, outputs show that
school for family factor is statistically insignificant at the 5% confidence level.
Additionally, immediate area has 4 levels and level 1 is defined as reference.
According to the level 1, while level 4 is statistically significant, levels 2 and 3 are

statistically insignificant. However, the variable immediate area is included for the
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rest of the analysis. On the other hand, school for family factor is statistically
insignificant. So, it is dropped from the model. The table below shows us parameter

estimations, standard error terms and p-values obtained from linear model.

Table 3: Outputs of LM

Variable Name Estimate Std. Pr(>|t)) Sign.
Error
Intercept 249.88 19.62 <2R[Q16 HEk
Gender (2) 10.666 3.04 0.0005 ek
Born_in_Turkey (2) 55.341 9.57 826%109  #*x
Immediate_Area (2) 2.651 5.68 0.641
Immediate_Area (3) -7.292 3.61 0.044 *
Immediate_Area (4) -51.426 4.85 <2%10716 ok
EmotionalFactor 7.265 1.51 1.52%10706  soxk
MathematicalTendencyFactor 38.214 1.55 < 2%10°16 Hokok
SES 11.684 0.81 <2*10716 ok
Family_Attitude 2.117 0.63 0.00085 kK
School_Status 7.522 2.06 0.000267 oAk

Signif. Codes: 0 “*** 0.001 “**> 0.01 ‘** 0.05 <. 0.1 1

Intercept and coefficients for gender, born in Turkey, immediate area, emotional
factor, mathematical tendency factor, SES score, family attitude, and school status
are 249.88, 10.666, 55.341, 2.651,-7.292, -51.426, 7.265, 38.214, 11.684,2.117 and
7.522, respectively. These coefficients belong to the model that does not include
school for family factor. Also, by using the test set, mean squared error is calculated
as 67.74. According to the model outputs in table 3, it can be said that while some
variables have a positive effect on math scores, some others negatively effect math
scores. For example, being boy and being Turkey-born increase math score 10.666

units and 55.341 units, respectively. If the school is located in medium size city or
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small town, then, it negatively affects math scores of the students. Also, when other
situations remain constant, one unit increase in emotional factor increases math
scores by 7.265 units. Similarly, one unit change in mathematical tendency factor
increases or decreases math scores by 38.214 units. Moreover, SES score, family
attitude and school status have also positive effects to math scores in case of one-

unit increase.

Residuals by Schools
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Figure 5: Residuals by schools

The boxplot above (Figure 5) shows us the residuals obtained from the linear model
for each school. While x-axis represents id numbers of schools, y-axis represents the
residuals. By looking at the plot, it can be seen that many schools look like outliers.
Even their boxes do not touch the line at y=0. This means that the residuals do not
scatter randomly around zero. Before, we stated that there is a difference between

schools by looking at the box-plot for each school (Figure 2). And, we added that
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linear model is not suitable for TIMSS data because it does not take within subject

correlation into account. Now, residual plot is another reason to use LMM.

5.3.2 Linear Mixed Model Analysis Using Functions Ime and Imer in R

LMM can be built in R by using the functions “lme” and “Imer”. The function Ime
is gathered from the nlme package while the function Imer is located in package
Ime4. Jose Pinheiro and Douglas Bates (2021) explain the updated nlme package.
The article “Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models
for Repeated-Measures Data” written by Lindstrom, M.J. and Bates, D.M. (1988)
forms the computational framework of the Ime function. Additionally, the
formulation of the LMM is based on the article of Laird and Ware (1982). On the
other hand, Imer function is found in package Ime4 (Bates et al., 2021). The package
is updated and released in 2021.

As linear model regression, gender, born in Turkey and immediate area are
introduced as factors in LMM. Similarly, the variable school for family factor is

statistically insignificant. Therefore, it is dropped from the model.

In our data, two types of random effects are possible. The first one is adding only
one random effect which is school to be able to model the variations amongst
schools. The second model option is adding a random effect for students nested in
schools, besides schools. So, we can consider both school and student variations.
However, the second one is a little bit complex than the first one. Therefore, the
necessity to add the student nested in school model should be checked before moving

to a more complex model.

