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ABSTRACT 

 
SYSTEMS BIOLOGY ANALYSIS OF KINASE INHIBITORS IN LIVER CANCER 

CELLS USING NEXT GENERATION SEQUENCING DATA 
 
 

Narcı, Kübra 
Ph.D, Department of Medical Informatics 

Supervisor: Assoc. Prof. Yeşim Aydın Son 
Co-Supervisor: Prof. Dr. Rengül Çetin Atalay 

 
September 2021, 155 pages 

  
 
The underlying mechanism for the development of Hepatocellular Carcinoma (HCC) is 
highly complex due to tissue heterogeneity.  Although the traditional approaches mainly 
focus on a single gene or locus, understanding the variations in the signaling pathways of 
cancerogenic cells during hepatocarcinogenesis may help to develop novel strategies for 
treatment and drug development to prevent cancer progression in the patients.  

This thesis study primarily focuses on unveiling the transcriptome sequencing of 
differentially expressed genes in HCC, which mainly concentrate on known disease 
signaling pathways. For this purpose, RNA-seq data of two HCC cell lines were targeted 
by three different kinase inhibitors and two of their combinations with Sorafenib. The 
functional pathways enriched with differentially expressed genes were identified by 
solving a graph problem called as Prize Collecting Steiner Tree (PCST) on human 
interactome generating inhibitor specific networks. As a result of this study, we found that 
combinatory treatment of Sorafenib with PIK-75 to HCC cell lines Huh7 and Mahlavu 
stimulates apoptosis, while TGX-221 with Sorafenib strikingly promotes cell growth 
antagonizing cellular death, especially for Mahlavu cell line. The states of transcriptomes 
for different kinase inhibitors were visualized using Cytoscape and molecular interactions 
were scanned deeply to understand synergistic or antagonistic effects of these kinase 
inhibitory treatments.  
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Hence, this study provides comprehensive pathways analysis for differential kinase 
inhibitor reactions of HCC. Using these data, novel HCC drug targets were identified 
which may lead to more cost-effective and diverse treatment options available for the 
treatment of liver cancer. 

Keywords: Hepatocellular Carcinoma, Cellular Signaling Pathways, RNA Sequencing, 
Prize Collecting Steiner Algorithm, Network Modeling 
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ÖZ 

 
YENİ NESİL DİZİLEME TEKNİĞİ KULLANILARAK KARACİĞER KANSERİNİN 

SİSTEM BİYOLOJİSİ ANALİZİ 

 
 

Narcı, Kübra 
Doktora, Tıp Bilişimi Bölümü 

Tez Yöneticisi:  Doç. Dr. Yeşim Aydın Son 
Eş Danışman: Prof. Dr. Rengül Çetin Atalay 

 

Eylül 2021, 155 sayfa  
 

 
Hepatosellüler Kanser (HCC) gelişimi altında yatan mekanizma, kanser dokularının 
heterojenliği nedeniyle oldukça karmaşıktır. Geleneksel yaklaşımlar temelde tek gen veya 
lokusa odaklansa da hepatokarsinogenez sırasında kanserojen hücrelerin sinyal 
yollarındaki varyasyonları anlamak, hastalardaki kanserin ilerlemesini önlemek adına 
tedavi ve ilaç keşfi için yeni stratejiler geliştirmeye yardımcı olabilir.  

Bu doktora tez çalışmasının amacı, HCC içerisinde değişken eksprese edilen genlerin 
başlıca bilinen hastalık sinyal yolaklarında yoğunlaşarak transkriptom dizilemesi yoluyla 
ortaya çıkarılmasıdır. Bu amaçla, iki çeşit HCC hücre hattı, üç farklı kinaz inhibitörünün 
tekli veya Sorafenib ile kombinasyonları olacak şekilde hedeflenerek RNA dizilemesi elde 
edildi. Price Collecting Steiner Tree (PCST) algoritmasının insan transkriptom ağı 
üzerinde, diferansiyel kontrol edilen genlerle çözümü bize bu genlerle yoğunlaştırılmış 
fonksiyonel yolaklar sunmuştur. Bu tez çalışması sonucunda, Sorafenib ve PIK-75 
inhibitörlerinin birlikte kullanılması ile hem Huh7 hem de Mahlavu hücre hatlarında 
apoptozu uyardığını buna karşın TGX-221 inhibitörü ile Sorafenib’in birlikte 
kullanılmasının çarpıcı bir şekilde hücre büyümesini desteklediğini bulduk. Bu 
kombinasyonun özellikle Mahlavu hücre hattında Sorafenib ile oluşan hücresel ölümü 
antagonize ettiği gösterilmiştir. Farklı kinaz inhibitörleri ile elde edilen diferansiyel gen 
ekspresyon statüleri, Cytoscape aracı kullanılarak görselleştirilmiş ve bu kinaz 
inhibitörlerinin olası sinerjistik ve antagonistik etkilerini anlamak adına yolaklar 
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içerisindeki moleküler etkileşimler derinlemesine analiz edilerek karşılaştırmalar 
yapılmıştır. 

Dolayısı ile, bu çalışma HCC hücrelerinin kinaz inhibitörleri karşısında oluşturduğu 
diferansiyel ekspresyonları incelemek adına kapsamlı bir yaklaşım sunmaktadır. Bu 
veriler ışığında, karaciğer kanser tedavisi için daha uygun maliyetli seçenekleri 
çeşitlendirebilecek yeni ilaç hedefleri belirlenmiştir.  

 
Anahtar Sözcükler: Hepatoselüler Kanser, Hücresel Sinyal Yolakları, RNA dizileme, 
PCST, Ağ Modellemesi  
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CHAPTER I 1 
C 

HAPTER 

INTRODUCTION 

 
In this chapter, initially, the concepts on Hepatocellular Carcinoma (HCC), major 
HCC signaling pathway PI3K/Akt/mTOR, and kinase inhibitors which constitute the 
main biomedical subject area of this thesis are represented to better express the 
motivation.  Then, a survey on the bioinformatics techniques and methods like next-
generation techniques used for gene expression analysis, conventional RNA-seq 
analysis, network construction to analyze expression data, and systematic approaches 
for gene expression analysis are reviewed. The initial experimental analysis results, 
which constitute the main source of motivation that forms the basis of this doctoral 
study are explained. Finally, the general motivation and rationality of the study are 
detailed.   

1.1. Hepatocellular Carcinoma 

According to 2020 WHO-Global Cancer Observatory (GCO) reports, every one of five 
men and every one of the 6 women will be diagnosed with one of type of cancer in 
their lifetime; and unfortunately, one of eight men and one of eleven women will lose 
their life just before 75 years old because of the disease. Considering the numbers, it 
is not shocking that cancer is one of the most dangerous diseases in the world (Bray et 
al., 2018). The estimated number of cases for mortality and morbidity of cancer in the 
World are 9.556.027 and 18.078.957 in 2018 in all ages and sex types. According to 
the Global Cancer Observatory in Turkey, cancer incidences are above the world 
average. Turkey is facing a drastic increase in the absolute number of cancer cases, by 
2040 the number is expected to be raised by 91.6% for mortality and 75.1% for 
morbidity in Turkey (World Health Organization, 2015).    

Primary liver cancer originates from hepatocytes and cholangiocytes. It is the 6th most 
common cancer in the world by mortality and it is 3rth to colorectum cancer by 
mortality (World Health Organization, 2015). Hepatocellular carcinoma (HCC), also 
called hepatoma or HCC, is the most common type of primary liver cancer (Perzet et 
al, 2006). HCC, which constitutes 75% of primary liver cancers, is the 5th most 
common and the 3rd most lethal cancer in the world as shown in Figure 1 (Bray et al., 
2018; Perz et al, 2006). While the death rates from other cancers are decreasing due to 
advances in diagnosis and therapeutics, the incidence and the mortality of HCC follow 
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an increasing trend due to the high rate of obesity-associated with liver diseases 
(Aleksandrova et al., 2016; B. Sun & Karin, 2012). 

 

 
 
Figure 1:Percentages of new cancer cases and cancer deaths worldwide in 2018 (Bray et al., 
2018). 
 

1.1.1. Risk Factors 

Hepatocellular carcinoma (HCC) develops essentially from hepatocytes and people 
with liver scarring (cirrhosis) are more likely to develop HCC. Liver scars result from 
chronic liver diseases. Furthermore, Hepatitis B (HBV) or C (HCV) virus infections 
are known to be directly linked to HCC (Jung et al., 2000; Ozcelik et al., 2003; Sun & 
Karin, 2012). In South Asia, high rates of HCC correlates to endemic HBV infections 
and in western countries the main risk of HCC is related to HCV infection (Bosch et 
al., 2004).  

Among the environmental risk factors mentioned above, alcohol consumption is also 
linked to HCC. In a large cohort study considering multiple factors like family, 
drinking history and diabetes, they show that current or heavy drinkers were exposed 
to a high risk of HCC (Ogimoto et al., 2004). Moreover, dietary exposure to aflatoxin 
B1 significantly increases HCC risk, which mainly depends on geographical 
conditions. In Asia and Africa, high incidence of aflatoxin B1 increases susceptibility 
to HCC (Hamid et al., 2013). Cigarette smoking is causally associated with HCC, and 
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multiple effects of heavy drinking and smoking have been studied previously (Kuper 
et al., 2000).  

Type 2 diabetes is also associated with the risk of HCC.  Type 2 diabetes resulting 
from the constitutive stimulation of the insulin-like growth factor (IGF) pathway is 
considered as promoting HCC related pathways (El-Serag et al., 2006).  In a large 
cohort HCC-control genome-wide association study, more than 20 loci are correlated 
as modulating type 2 diabetes (Salanti et al., 2009).  High overall body mass rate 
(obesity) and diabetes, together,  are believed to be a factor that may play role in %16 
of HCC cases (Schlesinger et al., 2013). Apart from environmental or life-style related 
risk factors (listed in Figure 2), there are genetic bases of HCC. Several genetic 
abnormalities can give rise to liver injury, fibrosis and cirrhosis development. Human 
monogenic disorders of AAT deficiency, porphyria, hemochromatosis and 
tyrosinemia type I are the other syndromes associated with high risk of HCC (Dragani, 
2010).  

1.1.2. Initiation and Development 

 

Figure 2: Risk factors and development of HCC. Risks factors including both environmental 
hepatitis B or C virus, excess alcohol consumption, cigarette smoking, aflatoxin B explosion, 
and genetic predispositions like obesity, diabetes and genomic abnormalities lead to liver 
injury, and through continuous chronic inflammations, fibrosis and cirrhosis induces 
hepatocellular carcinoma.   

 
Development of HCC is described as a multicomplex biological process, where 
chronic liver disease is initiated due to a chronic inflammation or tissue damage. 
Injured hepatocytes promote hepatocyte death which is followed by liver regeneration 
through activation of chemokines and remodeling of cellular signaling events and 
finally uncontrolled cellular growth and proliferation. Increased genomic instability 
based on increased amount of reactive oxygen species (ROS) causes oxidative stress 
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which leads to accumulation of somatic mutations and finally leading to 
carcinogenesis. The increased proportion of proliferating cells leads to induction of 
several cell signaling pathways involved in liver regeneration, such as growth factor 
signaling, cell differentiation, angiogenesis and cell survival (Ersahin et al., 2015; 
Farazi & DePinho, 2006).  

1.1.3. Acquired Capabilities Through Development of HCC 

Transformation of a normal liver cell to hepatocellular carcinoma malignancy occurs 
through acquiring cancer features which in turn attenuate cellular growth and 
proliferation. During tumor invasion and progression, proliferation and cell survival 
signals are mainly activated through continuous activation of growth factors. Cellular 
differentiation is mainly due to multiple factors affected from dysregulation of 
signaling pathways. Supporting proliferative signaling, avoiding growth suppressors 
and cell death signals, enabling continuous replication, initiation of angiogenesis, 
invasion and metastasis, dysregulation energy mechanisms and resisting to the 
immune destruction are major hepatocellular carcinoma (HCC) hallmarks to gain 
malignancy (Ersahin et al., 2015; Hanahan & Weinberg, 2011). Acquired tumorigenic 
capabilities through the normal liver to HCC listed in Figure 3.      

 
Figure 3: Acquiring tumorigenic capabilities from normal liver to Hepatocellular carcinoma 
development. Several signaling pathways are activated to provoke cell growth, proliferation, 
invasion, angiogenesis and metastasis, and control cell cycle, cell death and immunity 
destruction (Ersahin et al., 2015).  

 
Downregulation of tumor suppressors like p53, Rb and p16 proteins, upregulation of 
c-myc and cyclin D1 and overexpression of E2F members stimulate cellular growth 
and proliferation that constitute activation of survival pathways. Endothelium growth 
factor (EGF), Insulin growth factor (IGF) and Hepatocyte growth factor (HGF-MET) 



5 
 

transmit the proliferation signal through PI3K/AKT/mTOR and RAS/RAF/MEK/ERK 
pathways (Moeini et al., 2012).   

In HCC, growth arrest and DNA damage 45G (GADD45G) is frequently inactivated, 
and GADD45G gene in JAK/STATA3 pathway provokes senescence (Li Zhang et al., 
2014b). Gained resistance to transforming growth factor beta (TGF-b) inhibition is 
commonly found in early stages of hepatocyte tumorigenesis. In advanced stages, 
TGF-b is downregulated to ensure resistance to cell death (Thomson et al., 2011). 
Moreover, increased levels of growth factors and promotion of anti-apoptotic 
pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 
signaling, diminish of death receptors like DR5 and Fas, and mutations in the tumor 
suppressor genes like p53 provide escape from apoptosis in HCC cells (Okamoto et 
al., 2007).  

Telomere dysfunctions, oncogene activations, DNA damages and ROS maintained 
oxidative stress leads to permanent cell cycle arrest. In order to evade this stage, HCC 
gains replicative immortality mainly through overexpression of telomerases to 
maintain telomere length stable (Oh et al., 2003). Recently it was found that there is a 
correlation between telomere length and the aggressive behavior of HCC (Ozturk et 
al., 2009). Vascularization is another feature of HCC. Angiogenesis and 
vascularization evolve by interactions of tumor cells and vascular endothelial cells. 
The balance between them is unsettled due to increased amount of pro-angiogenic 
factors like vascular endothelial growth factor (VEGF), angiopoietins (Ang), 
fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) (Papetti & 
Herman, 2002). Neuropilin receptors (NRP) is a membrane bound factor in 
vascularization of HCC. Pro-angiogenic signals are majorly released in response to the 
hypoxic condition and nutrient depletion during tumorigenesis. VEGF and FGF 
upregulation are found in malignant types of HCC (Yoshiji et al., 2002).    

For invasion and metastasis of HCC, cell detachment is onset. Promotion of twist, 
snail, slug, vimentin and zeb1 and zeb2 and decrease in E-cadherin and HNF-4Kα 
appear on epithelial-mesenchymal transition (EMT) enabling poor prognosis 
(Thomson et al., 2011). Glucose is the major suppliant of the tumor cells in order to 
provide energy for continuous growth and proliferation. Tumor cells reprogram the 
cellular energy mechanism to achieve this feature. The mechanistic target of 
rapamycin (mTOR), found to be downstream of PI3K/AKT pathway, monitors cellular 
energy level. When there is sufficient energy need, mTOR promotes biosynthesis 
through suppressing autophagy which supplies recycled metabolites to the cell, while 
PI3K/AKT pathway attenuates glucose uptake (Qiao et al., 2016b).   

Based on the tumor microenvironment, in HCC development, growth factors, 
cytokines, chemokines and ROHs productions are increased leading to tumor initiation 
and contributing progression. Pro-inflammatory cytokines like Interleukin 1 beta (IL-
β), Tumor necrosis factor alpha  (TNF-α) and Platelet-derived growth factor (PDGF) 
together with Kuppfer cells and Hematopoietic stem cells (HSCs) stimulates cellular 
growth, inflammation, metastasis and invasion mainly through NF-kB and AKT 



6 
 

signaling pathways (Manning & Cantley, 2007). HCC cells evade immune protection 
mainly through immunosuppressors like Programmed death-ligand 1 (PD-L1), 
Indoleamine-pyrrole 2,3-dioxygenase (IDO), cytokines (IL-6, IL-10, VEGF and TGF-
β). Macrophages are important factors in immune destruction system since they 
infiltrate leukocytes. The status of tumor-associated-microphases and other immune 
cells are important in tumor microenvironment for required response (Cavallo et al., 
2011).   

1.1.4. Genetic Heterogeneity 

Genome-wide molecular profiling of hepatocellular carcinoma (HCC) tissues using 
whole genome or whole exome sequencing techniques contributed to a growing 
understanding of the genetic background of cancer progression (Dragani, 2010; 
Schulze et al., 2016). Several molecular abbreviations across the tumors are identified 
which form subtypes of HCC tumors. HCC tumors are classified into two groups 
according to their aggressiveness in biological features. The first group is called as 
aggressive type of HCC with increased genetic instability, proliferation, activation of 
survival pathways, damage in tumor suppressor with larger tumor size, poor prognosis, 
and high rate of recurrence. The aggressive tumors are also sub-grouped according to 
TGF-beta pathway activation, cholangioma-like gene signature, vascular invasion and 
stemness markers.  Besides these HCC major types, different DNA mutations and 
environmental exposures like smoking, drinking or toxics contribute as other levels of 
heterogeneity (Goossens et al., 2015).       

Several aberrant genes are acknowledged in HCC pathogenesis including P53 (Tumor 
protein P53), PTEN, Breast cancer type 2 (BRCA2), SMAD2 genes, c-myc and cyclin 
D1 proteins (Bae et al., 2007; Brito et al., 2012). Besides to these genetic 
abbreviations, there are several overexpressed signaling pathways observed in HCC. 
Stimulation of these pathways is associated with mostly tyrosine kinases which are 
commonly a part of phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR pathway 
(Ersahin, Ozturk, & Cetin-Atalay, 2015). Another significant mechanism underlie in 
HCC development is MAPK pathway mostly activated though Ras protein and 
vascular endothelial growth factor (VEGF) pathway. Studies show that heterogenic 
nature of HCC is mostly caused by the variations of mutations and alterations in 
expression levels of these key proteins involved in these mentioned signaling pathways 
(Moeini et al., 2012).  

1.2. PI3K/AKT/mTOR Signaling Pathway 

PI3K/AKT/mTOR is the major signaling pathway in cell cycle. It directly regulates 
the expression of proteins involved in protein synthesis, cellular proliferation, survival, 
metabolism, and differentiation which all these aspects may contribute to cancer cells 
ability to survive and progress. The constitutive activation of PI3K/AKT/mTOR 
signaling pathway is frequently observed in liver cancers. Phosphatidylinositol 3-
kinase (PI3K), a serine/threonine protein kinase (Akt) and mammalian target of 
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rapamycin (mTOR) are the major proteins in the pathway. The stimulation of these 
proteins are characteristically through tyrosine kinases, hormones and mitogenic 
factors (Ruggero & Sonenberg, 2005). The PI3K/AKT/mTOR pathway is illustrated 
in Figure 4.  

 
 
Figure 4: Overview of PI3K/Akt/mTOR signaling pathway. The activation of PI3K (PIK3CA 
protein) stimulates conversion of PIP2 to PIP3. PTEN negatively regulates the pathway by 
dephosphorylation of PIP3. Phosphorylation and activation of Akt (AKT3 protein) effects. 
The network is extracted from the KEGG PI3K/AKT signaling pathway.  

Incessant Akt phosphorylation is the key factor for abnormal activation of 
PI3K/AKT/mTOR signaling pathway which is frequently due to inactivating 
mutations or loss of heterozygosity in a tumor suppressor protein, Phosphatase and 
tensin homolog ( PTEN)  antagonizes for Akt activation by dephosphorylating of PIP3, 
or mutations activating PIK3CA gene, or damage in the negative-feedback loop from 
mTOR signaling pathway (Bae et al., 2007; Buontempo et al., 2011; Engelman, 2009; 
Kawamura et al., 1999). When Receptor Tyrosine Kinases (RTKs) or G protein-
coupled receptors (GPCRs) are induced by growth factors, phosphatidylinositol 4,5-
biphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3) conversion 
occurs at the cell membrane by class IA and class IB PI3Ks. This conversion presents 
docking sites for phosphoinositide-dependent kinase 1 (PDK1) and phosphoinositide-
dependent kinase 2 (PDK2) which one by one will activate Akt (Fujimoto et al., 2012).  
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mTOR kinase can connect to both PI3K/AKT and Raf/MEK/ERK signaling pathways 
through RAS. mTOR is found in two forms: as mTORC1 or mTORC2, but PI3K and 
MAPK signaling pathways control mTORC1 through phosphorylation of TSC2. 
Which in turn targets p70S6K leading to decrease of insulin signaling for PI3K, 
forming a negative feedback loop (Villanueva et al., 2008). Akt protein has several 
downstream effects like activating CREB and mTOR, inhibiting p27, localizing 
forkhead box O (FOXO) to cytoplasm. mTOR is a key protein in PI3K/Akt/mTOR 
signaling since it acts on both upstream and downstream of Akt. mTOR regulates the 
protein synthesis of the key molecules necessary for cell growth, proliferation, and 
angiogenesis. Akt induces cell survival through positive regulation of IkB kinase 
which is the master regulator of NF-kB cells (Porta et al., 2014). Akt promotes cell 
survival by avoiding proapoptotic signals from BAD and BAX. Akt expression also 
phosphorylates MDM2 which upsets p53-mediated apoptosis and GSK-α having role 
in gluconeogenesis controlling cellular energy. (A Villanueva & Llovet, 2013) 

1.2.1. PI3K Kinase Classes 

Phosphatidylinositol 3-kinases (PI3Ks) are from a family of lipid kinases. They 
phosphorylate PtdIns lipids to PIP3 second messengers on the cell membrane. They 
are the main catalyzers of the PI3K/AKT/mTOR signaling pathway. In the family there 
are three classes which are differentiated through their coding genes, structures, and 
substrate preferences structures (Vanhaesebroeck et al., 2010). Among them, class I 
PI3Ks are the most studied type because of their fundamental functions. It is a unique 
ability of class I PI3Ks to catalyze the phosphorylation of PIP2 to PIP3. Class Ia 
Phosphatidylinositol 3-kinase (PI3K) are heterodimeric lipid kinases. The studies 
found that increased levels of PIP3 is also related to carcinogenesis and hence rather 
than class II and class III PI3Ks, specifically class I PI3Ks are related to cancer 
development as only class I generates a substrate for PTEN  (Fruman & Rommel, 
2014; Jia et al., 2008). PTEN is frequently lost in many cancer types leading 
constitutive activation of PI3K (Suzuki et al., 1998). 

Two of Class I members of PI3K have heterodimeric subunits of p110 and p85 
regulatory subunits respectively, Class IA p110-α and Class IB p110-β are well studied 
enzymes in cancer. PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha) gene encoded PI3K isoform p110α is activated through receptor 
tyrosine kinases (RTKs) and RAS oncogene, mutations in these proteins mostly 
regulates growth, metabolism, and angiogenesis (Zhao & Vogt, 2010).  

The other PI3K isoform p110β (encoded from PIK3CB gene)  is regulated exclusively 
by G protein‐coupled receptors (GPCRs) and has critical functions in inflammatory 
cells (He et al., 2015). They show that PTEN-negative cancers, p110-β is very critical. 
PTEN-lost cells depend on p110-β activity for proliferation. In an animal model of 
prostate tumor epithelium, PTEN-negative cells showed a diminished tumorigenesis 
through decreased Akt phosphorylation with inhibition of p110-β but not by p110-α  
(Berenjeno et al., 2012).  
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On the other hand, in another study, they show that the main PI3K activity is on to  
p110-β inhibitor when PTEN is mutated. p110-β inhibitory treatment results with an 
increased activity of PI3K signaling in PTEN-deficient models of prostate cancer, 
probably through a feedback inhibition through IGF1R causing activation of androgen 
receptor kinases and so of isoform p110-α. Thus, they suggested a combined inhibition 
of p110-α and p110-β isoforms for an efficient tumor regression (Schwartz et al., 
2016).   In another study, they also proved unequal steatosis actions of PI3K α and β 
isoforms. They observed significantly more liver lipid accumulation in knockout of 
p110-α than p110-β in high-fat-diet fed (HFD-fed) mice. They conclude that, PI3K 
p110-α incite steatosis possibly through one of three ways; atypical protein kinase C 
activation, inducing lipogenesis, promoting fatty acid uptake from the blood 
(Chattopadhyay et al., 2011). Therefore, those multiple studies shows that the actions 
of the p110-α and p110-β isoforms are variable by the cell content and cellular 
mechanism.  

1.3. Current therapies for HCC 

The options for Hepatocellular cancer (HCC) treatments are curative resection of the 
tumor cells, liver transplantation from a health donor, radiofrequency ablation (RFA), 
trans-arterial chemoembolization (TACE) and systemic targeted agents like sorafenib 
or Regorafenib (Raza & Sood, 2014).  

Treatment alternatives for HCC heavily depend on the stage of the tumor, the reserve 
of the optimal liver function and in general patient performance. Depending on the 
patient’s compatibility, liver transplantation or surgical resection of the tumor are the 
only options if the patient is in early stages of the cancer. However, even if the surgical 
operations are successful in first side, regeneration of the carcinoma cells is common, 
and transplantation is restricted by liver obtainability.  Moreover, when the patient is 
not compatible to surgical resection due to late diagnosis or advanced stages of medical 
treatment, chemotherapy and radiotherapy are the other systematic treatment options, 
yet they are generally ineffective since the majority of HCC cases are noticed in 
advanced stages (Llovet et al., 2012; Omata et al., 2010).  

Advanced molecular studies in HCC have found interpenetrating actions in various 
signaling pathways and some novel proteins representing key targets for new 
molecular therapeutic options. Yet, for now, Sorafenib and recently approved drug 
Regorafenib are the only targeted agents to cure HCC.   

1.3.1. Sorafenib Inhibitor 

For the patients whose major treatment options are not promising, Sorafenib (Nexavar, 
BAY43-9006) is accepted as the standard systemic treatment for staged HCC (Llovet 
et al., 2012). Unfortunately, Sorafenib treatment improves the patient survival rate 
only by 2.5 months (Cheng et al., 2009). The main reason behind the ineffectiveness 
of Sorafenib is the fact that RAS oncogene, which is the main target of this drug, is 
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frequently mutated establishing an ineffective docking site to the inhibitor (Llovet, 
Ricci, et al., 2008). 

