
A CONTAINER-BASED CODE OFFLOADING FRAMEWORK FOR MOBILE

EDGE COMPUTING APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAKAN MESUT DUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2021

A CONTAINER-BASED CODE OFFLOADING FRAMEWORK FOR MOBILE

EDGE COMPUTING APPLICATIONS

Submitted by Hakan Mesut Dur in partial fulfillment of the requirements for the degree of Master

of Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Prof. Dr. Sevgi Özkan Yıldırım

Head of Department, Information Systems Dept.

Assoc. Prof. Dr. Altan Koçyiğit

Supervisor, Information Systems Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Pekin Erhan Eren

Information Systems Dept., METU

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems Dept., METU

Assist. Prof. Bilgin Avenoğlu

Software Engineering Dept., TED University

Date: 10.09.2021

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Hakan Mesut Dur

Signature :

iv

ABSTRACT

A CONTAINER-BASED CODE OFFLOADING FRAMEWORK FOR MOBILE

EDGE COMPUTING APPLICATIONS

Dur, Hakan Mesut

MSc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

September 2021, 40 pages

Recently, the use of mobile devices has increased tremendously. This leads to the growing

complexity and diversification of mobile applications. However, mobile devices generally

do not keep up with this growth and they usually suffer from low performance for complex

applications. In order to improve the performance of such applications, devices can make

use of nearby computation platforms such as powerful edge servers. This thesis proposes

a container-based code offloading framework that provides distribution transparency and

automatic migration for mobile applications. The framework supports the Python

programming language and makes use of proxy objects created by the Pyro library for

code offloading. Docker containers are used to run offloaded code and keep the

application state. These containers are automatically migrated to the nearest edge servers

in case of mobile user relocation. A sample application is developed to validate the

framework.

Keywords: Code Offloading, Mobile Application, Migration, Docker

v

ÖZ

MOBİL UÇ HESAPLAMA UYGULAMALARI İÇİN KONTEYNER TABANLI BİR

KOD TAŞIMA ÇERÇEVESİ

Dur, Hakan Mesut

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Eylül 2021, 40 sayfa

Son zamanlarda mobil cihazların kullanımı olağanüstü düzeyde artmıştır. Bu, mobil

uygulamaların karmaşıklığının ve çeşitliliğinin artmasına yol açmaktadır. Ancak mobil

cihazlar genellikle bu büyümeye ayak uyduramazlar ve karmaşık uygulamalar için düşük

performans sıkıntısı yaşarlar. Bu tür uygulamaların performansını artırmak için cihazlar,

güçlü uç sunucular gibi yakındaki hesaplama platformlarından yararlanabilirler. Bu tez,

mobil uygulamalar için dağıtım şeffaflığı ve otomatik göç sağlayan konteyner tabanlı bir

kod taşıma çerçevesi önermektedir. Çerçeve, Python programlama dilini destekler ve kod

taşıma için Pyro kütüphanesi tarafından oluşturulan vekil nesnelerini kullanır. Docker

konteynerler taşınan kodu çalıştırmak ve uygulamanın durumunu tutmak için kullanılır.

Bu konteynerler, mobil kullanıcının yer değiştirmesi durumunda otomatik olarak en yakın

uç sunuculara göç ettirilirler. Çerçeveyi doğrulamak için örnek bir uygulama

geliştirilmiştir.

Anahtar Sözcükler: Kod Taşıma, Mobil Uygulama, Geçiş, Docker

vi

DEDICATION

To My Family

vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Altan Koçyiğit, for his valuable

support and patience throughout my studies.

I would like to thank my friends. They have always support me with their valuable

feedbacks. That gave me mental relief in my troubled times.

Finally, I would like to thank my mother, my father, and my sister for becoming

irreplaceable parts of my life. They have always encouraged me and showed me

understanding. In addition, I am especially grateful to my sister for helping me until the

last moment in developing my thesis presentation.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

DEDICATION ... vi

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xi

CHAPTER .. 1

1. INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Objectives and Scope ... 2

1.3. Thesis Structure ... 2

2. BACKGROUND .. 3

2.1. Offloading .. 3

2.2. Mobile Cloud Computing .. 4

2.3. Mobile Edge Computing ... 5

2.4. Virtualization and Containerization ... 6

2.5. Stateless – Stateful Applications ... 8

2.6. Pyro Library ... 8

3. RELATED WORK .. 11

4. PROPOSED MODEL .. 15

4.1. Approach ... 15

4.2. Client-Side ... 18

4.2.1. Client Manager .. 18

4.2.2. Client Application.. 18

4.3. Server-Side .. 18

ix

4.3.1. Server Application ... 19

4.3.2. Container ... 19

4.3.3. Volume .. 19

4.3.4. Server Manager ... 20

4.4. Migration ... 20

5. PROTOTYPE IMPLEMENTATION AND SAMPLE APPLICATIONS 23

5.1. Prototype Implementation ... 23

5.1.1. Server Manager ... 24

5.1.2. Client Manager .. 25

5.1.3. Migration ... 26

5.2. Sample Applications .. 27

5.3. Experiments ... 30

6. CONCLUSION .. 35

REFERENCES ... 37

x

LIST OF FIGURES

Figure 1: General architecture between cloud and mobile users 5
Figure 2: General MEC Architecture .. 6
Figure 3: VM and container architectures [20] ... 7
Figure 4: Docker components [21] .. 8

Figure 5: A class diagram of proxy pattern ... 9
Figure 6: Relation between Pyro proxy and actual objects ... 9

Figure 7: Client and server in the framework ... 15
Figure 8: A snapshot of a sample system .. 16

Figure 9: The view of migration when there is a processing on the server 17
Figure 10: Host Volume .. 20

Figure 11: Activity diagram of a migration when there is a processing on the server 21
Figure 12: Activity diagram of a migration when there is no offloading 22
Figure 13: Class diagram for managers ... 23

Figure 14: Sequence diagram of a client getting a proxy .. 25
Figure 15: Sequence diagram of an application when migration happens while there is an

offloading process .. 26
Figure 16: Sequence diagram of an application when migration happens while there is no

offloading ... 27
Figure 17: Sequence diagram of List application without migration 28

Figure 18: Sequence diagram of Search application without migration 29
Figure 19: Dockerfile commands .. 30
Figure 20 : Transfer times between VMs .. 31

Figure 21 : Result return times in Search application ... 32
Figure 22 : Result return times in List application .. 32