ANOVA helps to decide which model is statistically more preferable. Assume that
model 1 is linear model. Model 2 is LMM with random effect school and model 3 is
LMM with random effects school and student nested in school. ANOVA for LM
(model 1) and LMM with random effect school (model 2) says that LMM is more
suitable for this dataset. It is understood by looking at the AIC and BIC terms in table
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4. We know that the model with smaller AIC and BIC terms are preferable. The
analysis says that there is statistically significant evidence to use the LMM. Then,
ANOVA for LMM with random effect school (model2) and LMM with random
effects school and student nested in school (model 3) is conducted. After
implementing the ANOVA function that subtracts -2 ML log-likelihood value for
the reference model from the nested model, we found the unsignificant result of this
test (p > 0.05). That is, no need to use complex model which is LMM with random
effects school and student nested school (model3) because the values of AIC and
BIC for more complex LMM (model 3) are greater than the values of the LMM with
random effect school (model 2). It says that the second model is well enough for our
modelling design. Therefore, we retain the unnested model which is LMM with

random effect school (model 2). See the model structures at below:

Model 1: y~covariates (LM)

R Syntax:

model=Im(y~factor(Gender)+factor(Born_in_Turkey)+factor(Immediate_Area)+E
motionalFactor+MathematicalTendencyFactor+ses+family_attitude+

school_status,data=train)
Model 2: y~covariates + school as random effect (LMM)

R Syntax:

model2=Ime(y~factor(Gender)+factor(Born_in_Turkey)+factor(Immediate_Area)
+EmotionalFactor+MathematicalTendencyFactor+ses+family_attitude+
school_status, random = ~ 1| IDSCHOOL, train, na.action = "na.omit", method =
"ML")

Model 3: y~covariates + school and student nested school as random effects (LMM)
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R Syntax:

model=Ime(y~factor(Gender)+factor(Born_in_Turkey)+factor(Immediate_Area)+
EmotionalFactor+MathematicalTendencyFactor+ses+family_attitude+
school_status, random = ~ 1| IDSCHOOL/IDSTUD, train, na.action = "na.omit",
method = "ML")

Table 4: Outputs of ANOVA

Model df AIC BIC Sign.
Model 1 12 27988.36 28057.97

v
Model 2 13 27312.95 27388.35
Model 2 13 27312.95 27388.35

X
Model 3 14 27314.95 27396.15

The unnested mixed model intercept and coefficients for gender, born in Turkey,
immediate area, emotional factor, mathematical tendency factor, SES score, family
attitude, and school status are 386.10, 12.732, 40.698, -9.293, -15.179, -69.960,
10.640, 35.681, 3.614, 1.494 and 10.958. While two coefficients for immediate areca
are not statistically significant, p-values of all other variables are less than 0.05, that
is, they are statistically significant at the 5% confidence level. Additionally, its mean
square error value is equal to 60.39. These results are obtained by using both
functions Ime and Imer, separately. These two functions give the same results as

expected. Outputs of LMM can be seen from table 5 which is below.
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Table 5: Outputs of LMM

Variable Name Estimate Std. Pr(>|t|) Sign.
Error

Intercept 386.10 24.47 0.00 ook
Gender (2) 12.732 2.62 0.00 oAk
Born_in_Turkey (2) 40.698 8.04 0.00 oAk
Immediate Area (2) -9.293 13.73 0.499
Immediate_Area (3) -15.179 9.07 0.096
Immediate Area (4) -69.960 10.94 0.00 ook
EmotionalFactor 10.640 1.299 0.00 o
MathematicalTendencyFactor 35.681 1.306 0.00 ook
SES 3.614 0.786 0.00 ok
Family Attitude 1.494 0.546 0.006 oAk
School_Status 10.958 5.25 0.04 ook

Signif. Codes: 0 **** 0.001 ‘**> 0.01 ‘** 0.05 . 0.1 1

According to the LMM outputs, all the variables except immediate area have a
positive effect on math scores in case of one-unit increase. For example, one unit
increase in the variable born in Turkey increases math scores by 40.698 units.
Similarly, higher mathematical tendency gives higher math score when other
situations remain constant. Additionally, family attitude is significant but, it does not

give points as highly as other positive effects in case of one unit increase.

5.3.3 Linear Mixed Model Analysis Using Different Algorithms in R

Schafer J.L. (1998) describes how certain algorithms for LMM can be implemented
using R. ECME algorithm, Fast ECME algorithm and Fast MCMC algorithm are
examples of these certain algorithms. These functions are called as ecmeml, fastml

and fastmcmc in R, respectively. Ecmeml and fastml are implementations of the
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MLE method. However, it is possible to use restricted maximum likelihood

estimation such as ecmerml and fastrml.