While surveying on the effect of new therapeutic agents like sunitinib, linifanib, 
erlotinib, linifanib, evorolimus and brivanib to HCC continue in phase II and phase 
III, they do not indicate any survival benefit. The reasons for phase II and phase III 
failure in HCC have been examined.  The main reasons for unsuccessfulness of these 
drugs is the heterogenic nature of HCC and cross talks between the major signaling 
pathways having role on growth, angiogenesis, progression and apoptosis and lack of 
information on the major drivers for tumor progression (Llovet & Hernandez-Gea, 
2014). Moreover, as the signaling pathways involved in major life processes are 
redundant, they compensate each other through some key molecular regulations, when 
drivers of a hyperactive pathway are inhibited. Which makes the signaling pathways 
with superfluous functions due to the potential cross-talks between them, which could 
be a reason for the ineffectiveness of these multi-kinase inhibitors (Moeini et al., 
2012).  

For patients who developed tolerance to Sorafenib or failed to get benefit of it, 
Regorafenib (Bayer, BAY73-4506) is replaced by Sorafenib. Regarding the fact that, 
like Sorafenib, Regorafenib is also a multi-kinase inhibitor (Personeni et al. , 2018) 
and proposing the same treatment strategy. According to the clinical trials, the median 
survival rate of Regorafenib is only 10.5 months. Thus, it also failed to benefit for 
overall survival (Bruix et al., 2017).     

Hopefully, other than multi-kinase inhibitors, there are also several inhibitors targeting 
PI3K/AKT/mTOR pathway such as, PI3K inhibitors, dual PI3K/mTOR pathway 
inhibitors, mTOR inhibitors and AKT inhibitors. Now, these inhibitors are in clinical 
development with potential therapeutically effect (Rodon et al., 2013).  The chemical 
structures of the drug agents; Sorafenib, PIK-75 and TGX-221 studied in this thesis 
are represented in Figure 5.  
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Figure 5: Chemical structures of multi-kinase inhibitor Sorafenib, and of p110a  and p110b 
inhibitors PIK-75 and TGX-221. Sources: Sorafenib PubChem ID is 216239, PIK-75 
PubChem ID is 10275789 and TGX-221 PubChem ID is 9907093.  

1.3.2. PIK-75 and TGX-221 Inhibitors 

One of main components of PI3K/AKT/mTOR pathway is PI3Ks. The PI3Ks family 
compose four class. Among the members, class I PI3Ks are able to activate AKT. 
They  are heterodimeric lipid kinases composed of p110 catalytic subunits and p85 
regulatory subunits (Fruman & Rommel, 2014). PIK-75 is a p110a inhibitor, 
reducing cell survival by decreasing mitochondrial activity shown previously in 
ASM cells and lung fibroblasts. TGX-221 is a p110b inhibitor, partially inhibiting 
platelet-ECC interaction, aggregation, and granule binding in the ECC model.  

Previously, the effects of p110a  and p110b inhibitors to Huh7 and Mahlavu cell 
lines were studied globally at CANSYL laboratory, METU. According to the 
experimental results, PIK-75 was very effective to inhibit cellular growth and reduce 
migration in both cell lines while TGX-221 was not effective at all. Furthermore, in 
this study, single Sorafenib and its combinational effects with p110a  and p110b 
inhibitors were also considered. It was found that while combinational therapy of 
PIK-75 and Sorafenib significantly reduces cellular proliferation in Huh7 and 
Mahlavu, addition of TGX-221 to Sorafenib treatment attenuates cellular growth 
antagonizing Sorafenib action. Yet, the molecular action underlying this has not been 
revealed in that study (Ersahin, 2014).  

1.3.3. Combinational Therapy 

As discussed before, it is now clear that one drug targeting to one receptor is not an 
effective way for considering the redundancy in the signaling pathways (Maggiora, 
2011). Heterogenic nature of HCC allows for cross-talks between the main signaling 
pathways and generally inhibition of just one super-active component not enough to 
retain normal functions of the cell (Llovet & Hernandez-Gea, 2014). Instead of using 
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single drug targets, as shown in the CANSYL laboratory, combinational targeted 
therapies can increase the efficiency of the existing drugs and a synergistic effect can 
be gained through combination of the multi-kinase inhibitor Sorafenib with other anti-
angiogenic or anti-proliferative inhibitory molecules (Ersahin, 2014).  

Recently, new therapeutic methods have been started to use combinations of inhibitory 
agents targeting PI3K/AKT/mTOR pathway like Sorafenib with other anti-angiogenic 
and anti-proliferative agents. For now, combinations of Sorafenib to Brivanib or 
Erlotinib did not exceed the survival level provided by single Sorafenib treatment (W. 
Sun & Cabrera, 2018). But in a more recent study, they show that the combinational 
therapy of bevacizumab targeting VEGF and atezolizumab targeting directly to an 
immune checkpoint protein managed to show superior survival rate than classical 
treatment of Sorafenib (Ray, 2020).  

In HCC, gain of function mutations, oncogene activations or overexpression of growth 
factors activates Ras/MEK/ERK and PI3K/AKT/mTOR pathways. Components of 
these pathways are having an active role in gaining resistance to the targeted therapies. 
That is why these two pathways are the major targets for co-inhibition-based 
combinational therapies. Therefore, in the light of previously discussed studies, more 
combinations might be worth trying.   

1.3.4. Drug Repurposing 

Using the old known drugs for therapy of new diseases for unexplored medical uses 
called as drug repurposing (or drug repositioning and drug reprofiling) is a former 
method but it is gaining a great attraction in recent years again. Drug development 
process is complex, costly, lengthy, and often not successful because of various 
reasons (Talevi & Bellera, 2020). Frequently, animal models might not be coherent to 
the target disease and drug mechanism. Therefore, new clinical applications of the 
existing drugs instead of novel drug search approaches would be more practical. A 
great amount time is also be preserved since the long clinical trials would be skipped 
since it is already approved for use in humans. The other advantage of using a known 
drug would be the fact that there could be so much studies on that the molecular 
mechanism of it should be already known (Shim & Liu, 2014).     

1.4. A Survey on the Methods Used for Conventional Drug Target Studies 

Considering the failure of present drugs to eliminate cancer cells in Hepatocellular 
carcinoma (HCC), identification of novel drug-target connections could be an pivotal 
step for HCC therapy (Llovet et al., 2012). Currently, the discovery of drug targets 
against cancer mostly focuses on molecular agents with aberrant functions in 
regulatory signaling pathways. Experimental investigation of a single gene or locus is 
costly and time consuming while the only benefit of them is exploration of a new 
oncogene. Frequently, study of a single gene fails to satisfy the need of solving the 
complex interactions of its pathogenesis. Actually, the network of cancer invasion, 
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progress and growth is multifaceted due to interlaced regulatory signaling pathways 
and the connections of key or hub oncogenic proteins (Medina-Franco et al., 2013). 
New emerging computational methods can facilitate the work. Hence, rather than 
traditional experimental methods, new computational techniques should be used to 
find novel drug target relationships.   

High throughput data like genomic, epigenetic, transcriptomic, or proteomic all 
together made it possible to study complex molecular mechanisms for drug discovery. 
Following the rise of high throughput genomic technologies, several studies using 
array or sequencing based methods enabled more comprehensive molecular profiling 
of HCC.  Bioinformatic analysis of the high throughput data would not only accelerate 
immediate drug target identification, candidate searching or eliminating false positives 
but also it can provide a broad range search to understand the mechanism of the effects 
and even to understand side effects of the drugs or cancer recurrence mechanism 
(Paolini et al., 2006). Furthermore, the only benefit of high-capacity technologies is 
not only scanning a broad range of samples simultaneously, but the major advantage 
of them is to group and compare these gene profiles to find disease-causing elements. 
Recently, using RNA sequencing techniques to analyze the whole transcriptome of 
HCC cells has become very popular. As usage of RNA-seq became prevalent, 
downstream analysis methods started to range, and the demand for variety methods is 
needed.  

1.4.1. RNA Sequencing 

Currently, instead of concentrating on just a single molecule, it is common to use next 
generation sequencing techniques to profile the whole transcriptome of the cell 
comparing the normal versus the conditional (treatment) status. Concordantly, a set of 
genes affected though the treatments can be discovered for further study. RNA 
sequencing is one of the most used high capacity methods for rapid and reliable gene 
expression profiling (Chu & Corey, 2012).   

RNA-seq application is very easy and straightforward. The steps of the RNA-seq 
analysis workflow are described in Figure 6: First, an appropriate experimental design 
including negative controls are conducted. Since the structure of the transcriptome 
studies, gene expression level is not countable itself, and so it requires comparative 
analysis. It is necessary to match every treatment sample to its control. The results of 
the RNA sequencing experiment are transferred into computational language by the 
FASTQ files. Besides the reads, FASTQ file also contains quality degrees of each 
base. After quality checks and refinements are performed, the next step is alignment 
of the reads to the reference genome and quantification of the reads aligned to the 
genes. One classical way of alignment and gene counting is done by TopHat (Trapnell 
et al., 2009) with Bowtie. The other methods are GSNAP (Wu and Nacu, 2010), 
MapSplice (Wang et al. 2010a), RUM (Grant et al. 2011), and STAR (Dobin et al. 
2013). For quantification of the genes or transcripts, assembled reads to the reference 
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genome are counted. Cufflinks (Trapnell et al. 2010)  and HTSeq-count  (Anders et 
al., 2015) algorithms are the most commonly used quantification tools.  

Generally, the next step for RNA-seq analysis is performing differential expression 
analysis. RNA-seq is frequently used to compare gene expression levels between two 
conditions like drug treated sample vs mock or untreated control and identify up and 
downregulated genes for each condition (Kukurba & Montgomery, 2015). Two of the 
most commonly used tools for this analysis are both from Bioconductor R using a 
model based on negative binomial distribution; DESeq (Robles et al., 2012) and edgeR 
(Robinson et al., 2009) packages. Generally, they are preferred to each other for their 
unique functions. For example, edgeR packages preserve some functions for non-
replicated RNA-seq analysis and would be beneficial for the analysis in a condition if 
RNA-seq is high-quality. 

In order to understand biological importance and functional relevancies between 
differential expressed genes, a variety of tertiary analysis can be performed. One way 
to associate these genes to their biological processes, functions or cellular components 
is to implement a gene set enrichment analysis (GSEA). There are a lot of methods for 
this analysis; the most common ones are Enrichr (Kuleshov et al., 2016), DAVID 
(Dennis Jr. et al., 2003) and FunRich (Pathan et al., 2015). As a result of GSEA 
analysis significant gene enrichments can be viewed and linked to altered cellular 
functions. Another approach to link differentially expressed genes could be using 
pathway analysis. The genes acting together on a cellular pathway can be observed 
though mapping them with expression levels. By this way, which signaling pathways 
are mostly affected by pathogenesis of a gene can be detected. In order to do that, 
KEGG (Kanehisa & Goto, 2000) and BioGRID (Stark et al., 2006) tools are the most 
popular online databases. Their wide range of sources includes whole pathways that 
provide a compressive way of gene signaling.  
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Figure 6: RNA-seq analysis workflow. The first step of RNA-seq analysis is to implement 
quality control. Then basing a reference genome alignment and mapping of the reads generates 
a BAM file. A sorted BAM file can be used to count genomics features using gene annotations 
or a transcriptome. Afterwards, comparing to a negative control, normalization of the counts 
and differential expression analysis is performed. Finally, resulting up or down regulated 
genes can be used for several tertiary analysis.  

1.4.2. Protein-Protein Interaction Databases 

The complex cellular metabolism regulation consist of a multifaceted network or 
pathway of proteins working together (Lander et al., 2001). Proteins form different 
types of interactions to make cellular processes. Therefore, to understand biological 
function of a cellular pathway, as well as acting proteins, their interactions also should 
be well characterized.  

In order to detect protein-protein interactions (PPIs), experimental methods like yeast 
two hybrid (Y2H) (Ito et al., 2001), affinity purification (Rigaut et al., 1999), x-ray 
crystallography (Tong et al., 2001), NMR spectroscopy (Tong et al., 2001) or 
fluorescence resonance energy transfer (FRED) (Yan & Marriott, 2003) need to be 
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used. However, these assays are not high-throughput, time-dependent, and costly. 
Design of a single experiment can only cover a small number of interactions. 
Consequently, for a systemic analysis of transcriptome, these previous efforts should 
be well conserved and linked.  

There is a wide source of publicly available PPI databases covering these experimental 
data to be used in network modeling. The Database of Interacting Proteins  (DIP) 
(Xenarios et al., 2002), Molecular Interaction Database  (MINT) (Chatr-aryamontri et 
al., 2007), The Biomolecular Interaction Network Database  (BIND) (Bader et al., 
2003), The Human Metabolome Database  (HMDB) (Wishart et al., 2012), STITCH 
(Kuhn et al., 2013), Reactome (Fabregat et al., 2018), Kyoto Enclopedia of Genes and 
Genomes (KEGG) (Kanehisa & Goto, 2000), iRefWeb (Turner et al., 2010), STRING 
(Szklarczyk et al., 2015) are some of them.  

DIP and MINT are two databases to catalogue experimentally determined PPIs. 
Besides the experimentally validated PPIs, different from these two, BIND curates 
interactions using PubMed records. The process is performed with scientists. Thus, 
these databases can be very useful to get the most reliable interaction data. HMDB is 
a collection of human metabolites and provides interactions of small metabolites like 
peptides, lipids, amino acids, nucleic acids, organics acids, vitamins, minerals, drugs, 
and toxins. STITCH is a database for protein to chemical interactions underlying many 
cellular signaling pathways. The database consists of experimental and manually 
curated verifications. Reactome and KEGG are two services providing a search base 
for a systematic analysis of gene-to-gene functions and the cellular pathways the genes 
have role on. For each gene, genomic information, annotations, and pathways are 
provided through the datasets. iRefWeb provides a method to generate “keys” to give 
protein interactions using publicly available sources. This method provides an 
alternative understanding and many groupings to the original database sources. 
iRefWeb includes many levels of evidence ready to be query. STRING provides 
protein-protein interaction (PPI) interaction proofs, and the interpretations of them are 
used to level the confidence of the protein interactions. Conserved neighborhood, co-
occurrence, fusion information, co-expression, experiment, other databases, and text 
mining methods construct the baseline of the proofs. The evidence was collected for 
each protein interaction and used to calculate a confidence score. There are four 
confidence levels provided by the tool: low confidence (0.15 and above), medium 
confidence (0.4 and above), high confidence (0.7 and above) and the highest 
confidence (0.9 and above). Using high confidences will restrict the number of 
interactions to a more confident level since the provided experimental proofs become 
more accurate.  

1.4.3. Protein-Protein Interaction Prediction  

Since experimental methods for PPI are very expensive and time-consuming, there is 
a huge demand for computational methods for accurate prediction of PPIs. 
Combination of structural and evolutionary information on proteins and usage of 
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bioinformatic methods to predict their interactions makeup the basis of PPI prediction. 
Phylogenetic profiling, prediction of protein coevolution, conserved gene 
neighborhood, gene fusion and identification of structural protein binding patterns are 
the most used methods for PPI predictions.  

Prediction Server for Protein-Protein Interactions (PSOPIA) is a tool for predicting 
PPI using sequence similarities, statistical propensities, and homologous protein 
distances. Protein Link Explorer (PLEX) (Date & Marcotte, 2005) uses phylogenetic 
profile to identify functionally linked proteins. Database of Ligand-Receptor Partners 
(DLRP) (Graeber & Eisenberg, 2001) is an effort of DIP in order to get protein ligand 
and receptor connections. Moreover, for computational modeling and analysis of 
protein structures as well as interaction predictions PrePPI algorithms are commonly 
used (Q. C. Zhang et al., 2012). PRISM is also a very useful prediction tool using 
protein structure and sequence conservation in protein binding sites together (Aytuna 
et al., 2005).  

1.4.4. Network/Pathway Analysis 

Especially following the emergence of next-generation sequencing technologies, 
generation of high-throughput measurements of molecular changes in the cell is wide. 
As these quantitative analyses provide comprehensive analysis, the functions, and 
processes active in the cells can be visualized globally. While transcriptomics has 
arisen as a prevailing approach to observe global changes, it has its own limitations. 
For example, a time dependent RNA-seq analysis can reveal expression patterns of 
genes yet cannot specify the exact pathways driving the gene. In order to link 
transcription factors to those gene patters, ChIP-seq analysis should be provided. 
ChIP-seq is a very well-known method to understand the mechanism between the 
transcription factors (and other regulatory factors) and gene expression.  

Considering the complexity of the cellular mechanism, no single analysis set can cover 
the levels of functions the cell has role on. Hence, multiple levels of methods should 
be applied to solve sophisticated mechanisms of cellular systems. Besides, these 
different next-generation applications generate many levels of information, each 
dataset will bring its own analysis necessities. Therefore, joint analysis of these data 
requires new computational approaches of investigation too.  

Recently, network modeling approaches are proposed to solve collective problems of 
biological data. Network modeling requires a set of interactome, which is available 
through public databases like STRING or iRefWeb. Previous experimental analysis 
generally stored in biological databases generates a huge source. The interactome data 
construct the backbone of network analysis. Unfortunately, since the biological 
databases used to construct interactome data generally composed of user generated 
data, and so the network includes millions of connections (Fabregat et al., 2018; 
Kanehisa & Goto, 2000; Kuhn et al., 2013; Razick et al., 2008; Wishart et al., 2012). 
It is a tremendous amount of data to be searched in. Moreover, generally as some of 
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the genes become hot topic of study, it attracts more people to work on them which 
eventually generates too many connections for this gene in the network.  Dense 
networks ultimately become “hairballs” and too much studied nodes bring bias to the 
network.  These two challenges form a basis for generated network analysis models. 

1.4.5. Visualization of the Biological Networks 

Biological networks are the basic representations of the molecules like proteins or 
genes. Visualizations of the biological networks or pathways can be achieved through 
various drawing tools like OmicsNet (Zhou & Xia, 2018), NAVIGaTOR (Brown et 
al., 2009), Osprey (Breitkreutz et al., 2003), Cytoscape (Shannon et al., 2003) and 
Arena3D (Pavlopoulos et al., 2008).   These tools perform both mapping of the genes 
or proteins to the nodes, visualize the connections and provide statistical or topological 
analysis. The most obvious advantage using such a tool is to shape the interactome 
data as optimal to the needs of the analysis. For example, the researcher may change 
the color and size of the nodes according to the significance of the genes or group the 
nodes according to a specific function in a very fast and organized way.    
 
From the visualization tools, Cystoscope is one the most popular ones for biological 
network analysis. It is an open-source tool and a platform for a set of other applications 
(also called as plugins) developed by world-wide users. Its collection includes 
applications providing scalable analysis for annotation, clustering, enrichment, and 
topological analysis. 

1.4.6. The Systems Biology Approach 

Collecting many levels of cellular data like transcriptome, proteome and metabolome 
from the same organism makes possible the use of network-oriented research. The aim 
of the systems biology approach is to understand these multi-layer biological networks 
through design and application of experiments and data analysis. Mathematical models 
are used to characterize biological systems and to predict cellular responses to the 
aberrant functions (Kitano, 2002). Quantitative whole-cell measurements form the 
major network components. The most attractive way of systems approach is to use 
these measurements to conduct networks and then use these networks for analysis of 
other cellular measurements or experiments. This approach is called top-down 
modeling, an application of reverse engineering (Kholodenko et al., 2002).  

Considering the complex molecular networks responsible for cancer maturity and 
progressions, the research focused on the use of systems biology approaches to 
understand molecular networks altered by malignant transformation.  Cancer systems 
biology studies incorporate cellular signaling pathways critical for cancer initiation, 
development, malignancy, and metastasis. Most importantly, targeted therapy 
opportunities can be widened using this approach and novel drugs can be found for 
clinical research (Werner et al., 2014).  
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Atlas of Cancer Signaling Network (ACSN) is a very powerful resource for usage of 
cancer systems biology analysis. Using Google Maps engine, it utilizes tools for 
analysis and visualizations of cancer signaling networks. The cell signaling 
mechanisms frequently disrupted in tumorigenesis, called as Hallmarks of Cancer, are 
formed as “geographic-like map” enabling zoom-in functions (Kuperstein et al., 2015). 
Besides, KEGG, and Reactome databases can be also useful for cancer signaling 
analysis pathways.    

1.4.7. Omics Integrator 

In order to perform an integrated analysis of proteomic, gene expression and epigenetic 
data and connect them through a protein-protein interaction (PPI) network, Omics 
Integrator software (Tuncbag et al., 2013) can be used. This package uses Prize 
Collecting Steiner Tree (PCST) solution to integrate high-throughput data to PPI 
network. There are two modules of Omics Integrator called Garnet and Forest 
performing a joint analysis of RNA-seq and ChIP-seq data.   

Omics Integrator uses user defined high-throughput data like gene expressions or 
transcription factor affinities as prices. The interactome, like PPI network, is used to 
calculate edge costs as the prize nodes being traveled. As the edge cost gets higher it 
is less likely to be visited by the algorithm. By this way, all the prize nodes, the input 
data, will be collected. Ultimately, the least costly solution will be selected as the 
optimal network.   The same group who developed the software was used this approach 
to model patient specific pathways in Glioblastome. They used tumor specific 
phosphoproteomic data and human interactome to construct disease modulated 
networks. They also developed a unique strategy to select targets for clinical research 
(Tuncbag, Milani, et al., 2016).  

In 2017, Steiner prize collecting approach was used to generate a “humanized” 
network from known gene interactions found in yeast on the toxicity of synuclein 
(alpha-syn) protein. This way, the genes linked to Parkinson’s disease mapped to the 
human network and thus pathogenetic genes in patient driven transcriptome are 
estimated and druggable network components (proteins) were elucidated (Khurana et 
al., 2017). In a multidisciplinary study examining the Huntington Disease metabolism 
in induced pluripotent stem cells (IPSCs) using Omics Integrator they found that ATP 
level is ablated in stem cells compared to differentiated cell while mitochondrial-
related mRNA expression is balanced or upregulated in them (The HD iPSC 
Consortium, 2020).  

In another study, Omics Integrator was used as a part of a toolkit for identification of 
therapeutic components with unknown or novel modes of actions (MoAs). In that 
interesting study, they examine the drugs found to be somehow beneficial in 
Huntington’s Disease and group them with the same functions. Finally, autophagy 
activation is correlated with antihistamine effects of the drugs (Patel-Murray et al., 
2020).   
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In conclusion, these previous studies state that in order to discover the dysregulation 
patterns of the diseases and to propose new drug targets, PCST algorithm through a 
simultaneous reconstruction of the molecular pathways is very useful.  

1.4.7.1. Prize Collecting Steiner Tree (PCST) algorithm 

The base of the Omics Integrator is the Prize Collecting Steiner Tree (PCST) 
algorithm. The function of the PCST algorithm is to find an optimal tree using a 
reference network. The function travels through the reference network, including the 
terminal nodes with prizes travelling through the interactome nodes which have costs 
of edges on condition if included. The terminal nodes are the ones given to the function 
to connect with and edges are network links containing the cost of travel. The task is 
to find shortest paths between the prize nodes avoiding the costs on the edges. The 
algorithm minimizes the cost of all edges by walking on prize nodes as much as 
possible. An example showing how the PCST working is represented in Figure 7.  

Through the investigation stage for the terminal list, since the magnitude of the sets 
differs, various types of forests (in various complexity including one or more trees) 
can be generated. Hence, the parameters depend highly on the distribution of prizes 
and numbers of the nodes.  

 

The whole function: 

Equation 1: PCST algorithm 

        f'(F)= ∑p1(v)+ ∑c(e)+ω⋅κ 

        v∈ ̸VF e∈EF 

         p1(v)= β *p(v)- µ *degree(v) 

 

Here, p(v) is the prize of a node, c(e) is the cost of edge functions.  β, ω, κ, and µ are 
normalizing factors. In order to construct meaningful trees from the input terminal 
lists, the normalizing factors must be fine-tuned.  

ω is the cost of starting with a new tree controlling the number of trees in the forest. 
As ω gets smaller there will be more trees. β parameter controls the hubs in the 
network.  Higher β value attenuates more hubs in the network and generates bigger 
networks. µ value also controls hubs in the network. To escape from a potential hub 
bias, reasoning if it is highly studied or has the greatest degree in the network, µ value 
competes against the degree of the nodes in the interactome. As µ increases, a smaller 
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number of hubs are dominated in the forest. When µ is zero, the control is cancelled. 
D is the last parameter which adjusts the depth of the tree. 

 

 

Figure 7: An example representation to show how the PCST algorithm performs its 
calculation. Grey interactome nodes with blue edges and red cost scores construct the 
backbone of the analysis. Given a set of terminal nodes, prizes are mapped into the interactome 
and connected through the shortest paths. Then the cost is calculated by summarizing the costs 
and prizes which if it is not able to be connected.  

1.5. Preliminary Experimental Analysis at CANSYL 

The experimental analysis investigating the PI3K isoform specific inhibition of the 
HCC cells on PTEN context was performed at CANSYL laboratory (METU) 
previously.    

1.5.1. Molecular and Cellular Characterization of HCC in the Presence 
of Small Molecule Isoform Spesific PI3K Inhibitors 

The expression levels and the phosphorylation status of key proteins in 
PI3K/Akt/mTOR and RAF/MEK/ERK signaling pathways were reported by our 
group, and in correlation with their PTEN status, Mahlavu cells display hyper-
activated cell survival  proteins (Durmaz et al., 2016). 
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Figure 8. Characterization of HCC cells in the presence of small molecules inhibitors. 
Realtime cell growth analysis of Huh7 and Mahlavu cells with increasing concentrations 
(40μM, 20μM, 10μM, 5μM, 2.5μM) of Sorafenib, PI3K inhibitor LY294002, PI3Ki-β 
inhibitor (TGX-22) and PI3Ki-α (1μM, 0.5μM, 0.25μM, 0.125μM, 0.0625μM) PI3Ki-α (PIK-
75) along with DMSO vehicle control (Control is black and increasing drug concentrations is 
given in grey level, highest concentration is being the darkest) A. Cell cycle analysis with flow 
cytometry. Sub-G1population represents apoptotic cells B). Wound healing assay for 24 and 
48 hours for cell migration. C. 10μM of Sorafenib, LY294002 and PI3Ki-β (TGX-221) and 
0.1μM of PI3Ki-α (PIK-75) were used for cell cycle and migration assays (Narci et al., 2021).  

