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ABSTRACT

SYSTEMS BIOLOGY ANALYSIS OF KINASE INHIBITORS IN LIVER CANCER
CELLS USING NEXT GENERATION SEQUENCING DATA

Narci, Kiibra
Ph.D, Department of Medical Informatics
Supervisor: Assoc. Prof. Yesim Aydin Son

Co-Supervisor: Prof. Dr. Rengiil Cetin Atalay

September 2021, 155 pages

The underlying mechanism for the development of Hepatocellular Carcinoma (HCC) is
highly complex due to tissue heterogeneity. Although the traditional approaches mainly
focus on a single gene or locus, understanding the variations in the signaling pathways of
cancerogenic cells during hepatocarcinogenesis may help to develop novel strategies for
treatment and drug development to prevent cancer progression in the patients.

This thesis study primarily focuses on unveiling the transcriptome sequencing of
differentially expressed genes in HCC, which mainly concentrate on known disease
signaling pathways. For this purpose, RNA-seq data of two HCC cell lines were targeted
by three different kinase inhibitors and two of their combinations with Sorafenib. The
functional pathways enriched with differentially expressed genes were identified by
solving a graph problem called as Prize Collecting Steiner Tree (PCST) on human
interactome generating inhibitor specific networks. As a result of this study, we found that
combinatory treatment of Sorafenib with PIK-75 to HCC cell lines Huh7 and Mahlavu
stimulates apoptosis, while TGX-221 with Sorafenib strikingly promotes cell growth
antagonizing cellular death, especially for Mahlavu cell line. The states of transcriptomes
for different kinase inhibitors were visualized using Cytoscape and molecular interactions
were scanned deeply to understand synergistic or antagonistic effects of these kinase
inhibitory treatments.

v



Hence, this study provides comprehensive pathways analysis for differential kinase
inhibitor reactions of HCC. Using these data, novel HCC drug targets were identified
which may lead to more cost-effective and diverse treatment options available for the
treatment of liver cancer.

Keywords: Hepatocellular Carcinoma, Cellular Signaling Pathways, RNA Sequencing,
Prize Collecting Steiner Algorithm, Network Modeling
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YENI NESIL DIiZILEME TEKNiGi KULLANILARAK KARACIGER KANSERININ
SISTEM BIiYOLOJISI ANALIZI

Narci, Kiibra
Doktora, Tip Bilisimi Boliimii
Tez Yoneticisi: Dog. Dr. Yesim Aydin Son
Es Danisman: Prof. Dr. Rengiil Cetin Atalay

Eyliil 2021, 155 sayfa

Hepatoselliiler Kanser (HCC) gelisimi altinda yatan mekanizma, kanser dokularinin
heterojenligi nedeniyle olduk¢a karmasiktir. Geleneksel yaklagimlar temelde tek gen veya
lokusa odaklansa da hepatokarsinogenez sirasinda kanserojen hiicrelerin sinyal
yollarindaki varyasyonlar1 anlamak, hastalardaki kanserin ilerlemesini dnlemek adina
tedavi ve ilag kesfi i¢in yeni stratejiler gelistirmeye yardimci olabilir.

Bu doktora tez ¢aligmasinin amaci, HCC igerisinde degisken eksprese edilen genlerin
baslica bilinen hastalik sinyal yolaklarinda yogunlasarak transkriptom dizilemesi yoluyla
ortaya ¢ikarilmasidir. Bu amagla, iki ¢esit HCC hiicre hatti, {i¢ farkli kinaz inhibitdriiniin
tekli veya Sorafenib ile kombinasyonlari olacak sekilde hedeflenerek RNA dizilemesi elde
edildi. Price Collecting Steiner Tree (PCST) algoritmasinin insan transkriptom agi
iizerinde, diferansiyel kontrol edilen genlerle ¢6ziimii bize bu genlerle yogunlagtirilmis
fonksiyonel yolaklar sunmustur. Bu tez calismast sonucunda, Sorafenib ve PIK-75
inhibitorlerinin birlikte kullanilmasi ile hem Huh7 hem de Mahlavu hiicre hatlarinda
apoptozu uyardigimi buna karsin TGX-221 inhibitorii ile Sorafenib’in birlikte
kullanilmasimin c¢arpict bir sekilde hiicre biiylimesini destekledigini bulduk. Bu
kombinasyonun 6zellikle Mahlavu hiicre hattinda Sorafenib ile olusan hiicresel 6limii
antagonize ettigi gosterilmistir. Farkli kinaz inhibitorleri ile elde edilen diferansiyel gen
ekspresyon statiileri, Cytoscape aract kullanilarak gorsellestirilmis ve bu kinaz
inhibitorlerinin olas1 sinerjistik ve antagonistik etkilerini anlamak adma yolaklar
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icerisindeki molekiiler etkilesimler derinlemesine analiz edilerek karsilastirmalar
yapilmigstir.

Dolayisi ile, bu ¢alisma HCC hiicrelerinin kinaz inhibitdrleri karsisinda olusturdugu
diferansiyel ekspresyonlar1 incelemek adina kapsamli bir yaklasim sunmaktadir. Bu
veriler 151831nda, karaciger kanser tedavisi i¢in daha uygun maliyetli secenekleri
cesitlendirebilecek yeni ilag hedefleri belirlenmistir.

Anahtar Sozciikler: Hepatoseliiler Kanser, Hiicresel Sinyal Yolaklar, RNA dizileme,
PCST, Ag Modellemesi
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CHAPTER 1

INTRODUCTION

In this chapter, initially, the concepts on Hepatocellular Carcinoma (HCC), major
HCC signaling pathway PI3K/Akt/mTOR, and kinase inhibitors which constitute the
main biomedical subject area of this thesis are represented to better express the
motivation. Then, a survey on the bioinformatics techniques and methods like next-
generation techniques used for gene expression analysis, conventional RNA-seq
analysis, network construction to analyze expression data, and systematic approaches
for gene expression analysis are reviewed. The initial experimental analysis results,
which constitute the main source of motivation that forms the basis of this doctoral
study are explained. Finally, the general motivation and rationality of the study are
detailed.

1.1. Hepatocellular Carcinoma

According to 2020 WHO-Global Cancer Observatory (GCO) reports, every one of five
men and every one of the 6 women will be diagnosed with one of type of cancer in
their lifetime; and unfortunately, one of eight men and one of eleven women will lose
their life just before 75 years old because of the disease. Considering the numbers, it
is not shocking that cancer is one of the most dangerous diseases in the world (Bray et
al., 2018). The estimated number of cases for mortality and morbidity of cancer in the
World are 9.556.027 and 18.078.957 in 2018 in all ages and sex types. According to
the Global Cancer Observatory in Turkey, cancer incidences are above the world
average. Turkey is facing a drastic increase in the absolute number of cancer cases, by
2040 the number is expected to be raised by 91.6% for mortality and 75.1% for
morbidity in Turkey (World Health Organization, 2015).

Primary liver cancer originates from hepatocytes and cholangiocytes. It is the 6th most
common cancer in the world by mortality and it is 3rth to colorectum cancer by
mortality (World Health Organization, 2015). Hepatocellular carcinoma (HCC), also
called hepatoma or HCC, is the most common type of primary liver cancer (Perzet et
al, 2006). HCC, which constitutes 75% of primary liver cancers, is the 5th most
common and the 3rd most lethal cancer in the world as shown in Figure 1 (Bray et al.,
2018; Perz et al, 2006). While the death rates from other cancers are decreasing due to
advances in diagnosis and therapeutics, the incidence and the mortality of HCC follow



an increasing trend due to the high rate of obesity-associated with liver diseases
(Aleksandrova et al., 2016; B. Sun & Karin, 2012).
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Figure 1:Percentages of new cancer cases and cancer deaths worldwide in 2018 (Bray et al.,
2018).

1.1.1. Risk Factors

Hepatocellular carcinoma (HCC) develops essentially from hepatocytes and people
with liver scarring (cirrhosis) are more likely to develop HCC. Liver scars result from
chronic liver diseases. Furthermore, Hepatitis B (HBV) or C (HCV) virus infections
are known to be directly linked to HCC (Jung et al., 2000; Ozcelik et al., 2003; Sun &
Karin, 2012). In South Asia, high rates of HCC correlates to endemic HBV infections
and in western countries the main risk of HCC is related to HCV infection (Bosch et
al., 2004).

Among the environmental risk factors mentioned above, alcohol consumption is also
linked to HCC. In a large cohort study considering multiple factors like family,
drinking history and diabetes, they show that current or heavy drinkers were exposed
to a high risk of HCC (Ogimoto et al., 2004). Moreover, dietary exposure to aflatoxin
B1 significantly increases HCC risk, which mainly depends on geographical
conditions. In Asia and Africa, high incidence of aflatoxin B1 increases susceptibility
to HCC (Hamid et al., 2013). Cigarette smoking is causally associated with HCC, and



multiple effects of heavy drinking and smoking have been studied previously (Kuper
et al., 2000).

Type 2 diabetes is also associated with the risk of HCC. Type 2 diabetes resulting
from the constitutive stimulation of the insulin-like growth factor (IGF) pathway is
considered as promoting HCC related pathways (EI-Serag et al., 2006). In a large
cohort HCC-control genome-wide association study, more than 20 loci are correlated
as modulating type 2 diabetes (Salanti et al., 2009). High overall body mass rate
(obesity) and diabetes, together, are believed to be a factor that may play role in %16
of HCC cases (Schlesinger et al., 2013). Apart from environmental or life-style related
risk factors (listed in Figure 2), there are genetic bases of HCC. Several genetic
abnormalities can give rise to liver injury, fibrosis and cirrhosis development. Human
monogenic disorders of AAT deficiency, porphyria, hemochromatosis and
tyrosinemia type I are the other syndromes associated with high risk of HCC (Dragani,
2010).

1.1.2. Initiation and Development

Fibrosis Cirrhosis
Liver cell injury

Hepatitis B/C Virus g

Alcohol
Smoking
Aflatoxin Chronic inflammation
Obesity

Diabetes

Genetic abnormalities

Figure 2: Risk factors and development of HCC. Risks factors including both environmental
hepatitis B or C virus, excess alcohol consumption, cigarette smoking, aflatoxin B explosion,
and genetic predispositions like obesity, diabetes and genomic abnormalities lead to liver
injury, and through continuous chronic inflammations, fibrosis and cirrhosis induces
hepatocellular carcinoma.

Development of HCC is described as a multicomplex biological process, where
chronic liver disease is initiated due to a chronic inflammation or tissue damage.
Injured hepatocytes promote hepatocyte death which is followed by liver regeneration
through activation of chemokines and remodeling of cellular signaling events and
finally uncontrolled cellular growth and proliferation. Increased genomic instability
based on increased amount of reactive oxygen species (ROS) causes oxidative stress



which leads to accumulation of somatic mutations and finally leading to
carcinogenesis. The increased proportion of proliferating cells leads to induction of
several cell signaling pathways involved in liver regeneration, such as growth factor
signaling, cell differentiation, angiogenesis and cell survival (Ersahin et al., 2015;
Farazi & DePinho, 2006).

1.1.3. Acquired Capabilities Through Development of HCC

Transformation of a normal liver cell to hepatocellular carcinoma malignancy occurs
through acquiring cancer features which in turn attenuate cellular growth and
proliferation. During tumor invasion and progression, proliferation and cell survival
signals are mainly activated through continuous activation of growth factors. Cellular
differentiation is mainly due to multiple factors affected from dysregulation of
signaling pathways. Supporting proliferative signaling, avoiding growth suppressors
and cell death signals, enabling continuous replication, initiation of angiogenesis,
invasion and metastasis, dysregulation energy mechanisms and resisting to the
immune destruction are major hepatocellular carcinoma (HCC) hallmarks to gain
malignancy (Ersahin et al., 2015; Hanahan & Weinberg, 2011). Acquired tumorigenic
capabilities through the normal liver to HCC listed in Figure 3.

Liver Hepatocellular carcinoma

Acquiring tumorigenic capabilities

Growth factor signaling
Cell cycle regulation
Ras/RAF pathway
PI3K/AKT pathway
JAK/Stat pathway
NF-kB pathway

Wnt/B catenin pathway
Hedgehog pathway
Histone modification
Apoptosis
Angiogenesis
Immunity

Figure 3: Acquiring tumorigenic capabilities from normal liver to Hepatocellular carcinoma
development. Several signaling pathways are activated to provoke cell growth, proliferation,
invasion, angiogenesis and metastasis, and control cell cycle, cell death and immunity
destruction (Ersahin et al., 2015).

Downregulation of tumor suppressors like p53, Rb and p16 proteins, upregulation of
c-myc and cyclin D1 and overexpression of E2F members stimulate cellular growth
and proliferation that constitute activation of survival pathways. Endothelium growth
factor (EGF), Insulin growth factor (IGF) and Hepatocyte growth factor (HGF-MET)



transmit the proliferation signal through PI3K/AKT/mTOR and RAS/RAF/MEK/ERK
pathways (Moeini et al., 2012).

In HCC, growth arrest and DNA damage 45G (GADD45G) is frequently inactivated,
and GADD45G gene in JAK/STATAZ3 pathway provokes senescence (Li Zhang et al.,
2014b). Gained resistance to transforming growth factor beta (TGF-) inhibition is
commonly found in early stages of hepatocyte tumorigenesis. In advanced stages,
TGF-B is downregulated to ensure resistance to cell death (Thomson et al., 2011).
Moreover, increased levels of growth factors and promotion of anti-apoptotic
pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)
signaling, diminish of death receptors like DRS and Fas, and mutations in the tumor
suppressor genes like p53 provide escape from apoptosis in HCC cells (Okamoto et
al., 2007).

Telomere dysfunctions, oncogene activations, DNA damages and ROS maintained
oxidative stress leads to permanent cell cycle arrest. In order to evade this stage, HCC
gains replicative immortality mainly through overexpression of telomerases to
maintain telomere length stable (Oh et al., 2003). Recently it was found that there is a
correlation between telomere length and the aggressive behavior of HCC (Ozturk et
al., 2009). Vascularization is another feature of HCC. Angiogenesis and
vascularization evolve by interactions of tumor cells and vascular endothelial cells.
The balance between them is unsettled due to increased amount of pro-angiogenic
factors like vascular endothelial growth factor (VEGF), angiopoietins (Ang),
fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) (Papetti &
Herman, 2002). Neuropilin receptors (NRP) is a membrane bound factor in
vascularization of HCC. Pro-angiogenic signals are majorly released in response to the
hypoxic condition and nutrient depletion during tumorigenesis. VEGF and FGF
upregulation are found in malignant types of HCC (Yoshiji et al., 2002).

For invasion and metastasis of HCC, cell detachment is onset. Promotion of twist,
snail, slug, vimentin and zebl and zeb2 and decrease in E-cadherin and HNF-4Ka
appear on epithelial-mesenchymal transition (EMT) enabling poor prognosis
(Thomson et al., 2011). Glucose is the major suppliant of the tumor cells in order to
provide energy for continuous growth and proliferation. Tumor cells reprogram the
cellular energy mechanism to achieve this feature. The mechanistic target of
rapamycin (mTOR), found to be downstream of PI3K/AKT pathway, monitors cellular
energy level. When there is sufficient energy need, mTOR promotes biosynthesis
through suppressing autophagy which supplies recycled metabolites to the cell, while
PI3K/AKT pathway attenuates glucose uptake (Qiao et al., 2016b).

Based on the tumor microenvironment, in HCC development, growth factors,
cytokines, chemokines and ROHs productions are increased leading to tumor initiation
and contributing progression. Pro-inflammatory cytokines like Interleukin 1 beta (IL-
B), Tumor necrosis factor alpha (TNF-a) and Platelet-derived growth factor (PDGF)
together with Kuppfer cells and Hematopoietic stem cells (HSCs) stimulates cellular
growth, inflammation, metastasis and invasion mainly through NF-kB and AKT
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signaling pathways (Manning & Cantley, 2007). HCC cells evade immune protection
mainly through immunosuppressors like Programmed death-ligand 1 (PD-L1),
Indoleamine-pyrrole 2,3-dioxygenase (IDO), cytokines (IL-6, IL-10, VEGF and TGF-
B). Macrophages are important factors in immune destruction system since they
infiltrate leukocytes. The status of tumor-associated-microphases and other immune
cells are important in tumor microenvironment for required response (Cavallo et al.,
2011).

1.1.4. Genetic Heterogeneity

Genome-wide molecular profiling of hepatocellular carcinoma (HCC) tissues using
whole genome or whole exome sequencing techniques contributed to a growing
understanding of the genetic background of cancer progression (Dragani, 2010;
Schulze et al., 2016). Several molecular abbreviations across the tumors are identified
which form subtypes of HCC tumors. HCC tumors are classified into two groups
according to their aggressiveness in biological features. The first group is called as
aggressive type of HCC with increased genetic instability, proliferation, activation of
survival pathways, damage in tumor suppressor with larger tumor size, poor prognosis,
and high rate of recurrence. The aggressive tumors are also sub-grouped according to
TGF-beta pathway activation, cholangioma-like gene signature, vascular invasion and
stemness markers. Besides these HCC major types, different DNA mutations and
environmental exposures like smoking, drinking or toxics contribute as other levels of
heterogeneity (Goossens et al., 2015).

Several aberrant genes are acknowledged in HCC pathogenesis including P53 (Tumor
protein P53), PTEN, Breast cancer type 2 (BRCA2), SMAD?2 genes, c-myc and cyclin
D1 proteins (Bae et al., 2007; Brito et al., 2012). Besides to these genetic
abbreviations, there are several overexpressed signaling pathways observed in HCC.
Stimulation of these pathways is associated with mostly tyrosine kinases which are
commonly a part of phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR pathway
(Ersahin, Ozturk, & Cetin-Atalay, 2015). Another significant mechanism underlie in
HCC development is MAPK pathway mostly activated though Ras protein and
vascular endothelial growth factor (VEGF) pathway. Studies show that heterogenic
nature of HCC is mostly caused by the variations of mutations and alterations in
expression levels of these key proteins involved in these mentioned signaling pathways
(Moeini et al., 2012).

1.2. PI3K/AKT/mTOR Signaling Pathway

PI3BK/AKT/mTOR is the major signaling pathway in cell cycle. It directly regulates
the expression of proteins involved in protein synthesis, cellular proliferation, survival,
metabolism, and differentiation which all these aspects may contribute to cancer cells
ability to survive and progress. The constitutive activation of PI3K/AKT/mTOR
signaling pathway is frequently observed in liver cancers. Phosphatidylinositol 3-
kinase (PI3K), a serine/threonine protein kinase (Akt) and mammalian target of
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rapamycin (mTOR) are the major proteins in the pathway. The stimulation of these
proteins are characteristically through tyrosine kinases, hormones and mitogenic
factors (Ruggero & Sonenberg, 2005). The PI3K/AKT/mTOR pathway is illustrated
in Figure 4.
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Figure 4: Overview of PI3K/Akt/mTOR signaling pathway. The activation of PI3K (PIK3CA
protein) stimulates conversion of PIP2 to PIP3. PTEN negatively regulates the pathway by
dephosphorylation of PIP3. Phosphorylation and activation of Akt (AKT3 protein) effects.
The network is extracted from the KEGG PI3K/AKT signaling pathway.