R Syntax:

pred=cbind(int,final$Gender,final$Born_in_Turkey,final$Immediate_Area,final$E
motionalFactor,final$Mathematical TendencyFactor,final$ses,final$family_attitude

final$school_status)
xcol=1:dim(pred)[2]
zcol=1

R Syntax of ECME Algorithm:

e=ecmeml(final$y,final$IDSCHOOL,pred,xcol,zcol)

Table 6: Outputs of ecme algorithm

Variable Name Estimate
Intercept 343.73
Gender 12.771
Born_in_Turkey 45.212
Immediate_Area -18.197
EmotionalFactor 9.977

MathematicalTendencyFactor 35.578

SES 3.103
Family_ Attitude 1.883
School_Status 12.199

By looking at table 6, it can be seen that model intercept and coefficients for gender,
born in Turkey, immediate area, emotional factor, mathematical tendency factor,
SES score, family attitude, and school status are obtained via the function ecmeml

as 343.73, 12.771, 45.212, -18.197, 9.977, 35.578, 3.103, 1.883 and 12.199,
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respectively. These parameter estimations are calculated with 11 iterations.

Moreover, the last iteration has the loglikelihood value of -14214.08.

The function fastml reaches the parameter estimations for gender, born in Turkey,
immediate area, emotional factor, mathematical tendency factor, SES score, family
attitude, and school status in 6 iterations. The outputs of fast algorithm are shown in
table 7 which is below. These estimation values are 343.73, 12.771,45.212, -18.197,
9.977,35.578, 3.103, 1.883 and 12.199, respectively. -14214.08 is the loglikelihood

value for the last iteration.
R Syntax of Fast Algorithm:
f=fastml(final$y,final$IDSCHOOL,pred,xcol,zcol)

Table 7: Outputs of fast algorithm

Variable Name Estimate
Intercept 343.73
Gender 12.771
Born_in_Turkey 45.212
Immediate_Area -18.197
EmotionalFactor 9.977

MathematicalTendencyFactor 35.578

SES 3.103
Family Attitude 1.883
School_Status 12.199

The algorithm Fast MCMC which is applied via the function fastmeme in R needs
some prior information. However, in our case, it iS not so sensitive to priors.
Therefore, arbitrary initial points are used. As a result, we have parameter
estimations for gender, born in Turkey, immediate area, emotional factor,
mathematical tendency factor, SES score, family attitude, and school status as

343.73, 12.774, 45.186, -18.206, 9.982, 35.576, 3.089, 1.882 and 12.206,
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respectively. Unfortunately, number of iterations and loglikelihood value are not

supplied from the function fastmcmec.

R Syntax of Fastmcme Algorithm:

prior <- list(a=1,b=2,c=3,Dinv=4)

mcmc=fastmemc(final$y,final$IDSCHOOL ,pred,xcol,zcol,prior,seed=1)

Table 8: Outputs of fastmemc algorithm

Variable Name Estimate
Intercept 343.989
Gender 12.774
Born_in_Turkey 45.186
Immediate Area -18.206
EmotionalFactor 9.982
MathematicalTendencyFactor 35.576
SES 3.089
Family Attitude 1.882
School_Status 12.206

By building LMM, the functions Ime and Imer work in similar way. Therefore,
parameter estimations give the same results. The coding designs are also the same
and easy to implement. For example, Ime and Imer functions need to identify
dependent variable, first. After dependent variable, “~” is added. Explanatory
variables are written using “+”. It is crucial to define random term. For our case,
random term identified as “random=~1|IDSCHOOQOL”. Then, name of dataset, na

action and method are stated.

Table 9: Comparable table for LM and LMM

Variable Name LM (Im)

249.88

LMM (Ime)
386.10

LMM (Imer)
386.10

Intercept
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Gender (2) 10.666 12.732 12.732

Born_In_Turkey(2) 55.341 40.698 40.698
Immediate Area 2.651 -9.293 -9.293
(2)
Immediate Area(3) -7.292 -15.179 -15.179
Immediate Area(4) -51.426 -69.960 -69.960
Emotional Factor 7.265 10.640 10.640
Mathematical 38.214 35.681 35.681
Tendency Factor
SES 11.684 3.614 3.614
Family Attitude 2.117 1.494 1.494
School Status 7.522 10.958 10.958
RMSE 67.74 60.388 60.388
Algorithm NA EM Nelder-Mead and
BOBYQA

Table 10 shows that parameter estimations of the functions ecme and fast algorithms
give the same results. Also, estimations obtained from the function fastmemc are
very close to them. The number of iterations of ecme algorithm equals to 11 while
the number of iterations for fast algorithm is 6. That is, fast algorithm reaches the
convergency faster than ecme algorithm. On the other hand, fastmcmc algorithm

does not give the number of iterations.