 

Initially, Sorafenib, LY294002, PI3K inhibitor p110α subunit specific (PIK-75) and 
PI3K inhibitor p110-β subunit specific (TGX-221) were assessed for their cytotoxic 
bioactivity and their effect on cell cycle progression with Huh7 and Mahlavu (Figure 
8A or Figure 39). G1, S and G2/M cell cycle phases were analyzed separately to 
calculate viable cell distributions among them (Figure 8B or Figure 40). Sub-G1 
percentage demonstrating apoptotic cells were also calculated. Cell cycle distribution 
remain stable for both cell lines and all inhibitor treatments. In both cell lines, 
Sorafenib and PIK-75 treatments showed stimulation of apoptosis through increase in 
sub-G1 population. In Huh7, Sorafenib was more active while PIK-75 functioned more 
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in Mahlavu cells which was more aggressive than Huh7 cell line by PTEN-loss based 
hyper-active Akt stimulation. 

1.5.2. Migration Analysis of the Inhibitors 

In order to analyze the effects of selected inhibitors on cell migration, wound-healing 
assay was performed. The percentages of wound closures after 48 hours of initial 
scratch were calculated for Huh7 and Mahlavu. It was observed that Sorafenib and 
PIK-75 reduced migration significantly (p < 0.001) in both Huh7 and Mahlavu (Figure 
8C or Figure 41).  

1.5.3. Synergistic cytotoxicity analysis 

Since none of the treatments alone was fully effective to inhibit growth and stimulate 
apoptosis, the value of co-treatments of Sorafenib with PIK-75 and TGX-221 through 
real-time cell growth analysis (Figure 8C or Figure 41) were addressed. A synergistic 
effect of Sorafenib and PIK-75 treatments was observed on growth of both cell lines. 
TGX-221+ Sorafenib combinatory treatment also resulted in synergistic growth 
inhibition on Huh7 cell line.  

On the other hand, TGX-221 displayed a growth inhibition of Mahlavu, TGX-221 co-
treatment with Sorafenib resulted in an antagonistic effect and stimulated cellular 
growth. Furthermore, Sorafenib and PIK-75 treatment had more drastic effect on 
Mahlavu compared to Huh7. Therefore, these findings indicate that in PTEN deficient 
Mahlavu cells, constitutive activation of PI3K/Akt signaling mainly depend on p110-
α (Narci et al., 2021) (Figure 9 or Figure 42, 43, 44, 45, and 46).  
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Figure 9. Real-time cell growth analysis. Human liver cancer cells Huh7 (A,B)  and  Mahlavu 
(MV)  (C,D)  were  treated  with  the  Sorafenib,  PI3Ki-α and  PI3Ki-β alone  or  in  
combination  with increasing  concentrations  as  indicated.  Cell index measurements were 
obtained by RT-CES software.  DMSO was used as negative control A. B.  72 hours of the 
percent growth inhibition values were used to calculate drug interactions with The 
SynergyFinder web application.  Positive delta score reflects synergistic and negative score 
reflects antagonistic drug interactions. Experiments were performed in triplicate (Narci et al., 
2021). 
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1.6. Motivation and Rationality 

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer (Perz et 
al., 2006). The disease stages in a multi-step process where it originates from a liver 
injury and continues inflammation leads to developing cancerous cells (Farazi & 
DePinho, 2006). Often, for patients with HCC the only treatment option is 
chemotherapy as the disease can be diagnosed in the late stages where surgical options 
are not applicable  (Llovet et al., 2012; Omata et al., 2010).   Sorafenib (Nexavar, 
BAY43-9006) is the only targeted therapy for HCC yet the increase in the survival rate 
is not high for the patients and none of the other therapeutic agents can be approved 
by FDA (Liu et al., 2009; Llovet, Di Bisceglie, et al., 2008). Hence, there is an open 
demand for search of new targeted therapies for patients with HCC in advanced stages. 

Acquired resistance and tumor recurrence are major drawbacks that Sorafenib suffers 
from. Sorafenib is a multi-kinase inhibitor targeting Raf, VEGFR and PDGFR which 
are the main controllers of cell proliferation and angiogenesis signaling pathways. Yet 
even these kinases were inhibited, carcinogenesis properties in the cell cannot 
completely diminish. Cellular pathways like proliferation, cell cycle, apoptosis, 
inflammation, angiogenesis, and migration are all integrated with redundant control of 
molecular pathways like Raf/MEK/ERK, PI3K/Akt, mTOR, NF-kB and p53. 
Therefore, using a single agent cannot remove the cancer cells completely. On the 
other hand, more than one type of kinase inhibitor should be used to avoid cross-talks 
and avoid compensation between the signaling pathways. 

The discovery of effective agents against HCC was achieved mostly through 
identification of aberrant functions and dysregulated proteins from regulatory the 
signaling pathways (A Villanueva & Llovet, 2013). Traditionally, research 
laboratories focus their work into a single gene or a part of signaling pathway. With 
respect to the fact that these analyses are the most valuable evidence of protein 
interactions, they cannot solve the complex cancer mechanism as in-vivo techniques 
are costly and it takes a lot of time to do a series of analyses. Cancer development is a 
conclusion of several aberrant interactions and functions.  

Earlier studies found that genomic variations in HCC is high and a wide-ranging 
investigation on molecular mechanisms of HCC should be done to fully understand 
the multi-stage development underlying behind (Ersahin et al., 2015). Current next 
generation analysis techniques assisted these studies to be implemented instantly. For 
example, a broad range scan of samples can be performed in hours using Illumina. 
Using these high throughput data allows to identify disease related gene profiles by 
enhancement of several bioinformatic methods.  

In this thesis study, the benefit of high throughput techniques to get gene profiles of 
two Hepatocellular carcinoma cells were used. (PI3K/AKT/mTOR targets as it has 
been the driving signaling pathway in HCC are especially selected. Sorafenib, multi-
kinase inhibitor, the only FDA approved agent, PI3K-α and PI3K-β inhibitors (PIK-
75 and TGX-221) which targets two isoforms of PI3K were one by one treated to Huh7 
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and Mahlavu HCC lines.  Furthermore, since single usage of these agents was proved 
to be ineffective to HCC, the combinational effect of, Sorafenib and PI3K isoform 
inhibitors (PIK-75 and TGX-221) were treated in combination too. Finally, the 
treatments with DMSO treated controls (12 in total) were scanned using RNA 
sequencing method Figure 10).  

There are several bioinformatics tools for RNA-seq data analysis. The classical way 
of RNA-seq analysis pipeline includes basic preprocessing of the raw data followed 
with the identification of dysregulated genes. Even, the traditional workflow suggests 
the enrichment analysis after identification of up and downregulated genes, these 
methods only reveal the functional interactions inside the input gene set. A joint 
analysis using previous protein interactions may be advantageous for RNA-seq gene 
expression data. By this way, filtered or hidden connections between the genes may 
be revealed.  

In this study, a set of protein-protein interactions from STRING dataset was used as 
backbone of gene relationships for Prize Collecting Steiner Tree (Ljubic et al., 2005) 
algorithm which is implemented in Omics Integrator software (Tuncbag et al., 2016) 
Up and downregulated genes were connected through the backbone network. This 
approach provided us to uncover some other gene profiles which either were not highly 
dysregulated or lost during RNA-seq analysis steps. By this way, functionally relevant 
pathways as trees for each condition were searched through not only with dysregulated 
genes, but also other connecting genes with the help of PCST.  

Generation of kinase inhibitor treated HCC specific optimal networks allowed us to 
create a way to represent molecular events. Cytoscape, a java tool, was provided an 
effective visualization of the networks. Network representations were generated using 
several Cytoscape plug-ins displaying gene expression levels, interactions, 
regulations, processes, and functional and biological enrichments. Furthermore, a 
group of genes were identified as potential drug targets for HCC therapy using the 
benefit of network topology.  Network centrality measures endorsed to select the most 
network specific targets while eliminating well studied ones. Overall, this systems 
level network approach provided an efficient network comparison to identify unique 
and shared gene profiles and functions of different kinds of kinase inhibitor treatments.  
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Figure 10: The aim of the study. The overall objective of this study is to find the most effective 
inhibitors targeting PI3K/AKT/mTOR signaling pathway to diminish tumor promoting 
characteristics like survival, growth, angiogenesis, invasion, and metastasis. Sorafenib and 
PI3K class IA and class IB inhibitors PI3K-α (PIK-75) and PI3K-β (TGX-221) are 
combinational treatments to analyze synergistic effects of inhibition of PI3K/AKT/mTOR and 
RAF signaling pathways.  
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CHAPTER II 
 
 

2. MATERIALS AND METHODS 

 
This chapter is divided into two sections as materials and methods. In the materials 
chapter, Hepatocellular Carcinoma (HCC) cell lines used in RNA-seq experiment, and 
the kinase inhibitors used to treat cell lines are explained. In the methods section, 
initially, the workflow followed to perform bioinformatics analysis is explained. The 
methods and tools used in RNA-sequencing and network analysis are detailed. The 
tools, tool versions, and parameters used in statistical, heatmap and visualization 
analysis are described in this chapter.  Omics Integrator, network construction tool, 
optimization and run parameters are also part of this chapter.  

2.1. Materials 

HCC cell lines and kinase inhibitors used in this study are explained.  

2.1.1. HCC Cell Lines 

In this study two types of HCC cell lines were used: Huh7 and Mahlavu. Mahlavu is a 
mesenchymal-like, undifferentiated, very aggressive type of HCC where no tumor 
suppressor protein, PTEN expression is seen. PTEN protein antagonizes for Akt 
activation through ensuring dephosphorylation of PIP3. When there is no PTEN 
expression, Akt protein is constitutively expressed as like its downstream proteins 
(Schwartz et al., 2016). A previous study (Buontempo et al., 2011) proved that besides 
overexpression of proteins in the AKT pathway, the RAF/ERK signaling pathway is 
also hyperactive in Mahlavu cells (Figure 11).  

Unlike poorly differentiated Mahlavu cells, epithelial-like, tumorigenic Huh-7 cells is 
a well differentiated HCC type. As shown in Figure 11, there is PTEN expression 
blocking Akt in the usual mechanism and so the downstream proteins of AKT are not 
overexpressed.  
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Figure 11: Expression and activity of critical components of PI3K/AKT and RAF/MEK/ERK 
signaling pathways in Huh7 and Mahlavu (Buontempo et al., 2011) (Copyright 2021). 

2.1.2. Kinase Inhibitors 

Mahlavu and Huh7 cell lines were treated with the inhibitors which were listed in 
Table 1 with their targets. Sorafenib as a multi-kinase inhibitor of RAF and VEGFR 
and two isoforms of PI3K class I inhibitors PIK-75 and TGX-221 targeting PI3K were 
used. The target proteins of the inhibitors used in the study can be viewed from Figure 
12, and AKT is the main downstream protein for all treatments. Sorafenib (Nexavar) 
was purchased from Bayer Health-care Pharmaceuticals, Inc., NJ USA, Inhibitors 
PIK-75 (cat#528116) and TGX-221(cat#528113) were purchased from Calbiochem. 

Towards understanding of the alterations in the signaling pathways of diseased cells 
during hepatocarcinogenesis, a global study model was constructed comprising two 
HCC cell lines treated with kinase inhibitors alone or in combinations; PIK-75, TGX-
221 and Sorafenib alone treatments and PIK-75 + Sorafenib and TGX-221 + Sorafenib 
combinatory treatments. DMSO treatment was used as negative control for both cell 
lines. Therefore, for the RNA-seq experiment, cDNA libraries prepared from 2 cell 
lines per 5 treatments and 1 control for each in total 12 samples.   



31 
 

Table 1: Kinase inhibitors used in RNA library construction. 

Inhibitor Target 

Sorafenib (BAY 43-9006) B-Raf and VEGFR 

PI3Ki-α (PI3K alpha inhibitor VIII) 
(PIK-75) 

P110α isoform of PI3K (class IA) 

PI3Ki-β (PI3K beta inhibitor VI)  
(TGX-221) 

P110β isoform of PI3K (class IB) 

 
 

 
Figure 12: Schematic representation of the kinase inhibitors used in the study, their 
target proteins, and the downstream proteins of their targets. 

2.2. Methods 

Figure 13 displays the workflow of the methods used in this study. The experimental 
design included two HCC cell lines; Huh7 and Mahlavu. These cell lines were treated 
with three types of kinase inhibitors, two of their combinations, and DMSO as negative 
control as described in the materials section. RNA-seq libraries were prepared from 
12 treatment sets and they were sent for sequencing using Illumina Genome Analyzer. 
Further RNA-seq analysis as follows; raw data processing using FASTQC, alignment 
and mapping using Bowtie with Tophat tools, and differential expression analysis 
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using EdgeR. Omics Integrator with the integration of STRING human PPI provided 
kinase inhibition modeling of the networks. Topology analysis of the networks 
performed with NetworkX. Dendrogram, clustering and enrichment analysis were 
executed using several R packages. BINGO tool offered gene enrichment analysis. 
Glay was used to cluster network, and ClusterMaker was used to box the clusters. 
Cytoscape was the main tool where visualization, clustering and enrichment analysis 
performed in. In the following section each process will be explained in further.  

 
 
Figure 13: Pipeline summarizing the methods used in this thesis study. RNA-seq 
analysis was performed on kinase inhibitor treated Huh7 and Mahlavu cell lines 
followed by a network level analysis. 

2.2.1. Cell Culture 

Mahlavu and Huh7, HCC cell lines were cultured in DMEM medium, supplemented 
with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S) and 1% non-
essential amino acids (NEA) and incubated in humidified 37◦C incubator with 5% 
CO2. The cell maintenance was performed by one of the members of the CANSYL 
laboratory.  
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2.2.2. RNA Sequencing Analysis 

RNA-seq analysis was done through these steps summarized in Figure 14: total RNA 
preparation, sequencing, raw file quality control, alignment of the reads to the 
reference genome, quality assessment of alignment files, read counting per feature and 
differential expression analysis. Commend line of the tools was provided in Appendix 
C.  

 

 
Figure 14: Summary of RNA-seq analysis pipeline. Raw FASTQ reads were aligned and 
mapped to the human reference genome, accepted transcripts were quantified, and differential 
expression analysis was applied sequentially. A part of this figure taken from edgeR 
publication (Robinson et al., 2009) and illumina distributed the figures publicly.  

2.2.3. Preparation and Sequencing of Total RNAs 

Total RNA was isolated with NucleoSpin RNA II Kit (Macherey-Nagel) according to 
the manufacturer’s protocol (MN, Duren, Germany) in CANSYL previously. The 
protocol was applied with small modifications such as 30 min of DNA digestion 
instead of 15min and 2-step elution with 20μl water instead of one elution with 60μl. 
RNA concentration was measured with NanoDrop and A260/A280, A260/A230 ratios 
were checked for RNA quality and purity. Total RNAs were provided to BGI Tech 
(https://en.genomics.cn/) for sequencing. RIN values were acquired from the Agilent 
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Bioanalyzer system, and they were above 0.8 for all samples. 12 total RNA samples 
were sequenced by Illumina Genome Analyzer in a sequencing center.   

2.2.4. Quality Assessment of Raw Files 

RNA reads were processed by Illumina Hiseq 2000 (SE50). RNA sequencing by 
Illumina Genome Analyzer generates output sequencing files in FASTQ format. 
Besides the raw sequences, this format also stores quality scores per base. For a proper 
and significant alignment of the sequences, technical errors should be eliminated. It is 
necessary to remove low-quality bases and duplicates and clean the remaining 
adaptors. 

In this study, 12 FASTQ files were first assessed through the FASTQC (Andrews, 
2010) tool for quality control. FASTQC is a well-known quality assessment tool 
developed by Babraham Bioinformatics for FASTQ formatted data.  FASTQC tool 
generates quality reports evaluating per base and per tile sequence quality, per base 
and sequence content, GC content, sequence length distribution, duplication level, 
overrepresented sequences, and adapter content. In order to clean FASTQC data, 
second party applications like Cutadapt (Compeau et al., 2013) must be used, after a 
careful analysis of FASTQC reports.   

2.2.5. Alignment 

Since the quality of RNA-seq of all FASTQ were outperforming by the per base and 
sequence quality, in this analysis there was no need for a trimming step. Single-end 
reads were aligned to the reference human genome (GRCh38/hg38) using a split read 
aligner algorithm TopHat V2.1.0 (Trapnell et al., 2009). TopHat is a frequently used 
splice junction mapper for RNA-seq reads. Given a reference genome, it can read and 
align high throughput short reads. TopHat itself features an ultrafast mapper Bowtie 
(v2.2.6) algorithm for alignment and analyses the mapped reads to detect exome-intron 
junctions.   

TopHat generates a list of files containing mapped and unmapped reads separately in 
BAM and SAM formats with indexes and insertion, deletion, and junction files in txt 
formatted BED files.  

2.2.6. Alignment Quality 

The quality of alignment files assessed using a JAVA based tool 
CollectAlignmentSummaryMetrics from Picard (Broad Institute, 2018). The tool 
processes a SAM or BAM file input and as output produces a number of read quality 
metrics like the number of high-quality reads, read lengths, number of noise reads, bad 
cycles, strand balance and mismatches.  
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2.2.7. Quantification 

The number of mapped reads to the genome was counted using HTSeq-count v0.6.1 
(Anders et al., 2015) tool. Given aligned sequencing reads with a file with genomic 
feature list, HTSeq-count quantifies the reads map per features. For quantification 
analysis, human gene split regions (GRCh38 v84) in a GTF file format was used to 
count how many transcripts map to each gene, generating a gene level count matrix. 

2.2.8. Differential Expression Analysis 

EdgeR (Robinson et al., 2009), a Bioconductor package, is a widely used method for 
differential expression analysis. EdgeR constructs a negative binomial model based on 
empirical Bayes estimates, exact test or linear models using the RNA count data.  

Normally, edgeR requires biological replicates in order to estimate biological variation 
inside the samples. In this experimental design, there were no biological replicates of 
the samples to inherit the in-sample variation. EdgeR solves the no-replication 
problem by suggesting a different dispersion calculation method to estimate variation 
within each sample compared to housekeeping genes. A set of housekeeping genes in 
Hepatocellular Carcinoma was well characterized in (Ersahin et al., 2014), this set was 
used to estimate biological coefficient of variation (BCV) value manually. BCV 
estimation was performed for both Huh7 and Mahlavu cells separately in this analysis 
and the values were very close to each other, and usage of the same value did not affect 
the differential expression gene status. Hence, BCV was used as 0.045, originally 
calculated for Huh7, for both cell lines.   

Gene level count matrices of 12 RNA-seq treatment sets were used for differential 
expression analysis. DMSO treated Huh7 and Mahlavu HCC samples were used as 
negative control. Before edgeR analysis, genes with less than 5 readings were filtered 
out using counts per million constraint (cpm < 5). A biological model was constructed 
by taking BCV as 0.045 and differential analysis performed using exactTest function 
of EdgeR package. Finally, I selected the top differentially expressed genes according 
to following filters; p-value<0.01, FDR<0.01, and logFC (log2 of fold changes) ranges 
less than -2 & over +2 for Huh7 cell lines and -1.5 & over +1.5 for Mahlavu cell where 
the FDR is defined as False Discovery Rate and the logFC is logarithmic Fold 
Change.    

Before filtration, the genes were annotated using the ensembl gene id to gene symbol, 
entrez id and unigene names. Gene annotations were obtained using org.Hs.eg.db R 
package (Marc Carlson, 2016) from Bioconductor. R scripts including the functions to 
calculate biological variance using housekeeping genes and to perform differential 
expression analysis were included in the GitHub repository mentioned in Appendix B.   
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2.2.9. Dendrogram Analysis 

Heatmap representation is one of the most popular graphical methods for visualization 
of big-data supplying color encoding cells that represent numbers. Heatmaps are 
frequently used to segment expression data, find similar or different expression 
patterns, and perform closeness analysis between the samples.  

Heatmaply (Galili et al., 2012) is a very powerful way of investigating clusters in a 
high dimensional data since the final heatmap result is visualized as an interactive 
graph offering inspection over the cells making zoom-in functions available. In this 
study, all heatmaps were visualized through heatmaply using default hclust clustering 
by using Euclidean as distance measure. The codes to generate heatmaps in this study 
was provided in the GitHub repository mentioned in Appendix B with the produced 
html files. 

2.2.10. Correlation Analysis 

In order to assess the similarity co-efficiencies between the different treatments in the 
same cell line, Pearson correlations were calculated. A count matrix was generated 
containing gene logFC values (without any filtration) of all treatments per HCC line. 
R “cor” function was used to calculate Pearson correlations and the “corrplot” function 
was used to graph the results.  

Pearson correlation is a number between -1 and +1, as the value approaches to -1 
negative correlation gets stronger, whereas as it approaches to +1 that indicates a 
significant positive correlation.  

2.2.11. Venn Analysis 

In order to calculate and draw Venn schemes, the online tool Venn Diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used. It is a very handy tool 
both to generate Venn diagrams and to get intersections between the files. Venn 
diagrams generated in this study were used to compare top DEG genes and network 
nodes.  

2.2.12. Gene Ontology (GO) Analysis 

The Gene Ontology (GO) project aims to construct a model of biological systems 
computationally. A structured description of known biological information, which is 
designed as a tree of vocabularies, consists of multiple layers. The GO terms or 
vocabularies associated with biological processes, molecular functions or cellular 
components (Ashburner et al., 2000; Carbon et al., 2021).   
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Given a set of genes on the network, an open source tool BiNGO (Maere et al., 2005) 
maps functional terms to enriched genes to output Gene Ontology (GO) terms and 
their statistical features. BiNGO is a java-based tool integrated into Cytoscape. Tool 
finds the predominant or overrepresented gene ontology terms and links these terms 
in a map proving a good way of GO hierarch representation.  

Statistically overrepresented GO terms were characterized using BiNGO in our 
analysis to have a better understanding of the processes that the selected genes have 
roles. A hypergeometric test was applied using to the gene sets or network nodes with 
the selected annotation file (H_sapiens_default) of Homo Sapiens.The default GO 
annotation file (GO_full) is used as ontology file. Input parameters were adapted to be 
used as the same for all analysis. A stringent Benjamini & Hochberg False Discovery 
Rate (FDR <0.005) was used to filter out non-significant GO terms. BiNGO results 
were kept in .bgo files and exported into R for series of downstream analysis.  

 
Table 2: Experimental evidence codes used in the study. 
 
Code Description 

EXP Inferred from Experiment 

IDA Inferred from Direct Assay 

IMP Inferred from Mutant Phenotype 

IGI Inferred from Genetic Interaction 

IEP Inferred from Expression Pattern 

IPI Inferred from Physical Interaction 

 

GO sets containing redundant and electronically annotated terms generate a huge noise 
for functional comparisons. These terms either originated electronically or have 
ambiguity in them.  The GOs other than experimentally validated codes were filtered 
out (accepted codes shown in Table 2) to avoid suspicious GO terms and set a level to 
the analysis. The codes were matched through publicly available Gene Ontology 
Annotation (GOA) database (http://current.geneontology.org/annotations/).  

2.2.13. Network Analysis 

Hidden expression patterns in the differentially expression sets which could be lost in 
RNA-seq analysis can be explored through construction of protein-protein interaction 
networks. The classical downstream analysis of RNA-seq is performed using DEG 
sets, and the analysis is restricted to gene set enrichment analysis, clustering analysis 
or gene-based database searches. Using these types of analysis are limited by the input 
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gene lists. Furthermore, the rules for DEG filters or statistical limitation parameters 
are not specific and general usage of the parameters are experiment based. Hence, 
construction of an interaction pathway from DEG sets can uncover some expression 
which may be lost during up-stream analysis. 

Omics Integrator is a package that aims to analyze proteomic, gene expression or 
epigenetic data starting from omic data with the aim of network construction by PCST 
formulation. It consists of two modules, Garner and Forest works one by one to 
construct a network connecting proteomic and gene expression or epigenetic data. For 
downstream RNA-seq analysis, Omics Integrator software Forest module determined 
multiple sub-pathways in the human interactome given top DEGs as input terminals.  

PCST (Prize Collecting Steiner Tree) algorithm first used for biological network 
by (Tuncbag et al., 2016) aims to identify sub-networks from an interaction network 
given a set of weighted genes. By using PCST, the biologically meaningful 
interactions between the DEGs from human protein-protein interaction data were 
extracted. The PCST algorithm finds an optimal tree, including the terminal with 
prizes travelling through the interactome nodes which have costs of edges only if they 
are included. The task is to find the shortest paths between the prize nodes avoiding 
the costs on the edges. The algorithm minimizes the cost of all edges by passing 
through many prize nodes as possible.   

STRING human protein-protein interaction database v.10 was used as backbone of 
PCST database in this study. V10 STRING database had 19,247 unique proteins with 
8,548,002 interactions. PII in STRING is weighted by confidence scores using 
numerous proofs. The confidence score was restricted by a high confidence value 
(>0.7) with stronger experimental proof needed. In STRING edges are scored 
according to a confidence score determined through an algorithm. If an interaction is 
proved through experimentally the confidence score gets higher basically in a range of 
0-1.  After the filtration, there were 12,910 unique proteins with 333,324 edges. The 
cost of the edges in OmicsIntegrator is determined by getting negative logarithm of 
these scores, so the cost and the interaction confidence are negatively correlated. The 
price list given to the algorithm was a DEG list with ENSEMBL IDs, in order to match 
those to STRING first, DEG ENSEMBL IDs converted into Gene Names using 
Ensembl BioMart. Then, STRING PPI was converted from protein names to Gene 
Names using the same strategy. By this way, while using the same Gene Names was 
managed, untranslated transcripts from the DEG lists were lost.     

2.2.14. Optimization of Forest Parameters 

In order to construct meaningful trees using differentially expressed genes, input 
Forest parameters must be fine-tuned. The size and degree of the forests are expected 
to vary as the number of genes in the input files changes. Forest parameters depend 
highly on the distribution of prizes and numbers of the nodes and there could be 
hundreds of possible solutions for numbers of input terminals. The best combinations 
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of parameters for each DEG set were explored using forest-tuner script 
(https://github.com/gungorbudak/forest-tuner) which is PCST algorithm parameter 
tuner for ω, β and µ parameters. This script was used to find the best arrangements of 
the parameters to be used in the Forest module for each treatment. 

  

Table 3: Forest parameters and their effect into the re-generated sub-interactomes. 