Figure 23 : Service handover times in List application ... 33
Figure 24 : Service handover times in Search application .. 33

file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524187
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524188
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524189
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524190
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524191
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524192
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524193
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524194
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524195
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524196
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524197
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524198
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524199
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524200
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524201
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524201
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524202
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524202
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524203
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524204
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524205
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524206
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524207
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524208
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524209
file:///C:/Users/user/Desktop/30.08-2/HakanMesutDur_A%20CONTAINER-BASED%20CODE%20OFFLOADING%20FRAMEWORK%20FOR%20MOBILE%20EDGE%20COMPUTING%20APPLICATIONS.docx%23_Toc81524210

xi

LIST OF ABBREVIATIONS

CLR Common Language Runtime

CPU Central Processing Unit

CRIU Checkpoint/Restore in Userspace

iOS iPhone Operating System

MAUI Mobile Assistance Using Infrastructure

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

PC Personal Computer

URI Uniform Resource Identifier

VM Virtual Machine

1

CHAPTER 1

CHAPTER

1. INTRODUCTION

1.1. Motivation

Most of the current mobile applications have evolved incredibly and had demanding

requirements for mobile devices. Applications such as image processing, mobile

gaming, connected vehicles, and augmented reality are processing intensive. These

applications have low latency demands and high energy costs. With the increasing use

of mobile devices and such applications, the need to maintain large amounts of data

sets and timely processing of their data is also increasing.

It is difficult to satisfy these requirements on the end-user side due to battery

limitations, low computing power, and low memory of mobile devices. In this case, it

makes sense to use cloud systems with rich resources. Since cloud infrastructures have

higher storage space and computing power than mobile devices, they work faster with

bigger data sets. However, traditional cloud systems may not be useful for time-critical

services due to their distance to the user. This physical distance between the places

where data is generated and processed causes an intolerable delay.

On the other hand, it is possible to provide services that satisfy low latency

requirements by bringing the source-rich servers close to the end-user. It is a promising

idea for developers to use offloading for this. End-users can benefit from low latency,

high bandwidth, and high computation power and enjoy a better user experience by

offloading heavy computing tasks to a nearby edge server. This approach is often

encountered in the literature as Mobile Edge Computing (MEC) [1].

Latency is low when a mobile device is stationary and connected to the same edge

server. However, when the mobile user moves, the distance between the mobile device

and the edge server changes. If the distance increases, the mobile user loses connection

with the current edge server and switch to a closer edge server. When this happens, the

service provided on the previous edge server needs to be migrated to an edge server

closer to the mobile user. Thus, one of the critical points in MEC is maintaining service

continuity at different locations. While it sounds suitable, moving edge server services

with the user is difficult and can cause performance degradation.

2

1.2. Objectives and Scope

This thesis presents a framework that offloads computation intensive tasks to edge

servers and performs service migration between edge servers. Our goals are 1)

supporting computation offloading to edge servers from mobile users 2) creating a

structure suitable for migration to adapt to the movement of the mobile user for the

sake of continuity 3) developing a framework that allows offloading and service

migration.

We recommend a structure based on container-based virtualization, remote procedure

calls, and proxy usage to achieve our goals. Since Python is a general-purpose, high-

level programming language and is highly preferred in scientific computing, our

framework supports applications written in Python. Also, we use the Pyro [2] library

in Python for remote method calls via proxies and the Docker technology [3] for

containerization. Pyro is beneficial for remote method calls and is perfect to create a

seamless structure by enabling objects on different machines to communicate with

each other through the network connection. On the other hand, containers are a

lightweight option among virtualization techniques. They provide ease of use, fast

deployment and service isolation, and Docker is one of the most popular container

platforms. In our approach, clients and servers communicate among themselves

through the Pyro library, and the services on servers run in a container. Combining the

container structure and the use of the Pyro library makes it easy to write applications

with offloadable parts and creates a generic framework.

1.3. Thesis Structure

This thesis is structured as follows:

Chapter 2 gives a summary of the background and related technologies. Chapter 3

summarizes related work. Chapter 4 explains the model used in the framework

presented in this thesis. Chapter 5 shows how to implement the framework in a

prototype and its usage in sample applications. Finally, Chapter 6 concludes the work

by discussing contributions and future works.

3

CHAPTER 2

2. BACKGROUND

This section briefly describes the main structures, technologies, and approaches used

to implement our study.

2.1. Offloading

With the advancements in computing and communication technologies, the use of

mobile devices has considerably increased. Consequently, embedded and mobile

applications running on these devices have been gaining popularity day by day.

However, such new generation applications run on systems with limited resources.

These limitations negatively affect the performance of mobile devices such as

smartphones in terms of both energy consumption and processing time [4].

Smartphones are powered by batteries, and their processing and storage capacities are

low. Their sensors are capable of producing a lot of data in a short amount of time, but

the storage and timely processing of such data are not usually easy on such platforms.

Moreover, mobile devices use wireless network connections, which provide lower data

rates compared to wired network connections. Hence, they also have limited

communication resources. On the other hand, the complexities of applications such as

artificial intelligence, image processing, and video processing has been increasing.

Therefore, modern applications suffer from performance and quality of experience

issues. Computation offloading is suggested as a solution to limited resource problems

on mobile devices [5], [6]. Simply put, this means having the computational work done

on a resource-rich and robust platform. Offloading computational tasks to a platform

with powerful resources allows overcoming performance and quality of experience

issues caused by limitations such as low computation power and insufficient storage

space.

According to the granularity of the offloaded code units, offloading or application

partitioning can be divided into two broad categories: fine-grained and coarse-grained

[7]. In fine-grained application partitioning, classes, objects, or functions may be

executed in a remote platform, and results are returned to mobile systems [8]. In

coarse-grained offloading [9], the application is partitioned usually at the application

or virtual machine (VM) level. There are some critical differences between fine-

grained and coarse-grained partitioning. The communication cost is generally low

when a coarse-grained partition is made, but it may take a long time to offload an entire

application [7]. On the other hand, the delay may be lower in fine-grained offloading

since only the parts that require heavy work and tire the mobile device will be

offloaded.

4

2.2. Mobile Cloud Computing

When the platform for offloading is cloud, it is called Mobile Cloud Computing

(MCC). The purpose of MCC is to provide a better user experience by giving the rich

resources of the cloud to the mobile user [10]. In client-server structures, the client

benefits from a powerful server. Using the cloud instead of this powerful server does

not break the basic client-server layout. In MCC, a virtualized system such as a VM is

generally used on the cloud side. Virtualization creates multiple independent virtual

computers with an abstract layer using software on physical hardware [11].

VMs bring several advantages. First, since they are an isolated environment, they are

safer against any virus or malfunction because a VM problem does not cause the entire

cloud system to crash. Second, sharing physical resources among VMs instead of using

multiple hardware reduces cost and simplifies maintenance. Third, VM transfer, which

can be performed without any physical structure, accelerates the work.