Table 10: Comparable table for different algorithms

Variable Name func. ecmeml func. fastml func. fastmeme
Intercept 343.73 343.73 343.989
Gender 12.771 12.771 12.774
Born_In_Turkey 45.212 45.212 45.186

53



Immediate Area  -18.197 -18.197 -18.206
Emotional Factor 9.977 9.977 9.982
Mathematical 35.578 35.578 35.576
Tendency Factor

SES 3.103 3.103 3.089
Family Attitude 1.883 1.883 1.882
School Status 12.199 12.199 12.206
Iterations 11 6 NA
Algorithm ECME ECME and Fisher MCMC

Scoring
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5.4 Model Evaluation

Actual Values vs Fitted Values
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Figure 6: Actual values vs fitted values

Figure 6 shows actual math scores and fitted math scores obtained from LMM for

each school. The horizontal axis represents fitted values while the vertical axis shows

actual values. We see that each school has reliable actual and fitted values as their

values gather around the line. This means that LMM is suitable analysis for TIMSS

data.
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CHAPTER 6

COUNTRY COMPARISON

In this chapter, the comparison of the factors that affect the students’ mathematics
achievement for three different countries are evaluated using TIMSS 2019. These
three countries are Turkey, England and South Africa. There are several reasons why
these countries were chosen as a sample. Turkey’s mathematical achievement score
is higher than the scale mid-point; while it has the highest standard deviation, which
shows a greater fluctuation throughout students. We choose two countries also to

compare with Turkey depending on three factors:
1. Having countries in the most successful 10 and the least successful 10.
2. Including a developed country and a developing country.
3. They tested the same grade as Turkey (grade 5).

England and South Africa satisfy the given factors. However, the proportion of
missing observations is quite high for England. If all variables used in chapter 5 are
taken into account, some columns for England do not even have inputs. When
missing observation patterns are examined, it turned out that most of the missing
data for England belong to the home dataset. We can conclude that the home dataset

does not exist for England, so it is not included in analysis for country comparisons.

In addition to that, in case of merging the datasets student and school, the major part
of the data is still missing. When it is applied row-wise deletion to the data, Turkey
dataset decreases to 3334 rows from 4028 rows. England loses 1760 observations
out of 3396 rows. The number of rows of South Africa declines to 6931 from 11891
observations. These numbers are computed for each case. If all variables are deleted
at the end of the merging datasets, 38% of the data is missing. The crucial point is

that the majority of the missing values belongs to the school dataset. Additionally,
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the correlation between dependent variable math score and the variables come from

school dataset are very close to 0 for each case. That is, these variables do not have

any relations. When the school dataset is ignored, the missingness rate approximately

decreases to 30%. Therefore, we decide not to add school dataset. As a result, we

have 13602 observations from three different countries. The corresponding variable

names, explanations and encodings are found at Table 11 or country comparison

analysis.

Table 11: Data dictionary for country comparison

Variable Variable Explanation Encoding
Name
IDCOUNTRY Country ID
IDSCHOOL School ID
IDSTUD Student ID
ASBGO1 Sex of Student 1: Girl | 2: Boy
ASBG04 Number of Books in Your Home 1: 0-10 | 2:11-25 | 3: 26-
100|4:101-200 | 5: More
2
2 than 200
=
2 ASBGO5A A Computer or Tablet Do you have any of these
2]
= things at your home?
% ASBGO05B Study Desk/Table for Your Use gsatyou
1: Yes | 2: No
ASBGO5C Your Own Room
ASBGO05D Internet Connection
ASBGOSE Your Own Mobile Phone
ASBGOSF Central Heating (T)

Your own television (E)
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Table 11 (continued)

Dictionary (SA)

ASBGO05G Air Conditioning (T)
Bicycle (E)
Electricity (SA)
ASBGO5H Washing Machine (T)
Musical Instrument (E)
Running Tap Water (SA)
ASBGO07 Were You Born in The Related 1:Yes|2:No|3:1donot
Country? know | 4: Not applicable
ASBMO02A I enjoy learning mathematics 1: Agree alot|2: Agree a
little | 3: Di littl
ASBMO02B I wish I did not have to study ittle | 1sagree a AHe
) | 4: Disagree a lot
mathematics
ASBMO02C Mathematics is boring
ASBMO02D I learn many interesting things in
mathematics
ASBMO2E I like mathematics
ASBMO2F I like any schoolwork that involves
numbers
ASBMO02G I like to solve mathematics
problems
ASBMO02H I look forward to mathematics

lessons
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ASBMO2I

Table 11 (continued)