Parameter Description Effect 
ω Cost of starting to a new tree  Less trees 

β  Controls hubs Larger networks 
µ  Controls hubs Smaller networks 
D Adjust depth of the tree Longer trees 

 

The parameters were tuned in the following ranges: ω (1-10.0 or 5-15), β (1-15.0), µ 
(0.01-0.05). Here, ω parameter tunes the number of trees in the network, β parameter 
increases the number of prices entering the tree and μ is another parameter that 
arranges the dominance of hub proteins in the network (Table 3). D parameter, which 
is not tuned and taken as 10, also controls the depth of the tree resulting with longer 
trees as it gets larger. From all possible solutions, the combination which generates a 
minimum degree network with the greatest number of prize nodes was selected. Config 
files including selected parameters per kinase inhibitor treatment were kept for forest 
analysis. 

Commend line parameters to run Omics Integrator is provided in Appendix C and the 
corresponding codes and required files can be found in GitHub repository mentioned 
in Appendix B.  

2.2.15. Forest Module Runs 

Omics Integrator “forest.py” was run with the config files generated by forest-
tuner.py. As a result of the runs, forest outputs a list of files whose content are 
explained below:  

• Sample_info.txt summarizes the information on the run for debugging. 

• Sample_optimalForest.sif includes the final optimal network in sample 
interaction file format (SIF). The file is ready to open with Cytoscape.  

• Sample_augmentedForest.sif look likes optimal forest file yet it also includes 
all the edge interactions inherited directly from reference interactome. 
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Betweenness centrality in the node attribute file is calculated through this 
network.   

• Sample_dummyForest.sif look likes optimal forest file yet it also includes the 
dummy nodes and interacting edges that the algorithm eliminated.  

• Sample_edgeattributes.tsv includes information about the edges in the 
network; its weight in the interactome, the fraction of optimal networks 
containing the edges, separated by tabs.  

• Sample_nodeattributes.tsv includes information about the nodes in the 
network, its prize and betweenness centralities, separated by tab.  

2.2.16. Randomization Tests 

In order to test the significance of the nodes appearing in the optimal nodes, each PCST 
network was subjected into 100 randomization tests using the Omics Integrator tool 
(specified by –randomTerminals=100). The tests were performed using a random set 
of terminals with respect to keeping node numbers, and original interactome set with 
same edge weights and optimization penalties the same.  

Here, the probability that a node randomly be present in the network was expressed by 
its frequency of randomness in the network producing the ‘specificity index. 
Therefore, less frequent nodes would be the most specific ones to the network 
(Tuncbag et al., 2013). Through the analysis, the nodes that appeared only once in the 
random networks was considered.  

2.2.17. Centrality Measurements 

Centrality measures are the indicators of the most valuable vertices in the graph for 
network analysis. Centrality is often used to identify influential nodes of the network 
and by this way provides a ranking which identifies the important nodes in the 
network. Degree, eigenvector and betweenness centralities calculated to estimate 
network topology.  NetworkX python library (Hagberg et al., 2008) was used to 
calculate centrality measures. Here is the list of centrality measures used in this study:  

• Degree Centrality: Proportion calculated by the number of connections a node 
has. 
 

• Eigenvector Centrality: Computes the centrality for a node based on the 
centrality of its neighbors. 
 

• Betweenness Centrality: Calculates how many times a node bridges along two 
node’s shortest path. 
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2.2.18. Effective Visualization of the Optimal Networks 

Omics Integrator outputs the optimal networks in SIF format. SIF files are ready to 
import Cytoscape as default, yet for a practical analysis the optimal network should be 
shaped and arranged efficiently. 

Cytoscape includes many add-ons for biological network analysis including 
annotation, pathway enrichment and clustering. Cytoscape was used for network 
analysis in this study to use all of these functionalities together. The methods used for 
network representation are illustrated in Figure 15.  

The classical way of a biological network analysis is to perform an enrichment analysis 
to understand the functions of these genes/nodes having a role on. Using all the inputs 
together for the enrichment analysis results in either too general GO terms to analyze 
or losing too definite terms as the statistical significance is vanished for big size 
networks, for example. The optimal network generated through forest includes sub-
trees. Biologically, these branches are representing a group of proteins closely 
interacting each other. So, these sub-trees can be representation of functional 
groupings. In this study, a topology-based clustering method was performed to detect 
those groups.  Then, enrichment analysis was performed using these clusters and after 
most important GO terms were selected, they were back mapped to the network 
generating a well-designed network representation summarizing the functional groups 
and which role they were engaged in.  

The network nodes were sized along with the node labels with betweenness centrality 
values to emphasize their centrality. The hub nodes are represented with a bigger size. 
Afterwards, to understand the expression patterns and transcriptional flow direction, 
upregulated genes were colored to red while downregulated ones colored to blue. As 
the value gets stronger the darkness of the value increases.  The final visualizations 
represented all gene relationships, up and downregulated genes and internal Steiner 
nodes. Also, highly connected groups and GO annotations were provided for an easy 
and efficient way to compare networks with each other. For network representations, 
these following files were used.  

1. A SIF file containing the optimal network, forest module run results.  

2. A TSV file containing the betweenness centralities, forest module run results. 

3. A CSV file containing the genes, logFC values and other annotations, edgeR 
results. 

4. A SIF file including the selected GO terms and their gene links, generated from 
merged .bgo files.   
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Figure 15: Summarization of the methods used for effective visualization of optimal networks. 

2.2.19. Clustering 

After SIF files were imported into the Cytoscape, yFiles layout algorithms were 
implemented and hierarchical layout was selected for visualizations.  In order to cluster 
the networks, Glay algorithm  (Su et al., 2010) using edge betweenness centrality was 
implemented. In this regard, the genes which are topologically close to each other in 
the network were better detected. Application of this strategy resulted in the most 
connected patterns in the networks. 

2.2.20. Annotation 

The Cytoscape plug-in AutoAnnotate tool (Kucera et al., 2016) was used to annotate 
the clusters. It is a very easy to use method since it can automatically detect the groups 
or work directly on the already generated ones. The autogenerated labels are also 
editable further. the clusters were annotated based on the selected GO terms to better 
represent the functions of the connected proteins inside the networks.  
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Therefore, this method provided a nice way to properly interpret the network and easy 
compare of the different networks.  

2.2.21. GO Analysis and Mapping 

In order to better understand what processes these clusters have role on, statistically 
overrepresented Gene Ontology (GO) terms were characterized using BiNGO for each 
cluster in networks. The lists were filtered out using a stringent FDR cut-off (0.005). 
Selected GO terms were imported into the network using their gene maps and mapped 
into the clusters using AutoAnnotate tool.  

2.3. Prioritization of the Nodes in the Optimal Networks 

Drug target genes were proposed by following a series of network filtrations based on 
network topology. The hub nodes needed to be avoided because they are commonly 
the most studied ones. Target node needed to be network specific and significant for 
the network. Thus, the strategy was following this idea: a node would be candidate to 
be target only if it occurs in the branches on random networks while presenting in more 
central areas on the optimal networks. In order to achieve these nodes, 100 
randomization tests were performed to eliminate frequent nodes in random networks.  
the least frequent nodes (specificity index smaller than 0.01) for construction of 
optimal networks were used.  

Then, three stage selection were performed for target selection: 

1. The hub nodes of optimal networks were selected though using degree, 
eigenvector and betweenness centralities greater than 0.001.  

2. From the remaining nodes, the ones that were predominant in the random 
network were eliminated using degree centrality of random networks 
bigger than 0.001.  

3. Finally, top 20 target for each cell line were selected upon sorting by their 
betweenness centralities.     

2.4. Knock-out Experiment 

The prioritized nodes were silenced in the optimal networks using –knockout 
parameter provided by Omics Integrator tool. The nodes (genes) given to the tool one 
by one with the corresponding network, and the effects of the remove was analyzed 
afterwards. If exists, the number of effected node and the effected gene ontology were 
counted and summarized. The node would be important if either effecting more than 
two nodes or at least one gene ontology.     
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CHAPTER III 
 
 

3. RESULTS 

In this chapter, the results of the bioinformatics analysis performed as a part of the 
study are discussed. The chapter is separated into two sections: As a part of RNA 
sequencing results, the number, the quality, and the alignments of reads are explained 
first and, then the results of the differential expressions of the genes and similarity-
based gene correlations are described. In the second section, network-based 
interpretation of the data, the results of optimal PCST network constructions, 
comparisons of the networks, network clustering, network gene enrichment, gene 
prioritization and the effect of node removals from the network are explained.   

3.1. RNA Sequencing Results 

The following section explains RNA sequencing results. The quality reports for raw 
FASTQ reads and alignments of the reads, differentially expressed genes, Pearson 
correlation or similarity analysis performed with dendrogram and analysis of 
expression patterns in HCC cell lines are discussed. 

3.1.1. Quality Check Reports 

12 Single-end FASTQ reads, were processed by Illumina Genome Analyzer, were 
analyzed using the FASTQC tool. The base quality scores of raw reads for all 
treatments were plotted and added into the Appendix D. The bases quality of all reads 
was above average and in good quality. According to FASTQC generated reports, 
single end reads 49bp in length were well sequenced and no end bias was seen for the 
reads. Total sequences, sequence lengths and GC% contents were represented in Table 
4.  Mean value of base quality scores was above the average. An average of 33,465,904 
clean reads in 47-50% GC were generated.  
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Table 4: Total sequences, sequence length and GC% content of the FASTQ files of the 
HCC Cell lines.  

HCC Cell Lines 
 

Quality Measures 

Huh7  Total 
sequences  

Sequence 
Length 

GC% 
Content 
  

PI3K-α inhibitor (PIK-75) 33192992 49 48 

PI3K-β inhibitor (TGX-221) 32730853 49 50 

PIK-75 + Sorafenib 34017394 49 49 

TGX-221 + Sorafenib 28579376 49 49 

Sorafenib 36506606 49 49 

DMSO 37827459 49 48 

Mahlavu  Total 
sequences 

Sequence 
Length 

GC% 
Content 
  

PI3K-α inhibitor (PIK-75) 34302640 49 47 

PI3K-β inhibitor (TGX-221) 29776671 49 49 

PIK-75 + Sorafenib 31897951 49 49 

TGX-221 + Sorafenib 37221329 49 49 

Sorafenib 32116151 49 50 

DMSO 33421422 49 49 

 

3.1.2. Alignments and Gene Counts 

Table 5 represents the alignment qualities per library. The aligned number of reads 
was on average 27-36 million reads, and the alignment rate per line was about 97%. 
The coverage of the alignments was at most 47X and at least 35X. Therefore, all the 
alignments were of high-quality and coverage.  
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Table 5: Number of total processed sequences, alignment rate in percentages, and the 
coverage of the alignments for HCC Cell lines.  

HCC Cell Lines Library Quality Measures 

Huh7 Total reads Alignment Rate 
(%) 

Coverage 

PI3K-α inhibitor (PIK-75) 32184033 97.0 41 

PI3K-β inhibitor (TGX-221) 31841448 97.3 40 

PIK-75 + Sorafenib 33134724 97.4 42 

TGX-221 + Sorafenib 27899790 97.6 35 

Sorafenib 35665666 97.7 45 

DMSO 36867755 97.5 47 

Mahlavu Total reads Alignment Rate 
(%) 

Coverage 

PI3K-α inhibitor (PIK-75) 33219644 96.0 42 

PI3K-β inhibitor (TGX-221) 29018356 97.5 37 

PIK-75 + Sorafenib 30868036 96.8 39 

TGX-221 + Sorafenib 36355199 97.7 46 

Sorafenib 31292278 97.4 39 

DMSO 32591562 97.5 41 
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In Table 5, the coverage of the alignment files calculated using the following equation, 
taking human transcriptome length as 39,841,315 bp. 
 

 Coverage = (Sequence Length x Total Sequences) / Human Transcriptome Length 
 

 
 
Figure 16: A. Library sizes per samples, B. gene distributions per samples resulted by HTSeq-
count. There is no normalization in both plots. HALPHA; PI3Ki-α inhibitor (PIK-75), 
HSALPHA; PIK-75 and Sorafenib, HBETA; PI3Ki-β inhibitor (TGX-221), HSBETA; TGX-
221 and Sorafenib, HSOR; Sorafenib treatments of Huh7 cells and MALPHA; PI3Ki-α 
inhibitor (PIK-75), MSALPHA; PIK-75 and Sorafenib, MBETA; PI3Ki-β inhibitor (TGX-
221), MSBETA; TGX-221 and Sorafenib, H-MSOR; Sorafenib treatments of Mahlavu cells. 

Mapped reads to the human transcriptome were counted by the HTSeq-count tool 
given a set of genomic features. Without any transformation, library sizes of genes 
were between 28000000-38000000 (Figure 16.A). The count of genes where well 
mapped were similarly distributed. Which indicates the fact that the sets were 
comparable to each other even though there was no replication.  In Figure 16.B, genes 
are well distributed, and no distinguishable bias was observed. At the quantification 
step, no normalization was applied; the necessary normalization for differential gene 
expression analysis was provided inside the edgeR package.  
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3.1.3. Differential Expression Analysis 

The systematic analysis of differential response of the HCC cell lines to the specified 
inhibitory elements were provided with RNA-seq analysis. RNA-seq experiment was 
performed for 5 Huh7 and 5 Mahlavu cell lines. EdgeR tool was used by taking DMSO 
treated cells as control to determine differentially expressed genes (DEGs). In order to 
estimate the dispersion among the cell lines, a set of housekeeping genes based on the 
assumption that their expression was not affected by the treatment with the inhibitors 
was used. Especially for Hepatocellular carcinoma, there is a comprehensive study 
exploring expression levels of tissue specific housekeeping genes (Ersahin et al., 
2014). Using this set of genes listed in Table 6, the biological coefficient of variation 
(BCV) was estimated efficiently.  

 

Table 6. Housekeeping genes used for BCV calculation. 

Ensembl Gene ID Gene description Gene name 

ENSG00000196470 siah E3 ubiquitin protein ligase 1 SIAH1 

ENSG00000253729 protein kinase, DNA-activated, catalytic 
subunit 

PRKDC 

ENSG00000164924 tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein zeta  

YWHAZ 

ENSG00000012048 BRCA1 DNA repair associated BRCA1 

ENSG00000128513 protection of telomeres 1 POT1 

ENSG00000149269 p21 (RAC1) activated kinase 1 PAK1 

ENSG00000135446 cyclin dependent kinase 4  CDK4 

ENSG00000104290 frizzled class receptor 3  FZD3 

ENSG00000161960 eukaryotic translation initiation factor 4A1 EIF4A1 

ENSG00000120738 early growth response 1 EGR1 

ENSG00000168539 cholinergic receptor muscarinic 1 CHRM1 

ENSG00000149554 checkpoint kinase 1 CHEK1 

ENSG00000207730 microRNA 200b MIR200B 
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Raw results of edgeR resulted in between 900 to 11000 differentially expressed genes. 
When p value (0.01) filtration was applied 15 to 1500 of them remained to be 
significant. logFC using -/+2 criteria was applied for both cell lines to get expressive 
changes. However, the number of remaining genes for Mahlavu was significantly low 
using logFC 2. Considering many steps need to be performed for down-stream analysis 
A less stringent limitation for log was performed in Mahlavu cell line. On the other 
hand, Huh7 resulted in greater number discounting for single PI3Ki-β (TGX-221) 
treatment. Therefore, different logFC values on Huh7 and Mahlavu were applied. For 
Mahlavu cell lines, a less stringent logFC value (-1.5/+1.5) was used for further 
analysis. 

Table 7: The number of differentially expressed genes and untranslated transcripts for 
HCC cell lines under various inhibitor treatment conditions. 

HCC treatments           Differentially Expressed Genes 

Huh7 vs DMSO Up Down Total Untranslated 
Transcripts 

PI3K-α inhibitor (PIK-75) 139 52 191 20 

PI3K-β inhibitor (TGX-221) 4 1 5 0 

PIK-75 + Sorafenib 16 171 187 9 

TGX-221 + Sorafenib 162 62 224 11 

Sorafenib 127 71 198 11 

Mahlavu vs DMSO Up Down Total Untranslated 
Transcripts 

PI3K-α inhibitor (PIK-75) 66 39 105 22 

PI3K-β inhibitor (TGX-221) 3 3 6 0 

PIK-75 + Sorafenib 240 205 445 37 

TGX-221 + Sorafenib 2 103 105 31 

Sorafenib 17 21 38 12 

 

Table 7 lists the numbers of DEGs. In both cell lines, as I expected, TGX-221 treatment 
had minor effects, and the DEG numbers were very low. In Huh7, the number of DEGs 
were greater for PI3Ki-α (PIK-75), whilst in PIK-75 + Sorafenib, DEG numbers were 
lower. The number of DEGs were also low for Sorafenib and TGX-221 alone 
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treatments, in their combinational treatment an increased number of DEGs, especially 
downregulated genes, were observed in Mahlavu cells.    

The number of DEGs seen for PIK-75 treated Huh7 cells had more upregulated genes 
than PIK-75 + Sorafenib treatment and the number of downregulated genes for the 
combinatory treatment were greater than the single PIK-75 treatment. Therefore, a 
reversed reaction was observed for PIK-75 single and combinatory treatment with 
Sorafenib in the Huh7 cell line. Moreover, the response of Mahlavu to the same 
combination treatment was significantly different with a highly increased number of 
up and downregulated genes when compared to Sorafenib or PIK-75 inhibitor alone.  

 

  
Huh7 Mahlavu 

  
Figure 17: Venn diagrams representing common and unique Huh7 and Mahlavu DEG 
numbers. HALPHA; PI3Ki-α inhibitor (PIK-75), HSALPHA; PIK-75 and Sorafenib, HBETA; 
PI3Ki-β inhibitor (TGX-221), HSBETA; TGX-221 and Sorafenib, HSOR; Sorafenib 
treatments of Huh7 cells and MALPHA; PI3Ki-α inhibitor (PIK-75), MSALPHA; PIK-75 and 
Sorafenib, MBETA; PI3Ki-β inhibitor (TGX-221), MSBETA; TGX-221 and Sorafenib, H-
MSOR; Sorafenib treatments of Mahlavu cells. 

About 5% to 10% of the DEGs were found to be untranslated transcripts in Huh7 cells. 
PIK-75 treatment had the most untranslated transcripts in the DEG set. On the 
contrary, for PTEN-deficient HCC, Mahlavu cells, the number of untranslated 
transcripts were above average (30%). Especially, Sorafenib alone and TGX-221 + 
Sorafenib treatments had many untranslated transcripts. The number of untranslated 
transcripts is shown in Table 7.   

Common and unique DEGs were identified using Venn diagrams and they were 
plotted separately for Huh7 and Mahlavu cell lines shown in Figure 17. Venn diagrams 
revealed that Sorafenib treatment and its combinational treatment with TGX-221 
inhibitor shared a significant number of common genes in both cell lines. 70% (141 
genes) in Huh7 and 45% (17 genes) in Mahlavu were shared between Sorafenib alone 
and TGX-221 + Sorafenib treatments. Furthermore, PIK-75 and Sorafenib 
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combination also had common genes in the Mahlavu cell line. 50% of the genes (50 
of them) were common for those two treatments.   

3.1.4. Correlation Analysis of Kinase Inhibitors 

Pearson correlation analysis was conducted to see how comparable the differential 
expressions overall. logFC values of all significant (FDR and p-value > 0.01) 
differentially expressed genes (without logFC limitation) united for correlation 
analysis. As a result, a significant correlation was observed between Sorafenib 
treatment and its combinatorial treatment with TGX-221 (0.92) in Huh7 and (0.63) in 
Mahlavu, and between PIK-75 and its combinatorial treatment with Sorafenib in 
Mahlavu (0.74) (Figure 18).   Negative correlation was not observed in any of the 
comparisons.  Furthermore, a correlation analysis comparing Huh7 and Mahlavu cell 
lines together was conducted.  As represented in Table 8, there was no correlation 
either in between two cell lines or in between the same drug treatments. This shows 
that PTEN-deficiency alters the molecular mechanism in HCC cell lines significantly 
and the correlation in DEGs are not notable. 

 

  
Huh7 Mahlavu 

  
  

Figure 18: Pearson correlations of kinase inhibitor treatments for Huh7 and Mahlavu.  
ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β 
inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. 
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Table 8: Pearson correlation matrix between Huh7 and Mahlavu inhibitor treatments. 

 Mahlavu 
Huh7 ALPHA BETA SOR SALPHA SBETA 
ALPHA 0.02 0.04 0.02 0.27 0.07 

BETA 0.14 0.08 0.02 0.03 0.04 

SOR 0.26 0.15 0.18 0.22 0.18 

SALPHA 0.02 0.10 0.14 0.14 0.12 

SBETA 0.22 0.10 0.24 0.17 0.16 

Abbreviations: ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, 
BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib 
treatments. 

3.1.5. Top 50 Common DEGs 

The top 50 most differentially expressed genes are represented through a dendrogram 
in Figure 19. Top 50 genes were selected for each HCC cell line by ranking their sum 
of absolute logFC values per cell type.  

Up and downregulated genes were clustered well in both cell limes. The separation 
was more absolute in Huh7. The most common downregulated genes in Huh7 were 
DUSP5, PCNA, SPRY2, and WNK4 and upregulated genes were VCAN, GADD45B, 
TBX4, HOXA2 and DUSP8. The details of the genes are listed in Table 9.  
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         Huh7        Mahlavu 
 

 

  

 

 
Figure 19: Heatmaply dendrograms representing top 50 most common DEGs of Huh7 and 
Mahlavu cell lines. Red signifies the upregulation while blue represents down.  ALPHA; 
PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor 
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. 
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Table 9. Ensembl ID, gene description, gene name and the regulation type in Huh7 
cell line of the most common differentially expressed genes. 

Ensembl ID Description Name Regulation 

ENSG00000136158 sprouty RTK signaling antagonist 
2 

SPRY2 Down 

ENSG00000132646 proliferating cell nuclear antigen PCNA Down 

ENSG00000126562 WNK lysine deficient protein 
kinase 4  

WNK4 Down 

ENSG00000138166 dual specificity phosphatase 5 DUSP5 Down 

ENSG00000121075 T-box transcription factor 4 TBX4 Up 

ENSG00000099860 growth arrest and DNA damage 
inducible beta 

GADD45B Up 

ENSG00000273793 dual specificity phosphatase 8 DUSP8 Up 

ENSG00000105996 homeobox A2 HOXA2 Up 

ENSG00000038427 versican VCAN Up 

 

With respect to Huh7, common differentially expressed genes were not well separated 
in Mahlavu. Some of the genes like EGR1, LINC00641, MIR6723, FOSB and ACTA2 
genes were found to vary in different treatments. HSPA1B, HSPA1A, APOE, ESGR, 
CYP1B1-AS1 and TPTEP1 genes were the most upregulated genes and LDLR, DHCR7 
and ADGRG1 were the most commonly downregulated genes, listed in Table 10. 

When common differentially expressed genes in Huh7 and Mahlavu cells were 
compared, INSIG1 gene was common to both cell lines and it was downregulated in 
most of the treatments. Moreover, while overexpression of GADD45B was mediated 
in Huh7, GADD45A was upregulated in Mahlavu cells. 
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Table 10. Ensembl ID, gene description, gene name and the regulation type in 
Mahlavu cell line of the most common differentially expressed genes. 

Ensembl ID Description Name Regulation 

ENSG00000172893 7-dehydrocholesterol 
reductase 

DHCR7 Down 

ENSG00000205336 adhesion G protein-
coupled receptor G1 

ADGRG1 Down 

ENSG00000130164 low density lipoprotein 
receptor 

LDLR Down 

ENSG00000204389 heat shock protein family 
A (Hsp70) member 1A 

HSPA1A Up 

ENSG00000204388 heat shock protein family 
A (Hsp70) member 1B 

HSPA1B Up 

ENSG00000130203 apolipoprotein E APOE Up 

ENSG00000100181 TPTE pseudogene 1 TPTEP1 Up 

ENSG00000232973 CYP1B1 antisense RNA 1 CYP1B1-AS1 Up 

 

3.1.6. Differentially Expressed Untranslated Transcripts 

Following the identification of DEG lists, most of the down-stream analysis methods 
of RNA-seq analysis methods depend on the translated transcripts since they have 
protein annotations.  After filtrations, 44 and 80 unique untranslated transcripts for 
Huh7 and Mahlavu, respectively, were identified. Apart from unidentified untranslated 
transcripts, most of them were either antisense RNAs or mitochondrial pseudogenes. 
In Figure 20, the dendrogram analysis of Huh7 untranslated transcripts is represented. 
Among the antisense RNAs, in Huh7, TUBA1C is found to be commonly 
downregulated gene. Also, SLC1AS, DDIT4 and HMCS1 were downregulated while 
NCBP2 and HOXA2 were upregulated in PIK-75 treatment group, GABPB1 was 
downregulated but RUSC1 was upregulated in PIK-75 and Sorafenib treatment, while 
LYZ was downregulated in Sorafenib treatments. Furthermore, mitochondrial 
pseudogenes were upregulated in PIK-75 treatment, while they were downregulated 
in Sorafenib and its PIK-75 combination. 
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       Huh7     Mahlavu  

  

 

Figure 20: Heatmaply dendrograms representing untranslated transcripts of Huh7 and 
Mahlavu cell lines. Red signifies the upregulation while blue represents down.  ALPHA; 
PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor 
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. Filtration criteria: 
p-value <0.01, logFC >2.0, <-2.0 for Huh7 and logFC >1.5, <-1.5 for Mahlavu cells.  
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Untranslated transcripts’ dendrogram analysis for Mahlavu cells is shown in Figure 
20. Among the antisense RNAs downregulation of AXL, GMPR, DDIT4 and THBS3 
found in PIK-75 inhibitor treatment, GAS6, HMGCS1, NFE2L1, and SLC9A3 
downregulated and ZNF213, EAF1, TMEM44, TYMS, and NCBP2 were upregulated 
in PIK-75 + Sorafenib. Moreover, mitochondrial pseudogenes were upregulated in 
PIK-75 treatment, conversely, they were downregulated in Sorafenib and TGX-221 
combination. Furthermore, p53 regulation associated with the lncRNA was 
upregulated in this combination. programmed cell death 6 (PDCD6) was 
downregulated in Sorafenib treatment.  

3.1.7. Gene Enrichment Analysis of Differential Expression Patterns 

Since significant correlations between some of the specific treatments were observed, 
the shared patterns between sets were also explored in more detail. Huh7 and Mahlavu 
cell treatments were clustered using their logFC values to investigate expression 
patterns. Single PI3K-β inhibitor (TGX-221) analysis was excluded from both cell line 
analysis considering low number of DEGs. Clustering analysis was performed 
separately for the cell lines. Treatment-specific DEG sets joined for clustering 
analysis. United sets included 11033 and 11615 genes for Huh7 and Mahlavu 
respectively in total without any filtration. the genes that satisfied the specified limits 
kept: p-value <0.01, logFC >2.0, <-2.0 for Huh7 and logFC >1.5, <-1.5 for Mahlavu 
cells. So, dendrogram analysis was performed on 581 genes for Huh7 and 583 genes 
for Mahlavu cells.   