MCC structure generally has two architectures [12]. In the first one, the cloud

hardware remains stationary and serves the mobile device, while in the second

architecture, other mobile devices form a group and act as a cloud serving a mobile

device. Figure 1 shows the first architecture. In this way, servers, databases, and VMs

in a stationary cloud center interact with Personal Computers (PC) and mobile devices

such as smartphones and laptops. However, by going further and separating the remote

resources by their characteristics, it can be divided into four as distant immobile

clouds, nearby immobile machines, nearby mobile machines, and hybrid systems [13].

Distant immobile clouds include public and private clouds, and there are many servers.

They are highly available and resource-rich. Amazon EC2 [14] and Microsoft Azure

[15] are examples of distant immobile clouds. Nearby immobile machines can contain

cloudlets [9] or private clouds of public places. These resources are closer to the

mobile user. Nearby mobile machines include portable devices such as tablets,

notebooks, smartphones. The aim here is to take advantage of their proximity to the

mobile user. In the hybrid model, different options are utilized according to user needs

by combining previous options such as distant stationary clouds and proximate

immobile machines [16].

5

2.3. Mobile Edge Computing

Although MCC is handy, there are areas where it falls short, especially when it comes

to low latency. The cloud’s distance to the user and the sharing of its bandwidth by

many users cause the connection between the cloud and the user to be slow. A problem

that may occur in the cloud or a network crash also negatively affects service

availability for a long time. At this point, MEC emerges [17]. Figure 2 shows general

MEC architecture. Until the advent of MEC, devices placed in the network edge were

used as only access points. MEC is a structure that can be an alternative to MCC,

aiming to present cloud resources at the edge of the network, closer to the user. As rich

sources will be closer to the user, the distance traveled by transmitted data will be

shortened, and a lower latency and location awareness can be achieved. In addition,

the traffic on the core network is reduced. MEC is used in many areas that require low

latency, such as augmented reality, multiplayer gaming, video analytics, connected

vehicles.

Figure 1: General architecture between cloud and mobile users

6

Although MEC provides service proximity to the user, this proximity will disappear

when the user is highly mobile, which may cause performance degradation or

disconnection. Thus, services need to be migrated between edge servers. Service

migration provides continuity even though the user is moving.

2.4. Virtualization and Containerization

When a software program is offloaded from one computer to another, for example,

from a physical machine to a cloud system, some structure is needed to run it properly

and reliably. Usually, a certain operating system(s), other dependent software, and

some libraries are necessary to support a software application. On the other hand, in

order to efficiently use available resources, several applications should be run on the

shared hardware platforms. However, if such applications require different versions of

operating systems, relevant software, and libraries, they cannot be run on the same

system. Moreover, due to security and reliability concerns, users (or the cloud provider

itself) may not want to run applications in a single execution environment shared by

many applications. Thus, keeping the necessary libraries, configuration files, and all

Figure 2: General MEC Architecture

7

other dependencies for each application in the same execution environment while

providing isolation across different applications is needed. Virtualization offers a

handy solution to this problem: VM. A VM contains both the operating system and

the application(s). A computer running five VMs includes a hypervisor and five

different operating systems running on it. A hypervisor is a code that enables multiple

guest operating systems to be created on a physical server.

On the other hand, container-based virtualization is seen as a lightweight option over

the VM. Although VMs and containers have similar benefits, they are different in

resource management and architecture, as seen in Figure 3. Containers virtualize the

operating system, while VMs virtualize the hardware with the hypervisor. Instead of

dealing with hardware, containerization bundles everything together and reduces it to

a single application. The container contains the code, its dependencies, and the

operating system it needs. Containers are more advantageous for most of the situations

than VMs because they do not run separate operating systems and have less overhead

[18], [19].

Docker [3] is a popular container engine that uses Linux kernel features to build

containers on an operating system. Unlike a VM, Docker allows the system to be used

in isolation by sharing the Linux kernel instead of creating a whole virtual operating

system.

Docker components and their relations are depicted in Figure 4. An image is the

packaged version of the application to be run on the Docker container with the

instructions. Docker container is the area where packaged images can be run. An image

is created from a configuration file called Dockerfile. Docker uses a client-server

architecture, and several containers can reside on the same system. Docker daemon

manages images, containers, and volumes and can communicate with other daemons.

A Docker client communicates with the Docker daemon via commands. The Docker

registry is the repository where images are stored.

Figure 3: VM and container architectures [20]

8

2.5. Stateless – Stateful Applications

State refers to any mutable conditions of a system. A stateless application does not

keep any information about previous operations. For example, if a calculator always

displays zero each time it is turned on and not the most recent process, it is a stateless

application. A stateful application remembers something about its state every time it

runs. Therefore, statefulness needs persistent storage.

Container-based applications tend to be stateless because, simply put, a container

appears, does its job, and disappears. However, a volume is used to make a Docker

container stateful [22]. Any database, library, or other configuration files can be kept

in the volume, which does not affect the container's size because the volume content

is separate from the container. The files in the volume can be read, modified, deleted

and new ones added by the container.

2.6. Pyro Library

Pyro [2] is a Python library that facilitates the development of applications that can

communicate with each other over the network. With Pyro, method calls through a

network can be made transparently, and the Pyro takes care of finding the correct

object. It can be used for different Python versions.

Pyro, which is useful for distributed systems, has some important concepts. A proxy

is an object that replaces the real object. It is used in an application as if it is a real

object. Figure 5 shows a sample class diagram for the proxy pattern. In general, two

classes are implemented, such as Proxy and RealSubject, which conform to an

interface. The method invoked from the proxy is delegated to reach the object of the

real class.

Figure 4: Docker components [21]

9

On the other hand, Pyro library doesn’t need different implementations. A proxy is

created by Pyro. Methods of the real Pyro object are used in the background on the

machine contains it, and the results are returned to the proxy. Thus, the code used the

proxy does not know which object it is actually working with. The relation between

objects is shown in Figure 6. The Pyro proxy is created with the help of a Uniform

Resource Identifier (URI). The URI contains the object name, server name, and port

number, and through it, the proxy can reach the correct Pyro object at the correct

machine. A Pyro object is a remotely accessible object registered with the Pyro. It is

no different from other objects, except that Pyro knows that methods of this object can

be called remotely. Pyro Daemon listens for remote method calls and returns results

from correct objects to proxies. Pyro objects must be registered with at least one

daemon to be accessed remotely.

Figure 5: A class diagram of proxy pattern

Figure 6: Relation between Pyro proxy and actual objects

10

11

CHAPTER 3

3. RELATED WORK

Studies related to the work presented in this thesis are given in this section. First, it is

necessary to mention offloading. The first step of MCC and MEC is to offload from

mobile devices to a resourceful cloud structure.