Mathematics is one of my favorite

subjects

ASBMO5SA I usually do well in mathematics

ASBMO05B Mathematics is harder for me than
for many of my classmates

ASBMO05C I am just not good at mathematics

ASBMO05D I learn things quickly in
mathematics

ASBMOSE Mathematics makes me nervous

ASBMOSF I am good at working out difficult
mathematics problems

ASBMO05G My teacher tells me I am good at
mathematics

ASBMO5H Mathematics is harder for me than
any other subject

ASBMOSI Mathematics makes me confused

1: Agree alot|2: Agree a
little | 3: Disagree a little

| 4: Disagree a lot

The dataset has 32 explanatory variables and 1 dependent variable. Some variables

in table 11 includes certain letters like T, E and SA. This means that the variable has

different type of questions and it is specified with these letters. T represents Turkey.

E means England while SA represents South Africa.
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Cramer's V heatmap for Turkey
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Figure 7: Heatmap for Turkey

The plot above shows the correlation between the variables for Turkey. It seems that

there are no highly correlated variables.
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Cramer's V heatmap for England
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Figure 8: Heatmap for England

Similar with Turkey, the dataset for England does not have highly correlated

variables. The highest correlation is almost 0.45.
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Cramer's V heatmap for South Africa
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Figure 9: Heatmap for South Africa

The heatmap for South Africa shows that there are no highly correlated variables.

The highest correlation is approximately 0.33.
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Cramer's V heatmap for all countries
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Figure 10: Heatmap for all countries

The heatmap for all countries shows that there is no high correlation between the

variables. Therefore, we can continue with these columns.
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Figure 11: Math scores by school for England
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Figure 12: Math scores by school for South Africa

The plots above represent math scores of the students by school ID for England and
South Africa, respectively. It is seen that both box-plots have a variation of math
scores. Therefore, it is meaningful to use LMM in order to express this variance. For

Turkey, the related plot is given in Figure 2.

We report only Ime results in this section, since all algorithms give highly similar

parameter estimation results.

6.1 Analyses

Before pioneering modelling, we first implement the factor analysis to some scale
variables. These are the variables from ASBMO2A to ASBM02I and from ASBMO5A
to ASBMO5I. The columns give similar meaning about students’ mathematical
interest. Therefore, the factor analysis makes them a group and represents similar
meaning with fewer plausible columns. Now, we have 2 factor scores which are

mainly separated. Similar to Chapter 5.2., the first score is named as emotional
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factor; while the second score is entitled as mathematical tendency factor. The

factor loadings are shown at Table 12.

Table 12: Factor loadings for all countries

Variable Name Factor 1 Factor 2

(Emotional Factor) (Mathematical
Tendency Factor)

ASBMO02A 0.779

ASBMO02B 0.137 0.467

ASBM02C 0.271 0.422

ASBM02D 0.525

ASBMO2E 0.836

ASBMO2F 0.710 -0.101

ASBMO02G 0.726

ASBMO02H 0.743

ASBMO21 0.775

ASBMOSA 0.544

ASBMO05B 0.718

ASBMO05C 0.680

ASBMO05D 0.521

ASBMOSE -0.125 0.641

ASBMOSF 0.497

ASBMO05G 0.397
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ASBMOSH 0.761

ASBMOS5I 0.686

After the factor analysis, SES score is created using the indicators related to the
economic status of students. The indicators from ASBGO5A to ASBGO5H are

aggregated by row and the derived variable shows SES scores for each student.

Final dataset includes the variables country ID, school ID, student ID, gender, born
status in the related country, number of books, emotional factor, mathematical

tendency factor, SES score and dependent variable, math score.

6.1.1 Linear Model Analysis

Apart from Chapter 5, the country effect is taken into account as a factor while
conducting models, in this chapter. Moreover, the variable number of books is
evaluated within family attitude score in Chapter 5. Now, it is evaluated individually
because the variables used for family attitude score are not included to the current
data due to overwhelming missing values. Additionally, unlike Chapter 5, interaction
terms of country variable are added to the model because if they are not, only the
intercept term would change from country to country. In the first implementation,
the interaction term of country and mathematical tendency factor is statistically
insignificant. So, it is dropped from the model. After dropping insignificant
variables, the model is built again and the process is named as the second

implementation. Output obtained from the second linear model is shown in Table 13.