Incessant Akt phosphorylation is the key factor for abnormal activation of
PI3BK/AKT/mTOR signaling pathway which is frequently due to inactivating
mutations or loss of heterozygosity in a tumor suppressor protein, Phosphatase and
tensin homolog ( PTEN) antagonizes for Akt activation by dephosphorylating of PIP3,
or mutations activating PIK3CA gene, or damage in the negative-feedback loop from
mTOR signaling pathway (Bae et al., 2007; Buontempo et al., 2011; Engelman, 2009;
Kawamura et al., 1999). When Receptor Tyrosine Kinases (RTKs) or G protein-
coupled receptors (GPCRs) are induced by growth factors, phosphatidylinositol 4,5-
biphosphate (PIP2) to phosphatidylinositol 3.,4,5-triphosphate (PIP3) conversion
occurs at the cell membrane by class IA and class IB PI3Ks. This conversion presents
docking sites for phosphoinositide-dependent kinase 1 (PDK1) and phosphoinositide-
dependent kinase 2 (PDK2) which one by one will activate Akt (Fujimoto et al., 2012).



mTOR kinase can connect to both PI3K/AKT and Raf/MEK/ERK signaling pathways
through RAS. mTOR is found in two forms: as mTORC1 or mTORC?2, but PI3K and
MAPK signaling pathways control mTORCI1 through phosphorylation of TSC2.
Which in turn targets p70S6K leading to decrease of insulin signaling for PI3K,
forming a negative feedback loop (Villanueva et al., 2008). Akt protein has several
downstream effects like activating CREB and mTOR, inhibiting p27, localizing
forkhead box O (FOXO) to cytoplasm. mTOR is a key protein in PI3K/Akt/mTOR
signaling since it acts on both upstream and downstream of Akt. mTOR regulates the
protein synthesis of the key molecules necessary for cell growth, proliferation, and
angiogenesis. Akt induces cell survival through positive regulation of IkB kinase
which is the master regulator of NF-kB cells (Porta et al., 2014). Akt promotes cell
survival by avoiding proapoptotic signals from BAD and BAX. Akt expression also
phosphorylates MDM2 which upsets p53-mediated apoptosis and GSK-a having role
in gluconeogenesis controlling cellular energy. (A Villanueva & Llovet, 2013)

1.2.1. PI3K Kinase Classes

Phosphatidylinositol 3-kinases (PI3Ks) are from a family of lipid kinases. They
phosphorylate PtdIns lipids to PIP3 second messengers on the cell membrane. They
are the main catalyzers of the PI3K/AKT/mTOR signaling pathway. In the family there
are three classes which are differentiated through their coding genes, structures, and
substrate preferences structures (Vanhaesebroeck et al., 2010). Among them, class |
PI3KSs are the most studied type because of their fundamental functions. It is a unique
ability of class I PI3Ks to catalyze the phosphorylation of PIP2 to PIP3. Class Ia
Phosphatidylinositol 3-kinase (PI3K) are heterodimeric lipid kinases. The studies
found that increased levels of PIP3 is also related to carcinogenesis and hence rather
than class II and class III PI3Ks, specifically class I PI3Ks are related to cancer
development as only class I generates a substrate for PTEN (Fruman & Rommel,
2014; Jia et al.,, 2008). PTEN is frequently lost in many cancer types leading
constitutive activation of PI3K (Suzuki et al., 1998).

Two of Class I members of PI3K have heterodimeric subunits of pl110 and p85
regulatory subunits respectively, Class IA p110-a and Class IB p110-f are well studied
enzymes in cancer. PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha) gene encoded PI3K isoform pll10a is activated through receptor
tyrosine kinases (RTKs) and RAS oncogene, mutations in these proteins mostly
regulates growth, metabolism, and angiogenesis (Zhao & Vogt, 2010).

The other PI3K isoform p110p (encoded from PIK3CB gene) is regulated exclusively
by G protein-coupled receptors (GPCRs) and has critical functions in inflammatory
cells (He et al., 2015). They show that PTEN-negative cancers, p110- is very critical.
PTEN:-lost cells depend on p110-f activity for proliferation. In an animal model of
prostate tumor epithelium, PTEN-negative cells showed a diminished tumorigenesis
through decreased Akt phosphorylation with inhibition of p110-f but not by p110-a
(Berenjeno et al., 2012).



On the other hand, in another study, they show that the main PI3K activity is on to
p110-B inhibitor when PTEN is mutated. p110-f inhibitory treatment results with an
increased activity of PI3K signaling in PTEN-deficient models of prostate cancer,
probably through a feedback inhibition through IGF1R causing activation of androgen
receptor kinases and so of isoform p110-a.. Thus, they suggested a combined inhibition
of pl10-a and p110-B isoforms for an efficient tumor regression (Schwartz et al.,
2016). In another study, they also proved unequal steatosis actions of PI3K o and f
isoforms. They observed significantly more liver lipid accumulation in knockout of
p110-a than p110-B in high-fat-diet fed (HFD-fed) mice. They conclude that, PI3K
p110-a incite steatosis possibly through one of three ways; atypical protein kinase C
activation, inducing lipogenesis, promoting fatty acid uptake from the blood
(Chattopadhyay et al., 2011). Therefore, those multiple studies shows that the actions
of the p110-a and p110-B isoforms are variable by the cell content and cellular
mechanism.

1.3. Current therapies for HCC

The options for Hepatocellular cancer (HCC) treatments are curative resection of the
tumor cells, liver transplantation from a health donor, radiofrequency ablation (RFA),
trans-arterial chemoembolization (TACE) and systemic targeted agents like sorafenib
or Regorafenib (Raza & Sood, 2014).

Treatment alternatives for HCC heavily depend on the stage of the tumor, the reserve
of the optimal liver function and in general patient performance. Depending on the
patient’s compatibility, liver transplantation or surgical resection of the tumor are the
only options if the patient is in early stages of the cancer. However, even if the surgical
operations are successful in first side, regeneration of the carcinoma cells is common,
and transplantation is restricted by liver obtainability. Moreover, when the patient is
not compatible to surgical resection due to late diagnosis or advanced stages of medical
treatment, chemotherapy and radiotherapy are the other systematic treatment options,
yet they are generally ineffective since the majority of HCC cases are noticed in
advanced stages (Llovet et al., 2012; Omata et al., 2010).

Advanced molecular studies in HCC have found interpenetrating actions in various
signaling pathways and some novel proteins representing key targets for new
molecular therapeutic options. Yet, for now, Sorafenib and recently approved drug
Regorafenib are the only targeted agents to cure HCC.

1.3.1. Sorafenib Inhibitor

For the patients whose major treatment options are not promising, Sorafenib (Nexavar,
BAY43-9006) is accepted as the standard systemic treatment for staged HCC (Llovet
et al., 2012). Unfortunately, Sorafenib treatment improves the patient survival rate
only by 2.5 months (Cheng et al., 2009). The main reason behind the ineffectiveness
of Sorafenib is the fact that RAS oncogene, which is the main target of this drug, is
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frequently mutated establishing an ineffective docking site to the inhibitor (Llovet,
Ricci, et al., 2008).

While surveying on the effect of new therapeutic agents like sunitinib, linifanib,
erlotinib, linifanib, evorolimus and brivanib to HCC continue in phase II and phase
111, they do not indicate any survival benefit. The reasons for phase II and phase III
failure in HCC have been examined. The main reasons for unsuccessfulness of these
drugs is the heterogenic nature of HCC and cross talks between the major signaling
pathways having role on growth, angiogenesis, progression and apoptosis and lack of
information on the major drivers for tumor progression (Llovet & Hernandez-Gea,
2014). Moreover, as the signaling pathways involved in major life processes are
redundant, they compensate each other through some key molecular regulations, when
drivers of a hyperactive pathway are inhibited. Which makes the signaling pathways
with superfluous functions due to the potential cross-talks between them, which could
be a reason for the ineffectiveness of these multi-kinase inhibitors (Moeini et al.,
2012).

For patients who developed tolerance to Sorafenib or failed to get benefit of it,
Regorafenib (Bayer, BAY73-4506) is replaced by Sorafenib. Regarding the fact that,
like Sorafenib, Regorafenib is also a multi-kinase inhibitor (Personeni et al. , 2018)
and proposing the same treatment strategy. According to the clinical trials, the median
survival rate of Regorafenib is only 10.5 months. Thus, it also failed to benefit for
overall survival (Bruix et al., 2017).

Hopefully, other than multi-kinase inhibitors, there are also several inhibitors targeting
PI3K/AKT/mTOR pathway such as, PI3K inhibitors, dual PI3K/mTOR pathway
inhibitors, mTOR inhibitors and AKT inhibitors. Now, these inhibitors are in clinical
development with potential therapeutically effect (Rodon et al., 2013). The chemical
structures of the drug agents; Sorafenib, PIK-75 and TGX-221 studied in this thesis
are represented in Figure 5.
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Figure 5: Chemical structures of multi-kinase inhibitor Sorafenib, and of p110a. and p110f3
mhibitors PIK-75 and TGX-221. Sources: Sorafenib PubChem ID is 216239, PIK-75
PubChem ID is 10275789 and TGX-221 PubChem ID is 9907093.

1.3.2. PIK-75 and TGX-221 Inhibitors

One of main components of PI3K/AKT/mTOR pathway is PI3Ks. The PI3Ks family
compose four class. Among the members, class [ PI3Ks are able to activate AKT.
They are heterodimeric lipid kinases composed of p110 catalytic subunits and p85
regulatory subunits (Fruman & Rommel, 2014). PIK-75 is a p110a inhibitor,
reducing cell survival by decreasing mitochondrial activity shown previously in
ASM cells and lung fibroblasts. TGX-221 is a p1 10 inhibitor, partially inhibiting
platelet-ECC interaction, aggregation, and granule binding in the ECC model.

Previously, the effects of p110a and p110f inhibitors to Huh7 and Mahlavu cell
lines were studied globally at CANSYL laboratory, METU. According to the
experimental results, PIK-75 was very effective to inhibit cellular growth and reduce
migration in both cell lines while TGX-221 was not effective at all. Furthermore, in
this study, single Sorafenib and its combinational effects with p110a and p11083
inhibitors were also considered. It was found that while combinational therapy of
PIK-75 and Sorafenib significantly reduces cellular proliferation in Huh7 and
Mahlavu, addition of TGX-221 to Sorafenib treatment attenuates cellular growth
antagonizing Sorafenib action. Yet, the molecular action underlying this has not been
revealed in that study (Ersahin, 2014).

1.3.3. Combinational Therapy

As discussed before, it is now clear that one drug targeting to one receptor is not an
effective way for considering the redundancy in the signaling pathways (Maggiora,
2011). Heterogenic nature of HCC allows for cross-talks between the main signaling
pathways and generally inhibition of just one super-active component not enough to
retain normal functions of the cell (Llovet & Hernandez-Gea, 2014). Instead of using
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single drug targets, as shown in the CANSYL laboratory, combinational targeted
therapies can increase the efficiency of the existing drugs and a synergistic effect can
be gained through combination of the multi-kinase inhibitor Sorafenib with other anti-
angiogenic or anti-proliferative inhibitory molecules (Ersahin, 2014).

Recently, new therapeutic methods have been started to use combinations of inhibitory
agents targeting PI3K/AKT/mTOR pathway like Sorafenib with other anti-angiogenic
and anti-proliferative agents. For now, combinations of Sorafenib to Brivanib or
Erlotinib did not exceed the survival level provided by single Sorafenib treatment (W.
Sun & Cabrera, 2018). But in a more recent study, they show that the combinational
therapy of bevacizumab targeting VEGF and atezolizumab targeting directly to an
immune checkpoint protein managed to show superior survival rate than classical
treatment of Sorafenib (Ray, 2020).

In HCC, gain of function mutations, oncogene activations or overexpression of growth
factors activates Ras/MEK/ERK and PI3K/AKT/mTOR pathways. Components of
these pathways are having an active role in gaining resistance to the targeted therapies.
That is why these two pathways are the major targets for co-inhibition-based
combinational therapies. Therefore, in the light of previously discussed studies, more
combinations might be worth trying.

1.3.4. Drug Repurposing

Using the old known drugs for therapy of new diseases for unexplored medical uses
called as drug repurposing (or drug repositioning and drug reprofiling) is a former
method but it is gaining a great attraction in recent years again. Drug development
process is complex, costly, lengthy, and often not successful because of various
reasons (Talevi & Bellera, 2020). Frequently, animal models might not be coherent to
the target disease and drug mechanism. Therefore, new clinical applications of the
existing drugs instead of novel drug search approaches would be more practical. A
great amount time is also be preserved since the long clinical trials would be skipped
since it is already approved for use in humans. The other advantage of using a known
drug would be the fact that there could be so much studies on that the molecular
mechanism of it should be already known (Shim & Liu, 2014).

1.4. A Survey on the Methods Used for Conventional Drug Target Studies

Considering the failure of present drugs to eliminate cancer cells in Hepatocellular
carcinoma (HCC), identification of novel drug-target connections could be an pivotal
step for HCC therapy (Llovet et al., 2012). Currently, the discovery of drug targets
against cancer mostly focuses on molecular agents with aberrant functions in
regulatory signaling pathways. Experimental investigation of a single gene or locus is
costly and time consuming while the only benefit of them is exploration of a new
oncogene. Frequently, study of a single gene fails to satisfy the need of solving the
complex interactions of its pathogenesis. Actually, the network of cancer invasion,
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progress and growth is multifaceted due to interlaced regulatory signaling pathways
and the connections of key or hub oncogenic proteins (Medina-Franco et al., 2013).
New emerging computational methods can facilitate the work. Hence, rather than
traditional experimental methods, new computational techniques should be used to
find novel drug target relationships.

High throughput data like genomic, epigenetic, transcriptomic, or proteomic all
together made it possible to study complex molecular mechanisms for drug discovery.
Following the rise of high throughput genomic technologies, several studies using
array or sequencing based methods enabled more comprehensive molecular profiling
of HCC. Bioinformatic analysis of the high throughput data would not only accelerate
immediate drug target identification, candidate searching or eliminating false positives
but also it can provide a broad range search to understand the mechanism of the effects
and even to understand side effects of the drugs or cancer recurrence mechanism
(Paolini et al., 2006). Furthermore, the only benefit of high-capacity technologies is
not only scanning a broad range of samples simultaneously, but the major advantage
of them is to group and compare these gene profiles to find disease-causing elements.
Recently, using RNA sequencing techniques to analyze the whole transcriptome of
HCC cells has become very popular. As usage of RNA-seq became prevalent,
downstream analysis methods started to range, and the demand for variety methods is
needed.

1.4.1. RNA Sequencing

Currently, instead of concentrating on just a single molecule, it is common to use next
generation sequencing techniques to profile the whole transcriptome of the cell
comparing the normal versus the conditional (treatment) status. Concordantly, a set of
genes affected though the treatments can be discovered for further study. RNA
sequencing is one of the most used high capacity methods for rapid and reliable gene
expression profiling (Chu & Corey, 2012).

RNA-seq application is very easy and straightforward. The steps of the RNA-seq
analysis workflow are described in Figure 6: First, an appropriate experimental design
including negative controls are conducted. Since the structure of the transcriptome
studies, gene expression level is not countable itself, and so it requires comparative
analysis. It is necessary to match every treatment sample to its control. The results of
the RNA sequencing experiment are transferred into computational language by the
FASTQ files. Besides the reads, FASTQ file also contains quality degrees of each
base. After quality checks and refinements are performed, the next step is alignment
of the reads to the reference genome and quantification of the reads aligned to the
genes. One classical way of alignment and gene counting is done by TopHat (Trapnell
et al., 2009) with Bowtie. The other methods are GSNAP (Wu and Nacu, 2010),
MapSplice (Wang et al. 2010a), RUM (Grant et al. 2011), and STAR (Dobin et al.
2013). For quantification of the genes or transcripts, assembled reads to the reference
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genome are counted. Cufflinks (Trapnell et al. 2010) and HTSeq-count (Anders et
al., 2015) algorithms are the most commonly used quantification tools.

Generally, the next step for RNA-seq analysis is performing differential expression
analysis. RNA-seq is frequently used to compare gene expression levels between two
conditions like drug treated sample vs mock or untreated control and identify up and
downregulated genes for each condition (Kukurba & Montgomery, 2015). Two of the
most commonly used tools for this analysis are both from Bioconductor R using a
model based on negative binomial distribution; DESeq (Robles et al., 2012) and edgeR
(Robinson et al., 2009) packages. Generally, they are preferred to each other for their
unique functions. For example, edgeR packages preserve some functions for non-
replicated RNA-seq analysis and would be beneficial for the analysis in a condition if
RNA-seq is high-quality.

In order to understand biological importance and functional relevancies between
differential expressed genes, a variety of tertiary analysis can be performed. One way
to associate these genes to their biological processes, functions or cellular components
is to implement a gene set enrichment analysis (GSEA). There are a lot of methods for
this analysis; the most common ones are Enrichr (Kuleshov et al., 2016), DAVID
(Dennis Jr. et al., 2003) and FunRich (Pathan et al., 2015). As a result of GSEA
analysis significant gene enrichments can be viewed and linked to altered cellular
functions. Another approach to link differentially expressed genes could be using
pathway analysis. The genes acting together on a cellular pathway can be observed
though mapping them with expression levels. By this way, which signaling pathways
are mostly affected by pathogenesis of a gene can be detected. In order to do that,
KEGG (Kanehisa & Goto, 2000) and BioGRID (Stark et al., 2006) tools are the most
popular online databases. Their wide range of sources includes whole pathways that
provide a compressive way of gene signaling.
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Figure 6: RNA-seq analysis workflow. The first step of RNA-seq analysis is to implement
quality control. Then basing a reference genome alignment and mapping of the reads generates
a BAM file. A sorted BAM file can be used to count genomics features using gene annotations
or a transcriptome. Afterwards, comparing to a negative control, normalization of the counts
and differential expression analysis is performed. Finally, resulting up or down regulated
genes can be used for several tertiary analysis.

1.4.2. Protein-Protein Interaction Databases

The complex cellular metabolism regulation consist of a multifaceted network or
pathway of proteins working together (Lander et al., 2001). Proteins form different
types of interactions to make cellular processes. Therefore, to understand biological
function of a cellular pathway, as well as acting proteins, their interactions also should
be well characterized.

In order to detect protein-protein interactions (PPIs), experimental methods like yeast
two hybrid (Y2H) (Ito et al., 2001), affinity purification (Rigaut et al., 1999), x-ray
crystallography (Tong et al., 2001), NMR spectroscopy (Tong et al., 2001) or
fluorescence resonance energy transfer (FRED) (Yan & Marriott, 2003) need to be
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used. However, these assays are not high-throughput, time-dependent, and costly.
Design of a single experiment can only cover a small number of interactions.
Consequently, for a systemic analysis of transcriptome, these previous efforts should
be well conserved and linked.

There is a wide source of publicly available PPI databases covering these experimental
data to be used in network modeling. The Database of Interacting Proteins (DIP)
(Xenarios et al., 2002), Molecular Interaction Database (MINT) (Chatr-aryamontri et
al., 2007), The Biomolecular Interaction Network Database (BIND) (Bader et al.,
2003), The Human Metabolome Database (HMDB) (Wishart et al., 2012), STITCH
(Kuhn et al., 2013), Reactome (Fabregat et al., 2018), Kyoto Enclopedia of Genes and
Genomes (KEGG) (Kanehisa & Goto, 2000), iRefWeb (Turner et al., 2010), STRING
(Szklarczyk et al., 2015) are some of them.

DIP and MINT are two databases to catalogue experimentally determined PPIs.
Besides the experimentally validated PPIs, different from these two, BIND curates
interactions using PubMed records. The process is performed with scientists. Thus,
these databases can be very useful to get the most reliable interaction data. HMDB is
a collection of human metabolites and provides interactions of small metabolites like
peptides, lipids, amino acids, nucleic acids, organics acids, vitamins, minerals, drugs,
and toxins. STITCH is a database for protein to chemical interactions underlying many
cellular signaling pathways. The database consists of experimental and manually
curated verifications. Reactome and KEGG are two services providing a search base
for a systematic analysis of gene-to-gene functions and the cellular pathways the genes
have role on. For each gene, genomic information, annotations, and pathways are
provided through the datasets. iRefWeb provides a method to generate “keys” to give
protein interactions using publicly available sources. This method provides an
alternative understanding and many groupings to the original database sources.
iRefWeb includes many levels of evidence ready to be query. STRING provides
protein-protein interaction (PPI) interaction proofs, and the interpretations of them are
used to level the confidence of the protein interactions. Conserved neighborhood, co-
occurrence, fusion information, co-expression, experiment, other databases, and text
mining methods construct the baseline of the proofs. The evidence was collected for
each protein interaction and used to calculate a confidence score. There are four
confidence levels provided by the tool: low confidence (0.15 and above), medium
confidence (0.4 and above), high confidence (0.7 and above) and the highest
confidence (0.9 and above). Using high confidences will restrict the number of
interactions to a more confident level since the provided experimental proofs become
more accurate.