As a system, Mobile Assistance Using Infrastructure (MAUI) [23] focuses on energy

conservation by using method-level offloading on the cloud. It is a structure built on

the reflection feature of the Microsoft .Net Common Language Runtime (CLR). The

MAUI system uses a profiler to build up a profile of application methods on the mobile

device. According to energy-saving criteria, it solves a code offload problem in the

solver with Central Processing Unit (CPU) and network cost data. This analysis is done

for the methods that the programmer has predetermined and marked with annotations.

If there is an offloading decision, data of the relevant method is sent to the server, and

a response at the end of remote execution is received.

Like MAUI, a system proposed by Kosta et al. [24], ThinkAir, is based on marking

methods suitable for offloading with @remote annotation on the client. A controller

decides whether these methods will be offloaded based on their historical data about

energy consumption, latency and environmental conditions such as network

connectivity. For this, hardware, software, and network profilers are used, and an

energy consumption problem is solved with their data. On the cloud server, the client

handler maintains the connection between the client and the cloud, ensures that the

offloaded code is executed, and the results are returned. Here, VMs are used, new ones

are created according to demand, and the unused ones are destroyed to have dynamic

control.

On the other hand, Wu et al. [25] focus on the cloud side of the business rather than

the code offloading decision and code partitioning with their Rattrap platform. It is

mentioned that using VMs in the cloud causes excessive resource consumption and

the disadvantageous situation of long start-up times. That is why researchers are

developing a lightweight Android Container. Sharing common resources and code

cache mechanism were used to increase efficiency. As a result, it is aimed to reduce

both the start-up time and the memory and disk usage.

Xu et al. [26] offer an offloading method for internet of connected vehicles that will

reduce offloading delay and manage resources at the edge. Internet of connected

vehicles is a concept that emerged after the internet of things, so in the beginning,

remote clouds were generally used for offloading here too. Instead of remote clouds,

12

authors suggest roadside units and macro base stations for edge computing. In this

way, the distance and offloading delay decreases. But this time, node selection for the

offloading destination creates a problem. That’s why authors recommend adaptive

computation offloading method. With the multi-objective evolutions algorithm based

on decomposition, possible destinations are determined and the final destination is

decided with normalization techniques.

Kaya et al. [27] offer a framework that includes a call graph model to determine the

parts to be offloaded in a software. It is possible to offload different parts of an

application to remote servers. But while doing this, some combinations of offloading

may negatively affect application performance. A call graph is created in runtime by

monitoring the metrics of the application components, and profitable offloading

decisions are made according to best partitioning in this graph. A factory class decides

to create a local object, or a proxy based on the offloading decision. Thus, in this

framework, distribution transparency is provided by inversion of control.

Lin et al. [28] suggest a framework that disables both MCC and MEC. They

recommend code offloading to nearby mobile devices as there is no guarantee that

offloading to remote clouds will always be profitable in terms of time and energy. The

proposed framework called Circa runs on the iPhone operating system (iOS) platform

and takes advantage of the surrounding iOS devices. Nearby devices are listed with

the help of the iBeacon technology that allows local devices to discover each other.

Then the offloading task is distributed to these devices. Experiments with different

task allocation algorithms show that power consumption and task completion time

have decreased.

Although there are good results from offloading in MCC, the necessity of using MEC,

which brings resources closer to the user, has emerged for applications requiring low

latency. Recent studies are more focused on this. At this point, containers are preferred

on edge servers because they are more lightweight than VMs, and their deployment is

faster.

Tang et al. [29] present a study that focuses on applications with real-time

requirements in autonomous vehicles. Edge computing brings the computations and

storage closer to the user, as opposed to cloud computing. For this reason, authors used

edge computing to perform fast calculations in autonomous vehicles. Network edge

has a Docker container-based framework. Here, there is a message processing layer

that receives the messages and data from the autonomous vehicle. There are three

separate managers that are responsible for images, containers and resources. The

multiple-dimensional knapsack problem is used to offload to the right edge server.

Also, the container manager uses a pre-run strategy. According to this strategy, some

containers can be kept running with little resource expenditure before an offload

request arrives. Thus, there is slightly less latency for time-critical applications.

The movement of mobile clients may cause interruptions in services. To prevent this,

Ma et al. [30] state that services should be sent to the nearby servers on edge. A

13

container consists of layers. Actually, the main difference between a container and an

image is the writable container layer over read-only layers. The data added, changed,

or saved to the container is kept here. The base image layers are sent before the

migration starts, and in the case of migration, it is considered sufficient to send only

this thin writable layer. However, in write-heavy cases, it is recommended to use data

volume.

As suggested by the study above, data volume is used by Campolo et al. [31] in their

research. The aim of the study is the horizontal migration of tasks offloaded from the

vehicle at the edge. The authors assumed that the route of the vehicle is known. In this

way, the application is sent to the target host beforehand. In the study, service pre-

relocation time and service downtime are examined. Freezing the container with the

docker export command, sending the exported file, and importing it on the new host

causes pre-relocation time. On the other hand, transferring the data volume and

running the container on the new host with this volume causes downtime.

In [32], proactive service migration with container technology is proposed for stateless

microservices. Data volume should be used because microservices are stateless. Data

volume synchronization is done periodically from the source edge server to possible

target servers. When migration is required, first data volume synchronization is

performed, then the container is stopped, and data volume synchronization is

performed again. After this point, the container is started on the target server, and user

traffic is directed here from the old server.

Zhang et al. [33] prioritized checkpointing in their work. Using Checkpoint/Restore in

Userspace (CRIU) serves to freeze a container in its last state. But since such

migrations send the entire file system of the container, the amount of migrated data

increases. Therefore, there is an extra load on the network. Also, the checkpointing

process creates a delay. On the other hand, it would be pointless to use checkpoints for

stateless containers. Adaptive compression algorithm is used for sending the file

turned into a checkpoint. A fixed algorithm is not used because it is desired to use a

compression algorithm that adapts to changing network conditions. The results show

that the adaptive algorithm is practical.

Nadgowda et al. [34] present Voyager, which is a service for complete container state

migration. Unlike classical checkpointing, the file system is sent between the host and

target servers while the container on the host is still running. After the container starts

running on the target host, it does remote reads and local writes. In other words, all

data does not arrive at the target host, and it is retrieved in the background with lazy

replication.

14

15

CHAPTER 4

4. PROPOSED MODEL

This section describes the model we recommend. The main components of the system

and how they are used are explained.

4.1.Approach

In this study, we focused on developing a framework that provides distribution

transparency so that developers who want to use it in their applications can benefit

from this framework for offloading application pieces to nearby servers. The main idea

is to use edge servers to run computation and storage intensive application parts of

mobile applications on nearby resource-rich edge servers. At this point, there is a

client-server relationship between the mobile application and the edge server. The

mobile application acts as a client and offloads its processing-intensive parts to the

edge server. At the same time, we have provided a structure suitable for service

migration between edge servers to mitigate to potential problems caused by the

mobility of the application user.