Table 13: Outputs of LM for country comparison

Variable Name Estimate Std. Pr(>|t|) Sign.
Error

Intercept 213.09 6.82 < 2*]0°16 ook

IDCountry (Turkey) 53.55 13.56 7.90%10705  wx
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IDCountry (England) 279.49 18.42 < 2*10°16 ok

Gender (2) -14.57 1.71 <Q*1016 ek
Born_in_Country (2) 30.34 3.29 < 2%10716 Hkk
Number of Books 4.45 0.81 3.48%10708 o
Emotional Factor 15.28 0.92 < 2%10710 ok
Mathematical Tendency 40.06 0.70 < 2%10710 ok
Factor

SES 11.84 0.47 <2%10716 ek
Turkey*Gender (2) 27.15 3.11 <1016 ek
England*Gender (2) 15.87 3.51 6.34%¢706 otk
Turkey*Born_in_Country(2) 34.46 8.77 8.54%10°5 ek
England*Born_in_Country(2) -31.26 5.896 1.16%10707 ok
Turkey*Num_of Books 15.51 1.51 <2*10°16 kot
England*Num_of Books 15.98 1.497 <2*10°16 ok
Turkey*Emotional Factor -15.18 1.75 <2*10°'6 otk
England*Emotional Factor -13.68 1.64 <2*1(°16 ook
Turkey*SES -1.42 0.899 0.113
England*SES -12.27 1.24 <2*10°10 *okok

All variables except interaction of Turkey and SES score are statistically significant.
Due to significancy of interaction of England and SES score, the interaction of
countries and SES score is not excluded from the model. Additionally, the standard
errors of the country variables seem high. In this model, the country South Africa is
taken as reference factor. If the model coefficient has a positive sign, then, the
variable has a positive effect on math score of the student. Otherwise, it has a
negative effect on math score of the student. Various inferences can be made from
this model regarding the relationship between the change in the math score variable
and the explanatory variables. For example, in terms of math score, Turkey 53.55

units and England 279.49 units are better than South Africa. Similarly, one-unit
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increase in the SES variable results in an 11.84 increase in the math score. On
average, male students' success in this field is 14.57 units lower than female students.
Also, checking the interactions with countries gives additional results in terms of
gender variable. For example, being a male in Turkey provides 27.15 more math
score on average than being male in South Africa. Also, even SES scores gives
positive coefficient in the model, the interaction of this variable with countries are
negative. We can say that one score increases in the SES score in Turkey comparing

South Africa gives 1.42 less point in math score.

Additionally, the mean squared error for the linear model is 74.72. Even though, the
results of the LM are not bad, the data is more suitable for LMM. As given in figures
2, 11 and 12, we see that math scores by schools have a variety. Moreover, Figure
13 shows residuals obtained from LM by each school. Some boxes are not even touch
the line and the data has many outliers for this model. Also, there is a nested data
with schools and students. Country factor may be considered as one of the layers.

So, the next chapter shows the LMM results and comparisons.

Residuals by Each School
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Figure 13: Residuals obtained from LM by each school
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6.1.2 Linear Mixed Model Analysis Using Function Ime in R

Two different models are conducted to explain mathematics achievement of students

for Turkey, England and South Africa. In the model implementation, country is

specified like dummy variables, not a random effect. The first model is built with

country ID, gender, born status, number of books, emotional factor, mathematical

tendency factor, SES score, interactions of the variables and country and random

effect school ID. The model syntax in R format is given as

model=Ime(y~factor(IDCNTRY)+factor(Gender)+factor(Born_in_Country)+Emot

ionalFactor+MathematicalTendencyFactor+ses+factor(IDCNTRY)*factor(Gender
)+factor(IDCNTRY)*factor(Born_in_Country)+factor(IDCNTRY)*Mathematical T
endencyFactor+factor(IDCNTRY)*EmotionalFactor+factor(IDCNTRY)*ses,rando
m =~ 1| IDSCHOOL, final, na.action = "na.omit", method = "ML")

The output of the first model is shown at the table below.