1.4.3. Protein-Protein Interaction Prediction

Since experimental methods for PPI are very expensive and time-consuming, there is
a huge demand for computational methods for accurate prediction of PPIs.
Combination of structural and evolutionary information on proteins and usage of
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bioinformatic methods to predict their interactions makeup the basis of PPI prediction.
Phylogenetic profiling, prediction of protein coevolution, conserved gene
neighborhood, gene fusion and identification of structural protein binding patterns are
the most used methods for PPI predictions.

Prediction Server for Protein-Protein Interactions (PSOPIA) is a tool for predicting
PPI using sequence similarities, statistical propensities, and homologous protein
distances. Protein Link Explorer (PLEX) (Date & Marcotte, 2005) uses phylogenetic
profile to identify functionally linked proteins. Database of Ligand-Receptor Partners
(DLRP) (Graeber & Eisenberg, 2001) is an effort of DIP in order to get protein ligand
and receptor connections. Moreover, for computational modeling and analysis of
protein structures as well as interaction predictions PrePPI algorithms are commonly
used (Q. C. Zhang et al., 2012). PRISM is also a very useful prediction tool using
protein structure and sequence conservation in protein binding sites together (Aytuna
et al., 2005).

1.4.4. Network/Pathway Analysis

Especially following the emergence of next-generation sequencing technologies,
generation of high-throughput measurements of molecular changes in the cell is wide.
As these quantitative analyses provide comprehensive analysis, the functions, and
processes active in the cells can be visualized globally. While transcriptomics has
arisen as a prevailing approach to observe global changes, it has its own limitations.
For example, a time dependent RNA-seq analysis can reveal expression patterns of
genes yet cannot specify the exact pathways driving the gene. In order to link
transcription factors to those gene patters, ChIP-seq analysis should be provided.
ChIP-seq is a very well-known method to understand the mechanism between the
transcription factors (and other regulatory factors) and gene expression.

Considering the complexity of the cellular mechanism, no single analysis set can cover
the levels of functions the cell has role on. Hence, multiple levels of methods should
be applied to solve sophisticated mechanisms of cellular systems. Besides, these
different next-generation applications generate many levels of information, each
dataset will bring its own analysis necessities. Therefore, joint analysis of these data
requires new computational approaches of investigation too.

Recently, network modeling approaches are proposed to solve collective problems of
biological data. Network modeling requires a set of interactome, which is available
through public databases like STRING or iRefWeb. Previous experimental analysis
generally stored in biological databases generates a huge source. The interactome data
construct the backbone of network analysis. Unfortunately, since the biological
databases used to construct interactome data generally composed of user generated
data, and so the network includes millions of connections (Fabregat et al., 2018;
Kanehisa & Goto, 2000; Kuhn et al., 2013; Razick et al., 2008; Wishart et al., 2012).
It is a tremendous amount of data to be searched in. Moreover, generally as some of
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the genes become hot topic of study, it attracts more people to work on them which
eventually generates too many connections for this gene in the network. Dense
networks ultimately become “hairballs” and too much studied nodes bring bias to the
network. These two challenges form a basis for generated network analysis models.

1.4.5. Visualization of the Biological Networks

Biological networks are the basic representations of the molecules like proteins or
genes. Visualizations of the biological networks or pathways can be achieved through
various drawing tools like OmicsNet (Zhou & Xia, 2018), NAVIGaTOR (Brown et
al., 2009), Osprey (Breitkreutz et al., 2003), Cytoscape (Shannon et al., 2003) and
Arena3D (Pavlopoulos et al., 2008). These tools perform both mapping of the genes
or proteins to the nodes, visualize the connections and provide statistical or topological
analysis. The most obvious advantage using such a tool is to shape the interactome
data as optimal to the needs of the analysis. For example, the researcher may change
the color and size of the nodes according to the significance of the genes or group the
nodes according to a specific function in a very fast and organized way.

From the visualization tools, Cystoscope is one the most popular ones for biological
network analysis. It is an open-source tool and a platform for a set of other applications
(also called as plugins) developed by world-wide users. Its collection includes
applications providing scalable analysis for annotation, clustering, enrichment, and
topological analysis.

1.4.6. The Systems Biology Approach

Collecting many levels of cellular data like transcriptome, proteome and metabolome
from the same organism makes possible the use of network-oriented research. The aim
of the systems biology approach is to understand these multi-layer biological networks
through design and application of experiments and data analysis. Mathematical models
are used to characterize biological systems and to predict cellular responses to the
aberrant functions (Kitano, 2002). Quantitative whole-cell measurements form the
major network components. The most attractive way of systems approach is to use
these measurements to conduct networks and then use these networks for analysis of
other cellular measurements or experiments. This approach is called top-down
modeling, an application of reverse engineering (Kholodenko et al., 2002).

Considering the complex molecular networks responsible for cancer maturity and
progressions, the research focused on the use of systems biology approaches to
understand molecular networks altered by malignant transformation. Cancer systems
biology studies incorporate cellular signaling pathways critical for cancer initiation,
development, malignancy, and metastasis. Most importantly, targeted therapy
opportunities can be widened using this approach and novel drugs can be found for
clinical research (Werner et al., 2014).
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Atlas of Cancer Signaling Network (ACSN) is a very powerful resource for usage of
cancer systems biology analysis. Using Google Maps engine, it utilizes tools for
analysis and visualizations of cancer signaling networks. The cell signaling
mechanisms frequently disrupted in tumorigenesis, called as Hallmarks of Cancer, are
formed as “geographic-like map” enabling zoom-in functions (Kuperstein et al., 2015).
Besides, KEGG, and Reactome databases can be also useful for cancer signaling
analysis pathways.

1.4.7. Omics Integrator

In order to perform an integrated analysis of proteomic, gene expression and epigenetic
data and connect them through a protein-protein interaction (PPI) network, Omics
Integrator software (Tuncbag et al., 2013) can be used. This package uses Prize
Collecting Steiner Tree (PCST) solution to integrate high-throughput data to PPI
network. There are two modules of Omics Integrator called Garnet and Forest
performing a joint analysis of RNA-seq and ChIP-seq data.

Omics Integrator uses user defined high-throughput data like gene expressions or
transcription factor affinities as prices. The interactome, like PPI network, is used to
calculate edge costs as the prize nodes being traveled. As the edge cost gets higher it
is less likely to be visited by the algorithm. By this way, all the prize nodes, the input
data, will be collected. Ultimately, the least costly solution will be selected as the
optimal network. The same group who developed the software was used this approach
to model patient specific pathways in Glioblastome. They used tumor specific
phosphoproteomic data and human interactome to construct disease modulated
networks. They also developed a unique strategy to select targets for clinical research
(Tuncbag, Milani, et al., 2016).

In 2017, Steiner prize collecting approach was used to generate a “humanized”
network from known gene interactions found in yeast on the toxicity of synuclein
(alpha-syn) protein. This way, the genes linked to Parkinson’s disease mapped to the
human network and thus pathogenetic genes in patient driven transcriptome are
estimated and druggable network components (proteins) were elucidated (Khurana et
al., 2017). In a multidisciplinary study examining the Huntington Disease metabolism
in induced pluripotent stem cells (IPSCs) using Omics Integrator they found that ATP
level is ablated in stem cells compared to differentiated cell while mitochondrial-
related mRNA expression is balanced or upregulated in them (The HD iPSC
Consortium, 2020).

In another study, Omics Integrator was used as a part of a toolkit for identification of
therapeutic components with unknown or novel modes of actions (MoAs). In that
interesting study, they examine the drugs found to be somehow beneficial in
Huntington’s Disease and group them with the same functions. Finally, autophagy
activation is correlated with antihistamine effects of the drugs (Patel-Murray et al.,
2020).

19



In conclusion, these previous studies state that in order to discover the dysregulation
patterns of the diseases and to propose new drug targets, PCST algorithm through a
simultaneous reconstruction of the molecular pathways is very useful.

1.4.7.1.  Prize Collecting Steiner Tree (PCST) algorithm

The base of the Omics Integrator is the Prize Collecting Steiner Tree (PCST)
algorithm. The function of the PCST algorithm is to find an optimal tree using a
reference network. The function travels through the reference network, including the
terminal nodes with prizes travelling through the interactome nodes which have costs
of edges on condition if included. The terminal nodes are the ones given to the function
to connect with and edges are network links containing the cost of travel. The task is
to find shortest paths between the prize nodes avoiding the costs on the edges. The
algorithm minimizes the cost of all edges by walking on prize nodes as much as
possible. An example showing how the PCST working is represented in Figure 7.

Through the investigation stage for the terminal list, since the magnitude of the sets
differs, various types of forests (in various complexity including one or more trees)
can be generated. Hence, the parameters depend highly on the distribution of prizes
and numbers of the nodes.

The whole function:

Equation 1: PCST algorithm

F(F)=Xp'(v)+ Xe(e)tox

vEVF eeEF

p'(v)=B *p(v)- p *degree(v)

Here, p(v) is the prize of a node, c(e) is the cost of edge functions. B, o, k, and p are
normalizing factors. In order to construct meaningful trees from the input terminal
lists, the normalizing factors must be fine-tuned.

o is the cost of starting with a new tree controlling the number of trees in the forest.
As o gets smaller there will be more trees. B parameter controls the hubs in the
network. Higher B value attenuates more hubs in the network and generates bigger
networks. p value also controls hubs in the network. To escape from a potential hub
bias, reasoning if it is highly studied or has the greatest degree in the network, p value
competes against the degree of the nodes in the interactome. As p increases, a smaller

20



number of hubs are dominated in the forest. When p is zero, the control is cancelled.
D is the last parameter which adjusts the depth of the tree.

Prizes of terminals Black Scores: Prices
b o
Red Scores: Costs
b 34
c 25 Total Cost:
f 3.1 0.140.940.4+0.7+40.143.1=5.3
Reference interactome contains costs t

Figure 7: An example representation to show how the PCST algorithm performs its
calculation. Grey interactome nodes with blue edges and red cost scores construct the
backbone of the analysis. Given a set of terminal nodes, prizes are mapped into the interactome
and connected through the shortest paths. Then the cost is calculated by summarizing the costs
and prizes which if it is not able to be connected.

1.5. Preliminary Experimental Analysis at CANSYL

The experimental analysis investigating the PI3K isoform specific inhibition of the
HCC cells on PTEN context was performed at CANSYL laboratory (METU)
previously.

1.5.1. Molecular and Cellular Characterization of HCC in the Presence
of Small Molecule Isoform Spesific PI3K Inhibitors

The expression levels and the phosphorylation status of key proteins in
PI3K/Akt/mTOR and RAF/MEK/ERK signaling pathways were reported by our
group, and in correlation with their PTEN status, Mahlavu cells display hyper-
activated cell survival proteins (Durmaz et al., 2016).
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Figure 8. Characterization of HCC cells in the presence of small molecules inhibitors.
Realtime cell growth analysis of Huh7 and Mahlavu cells with increasing concentrations
(40puM, 20uM, 10uM, SuM, 2.5uM) of Sorafenib, PI3K inhibitor L.Y294002, PI3Ki-$
inhibitor (TGX-22) and PI3Ki-a (1uM, 0.5uM, 0.25uM, 0.125uM, 0.0625uM) PI3Ki-a (PIK-
75) along with DMSO vehicle control (Control is black and increasing drug concentrations is
given in grey level, highest concentration is being the darkest) A. Cell cycle analysis with flow
cytometry. Sub-Glpopulation represents apoptotic cells B). Wound healing assay for 24 and
48 hours for cell migration. C. 10uM of Sorafenib, LY294002 and PI3Ki-f (TGX-221) and
0.1uM of PI3Ki-a (PIK-75) were used for cell cycle and migration assays (Narci et al., 2021).

Initially, Sorafenib, LY294002, PI3K inhibitor p110a subunit specific (PIK-75) and
PI3K inhibitor p110-B subunit specific (TGX-221) were assessed for their cytotoxic
bioactivity and their effect on cell cycle progression with Huh7 and Mahlavu (Figure
8A or Figure 39). G1, S and G2/M cell cycle phases were analyzed separately to
calculate viable cell distributions among them (Figure 8B or Figure 40). Sub-Gl
percentage demonstrating apoptotic cells were also calculated. Cell cycle distribution
remain stable for both cell lines and all inhibitor treatments. In both cell lines,
Sorafenib and PIK-75 treatments showed stimulation of apoptosis through increase in
sub-G1 population. In Huh7, Sorafenib was more active while PIK-75 functioned more
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in Mahlavu cells which was more aggressive than Huh7 cell line by PTEN-loss based
hyper-active Akt stimulation.

1.5.2. Migration Analysis of the Inhibitors

In order to analyze the effects of selected inhibitors on cell migration, wound-healing
assay was performed. The percentages of wound closures after 48 hours of initial
scratch were calculated for Huh7 and Mahlavu. It was observed that Sorafenib and
PIK-75 reduced migration significantly (p <0.001) in both Huh7 and Mahlavu (Figure
8C or Figure 41).

1.5.3. Synergistic cytotoxicity analysis

Since none of the treatments alone was fully effective to inhibit growth and stimulate
apoptosis, the value of co-treatments of Sorafenib with PIK-75 and TGX-221 through
real-time cell growth analysis (Figure 8C or Figure 41) were addressed. A synergistic
effect of Sorafenib and PIK-75 treatments was observed on growth of both cell lines.
TGX-221+ Sorafenib combinatory treatment also resulted in synergistic growth
inhibition on Huh7 cell line.

On the other hand, TGX-221 displayed a growth inhibition of Mahlavu, TGX-221 co-
treatment with Sorafenib resulted in an antagonistic effect and stimulated cellular
growth. Furthermore, Sorafenib and PIK-75 treatment had more drastic effect on
Mahlavu compared to Huh7. Therefore, these findings indicate that in PTEN deficient
Mahlavu cells, constitutive activation of PI3K/Akt signaling mainly depend on p110-
o (Narci et al., 2021) (Figure 9 or Figure 42, 43, 44, 45, and 46).
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Figure 9. Real-time cell growth analysis. Human liver cancer cells Huh7 (A,B) and Mahlavu
(MV) (C,D) were treated with the Sorafenib, PI3Ki-a and PI3Ki-f alone or in
combination with increasing concentrations as indicated. Cell index measurements were
obtained by RT-CES software. DMSO was used as negative control A. B. 72 hours of the
percent growth inhibition values were used to calculate drug interactions with The
SynergyFinder web application. Positive delta score reflects synergistic and negative score
reflects antagonistic drug interactions. Experiments were performed in triplicate (Narci et al.,
2021).
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1.6. Motivation and Rationality

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer (Perz et
al., 2006). The disease stages in a multi-step process where it originates from a liver
injury and continues inflammation leads to developing cancerous cells (Farazi &
DePinho, 2006). Often, for patients with HCC the only treatment option is
chemotherapy as the disease can be diagnosed in the late stages where surgical options
are not applicable (Llovet et al., 2012; Omata et al., 2010). Sorafenib (Nexavar,
BAY43-9006) is the only targeted therapy for HCC yet the increase in the survival rate
is not high for the patients and none of the other therapeutic agents can be approved
by FDA (Liu et al., 2009; Llovet, Di Bisceglie, et al., 2008). Hence, there is an open
demand for search of new targeted therapies for patients with HCC in advanced stages.

Acquired resistance and tumor recurrence are major drawbacks that Sorafenib suffers
from. Sorafenib is a multi-kinase inhibitor targeting Raf, VEGFR and PDGFR which
are the main controllers of cell proliferation and angiogenesis signaling pathways. Yet
even these kinases were inhibited, carcinogenesis properties in the cell cannot
completely diminish. Cellular pathways like proliferation, cell cycle, apoptosis,
inflammation, angiogenesis, and migration are all integrated with redundant control of
molecular pathways like Raf/MEK/ERK, PI3K/Akt, mTOR, NF-kB and p53.
Therefore, using a single agent cannot remove the cancer cells completely. On the
other hand, more than one type of kinase inhibitor should be used to avoid cross-talks
and avoid compensation between the signaling pathways.

The discovery of effective agents against HCC was achieved mostly through
identification of aberrant functions and dysregulated proteins from regulatory the
signaling pathways (A Villanueva & Llovet, 2013). Traditionally, research
laboratories focus their work into a single gene or a part of signaling pathway. With
respect to the fact that these analyses are the most valuable evidence of protein
interactions, they cannot solve the complex cancer mechanism as in-vivo techniques
are costly and it takes a lot of time to do a series of analyses. Cancer development is a
conclusion of several aberrant interactions and functions.

Earlier studies found that genomic variations in HCC is high and a wide-ranging
investigation on molecular mechanisms of HCC should be done to fully understand
the multi-stage development underlying behind (Ersahin et al., 2015). Current next
generation analysis techniques assisted these studies to be implemented instantly. For
example, a broad range scan of samples can be performed in hours using Illumina.
Using these high throughput data allows to identify disease related gene profiles by
enhancement of several bioinformatic methods.

In this thesis study, the benefit of high throughput techniques to get gene profiles of
two Hepatocellular carcinoma cells were used. (PI3K/AKT/mTOR targets as it has
been the driving signaling pathway in HCC are especially selected. Sorafenib, multi-
kinase inhibitor, the only FDA approved agent, PI3K-a and PI3K-f inhibitors (PIK-
75 and TGX-221) which targets two isoforms of PI3K were one by one treated to Huh7
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and Mahlavu HCC lines. Furthermore, since single usage of these agents was proved
to be ineffective to HCC, the combinational effect of, Sorafenib and PI3K isoform
inhibitors (PIK-75 and TGX-221) were treated in combination too. Finally, the
treatments with DMSO treated controls (12 in total) were scanned using RNA
sequencing method Figure 10).

There are several bioinformatics tools for RNA-seq data analysis. The classical way
of RNA-seq analysis pipeline includes basic preprocessing of the raw data followed
with the identification of dysregulated genes. Even, the traditional workflow suggests
the enrichment analysis after identification of up and downregulated genes, these
methods only reveal the functional interactions inside the input gene set. A joint
analysis using previous protein interactions may be advantageous for RNA-seq gene
expression data. By this way, filtered or hidden connections between the genes may
be revealed.

In this study, a set of protein-protein interactions from STRING dataset was used as
backbone of gene relationships for Prize Collecting Steiner Tree (Ljubic et al., 2005)
algorithm which is implemented in Omics Integrator software (Tuncbag et al., 2016)
Up and downregulated genes were connected through the backbone network. This
approach provided us to uncover some other gene profiles which either were not highly
dysregulated or lost during RNA-seq analysis steps. By this way, functionally relevant
pathways as trees for each condition were searched through not only with dysregulated
genes, but also other connecting genes with the help of PCST.

Generation of kinase inhibitor treated HCC specific optimal networks allowed us to
create a way to represent molecular events. Cytoscape, a java tool, was provided an
effective visualization of the networks. Network representations were generated using
several Cytoscape plug-ins displaying gene expression levels, interactions,
regulations, processes, and functional and biological enrichments. Furthermore, a
group of genes were identified as potential drug targets for HCC therapy using the
benefit of network topology. Network centrality measures endorsed to select the most
network specific targets while eliminating well studied ones. Overall, this systems
level network approach provided an efficient network comparison to identify unique
and shared gene profiles and functions of different kinds of kinase inhibitor treatments.
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Figure 10: The aim of the study. The overall objective of this study is to find the most effective
inhibitors targeting PI3K/AKT/mTOR signaling pathway to diminish tumor promoting
characteristics like survival, growth, angiogenesis, invasion, and metastasis. Sorafenib and
PI3K class IA and class IB inhibitors PI3K-a (PIK-75) and PI3K-B (TGX-221) are
combinational treatments to analyze synergistic effects of inhibition of PI3K/AKT/mTOR and
RAF signaling pathways.
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CHAPTER 11

MATERIALS AND METHODS

This chapter is divided into two sections as materials and methods. In the materials
chapter, Hepatocellular Carcinoma (HCC) cell lines used in RNA-seq experiment, and
the kinase inhibitors used to treat cell lines are explained. In the methods section,
initially, the workflow followed to perform bioinformatics analysis is explained. The
methods and tools used in RNA-sequencing and network analysis are detailed. The
tools, tool versions, and parameters used in statistical, heatmap and visualization
analysis are described in this chapter. Omics Integrator, network construction tool,
optimization and run parameters are also part of this chapter.