Figure 7 shows the framework parts. The developer is responsible for developing the

client application and the server application. The framework contains a server manager

that is running on the server as an application. A client manager is a library imported

into the client application. The client and server managers provide communication

between client and server at first. Then the client application and server application

can communicate freely. In addition, the client manager realizes the situation where

the user gets closer to a new server and triggers the service migration. The new and

the old server’s server managers perform the migration. Using Docker containers on

Figure 7: Client and server in the framework

16

the server speeds up offloading and migration. Also, using volume feature for

containers lets us keep the necessary files needed for the containerized application

together. The framework supports the Python programming language.

A snapshot of a sample system can be seen in Figure 8. When mobile users are

connected to the edge server, a container for that client’s application is started on the

server by the server manager. This container runs the server application developed.

The client manager receives the URI of the server application from the server manager

and enables the client application and the server application to communicate. The

server manager on a server can communicate with multiple clients.

Figure 8: A snapshot of a sample system

17

Figure 9 shows when one of the mobile users moves and switches to another edge

server while there is an operation in progress on the server. The client manager

connects to the new server manager and asks to get the volume from the old server and

the result of the unfinished operation. This volume will be used to attach to the new

container. When the result of the incomplete operation returns to the new server and

then to the client, the communication with the old server is terminated. If there is no

an incomplete operation on server, just volume transfer is performed, and new

container is run on the new server.

Figure 9: The view of migration when there is a processing on the server

18

4.2.Client-Side

The user and the application on the device that is used constitute the client-side. The

client-side includes two main parts, client manager and client application. The client

manager is imported into the client application as a library. Also, we assume that the

client-side has limited resources and can properly communicate with the server-side.

4.2.1. Client Manager

The client manager is a library that is designed to serve the developer's client

application. The developer can easily use the functions that will establish a connection

with the server by importing the client manager into their program.

The main task of the client manager is to establish the communication between the

client application and the server application. For this purpose, it uses a proxy of the

server manager to use the exposed methods of the server manager. After running a

container, it takes the URI of the server application to create a proxy object and give

it to the client application. The client manager creates a unique client id and uses it

when communicating with the server manager. In this way, it is known which client

manager and which server manager are communicating.

In addition, the client manager follows the user location in a separate thread and

initiates service migration between servers in case of server change.

4.2.2. Client Application

The developer imports the client manager while developing the client application.

Through the methods of the client manager, the client application creates and uses the

proxy object of the server application. The developer gives their application a specific

name. This name is given to the server manager by the client manager at the beginning

to use the correct base volume at the server. In this way, a copy of the base volume

containing the necessary files for this application can be used when a new container is

started on the server. Information about volumes is described in more detail in Section

4.3.3.

4.3.Server-Side

Server-side refers to the parts that the client uses on the server. It includes four main

parts, server application, container, volume, and server manager. These are located at

the edge server. Server manager is a generic application, and we assume it works all

the time on edge servers. The server application is the code written by the developer,

and it contains offloaded parts of the client application. The container exposes the

server application, and a volume attached to it contains server application itself and its

dependencies.

19

4.3.1. Server Application

The developer designs the server-side of their application according to their own

requirements. At this point, there is no need to add an extra library like Pyro. The

server application contains one class. A container will expose the methods of this class,

and the client application uses these methods. The files that the server application

needs will be accessed from the volume. The server application’s file itself is located

in the volume too. Since the container always looks for the same name, the name of

the server application must always be the same for all applications: “serverToDo.py”.

Also, the name of the class must always be the same: “ToDoClass”. On the other hand,

the server application writes the result of an operation to a file in the volume, which

can be used when the migration occurs.

4.3.2. Container

A Docker container is run on the edge server for each client connecting to the server.

The container is started with a volume attached to it. Container's job is to expose the

server application’s class that is available in the volume via the Pyro library and write

the server application’s URI to a file in the volume. Therefore, the client manager can

create an object of the server application’s class, and the client application can use its

methods. Containers work with different volumes because the needs for each

application are different. Information about volumes is described in more detail in

Section 4.3.3.

4.3.3. Volume

When the container uses the server application, there may be some files it will want to

access. These files are mounted to the container via a volume. The server application

developed is also located in this volume. Volume usage is required for persistent

storage [21]. Therefore, in case of migration, the volume is transferred to the new

server, and the container on the new server accesses the changed files.

There are different base volumes for various applications on the server because each

application's required configuration file, database, etc., may differ. The developer must

put this base volume on the server with the same name as mentioned in the client

application. It will be baseVolume_”name”. In our framework, host volumes are used.

A host volume is a directory on the host machine, and it allows both the host and the

container to reach it. Thus, the server manager is able to reach the files. Figure 10

shows the host volume usage.

20

4.3.4. Server Manager

A server manager runs on an edge server. The server manager exposes its methods via

the Pyro library. When a client manager creates the server manager's proxy object, it

can access these methods remotely.

The server manager's main task is to run containers. It finds the correct base volume

with the provided client application name and attaches a copy of it to the container.

Then, it returns the server application’s URI to the client by reading it from the

container’s volume. It uses the client id to track which client is working with which

container and volume. The second task of the server manager is to manage the service

migration in case of a location change. For this, it performs the volume transfer

between the old and new servers and delivers the result of the incomplete operation to

the client through the new server. Then, it deletes the old container and its volume.

4.4.Migration

As mentioned in Section 4.3.1, the developer develops the server application so that it

writes the results of operations to a file in the volume. Each time a new process is

started, the content of the file is cleared. In this way, if the content of this file is empty

when there is a location change, it is understood that a process is in progress. When

the client manager detects the location change while there is a process in progress in

the server, it sends the old server manager's Pyro URI and its client id to the new server

manager. Thus, the new server manager can create a proxy of the old server manager

and reach the correct volume. Then it requests the result of the unfinished transaction.

We assume that servers can communicate with each other. In the framework we

Figure 10: Host Volume

21

designed, the server information to which the client is connected is taken from a

location module by the client manager.

The activity diagram of migration, while a code offloading operation is in progress, is

shown in Figure 11. First, a volume transfer occurs at the beginning of the transfer.

When the process is completed, the result is sent to the new server, and volume

synchronization is made because there may have been changes in the volume files

during the process. Then, the manager on the old server deletes the container and

volume so that the resources are not restricted. After that, the connection is completely

transferred to the new server.

Figure 11: Activity diagram of a migration when there is a processing

on the server

22

The activity diagram of migration when there is no offloading operation is shown in

Figure 12. This time, there is only volume transfer but no synchronization.