Table 14: Outputs of LMM for country comparison

Variable Name Estimate Std. Pr(>|t]) Sign.
Error

Intercept 296.91 7.09  0.00 oAk
IDCountry (Turkey) 15.52 12.95 0.231
IDCountry (England) 214.95 17.04  0.00 HoAx
Gender (2) -10.98 1.57  0.00 otk
Born_in_Country (2) 21.27 3.04 0.00 ook
EmotionalFactor 18.06 0.87 0.00 oA
MathematicalTendencyFactor 36.38 0.82 0.00 oA
SES 6.64 046  0.00 oAk
Turkey*Gender (2) 22.40 2.88 0.00 oAk
England*Gender (2) 7.46 3.20 0.02 HAx
Turkey*Born_in_Country 44.37 8.06 0.00 ook
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England*Born_in_Country -17.19 5.44 0.002 oAk

Turkey*MathematicalTendencyFactor 4.91 1.597 0.002 otk
England*MathematicalTendencyFactor 11.51 1.89  0.00 otk
Turkey*Emotional Factor -15.72 1.65 0.00 oAk
England*Emotional Factor -17.91 1.58 0.00 otk
Turkey*SES 3.76 0.82  0.00 otk
England*SES -4.37 1.15  0.00 ok

All the variables except country dummy for Turkey are statistically significant for
the LMM with a random effect school. Due to other significant term of the variables,
country dummy for Turkey is not dropped from the model. However, the variable
number of books is statistically insignificant in the first design. Therefore, it is
excluded from the model. Additionally, it may be said that the differences between
Turkey and South Africa are not statistically significant, because the p-value of
dummy variable of Turkey is greater than significance level 0.05. Moreover,

standard errors of the country variable are a bit high.

According to table 14, the model outputs say that England has really high math score
rather than Turkey or South Africa when all situations remain the same. While being
boy in Turkey has a positive effect on math score, being boy in England has a
negative effect. Also, one unit increase in mathematical tendency factor in England
increases math scores by 47.89 units. The same subject in Turkey increases math
scores by 41.29 units. The same unit in South Africa rises math scores by 36.38.
Therefore, it can be understood that when all situations are the same, mathematical
tendency factor gives the highest score in England and the lowest score in South
Africa. On the other hand, it is the opposite for the emotional factor. In South Africa,
one unit increase in emotional factor gives the highest increment by 18.06 when all
situations for all countries are the same. In Turkey, this value is 2.34. In England, it
is equal to 0.15 which is very low. Moreover, when we evaluate the SES score,

Turkey ranks first with 10.4 units in terms of giving the highest score when all the
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conditions remain the same. South Africa ranks second with 6.64 units. England

ranks third with 2.27.

The second LMM is built using the same variables but, this time, random effect is

students nested within schools. R syntax of the model is

model=Ime(y~factor(IDCNTRY)+factor(Gender)+factor(Born_in_Country)+Emot
ionalFactor+MathematicalTendencyFactor+ses+factor(IDCNTRY)*factor(Gender
)+factor(IDCNTRY)*factor(Born_in_Country)+factor(IDCNTRY)*EmotionalFact
or+factor(IDCNTRY)*ses,random = ~ 1| IDSCHOOL/IDSTUD, final, na.action =
"na.omit”, method = "ML")

The output of the second model is presented at Table 15.

Table 15: Outputs of LMM of student nested schools for country comparison

Variable Name Estimate Std. Pr(>|t]) Sign.
Error

Intercept 291.69 7.03 0.00 ol
IDCountry (Turkey) 23.01 12.84 0.073 *x
IDCountry (England) 204.71 16.89  0.00 HAx
Gender (2) -11.16 1.56  0.00 ok
Born_in_Country (2) 22.87 3.02 0.00 otk
Number of Books 8.96 0.56 0.00 okx
EmotionalFactor 18.34 0.86 0.00 otk
MathematicalTendencyFactor 36.4 0.82 0.00 HoAx
SES 5.61 046  0.00 oAk
Turkey*Gender 22.68 2.86 0.00 otk
England*Gender 10.05 3.18 0.002 oA
Turkey*Born_in_Country(2) 41.41 7.99 0.00 ook
England*Born_in_Country(2) -20.55 539  0.00 otk
Turkey*MathematicalTendencyFactor  3.28 1.59  0.039 otk
England*MathematicalTendencyFactor 9.54 1.88 0.00 ok
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Turkey*Emotional Factor -16.12 1.64 0.00 oAk

England*Emotional Factor -18.08 1.56  0.00 otk
Turkey*SES 3.06 0.82  0.00 ok
England*SES -4.07 1.14  0.00 ok

According to the output above, all the variables used in the model are statistically
significant at 5% confidence level. The outputs obtained from the first LMM and the
second LMM are very close to each other in terms of the coefficients. However, in
the second model, the variable number of books is added to the model. Similar model

interpretations can be made as in the LMM with a random effect school.