2.1. Materials

HCC cell lines and kinase inhibitors used in this study are explained.

2.1.1. HCC Cell Lines

In this study two types of HCC cell lines were used: Huh7 and Mahlavu. Mahlavu is a
mesenchymal-like, undifferentiated, very aggressive type of HCC where no tumor
suppressor protein, PTEN expression is seen. PTEN protein antagonizes for Akt
activation through ensuring dephosphorylation of PIP3. When there is no PTEN
expression, Akt protein is constitutively expressed as like its downstream proteins
(Schwartz et al., 2016). A previous study (Buontempo et al., 2011) proved that besides
overexpression of proteins in the AKT pathway, the RAF/ERK signaling pathway is
also hyperactive in Mahlavu cells (Figure 11).

Unlike poorly differentiated Mahlavu cells, epithelial-like, tumorigenic Huh-7 cells is
a well differentiated HCC type. As shown in Figure 11, there is PTEN expression
blocking Akt in the usual mechanism and so the downstream proteins of AKT are not
overexpressed.
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Figure 11: Expression and activity of critical components of PI3K/AKT and RAF/MEK/ERK
signaling pathways in Huh7 and Mahlavu (Buontempo et al., 2011) (Copyright 2021).

2.1.2. Kinase Inhibitors

Mahlavu and Huh7 cell lines were treated with the inhibitors which were listed in
Table 1 with their targets. Sorafenib as a multi-kinase inhibitor of RAF and VEGFR
and two isoforms of PI3K class I inhibitors PIK-75 and TGX-221 targeting PI3K were
used. The target proteins of the inhibitors used in the study can be viewed from Figure
12, and AKT is the main downstream protein for all treatments. Sorafenib (Nexavar)
was purchased from Bayer Health-care Pharmaceuticals, Inc., NJ USA, Inhibitors
PIK-75 (cat#528116) and TGX-221(cat#528113) were purchased from Calbiochem.

Towards understanding of the alterations in the signaling pathways of diseased cells
during hepatocarcinogenesis, a global study model was constructed comprising two
HCC cell lines treated with kinase inhibitors alone or in combinations; PIK-75, TGX-
221 and Sorafenib alone treatments and PIK-75 + Sorafenib and TGX-221 + Sorafenib
combinatory treatments. DMSO treatment was used as negative control for both cell
lines. Therefore, for the RNA-seq experiment, cDNA libraries prepared from 2 cell
lines per 5 treatments and 1 control for each in total 12 samples.
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Table 1: Kinase inhibitors used in RNA library construction.

Inhibitor Target

Sorafenib (BAY 43-9006) B-Raf and VEGFR

PI3Ki-a (PI3K alpha inhibitor VIII) P110a isoform of PI3K (class IA)
(PIK-75)

PI3Ki-B (PI3K beta inhibitor VI) P110p isoform of PI3K (class IB)
(TGX-221)

PI2Ki-alpha
PI2Ki-beta

MAPK signaling pathway

CDKN1B

p53 signaling pathway ~NF-kappa B signaling pathway

Figure 12: Schematic representation of the kinase inhibitors used in the study, their
target proteins, and the downstream proteins of their targets.

2.2. Methods

Figure 13 displays the workflow of the methods used in this study. The experimental
design included two HCC cell lines; Huh7 and Mahlavu. These cell lines were treated
with three types of kinase inhibitors, two of their combinations, and DMSO as negative
control as described in the materials section. RNA-seq libraries were prepared from
12 treatment sets and they were sent for sequencing using Illumina Genome Analyzer.
Further RNA-seq analysis as follows; raw data processing using FASTQC, alignment
and mapping using Bowtie with Tophat tools, and differential expression analysis
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using EdgeR. Omics Integrator with the integration of STRING human PPI provided
kinase inhibition modeling of the networks. Topology analysis of the networks
performed with NetworkX. Dendrogram, clustering and enrichment analysis were
executed using several R packages. BINGO tool offered gene enrichment analysis.
Glay was used to cluster network, and ClusterMaker was used to box the clusters.
Cytoscape was the main tool where visualization, clustering and enrichment analysis
performed in. In the following section each process will be explained in further.
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Figure 13: Pipeline summarizing the methods used in this thesis study. RNA-seq
analysis was performed on kinase inhibitor treated Huh7 and Mahlavu cell lines
followed by a network level analysis.

2.2.1. Cell Culture

Mahlavu and Huh7, HCC cell lines were cultured in DMEM medium, supplemented
with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S) and 1% non-
essential amino acids (NEA) and incubated in humidified 37°C incubator with 5%
CO2. The cell maintenance was performed by one of the members of the CANSYL
laboratory.
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2.2.2. RNA Sequencing Analysis

RNA-seq analysis was done through these steps summarized in Figure 14: total RNA
preparation, sequencing, raw file quality control, alignment of the reads to the
reference genome, quality assessment of alignment files, read counting per feature and
differential expression analysis. Commend line of the tools was provided in Appendix
C.

illimuna
FastQ reads
Alignment with TopHat v2.1.0
Mapping with Bowtie v1.1.2
.bam file

Genome Human referans : GRCh38/hg38
Accepted transcripts Quantification by Differential expression analysis by edgeR

HTSeq-count v0.6.1
C—— ! p
) > <>
([C——1 .

Figure 14: Summary of RNA-seq analysis pipeline. Raw FASTQ reads were aligned and
mapped to the human reference genome, accepted transcripts were quantified, and differential
expression analysis was applied sequentially. A part of this figure taken from edgeR
publication (Robinson et al., 2009) and illumina distributed the figures publicly.

2.2.3. Preparation and Sequencing of Total RNAs

Total RNA was isolated with NucleoSpin RNA II Kit (Macherey-Nagel) according to
the manufacturer’s protocol (MN, Duren, Germany) in CANSYL previously. The
protocol was applied with small modifications such as 30 min of DNA digestion
instead of 15min and 2-step elution with 20l water instead of one elution with 60ul.
RNA concentration was measured with NanoDrop and A260/A280, A260/A230 ratios
were checked for RNA quality and purity. Total RNAs were provided to BGI Tech
(https://en.genomics.cn/) for sequencing. RIN values were acquired from the Agilent
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Bioanalyzer system, and they were above 0.8 for all samples. 12 total RNA samples
were sequenced by Illumina Genome Analyzer in a sequencing center.

2.2.4. Quality Assessment of Raw Files

RNA reads were processed by Illumina Hiseq 2000 (SE50). RNA sequencing by
[llumina Genome Analyzer generates output sequencing files in FASTQ format.
Besides the raw sequences, this format also stores quality scores per base. For a proper
and significant alignment of the sequences, technical errors should be eliminated. It is
necessary to remove low-quality bases and duplicates and clean the remaining
adaptors.

In this study, 12 FASTQ files were first assessed through the FASTQC (Andrews,
2010) tool for quality control. FASTQC is a well-known quality assessment tool
developed by Babraham Bioinformatics for FASTQ formatted data. FASTQC tool
generates quality reports evaluating per base and per tile sequence quality, per base
and sequence content, GC content, sequence length distribution, duplication level,
overrepresented sequences, and adapter content. In order to clean FASTQC data,
second party applications like Cutadapt (Compeau et al., 2013) must be used, after a
careful analysis of FASTQC reports.

2.2.5. Alignment

Since the quality of RNA-seq of all FASTQ were outperforming by the per base and
sequence quality, in this analysis there was no need for a trimming step. Single-end
reads were aligned to the reference human genome (GRCh38/hg38) using a split read
aligner algorithm TopHat V2.1.0 (Trapnell et al., 2009). TopHat is a frequently used
splice junction mapper for RNA-seq reads. Given a reference genome, it can read and
align high throughput short reads. TopHat itself features an ultrafast mapper Bowtie
(v2.2.6) algorithm for alignment and analyses the mapped reads to detect exome-intron
junctions.

TopHat generates a list of files containing mapped and unmapped reads separately in
BAM and SAM formats with indexes and insertion, deletion, and junction files in txt
formatted BED files.

2.2.6. Alignment Quality

The quality of alignment files assessed using a JAVA based tool
CollectAlignmentSummaryMetrics from Picard (Broad Institute, 2018). The tool
processes a SAM or BAM file input and as output produces a number of read quality
metrics like the number of high-quality reads, read lengths, number of noise reads, bad
cycles, strand balance and mismatches.
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2.2.7. Quantification

The number of mapped reads to the genome was counted using HTSeq-count v0.6.1
(Anders et al., 2015) tool. Given aligned sequencing reads with a file with genomic
feature list, HTSeq-count quantifies the reads map per features. For quantification
analysis, human gene split regions (GRCh38 v84) in a GTF file format was used to
count how many transcripts map to each gene, generating a gene level count matrix.

2.2.8. Differential Expression Analysis

EdgeR (Robinson et al., 2009), a Bioconductor package, is a widely used method for
differential expression analysis. EdgeR constructs a negative binomial model based on
empirical Bayes estimates, exact test or linear models using the RNA count data.

Normally, edgeR requires biological replicates in order to estimate biological variation
inside the samples. In this experimental design, there were no biological replicates of
the samples to inherit the in-sample variation. EdgeR solves the no-replication
problem by suggesting a different dispersion calculation method to estimate variation
within each sample compared to housekeeping genes. A set of housekeeping genes in
Hepatocellular Carcinoma was well characterized in (Ersahin et al., 2014), this set was
used to estimate biological coefficient of variation (BCV) value manually. BCV
estimation was performed for both Huh7 and Mahlavu cells separately in this analysis
and the values were very close to each other, and usage of the same value did not affect
the differential expression gene status. Hence, BCV was used as 0.045, originally
calculated for Huh7, for both cell lines.

Gene level count matrices of 12 RNA-seq treatment sets were used for differential
expression analysis. DMSO treated Huh7 and Mahlavu HCC samples were used as
negative control. Before edgeR analysis, genes with less than 5 readings were filtered
out using counts per million constraint (cpm < 5). A biological model was constructed
by taking BCV as 0.045 and differential analysis performed using exactTest function
of EdgeR package. Finally, I selected the top differentially expressed genes according
to following filters; p-value<0.01, FDR<0.01, and logFC (log?2 of fold changes) ranges
less than -2 & over +2 for Huh7 cell lines and -1.5 & over +1.5 for Mahlavu cell where
the FDR is defined as False Discovery Rate and the logFC is logarithmic Fold
Change.

Before filtration, the genes were annotated using the ensembl gene id to gene symbol,
entrez id and unigene names. Gene annotations were obtained using org.Hs.eg.db R
package (Marc Carlson, 2016) from Bioconductor. R scripts including the functions to
calculate biological variance using housekeeping genes and to perform differential
expression analysis were included in the GitHub repository mentioned in Appendix B.
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2.2.9. Dendrogram Analysis

Heatmap representation is one of the most popular graphical methods for visualization
of big-data supplying color encoding cells that represent numbers. Heatmaps are
frequently used to segment expression data, find similar or different expression
patterns, and perform closeness analysis between the samples.

Heatmaply (Galili et al., 2012) is a very powerful way of investigating clusters in a
high dimensional data since the final heatmap result is visualized as an interactive
graph offering inspection over the cells making zoom-in functions available. In this
study, all heatmaps were visualized through heatmaply using default Aclust clustering
by using Euclidean as distance measure. The codes to generate heatmaps in this study
was provided in the GitHub repository mentioned in Appendix B with the produced
html files.

2.2.10. Correlation Analysis

In order to assess the similarity co-efficiencies between the different treatments in the
same cell line, Pearson correlations were calculated. A count matrix was generated
containing gene logFC values (without any filtration) of all treatments per HCC line.
R “cor” function was used to calculate Pearson correlations and the “corrplot” function
was used to graph the results.

Pearson correlation is a number between -1 and +1, as the value approaches to -1
negative correlation gets stronger, whereas as it approaches to +1 that indicates a
significant positive correlation.

2.2.11. Venn Analysis

In order to calculate and draw Venn schemes, the online tool Venn Diagram
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used. It is a very handy tool
both to generate Venn diagrams and to get intersections between the files. Venn
diagrams generated in this study were used to compare top DEG genes and network
nodes.

2.2.12. Gene Ontology (GO) Analysis

The Gene Ontology (GO) project aims to construct a model of biological systems
computationally. A structured description of known biological information, which is
designed as a tree of vocabularies, consists of multiple layers. The GO terms or
vocabularies associated with biological processes, molecular functions or cellular
components (Ashburner et al., 2000; Carbon et al., 2021).
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Given a set of genes on the network, an open source tool BINGO (Maere et al., 2005)
maps functional terms to enriched genes to output Gene Ontology (GO) terms and
their statistical features. BINGO is a java-based tool integrated into Cytoscape. Tool
finds the predominant or overrepresented gene ontology terms and links these terms
in a map proving a good way of GO hierarch representation.

Statistically overrepresented GO terms were characterized using BiNGO in our
analysis to have a better understanding of the processes that the selected genes have
roles. A hypergeometric test was applied using to the gene sets or network nodes with
the selected annotation file (H_sapiens default) of Homo Sapiens.The default GO
annotation file (GO _full) is used as ontology file. Input parameters were adapted to be
used as the same for all analysis. A stringent Benjamini & Hochberg False Discovery
Rate (FDR <0.005) was used to filter out non-significant GO terms. BiINGO results
were kept in .bgo files and exported into R for series of downstream analysis.

Table 2: Experimental evidence codes used in the study.

Code Description

EXP Inferred from Experiment

IDA Inferred from Direct Assay

IMP Inferred from Mutant Phenotype
IGI Inferred from Genetic Interaction
IEP Inferred from Expression Pattern
IPI Inferred from Physical Interaction

GO sets containing redundant and electronically annotated terms generate a huge noise
for functional comparisons. These terms either originated electronically or have
ambiguity in them. The GOs other than experimentally validated codes were filtered
out (accepted codes shown in Table 2) to avoid suspicious GO terms and set a level to
the analysis. The codes were matched through publicly available Gene Ontology
Annotation (GOA) database (http://current.geneontology.org/annotations/).

2.2.13. Network Analysis

Hidden expression patterns in the differentially expression sets which could be lost in
RNA-seq analysis can be explored through construction of protein-protein interaction
networks. The classical downstream analysis of RNA-seq is performed using DEG
sets, and the analysis is restricted to gene set enrichment analysis, clustering analysis
or gene-based database searches. Using these types of analysis are limited by the input
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gene lists. Furthermore, the rules for DEG filters or statistical limitation parameters
are not specific and general usage of the parameters are experiment based. Hence,
construction of an interaction pathway from DEG sets can uncover some expression
which may be lost during up-stream analysis.

Omics Integrator is a package that aims to analyze proteomic, gene expression or
epigenetic data starting from omic data with the aim of network construction by PCST
formulation. It consists of two modules, Garner and Forest works one by one to
construct a network connecting proteomic and gene expression or epigenetic data. For
downstream RNA-seq analysis, Omics Integrator software Forest module determined
multiple sub-pathways in the human interactome given top DEGs as input terminals.

PCST (Prize Collecting Steiner Tree) algorithm first used for biological network
by (Tuncbag et al., 2016) aims to identify sub-networks from an interaction network
given a set of weighted genes. By using PCST, the biologically meaningful
interactions between the DEGs from human protein-protein interaction data were
extracted. The PCST algorithm finds an optimal tree, including the terminal with
prizes travelling through the interactome nodes which have costs of edges only if they
are included. The task is to find the shortest paths between the prize nodes avoiding
the costs on the edges. The algorithm minimizes the cost of all edges by passing
through many prize nodes as possible.

STRING human protein-protein interaction database v.10 was used as backbone of
PCST database in this study. V10 STRING database had 19,247 unique proteins with
8,548,002 interactions. PII in STRING is weighted by confidence scores using
numerous proofs. The confidence score was restricted by a high confidence value
(>0.7) with stronger experimental proof needed. In STRING edges are scored
according to a confidence score determined through an algorithm. If an interaction is
proved through experimentally the confidence score gets higher basically in a range of
0-1. After the filtration, there were 12,910 unique proteins with 333,324 edges. The
cost of the edges in OmicsIntegrator is determined by getting negative logarithm of
these scores, so the cost and the interaction confidence are negatively correlated. The
price list given to the algorithm was a DEG list with ENSEMBL IDs, in order to match
those to STRING first, DEG ENSEMBL IDs converted into Gene Names using
Ensembl BioMart. Then, STRING PPI was converted from protein names to Gene
Names using the same strategy. By this way, while using the same Gene Names was
managed, untranslated transcripts from the DEG lists were lost.

2.2.14. Optimization of Forest Parameters

In order to construct meaningful trees using differentially expressed genes, input
Forest parameters must be fine-tuned. The size and degree of the forests are expected
to vary as the number of genes in the input files changes. Forest parameters depend
highly on the distribution of prizes and numbers of the nodes and there could be
hundreds of possible solutions for numbers of input terminals. The best combinations
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of parameters for each DEG set were explored using forest-tuner script
(https://github.com/gungorbudak/forest-tuner) which is PCST algorithm parameter
tuner for o,  and p parameters. This script was used to find the best arrangements of
the parameters to be used in the Forest module for each treatment.

Table 3: Forest parameters and their effect into the re-generated sub-interactomes.

Parameter Description Effect

) Cost of starting to a new tree Less trees

B Controls hubs Larger networks
u Controls hubs Smaller networks
D Adjust depth of the tree Longer trees

The parameters were tuned in the following ranges: ® (1-10.0 or 5-15), B (1-15.0), p
(0.01-0.05). Here, o parameter tunes the number of trees in the network, § parameter
increases the number of prices entering the tree and p is another parameter that
arranges the dominance of hub proteins in the network (Table 3). D parameter, which
is not tuned and taken as 10, also controls the depth of the tree resulting with longer
trees as it gets larger. From all possible solutions, the combination which generates a
minimum degree network with the greatest number of prize nodes was selected. Config
files including selected parameters per kinase inhibitor treatment were kept for forest
analysis.

Commend line parameters to run Omics Integrator is provided in Appendix C and the
corresponding codes and required files can be found in GitHub repository mentioned
in Appendix B.

2.2.15. Forest Module Runs

Omics Integrator “forest.py” was run with the config files generated by forest-
tuner.py. As a result of the runs, forest outputs a list of files whose content are
explained below:

e Sample info.txt summarizes the information on the run for debugging.

e Sample optimalForest.sif includes the final optimal network in sample
interaction file format (SIF). The file is ready to open with Cytoscape.

e Sample augmentedForest.sif look likes optimal forest file yet it also includes
all the edge interactions inherited directly from reference interactome.
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Betweenness centrality in the node attribute file is calculated through this
network.

e Sample dummyForest.sif look likes optimal forest file yet it also includes the
dummy nodes and interacting edges that the algorithm eliminated.

e Sample edgeattributes.tsv includes information about the edges in the
network; its weight in the interactome, the fraction of optimal networks
containing the edges, separated by tabs.

e Sample nodeattributes.tsv includes information about the nodes in the
network, its prize and betweenness centralities, separated by tab.

2.2.16. Randomization Tests

In order to test the significance of the nodes appearing in the optimal nodes, each PCST
network was subjected into 100 randomization tests using the Omics Integrator tool
(specified by —randomTerminals=100). The tests were performed using a random set
of terminals with respect to keeping node numbers, and original interactome set with
same edge weights and optimization penalties the same.

Here, the probability that a node randomly be present in the network was expressed by
its frequency of randomness in the network producing the ‘specificity index.
Therefore, less frequent nodes would be the most specific ones to the network
(Tuncbag et al., 2013). Through the analysis, the nodes that appeared only once in the
random networks was considered.