Figure 12: Activity diagram of a migration when there is no

offloading

23

CHAPTER 5

5. PROTOTYPE IMPLEMENTATION AND SAMPLE APPLICATIONS

In this section, we describe the prototype implementation and how it works in a sample

application. Section 5.1 describes how the server manager and client manager

implemented and communicate. In Section 5.2, how the framework works is explained

with example applications.

5.1. Prototype Implementation

In this section, the prototype implementation of the components that constitute the

framework is detailed.

Figure 13 shows the relationship between the client manager and the server manager.

The client manager is a library imported into the client application and uses a proxy of

the server manager. This proxy is created by the Pyro library via URI and uses the

method calls as if it is the real one. The proxy directs its methods to the server manager

on the remote server over the network. In the prototype implementation, it is assumed

that there is no communication error between client and edge server or between edge

servers.

Figure 13: Class diagram for managers

24

5.1.1. Server Manager

The server manager is designed as a service running on the server machine. Server

manager actually contains a single class named ServerManager, and its methods are

exposed with Pyro by registering the class with a daemon. These methods are used by

clients and server managers on other servers. To publish the Pyro object, the server

manager creates a Pyro daemon and registers its class with the daemon.

The class in server manager has important functions to be used by other server

managers and client managers. These are runContainer, returnServerAppUri,

getUnfinishedOpResult, giveUnfinishedOpResult, deleteFromNewServer,

deleteOldContainer, giveVolume and getVolume. The runContainer method uses the

client id and base volume name received from the client application. The correct base

volume is selected for the volume connected to the container with the base volume

name, and a copy of the base volume is created. The client id is also used in its naming

so that which client uses which volume is followed. Server manager needs a port that

no one else uses to communicate with the container to be created. This method also

finds an unused port for container communication. It writes the port to a file in the

volume, and the container reads it from that file. As a final step, a container is started.

A Docker container is built from an image. The correct image name to use the start of

the container is obtained from the volume. At this point, we assume that the necessary

image is available on the server. Our containerized code is generic for server

applications that have previously mentioned file names and used to expose their

classes, hence its methods. Exposing the methods creates a URI. In order to create a

proxy object that will use these methods, this URI must be sent to the client. The

returnServerAppUri method returns the URI required to connect to the server

application used in the created container.

The getUnfinishedOpResult method is used when the client connects to a new server

when there is a method call in processing at the server. The client manager gives the

new server manager the URI of the old server manager. With this information, the new

server manager connects the old server manager with the Pyro proxy and calls its

giveUnfinishedOpResult method. The old server manager selects the correct volume

with the client id information received from the new server manager and sends the

volume using Rsync, waits for the unfinished operation to finish, sends the result to

the new server, and performs volume synchronization. The reason for synchronization

is the possibility of changes in the files in the volume during the operation. Receiving

the result, the client calls the deleteFromNewServer method of the new server

manager, and it calls the old server manager's deleteOldContainer method. This

method finds the container to be stopped with the client id, deletes it and its volume.

Thus, all files belonging to an old client are eliminated, and the resource is not limited

to the server.

25

If there is no offloading operation when the client connects to a new server, getVolume

method of the new server is used. It is similar to getUnfinishedOpResult method. After

creating old server manager’s proxy, it calls giveVolume method. This method only

transfers the volume to the new server. Again, old container and its volume is deleted

in the same way.

5.1.2. Client Manager

When a stationary user is in question, there is no migration. Figure 14 shows the

sequence diagram of the client application with the client manager and the server

manager to create the proxy of the server application.

The client manager is not a service like a server manager; it is a library imported to

the client application. The client manager first learns the name for base volume from

the client application, then establishes Pyro connection with server manager by

creating its proxy. Apart from these, the client manager has two main methods that

call the previously mentioned server manager methods used by the client application.

First, initServerSide allows running a container on the server by calling proxy’s

runContainer method. The second one is the giveServerAppObjToClientApp method.

It enables the client manager to create a proxy object of the server application with the

URI information it receives from the server manager’s returnServerAppUri method.

Thus, the client application can call the methods of the server application. In addition,

the client manager constantly checks whether the server to which the client is

connected has changed in a separate thread with controlServerUri method. In case of

change, it calls the server manager's necessary methods for migration:

getUnfinishedOpResult or getVolume, and deleteFromNewServer. Also,

setOperationCont and clearOperationCont methods are used by the client to set events

based on whether there is an operation on the server. addRoute and deleteRoute

methods are used to direct traffic to servers because Docker network range is the same

for all servers.

Figure 14: Sequence diagram of a client getting a proxy

26

5.1.3. Migration

Figure 15 shows the sequence diagram when migration is needed while there is an

operation going on at the server. The client manager checks a file where the server

manager’s URI is written in a separate thread. When the URI changes, the client manager

gets new URI with getServerUri method. Then it creates new server manager's proxy and

starts using it. Old URI is kept for use in migration. The client manager calls the

getUnfinishedOpResult method of the new server manager. Thus, the new server manager

asks the old server manager to transfer the volume first. Rsync is used for the volume

transfer. It is a Linux-based tool that is used for transferring and synchronizing files and

directories between computers. Then, the new server manager requests the result of the

unfinished operation from the old server manager by giveUnfinishedOpResult. In the

server application, the results are written to a file in the volume continuously. The file is

cleared every time an operation starts. An empty file indicates a process in progress. When

the result is written to the file, it means that the process is completed, and the result is sent

to the new server manager. This way is preferred so that the result of the unfinished

operation is not lost when the client's connection with the old server manager is lost. After

that, the volume is synchronized with Rsync because there may have been changes in the

volume files during the process. The second Rsync command only synchronizes the

changed files. After the result is returned to the client, since the client no longer has

anything to do with the old server, it asks the new server manager to delete the container

and volume with the deleteFromNewServer method.

Figure 15: Sequence diagram of an application when migration happens while there is an offloading

process

27

Figure 16 shows the sequence diagram when there is no offloading. When the URI of the

server manager is changed, the client manager gets URI with getServerUri method and

creates a proxy. This time getVolume method is called. It calls the giveVolume method

of the old manager. This method performs only volume transfer, no synchronization. After

the volume is transferred deleteFromNewServer method initiates deletion of the old

container and its volume.

5.2. Sample Applications

In this section we present two sample applications 1 that implements our offloading

framework. The environment includes a host machine as a client and two VMs on it as

edge servers.

1 https://github.com/hknmstdr/Framework.git

Figure 16: Sequence diagram of an application when migration happens while there is

no offloading

28

The first application is the List application. The List application simply maintains a to-do

list. On the client-side, the user is expected to add an item to the list. The list is actually

located on the server. The input is sent to the server and added to the list. Then all the

items in the list are requested by the client application. There are several pre-written items

on the list. In order to carry out experiment, some delay has been set between item readings

so that the reading process takes time, similar to a heavy computing job, and the migration

is more easily observed while the operation continues.