In both HCC cell lines, the dendrogram was separated into two in the same way. Single 
PI3K-α inhibitor (PIK-75) treatment and Sorafenib with PIK-75 treatment were 
clustered together and single Sorafenib treatment and Sorafenib with TGX-221 were 
clustered together. In correlation analysis, the similarity between single Sorafenib and 
its combinatorial treatment in TGX-221 was greater in Huh7 and conversely single 
PIK-75 and its combinatorial treatment with Sorafenib was greater in Mahlavu.  

Clustering was performed on the dendrograms to define common or unique expression 
patterns between the treatments. Huh7 and Mahlavu DEGs were divided into 8 and 6 
clusters respectively. Gene ontologies belonging to those clusters were identified to 
characterize functional processes responding to different kinase inhibitors. Huh7 and 
Mahlavu dendrogram analysis are represented in Figure 21 and Figure 22 respectively.  
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Figure 21: Heatmap of gene expressions illustrated as dendrograms for Huh7 cell line. Up and 
downregulated gene levels are colored as red and blue respectively, the intensity of the color 
indicates how strong the logFC value is. For more detailed analysis and to view interactive 
dendrograms please see html file in the GitHub repository. 8 clusters were generated by 
heatmaply and colored. Gene enrichment analysis was performed using BiNGO (FDR<0.05) 
and significant GOs selected according to the context. Clusters that do not show any significant 
enrichment were excluded.  ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and 
Sorafenib, BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; 
Sorafenib treatments. 
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Figure 22: Heatmap of gene expressions illustrated as dendrograms for Mahlavu cell line. Up 
and downregulated gene levels are colored as red and blue respectively, the intensity of the 
color indicates how strong the logFC value is. For more detailed analysis and to view 
interactive dendrograms please see html file in the GitHub repository. 6 clusters were 
generated by heatmaply and colored. Gene enrichment analysis was performed using BiNGO 
(FDR<0.05) and significant GOs selected according to the context. Clusters that do not show 
any significant enrichment were excluded.  ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; 
PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-221 and 
Sorafenib, SOR; Sorafenib treatments. 
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Heatmap analysis of differentially expressed genes revealed functional expression 
patterns in HCC cells. For all treatments in HCC, positive regulation of extracellular 
matrix organization and developmental processes were observed while regulation of 
cell proliferation and actin filamentation bundle assembly ontologies were more active 
in PIK-75 treatment. DUSP5 and PCNA genes were downregulated for all treatments. 
PIK-75 and Sorafenib combined treatment resulted in downregulation of genes 
enriched in negative regulation of biosynthetic processes and cell fate commitment 
ontologies. Likewise, cholesterol metabolic processes gene ontology was 
downregulated for TGX-221 + Sorafenib treatment. I also identified a group of genes 
including 2 histone family proteins, 1 long intergenic non-translating RNA, 
uncharacterized proteins FAM184B and NCBP2AS2, NBP, and NAG5 and Ca+2 
carrier receptor gene ATP2A1 being downregulated in the treatment of PI3Ki-α alone 
while they were upregulated all the other Huh7.  

Immune response was upregulated more significantly for Sorafenib treatment in 
Mahlavu treatments. Cation binding was upregulated for PIK-75 and its Sorafenib 
combination. Cholesterol metabolic processes, angiogenesis and vascular endothelial 
growth factor receptor 2 binding were downregulated for all treatments. A group of 
genes were upregulated in single Sorafenib and TGX-221 +  Sorafenib treatment while 
downregulated in single PIK-75, PIK-75 + Sorafenib treatments. In this group, most 
of the genes were mitochondrial pseudogenes as they were also identified in 
dendrogram analysis of untranslated transcripts.  

3.2. Network-Based Interpretation of the Data 

A traditional way of RNA-seq analysis is to use only DEG sets for gene enrichment 
analysis which generally restricts the detection of some cellular events. The 
application of a conventional method, like Omics Integrator, to create a network from 
differentially expressed genes by connecting them through their known or physical 
protein-protein interactions can show hidden patterns. Omics Integrator adapts the 
Prize Collecting Steiner Tree (PCST) algorithm to connect differentially expressed 
genes by adding intermediate genes (or Steiner nodes) aiming the construction of the 
most optimal gene to gene network. Protein nodes in STRING human PPI was 
converted into Gene Names creating a reference gene network. 

3.2.1. Optimal PCST Networks 

Forest-tuner was run for the DEG list to find the best arrangements in these ranges; ω 
(1-10.0 or 5-15), β (1-15.0), µ (0.01-0.05). Forest-tuner lists the arrangements and the 
outcomes of the parameters running Forest. From the possible solutions, the 
parameters giving the maximum number of nodes with minimal network mean degree 
were selected. The selected and thus optimal ω, β and, µ parameters and their 
consequences on generated networks were listed in Table 11.   
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The number of prize nodes were the number of given proteins as input to the algorithm. 
Ensembl gene ids of DEGs were converted into Gene Names in this step matching to 
backbone reference network. Since some of the Ensembl gene ids did not correspond 
to any protein, as discussed before they are untranslated transcripts, not all input DEGs 
was used in Omics Integrator. The number of prize nodes and total number of nodes 
in the optimal networks contains both the input terminal proteins and the ones found 
to connect them (Steiner).  

Table 11: Selected parameters for PSCT analysis using forest-tuner and numbers of 
nodes, terminals, and prizes of generated networks. 

HCC treatments ω β µ (Terminal+Steiner)  
    Total Node # 

Prize 
Node # 

Mean 
degrees 

Huh7             

PI3K-α inhibitor 
(PIK-75) 

7.75 5.50 0.04 (138+124) 262 171 24.83 

PI3K-β inhibitor 
(TGX-221) 

5.50 3.25 0.03 (5+12) 17 5 23.08 

PIK-75 + Sorafenib  10.0 10.0 0.02 (145+101) 246 178 28.58 

TGX-221 + 
Sorafenib 

10.0 3.25 0.03 (178+147) 325 213 23.86 

Sorafenib  10.0 7.75 0.05 (157+124) 281 187 27.19 

Mahlavu 
      

PI3K-α inhibitor 
(PIK-75) 

10.0 7.75 0.03 (52+63) 115 84 29.14 

PI3K-β inhibitor 
(TGX-221) 

7.75 5.50 0.03 (6+20) 26 6 16.7 

PIK-75 + Sorafenib  10.0 3.25 0.01 (321+236) 547 409 30.31 

TGX-221 + 
Sorafenib 

10.0 5.50 0.03 (53+40) 93 75 34.65 

Sorafenib 5.0 7.00 0.04 (16+15) 31 27 19.67 

 

Since input DEG numbers for PI3K-β inhibitor (TGX-221) treated Huh7 and Mahlavu 
cells and Sorafenib treated Mahlavu cells were low, their networks were smaller than 
the others. The networks were optimized by limiting the number of trees to one and 
keeping their overall degrees as minimal as possible to avoid hairballs. That enabled 
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us to have more than one central hub node in the network and generated multi branches 
for the analysis.  

3.2.2. Comparison of Optimal Network Nodes 

Venn diagram comparing the nodes in the optimal networks is represented in Figure 
23. 4 nodes (DUSP5, PCNA, GADD45B and DUSP8 genes) were found to be shared 
by all networks excluding single PI3K-β inhibitor (TGX-221) treatment in Huh7. 
There were 10 nodes in Huh7 found to be common for Sorafenib including treatments 
(SALPHA, SBETA, and SOR). Gene enrichment of these proteins was associated with 
response to stimulus, damaged DNA binding and sterol metabolic process. VCAN gene 
was common for PI3Ki-α inhibitor (PIK-75) treatments (ALPHA and SALPHA) and 
single Sorafenib treatment (SOR). 25 common nodes were found for single PIK-75, 
TGX-221 + Sorafenib, and Sorafenib treatments (ALPHA, SBETA, and SOR). Gene 
enrichment analysis of these proteins showed that they were mainly acting on the 
regulation of cellular organization, migration, and cell cycle. Furthermore, treatment 
of PIK-75 + Sorafenib and TGX-211 + Sorafenib (SALPHA and SBETA) sharing 8 
nodes enriched in N-acetyltransferase activity and Bcl3-Bcl10 complex.  As shown 
previously through differentially expressed gene similarity analysis, combinational 
TGX-221 and single Sorafenib treatment shared 118 nodes enriched in cell junction 
control, signal transmission, regulation of MAPKKK, and interleukin-8 production.  

 

  
Huh7 Mahlavu 

  
Figure 23: Venn diagrams representing the common and unique number of optimal network 
nodes of Huh7 and Mahlavu cells. ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 
and Sorafenib, BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; 
Sorafenib treatments. 

 
The most common nodes were INHBE, LRRK1, TP53INP2, and FOSB genes in PTEN-
deficient HCC Mahlavu treatments. Single PIK-75 and its combination with Sorafenib 
treatments (ALPHA and SALPHA) resulted in 31 common nodes enriched in GABA-
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B receptor activity, Cdc42 protein signal transduction, regulation of inclusion body 
assembling and cholesterol efflux regulation. Moreover, PIK75 + Sorafenib and TGX-
21 +  Sorafenib (SALPHA and SBETA) shared 22 common proteins enriched in 
cholesterol metabolic process, oxidoreductase activity, and Bcl2-Bcl10 complex. 
BCL3 gene was common for all combinatory treatment in HCC cell lines.    

3.2.3. Cluster Specific Gene Ontologies of Optimal PCST Networks 

A deeper understanding of the interacting genes and a better comparison of the 
networks were provided through a functional encoloring, sizing of the nodes, and a 
systematic usage of the network centrality which measures for clustering using 
Cytoscape tool. Optimal gene-to-gene networks predicted by PCST were imported 
into Cytoscape, gene’s logFC values were attached and used to color the nodes to 
represent up and downregulated branches. The sizes of the nodes correlate with the 
betweenness centrality.  

Systematic usage of networks was provided through the creation of a map for a 
practical comparison of different inhibitor treatments. For some of the networks, the 
greater number of nodes prevented effective comparison of the networks. Furthermore, 
using all nodes for gene ontology analysis would not be statistically significant 
because of large input sizes. Therefore, the big networks needed to be divided enabling 
a strong comparison strategy. To be able to investigate the networks more deeply, GO 
analysis applied into the network clusters. Finally, some significant gene ontologies 
for clusters were selected, and connected in the network using their gene associations. 
In Appendix E, whole list of Gene Ontologies found for each cluster were listed.  

The optimal network generated using DEGs from PIK-75 treated Huh7 cell line is 
represented in Figure 24. Here, the nodes were colored by logFC values resulted from 
EdgeR analysis and color intensifies as the logFC value gets higher. Red and blue 
represented up and downregulation respectively. Steiner nodes were shaped as 
diamond while input transcriptome nodes were shown as ellipse. Node size was 
directly correlated with betweenness centrality of nodes. Clusters were generated using 
betweenness centralities of the nodes using a community cluster Glay algorithm and 
boxed for better representation. The clusters were separately explored by BINGO and 
only selected significant Gene Ontology was added to the network through associated 
genes.  
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CDH1 and CDKN1A genes in anaphase-promoting complex and cyclin dependent 
protein kinase holoenzyme were two central nodes of the PIK-75 network being 
upregulated. The other nodes connected to those have complex regulations. 
Importantly, negative regulation of Erk1 and Erk2, MAP kinase activity, DNA 
replication, cell differentiation and activation of plasma proteins involved in acute 
inflammatory response were found to be enriched in this network.  

The network generated using DEGs from the TGX-221 treated Huh7 cell line is 
represented in Figure 25. Upregulation of cell redox homeostasis, cellular 
carbohydrate catabolic processes and oxidation-reduction activities were observed in 
that network.  
 
 

 
 

Figure 25: A schematic representation of an optimal network of DEGs upon PI3K-β inhibitor 
(PIK-75) treatment of Huh7 cell line. The network can be visualized through Cytoscape by 
using the .cys file in the GitHub repository. 

 
The optimal network created from PI3K-α (PIK-75) + Sorafenib treated Huh7 cell line 
differentially expressed genes is represented in Figure 26. The network consists mainly 
of downregulated genes and the central gene in this network was downregulated JUN. 
JUN gene is a very prominent proto-oncogene encoding for a transcription factor. The 
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transcription factor is the main activator of ERK pathway which directly affects 
PI3K/AKT/mTOR pathway. The other two important downregulated genes were 
MDM2 and PCNA, these two are related to regulation of microtubule depolymerization 
and cell proliferation respectively. Upregulation of MTOR gene would lead 
downregulation of several proteins related to the cellular stress response. Furthermore, 
negative regulation of MAP kinase activity and transmembrane receptor protein 
serine/threonine kinase signaling protein were observed which are mainly upregulated 
in HCC cancer.  

TGX-221 + Sorafenib network is represented in Figure 27.  The network was centered 
by the upregulated CHD1 connected to upregulated GAB2 and SMAD7. The other 
central node was slightly downregulated Steiner HDAC2 node. The network show 
some important gene enrichments in the clusters like positive regulation of cell 
proliferation, positive regulation of MAPKKK cascade, negative regulation of ERK1 
and ERK2 cascade, positive regulation of JUN kinase activity, regulation of 
programmed cell death, apoptotic mitochondrial changes, inactivation of MAPK 
activity, negative regulation of fibroblast growth factor signaling pathway, negative 
regulation of nerve growth factor receptor signaling pathway, and Bcl3/NF-kappaB2 
complex .  

The optimal network generated through differentially expressed genes from Sorafenib 
treated Huh7 cells is shown in Figure 28. The network shares the same downregulated 
central gene, CDH1, with combinatory treated Sorafenib with TGX-221 represented 
in Figure 27. As opposed to its combinatory treatment with other isoform PIK-75, the 
network was mainly enriched with upregulated proteins. The main functional 
enrichments observed in the networks were positive regulation of cell-matrix 
adhesion, homeostatic process, negative regulation of ERK1 and ERK2 cascade, 
negative regulation of fibroblast growth factor receptor signaling pathway, cell 
differentiation, phosphate metabolic process, regulation of stress-activated MAPK 
cascade, GTPase activity, and oxidation reduction. Downregulated PCNA gene was 
hub node as like in combinatory treatment of Sorafenib with PIK-75. Single Sorafenib 
treatment shares some important patterns with its both treatments.   
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The optimal network created from the DEGs extracted from PI3K-α inhibitor (PIK-
75) treated Mahlavu cell line is represented in Figure 29. The central gene in the 
network was CCND1. CCND1 gene expresses cyclin D1 protein which forms 
regulatory subunit of CDK4 or CDK6 whose activity was required for G1/S transition 
in the cell cycle. Upregulation of this protein also increases genes involved in growth 
arrest, such as GADD45A. The other important enriched functions in that network were 
negative regulation of cell proliferation, regulation of cell growth, negative regulation 
of body assembly, and positive regulation of cholesterol transport.  

The optimal network generated from DEGSs from single TGX-221 treatment to 
Mahlavu cell is presented in Figure 30. As in Huh7 cells, the input DEG size lead to a 
smaller size network. All hub genes in this network were Steiner nodes. Some of the 
enriched pathways in this network were responses to molecules of bacterial origin, 
positive regulation of interleukin-6 production, pancreas development, and metallo-
carboxypeptidase activity.  

  

 
 
Figure 29: A schematic representation of an optimal network of DEGs upon PI3K-α inhibitor 
(PIK-75) treatment of Mahlavu cell line. The network can be visualized through Cytoscape by 
using the .cys file in the GitHub repository. 
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Figure 30: A schematic representation of an optimal network of DEGs upon PI3K-β inhibitor 
(PIK-75) treatment of Mahlavu cell line. The network can be visualized through Cytoscape by 
using the .cys file in the GitHub repository. 

 
The network from the combinational treatment of PIK-75 + Sorafenib is shown in 
Figure 31. Similar to the Huh7 response shown in Figure 26, the main genes in this 
network were also downregulated. Downregulation of the EGFR gene was one of the 
important factors in this network. It was encoding a well-known protein associated 
with cancer. TP53 gene was another central node in this network recognized as a 
Steiner in the network. Downregulation of this gene has many functions including 
DNA damage response, signal transduction resulting in induction of apoptosis and 
positive regulation of apoptosis. The other enriched functions in this network were 
positive regulation of transitional initiation, negative regulation of protein complex 
assembly, positive regulation of interferon-alpha production, NAD(P)H oxidase 
activity, generation of precursor metabolites and energy, regulation of GTPase 
mediated signal transduction, histone biotinylation,  negative regulation of cholesterol 
storage, negative regulation of biosynthesis process, negative regulation of inclusion 
body assembly, cell-to-cell junction, mitotic cell cycle, and positive regulation of 
system process.  

In Figure 32, the network generated from Mahlavu cells treated with TGX-221 + 
Sorafenib is shown. The hub gene in this network was upregulated MAPK1 gene 
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(Steiner node) but the many other genes in the network were downregulated. 
Especially, downregulation of the Bcl3/NF-kappaB2 complex was associated with 
cancer development.     The other downregulation functions in this network were long-
chain fatty acid transporter activity, SREBP-mediated signaling pathway, cholesterol 
biosynthetic process, nucleoside transport and oxidoreductase activity acting on the 
CH-CH group of donors, NAD or NADP as acceptor.   
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Figure 32: A schematic representation of an optimal network of DEGs upon PI3K-β inhibitor 
(PIK-75) with Sorafenib treatment of Mahlavu cell line. The network can be visualized though 
Cytoscape by using the .cys file in the GitHub repository. 

The network constructed from the DEGs of Sorafenib treated Mahlavu cells is 
represented in Figure 33. As opposed to the Huh7, the same treatment affected 
minatory genes in the Mahlavu, and a smaller network was generated. Upregulation of 
the MX1 gene with 10 other genes was observed in the network. The two clusters 
associated with that group were mainly related to interferon-induced dynamin-like 
GTPase with antiviral activity. Also, mitochondrial alpha-ketoglutarate 
dehydrogenase complex, isoleucine catabolic process, and negative regulation of 
protein kinase activity were among the enriched pathways in this network.  
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Figure 33. A schematic representation of an optimal network of DEGs upon Sorafenib 
treatment of Mahlavu cell line. The network can be visualized through Cytoscape by using the 
.cys file in the GitHub repository. 

3.2.4. Comparison of Cluster Specific Gene Enrichments 

The cluster-specific gene enrichments for each HCC cell line through a dendrogram 
analysis were compared in Figure 34. With respect to the similarities in DEG 
expressions, the functional processes in the optimal networks were not related 
pointedly. In both cell lines, single PI3Ki-β (TGX-221) and Sorafenib treatments were 
the closest in the dendrogram even though they do not share a significant number of 
processes. That was possibly due to the ineffectiveness of single TGX-221 treatment 
on the cells.  Then, the closest treatments in terms of network functionalities were 
Sorafenib with PI3Ki-α (PIK-75) in Huh7 and TGX-221 in Mahlavu, yet in both the 
number of shared elements were very low.  
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Huh7                   Mahlavu  

  

 

 

Figure 34: Heatmap of gene enrichments illustrated as dendrograms for Huh7 and Mahlavu 
cell lines. The dendrogram was plotted from a binary matrix; 1 for seen GO ids 0 for exclusion. 
For more detailed analysis and to view interactive dendrogram please see html files from the 
GitHub repository. ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, 
BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib 
treatments. 

 
All treatments except TGX-221 was enriched in MAP kinase activity regulation in 
Huh7. Lipid and steroid metabolic processes was observed for all treatments except 
PIK-75. Oxidation reduction was enriched for single TGX-221 and single Sorafenib 
treatments. In Sorafenib, SREB-mediated signaling pathway was also active. 
Combinational PIK-75 treatment represented regulation of DNA repair and SMAD 
binding gene ontologies with regulation of cell proliferation while combinational 



78 
 

TGX-221 resulted with Bcl3/NF-kappaB2 complex, regulations of apoptotic 
processes, cell morphogenesis and programmed cell death. Single PIK-75 and its 
Sorafenib combination represented an enrichment in development ontology (Table 
12).  

Table 12. Significant gene ontologies for inhibitor specific networks in Huh7 cell line.  

 

*ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor 
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. 

Sorafenib represented enrichments in mitochondrial alpha-ketoglutarate 
dehydrogenase, PIK-75 inhibitor enriched in defense response, developmental 
processes and interleukin-6 production, and PIK-75 inhibitor enriched in negative 
regulation of cell proliferation and cell growth regulation in Mahlavu cell lines. 
Combinatory treatment of PIK-75 and its single treatment commonly were enriched in 
cholesterol transport and inclusion body assembly. The network for combinatory PIK-
75 treatment was very large thus there were many GO hits mostly in immune processes 
and cell to cell junction organization. Only combinational PIK-75 enriched in defense 
response, generation of precursor metabolites and energy, mitotic cell cycle, oxidation-
reduction process, regulations of apoptotic processes, cell death, and small GTPase 
mediated signal transduction (Table 13).  

Gene Ontologies ALPHA BETA SALPHA SBETA SOR
Bcl3/NF-kappaB2 complex 1
regulation of apoptotic process 1
regulation of cell morphogenesis 1
regulation of programmed cell death 1
regulation of DNA repair 1
SMAD binding 1
anaphase-promoting complex 1
SREBP-mediated signaling pathway 1
regulation of FGFR and NGFR signaling pathways 1 1
regulation of cell proliferation 1
oxidation-reduction process 1 1
innate immune response 1 1
cell differentiation 1 1 1
developmental process 1 1 1
negative regulation of ERK1 and ERK2 cascade 1 1 1
lipid metabolic process 1 1 1
steroid metabolic process 1 1 1
MAPK cascade 1 1 1 1
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Table 13. Significant gene ontologies for inhibitor specific networks in Mahlavu cell 
line. 

 

*ALPHA; PI3Ki-α inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor 
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. 

3.2.5. Prioritizied Genes as Drug Targets 

The selection of drug targets using the randomization tests and network topology was 
well explained in Methods chapter. 20 gene were selected for further analysis in each 
cell line. Figure 35 represents the selected genes sorted with betweenness centrality of 
optimal networks in HCC lines. For Huh7 cells; CDC27, CCDC80, AARS2, ACSBG2, 
CITED27 and CDR2 genes in PI3Ki-α (PIK-75) inhibitor treatment, RIMKLA gene in 
PI3Ki-β (TGX-221) treatment, CEBPB, DNAJC10, DLK1, ATP6V1D, EDEM1 and 
DUSP8 genes in PIK-75 + Sorafenib treatment, LIN7C gene in TGX-221 + Sorafenib 
treatment, EXOC7, FEZ1, GAB2, BIRC7, HOXA10 and ANKRD28 genes Sorafenib 
inhibitor treatment. For Mahlavu cells; ATP1B1, CACNA1H, CAPNS1, CCT7, ATG9A 
and BOLA2B genes in PIK-75 inhibitor treatments, CGA and TNFRSF4 genes in TGX-
221 inhibitor treatment, ALMS1, AOX1, BCL3, ANKRD1, CD276 and ASIC1 genes in 
PIK-75 + Sorafenib treatment, GDF15, AGER, FABP1, ACOT12, HMGCS1 and 
CRHR1 genes TGX-221 + Sorafenib treatment were prioritized for further 
investigations.    

 

Gene Ontologies ALPHA BETA SALPHA SBETA SOR
negative regulation of cell proliferation 1
regulation of cell growth 1
response to bacterium 1
defense response 1
generation of precursor metabolites and energy 1
mitotic cell cycle 1
oxidation-reduction process 1
positive regulation of apoptotic process 1
positive regulation of cell death 1
regulation of small GTPase mediated signal transduction 1
Bcl3/NF-kappaB2 complex 1
SREBP-mediated signaling pathway 1
mitochondrial alpha-ketoglutarate dehydrogenase complex 1
Cdc42 protein signal transduction 1 1
positive regulation of interleukin-6 production 1 1
apical junction complex 1 1
cholesterol biosynthetic process 1 1 1
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Figure 35. Prioritized nodes for Huh7 and Mahlavu were ranked by betweenness centrality 
values of randomized networks for each inhibitor treatment. ALPHA; PI3Ki-α inhibitor (PIK-
75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor (TGX-221), SBETA; TGX-
221 and Sorafenib, SOR; Sorafenib treatments. 

In Figure 36, the selected nodes are represented with their expression pattern for each 
treatment in Huh7 and Mahlavu cell lines. Both the intensity and the regulation pattern 
(up or down regulation) was depending on the kind of the treatment. LIK7C gene, for 
example, was selected through TGX-221 + Sorafenib treatment (Huh7), was 
upregulated, but the same gene was downregulated in PIK-75, TGX-221, and PIK-75 
+ Sorafenib treatments. CCT7 and CAPNS1 were two downregulated genes selected 
from Mahlavu cell line.  They were selected through single PIK-75 treatment, but an 
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opposite action acquired with combination of PIK-75 with Sorafenib. Therefore, the 
prioritization of those genes should be more detailly observed.  

Furthermore, nearly half of the prioritized genes were Steiner nodes like FEZ1, 
ACSBG2, RIMKLA, BIRC7, HOXA10 and CCDC80 in Huh7 and FABP1, CRHR1, 
AGER, ACOT12, ASIC1, BOLA2B, CACNA1H, CGA, and TNFRSF4 in Mahlavu in 
the optimal networks. They were lost or hidden in the RNA-seq experiment, but they 
were prioritized only through Omics Integrator based network optimization and 
network-topology based significancy analysis.  

 

 
Figure 36: Up (red) and down (blue) regulations of the prioritized genes in Huh7 and Mahlavu 
cell lines, from which treatment they are selected was pointed out. ALPHA; PI3Ki-α inhibitor 
(PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-β inhibitor (TGX-221), SBETA; 
TGX-221 and Sorafenib, SOR; Sorafenib treatments. 

3.2.6. The Effect of Gene Removals from the Optimal Networks 

Simulating an in-silico knock-out experiment, the effects of node removals from the 
optimal networks were analyzed. In theory, the most important targets would be 
affecting maximum number of PPIs.  
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Each prioritized node was analyzed in the associated pathway. Furthermore, if the 
node exists in the other treatment with the same cell line it was also considered. Since 
some of the selected nodes were in the close to the branches, they have affected one 
or two nodes. Those were considered un-significant unless they have not associated 
into an important gene ontology. The deletion of the target protein and it’s all 
connections, affecting nodes and functions of the deleted functions by the removals 
were studied and summarized in Table 14. 