Residuals by Each School

200

100

-100

-200

-300

5001 5016 5031 5046 5061 5076 5091 5106 5121 5136 5151 5166 5181 5196 5211 5226 5241 5256 5272 5287

School ID

Figure 14: Residuals obtained from the first LMM by each school

The plot above shows residuals which is obtained from LMM by each school. It is
seen that all the boxes touch the line and they are ordered regularly. By comparing
the plots Figure 13 and 14, it is understood that the residuals from LMM is more
reliable. Therefore, LMM is a good method to explain TIMSS 2019.
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6.1.3 Model Decision

Up to now, we have one LM and two LMM. At the beginning of the chapter, it is
stated that LMM is more suitable for the data because schools have no standard range
in terms of math scores and variation is high among them. To make reliable reason
for this idea, ANOV A which computes the value subtracting -2 REML loglikelihood
from the corresponding value is applied to the models. The candidate models are

given below in detail.
Model 1: y ~ covariates
Model 2: y ~ covariates + school as random effect (LMM)

Model 3: y ~ covariates + school as random effect + student nested school as random

effect (LMM)

Model df AIC BIC Sign.
Model 1 20 155993.0 156143.4

v
Model 2 20 154097.1 154247.5
Model 2 20 154097.1 154247.5

X
Model 3 22 153845.7 154011.1

According to the ANOVA test, there is an important difference between model 1 and
model 2. Therefore, we continue with the model 2 for the first test result. The second
ANOVA test also says that model 2 is enough for this dataset. There is no need to
enhance the model with two random effects. So, we retain the second model which

includes the covariates and the random effect school.
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6.14 Model Evaluation

ANOVA says that LMM is more suitable than LM for the dataset TIMSS 2019. We
have the model with 8 explanatory variables and one random effect which is school.
The plot below presents actual values versus fitted values of the math scores for all

countries.

Actual Values vs. Fitted Values
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By looking at the plot, it is seen that actual and fitted values are gathered like a line
around the center. This means that the model fits good for the dataset.

75



76



CHAPTER 7

CONCLUSION / DISCUSSION

Modelling process shows that LMM is a reasonable technique for analyzing TIMSS
data because it is a clustered data and the variation in between clusters and within
clusters should be counted together in the model. After trying several types of model
settings, ANOVA shows us the statistically meaningful model. So, the LMM as a

subject based modelling is giving better results than the classical approach.

While building LMM, iterative estimation algorithms help to find parameter
estimations. Because of some restrictions, it is not possible to compare all the
models. Instead, we compare them within related groups. One of the algorithms is
ECME which is a Generalized Expectation-Maximization algorithm for the
implementation of LMM. Another method is Fast algorithm which consists of Fisher
Scoring and ECME algorithms with faster convergency than ECME algorithm. In
the implementations of this study, the function ecmeml has 11 iterations while the
function fastml has only 6 iterations for LMM. However, both algorithms require
numerical variables and they do not work with categorical variables, for now.
Therefore, we assume categorical variables as numerical variables only for

comparison aim.

There are several R packages implementing LMM with different algorithms.
Although the nlme and Ime4 packages are powerful in terms of the richness of the
content of the outputs and the flexibility in the model definitions, the package Imm
includes algorithms such as ecme and fast is more difficult to use than other packages
in this sense. Additionally, the package Ime4 includes up to date and effective linear
algebra methods. Therefore, it is faster and more efficient than the package nlme.
Also, Ime4 has wider usage such as generalized linear mixed models and it can easily

handle huge number of random effects. On the other hand, nlme provides more
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flexibility about modelling. For example, in nlme, it is possible to define the

variance-covariance matrix.

In this study, we state general perspectives of LMM and iterative estimation
algorithms which are used in LMM. These iterative algorithms are detailed in terms
of historical context, formulation and pros-cons. Also, explanations for situations
suitable for LMM are practically supplied. In order to illustrate, one of the
contemporary datasets, TIMSS 2019 is used. LM and two different types of LMM
are built for Turkey implementation and country comparisons with England and
south Africa, separately. The variables gender, born in Turkey, immediate area,
emotional factor, mathematical tendency factor, SES score, family attitude, and
school status seem to be statistically significant for Turkey implementation. Unlike
Turkey implementation, the interaction terms are added to the model in country
comparisons. According to the obtained result, England among these three countries
has the highest mathematic score when other situations are the same and constant.
The variables used for all countries are very similar and most of the variables are
statistically significant. As a future study, we are planning to extend the model by
adding more countries and by including outer variables such as GDP per capita and

mean education year for each country.
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