Figure 17 shows the sequence diagram of this application when there is no migration. The

client manager learns the required name for the base volume to be used for that client on

the server with the getBaseVolId method. For this application, this is "listApp".

Meanwhile, when the server manager starts running, it writes its URI to a shared file

between the host machine and VMs. The client manager gets this URI with getServerUri

method to create a proxy of the server manager with the Pyro library. Then, it creates a

unique client id. The client application calls the initServerSide and

giveServerAppObjToClientApp methods of client manager to start a container on the

server. It makes a proxy object of the class in the server application ready to be used in

the client application.

Figure 17: Sequence diagram of List application without migration

29

After adding a new item to the list with the addToList method, all items on the list are

read and returned from the server with the sendList method. These methods are the

methods of the server application, and the client application calls these methods using its

proxy.

We have developed a search application as the second example. This time, there is a

dictionary database on the server, and the client application gets four letters from the user.

These letters are sent to the server application as input. The server application searches

for words containing the combination of these letters in the database and returns the result

to the client application. Figure 18 shows the sequence diagram of this application when

there is no migration. The same explanations as Figure 17 apply. The only difference is

that the client application sends letters to the server using proxy's searchLetters method

and receives the result.

Figure 18: Sequence diagram of Search application without migration

30

We assume that the image used to create the container is already on the server. Dockerfile

commands used to create this image are shown in Figure 19. FROM command is used for

a base image. Since we used Python in our container, our base image is Python. Then we

need to set the working directory in the container with WORKDIR. If there are

dependencies, we need to inform and install them in the container. Our requirements file

consists of only Pyro library. After that, the container application's directory that we used

on our host machine is copied to the working directory in the container. Lastly, CMD

command runs the application in the working directory when a container is started from

the image.

5.3. Experiments

In the setup we designed to use these applications, two VMs running a Docker engine

(version 20.10.7) with Ubuntu 20.04 LTS installed on a Windows 10 machine were used.

The host machine is equipped with Intel core i5 up to 2.80 GHz and 16 GB RAM. VMs

represent servers and runs the server managers, while the host machine represents the

client and runs the client applications. Also, the Python version used in applications is 3.8.

Figure 19: Dockerfile commands

31

Docker network range is 172.17.0.0/16 for our setup, and it is the same for both VMs. We

need to direct traffic to this subnet on VM’s IP address for our client applications.

Therefore, we need to add a static route to our host’s routing table in the client

application’s beginning. In this way, client application requests that want to reach address

172.17.x.x are directed to the VM.

Figure 20 shows the average transfer times for 10 kB, 100 kB, 1 MB, and 30 MB volumes

when migration occurs between two VMs. These transfers occur while the processing-

intensive operation continues on the old server. In other words, if the unfinished operation

lasts longer than this time, the time it will take to run the container on the new server will

only be the time spent on volume synchronization. This time depends on how many

changes have been made, but in cases where there are no changes, synchronization control

is less than a second.

Figure 21 and Figure 22 show the average time it takes for the client to get the same result

from the server when there is and is not migration in applications. Times can change

according to processing time, but the important criteria is their difference. In the case of

migration, it takes an average of 1.2 seconds longer.

Figure 20 : Transfer times between VMs

32

Figure 21 : Result return times in List application

Figure 22 : Result return times in Search application

33

Service handover times are shown in Figure 22 and Figure 23. In non-offloading situation,

this time is the period between the start of the migration and the moment when the service

on the new server is ready. On the other hand, in the case of offloading, this time is the

period between the moment when the client receives the result of the unfinished operation

and the moment the service on the new server is ready. Since the volume sizes are different

(bigger for Search application) handover times are different for no offloading. However,

Figure 23 : Service handover times in Search application

Figure 24 : Service handover times in List application

34

it takes an average of 3 seconds with offloading situations. We assume that volume

transfer is completed before unfinished operation ends on server.

35

CHAPTER 6

6. CONCLUSION

The goal of this thesis is to present a framework that enables code offloading in mobile

applications and migrates services between servers at the network edge. Although mobile

devices are advanced in terms of resources, they fall short of what applications can do.

Processing-intensive sections can be run on servers at the network edge to overcome the

resource limitations of mobile devices. Therefore, we have taken an approach where the

developer will develop an application in two parts as client and server. The developer runs

the computation-intensive parts on the server and uses the results on the client, that is, on

the mobile device, through proxy objects. In addition, we ensure service continuity

without losing information by migration between servers in cases where the mobile device

is relocated.

In our study, we used proxy objects for code offloading. We have shown how useful the

Python Pyro library is in creating applications with objects that can talk over the network

with minimal effort. We used Docker containers for fast deployment and lightweight

virtualization on edge servers. We used volume to make the container stateful, and we

transferred this volume between servers in cases where migration is required. The

framework we offer allows developers to easily create applications that meet distribution

transparency and automatic migration goals.

We tested our framework with simple remote method calls. In more complex client

applications, the expected result from the edge server may be used in another part of the

application. In this case, the client application is halted only at the point where the result

is needed. This behavior allows the client application to continue until the result is needed

while the operation continues on the edge server.

In addition, we assumed that there were no connection problems in the prototype

implementation of the framework we developed. As future work, precautions should be

taken for connection problems between the client and the server. In case of a short-term

disconnection, the client can be quickly reconnected by keeping the container on the server

running. However, keeping the container running during long-term disconnections will

cause server resources to be limited. Thus, after a certain amount time, this container and

its volume can be deleted, and a completely new connection is started. If there is a

connection problem between edge servers during migration, the volume transfer may be

interrupted. In this case, it is necessary to synchronize the volumes after restoring the

connection.

In order to use this framework, edge servers are needed at points close to the mobile user.

That is why, for now, it can be offered to mobile users in areas conducive to technology

development, such as technopoles, universities, and smart spaces. An even more advanced

36

scenario would be to use it in smart cities. Considering that the accessibility of edge

servers covers an entire city, more complex users, such as connected vehicles, can also be

evaluated.

In the framework we created, we chose to make a remote procedure call using the Pyro

library, but on the other hand, using RESTful services on edge servers may be an

alternative approach, or other remote procedure call models may be utilized. We assumed

that the necessary container images are present on the servers. A connection with a

repository such as Docker Hub can be made more attractive for more users. In our study,

we used a shared document to follow the servers in the network. At this point, the objects

in the network can be tracked using the Pyro name server. In addition, a framework can

be developed in terms of security issues such as authentication for sharing information on

servers.

37

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, "Mobile Edge Computing: A

Survey," IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450-465, 2017.