Table 14: Prioritized genes as potential drug targets in Huh7 and Mahlavu HCC lines. 

Gene Treatment Cell line Function Effect on the 
network 

AARS2 PIK-75 Huh7 Alanyl-TRNA Synthetase 
2, Mitochondrial 

5 nodes 

CITED2 PIK-75 Huh7 Cbp/P300 Interacting 
Transactivator with 
Glu/Asp Rich Carboxy-
Terminal Domain 2 

5 nodes 

DLK1 PIK-75 + 
Sorafenib 

Huh7 Delta Like Non-Canonical 
Notch Ligand 1 

3 nodes 

DNAJC10 PIK-75+ 
Sorafenib 

Huh7 DnaJ Heat Shock Protein 
Family (Hsp40) Member 
C10 

5 nodes 

GAB2 TGX-221 + 
Sorafenib 

Huh7 GRB2 Associated Binding 
Protein 2 

Positive regulation 
of cell proliferation 

GAB2 Sorafenib Huh7 GRB2 Associated Binding 
Protein 2 

Erk1/Erk2 kinase 
pathway 

BOLA2B PIK-75 Mahlavu BolA Family Member 2B 6 nodes 

AOX1 PIK-75 + 
Sorafenib 

Mahlavu Aldehyde Oxidase 1 Positive regulation 
of oxidation 
reduction 

AGER TGX-221 + 
Sorafenib 

Mahlavu Advanced Glycosylation 
End-Product Specific 
Receptor 

Apoptosis 

 

Ultimately, in Huh7 cells removal of AARS2 and CITED2 genes in PIK-75 inhibitor 
treatment, DLK1 and DNAJC10 genes in PIK-75 + Sorafenib treatment, HOXA10 gene 
in Sorafenib treatment and GAB2 gene in both single Sorafenib and TGX-221 + 
Sorafenib treatments were found to be affecting at least 5 nodes in the networks and 
destructing key pathways. In Mahlavu, BOLA2B gene in PIK-75 inhibitor single 
treatment, AOX1 in PIK-75 + Sorafenib treatment and AGER gene in TGX-221 + 
Sorafenib treatment in Mahlavu were found to be affecting important pathways, or at 
least 6 nodes. 
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CHAPTER VI 
 
 

4. DISCUSSION 

Hepatocellular carcinoma (HCC) has limited targeted treatment options such as multi-
kinase inhibitor Sorafenib and recently approved drug Regorafenib (Perz et al., 2006, 
Liu et al., 2009; Llovet, Di Bisceglie, et al., 2008). Yet, none of the drugs can increase 
the survival of the patients by more than 10 months. Up to date, there are many studies 
in search of novel targets to cure HCC better. One of the reasons why those treatment 
strategies were not operative is the redundant functions of signaling pathways 
controlling proliferation, cell cycle, migration, angiogenesis, or apoptosis in 
precancerous cells during the chronic liver disease stage.  Even multi-kinase inhibitors, 
e.g. Sorafenib, targeting Raf, VEGFR, and PDGFR proteins, cannot effectively 
prevent tumorigenic cross-talks between the signaling pathways.  Therefore, the need 
for combinational therapies to evade multi-functioning pathways for HCC is massive 
and urgent.  

The classical way to discover new therapeutic agents is to analyze differential 
expression patterns comparing cancerous versus normal-like or healthy cells. 
Following this research, abnormal functions or signaling pathways and deviant gene 
expressions are evaluated experimentally. Wet laboratory experiments focusing on 
singular a gene or a pathway is long, labor-intensive, and expensive. Yet, it is a well-
known fact that cancer develops in a multi-stage process by enrolling many different 
protein interactions.  It would also be costly and time consuming if enough 
comparisons were made in order to solve this multidimensional mechanism of each 
cancer type. Hence, new computational methods are immediately required 
encompassing many in-vitro analysis. Currently, using the sequencing platforms, and 
advanced bioinformatic tools and good practice pipelines to analyze those results 
would provide novel therapeutic targets. Nevertheless, it is pivotal to construct right 
workflows (sequence of analysis) enabling reproducible, scalable, and optimal 
analysis.  

In this doctoral thesis, two Hepatocellular carcinoma (HCC) cell lines, Huh and 
Mahlavu, were treated with 3 kinds of drugs; Sorafenib as multi-kinase inhibitor, PIK-
75 as PI3K-α isoform inhibitor, and TGX-221 as PI3K-β isoform inhibitor. As it was 
known that none of the drug treatments was able to eliminate cancerous cells alone, 
the cells treated with combinations of the drugs; PIK-75 with Sorafenib and TGX-221 
with Sorafenib were also analyzed. A classical way of comparison of those treatments 
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would be acquiring differentially expressed gene lists and making functional 
enrichment analysis. Yet, through this analysis, it is possible to lose single genes or 
dwindle some functions since the RNA-seq experiment cannot cover all the gene 
expressions. In this study, instead of performing traditional analysis, biological 
network analysis using Omics Integrator was utilized. Omics Integrator connects the 
given nodes, namely differentially expressed genes, by adding other nodes from 
human protein-protein interaction network if needed. Thereby, the hidden patterns of 
the expression which may be absent in RNA-Seq analysis was unrevealed. There are 
other pathway or network analysis tools which could be used for DEG analysis but 
none of them could perform a simultaneous contraction of the treatment specific 
network. For example, using KEGG database, the DEG set could be mapped to 
PI3K/Akt/mTOR pathway yet the redundancy through other signaling pathways will 
be lost. STRING database can also construct DEG specific networks, but it won’t 
consider the connecting paths or nodes between the given nodes.  

Next step of the multi-level target analysis is to make powerfully comparisons of the 
networks. One challenge of associating biological networks is their complexity. Large 
DEG input sizes for Omics Integrator drives many protein-protein interactions leading 
huge size of output networks. Hence, direct node-to-node comparison of the networks 
becomes impossible. In order to compare networks, performing biological enrichment 
to the networks to relate the functions would be a better approach, but for the large 
networks it is also problematic. Biological enrichment analysis of large networks will 
result in either too general or too specific Gene Ontology (GO) terms with disrupted 
significance. In this study, the problem was solved by topologically clustering the 
networks which divides the nodes (genes) according to their connections in the 
network. Each cluster size kept the same for large networks and enrichment analysis 
was performed to the separate clusters. The clusters were identified using betweenness 
centrality measure, namely keeping the closest in interaction proteins together.  

The real comparison of the different treatments to the cell lines was provided through 
Cytoscape visualizations.  The optimal networks were imported into the Cytoscape 
tool, differential expression patterns of the genes were used to color the nodes, 
centrality measures were used to resize the nodes, node clusters were boxed, and 
functional enrichments were mapped back to the nodes. Herein, easy-to-observe 
treatment network were created not only to visualize all elements of the networks and 
but also compare single nodes with their expression pattern and biological function. 

Differential expression analysis of the treatments was made using EdgeR. To perform 
a statistically strong analysis, EdgeR requires an estimation of dispersion for each cell 
line. Yet, in this analysis set, there were no biological replicates to calculate it. That 
was the major challenge of this study since all the downstream analysis basing DEG 
sets. In EdgeR documentation, the default BVC is 0,16, 0,4 was a precalculated value 
for biological replicates in human samples and 0.1 was calculated for technical 
replicates of a model organism. In our analysis, we decided to use housekeeping genes 
in HCC based on the assumption that the expression level of housekeeping genes does 
not vary by drug treatments. BVC was 0,045 in our analysis yet that value could be 
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too conservative. Alternatively, a number of randomly selected set of genes together 
with housekeeping genes could be used for BVC calculation for EdgeR DEG analysis. 
The resulting DEG sets could be compared with the current DEG set, hence the validity 
of our initial approach could be supported by this method.  

According to our DEG results, PTEN deficient Mahlavu cell lines responded to 
inhibitors less severe than Huh7 since Mahlavu is a more aggressive type of HCC than 
Huh7. PI3K-β (TGX-221) inhibitor treatment resulted in a smaller number of DEGs 
for both cell lines. That was correlated with previous results performed in CANSYL 
(Figure 8 and 9). Singular TGX-221 treatment had minor effect in HCC treatment. All 
single drug treatments exhibited a lower number of DEGs in Mahlavu, representing 
the need for combinational treatment for PTEN-deficient cell lines. The 
ineffectiveness of TGX-221 in both cell lines and Sorafenib in Mahlavu were also 
observed through Pearson correlations and dendrogram analysis. The correlations 
were vital in combinational TGX-221 with Sorafenib and combinational PIK-75 with 
singular PIK-75 treatments.   

A significant number of untranslated transcripts in DEG sets especially for Mahlavu 
treated with single Sorafenib or single TGX-221 were observed. Many of those 
untranslated transcripts were antisense RNA or mitochondrial pseudogenes. 
Mitochondrial dysfunctions were also observed in GO analysis using DEGs and 
network analysis in Sorafenib treatments. There are many researches showing the 
correlation of long untranslated RNAs to the diseases in the literature (Weilin et al., 
2013; Lijuan Zhang et al., 2019b), yet deeper research is needed to uncover the 
relations of them in HCC or with drug treatments. Interestingly, mitochondrial 
pseudogenes were representing different patterns in PIK-75 single and combinational 
treatments in Huh7. Sorafenib must be acting into the pathways having a role in the 
cellular energy regulations. Another exciting finding was a lncRNA in p53 regulation 
was upregulated in Sorafenib with TGX-221 and untranslated transcript programmed 
cell death 6 (PDCD6) was downregulated in Sorafenib treatment.  

The most common DEGs like PCNA, DUSP5, VCAN, SPRY2, EGR1, FOSB, ACTA2, 
HSPA1A, APOE, LDLR, and GADD45B were the most significant and most studied 
genes in cancer.  A simple PubMed search of these genes (correlated with cancer in 
the last 10 years) resulted in 100 full text research articles. Also, those common genes 
show the similar expression regulation patterns in the other cancer cell lines. Hence 
the expression of the characteristics of the cell lines and conserved patterns with 
respect to the inhibitor treatments could be considered as a part of cancer hallmark.  

In order to identify shared functional enrichments from the different treatments, 
heatmap analysis were used. Significant cell or treatment specific patterns were 
observed through the enrichment analysis with common DEG patterns. For example, 
positive regulation of extracellular matrix organization and development processes 
were observed for Huh7 cells while cell proliferation regulations were more actively 
regulated though PIK-75 treatments. Furthermore, negative regulation of cell fate 
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commitment was specific only to PIK-75 with Sorafenib treatment. Hence, PIK-75 + 
Sorafenib activated death related processes in Huh7.  

Metabolic processes, angiogenesis and VEGFR2 binding were downregulated for all 
treatments indicating a decline in cancer development in Mahlavu cells. The immune 
response against the inhibitor treatments was stronger with single Sorafenib treatment. 
A group of genes was upregulated in single Sorafenib and combinatory TGX-221 and 
Sorafenib treatment while downregulated in single PIK-75, combinatory PIK-75 and 
Sorafenib treatments. Since this group was especially downregulated in TGX-221 + 
Sorafenib treatment, they could be related to their antagonistic effect on cell death.  

Until network analysis part, all the findings were discovered using the traditional way 
of RNA-seq analysis. In order to compare differentially regulated signaling pathways 
inhibited through different kinds of drug targets, and to find novel targets for new 
treatment strategies, a systems level of understanding of differentially expressed genes 
were examined through optimal networks.  

The network node comparisons indicated that most of the common genes were retained 
in Huh7 treatments. An increase in the number shared nodes for Sorafenib treatments 
was observed, and unsurprisingly most of those genes were active in lipid metabolism. 
The similarity between the combinational PIK-75 and PIK-75 treatments were retained 
while some of shared genes of combinational TGX-221 and Sorafenib treatments were 
lost in Mahlavu. The comparison of network specific gene ontologies also contributed 
the difference of combinational TGX-221 and Sorafenib treatments. Sorafenib 
treatment only enriched in mitochondrial alpha-ketoglutarate dehydrogenase complex 
in Mahlavu, same as Sorafenib treatment in Huh7 which also shows enrichment in 
oxidation-reduction processes. It was previously found that Sorafenib treatment 
supports tumor hypoxia in favor of tumor proliferation, angiogenesis and metastasis 
(Balkwill, 2004; Gerber, Hippe, Buhren, Müller, & Homey, 2009; Sethi & Kang, 2011; 
Zlotnik, Burkhardt, & Homey, 2011).  Therefore, using Sorafenib as a single agent 
targeting the PI3K/Akt pathway can even increase the effect of modulating cell redox 
homeostasis.  

The combinational treatment of TGX-221 to Mahlavu resulted with a small network 
showing cholesterol biosynthetic processes, apical junction complex, SREBP-
mediated signaling pathway and Bcl3/NF-kB2 complex. Bcl3/NF-kB2 complex was 
also enriched in combinational treatment of TGX-221 of Huh7 cells. Yet, NF-kB2 was 
only upregulated in Mahlavu and Bcl3 downregulation is more apparent. Previous 
studies highlights the significance of Bcl3 in HCC as being a tumor marker and Bcl3 
knock-down in HCC induced cell apoptosis in a study (Poveda et al., 2017; Tu et al., 
2016).  But none of those analysis was performed on a PTEN-deficient cell line, thus, 
the differential control of Bcl3/NF-kB2 complex need to be studied more in PTEN 
context.   

As anticipated, Sorafenib and PIK-75 combination was more successful on Mahlavu 
cells. Mitotic cell cycle was activated and TP53 mediated apoptosis was induced, and 
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immune response processes were downregulated. Even single treatment of PIK-75 
resulted with negative regulation of cell proliferation and regulation of cell growth. 
GTPase mediated signal transduction and Cdc42 protein signal transduction were 
observed for both PIK-75 treatments, probably, PIK-75 treatment caused GTPase 
activity to be transmitted through TGX-221 rather than PIK-75. At this point, it seems 
to that cell survival is mainly dependent on p110α rather than p110β isoform in PTEN-
deficient HCC cell lines. A previous study using PTEN-deficient LNCaP cell line 
found that p110β is more significant for efficient inhibition of PI3K hyperactivation 
(Schwartz et al., 2016) and inhibition of p110β is more successful to inhibit cellular 
growth. Therefore, selective PI3K isoform activation is highly dependent on cellular 
type and context.   

While single PIK-75 treatment in Huh7 activated some important cellular 
inflammatory related gene ontologies like; interleukin 1 alpha and beta secretion, and 
interleukin 6 production, no inflammatory response was seen for Mahlavu treatments. 
Single treatment of PIK-75 activated the negative regulation of cell proliferation and 
cell growth which were associated with APOE, FOSL1, HSPA1B and HSPA1A gene 
regulations. PIK-75 + Sorafenib treatment represented a reduction in cell proliferation, 
migration, vasculogenesis but mitochondrial apoptotic changes, and increased cell 
death mainly through negative regulation of transforming growth factor beta receptor 
signaling pathway were rising. PIK-75 + Sorafenib combination, interestingly, did not 
provoke an immune response involving a cytokine production.   In PIK-75 
combinational treatment to Huh7, GTPase activity was ablated by downregulation of 
RAB1A, RAB13 and RAB88 genes and fibroblast growth factor signaling pathway 
though SPRY1 and SPRY2 genes which were negatively regulated in Sorafenib treated 
Huh7 cells. The pathways including PI3K, MAPK and Ras cascades are redundant in 
function, PI3K is activated through small GTPases, in turn, acts as an inhibitor of PI3K 
by stimulation of PTEN (Z. Li et al., 2005; Yang et al., 2012). It is known that 
interactions of GTPases to PI3K are isoform specific, while Ras cannot bind p110β, 
RAC1 and CDC42 proteins can activate it. Hence, while single TGX-221 inhibitor 
treatment on Huh7 cells only affected oxidoreductase activities, its combinatorial 
treatment with Sorafenib caused more drastic changes than alpha isoform 
combination. It activated apoptotic changes and positive regulation of programmed 
cell death, upregulation of T-cell involved immune responses, activation of Bcl3/NF-
kB2 complex and JNK cascade, regulation of ion transport and cellular migration. 
Previous studies on isoform specificity on PI3K activation indicated the main role of 
p110α on cell growth (Liu et al., 2009), yet combinational treatment of TGX-221 with 
multi-kinase inhibitor Sorafenib might be also effective for suppression of PI3K 
hyperactivation in Huh7 cell lines. 

The growth arrest and DNA damage 45, Gadd45 protein (GADD45 gene), is one of 
the proteins in the cell which is downregulated in response to oncogenic stress in order 
to regulate stimulation of cell cycle and cellular growth through interacting to cdk1, 
p21, MEKK4, MKK7 and p38 proteins (Li Zhang et al., 2014a). There is evidence that 
it’s direct interaction with the DNA repair mechanism using proliferation cell nuclear 
antigen, PCNA, mediates epigenetic gene activation by repair-mediated DNA 
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demethylation (I. T. Chen et al., 1995). The clue on a tissue’s proliferative activity can 
be deduced from its DNA repair mechanism. Proliferating cell nuclear antigen 
(PCNA) protein found in the nucleus is involved in RAD6-dependent repair pathway. 
Previously, it was found that in HCC cells, PCNA protein is positively regulated 
activating repair mechanisms with response to inactivating mutations in Gadd45; 
which is even more aggressive in well differentiated HCC (D.-D. Li et al., 2021; 
Venturi et al., 2008; Z.-L. Zhang et al., 2018). In this analysis, increased Gadd45 levels 
lead to downregulation of PCNA gene in single PIK-75, PIK-75 + Sorafenib, TGX-
221 and Sorafenib combination, and single Sorafenib treatments in the Huh7 cells 
(Figure 37). In previous studies, it was found that Sorafenib treatment on Huh7 cells 
reduced expression of cyclin D1and PCNA proteins (Lijuan Zhang et al., 2019a). 

Furthermore, it has been suggested that Gadd45 interaction to Cyclin dependent kinase 
inhibitor 1A, p21 protein (CDKN1A gene) enhances cyclin dependent kinase 6 (CDK6 
gene) activity to annulate G1 cell cycle arrest (Abbas & Dutta, 2009).  P21 protein 
together with Gadd45 found to be upregulated only in PIK-75 treated Huh7 cells shows 
that cell cycle activity altered through PIK-75 treatment (Figure 37). With respect to 
that, Bcl-2-like1 (BC2L1 gene), known as anti-apoptotic marker, also regulates cell 
death acting as a regulator of G2 checkpoint and inhibits activation caspases (Bruey et 
al., 2007) and it is upregulated in PIK-75 treatment opposing action of CDK6 gene.  
Yet, PIK-75 and Sorafenib combination downregulates AP-1 family proteins JUN 
kinase, activated transcription factor 4 (ATF4), and proto-oncogene MYC. ATF4 often 
was found to be overexpressed in HCC cell lines and its induction correlates with 
chemotherapeutic resistance (Z. Zhang et al., 2012).  Activated p21 blocks activation 
of c-JUN N-terminal kinase (JNK) mediated apoptosis. Insulin induced gene 1 
(INSIG1 gene) is one of the liver specific proteins identified as a biomarker for HCC 
(G. Yu et al., 2007). Besides its control in cholesterol mechanism, this protein 
potentially includes in G0/G1 transition of cell growth. In this study, intriguingly, only 
for Sorafenib treated Huh7 cells, this protein maintained its downregulation together 
with PCNA. 
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Figure 37. The sub-networks representing different DNA-repair mechanisms in different Huh7 
treatments. The color of the nodes was arranged according to the logFC values from 
differential expression analysis, up regulated genes with red and down regulated genes with 
blue. Betweenness centralities were used to enlarge the hub genes (nodes). DEG genes were 
shaped as ellipses and Steiner nodes connecting them were diamonds. 

 
MAP3K1, mitogen-activated protein 3 kinase 1, is a serine/threonine kinase and its 
autophosphorylation activates ERK, JNK and NF-kB signaling pathways. MAP3K1 
gene was found to be upregulated in PIK-75 alone, Sorafenib alone and Sorafenib and 
TGX-221 inhibitor treated Huh7 cells, which was an indication of no suppression of 
MAPK activations upon these treatments. Mammalian myeloid differentiation factor 
88 (MyD88 protein) is Toll/interleukin (IL)-1 (TIR)-domain containing adapter 
protein involved in TLR signaling and an elevated level of MyD88 is found mostly on 
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metastatic HCC cells increasing overall cancer proliferation (Liang et al., 2013). PIK-
75 treated Huh7 cells (alone and together with Sorafenib) responded with an ablated 
level of MYD88 expression. Even MyD88 protein was downregulated, MAP3K1 still 
constitutively activated and its Sorafenib combinatory treatment MAP3K1 
upregulation was not mediated in PIK-75 alone treatment.  

While downregulation of MyD88 was not monitored, p21 activated kinase (PAK1 
gene), interleukin 1 receptor associated kinase 2 (IRAK2 gene), RhoGEF and PH 
domain-containing protein 3 (FGD3 gene), Supevillin (SVIL gene) and Ras homolog 
family member U protein (RHOU gene) were upregulated in Sorafenib alone and 
combinatory treatment with TGX-221 inhibitor Huh7 cells together with MAP3K1. 
PAK1, IRAK2 and SVIL were proteins found to be activated in many cancer types 
including HCC. PAK1 activates proliferation through p53/p21 pathway (Z.-L. Zhang 
et al., 2018), SVIL proteins are known to activate p38/Erk pathway for metastasis (X. 
Chen et al., 2018), IRAK2 is found to be involved in the IL1-induced upregulation of 
NF-kB signaling pathway (Flannery et al., 2011). Furthermore, it was found that PAK1 
activation can be through Rho proteins. Therefore, constitutive activation of PAK1 
mediated by Rho proteins also may an indication of cellular survival in Sorafenib and 
its combinatory treatment with TGX-221 in Huh7 cells.  

The dual specificity phosphatases (DUSPs) enzyme family provides feedback 
inhibition on MAPKs towards a stress induction. They play a critical role in the 
regulation of oncogenic signaling, especially for ERK, p38 and JNK kinases. In this 
study, downregulation of DUSP4, DUSP5 and DUSP6 genes in Huh7 cell treatments 
İs described in Table 15. Downregulation of DUSP genes in cancer genes is part of 
constitutive activation of the MAPK pathway (C. Huang & Tan, 2012). Yet, DUSP8 
which is the dual inhibitor of p38 and JNK kinases is found to be upregulated in all 
Sorafenib treated Huh7 cells, which can be ablation of kinase activity. Moreover, 
interestingly, in Huh7 cells treated with TGX-221 and Sorafenib, besides to DUSP8, 
DUSP16 was also upregulated while DUSP4, DUSP5 and DUSP6 were mainly stable. 
Moreover, it was previously found that in PTEN deficient HCC cell lines, DUSP 
proteins were significantly downregulated to keep mitogen activated protein kinases 
active apart from AKT activation (Khalid, Hussain, Manzoor, Saalim& Khaliq, 2017). 
In Mahlavu cells, none of the DUSP were found to be downregulated.  

As a part of activated mTORC1 pathway in HCC cells increasing cellular 
triacylglyceride (TG), apolipoprotein E, ApoE protein production increases playing a 
role in lipid and lipoprotein metabolism.  It has been known that ApoE protein level 
in serum with liver disease increases especially in Huh7 (Roberts et al., 2016) to meet 
a high level of cellular energy needs. In this thesis study, the level of ApoE protein in 
all Huh7 treatments remained stable while in Mahlavu PIK-75 inhibitor treated cells, 
upregulation of ApoE was identified. An increase in ApoE expression could be the 
result of downregulation of LRP1 gene (LDL receptor-related protein 1) which enables 
secretion of ApoE from endosomes (Laatsch et al., 2012). Moreover, ABCA1 gene has 
a role in cholesterol efflux by generation of ApoE containing high density-sized 
lipoprotein particles which were downregulated PIK-75 treated Mahlavu cells. Yet, 
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with respect to LRP1, in PIK-75 combined with Sorafenib treatment downregulated 
LDLR gene, low-density lipoprotein receptor. LDLR direct interaction to ApoE 
maintained cholesterol efflux.  

Table 15. Differentially expressed DUSP genes in Huh7 cells and their target kinases 
based on Huang & Tan, 2012. 

Gene Name Gene Targets HCC Treatment Type 

DUSP4 Nuclear; Erk1/2, p38, 
JNK 

Downregulation in Sorafenib 

DUSP5 Nuclear; Erk1/2 Downregulation in PIK-75 alone, PIK-75 and 
Sorafenib combination, Sorafenib only and 
TGX-221 and Sorafenib combination 

DUSP6 Cytoplasmic; Erk1/2 PIK-75 and Sorafenib combination 

DUSP8 Cytoplasmic/Nuclear; 
p38, JNK 

Upregulation in PIK-75 alone, PIK-75 and 
Sorafenib combination, Sorafenib only and 
TGX-221 and Sorafenib combination 

DUSP16 Cytoplasmic/Nuclear; 
p38, JNK 

Upregulation of TGX-221 and Sorafenib 
combination 

 

PIK-75 + Sorafenib treated Mahlavu cells, death mechanism control was not in the 
same way as Huh7 did, in the network centered by TP53 gene, more than 20 gene were 
differentially expressed: including APOE, TP63, TP53I3, BCL3, TNFSF14, 
TP53INP2, DAPK1 and SOS2 (Figure 38).  Death Associated Protein Kinase1 
(DAPK1) is a putative tumor suppressor and Tumor Protein p53 Inducible P53 nuclear 
protein 2 (TP53INP2) is dual regulator of autophagy. These two are downregulated in 
PIK-75 + Sorafenib treated Mahlavu which in turn may be downregulating cell death. 
Transcription factor nuclear factor kappa B (NF-kB) together with Bcl-3 protein 
(BCL3 gene) as a complex has a central role, increasing activity in response to immune 
stress and inflammatory injuries, acting as an inhibitor of apoptosis. Bcl-3 over 
expression known to be increasing sensitivity to apoptosis (Poveda et al., 2017). In 
Mahlavu, TGX-221 combined with Sorafenib treatment revealed ablation of Bcl-3 
may be the basis for its antagonistic action. 