2.2.17. Centrality Measurements

Centrality measures are the indicators of the most valuable vertices in the graph for
network analysis. Centrality is often used to identify influential nodes of the network
and by this way provides a ranking which identifies the important nodes in the
network. Degree, eigenvector and betweenness centralities calculated to estimate
network topology. NetworkX python library (Hagberg et al., 2008) was used to
calculate centrality measures. Here is the list of centrality measures used in this study:

e Degree Centrality: Proportion calculated by the number of connections a node
has.

e FEigenvector Centrality: Computes the centrality for a node based on the
centrality of its neighbors.

e Betweenness Centrality: Calculates how many times a node bridges along two
node’s shortest path.
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2.2.18. Effective Visualization of the Optimal Networks

Omics Integrator outputs the optimal networks in SIF format. SIF files are ready to
import Cytoscape as default, yet for a practical analysis the optimal network should be
shaped and arranged efficiently.

Cytoscape includes many add-ons for biological network analysis including
annotation, pathway enrichment and clustering. Cytoscape was used for network
analysis in this study to use all of these functionalities together. The methods used for
network representation are illustrated in Figure 15.

The classical way of a biological network analysis is to perform an enrichment analysis
to understand the functions of these genes/nodes having a role on. Using all the inputs
together for the enrichment analysis results in either too general GO terms to analyze
or losing too definite terms as the statistical significance is vanished for big size
networks, for example. The optimal network generated through forest includes sub-
trees. Biologically, these branches are representing a group of proteins closely
interacting each other. So, these sub-trees can be representation of functional
groupings. In this study, a topology-based clustering method was performed to detect
those groups. Then, enrichment analysis was performed using these clusters and after
most important GO terms were selected, they were back mapped to the network
generating a well-designed network representation summarizing the functional groups
and which role they were engaged in.

The network nodes were sized along with the node labels with betweenness centrality
values to emphasize their centrality. The hub nodes are represented with a bigger size.
Afterwards, to understand the expression patterns and transcriptional flow direction,
upregulated genes were colored to red while downregulated ones colored to blue. As
the value gets stronger the darkness of the value increases. The final visualizations
represented all gene relationships, up and downregulated genes and internal Steiner
nodes. Also, highly connected groups and GO annotations were provided for an easy
and efficient way to compare networks with each other. For network representations,
these following files were used.

1. A SIF file containing the optimal network, forest module run results.
2. A TSV file containing the betweenness centralities, forest module run results.

3. A CSV file containing the genes, logFC values and other annotations, edgeR
results.

4. A SIF file including the selected GO terms and their gene links, generated from
merged .bgo files.
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Figure 15: Summarization of the methods used for effective visualization of optimal networks.

2.2.19. Clustering

After SIF files were imported into the Cytoscape, yFiles layout algorithms were
implemented and hierarchical layout was selected for visualizations. In order to cluster
the networks, Glay algorithm (Su et al., 2010) using edge betweenness centrality was
implemented. In this regard, the genes which are topologically close to each other in
the network were better detected. Application of this strategy resulted in the most
connected patterns in the networks.

2.2.20. Annotation

The Cytoscape plug-in AutoAnnotate tool (Kucera et al., 2016) was used to annotate
the clusters. It is a very easy to use method since it can automatically detect the groups
or work directly on the already generated ones. The autogenerated labels are also
editable further. the clusters were annotated based on the selected GO terms to better
represent the functions of the connected proteins inside the networks.
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Therefore, this method provided a nice way to properly interpret the network and easy
compare of the different networks.

2.2.21. GO Analysis and Mapping

In order to better understand what processes these clusters have role on, statistically
overrepresented Gene Ontology (GO) terms were characterized using BINGO for each
cluster in networks. The lists were filtered out using a stringent FDR cut-off (0.005).
Selected GO terms were imported into the network using their gene maps and mapped
into the clusters using AutoAnnotate tool.

2.3. Prioritization of the Nodes in the Optimal Networks

Drug target genes were proposed by following a series of network filtrations based on
network topology. The hub nodes needed to be avoided because they are commonly
the most studied ones. Target node needed to be network specific and significant for
the network. Thus, the strategy was following this idea: a node would be candidate to
be target only if it occurs in the branches on random networks while presenting in more
central areas on the optimal networks. In order to achieve these nodes, 100
randomization tests were performed to eliminate frequent nodes in random networks.
the least frequent nodes (specificity index smaller than 0.01) for construction of
optimal networks were used.

Then, three stage selection were performed for target selection:

1. The hub nodes of optimal networks were selected though using degree,
eigenvector and betweenness centralities greater than 0.001.

2. From the remaining nodes, the ones that were predominant in the random
network were eliminated using degree centrality of random networks
bigger than 0.001.

3. Finally, top 20 target for each cell line were selected upon sorting by their
betweenness centralities.

2.4. Knock-out Experiment

The prioritized nodes were silenced in the optimal networks using —knockout
parameter provided by Omics Integrator tool. The nodes (genes) given to the tool one
by one with the corresponding network, and the effects of the remove was analyzed
afterwards. If exists, the number of effected node and the effected gene ontology were
counted and summarized. The node would be important if either effecting more than
two nodes or at least one gene ontology.
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CHAPTER III

RESULTS

In this chapter, the results of the bioinformatics analysis performed as a part of the
study are discussed. The chapter is separated into two sections: As a part of RNA
sequencing results, the number, the quality, and the alignments of reads are explained
first and, then the results of the differential expressions of the genes and similarity-
based gene correlations are described. In the second section, network-based
interpretation of the data, the results of optimal PCST network constructions,
comparisons of the networks, network clustering, network gene enrichment, gene
prioritization and the effect of node removals from the network are explained.

3.1. RNA Sequencing Results

The following section explains RNA sequencing results. The quality reports for raw
FASTQ reads and alignments of the reads, differentially expressed genes, Pearson
correlation or similarity analysis performed with dendrogram and analysis of
expression patterns in HCC cell lines are discussed.

3.1.1. Quality Check Reports

12 Single-end FASTQ reads, were processed by Illumina Genome Analyzer, were
analyzed using the FASTQC tool. The base quality scores of raw reads for all
treatments were plotted and added into the Appendix D. The bases quality of all reads
was above average and in good quality. According to FASTQC generated reports,
single end reads 49bp in length were well sequenced and no end bias was seen for the
reads. Total sequences, sequence lengths and GC% contents were represented in Table
4. Mean value of base quality scores was above the average. An average of 33,465,904
clean reads in 47-50% GC were generated.
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Table 4: Total sequences, sequence length and GC% content of the FASTQ files of the

HCC Cell lines.

HCC Cell Lines

Huh?7

PI3K-a inhibitor (PIK-75)
PI3K-B inhibitor (TGX-221)
PIK-75 + Sorafenib
TGX-221 + Sorafenib

Sorafenib

DMSO

Mahlavu

PI3K-a inhibitor (PIK-75)
PI3K-B inhibitor (TGX-221)
PIK-75 + Sorafenib
TGX-221 + Sorafenib
Sorafenib

DMSO

3.1.2. Alignments and Gene Counts

Quality Measures

Total
sequences

33192992

32730853

34017394

28579376

36506606

37827459

Total
sequences

34302640

29776671

31897951

37221329

32116151

33421422

Sequence
Length

49
49
49
49
49

49

Sequence
Length

49
49
49
49
49

49

GC%
Content

48

50

49

49

49

48

GC%
Content

47

49

49

49

50

49

Table 5 represents the alignment qualities per library. The aligned number of reads
was on average 27-36 million reads, and the alignment rate per line was about 97%.
The coverage of the alignments was at most 47X and at least 35X. Therefore, all the

alignments were of high-quality and coverage.
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Table 5: Number of total processed sequences, alignment rate in percentages, and the
coverage of the alignments for HCC Cell lines.

HCC Cell Lines Library Quality Measures
Huh7 Total reads  Alignment Rate Coverage
(“e)
PI3K-a inhibitor (PIK-75) 32184033 97.0 41
PI3K-B inhibitor (TGX-221) 31841448 97.3 40
PIK-75 + Sorafenib 33134724 97.4 42
TGX-221 + Sorafenib 27899790 97.6 35
Sorafenib 35665666 97.7 45
DMSO 36867755 97.5 47
Mahlavu Total reads = Alignment Rate Coverage
(“e)
PI3K-a inhibitor (PIK-75) 33219644 96.0 42
PI3K-B inhibitor (TGX-221) 29018356 97.5 37
PIK-75 + Sorafenib 30868036 96.8 39
TGX-221 + Sorafenib 36355199 97.7 46
Sorafenib 31292278 97.4 39
DMSO 32591562 97.5 41
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In Table 5, the coverage of the alignment files calculated using the following equation,
taking human transcriptome length as 39,841,315 bp.

Coverage = (Sequence Length x Total Sequences) / Human Transcriptome Length
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Figure 16: A. Library sizes per samples, B. gene distributions per samples resulted by HTSeq-
count. There is no normalization in both plots. HALPHA; PI3Ki-a inhibitor (PIK-75),
HSALPHA,; PIK-75 and Sorafenib, HBETA; PI3Ki-f inhibitor (TGX-221), HSBETA; TGX-
221 and Sorafenib, HSOR; Sorafenib treatments of Huh7 cells and MALPHA; PI3Ki-a
inhibitor (PIK-75), MSALPHA; PIK-75 and Sorafenib, MBETA; PI3Ki-f inhibitor (TGX-
221), MSBETA; TGX-221 and Sorafenib, H-MSOR; Sorafenib treatments of Mahlavu cells.

Mapped reads to the human transcriptome were counted by the HTSeq-count tool
given a set of genomic features. Without any transformation, library sizes of genes
were between 28000000-38000000 (Figure 16.A). The count of genes where well
mapped were similarly distributed. Which indicates the fact that the sets were
comparable to each other even though there was no replication. In Figure 16.B, genes
are well distributed, and no distinguishable bias was observed. At the quantification
step, no normalization was applied; the necessary normalization for differential gene
expression analysis was provided inside the edgeR package.
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3.1.3. Differential Expression Analysis

The systematic analysis of differential response of the HCC cell lines to the specified
inhibitory elements were provided with RNA-seq analysis. RNA-seq experiment was
performed for 5 Huh7 and 5 Mahlavu cell lines. EdgeR tool was used by taking DMSO
treated cells as control to determine differentially expressed genes (DEGs). In order to
estimate the dispersion among the cell lines, a set of housekeeping genes based on the
assumption that their expression was not affected by the treatment with the inhibitors
was used. Especially for Hepatocellular carcinoma, there is a comprehensive study
exploring expression levels of tissue specific housekeeping genes (Ersahin et al.,
2014). Using this set of genes listed in Table 6, the biological coefficient of variation
(BCV) was estimated efficiently.

Table 6. Housekeeping genes used for BCV calculation.

Ensembl Gene ID

ENSG00000196470

ENSG00000253729

ENSG00000164924

ENSG00000012048

ENSG00000128513

ENSG00000149269

ENSG00000135446

ENSG00000104290

ENSG00000161960

ENSG00000120738

ENSG00000168539

ENSG00000149554

ENSG00000207730

Gene description

siah E3 ubiquitin protein ligase 1

protein kinase,

subunit

tyrosine

DNA-activated,

catalytic

3-monooxygenase/tryptophan 5-

monooxygenase activation protein zeta

BRCA1 DNA repair associated

protection of telomeres 1

p21 (RAC1) activated kinase 1

cyclin dependent kinase 4

frizzled class receptor 3

eukaryotic translation initiation factor 4A1

early growth response 1

cholinergic receptor muscarinic 1

checkpoint kinase 1

microRNA 200b
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Gene name

SIAH1

PRKDC

YWHAZ

BRCA1

POT1

PAK1

CDK4

FZD3

EIF4A1

EGR1

CHRM1

CHEK1

MIR200B



Raw results of edgeR resulted in between 900 to 11000 differentially expressed genes.
When p value (0.01) filtration was applied 15 to 1500 of them remained to be
significant. logFC using -/+2 criteria was applied for both cell lines to get expressive
changes. However, the number of remaining genes for Mahlavu was significantly low
using logFC 2. Considering many steps need to be performed for down-stream analysis
A less stringent limitation for log was performed in Mahlavu cell line. On the other
hand, Huh7 resulted in greater number discounting for single PI3Ki- (TGX-221)
treatment. Therefore, different logFC values on Huh7 and Mahlavu were applied. For
Mabhlavu cell lines, a less stringent logFC value (-1.5/+1.5) was used for further
analysis.

Table 7: The number of differentially expressed genes and untranslated transcripts for
HCC cell lines under various inhibitor treatment conditions.

HCC treatments Differentially Expressed Genes

Huh?7 vs DMSO Up Down  Total Untranslated
Transcripts

PI3K-a inhibitor (PIK-75) 139 52 191 20

PI3K-f inhibitor (TGX-221) 4 1 5 0

PIK-75 + Sorafenib 16 171 187 9

TGX-221 + Sorafenib 162 62 224 11

Sorafenib 127 71 198 11

Mahlavu vs DMSO Up Down  Total Untranslated
Transcripts

PI3K-a inhibitor (PIK-75) 66 39 105 22

PI3K-p inhibitor (TGX-221) 3 3 6 0

PIK-75 + Sorafenib 240 205 445 37

TGX-221 + Sorafenib 2 103 105 31

Sorafenib 17 21 38 12

Table 7 lists the numbers of DEGs. In both cell lines, as I expected, TGX-221 treatment
had minor effects, and the DEG numbers were very low. In Huh7, the number of DEGs
were greater for PI3Ki-a (PIK-75), whilst in PIK-75 + Sorafenib, DEG numbers were
lower. The number of DEGs were also low for Sorafenib and TGX-221 alone
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treatments, in their combinational treatment an increased number of DEGs, especially
downregulated genes, were observed in Mahlavu cells.

The number of DEGs seen for PIK-75 treated Huh7 cells had more upregulated genes
than PIK-75 + Sorafenib treatment and the number of downregulated genes for the
combinatory treatment were greater than the single PIK-75 treatment. Therefore, a
reversed reaction was observed for PIK-75 single and combinatory treatment with
Sorafenib in the Huh7 cell line. Moreover, the response of Mahlavu to the same
combination treatment was significantly different with a highly increased number of
up and downregulated genes when compared to Sorafenib or PIK-75 inhibitor alone.

HSBETA
MSBETA
HSALPHA MSALPHA

HSOR MSOR

Huh7 Mahlavu

Figure 17: Venn diagrams representing common and unique Huh7 and Mahlavu DEG
numbers. HALPHA; PI3Ki-a inhibitor (PIK-75), HSALPHA; PIK-75 and Sorafenib, HBETA;
PI3Ki-B inhibitor (TGX-221), HSBETA; TGX-221 and Sorafenib, HSOR; Sorafenib
treatments of Huh7 cells and MALPHA; P13Ki-a inhibitor (PIK-75), MSALPHA; PIK-75 and
Sorafenib, MBETA; PI3Ki-f inhibitor (TGX-221), MSBETA; TGX-221 and Sorafenib, H-
MSOR; Sorafenib treatments of Mahlavu cells.

About 5% to 10% of the DEGs were found to be untranslated transcripts in Huh7 cells.
PIK-75 treatment had the most untranslated transcripts in the DEG set. On the
contrary, for PTEN-deficient HCC, Mahlavu cells, the number of untranslated
transcripts were above average (30%). Especially, Sorafenib alone and TGX-221 +
Sorafenib treatments had many untranslated transcripts. The number of untranslated
transcripts is shown in Table 7.

Common and unique DEGs were identified using Venn diagrams and they were
plotted separately for Huh7 and Mahlavu cell lines shown in Figure 17. Venn diagrams
revealed that Sorafenib treatment and its combinational treatment with TGX-221
inhibitor shared a significant number of common genes in both cell lines. 70% (141
genes) in Huh7 and 45% (17 genes) in Mahlavu were shared between Sorafenib alone
and TGX-221 + Sorafenib treatments. Furthermore, PIK-75 and Sorafenib
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combination also had common genes in the Mahlavu cell line. 50% of the genes (50
of them) were common for those two treatments.

3.1.4. Correlation Analysis of Kinase Inhibitors

Pearson correlation analysis was conducted to see how comparable the differential
expressions overall. logFC values of all significant (FDR and p-value > 0.01)
differentially expressed genes (without logFC limitation) united for correlation
analysis. As a result, a significant correlation was observed between Sorafenib
treatment and its combinatorial treatment with TGX-221 (0.92) in Huh7 and (0.63) in
Mahlavu, and between PIK-75 and its combinatorial treatment with Sorafenib in
Mahlavu (0.74) (Figure 18). Negative correlation was not observed in any of the
comparisons. Furthermore, a correlation analysis comparing Huh7 and Mahlavu cell
lines together was conducted. As represented in Table 8, there was no correlation
either in between two cell lines or in between the same drug treatments. This shows
that PTEN-deficiency alters the molecular mechanism in HCC cell lines significantly
and the correlation in DEGs are not notable.
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ALPHA 1 o8 ALPHA 1 0.74 08
0.6 0.6
BETA 1 0.4 BETA 1 04
0.2 0.2
SALPHA 1 0 SALPHA 1 0
-0.2 -0.2
SBETA 1 0.92 |04 SBETA 1 0.63 [[o4
-0.6 -0.6
SoR 1 08 SOR 1 08
1 1
Huh7 Mahlavu

Figure 18: Pearson correlations of kinase inhibitor treatments for Huh7 and Mahlavu.
ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-B
inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments.
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Table 8: Pearson correlation matrix between Huh7 and Mahlavu inhibitor treatments.

Mahlavu
Huh?7 ALPHA BETA SOR SALPHA SBETA
ALPHA 0.02 0.04 0.02 0.27 0.07
BETA 0.14 0.08 0.02 0.03 0.04
SOR 0.26 0.15 0.18 0.22 0.18
SALPHA 0.02 0.10 0.14 0.14 0.12
SBETA 0.22 0.10 0.24 0.17 0.16

Abbreviations: ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib,
BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib
treatments.

3.1.5. Top 50 Common DEGs

The top 50 most differentially expressed genes are represented through a dendrogram
in Figure 19. Top 50 genes were selected for each HCC cell line by ranking their sum
of absolute logFC values per cell type.

Up and downregulated genes were clustered well in both cell limes. The separation
was more absolute in Huh7. The most common downregulated genes in Huh7 were
DUSPS5, PCNA, SPRY2, and WNK4 and upregulated genes were VCAN, GADD45B,
TBX4, HOXA2 and DUSPS. The details of the genes are listed in Table 9.
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Huh7 Mahlavu
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Figure 19: Heatmaply dendrograms representing top 50 most common DEGs of Huh7 and
Mahlavu cell lines. Red signifies the upregulation while blue represents down. ALPHA;
PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-f inhibitor
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments.
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Table 9. Ensembl ID, gene description, gene name and the regulation type in Huh7
cell line of the most common differentially expressed genes.

Ensembl ID

ENSG00000136158

ENSG00000132646

ENSG00000126562

ENSG00000138166

ENSG00000121075

ENSG00000099860

ENSG00000273793

ENSG00000105996

ENSG00000038427

Description

sprouty RTK signaling antagonist
2

proliferating cell nuclear antigen

WNK lysine deficient protein
kinase 4

dual specificity phosphatase 5
T-box transcription factor 4

growth arrest and DNA damage
inducible beta

dual specificity phosphatase 8
homeobox A2

versican

Name

SPRY2

PCNA

WNK4

DUSP5

TBX4

GADD458B

DUSP8

HOXA2

VCAN

Regulation

Down

Down

Down

Down
Up

Up

Up
Up

Up

With respect to Huh7, common differentially expressed genes were not well separated
in Mahlavu. Some of the genes like EGRI, LINC00641, MIR6723, FOSB and ACTA2
genes were found to vary in different treatments. HSPAIB, HSPAIA, APOE, ESGR,
CYPI1BI-AS1 and TPTEPI genes were the most upregulated genes and LDLR, DHCR7
and ADGRG1 were the most commonly downregulated genes, listed in Table 10.

When common differentially expressed genes in Huh7 and Mahlavu cells were
compared, INSIGI gene was common to both cell lines and it was downregulated in
most of the treatments. Moreover, while overexpression of GADD45B was mediated
in Huh7, GADD45A4 was upregulated in Mahlavu cells.
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Table 10. Ensembl ID, gene description, gene name and the regulation type in
Mahlavu cell line of the most common differentially expressed genes.