[2] I. d. Jong, "Pyro - Python Remote Objects - 4.80," [Online]. Available:

https://pyro4.readthedocs.io/en/stable/. [Accessed 14 08 2021].

[3] Docker, Docker, [Online]. Available: https://www.docker.com. [Accessed 15 08

2021].

[4] M. Kaya and A. Koçyiğit, "Mobil Uygulamalarda Vekil Tabanlı Kod Taşıma

Yönteminin Farklı Seviyelerdeki Bulut Bilişim Altyapılarının Kullanılması

Durumundaki Başarımının Karşılaştırılması," in UYMS, 2014.

[5] F. Khodadadi, A. V. Dastjerdi and R. Buyya, "Internet of Things: an overview," in

Internet of Things, 2016, pp. 3-27.

[6] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama and R. Buyya, "Mobile Code

Offloading: From Concept to Practice and Beyond," IEEE Communications

Magazine, vol. 53, no. 3, pp. 80-88, 2015.

[7] W. Huaijun, T. Ling, L. Junhuai and G. Zhe, "Research and Implementation of

Mobile Cloud Computing Offloading System Based on Docker Container," in 2017

10th International Symposium on Computational Intelligence and Design (ISCID),

Hangzhou, 2017.

[8] K. Sinha and M. Kulkarni, "Techniques for Fine-Grained, Multi-site Computation

Offloading," in 2011 11th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, Newport Beach, 2011.

[9] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, "The Case for VM-Based

Cloudlets in Mobile Computing," IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-

23, 2009.

38

[10] D. Huang and H. Wu, Mobile cloud computing: foundations and service models,

Morgan Kaufmann Publishers, 2017.

[11] "Virtualization," IBM Cloud Education , 19 June 2019. [Online]. Available:

https://www.ibm.com/cloud/learn/virtualization-a-complete-guide. [Accessed 15

08 2021].

[12] A. u. R. Khan, M. Othman, F. Xia and A. N. Khan, "Context-Aware Mobile Cloud

Computing and Its Challenges," IEEE Cloud Computing, vol. 2, no. 3, pp. 42-49,

2015.

[13] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani and R. Buyya, "Cloud-Based

Augmentation for Mobile Devices: Motivation, Taxonomies, and Open

Challenges," IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 337-

368, 2013.

[14] Amazon Web Services, "Amazon EC2," Amazon Web Services, 2021. [Online].

Available: https://aws.amazon.com/tr/ec2/?ec2-whats-new.sort-

by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc.

[Accessed 15 08 2021].

[15] Microsoft, "Azure," Microsoft, 2021. [Online]. Available:

https://azure.microsoft.com/en-us/?form=MY01SV&OCID=MY01SV. [Accessed

15 08 2021].

[16] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra and A. V. Vasilakos,

"MAPCloud: Mobile Applications on an Elastic and Scalable 2-Tier Cloud

Architecture," in 2012 IEEE Fifth International Conference on Utility and Cloud

Computing, Chicago, 2012.

[17] M. T. Beck, M. Werner, S. Feld and T. Schimper, "Mobile Edge Computing: A

Taxonomy," in AFIN 2014 : The Sixth International Conference on Advances in

Future Internet, Lisbon, 2014.

[18] W. Felter, A. Ferreira, R. Rajamony and J. Rubio, "An updated performance

comparison of virtual machines and Linux containers," in 2015 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS),

Philadelphia, 2015.

[19] J. Bhimani, Z. Yang, M. Leeser and N. Mi, "Accelerating big data applications using

lightweight virtualization framework on enterprise cloud," in 2017 IEEE High

Performance Extreme Computing Conference (HPEC), Waltham, 2017.

39

[20] Docker, "Use containers to Build, Share and Run your applications," Docker,

[Online]. Available: Docker.com/resources/what-container. [Accessed 15 08 2021].

[21] Docker Inc., "Docker overview," 2021. [Online]. Available: docs.docker.com/get-

started/overview/. [Accessed 15 08 2021].

[22] Docker, "Use Volumes," Docker, 2021. [Online]. Available:

docs.docker.com/storage/volumes. [Accessed 15 08 2021].

[23] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra and

P. Bahl, "MAUI: making smartphones last longer with code offload," in MobiSys

'10: Proceedings of the 8th international conference on Mobile systems,

applications, and services, San Francisco, 2010.

[24] S. Kosta, A. Aucinas, P. Hui, R. Mortier and X. Zhang, "ThinkAir: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading,"

in 2012 Proceedings IEEE INFOCOM, Orlando, 2012.

[25] S. Wu, C. Niu, J. Rao, H. Jin and X. Dai, "Container-Based Cloud Platform for

Mobile Computation Offloading," in 2017 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), Orlando, 2017.

[26] X. Xu, X. Zhang, X. Liu, J. Jiang, L. Qi and M. Z. A. Bhuiyan, "Adaptive

Computation Offloading With Edge for 5G-Envisioned Internet of Connected

Vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8,

pp. 5213-5222, 2021.

[27] M. Kaya, A. Koçyiğit and P. E. Eren, "An adaptive mobile cloud computing

framework using a call graph based model," Journal of Network and Computer

Applications, vol. 65, pp. 12-35, 2016.

[28] X. Lin, J. Jiang, C. H. Y. Li, B. Li and B. Li , "Circa: collaborative code offloading

among multiple mobile devices," Wireless Networks, vol. 26, p. 823–841, 2020.

[29] J. Tang, R. Yu, S. Liu and J.-L. Gaudiot, "A Container Based Edge Offloading

Framework for Autonomous Driving," IEEE Access, vol. 8, pp. 33713 - 33726,

2020.

[30] L. Ma, S. Yi and Q. Li, "Efficient service handoff across edge servers via docker

container migration," in SEC '17: Proceedings of the Second ACM/IEEE Symposium

on Edge Computing, San jose, 2017.

40

[31] C. Campolo, A. Iera, A. Molinaro and G. Ruggeri, "MEC Support for 5G-V2X Use

Cases through Docker Containers," in 2019 IEEE Wireless Communications and

Networking Conference (WCNC), Marrakesh, 2019.

[32] I. Farris, T. Taleb, H. Flinck and A. Iera, "Providing ultra-short latency to user-

centric 5G applications at the mobile network edge," Transactions on Emerging

Telecommunications Technologies, vol. 29, no. 4, 2017.

[33] X. Zhang, W. Wu, C. Zhang and W. Song, "Dynamic Adaptive Network Edge

Service Migration Method Based on a Docker Container," in 2019 IEEE 5th

International Conference on Computer and Communications (ICCC), Chengdu,

2019.

[34] S. Nadgowda, S. Suneja, N. Bila and C. Isci, "Voyager: Complete Container State

Migration," in 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), Atlanta, 2017.