Early growth response 1 (EGR1), is one of the factors that targets PTEN, TP53 and 
JUN. In most cancers EGR1 loss correlates with its tumor suppressor position (Gregg 
& Fraizer, 2011; J. Yu et al., 2009). In this study, increase in EGR1 expression in 
single PIK-75 treatment and decrease in expression with TGX-221 + Sorafenib 
treatment in PTEN deficient Mahlavu cells were observed. EGR1 downregulation 
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together with JUNB and FOSB correlated with TGX-221 + Sorafenib treated Mahlavu 
cells antagonistic action to Sorafenib. Interestingly, even EGR1 downregulation was 
not seen in PIK-75 and Sorafenib combined treatment, EGR1 target TP53 was 
downregulated stimulating apoptosis (Figure 38).   

 
Figure 38. The sub-networks illustrating difference in EGR1 activity in Mahlavu cells. The 
color of the nodes was arranged according to the logFC values from differential expression 
analysis; up regulated genes with red and down regulated genes with blue. 

 
The network analysis applied primarily using differentially expressed genes together 
with the human protein-protein interaction network lead us to identify several 
signaling pathways. Besides those network comparisons as discussed above, novel 
drug targets were proposed based on random network constructions and network 
topology features. Since the hub nodes are mainly part of hot topics or generally well-
studied proteins, to detect more novel proteins, a series of filtration was applied as 
explained in the Methods chapter.   

 
PIK-75 + Sorafenib treatment 

 

PIK-75 treatment 
 

 

TGX-221+ Sorafenib 
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Within the proposed drug targets, besides to differentially expressed genes, there were 
genes mainly identified as Steiner nodes in the networks. For example, all the 
prioritized genes in TGX-221 with Sorafenib treatment network for Mahlavu cell line 
were Steiner. Growth differentiation factor 15 (GDF15 gene) was one of them. This 
protein induces tumor angiogenesis as a response to chemotherapy (Dong et al., 2018) 
and so it could be targeted as potential co-treatment for HCC. Delta-like 1 homolog, 
DLK1 gene was also a Steiner node of PIK-75 and Sorafenib treatment network in 
Huh7. DLK1 is a hepatic stem cell marker, and its overexpression is associated with 
the cell progression in HCC cells (J. Huang et al., 2007). In a previous study, they 
show that DLK1 knockdown suppresses cell proliferation and colony formation (Cai 
et al., 2016; Xu et al., 2012). Thus, DLK1 could be a potential target to inhibit 
progression gained through PI3K/AKT/mTOR pathway which is already targeted by 
PIK-75 and Sorafenib in Huh7. DLK may mediate the reduction of progenitor cell 
development after the malignancy is prohibited using the known kinase inhibitors. 
Thus, DLK1 should be more studied as therapeutical agent in HCC.  

BCL3 and ASIC are the two genes were highlighted in Mahlavu PIK-75 + Sorafenib 
combinational treatment network. BCL3, is a protooncogene, regulating cell 
proliferation (Tu et al., 2016) through cell cycle in HCC. PIK-75 + Sorafenib treatment 
to highlighted cellular death and apoptosis, yet combining their action with BCL3, 
may inhibit excessive growth of Mahlavu cells. Acid sensing ion channel 1a (ASIC1a) 
is a proton gated cation channel regulating tumor migration and invasion recently 
identified as one of drug resistance genes in HCC (Y. Zhang et al., 2017). 

BolA family member 2 (BOLA2B gene) stimulates cell proliferation and is associated 
with poor prognosis in HCC. In a recent study, it was revealed that knockout of BOLA2 
from a HCC type Hep3B cells demonstrated reduction in cell proliferation and tumor 
growth, hence BOLA2 would be a potential therapeutic target for the treatment of 
HCC metastasis (Luo et al., 2019). BOLA2B gene was a Steiner node and prioritized 
in PIK-75 treated Mahlavu cells. In PTEN-deficient Mahlavu cell, combinational 
treatment of PIK-75 + more successful than single treatment of PIK-75, hence a 
combinational treatment targeting to PI3K-α, Sorafenib and BOLA2B gene would be 
a better strategy. Hence, BOLA2 can be a potential drug target potentially combined 
with other for clinical studies.  

There are many studies establishing diabetes as a the stimulant factor in HCC 
(Aleksandrova et al., 2016; El-Serag et al., 2004, 2006) tough the main mechanism is 
still unknown. Previously, it was shown that a high glucose in HCC, a diabetes 
characteristic, can fasten tumorigenesis process. Advanced glycosylation end product-
specific receptor (AGER) was one of the proteins upregulated in diabetes related to 
Glucose metabolism. AGER was also found to be involved in liver carcinogenesis 
(Qiao et al., 2016a).   AGER gene was a Steiner node in TGX-221 + Sorafenib treated 
Mahlavu network. The combination of TGX-221 + Sorafenib treatment resulted with 
growth promotion in PTEN deficient Mahlavu cells, so that inhibition of PI3K-β 
antagonizing Sorafenib function. Here, AGER inhibition together with Sorafenib could 
be a clinical strategy for aggressive Mahlavu cells. By this way, one of the energy 
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mechanisms would be blocked and a multi-kinase inhibitor, Sorafenib may potentially 
work better in inhibition of cancer cells growth.   

GAB2, Grb2-associated binding protein 2 is a key protein in PI3K and ERK signaling 
pathways which is closely related to cell proliferation and tumor progression (Y. Chen 
et al., 2016). The overexpression of GAB2 gene was identified in HCC tissues in a 
study. In that study, they also identified microRNA-663b targeting GAB2 to ablate 
cancerous cell proliferation and invasion (Guo et al., 2019).  In this study, AGER was 
also upregulated in TGX-221 + Sorafenib and Sorafenib alone treated Huh7 cells. 
Maybe using microRNA-663b together with TGX-221 + Sorafenib combination or 
Sorafenib treatment may suppress cell proliferation which was still in function in Huh7 
treatments.  

AOX1, Aldehyde oxidase 1, is a highly expressed protein in the liver and associates 
with the generation of reactive oxygen species. Studies on AOX1 revealed that it is 
essential for energy generation and drug metabolism (Weigert et al., 2008). AOX gene 
was upregulated in PIK-75 and Sorafenib combinatory treatment in Mahlavu. Since 
the best working combination to eliminate the cancerous cells was PIK-75+Sorafenib 
in PTEN deficient Mahlavu, AOX1 knockdown together with the same combination of 
treatment in Mahlavu cell may destroy the energy metabolism of the cell diminishing 
cellular progression.  

Finally, AOX1 and AGER genes were selected to be validated by mRNA expression 
through qPCR experiments. Mahlavu and Huh7 cells were treated with Sorafenib or 
its combinations with PIK-75 and TGX-221 inhibitors. The gene AGER was selected 
because it is a pure Steiner node and not found in any DEG lists. Whereas AOX1 is in 
both Steiner node and part of the DEG list. The experimental analysis was performed 
at the CANSYL laboratory by one of my collogues. Initial qPCR result correlated and 
validated the network analysis results. Knockdown experiments for AOX1 and AGER 
genes were also performed on HCC cells to investigate the effects of these genes on 
cell toxicity and proliferation.  siRNA treatments resulted in significant knockdown of 
both genes at 25 nM concentrations in Mahlavu and Huh7 cells after 48 h of treatment. 
Moreover, real-time cell analysis has shown that, silencing AGER and AOX1 
significantly inhibited growth of these cells with respect to negative control siRNA 
treatments. Overall, results from in vitro experiments have supported and validated the 
systems level network analysis results. AOX1 is considered one of the key biomarkers 
in HCC and abnormal expression of AOX1 is correlated with the poor prognosis (Jovel 
et al., 2018). AGER, also is shown as one of the main responsible factors in 
tumorigenesis of HCC cells in the presence of high glucose for diabetes (Qiao et al., 
2016a).  
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         CHAPTER V 5V 
 
 

5. 5. CONCLUSION 

Hepatocellular carcinoma (HCC), one of the major cancer types, is a leading cause of 
morbidity and mortality in patients with advanced liver disease. PI3K/Akt/mTOR is 
the key pathway in HCC since it is a hub to essential functions consisting of regulating 
cellular growth, glucose metabolism, apoptosis, cell proliferation, cell migration, 
cellular modification, and cell cycle progression. Consequently, mutations in this 
signaling pathway leads to constitutive expressions of Akt kinases. These kinases host 
many downstream effectors like Bcl-2, NF-kB, TFEB and MDM2 controlling cellular 
survival and metabolism. Sorafenib is the only FDA approved therapeutic agent to 
HCC serving as a multi-kinase inhibitor in this pathway, yet its single treatment cannot 
effectively remove cancer cells. One of the reasons for Sorafenib’s ineffectiveness is 
redundancy in the major signaling pathways in HCC.  

An emerging strategy to avoid the redundant signaling pathways’ functioning is to 
combine kinase inhibitors to repress multiple compensatory pathways instantaneously.  
For an efficient screening of more than one combination of kinase inhibitors, next 
generation sequencing technologies can be used. Analysis of whole transcriptome 
statues of a targeted cell comparing to a negative control is very an effective approach 
to capture whole differential regulations of the signaling pathways. Moreover, since 
combinatory treatments affect more than one kinase, omics data should be interpreted 
through top to bottom strategy. As human transcriptome hints thousands of protein-
protein interaction possibilities, a servant network-level understanding, and systems-
level analysis are needed.  

This compressive network-level analysis of RNA-seq data show that combinatory 
treatment of multi-kinase inhibitor Sorafenib and dual inhibitor of PI3Ki-α (PIK-75) 
stimulates apoptosis both in Huh7 and Mahlavu HCC cell lines correlated with the 
previous studies. While Sorafenib treatment is more effective in Huh7, PIK-75 
treatment in Mahlavu is more successful than Sorafenib to stimulate cell death. The 
combinational therapy of PI3Ki-β (TGX-221) with Sorafenib may be more efficient in 
Huh7 cells than PIK-75 combination considering enriched apoptotic pathways in the 
network. Yet, PI3Ki-β (TGX-221) + Sorafenib treatment antagonizes apoptosis and 
stimulates growth in Mahlavu, whereas single treatment with TGX-221 has a limited 
action on both cell lines. This finding was correlated with the previous studies which 
also shown that PI3K signaling is mainly through p110-β isoform when PTEN is 
mutated and its inhibition leads p110-α isoform to be activated (Schwartz et al., 2016). 
Detailed networks assisting for more deep understanding of molecular level actions of 
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kinase inhibitions are marks of this study. The initial findings supporting these 
relations were exploited in CANSYL laboratory and details of the study were 
discussed in the introduction section.  

Combination of targeted drugs to inhibit alternative compensatory pathways holds 
great promise for effective treatment of cancer including HCC. As it has been clearly 
shown in this study, system-level analysis of cellular networks in response to 
combination treatments and the investigation of the regulation signaling pathways are 
of necessity, because such treatments may result in an opposite action. The importance 
of context-dependent (PTEN status) PI3K/Akt/mTOR signaling inhibition must be 
taken into consideration during the use of isoform specific or pan-PI3K inhibitors in 
combination therapies with Sorafenib with respect to a resistance in HCC cells. In this 
study, many specific or general effects of kinase inhibitors were observed and 
represented through easy-to-observe visualizations of the gene-to-gene interaction 
networks.  

Furthermore, through network-topology level prioritizations, this thesis proposes drug 
targets that potentially could be studied more in the future. Expression levels two of 
the predicted drug targets in this study, AUX1 and AGER genes, were shown to be 
correlated with the network analysis in CANSYL laboratory. Their qRT-PCR 
expression verifications were complete. The preliminary results of silencing 
experiments were also indicated an efficient knock-down of those genes resulted with 
a decline in growth of these cells.  

Finally, the work is presented with this thesis is a united study that born and grow in 
CANSYL laboratory. My contribution to prove the original hypothesis of the thesis 
brings the systems level analysis. My insight is that this study will set an example for 
other cancer studies based on the methodology developed in this thesis work. 
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APPENDIX A 

 
EXPERIMENTAL FIGURES 

 
 
Characterization of HCC cells in the presence of small molecules inhibitors were 
explained in Figure 8. Realtime cell growth analysis of Huh7 and Mahlavu cells with 
increasing concentrations (40μM, 20μM, 10μM, 5μM, 2.5μM) of Sorafenib, PI3K 
inhibitor LY294002, PI3Ki-β inhibitor (TGX-22) and PI3Ki-α (1μM, 0.5μM, 0.25μM, 
0.125μM, 0.0625μM) PI3Ki-α (PIK-75) along with DMSO vehicle control (Control is 
black and increasing drug concentrations is given in grey level, highest concentration is 
being the darkest). These figures are published at (Narci et al., 2021). 
 
 
 

 
 
Figure 39. Realtime cell growth analysis of Huh7 and Mahlavu cells with increasing 
concentrations. 
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Figure 40. Wound healing assay for 24 and 48 hours for cell migration 
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Figure 41. Cell cycle analysis with flow cytometry. Sub-G1population represents apoptotic cells. 
10μM of Sorafenib, LY294002 and PI3Ki-β(TGX-221) and 0.1μM of PI3Ki-α(PIK-75) were used.  

 
Real-time cell growth analysis was mentioned in Figure 10. Cell index measurements 
were obtained by RT-CES software.  DMSO was used as negative control A. B.  72 hours 
of the percent growth inhibition values were used to calculate drug interactions with The 
SynergyFinder web application.  Positive delta score reflects synergistic and negative 
score reflects antagonistic drug interactions. Experiments were performed in triplicate. 
Corresponding figures are published in (Narci et al., 2021). 
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Figure 42. Real-time cell growth analysis. Human liver cancer cells Huh7 and Mahlavu (MV)  
were  treated  with  the  Sorafenib,  PI3Ki-α and  PI3Ki-β alone  or  in  combination  with increasing  
concentrations  as  indicated.  Cell index measurements were obtained by RT-CES software.  
DMSO was used as negative control.  

 



119 
 

 
Figure 43. SynergyFinder view for Huh7 treated with Sorafenib and PI3Ki-α.  

 
Figure 44. SynergyFinder view for Huh7 treated with Sorafenib and PI3Ki-β. 
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Figure 45. SynergyFinder view for Mahlavu treated with Sorafenib and PI3Ki-α. 

 
Figure 46. SynergyFinder view for Mahlavu treated with Sorafenib and PI3Ki-β. 
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APPENDIX B 

 
GITHUB REPOSITORY 

 
 
The raw RNA-seq files used in this study can be found in NCBI SRA with though 
PRJNA556552 id and the results of this study shared in CANSYL GitHub repository at; 
https://github.com/cansyl/Isoform-spesific-PI3K-inhibitor-analysis.  

Codes: Includes the codes in this study. 

• bingo_functions.r : reads a list of .bgo results from BINGO tool, merges, 
annotates and filters by evidence codes.  

• common_dispersion.r: calculates common dispersion for Huh7 and 
Mahlavu RNA-seq differential expression analysis results using a list of 
housekeeping genes. 

• correlation.r:  Calculates and plots correlation between RNA-seq 
differential expression analysis results. 

• edgeR_noRep.r: Given a count table including control vs sample 
expression values and filtration values for cpm, dispersion, FDR and P 
value Differentially Expressed Genes calculated and annotated and written 
into the output file. 

• heatmaply.r: The heatmap function to draw heatmap dendrograms.  

• network.py: Calculates centrality metrics for PCST networks using raw .sif 
files.  

• prioritization.r: The code used to prioritize in the networks separately and 
visualize the nodes together using ggplot.   

FASTQC reports: Includes FASTQC reports in zip files for each kinase inhibitors. 
HALPHA; PI3Ki-α inhibitor (PIK-75), HSALPHA; PIK-75 and Sorafenib, HBETA; 
PI3Ki-β inhibitor (TGX-221), HSBETA; TGX-221 and Sorafenib, HSOR; Sorafenib 
treatments of Huh7 cells and MALPHA; PI3Ki-α inhibitor (PIK-75), MSALPHA; PIK-
75 and Sorafenib, MBETA; PI3Ki-β inhibitor (TGX-221), MSBETA; TGX-221 and 
Sorafenib, H-MSOR; Sorafenib treatments of Mahlavu cells. 
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Gene_Ontologies: Includes the excel file for gene ontologies found for each cluster for 
each treatment. 

Heatmaply_images: The dendrograms created for this thesis study were made using 
heatmaply which offers interactive analysis though HTML generation. Produced HTML 
files were included in this directory.  

Networks-SIF files: The network visualizations made though Cytoscape tool, the final 
network representations provided in the .cys formatted files provided in this directory. The 
files can be open using Cytoscape tool (File -> Open) 

 Required Files: Additional text formatted files required for running of the codes included.  
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APPENDIX C 

COMMEND LINE AND PARAMETERS OF THE TOOLS 
 
 
An example flow of the tools and parameters shown below. 

1. RNA-Seq workflow:  
 

fastqc  --noextract --outdir . --threads 1 input.fq.gz 
 
bwa index 
GRCh38_full_analysis_set_plus_decoy_hla.phiX174.fa ; tar 
-cf 
GRCh38_full_analysis_set_plus_decoy_hla.phiX174.fa.tar 
GRCh38_full_analysis_set_plus_decoy_hla.phiX174.fa *.amb 
*.ann *.bwt *.pac *.sa *.alt 
 
tophat-2.1.0.Linux_x86_64/tophat2  --num-threads 8 --
output-dir ./tophat_out --no-coverage-search --keep-
fasta-order --GTF Homo_sapiens.GRCh38.84.gtf 
./GRCh38_full_analysis_set_plus_decoy_hla.phiX174 
input.fq.gz && mv tophat_out/align_summary.txt 
tophat_out/input.fq.gz_align_summary.txt && mv 
tophat_out/deletions.bed 
tophat_out/input.fq.gz_deletions.bed && mv 
tophat_out/insertions.bed 
tophat_out/input.fq.gz_insertions.bed && mv 
tophat_out/junctions.bed 
tophat_out/input.fq.gz_junctions.bed && mv 
tophat_out/accepted_hits.bam 
tophat_out/input.fq.gz_accepted_hits.bam && mv 
tophat_out/unmapped.bam 
tophat_out/input.fq.gz_unmapped.bam 
 
bamtools/bin/bamtools index -in 
input.fq.gz_accepted_hits.bam 
 
java -Xmx2048M -jar picard-tools-1.140/picard.jar 
CollectAlignmentSummaryMetrics 
INPUT=/TopHat2/tophat_out/input.fq.gz_accepted_hits.bam 
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OUTPUT=input.fq.gz_accepted_hits.summary_metrics.txt 
REFERENCE_SEQUENCE=GRCh38_full_analysis_set_plus_decoy_hl
a.phiX174.fa VALIDATION_STRINGENCY=SILENT 
 
htseq-count -f bam -r name -o 
input.fq.gz_accepted_hits.annotated.sam 
BamTools_Index/HDMSO.fq.gz_accepted_hits.bam 
Homo_sapiens.GRCh38.84.gtf > 
input.fq.gz_accepted_hits.table.txt 
 
perl /edgeR-noReplicate/prepare_countMatrix.pl 
control.fq.gz_accepted_hits.table.txt 
input.fq.gz_accepted_hits.table.txt input_CountMatrix.txt 
 
Rscript edgeR_predict_dispersion.r 
boentempo_HK_genes_mart_export.txt count_matrix.txt > 
analysis-output.txt 
 
Rscript edgeR_noRep.r input_CountMatrix.txt 5 0.045 2 -2 
0.05 input_CountMatrix_0.05_0.045_2.txt 
 
Rscript heatmaply.r input_logFC_matrix.csv 
 

 

2. Network construction workflow:  

 
Rscript EdgeRfile2PCSTfile.r 
input_CountMatrix_0.05_0.045_2.txt 
input_045_2_PCSTfile.txt 
 
python /forest-tuner.py --workingDir /home/ --forestPath 
/OmicsIntegrator/scripts/forest.py --msgsteinerPath 
/msgsteiner-1.3/msgsteiner --edgePath 
/forest_interaction_filtbyzeropointseven_v2.txt --
prizePath input_CountMatrix_ALL_PCSTfile.txt --
outputsName input_CountMatrix_ALL_PCSTfile_output --
dataPath input_CountMatrix_ALL_PCSTfile_data.tsv --
logPath input_CountMatrix_ALL_PCSTfile_logs.log && zip -r 
input_CountMatrix_ALL_PCSTfile_output.zip 
/home/input_CountMatrix_ALL_PCSTfile_output/ 
 
python makeConf.py -w 7.75 -b 5.5 -D 10 -mu 0.04 -
garnetBeta undefined -noise undefined && python 
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/OmicsIntegrator/scripts/forest.py -p forest-
py_Prepare_PCSTinput/045_2_PCSTfile.txt -e 
/forest_interaction_filtbyzeropointseven_v2.txt --msgpath 
/msgsteiner-1.3/msgsteiner -c conf.txt --outlabel HALPHA 
--shuffledPrizes 5 
 
python makeConf.py -w 5 -b 7 -D 10 -mu 0.04 -garnetBeta 
undefined -noise undefined && python 
/OmicsIntegrator/scripts/forest.py -p /forest-
py_Prepare_PCSTinput/5_PCSTfile.txt -e 
forest_interaction_filtbyzeropointseven_v2.txt --msgpath 
/msgsteiner-1.3/msgsteiner -c conf.txt --outlabel 
MSOR_1_5 --randomTerminals 100 
 
python networkx.py -sif input_optimalForest.sif -o 
input_networkx.txt 
 
Rscript prioritization.r random_nodeattributes/ 
centrality_measures/  
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APPENDIX D 

 
 

RNA-SEQ FASTQ QUALITY REPORTS 
 
The quality scores across all bases of raw reads for Huh7 and Mahlavu cells; DMSO, PIK-
75, TGX-221, Sorafenib, PIK-75 and Sorafenib combined and TGX-221 and Sorafenib 
combined treatments were represented in this section.  
 
 

Huh7 Mahlavu 

  
Figure 47: Quality score plot for DMSO treated Huh7 and Mahlavu cells  

 
Huh7 Mahlavu 

  
Figure 48: Quality score plots for PIK-75 treated Huh7 and Mahlavu cells 
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Huh7 Mahlavu 

  
Figure 49: Quality score plots for TGX-221 treated Huh7 and Mahlavu cells  

 
 

Huh7 Mahlavu 

  
Figure 50: Quality score plots for Sorafenib treated Huh7 and Mahlavu cells  

 
 

Huh7 Mahlavu 

  
Figure 51: Quality score plots for combinational treatment of PIK-75 and Sorafenib to Huh7 
and Mahlavu cells  
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Huh7 Mahlavu 

  
Figure 52: Quality scores for combinational treatment of TGX-221 and Sorafenib to Huh7 
and Mahlavu cells 
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APPENDIX E 

 
NETWORK CLUSTER GENE ENRICHMENTS 

 
In this section, the cluster specific gene enrichments for kinase inhibitor treated Huh7 
and Mahlavu cells were listed. The pathway gene set enrichment analysis was performed 
using BiNGO. Please see the methods section to find how the analyses were carried out. 
In the table which column shows the category of the enrichment: F: Cellular Function, P: 
Cellular Process, and C: Cellular Component.  
 