Ensembl ID Description Name Regulation

ENSG00000172893 7-dehydrocholesterol DHCR7 Down
reductase

ENSG00000205336 adhesion G  protein- ADGRGI1 Down

coupled receptor G1

ENSG00000130164 low density lipoprotein LDLR Down
receptor
ENSG00000204389 heat shock protein family = HSPA1A Up
A (Hsp70) member 1A
ENSG00000204388 heat shock protein family HSPA1B Up
A (Hsp70) member 1B
ENSG00000130203 apolipoprotein E APOE Up
ENSG00000100181 TPTE pseudogene 1 TPTEP1 Up

ENSG00000232973 CYP1B1 antisense RNA1  CYP1B1-AS1 Up

3.1.6. Differentially Expressed Untranslated Transcripts

Following the identification of DEG lists, most of the down-stream analysis methods
of RNA-seq analysis methods depend on the translated transcripts since they have
protein annotations. After filtrations, 44 and 80 unique untranslated transcripts for
Huh7 and Mahlavu, respectively, were identified. Apart from unidentified untranslated
transcripts, most of them were either antisense RNAs or mitochondrial pseudogenes.
In Figure 20, the dendrogram analysis of Huh7 untranslated transcripts is represented.
Among the antisense RNAs, in Huh7, TUBAIC is found to be commonly
downregulated gene. Also, SLC1AS, DDIT4 and HMCS1 were downregulated while
NCBP2 and HOXA2 were upregulated in PIK-75 treatment group, GABPBI was
downregulated but RUSC! was upregulated in PIK-75 and Sorafenib treatment, while
LYZ was downregulated in Sorafenib treatments. Furthermore, mitochondrial
pseudogenes were upregulated in PIK-75 treatment, while they were downregulated
in Sorafenib and its PIK-75 combination.
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Figure 20: Heatmaply dendrograms representing untranslated transcripts of Huh7 and
Mahlavu cell lines. Red signifies the upregulation while blue represents down. ALPHA;
PI3Ki-o inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-B inhibitor
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments. Filtration criteria:
p-value <0.01, logFC >2.0, <-2.0 for Huh7 and logFC >1.5, <-1.5 for Mahlavu cells.
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Untranslated transcripts’ dendrogram analysis for Mahlavu cells is shown in Figure
20. Among the antisense RNAs downregulation of AXL, GMPR, DDIT4 and THBS3
found in PIK-75 inhibitor treatment, GAS6, HMGCSI, NFE2LI, and SLC9A3
downregulated and ZNF213, EAF1, TMEM44, TYMS, and NCBP2 were upregulated
in PIK-75 + Sorafenib. Moreover, mitochondrial pseudogenes were upregulated in
PIK-75 treatment, conversely, they were downregulated in Sorafenib and TGX-221
combination. Furthermore, p53 regulation associated with the IncRNA was
upregulated in this combination. programmed cell death 6 (PDCD6) was
downregulated in Sorafenib treatment.

3.1.7. Gene Enrichment Analysis of Differential Expression Patterns

Since significant correlations between some of the specific treatments were observed,
the shared patterns between sets were also explored in more detail. Huh7 and Mahlavu
cell treatments were clustered using their logFC values to investigate expression
patterns. Single PI3K-f inhibitor (TGX-221) analysis was excluded from both cell line
analysis considering low number of DEGs. Clustering analysis was performed
separately for the cell lines. Treatment-specific DEG sets joined for clustering
analysis. United sets included 11033 and 11615 genes for Huh7 and Mahlavu
respectively in total without any filtration. the genes that satisfied the specified limits
kept: p-value <0.01, logfFC >2.0, <-2.0 for Huh7 and logFC >1.5, <-1.5 for Mahlavu
cells. So, dendrogram analysis was performed on 581 genes for Huh7 and 583 genes
for Mahlavu cells.

In both HCC cell lines, the dendrogram was separated into two in the same way. Single
PI3K-a inhibitor (PIK-75) treatment and Sorafenib with PIK-75 treatment were
clustered together and single Sorafenib treatment and Sorafenib with TGX-221 were
clustered together. In correlation analysis, the similarity between single Sorafenib and
its combinatorial treatment in TGX-221 was greater in Huh7 and conversely single
PIK-75 and its combinatorial treatment with Sorafenib was greater in Mahlavu.

Clustering was performed on the dendrograms to define common or unique expression
patterns between the treatments. Huh7 and Mahlavu DEGs were divided into 8 and 6
clusters respectively. Gene ontologies belonging to those clusters were identified to
characterize functional processes responding to different kinase inhibitors. Huh7 and
Mahlavu dendrogram analysis are represented in Figure 21 and Figure 22 respectively.
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Figure 21: Heatmap of gene expressions illustrated as dendrograms for Huh7 cell line. Up and
downregulated gene levels are colored as red and blue respectively, the intensity of the color
indicates how strong the logFC value is. For more detailed analysis and to view interactive
dendrograms please see html file in the GitHub repository. 8 clusters were generated by
heatmaply and colored. Gene enrichment analysis was performed using BiNGO (FDR<0.05)
and significant GOs selected according to the context. Clusters that do not show any significant
enrichment were excluded. ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and
Sorafenib, BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR;
Sorafenib treatments.
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Figure 22: Heatmap of gene expressions illustrated as dendrograms for Mahlavu cell line. Up
and downregulated gene levels are colored as red and blue respectively, the intensity of the
color indicates how strong the logFC value is. For more detailed analysis and to view
interactive dendrograms please see html file in the GitHub repository. 6 clusters were
generated by heatmaply and colored. Gene enrichment analysis was performed using BINGO
(FDR<0.05) and significant GOs selected according to the context. Clusters that do not show
any significant enrichment were excluded. ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA;
PIK-75 and Sorafenib, BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-221 and
Sorafenib, SOR; Sorafenib treatments.
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Heatmap analysis of differentially expressed genes revealed functional expression
patterns in HCC cells. For all treatments in HCC, positive regulation of extracellular
matrix organization and developmental processes were observed while regulation of
cell proliferation and actin filamentation bundle assembly ontologies were more active
in PIK-75 treatment. DUSP5 and PCNA genes were downregulated for all treatments.
PIK-75 and Sorafenib combined treatment resulted in downregulation of genes
enriched in negative regulation of biosynthetic processes and cell fate commitment
ontologies. Likewise, cholesterol metabolic processes gene ontology was
downregulated for TGX-221 + Sorafenib treatment. I also identified a group of genes
including 2 histone family proteins, 1 long intergenic non-translating RNA,
uncharacterized proteins FAMI84B and NCBP2AS2, NBP, and NAGS5 and Ca+2
carrier receptor gene ATP2A1 being downregulated in the treatment of PI3Ki-a alone
while they were upregulated all the other Huh7.

Immune response was upregulated more significantly for Sorafenib treatment in
Mabhlavu treatments. Cation binding was upregulated for PIK-75 and its Sorafenib
combination. Cholesterol metabolic processes, angiogenesis and vascular endothelial
growth factor receptor 2 binding were downregulated for all treatments. A group of
genes were upregulated in single Sorafenib and TGX-221 + Sorafenib treatment while
downregulated in single PIK-75, PIK-75 + Sorafenib treatments. In this group, most
of the genes were mitochondrial pseudogenes as they were also identified in
dendrogram analysis of untranslated transcripts.

3.2. Network-Based Interpretation of the Data

A traditional way of RNA-seq analysis is to use only DEG sets for gene enrichment
analysis which generally restricts the detection of some cellular events. The
application of a conventional method, like Omics Integrator, to create a network from
differentially expressed genes by connecting them through their known or physical
protein-protein interactions can show hidden patterns. Omics Integrator adapts the
Prize Collecting Steiner Tree (PCST) algorithm to connect differentially expressed
genes by adding intermediate genes (or Steiner nodes) aiming the construction of the
most optimal gene to gene network. Protein nodes in STRING human PPI was
converted into Gene Names creating a reference gene network.

3.2.1. Optimal PCST Networks

Forest-tuner was run for the DEG list to find the best arrangements in these ranges; ®
(1-10.0 or 5-15), B (1-15.0), n (0.01-0.05). Forest-tuner lists the arrangements and the
outcomes of the parameters running Forest. From the possible solutions, the
parameters giving the maximum number of nodes with minimal network mean degree
were selected. The selected and thus optimal ®, B and, p parameters and their
consequences on generated networks were listed in Table 11.
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The number of prize nodes were the number of given proteins as input to the algorithm.
Ensembl gene ids of DEGs were converted into Gene Names in this step matching to
backbone reference network. Since some of the Ensembl gene ids did not correspond
to any protein, as discussed before they are untranslated transcripts, not all input DEGs
was used in Omics Integrator. The number of prize nodes and total number of nodes
in the optimal networks contains both the input terminal proteins and the ones found
to connect them (Steiner).

Table 11: Selected parameters for PSCT analysis using forest-tuner and numbers of
nodes, terminals, and prizes of generated networks.

HCC treatments (0 B n (Terminal+Steiner) Prize Mean
Total Node # Node # | degrees

Huh?7

PI3K-a inhibitor  7.75 5.50 0.04 | (138+124) 262 171 24.83

(PIK-75)

PI3K-B inhibitor  5.50 3.25  0.03 | (5+12) 17 5 23.08

(TGX-221)

PIK-75 + Sorafenib 10.0  10.0 | 0.02 | (145+101) 246 178 28.58

TGX-221 + 10.0 | 3.25 0.03 (178+147) 325 213 23.86

Sorafenib

Sorafenib 10.0  7.75 | 0.05  (157+124) 281 187 27.19

Mahlavu

PI3K-a inhibitor  10.0 7.75 0.03 | (52+63) 115 84 29.14

(PIK-75)

PI3K-B inhibitor = 7.75 5.50 0.03 | (6+20) 26 6 16.7

(TGX-221)

PIK-75 + Sorafenib 10.0  3.25 | 0.01 | (321+236) 547 409 30.31

TGX-221 + 10.0 5.50 0.03 (53+40)93 75 34.65

Sorafenib

Sorafenib 50 | 7.00 0.04 (16+15)31 27 19.67

Since input DEG numbers for PI3K-f inhibitor (TGX-221) treated Huh7 and Mahlavu
cells and Sorafenib treated Mahlavu cells were low, their networks were smaller than
the others. The networks were optimized by limiting the number of trees to one and
keeping their overall degrees as minimal as possible to avoid hairballs. That enabled
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us to have more than one central hub node in the network and generated multi branches
for the analysis.

3.2.2. Comparison of Optimal Network Nodes

Venn diagram comparing the nodes in the optimal networks is represented in Figure
23. 4 nodes (DUSPS5, PCNA, GADD45B and DUSPS genes) were found to be shared
by all networks excluding single PI3K-f inhibitor (TGX-221) treatment in Huh?7.
There were 10 nodes in Huh7 found to be common for Sorafenib including treatments
(SALPHA, SBETA, and SOR). Gene enrichment of these proteins was associated with
response to stimulus, damaged DNA binding and sterol metabolic process. VCAN gene
was common for PI3Ki-a inhibitor (PIK-75) treatments (ALPHA and SALPHA) and
single Sorafenib treatment (SOR). 25 common nodes were found for single PIK-75,
TGX-221 + Sorafenib, and Sorafenib treatments (ALPHA, SBETA, and SOR). Gene
enrichment analysis of these proteins showed that they were mainly acting on the
regulation of cellular organization, migration, and cell cycle. Furthermore, treatment
of PIK-75 + Sorafenib and TGX-211 + Sorafenib (SALPHA and SBETA) sharing 8
nodes enriched in N-acetyltransferase activity and Bcl3-Bcll10 complex. As shown
previously through differentially expressed gene similarity analysis, combinational
TGX-221 and single Sorafenib treatment shared 118 nodes enriched in cell junction
control, signal transmission, regulation of MAPKKK, and interleukin-8 production.

SALPHA SALPHA

SOR

Huh7 Mahlavu

SOR

Figure 23: Venn diagrams representing the common and unique number of optimal network
nodes of Huh7 and Mahlavu cells. ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75
and Sorafenib, BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR;
Sorafenib treatments.

The most common nodes were INHBE, LRRK 1, TP53INP2, and FOSB genes in PTEN-
deficient HCC Mahlavu treatments. Single PIK-75 and its combination with Sorafenib
treatments (ALPHA and SALPHA) resulted in 31 common nodes enriched in GABA-
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B receptor activity, Cdc42 protein signal transduction, regulation of inclusion body
assembling and cholesterol efflux regulation. Moreover, PIK75 + Sorafenib and TGX-
21 + Sorafenib (SALPHA and SBETA) shared 22 common proteins enriched in
cholesterol metabolic process, oxidoreductase activity, and Bcl2-Bell0 complex.
BCL3 gene was common for all combinatory treatment in HCC cell lines.

3.2.3. Cluster Specific Gene Ontologies of Optimal PCST Networks

A deeper understanding of the interacting genes and a better comparison of the
networks were provided through a functional encoloring, sizing of the nodes, and a
systematic usage of the network centrality which measures for clustering using
Cytoscape tool. Optimal gene-to-gene networks predicted by PCST were imported
into Cytoscape, gene’s logFC values were attached and used to color the nodes to
represent up and downregulated branches. The sizes of the nodes correlate with the
betweenness centrality.

Systematic usage of networks was provided through the creation of a map for a
practical comparison of different inhibitor treatments. For some of the networks, the
greater number of nodes prevented effective comparison of the networks. Furthermore,
using all nodes for gene ontology analysis would not be statistically significant
because of large input sizes. Therefore, the big networks needed to be divided enabling
a strong comparison strategy. To be able to investigate the networks more deeply, GO
analysis applied into the network clusters. Finally, some significant gene ontologies
for clusters were selected, and connected in the network using their gene associations.
In Appendix E, whole list of Gene Ontologies found for each cluster were listed.

The optimal network generated using DEGs from PIK-75 treated Huh7 cell line is
represented in Figure 24. Here, the nodes were colored by logFC values resulted from
EdgeR analysis and color intensifies as the logFC value gets higher. Red and blue
represented up and downregulation respectively. Steiner nodes were shaped as
diamond while input transcriptome nodes were shown as ellipse. Node size was
directly correlated with betweenness centrality of nodes. Clusters were generated using
betweenness centralities of the nodes using a community cluster Glay algorithm and
boxed for better representation. The clusters were separately explored by BINGO and
only selected significant Gene Ontology was added to the network through associated
genes.
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CDHI and CDKNIA genes in anaphase-promoting complex and cyclin dependent
protein kinase holoenzyme were two central nodes of the PIK-75 network being
upregulated. The other nodes connected to those have complex regulations.
Importantly, negative regulation of Erkl and Erk2, MAP kinase activity, DNA
replication, cell differentiation and activation of plasma proteins involved in acute
inflammatory response were found to be enriched in this network.

The network generated using DEGs from the TGX-221 treated Huh7 cell line is
represented in Figure 25. Upregulation of cell redox homeostasis, cellular
carbohydrate catabolic processes and oxidation-reduction activities were observed in
that network.

cluster 1

PI13Ki-beta treated Huh7

Cell redoc homeostasis

L ]
cluste/r/

TFF2

VAN
£\

cluste*ri’:/}/

PGD

cellular carbohydrate
catabolic process

cluster 2

oxidation-reduction /
HEPD

SRDSAL

Figure 25: A schematic representation of an optimal network of DEGs upon PI3K-f inhibitor
(PIK-75) treatment of Huh7 cell line. The network can be visualized through Cytoscape by
using the .cys file in the GitHub repository.

The optimal network created from PI3K-a (PIK-75) + Sorafenib treated Huh7 cell line
differentially expressed genes is represented in Figure 26. The network consists mainly
of downregulated genes and the central gene in this network was downregulated JUN.
JUN gene is a very prominent proto-oncogene encoding for a transcription factor. The
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transcription factor is the main activator of ERK pathway which directly affects
PI3BK/AKT/mTOR pathway. The other two important downregulated genes were
MDM?2 and PCNA, these two are related to regulation of microtubule depolymerization
and cell proliferation respectively. Upregulation of MTOR gene would lead
downregulation of several proteins related to the cellular stress response. Furthermore,
negative regulation of MAP kinase activity and transmembrane receptor protein
serine/threonine kinase signaling protein were observed which are mainly upregulated
in HCC cancer.

TGX-221 + Sorafenib network is represented in Figure 27. The network was centered
by the upregulated CHDI connected to upregulated GAB2 and SMAD?7. The other
central node was slightly downregulated Steiner HDAC2 node. The network show
some important gene enrichments in the clusters like positive regulation of cell
proliferation, positive regulation of MAPKKK cascade, negative regulation of ERK1
and ERK2 cascade, positive regulation of JUN kinase activity, regulation of
programmed cell death, apoptotic mitochondrial changes, inactivation of MAPK
activity, negative regulation of fibroblast growth factor signaling pathway, negative
regulation of nerve growth factor receptor signaling pathway, and Bcl3/NF-kappaB2
complex .

The optimal network generated through differentially expressed genes from Sorafenib
treated Huh7 cells is shown in Figure 28. The network shares the same downregulated
central gene, CDH1, with combinatory treated Sorafenib with TGX-221 represented
in Figure 27. As opposed to its combinatory treatment with other isoform PIK-75, the
network was mainly enriched with upregulated proteins. The main functional
enrichments observed in the networks were positive regulation of cell-matrix
adhesion, homeostatic process, negative regulation of ERK1 and ERK2 cascade,
negative regulation of fibroblast growth factor receptor signaling pathway, cell
differentiation, phosphate metabolic process, regulation of stress-activated MAPK
cascade, GTPase activity, and oxidation reduction. Downregulated PCNA gene was
hub node as like in combinatory treatment of Sorafenib with PIK-75. Single Sorafenib
treatment shares some important patterns with its both treatments.
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The optimal network created from the DEGs extracted from PI3K-a inhibitor (PIK-
75) treated Mahlavu cell line is represented in Figure 29. The central gene in the
network was CCNDI. CCNDI gene expresses cyclin D1 protein which forms
regulatory subunit of CDK4 or CDK6 whose activity was required for G1/S transition
in the cell cycle. Upregulation of this protein also increases genes involved in growth
arrest, such as GADD45A. The other important enriched functions in that network were
negative regulation of cell proliferation, regulation of cell growth, negative regulation
of body assembly, and positive regulation of cholesterol transport.

The optimal network generated from DEGSs from single TGX-221 treatment to
Mabhlavu cell is presented in Figure 30. As in Huh7 cells, the input DEG size lead to a
smaller size network. All hub genes in this network were Steiner nodes. Some of the
enriched pathways in this network were responses to molecules of bacterial origin,
positive regulation of interleukin-6 production, pancreas development, and metallo-
carboxypeptidase activity.

PI3Ki-alpha treated Mahlavu cluster 1
~ CCND1 cluster 3
cluster 9 o= cluster 4 INSM1
cluster 7 SOX6 FHIT
FLCN GADDA4SA RCOR1
STK3S HSPEL
o TP rozfe RHOBTE €5C02 MEDZ8
GADD45B.
b ccr7 % MED26
NUMB PDZD2 INF219 ATG9A RFC3
'SNAPC1 HMHAL
PFON2
CAPNS1
LNX1
crssrz | MMENS CVGE TRAPPCS CLSPN <ASFiB>
FATE> GABBRY SEC318 “0EGn MCM10 ATAD28
HMGN2 “TRAPPC6A
GINS2 <COTL RNFT2
A
HMGN3
vvvvvvvvvvvv
cluster 5 SICEAS cluster 8
FOSLL ATF3 cluster 2
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Figure 29: A schematic representation of an optimal network of DEGs upon PI3K-a inhibitor
(PIK-75) treatment of Mahlavu cell line. The network can be visualized through Cytoscape by
using the .cys file in the GitHub repository.
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PI3Ki-beta treated Mahlavu

cluster 3 cluster 1
response to molecule of TLR9 TRAFS
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Figure 30: A schematic representation of an optimal network of DEGs upon PI3K-f inhibitor
(PIK-75) treatment of Mahlavu cell line. The network can be visualized through Cytoscape by
using the .cys file in the GitHub repository.

The network from the combinational treatment of PIK-75 + Sorafenib is shown in
Figure 31. Similar to the Huh7 response shown in Figure 26, the main genes in this
network were also downregulated. Downregulation of the EGFR gene was one of the
important factors in this network. It was encoding a well-known protein associated
with cancer. 7P53 gene was another central node in this network recognized as a
Steiner in the network. Downregulation of this gene has many functions including
DNA damage response, signal transduction resulting in induction of apoptosis and
positive regulation of apoptosis. The other enriched functions in this network were
positive regulation of transitional initiation, negative regulation of protein complex
assembly, positive regulation of interferon-alpha production, NAD(P)H oxidase
activity, generation of precursor metabolites and energy, regulation of GTPase
mediated signal transduction, histone biotinylation, negative regulation of cholesterol
storage, negative regulation of biosynthesis process, negative regulation of inclusion
body assembly, cell-to-cell junction, mitotic cell cycle, and positive regulation of
system process.

In Figure 32, the network generated from Mahlavu cells treated with TGX-221 +
Sorafenib is shown. The hub gene in this network was upregulated MAPK1 gene
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(Steiner node) but the many other genes in the network were downregulated.
Especially, downregulation of the Bcl3/NF-kappaB2 complex was associated with
cancer development. The other downregulation functions in this network were long-
chain fatty acid transporter activity, SREBP-mediated signaling pathway, cholesterol
biosynthetic process, nucleoside transport and oxidoreductase activity acting on the
CH-CH group of donors, NAD or NADP as acceptor.
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PI3Ki-beta and Sorafenib treated Mahlavu
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Figure 32: A schematic representation of an optimal network of DEGs upon PI3K-f inhibitor
(PIK-75) with Sorafenib treatment of Mahlavu cell line. The network can be visualized though
Cytoscape by using the .cys file in the GitHub repository.

The network constructed from the DEGs of Sorafenib treated Mahlavu cells is
represented in Figure 33. As opposed to the Huh7, the same treatment affected
minatory genes in the Mahlavu, and a smaller network was generated. Upregulation of
the MXI gene with 10 other genes was observed in the network. The two clusters
associated with that group were mainly related to interferon-induced dynamin-like
GTPase with antiviral activity. Also, mitochondrial alpha-ketoglutarate
dehydrogenase complex, isoleucine catabolic process, and negative regulation of
protein kinase activity were among the enriched pathways in this network.
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Figure 33. A schematic representation of an optimal network of DEGs upon Sorafenib
treatment of Mahlavu cell line. The network can be visualized through Cytoscape by using the
.cys file in the GitHub repository.

3.2.4. Comparison of Cluster Specific Gene Enrichments

The cluster-specific gene enrichments for each HCC cell line through a dendrogram
analysis were compared in Figure 34. With respect to the similarities in DEG
expressions, the functional processes in the optimal networks were not related
pointedly. In both cell lines, single PI3Ki-f3 (TGX-221) and Sorafenib treatments were
the closest in the dendrogram even though they do not share a significant number of
processes. That was possibly due to the ineffectiveness of single TGX-221 treatment
on the cells. Then, the closest treatments in terms of network functionalities were
Sorafenib with PI3Ki-a (PIK-75) in Huh7 and TGX-221 in Mahlavu, yet in both the
number of shared elements were very low.
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Figure 34: Heatmap of gene enrichments illustrated as dendrograms for Huh7 and Mahlavu
cell lines. The dendrogram was plotted from a binary matrix; 1 for seen GO ids 0 for exclusion.
For more detailed analysis and to view interactive dendrogram please see html files from the
GitHub repository. ALPHA; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib,
BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib
treatments.

All treatments except TGX-221 was enriched in MAP kinase activity regulation in
Huh7. Lipid and steroid metabolic processes was observed for all treatments except
PIK-75. Oxidation reduction was enriched for single TGX-221 and single Sorafenib
treatments. In Sorafenib, SREB-mediated signaling pathway was also active.
Combinational PIK-75 treatment represented regulation of DNA repair and SMAD
binding gene ontologies with regulation of cell proliferation while combinational
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TGX-221 resulted with Bcl3/NF-kappaB2 complex, regulations of apoptotic
processes, cell morphogenesis and programmed cell death. Single PIK-75 and its
Sorafenib combination represented an enrichment in development ontology (Table
12).

Table 12. Significant gene ontologies for inhibitor specific networks in Huh7 cell line.

I:Gene Ontologies ALPHA BETA SALPHA SBETA SOR
Bcl3/NF-kappaB2 complex

regulation of apoptotic process

regulation of cell morphogenesis

regulation of programmed cell death

regulation of DNA repair

SMAD binding

anaphase-promoting complex -
SREBP-mediated signaling pathway

regulation of FGFR and NGFR signaling pathways
regulation of cell proliferation
oxidation-reduction process

innate immune response

cell differentiation

developmental process

negative regulation of ERK1 and ERK2 cascade
lipid metabolic process

steroid metabolic process

MAPK cascade

* ALPHA,; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-B inhibitor
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments.

Sorafenib  represented enrichments in  mitochondrial alpha-ketoglutarate
dehydrogenase, PIK-75 inhibitor enriched in defense response, developmental
processes and interleukin-6 production, and PIK-75 inhibitor enriched in negative
regulation of cell proliferation and cell growth regulation in Mahlavu cell lines.
Combinatory treatment of PIK-75 and its single treatment commonly were enriched in
cholesterol transport and inclusion body assembly. The network for combinatory PIK-
75 treatment was very large thus there were many GO hits mostly in immune processes
and cell to cell junction organization. Only combinational PIK-75 enriched in defense
response, generation of precursor metabolites and energy, mitotic cell cycle, oxidation-
reduction process, regulations of apoptotic processes, cell death, and small GTPase
mediated signal transduction (Table 13).
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Table 13. Significant gene ontologies for inhibitor specific networks in Mahlavu cell
line.

I:IGene Ontologies ALPHA BETA SALPHA SBETA SOR
negative regulation of cell proliferation

regulation of cell growth

response to bacterium

defense response

generation of precursor metabolites and energy

mitotic cell cycle

oxidation-reduction process

positive regulation of apoptotic process

positive regulation of cell death

regulation of small GTPase mediated signal transduction
Bcl3/NF-kappaB2 complex

SREBP-mediated signaling pathway

mitochondrial alpha-ketoglutarate dehydrogenase complex
Cdc42 protein signal transduction

positive regulation of interleukin-6 production

apical junction complex

cholesterol biosynthetic process -

* ALPHA,; PI3Ki-a inhibitor (PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-B inhibitor
(TGX-221), SBETA; TGX-221 and Sorafenib, SOR; Sorafenib treatments.

3.2.5. Prioritizied Genes as Drug Targets

The selection of drug targets using the randomization tests and network topology was
well explained in Methods chapter. 20 gene were selected for further analysis in each
cell line. Figure 35 represents the selected genes sorted with betweenness centrality of
optimal networks in HCC lines. For Huh7 cells; CDC27, CCDC80, AARS2, ACSBG2,
CITED27 and CDR?2 genes in PI3Ki-a (PIK-75) inhibitor treatment, RIMKLA gene in
PI3Ki-B (TGX-221) treatment, CEBPB, DNAJC10, DLKI, ATP6VID, EDEMI and
DUSPS genes in PIK-75 + Sorafenib treatment, LIN7C gene in TGX-221 + Sorafenib
treatment, EXOC7, FEZI, GAB2, BIRC7, HOXA10 and ANKRD28 genes Sorafenib
inhibitor treatment. For Mahlavu cells; ATP1B1, CACNAIH, CAPNSI, CCT7, ATG9A4
and BOLA2B genes in PIK-75 inhibitor treatments, CGA and TNFRSF4 genes in TGX-
221 inhibitor treatment, ALMS1, AOXI, BCL3, ANKRDI, CD276 and ASICI genes in
PIK-75 + Sorafenib treatment, GDF15, AGER, FABPI, ACOTI2, HMGCSI and
CRHRI genes TGX-221 + Sorafenib treatment were prioritized for further
investigations.
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Figure 35. Prioritized nodes for Huh7 and Mahlavu were ranked by betweenness centrality
values of randomized networks for each inhibitor treatment. ALPHA; PI3Ki-a inhibitor (PIK-
75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-f inhibitor (TGX-221), SBETA; TGX-
221 and Sorafenib, SOR; Sorafenib treatments.

In Figure 36, the selected nodes are represented with their expression pattern for each
treatment in Huh7 and Mahlavu cell lines. Both the intensity and the regulation pattern
(up or down regulation) was depending on the kind of the treatment. LIK7C gene, for
example, was selected through TGX-221 + Sorafenib treatment (Huh7), was
upregulated, but the same gene was downregulated in PIK-75, TGX-221, and PIK-75
+ Sorafenib treatments. CCT7 and CAPNSI were two downregulated genes selected
from Mahlavu cell line. They were selected through single PIK-75 treatment, but an
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opposite action acquired with combination of PIK-75 with Sorafenib. Therefore, the
prioritization of those genes should be more detailly observed.

Furthermore, nearly half of the prioritized genes were Steiner nodes like FEZI,
ACSBG2, RIMKLA, BIRC7, HOXA10 and CCDC80 in Huh7 and FABPI, CRHRI,
AGER, ACOTI12, ASICI, BOLA2B, CACNAIH, CGA, and TNFRSF4 in Mahlavu in
the optimal networks. They were lost or hidden in the RNA-seq experiment, but they
were prioritized only through Omics Integrator based network optimization and
network-topology based significancy analysis.

Huh7 Mahlavu

auspﬂF * _ HMGCS1 4

GAB2 > BCL3

ANKRD28 * ATP1B1 *
cor24 K ANKRD1 4
CDC27 4 * GDF15+4
DLK1 4 * ALMS1 4

EXOC7 4 * ATG9AH K

AARS2H K CD276 4 >
DNAJC10 * FABP1 *

ATPEV1D * CRHR1 *

FEZ1 * AGER *

ACSBG24 ACOT124 *
RIMKLA - ASIC1+4 *

BIRC7 - * * BOLA2B- % 4
HOXA10 * cacnatn] X 5
CCDCS80 * CGA *

LIN7CH * TNFRSF4 - * lo

EDEM1 * ccT74 %
crren2d % I_ caPNS14{ K 2

CEBPB - - AOX1+ * H

\a (s a3
?\?&‘ P %/\V” R \?Q\‘?‘ %Q; é\‘? %OQ’ v}?&” @é i ‘?32\ o)‘bé\ %O

Figure 36: Up (red) and down (blue) regulations of the prioritized genes in Huh7 and Mahlavu
cell lines, from which treatment they are selected was pointed out. ALPHA; PI3Ki-a inhibitor
(PIK-75), SALPHA; PIK-75 and Sorafenib, BETA; PI3Ki-f inhibitor (TGX-221), SBETA;
TGX-221 and Sorafenib, SOR; Sorafenib treatments.

3.2.6. The Effect of Gene Removals from the Optimal Networks

Simulating an in-silico knock-out experiment, the effects of node removals from the
optimal networks were analyzed. In theory, the most important targets would be
affecting maximum number of PPIs.
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Each prioritized node was analyzed in the associated pathway. Furthermore, if the
node exists in the other treatment with the same cell line it was also considered. Since
some of the selected nodes were in the close to the branches, they have affected one
or two nodes. Those were considered un-significant unless they have not associated
into an important gene ontology. The deletion of the target protein and it’s all
connections, affecting nodes and functions of the deleted functions by the removals
were studied and summarized in Table 14.

Table 14: Prioritized genes as potential drug targets in Huh7 and Mahlavu HCC lines.

Gene Treatment Cellline Function Effect on the
network
AARS? PIK-75 Huh7 Alanyl-TRNA Synthetase 5 nodes
2, Mitochondrial
CITED2 PIK-75 Huh7 Cbp/P300 Interacting 5 nodes
Transactivator with
Glu/Asp Rich Carboxy-
Terminal Domain 2
DLK1 PIK-75 +  Huh7 Delta Like Non-Canonical | 3 nodes
Sorafenib Notch Ligand 1
DNAJCI10 | PIK-75+ Huh7 DnalJ Heat Shock Protein 5 nodes
Sorafenib Family (Hsp40) Member
C10
GAB2 TGX-221 + Huh7 GRB2 Associated Binding  Positive regulation
Sorafenib Protein 2 of cell proliferation
GAB2 Sorafenib Huh7 GRB2 Associated Binding | Erk1/Erk2 kinase
Protein 2 pathway
BOLA2B | PIK-75 Mahlavu | BolA Family Member 2B 6 nodes
AOX] PIK-75 + Mahlavu | Aldehyde Oxidase 1 Positive regulation
Sorafenib of oxidation
reduction
AGER TGX-221 +  Mahlavu = Advanced Glycosylation Apoptosis
Sorafenib End-Product Specific

Receptor

Ultimately, in Huh7 cells removal of A4RS2 and CITED?2 genes in PIK-75 inhibitor
treatment, DLK ] and DNAJC10 genes in PIK-75 + Sorafenib treatment, HOXA 10 gene
in Sorafenib treatment and GAB2 gene in both single Sorafenib and TGX-221 +
Sorafenib treatments were found to be affecting at least 5 nodes in the networks and
destructing key pathways. In Mahlavu, BOLA2B gene in PIK-75 inhibitor single
treatment, AOX! in PIK-75 + Sorafenib treatment and AGER gene in TGX-221 +
Sorafenib treatment in Mahlavu were found to be affecting important pathways, or at
least 6 nodes.
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CHAPTER VI

DISCUSSION

Hepatocellular carcinoma (HCC) has limited targeted treatment options such as multi-
kinase inhibitor Sorafenib and recently approved drug Regorafenib (Perz et al., 2006,
Liu et al., 2009; Llovet, Di Bisceglie, et al., 2008). Yet, none of the drugs can increase
the survival of the patients by more than 10 months. Up to date, there are many studies
in search of novel targets to cure HCC better. One of the reasons why those treatment
strategies were not operative is the redundant functions of signaling pathways
controlling proliferation, cell cycle, migration, angiogenesis, or apoptosis in
precancerous cells during the chronic liver disease stage. Even multi-kinase inhibitors,
e.g. Sorafenib, targeting Raf, VEGFR, and PDGFR proteins, cannot effectively
prevent tumorigenic cross-talks between the signaling pathways. Therefore, the need
for combinational therapies to evade multi-functioning pathways for HCC is massive
and urgent.

The classical way to discover new therapeutic agents is to analyze differential
expression patterns comparing cancerous versus normal-like or healthy cells.
Following this research, abnormal functions or signaling pathways and deviant gene
expressions are evaluated experimentally. Wet laboratory experiments focusing on
singular a gene or a pathway is long, labor-intensive, and expensive. Yet, it is a well-
known fact that cancer develops in a multi-stage process by enrolling many different
protein interactions. It would also be costly and time consuming if enough
comparisons were made in order to solve this multidimensional mechanism of each
cancer type. Hence, new computational methods are immediately required
encompassing many in-vitro analysis. Currently, using the sequencing platforms, and
advanced bioinformatic tools and good practice pipelines to analyze those results
would provide novel therapeutic targets. Nevertheless, it is pivotal to construct right
workflows (sequence of analysis) enabling reproducible, scalable, and optimal
analysis.

In this doctoral thesis, two Hepatocellular carcinoma (HCC) cell lines, Huh and
Mahlavu, were treated with 3 kinds of drugs; Sorafenib as multi-kinase inhibitor, PIK-
75 as PI3K-a isoform inhibitor, and TGX-221 as PI3K-f isoform inhibitor. As it was
known that none of the drug treatments was able to eliminate cancerous cells alone,
the cells treated with combinations of the drugs; PIK-75 with Sorafenib and TGX-221
with Sorafenib were also analyzed. A classical way of comparison of those treatments
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would be acquiring differentially expressed gene lists and making functional
enrichment analysis. Yet, through this analysis, it is possible to lose single genes or
dwindle some functions since the RNA-seq experiment cannot cover all the gene
expressions. In this study, instead of performing traditional analysis, biological
network analysis using Omics Integrator was utilized. Omics Integrator connects the
given nodes, namely differentially expressed genes, by adding other nodes from
human protein-protein interaction network if needed. Thereby, the hidden patterns of
the expression which may be absent in RNA-Seq analysis was unrevealed. There are
other pathway or network analysis tools which could be used for DEG analysis but
none of them could perform a simultaneous contraction of the treatment specific
network. For example, using KEGG database, the DEG set could be mapped to
PI3K/Akt/mTOR pathway yet the redundancy through other signaling pathways will
be lost. STRING database can also construct DEG specific networks, but it won’t
consider the connecting paths or nodes between the given nodes.

Next step of the multi-level target analysis is to make powerfully comparisons of the
networks. One challenge of associating biological networks is their complexity. Large
DEG input sizes for Omics Integrator drives many protein-protein interactions leading
huge size of output networks. Hence, direct node-to-node comparison of the networks
becomes impossible. In order to compare networks, performing biological enrichment
to the networks to relate the functions would be a better approach, but for the large
networks it is also problematic. Biological enrichment analysis of large networks will
result in either too general or too specific Gene Ontology (GO) terms with disrupted
significance. In this study, the problem was solved by topologically clustering the
networks which divides the nodes (genes) according to their connections in the
network. Each cluster size kept the same for large networks and enrichment analysis
was performed to the separate clusters. The clusters were identified using betweenness
centrality measure, namely keeping the closest in interaction proteins together.

The real comparison of the different treatments to the cell lines was provided through
Cytoscape visualizations. The optimal networks were imported into the Cytoscape
tool, differential expression patterns of the genes were used to color the nodes,
centrality measures were used to resize the nodes, node clusters were boxed, and
functional enrichments were mapped back to the nodes. Herein, easy-to-observe
treatment network were created not only to visualize all elements of the networks and
but also compare single nodes with their expression pattern and biological function.

Differential expression analysis of the treatments was made using EdgeR. To perform
a statistically strong analysis, EdgeR requires an estimation of dispersion for each cell
line. Yet, in this analysis set, there were no biological replicates to calculate it. That
was the major challenge of this study since all the downstream analysis basing DEG
sets. In EdgeR documentation, the default BVC is 0,16, 0,4 was a precalculated value
for biological replicates in human samples and 0.1 was calculated for technical
replicates of a model organism. In our analysis, we decided to use housekeeping genes
in HCC based on the assumption that the expression level of housekeeping genes does
not vary by drug treatments. BVC was 0,045 in our analysis yet that value could be
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too conservative. Alternatively, a number of randomly selected set of genes together
with housekeeping genes could be used for BVC calculation for EdgeR DEG analysis.
The resulting DEG sets could be compared with the current DEG set, hence the validity
of our initial approach could be supported by this method.

According to our DEG results, PTEN deficient Mahlavu cell lines responded to
inhibitors less severe than Huh7 since Mahlavu is a more aggressive type of HCC than
Huh7. PI3K-B (TGX-221) inhibitor treatment resulted in a smaller number of DEGs
for both cell lines. That was correlated with previous results performed in CANSYL
(Figure 8 and 9). Singular TGX-221 treatment had minor effect in HCC treatment. All
single drug treatments exhibited a lower number of DEGs in Mahlavu, representing
the need for combinational treatment for PTEN-deficient cell lines. The
ineffectiveness of TGX-221 in both cell lines and Sorafenib in Mahlavu were also
observed through Pearson correlations and dendrogram analysis. The correlations
were vital in combinational TGX-221 with Sorafenib and combinational PIK-75 with
singular PIK-75 treatments.

A significant number of untranslated transcripts in DEG sets especially for Mahlavu
treated with single Sorafenib or single TGX-221 were observed. Many of those
untranslated transcripts were antisense RNA or mitochondrial pseudogenes.
Mitochondrial dysfunctions were also observed in GO analysis using DEGs and
network analysis in Sorafenib treatments. There are many researches showing the
correlation of long untranslated RNAs to the diseases in the literature (Weilin et al.,
2013; Lijuan Zhang et al., 2019b), yet deeper research is needed to uncover the
relations of them in HCC or with drug treatments. Interestingly, mitochondrial
pseudogenes were representing different patterns in PIK-75 single and combinational
treatments in Huh7. Sorafenib must be acting into the pathways having a role in the
cellular energy regulations. Another exciting finding was a IncRNA in p53 regulation
was upregulated in Sorafenib with TGX-221 and untranslated transcript programmed
cell death 6 (PDCD6) was downregulated in Sorafenib treatment.