 
Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells 

GOID Description which Evidence Cluster 
GO:0043565 sequence-specific DNA binding F IDA 11 
GO:0030154 cell differentiation P IDA 11 
GO:0000307 cyclin-dependent protein kinase 

holoenzyme complex 
C IDA 11 

GO:0001701 in utero embryonic development P IEP 10 
GO:0030492 hemoglobin binding F IDA 10 
GO:0009653 anatomical structure morphogenesis P IMP 10 
GO:0050801 ion homeostasis P IMP 10 
GO:0007399 nervous system development P IMP 10 
GO:0030003 cellular cation homeostasis P IDA 10 
GO:0006333 chromatin assembly or disassembly P IMP 14 
GO:0071103 DNA conformation change P IDA 14 
GO:0006301 postreplication repair P IDA 14 
GO:0008203 cholesterol metabolic process P IDA 14 
GO:0005777 peroxisome C IDA 14 
GO:0008299 isoprenoid biosynthetic process P IDA 14 
GO:0034622 cellular macromolecular complex 

assembly 
P IDA 14 

GO:0002455 humoral immune response mediated 
by circulating immunoglobulin 

P IMP 7 

GO:0051604 protein maturation P IDA 7 
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GO:0002541 activation of plasma proteins 
involved in acute inflammatory 
response 

P IDA 7 

GO:0002250 adaptive immune response P IMP 7 
GO:0002253 activation of immune response P IDA 7 
GO:0000152 nuclear ubiquitin ligase complex C IDA 4 
GO:0005680 anaphase-promoting complex C IDA 4 
GO:0031401 positive regulation of protein 

modification process 
P IDA 4 

GO:0070695 FHF complex C IDA 4 
GO:0030247 polysaccharide binding F IDA 12 
GO:0005539 glycosaminoglycan binding F IDA 12 
GO:0009611 response to wounding P IMP 12,16 
GO:0006953 acute-phase response P IEP 12 
GO:0030193 regulation of blood coagulation P IDA 12 
GO:0061041 regulation of wound healing P IDA 12 
GO:0006952 defense response P IDA 16 
GO:0050716 positive regulation of interleukin-1 

secretion 
P IDA 16 

GO:0050718 positive regulation of interleukin-1 
beta secretion 

P IDA 16 

GO:0033198 response to ATP P IDA 16 
GO:0045087 innate immune response P IMP 16 
GO:0000186 activation of MAPKK activity P IMP 16 
GO:0006139 nucleobase-containing compound 

metabolic process 
P IDA 13 

GO:0016226 iron-sulfur cluster assembly P IDA 13 
GO:0006418 tRNA aminoacylation for protein 

translation 
P IMP 1 

GO:0034645 cellular macromolecule biosynthetic 
process 

P IGI 1 

GO:0008156 negative regulation of DNA 
replication 

P IMP 1 

GO:0006520 cellular amino acid metabolic process P IDA 1 
GO:0005388 calcium-transporting ATPase activity F IDA 6 
GO:0015085 calcium ion transmembrane 

transporter activity 
F IDA 6 

GO:0016462 pyrophosphatase activity F IDA 6 
GO:0016486 peptide hormone processing P IDA 6 
GO:0017111 nucleoside-triphosphatase activity F IDA 6 
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GO:0005923 tight junction C IDA 5 
GO:0070160 occluding junction C IDA 5 
GO:0016327 apicolateral plasma membrane C IDA 5 
GO:0043296 apical junction complex C IDA 5 
GO:0001726 ruffle C IMP 5 
GO:0043407 negative regulation of MAP kinase 

activity 
P IMP 3 

GO:0070373 negative regulation of ERK1 and 
ERK2 cascade 

P IDA 3 

GO:0000188 inactivation of MAPK activity P IMP 3 
GO:0007623 circadian rhythm P IMP 2 

 
 
Table 17: Cluster specific gene ontologies for TGX-221 treated Huh7 cells 

GOID Description which Evidence Cluster 
GO:0006621 protein retention in ER lumen P IMP 1 
GO:0035437 maintenance of protein localization 

in endoplasmic reticulum 
P IMP 1 

GO:0003756 protein disulfide isomerase activity F IDA 1 
GO:0045454 cell redox homeostasis P IDA 1 
GO:0003865 3-oxo-5-alpha-steroid 4-

dehydrogenase activity 
F IDA 3 

GO:0006740 NADPH regeneration P IMP 3 
GO:0008202 steroid metabolic process P IDA 3 
GO:0009055 electron carrier activity F IDA 3 
GO:0016052 carbohydrate catabolic process P IDA 3 
GO:0016229 steroid dehydrogenase activity F IDA 3 
GO:0016491 oxidoreductase activity F IDA 3 
GO:0017057 6-phosphogluconolactonase activity F IDA 3 
GO:0019322 pentose biosynthetic process P IDA 3 
GO:0044275 cellular carbohydrate catabolic 

process 
P IDA 3 

GO:0055114 oxidation-reduction process P IDA 3 
 
 
Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells 

GOID Description Which Evidence Cluster 
GO:0007026 negative regulation of microtubule 

depolymerization 
P IMP 19 
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GO:0031111 negative regulation of microtubule 
polymerization or depolymerization 

P IMP 19 

GO:0000188 inactivation of MAPK activity P IDA 17 
GO:0043407 negative regulation of MAP kinase 

activity 
P IDA 17 

GO:0000165 MAPK cascade P IDA 17 
GO:0016788 hydrolase activity, acting on ester 

bonds 
F IMP 17 

GO:0008203 cholesterol metabolic process P IDA 16 
GO:0005506 iron ion binding F IMP 16 
GO:0008202 steroid metabolic process P IMP 16 
GO:0004506 squalene monooxygenase activity F IDA 16 
GO:0008398 sterol 14-demethylase activity F IDA 16 
GO:0022618 ribonucleoprotein complex assembly P IDA 15 
GO:0000375 RNA splicing, via transesterification 

reactions 
P IDA 15 

GO:0018024 histone-lysine N-methyltransferase 
activity 

F IMP 15 

GO:0000245 spliceosomal complex assembly P IMP 15 
GO:0042054 histone methyltransferase activity F IDA 15 
GO:0006974 response to DNA damage stimulus P IDA 14 
GO:0032777 Piccolo NuA4 histone 

acetyltransferase complex 
C IDA 14 

GO:0006301 postreplication repair P IDA 14 
GO:0008283 cell proliferation P IMP 14 
GO:0080008 CUL4 RING ubiquitin ligase complex C IMP 14 
GO:0006282 regulation of DNA repair P IDA 14 
GO:0006284 base-excision repair P IDA 14 
GO:0007178 transmembrane receptor protein 

serine/threonine kinase signaling 
pathway 

P IDA 9 

GO:0046332 SMAD binding F IPI 9 
GO:0005391 sodium:potassium-exchanging 

ATPase activity 
F IDA 8 

GO:0005890 sodium:potassium-exchanging 
ATPase complex 

C IDA 8 

GO:0030433 ER-associated protein catabolic 
process 

P IMP 7 

GO:0051787 misfolded protein binding F IPI 7 
GO:0004571 mannosyl-oligosaccharide 1,2-alpha-

mannosidase activity 
F IDA 7 

 
 
Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells  ( continued )
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GO:0005788 endoplasmic reticulum lumen C IDA 7 
GO:0003700 sequence-specific DNA binding 

transcription factor activity 
F IDA 6 

GO:0034976 response to endoplasmic reticulum 
stress 

P IMP 6 

GO:0006520 cellular amino acid metabolic process P IDA 6 
GO:0071310 cellular response to organic substance P IDA 6 
GO:0016255 attachment of GPI anchor to protein P IMP 12 
GO:0006506 GPI anchor biosynthetic process P IDA 12 
GO:0008654 phospholipid biosynthetic process P IDA 12 
GO:0006650 glycerophospholipid metabolic 

process 
P IDA 12 

GO:0008408 3'-5' exonuclease activity F IDA 12 
GO:0042254 ribosome biogenesis P IMP 12 
GO:0060738 epithelial-mesenchymal signaling 

involved in prostate gland 
development 

P IDA 11 

GO:0043627 response to estrogen stimulus P IDA 11 
GO:0014902 myotube differentiation P IMP 11 
GO:0009725 response to hormone stimulus P IDA 11 
GO:0008518 reduced folate carrier activity F IDA 10 
GO:0046483 heterocycle metabolic process P IDA 10 
GO:0051173 positive regulation of nitrogen 

compound metabolic process 
P IGI 10 

GO:0031328 positive regulation of cellular 
biosynthetic process 

P IDA 10 

 
 
Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7 
cells 

GOID Description Which Evidence Cluster 
GO:0043296 apical junction complex C IDA 9 
GO:0005911 cell-cell junction C IDA 9 
GO:0030165 PDZ domain binding F IPI 9 
GO:0000188 inactivation of MAPK activity P IMP 6 
GO:0006469 negative regulation of protein kinase 

activity 
P IDA 6 

GO:0017017 MAP kinase tyrosine/serine/threonine 
phosphatase activity 

F IDA 6 

GO:0033549 MAP kinase phosphatase activity F IDA 6 

 
 
Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells  ( continued )
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GO:0033673 negative regulation of kinase activity P IDA 6 
GO:0005741 mitochondrial outer membrane C IDA 4 
GO:0016298 lipase activity F IDA 4 
GO:0005975 carbohydrate metabolic process P IDA 4 
GO:0006631 fatty acid metabolic process P IDA 4 
GO:0006641 triglyceride metabolic process P IMP 4 
GO:0004864 protein phosphatase inhibitor activity F IDA 3 
GO:0019208 phosphatase regulator activity F IDA 3 
GO:0019888 protein phosphatase regulator activity F IDA 3 
GO:0016192 vesicle-mediated transport P IMP 16, 20 
GO:0048193 Golgi vesicle transport P IMP 20 
GO:0030127 COPII vesicle coat C IDA 20 
GO:0012507 ER to Golgi transport vesicle 

membrane 
C IDA 20 

GO:0030282 bone mineralization P IDA 2 
GO:0031214 biomineral tissue development P IMP 2 
GO:0060348 bone development P IMP 2 
GO:0001501 skeletal system development P IMP 2, 17 
GO:0030154 cell differentiation P IDA 18 
GO:0032502 developmental process P IMP 18 
GO:0051387 negative regulation of nerve growth 

factor receptor signaling pathway 
P IMP 18 

GO:0040037 negative regulation of fibroblast 
growth factor receptor signaling 
pathway 

P IMP 18 

GO:0042127 regulation of cell proliferation P IDA 18 
GO:0070373 negative regulation of ERK1 and ERK2 

cascade 
P IMP 18 

GO:0043410 positive regulation of MAPK cascade P IMP 18 
GO:0008284 positive regulation of cell proliferation P IDA 18 
GO:0046580 negative regulation of Ras protein 

signal transduction 
P IDA 18 

GO:0051058 negative regulation of small GTPase 
mediated signal transduction 

P IMP 18 

GO:0030099 myeloid cell differentiation P IDA 18 
GO:0048705 skeletal system morphogenesis P IMP 17 
GO:0060017 parathyroid gland development P IMP 17 
GO:0035196 production of miRNAs involved in 

gene silencing by miRNA 
P IMP 17 

 
 
Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7 
cells ( continued )
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GO:0034189 very-low-density lipoprotein particle 
binding 

F IDA 16 

GO:0010324 membrane invagination P IMP 16 
GO:0034185 apolipoprotein binding F IPI 16 
GO:0030662 coated vesicle membrane C IDA 16 
GO:0021766 hippocampus development P IMP 16 
GO:0033257 Bcl3/NF-kB2 complex C IDA 14 
GO:0002250 adaptive immune response P IEP 14 
GO:0002286 T cell activation involved in immune 

response 
P IDA 14 

GO:0042752 regulation of circadian rhythm P IMP 14 
GO:0002366 leukocyte activation involved in 

immune response 
P IDA 14 

GO:0002520 immune system development P IMP 14 
GO:0007623 circadian rhythm P IDA 14 
GO:0008080 N-acetyltransferase activity F IDA 13 
GO:0016407 acetyltransferase activity F IDA 13 
GO:0016410 N-acyltransferase activity F IDA 13 
GO:0006474 N-terminal protein amino acid 

acetylation 
P IDA 13 

GO:0031365 N-terminal protein amino acid 
modification 

P IDA 13 

GO:0016740 transferase activity F IDA 13 
GO:0001836 release of cytochrome c from 

mitochondria 
P IMP 11 

GO:0008637 apoptotic mitochondrial changes P IDA 11 
GO:0010941 regulation of cell death P IMP 11 
GO:0042981 regulation of apoptotic process P IGI 11 
GO:0043067 regulation of programmed cell death P IDA 11 
GO:0019104 DNA N-glycosylase activity F IDA 11 
GO:0007257 activation of JUN kinase activity P IDA 10 
GO:0043507 positive regulation of JUN kinase 

activity 
P IMP 10 

GO:0043406 positive regulation of MAP kinase 
activity 

P IDA 10 

GO:0006970 response to osmotic stress P IMP 10 
GO:0008360 regulation of cell shape P IDA 10 
GO:0000186 activation of MAPKK activity P IDA 10 
GO:0022604 regulation of cell morphogenesis P IMP 10 

 

 
 
Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7 
cells ( continued )
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Table 20: Cluster specific gene ontologies for Sorafenib treated Huh7 cells 

GOID Description Which Evidence Cluster 
GO:0043407 negative regulation of MAP kinase 

activity 
P IDA 14 

GO:0034260 negative regulation of GTPase 
activity 

P IMP 14 

GO:0051387 negative regulation of nerve growth 
factor receptor signaling pathway 

P IMP 14 

GO:0040037 negative regulation of fibroblast 
growth factor receptor signaling 
pathway 

P IDA 14 

GO:0051386 regulation of nerve growth factor 
receptor signaling pathway 

P IMP 14 

GO:0009653 anatomical structure morphogenesis P IMP 4, 14 
GO:0032502 developmental process P IMP 4, 14 
GO:0070373 negative regulation of ERK1 and 

ERK2 cascade 
P IDA 14 

GO:0051058 negative regulation of small GTPase 
mediated signal transduction 

P IMP 14 

GO:0003824 catalytic activity F IDA 1, 3 
GO:0046033 AMP metabolic process P IDA 1 
GO:0006796 phosphate-containing compound 

metabolic process 
P IMP 9 

GO:0043687 post-translational protein 
modification 

P IMP 9 

GO:0008138 protein tyrosine/serine/threonine 
phosphatase activity 

F IDA 9 

GO:0044267 cellular protein metabolic process P IDA 9 
GO:0006470 protein dephosphorylation P IMP 9 
GO:0000287 magnesium ion binding F IDA 9 
GO:0016773 phosphotransferase activity, alcohol 

group as acceptor 
F IDA 6 

GO:0003756 protein disulfide isomerase activity F IDA 8 
GO:0045216 cell-cell junction organization P IMP 8 
GO:0006621 protein retention in ER lumen P IMP 8 
GO:0035437 maintenance of protein localization in 

endoplasmic reticulum 
P IMP 8 

GO:0034329 cell junction assembly P IMP 8 
GO:0045454 cell redox homeostasis P IDA 8 



139 
 

GO:0006974 response to DNA damage stimulus P IDA 7 
GO:0071501 cellular response to sterol depletion P IDA 7 
GO:0043240 Fanconi anaemia nuclear complex C IDA 7 
GO:0032933 SREBP-mediated signaling pathway P IMP 7 
GO:0002102 podosome C IDA 6 
GO:0046777 protein autophosphorylation P IDA 6 
GO:0005913 cell-cell adherens junction C IDA 4 
GO:0030154 cell differentiation P IDA 4 
GO:0006694 steroid biosynthetic process P IDA 3 
GO:0006695 cholesterol biosynthetic process P IDA 3 
GO:0044255 cellular lipid metabolic process P IDA 3 
GO:0055114 oxidation-reduction process P IDA 3 
GO:0016491 oxidoreductase activity F IDA 3 
GO:0032787 monocarboxylic acid metabolic 

process 
P IDA 3 

GO:0016628 oxidoreductase activity, acting on the 
CH-CH group of donors, NAD or 
NADP as acceptor 

F IDA 3 

GO:0015030 Cajal body C IDA 16 
GO:0015031 protein transport P IMP 15 
GO:0045184 establishment of protein localization P IDA 15 
GO:0008104 protein localization P IMP 15 
GO:0003924 GTPase activity F IDA 15 
GO:0016192 vesicle-mediated transport P IDA 15 
GO:0033036 macromolecule localization P IDA 15 
GO:0006879 cellular iron ion homeostasis P IMP 12 
GO:0050750 low-density lipoprotein particle 

receptor binding 
F IDA 12 

GO:0042157 lipoprotein metabolic process P IMP 12 
GO:0001954 positive regulation of cell-matrix 

adhesion 
P IMP 12 

GO:0042592 homeostatic process P IMP 12 
GO:0032872 regulation of stress-activated MAPK 

cascade 
P IMP 10 

GO:0005248 voltage-gated sodium channel 
activity 

F IDA 10 

GO:0043666 regulation of phosphoprotein 
phosphatase activity 

P IMP 10 
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Table 20: Cluster specific gene ontologies for Sorafenib treated Huh7 cells  (continued )
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Table 21: Cluster specific gene ontologies for PIK-75 treated Mahlavu cells 

GOID Description Which Evidence Cluster 
GO:0016272 prefoldin complex C IDA 9 
GO:0005829 cytosol C IDA 9 
GO:0047710 bis(5'-adenosyl)-triphosphatase 

activity 
F IDA 9 

GO:0031941 filamentous actin C IDA 8 
GO:0005884 actin filament C IDA 8 
GO:0015629 actin cytoskeleton C IDA 8 
GO:0005179 hormone activity F IDA 5 
GO:0006260 DNA replication P IGI 4 
GO:0006259 DNA metabolic process P IDA 4 
GO:0006325 chromatin organization P IMP 11 
GO:0051276 chromosome organization P IDA 11 
GO:0000785 chromatin C IDA 11 
GO:0004965 G-protein coupled GABA receptor 

activity 
F IDA 10 

GO:0007214 gamma-aminobutyric acid signaling 
pathway 

P IDA 10 

GO:0016917 GABA receptor activity F IMP 10 
GO:0030054 cell junction C IDA 10 
GO:0008066 glutamate receptor activity F IDA 10 
GO:0032376 positive regulation of cholesterol 

transport 
P IDA 1 

GO:0032374 regulation of cholesterol transport P IDA 1 
GO:0032488 Cdc42 protein signal transduction P IMP 1 
GO:0090084 negative regulation of inclusion 

body assembly 
P IDA 1 

GO:0034380 high-density lipoprotein particle 
assembly 

P IDA 1 

GO:0065005 protein-lipid complex assembly P IMP 1 
GO:0070325 lipoprotein particle receptor binding F IPI 1 
GO:0008285 negative regulation of cell 

proliferation 
P IDA 1 

GO:0043691 reverse cholesterol transport P IDA 1 
GO:0001558 regulation of cell growth P IEP 1 
GO:0007266 Rho protein signal transduction P IMP 1 
GO:0042632 cholesterol homeostasis P IMP 1 
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Table 22: Cluster specific gene ontologies for TGX-221 treated Mahlavu cells 

GOID Description Which Evidence Cluster 
GO:0002237 response to molecule of bacterial origin P IDA 3 
GO:0042742 defense response to bacterium P IMP 3 
GO:0001932 regulation of protein phosphorylation P IGI 3 
GO:0009617 response to bacterium P IDA 3 
GO:0032755 positive regulation of interleukin-6 

production 
P IDA 3 

GO:0050830 defense response to Gram-positive 
bacterium 

P IDA 3 

GO:0032675 regulation of interleukin-6 production P IMP 3 
GO:0007420 brain development P IMP 2 
GO:0031016 pancreas development P IEP 2 
GO:0004180 carboxypeptidase activity F IDA 5 
GO:0004181 metallocarboxypeptidase activity F IDA 5 
GO:0008235 metalloexopeptidase activity F IDA 5 

 
 
Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu 
cells 

GOID Description Which Evidence Cluster 
GO:0004558 alpha-glucosidase activity F IDA 10 
GO:0046483 heterocycle metabolic process P IDA 9 
GO:0015085 calcium ion transmembrane 

transporter activity 
F IDA 9 

GO:0000421 autophagic vacuole membrane C IDA 9 
GO:0016327 apicolateral plasma membrane C IDA 8 
GO:0043296 apical junction complex C IDA 8 
GO:0005911 cell-cell junction C IDA 4, 8 
GO:0008509 anion transmembrane transporter 

activity 
F IDA 5 

GO:0005452 inorganic anion exchanger activity F IDA 5 
GO:0015301 anion:anion antiporter activity F IDA 5 
GO:0016323 basolateral plasma membrane C IDA 5 
GO:0004965 G-protein coupled GABA receptor 

activity 
F IDA 4 

GO:0030695 GTPase regulator activity F IDA 4 



142 
 

GO:0005355 glucose transmembrane transporter 
activity 

F IDA 31 

GO:0070776 MOZ/MORF histone 
acetyltransferase complex 

C IDA 3 

GO:0016592 mediator complex C IDA 3 
GO:0010887 negative regulation of cholesterol 

storage 
P IDA 3 

GO:0010875 positive regulation of cholesterol 
efflux 

P IDA 3 

GO:0017127 cholesterol transporter activity F IDA 3 
GO:0032376 positive regulation of cholesterol 

transport 
P IDA 3 

GO:0006414 translational elongation P IDA 29 
GO:0022627 cytosolic small ribosomal subunit C IDA 29 
GO:0001775 cell activation P IDA 28 
GO:0001819 positive regulation of cytokine 

production 
P IDA 28 

GO:0016174 NAD(P)H oxidase activity F IDA 28 
GO:0032727 positive regulation of interferon-

alpha production 
P IDA 28 

GO:0006952 defense response P IDA 28 
GO:0001774 microglial cell activation P IDA 28 
GO:0032481 positive regulation of type I 

interferon production 
P IDA 28 

GO:0006885 regulation of pH P IDA 26 
GO:0015078 hydrogen ion transmembrane 

transporter activity 
F IDA 26 

GO:0006814 sodium ion transport P IDA 26 
GO:0006024 glycosaminoglycan biosynthetic 

process 
P IDA 26 

GO:0006390 transcription from mitochondrial 
promoter 

P IDA 24 

GO:0042645 mitochondrial nucleoid C IDA 24 
GO:0006139 nucleobase-containing compound 

metabolic process 
P IDA 24 

GO:0051607 defense response to virus P IDA 23 
GO:0002684 positive regulation of immune 

system process 
P IDA 22 

GO:0050863 regulation of T cell activation P IDA 22 
GO:0032673 regulation of interleukin-4 

production 
P IDA 22 

 
 
Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu 
cells ( continued )
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GO:0004674 protein serine/threonine kinase 
activity 

F IDA 22 

GO:0050870 positive regulation of T cell 
activation 

P IDA 22 

GO:0031461 cullin-RING ubiquitin ligase 
complex 

C IDA 21 

GO:0000151 ubiquitin ligase complex C IDA 21 
GO:0032446 protein modification by small 

protein conjugation 
P IDA 21 

GO:0008630 DNA damage response, signal 
transduction resulting in induction of 
apoptosis 

P IDA 20 

GO:0042770 signal transduction in response to 
DNA damage 

P IDA 20 

GO:0002098 tRNA wobble uridine modification P IDA 20 
GO:0004594 pantothenate kinase activity F IDA 20 
GO:0030056 hemidesmosome C IDA 20 
GO:0043065 positive regulation of apoptotic 

process 
P IDA 20 

GO:0043068 positive regulation of programmed 
cell death 

P IDA 20 

GO:0090083 regulation of inclusion body 
assembly 

P IDA 2 

GO:0016628 oxidoreductase activity, acting on 
the CH-CH group of donors, NAD or 
NADP as acceptor 

F IDA 2 

GO:0090084 negative regulation of inclusion 
body assembly 

P IDA 2 

GO:0007264 small GTPase mediated signal 
transduction 

P IDA 19 

GO:0001738 morphogenesis of a polarized 
epithelium 

P IDA 19 

GO:0012506 vesicle membrane C IDA 18 
GO:0030659 cytoplasmic vesicle membrane C IDA 18 
GO:0030658 transport vesicle membrane C IDA 18 
GO:0012505 endomembrane system C IDA 18 
GO:0030121 AP-1 adaptor complex C IDA 18 
GO:0016272 prefoldin complex C IDA 17 
GO:0030983 mismatched DNA binding F IDA 17 
GO:0006298 mismatch repair P IDA 17 
GO:0030968 endoplasmic reticulum unfolded 

protein response 
P IDA 15 

 
 
Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu 
cells ( continued )
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GO:0034976 response to endoplasmic reticulum 
stress 

P IDA 15 

GO:0000278 mitotic cell cycle P IDA 15 
GO:0009411 response to UV P IDA 13 
GO:0045948 positive regulation of translational 

initiation 
P IDA 13 

GO:0001523 retinoid metabolic process P IDA 12 
GO:0055114 oxidation-reduction process P IDA 12 
GO:0047035 testosterone dehydrogenase (NAD+) 

activity 
F IDA 12 

GO:0009890 negative regulation of biosynthetic 
process 

P IDA 11 

GO:0009083 branched chain family amino acid 
catabolic process 

P IDA 1 

GO:0009308 amine metabolic process P IDA 1 
GO:0006695 cholesterol biosynthetic process P IDA 1 
GO:0004080 biotin-[propionyl-CoA-carboxylase 

(ATP-hydrolyzing)] ligase activity 
F IDA 1 

GO:0071110 histone biotinylation P IDA 1 
GO:0043170 macromolecule metabolic process P IEP 17, 21 
GO:0010942 positive regulation of cell death P IGI 20 
GO:0034645 cellular macromolecule biosynthetic 

process 
P IGI 13 

GO:0006164 purine nucleotide biosynthetic 
process 

P IMP 9 

GO:0003993 acid phosphatase activity F IMP 7 
GO:0030833 regulation of actin filament 

polymerization 
P IMP 4 

GO:0031333 negative regulation of protein 
complex assembly 

P IMP 4 

GO:0032488 Cdc42 protein signal transduction P IMP 3 
GO:0008203 cholesterol metabolic process   IMP 2, 3 
GO:0016192 vesicle-mediated transport P IMP 3, 18 
GO:0016569 covalent chromatin modification P IMP 3 
GO:0003735 structural constituent of ribosome F IMP 29 
GO:0032728 positive regulation of interferon-beta 

production 
P IMP 28 

GO:0050776 regulation of immune response P IMP 28 
GO:0042116 macrophage activation P IMP 28 
GO:0050650 chondroitin sulfate proteoglycan 

biosynthetic process 
P IMP 26 

 
 
Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu 
cells ( continued )
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GO:0030166 proteoglycan biosynthetic process P IMP 26 
GO:0007005 mitochondrion organization P IMP 24 
GO:0002682 regulation of immune system 

process 
P IMP 22 

GO:0080008 CUL4 RING ubiquitin ligase 
complex 

C IMP 21 

GO:0034227 tRNA thio-modification P IMP 20 
GO:0042026 protein refolding P IMP 2 
GO:0051056 regulation of small GTPase 

mediated signal transduction 
P IMP 19 

GO:0007059 chromosome segregation P IMP 15 
GO:0006986 response to unfolded protein P IMP 15 
GO:0009416 response to light stimulus P IMP 13 
GO:0006776 vitamin A metabolic process P IMP 12 
GO:0008265 Mo-molybdopterin cofactor 

sulfurase activity 
F IMP 12 

GO:0030031 cell projection assembly P IMP 11 
GO:0006091 generation of precursor metabolites 

and energy 
P IMP 10 

GO:0018271 biotin-protein ligase activity F IMP 1 
GO:0008536 Ran GTPase binding F IPI 7 
GO:0031625 ubiquitin protein ligase binding F IPI 2 
GO:0030742 GTP-dependent protein binding F IPI 19 

 
 
Table 24: Cluster specific gene ontologies for PI3Ki-beta and Sorafenib treated Mahlavu 
cells 

GOID Description Which Evidence Cluster 
GO:0006695 cholesterol biosynthetic process P IMP 1, 6 
GO:0008610 lipid biosynthetic process P IMP 1, 6  
GO:0032933 SREBP-mediated signaling pathway P IDA 1 
GO:0012507 ER to Golgi transport vesicle 

membrane 
C IDA 1 

GO:0016628 oxidoreductase activity, acting on the 
CH-CH group of donors, NAD or 
NADP as acceptor 

F IDA 1 

GO:0030135 coated vesicle C IDA 1 
GO:0005324 long-chain fatty acid transporter 

activity 
F IGI 9 

GO:0045218 zonula adherens maintenance P IMP 7 

 
 
Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu 
cells ( continued )
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GO:0005815 microtubule organizing center C IDA 7 
GO:0045217 cell-cell junction maintenance P IMP 7 
GO:0090136 epithelial cell-cell adhesion P IMP 7 
GO:0003774 motor activity F IDA 7 
GO:0051908 double-stranded DNA specific 5'-3' 

exodeoxyribonuclease activity 
F IDA 7 

GO:0016327 apicolateral plasma membrane C IDA 7 
GO:0016787 hydrolase activity F IDA 7 
GO:0006720 isoprenoid metabolic process P IDA 6 
GO:0033257 Bcl3/NF-kB2 complex C IDA 4 
GO:0010608 posttranscriptional regulation of gene 

expression 
P IMP 4 

GO:0015858 nucleoside transport P IDA 3 
 
 
Table 25: Cluster specific gene ontologies for Sorafenib treated Mahlavu cells 

GOID Description which Evidence Cluster 
GO:0006469 negative regulation of protein kinase 

activity 
P IMP 5 

GO:0033673 negative regulation of kinase activity P IDA 5 
GO:0042325 regulation of phosphorylation P IMP 5 
GO:0005947 mitochondrial alpha-ketoglutarate 

dehydrogenase complex 
C IDA 6 

GO:0006550 isoleucine catabolic process P IMP 6 
GO:0009083 branched chain family amino acid 

catabolic process 
P IDA 6 

GO:0016779 nucleotidyltransferase activity F EXP 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 24: Cluster specific gene ontologies for PI3Ki-beta and Sorafenib treated Mahlavu 
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