The most common DEGs like PCNA, DUSPS5, VCAN, SPRY2, EGRI1, FOSB, ACTA2,
HSPAIA, APOE, LDLR, and GADD45B were the most significant and most studied
genes in cancer. A simple PubMed search of these genes (correlated with cancer in
the last 10 years) resulted in 100 full text research articles. Also, those common genes
show the similar expression regulation patterns in the other cancer cell lines. Hence
the expression of the characteristics of the cell lines and conserved patterns with
respect to the inhibitor treatments could be considered as a part of cancer hallmark.

In order to identify shared functional enrichments from the different treatments,
heatmap analysis were used. Significant cell or treatment specific patterns were
observed through the enrichment analysis with common DEG patterns. For example,
positive regulation of extracellular matrix organization and development processes
were observed for Huh7 cells while cell proliferation regulations were more actively
regulated though PIK-75 treatments. Furthermore, negative regulation of cell fate
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commitment was specific only to PIK-75 with Sorafenib treatment. Hence, PIK-75 +
Sorafenib activated death related processes in Huh7.

Metabolic processes, angiogenesis and VEGFR2 binding were downregulated for all
treatments indicating a decline in cancer development in Mahlavu cells. The immune
response against the inhibitor treatments was stronger with single Sorafenib treatment.
A group of genes was upregulated in single Sorafenib and combinatory TGX-221 and
Sorafenib treatment while downregulated in single PIK-75, combinatory PIK-75 and
Sorafenib treatments. Since this group was especially downregulated in TGX-221 +
Sorafenib treatment, they could be related to their antagonistic effect on cell death.

Until network analysis part, all the findings were discovered using the traditional way
of RNA-seq analysis. In order to compare differentially regulated signaling pathways
inhibited through different kinds of drug targets, and to find novel targets for new
treatment strategies, a systems level of understanding of differentially expressed genes
were examined through optimal networks.

The network node comparisons indicated that most of the common genes were retained
in Huh7 treatments. An increase in the number shared nodes for Sorafenib treatments
was observed, and unsurprisingly most of those genes were active in lipid metabolism.
The similarity between the combinational PIK-75 and PIK-75 treatments were retained
while some of shared genes of combinational TGX-221 and Sorafenib treatments were
lost in Mahlavu. The comparison of network specific gene ontologies also contributed
the difference of combinational TGX-221 and Sorafenib treatments. Sorafenib
treatment only enriched in mitochondrial alpha-ketoglutarate dehydrogenase complex
in Mahlavu, same as Sorafenib treatment in Huh7 which also shows enrichment in
oxidation-reduction processes. It was previously found that Sorafenib treatment
supports tumor hypoxia in favor of tumor proliferation, angiogenesis and metastasis
(Balkwill, 2004; Gerber, Hippe, Buhren, Miiller, & Homey, 2009; Sethi & Kang, 2011;
Zlotnik, Burkhardt, & Homey, 2011). Therefore, using Sorafenib as a single agent
targeting the PI3K/Akt pathway can even increase the effect of modulating cell redox
homeostasis.

The combinational treatment of TGX-221 to Mahlavu resulted with a small network
showing cholesterol biosynthetic processes, apical junction complex, SREBP-
mediated signaling pathway and Bcl3/NF-kB2 complex. Bcl3/NF-kB2 complex was
also enriched in combinational treatment of TGX-221 of Huh7 cells. Yet, NF-kB2 was
only upregulated in Mahlavu and Bcl3 downregulation is more apparent. Previous
studies highlights the significance of Bcl3 in HCC as being a tumor marker and Bcl3
knock-down in HCC induced cell apoptosis in a study (Poveda et al., 2017; Tu et al.,
2016). But none of those analysis was performed on a PTEN-deficient cell line, thus,
the differential control of Bcl3/NF-kB2 complex need to be studied more in PTEN
context.

As anticipated, Sorafenib and PIK-75 combination was more successful on Mahlavu
cells. Mitotic cell cycle was activated and TP53 mediated apoptosis was induced, and
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immune response processes were downregulated. Even single treatment of PIK-75
resulted with negative regulation of cell proliferation and regulation of cell growth.
GTPase mediated signal transduction and Cdc42 protein signal transduction were
observed for both PIK-75 treatments, probably, PIK-75 treatment caused GTPase
activity to be transmitted through TGX-221 rather than PIK-75. At this point, it seems
to that cell survival is mainly dependent on p110a rather than p110p isoform in PTEN-
deficient HCC cell lines. A previous study using PTEN-deficient LNCaP cell line
found that p110p is more significant for efficient inhibition of PI3K hyperactivation
(Schwartz et al., 2016) and inhibition of p110p is more successful to inhibit cellular
growth. Therefore, selective PI3K isoform activation is highly dependent on cellular
type and context.

While single PIK-75 treatment in Huh7 activated some important cellular
inflammatory related gene ontologies like; interleukin 1 alpha and beta secretion, and
interleukin 6 production, no inflammatory response was seen for Mahlavu treatments.
Single treatment of PIK-75 activated the negative regulation of cell proliferation and
cell growth which were associated with APOE, FOSLI, HSPAIB and HSPAIA gene
regulations. PIK-75 + Sorafenib treatment represented a reduction in cell proliferation,
migration, vasculogenesis but mitochondrial apoptotic changes, and increased cell
death mainly through negative regulation of transforming growth factor beta receptor
signaling pathway were rising. PIK-75 + Sorafenib combination, interestingly, did not
provoke an immune response involving a cytokine production. In PIK-75
combinational treatment to Huh7, GTPase activity was ablated by downregulation of
RABIA, RABI3 and RABSS genes and fibroblast growth factor signaling pathway
though SPRY1 and SPRY2 genes which were negatively regulated in Sorafenib treated
Huh7 cells. The pathways including PI3K, MAPK and Ras cascades are redundant in
function, PI3K is activated through small GTPases, in turn, acts as an inhibitor of PI3K
by stimulation of PTEN (Z. Li et al., 2005; Yang et al., 2012). It is known that
interactions of GTPases to PI3K are isoform specific, while Ras cannot bind p110p,
RACI1 and CDC42 proteins can activate it. Hence, while single TGX-221 inhibitor
treatment on Huh7 cells only affected oxidoreductase activities, its combinatorial
treatment with Sorafenib caused more drastic changes than alpha isoform
combination. It activated apoptotic changes and positive regulation of programmed
cell death, upregulation of T-cell involved immune responses, activation of Bcl3/NF-
kB2 complex and JNK cascade, regulation of ion transport and cellular migration.
Previous studies on isoform specificity on PI3K activation indicated the main role of
p110a on cell growth (Liu et al., 2009), yet combinational treatment of TGX-221 with
multi-kinase inhibitor Sorafenib might be also effective for suppression of PI3K
hyperactivation in Huh7 cell lines.

The growth arrest and DNA damage 45, Gadd45 protein (GADD45 gene), is one of
the proteins in the cell which is downregulated in response to oncogenic stress in order
to regulate stimulation of cell cycle and cellular growth through interacting to cdkl,
p21, MEKK4, MKK?7 and p38 proteins (Li Zhang et al., 2014a). There is evidence that
it’s direct interaction with the DNA repair mechanism using proliferation cell nuclear
antigen, PCNA, mediates epigenetic gene activation by repair-mediated DNA
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demethylation (I. T. Chen et al., 1995). The clue on a tissue’s proliferative activity can
be deduced from its DNA repair mechanism. Proliferating cell nuclear antigen
(PCNA) protein found in the nucleus is involved in RAD6-dependent repair pathway.
Previously, it was found that in HCC cells, PCNA protein is positively regulated
activating repair mechanisms with response to inactivating mutations in Gadd45;
which is even more aggressive in well differentiated HCC (D.-D. Li et al., 2021;
Venturi et al., 2008; Z.-L. Zhang et al., 2018). In this analysis, increased Gadd45 levels
lead to downregulation of PCNA gene in single PIK-75, PIK-75 + Sorafenib, TGX-
221 and Sorafenib combination, and single Sorafenib treatments in the Huh7 cells
(Figure 37). In previous studies, it was found that Sorafenib treatment on Huh7 cells
reduced expression of cyclin D1and PCNA proteins (Lijuan Zhang et al., 2019a).

Furthermore, it has been suggested that Gadd45 interaction to Cyclin dependent kinase
inhibitor 1A, p21 protein (CDKNI1A gene) enhances cyclin dependent kinase 6 (CDK6
gene) activity to annulate G1 cell cycle arrest (Abbas & Dutta, 2009). P21 protein
together with Gadd45 found to be upregulated only in PIK-75 treated Huh7 cells shows
that cell cycle activity altered through PIK-75 treatment (Figure 37). With respect to
that, Bcl-2-likel (BC2L1 gene), known as anti-apoptotic marker, also regulates cell
death acting as a regulator of G2 checkpoint and inhibits activation caspases (Bruey et
al., 2007) and it is upregulated in PIK-75 treatment opposing action of CDK6 gene.
Yet, PIK-75 and Sorafenib combination downregulates AP-1 family proteins JUN
kinase, activated transcription factor 4 (ATF4), and proto-oncogene MYC. ATF4 often
was found to be overexpressed in HCC cell lines and its induction correlates with
chemotherapeutic resistance (Z. Zhang et al., 2012). Activated p21 blocks activation
of c-JUN N-terminal kinase (JNK) mediated apoptosis. Insulin induced gene 1
(INSIG1 gene) is one of the liver specific proteins identified as a biomarker for HCC
(G. Yu et al., 2007). Besides its control in cholesterol mechanism, this protein
potentially includes in GO/G1 transition of cell growth. In this study, intriguingly, only
for Sorafenib treated Huh7 cells, this protein maintained its downregulation together
with PCNA.
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Figure 37. The sub-networks representing different DN A-repair mechanisms in different Huh7
treatments. The color of the nodes was arranged according to the logFC values from
differential expression analysis, up regulated genes with red and down regulated genes with
blue. Betweenness centralities were used to enlarge the hub genes (nodes). DEG genes were
shaped as ellipses and Steiner nodes connecting them were diamonds.

MAP3K1, mitogen-activated protein 3 kinase 1, is a serine/threonine kinase and its
autophosphorylation activates ERK, JNK and NF-kB signaling pathways. MAP3K1
gene was found to be upregulated in PIK-75 alone, Sorafenib alone and Sorafenib and
TGX-221 inhibitor treated Huh7 cells, which was an indication of no suppression of
MAPK activations upon these treatments. Mammalian myeloid differentiation factor
88 (MyDS88 protein) is Toll/interleukin (IL)-1 (TIR)-domain containing adapter
protein involved in TLR signaling and an elevated level of MyD88 is found mostly on
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metastatic HCC cells increasing overall cancer proliferation (Liang et al., 2013). PIK-
75 treated Huh7 cells (alone and together with Sorafenib) responded with an ablated
level of MYD&8 expression. Even MyD88 protein was downregulated, MAP3K1 still
constitutively activated and its Sorafenib combinatory treatment MAP3K1
upregulation was not mediated in PIK-75 alone treatment.

While downregulation of MyD88 was not monitored, p21 activated kinase (PAKI
gene), interleukin 1 receptor associated kinase 2 (/RAK2 gene), RhoGEF and PH
domain-containing protein 3 (FGD3 gene), Supevillin (SVIL gene) and Ras homolog
family member U protein (RHOU gene) were upregulated in Sorafenib alone and
combinatory treatment with TGX-221 inhibitor Huh7 cells together with MAP3K1.
PAKI1, IRAK2 and SVIL were proteins found to be activated in many cancer types
including HCC. PAKI1 activates proliferation through p53/p21 pathway (Z.-L. Zhang
et al., 2018), SVIL proteins are known to activate p38/Erk pathway for metastasis (X.
Chen et al., 2018), IRAK2 is found to be involved in the IL1-induced upregulation of
NF-kB signaling pathway (Flannery et al., 2011). Furthermore, it was found that PAK 1
activation can be through Rho proteins. Therefore, constitutive activation of PAK1
mediated by Rho proteins also may an indication of cellular survival in Sorafenib and
its combinatory treatment with TGX-221 in Huh7 cells.

The dual specificity phosphatases (DUSPs) enzyme family provides feedback
inhibition on MAPKSs towards a stress induction. They play a critical role in the
regulation of oncogenic signaling, especially for ERK, p38 and JNK kinases. In this
study, downregulation of DUSP4, DUSPS5 and DUSP6 genes in Huh7 cell treatments
Is described in Table 15. Downregulation of DUSP genes in cancer genes is part of
constitutive activation of the MAPK pathway (C. Huang & Tan, 2012). Yet, DUSPS
which is the dual inhibitor of p38 and JNK kinases is found to be upregulated in all
Sorafenib treated Huh7 cells, which can be ablation of kinase activity. Moreover,
interestingly, in Huh7 cells treated with TGX-221 and Sorafenib, besides to DUSPS,
DUSP16 was also upregulated while DUSP4, DUSP5 and DUSP6 were mainly stable.
Moreover, it was previously found that in PTEN deficient HCC cell lines, DUSP
proteins were significantly downregulated to keep mitogen activated protein kinases
active apart from AKT activation (Khalid, Hussain, Manzoor, Saalim& Khaliq, 2017).
In Mahlavu cells, none of the DUSP were found to be downregulated.

As a part of activated mTORC1 pathway in HCC cells increasing cellular
triacylglyceride (TG), apolipoprotein E, ApoE protein production increases playing a
role in lipid and lipoprotein metabolism. It has been known that ApoE protein level
in serum with liver disease increases especially in Huh7 (Roberts et al., 2016) to meet
a high level of cellular energy needs. In this thesis study, the level of ApoE protein in
all Huh7 treatments remained stable while in Mahlavu PIK-75 inhibitor treated cells,
upregulation of ApoE was identified. An increase in ApoE expression could be the
result of downregulation of LRP1 gene (LDL receptor-related protein 1) which enables
secretion of ApoE from endosomes (Laatsch et al., 2012). Moreover, ABCA1 gene has
a role in cholesterol efflux by generation of ApoE containing high density-sized
lipoprotein particles which were downregulated PIK-75 treated Mahlavu cells. Yet,
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with respect to LRP1, in PIK-75 combined with Sorafenib treatment downregulated
LDLR gene, low-density lipoprotein receptor. LDLR direct interaction to ApoE
maintained cholesterol efflux.

Table 15. Differentially expressed DUSP genes in Huh7 cells and their target kinases
based on Huang & Tan, 2012.

Gene Name Gene Targets HCC Treatment Type
DUSP4 Nuclear; Erk1/2, p38, Downregulation in Sorafenib
JNK
DUSP5 Nuclear; Erk1/2 Downregulation in PIK-75 alone, PIK-75 and

Sorafenib combination, Sorafenib only and
TGX-221 and Sorafenib combination

DUSP6 Cytoplasmic; Erk1/2  PIK-75 and Sorafenib combination
DUSP8 Cytoplasmic/Nuclear; Upregulation in PIK-75 alone, PIK-75 and
p38, INK Sorafenib combination, Sorafenib only and

TGX-221 and Sorafenib combination

DUSP16 Cytoplasmic/Nuclear; Upregulation of TGX-221 and Sorafenib
p38, INK combination

PIK-75 + Sorafenib treated Mahlavu cells, death mechanism control was not in the
same way as Huh7 did, in the network centered by 7P53 gene, more than 20 gene were
differentially expressed: including APOE, TP63, TP5313, BCL3, TNFSFI4,
TP53INP2, DAPKI and SOS2 (Figure 38). Death Associated Protein Kinasel
(DAPKI) is a putative tumor suppressor and Tumor Protein p53 Inducible P53 nuclear
protein 2 (TP53INP2) is dual regulator of autophagy. These two are downregulated in
PIK-75 + Sorafenib treated Mahlavu which in turn may be downregulating cell death.
Transcription factor nuclear factor kappa B (NF-kB) together with Bcl-3 protein
(BCL3 gene) as a complex has a central role, increasing activity in response to immune
stress and inflammatory injuries, acting as an inhibitor of apoptosis. Bcl-3 over
expression known to be increasing sensitivity to apoptosis (Poveda et al., 2017). In
Mahlavu, TGX-221 combined with Sorafenib treatment revealed ablation of Bcl-3
may be the basis for its antagonistic action.

Early growth response 1 (EGR1), is one of the factors that targets PTEN, TP53 and
JUN. In most cancers EGR1 loss correlates with its tumor suppressor position (Gregg
& Fraizer, 2011; J. Yu et al., 2009). In this study, increase in EGR1 expression in
single PIK-75 treatment and decrease in expression with TGX-221 + Sorafenib
treatment in PTEN deficient Mahlavu cells were observed. EGR1 downregulation
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together with JUNB and FOSB correlated with TGX-221 + Sorafenib treated Mahlavu
cells antagonistic action to Sorafenib. Interestingly, even EGR1 downregulation was
not seen in PIK-75 and Sorafenib combined treatment, EGR1 target TP53 was
downregulated stimulating apoptosis (Figure 38).
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Figure 38. The sub-networks illustrating difference in EGR1 activity in Mahlavu cells. The
color of the nodes was arranged according to the logFC values from differential expression
analysis; up regulated genes with red and down regulated genes with blue.

The network analysis applied primarily using differentially expressed genes together
with the human protein-protein interaction network lead us to identify several
signaling pathways. Besides those network comparisons as discussed above, novel
drug targets were proposed based on random network constructions and network
topology features. Since the hub nodes are mainly part of hot topics or generally well-
studied proteins, to detect more novel proteins, a series of filtration was applied as
explained in the Methods chapter.
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Within the proposed drug targets, besides to differentially expressed genes, there were
genes mainly identified as Steiner nodes in the networks. For example, all the
prioritized genes in TGX-221 with Sorafenib treatment network for Mahlavu cell line
were Steiner. Growth differentiation factor 15 (GDF15 gene) was one of them. This
protein induces tumor angiogenesis as a response to chemotherapy (Dong et al., 2018)
and so it could be targeted as potential co-treatment for HCC. Delta-like 1 homolog,
DLK]I gene was also a Steiner node of PIK-75 and Sorafenib treatment network in
Huh7. DLK1 is a hepatic stem cell marker, and its overexpression is associated with
the cell progression in HCC cells (J. Huang et al., 2007). In a previous study, they
show that DLK1 knockdown suppresses cell proliferation and colony formation (Cai
et al., 2016; Xu et al., 2012). Thus, DLK1 could be a potential target to inhibit
progression gained through PI3K/AKT/mTOR pathway which is already targeted by
PIK-75 and Sorafenib in Huh7. DLK may mediate the reduction of progenitor cell
development after the malignancy is prohibited using the known kinase inhibitors.
Thus, DLK1 should be more studied as therapeutical agent in HCC.

BCL3 and ASIC are the two genes were highlighted in Mahlavu PIK-75 + Sorafenib
combinational treatment network. BCL3, is a protooncogene, regulating cell
proliferation (Tu et al., 2016) through cell cycle in HCC. PIK-75 + Sorafenib treatment
to highlighted cellular death and apoptosis, yet combining their action with BCL3,
may inhibit excessive growth of Mahlavu cells. Acid sensing ion channel 1a (ASICla)
is a proton gated cation channel regulating tumor migration and invasion recently
identified as one of drug resistance genes in HCC (Y. Zhang et al., 2017).

BolA family member 2 (BOLA2B gene) stimulates cell proliferation and is associated
with poor prognosis in HCC. In a recent study, it was revealed that knockout of BOLA?2
from a HCC type Hep3B cells demonstrated reduction in cell proliferation and tumor
growth, hence BOLA2 would be a potential therapeutic target for the treatment of
HCC metastasis (Luo et al., 2019). BOLA2B gene was a Steiner node and prioritized
in PIK-75 treated Mahlavu cells. In PTEN-deficient Mahlavu cell, combinational
treatment of PIK-75 + more successful than single treatment of PIK-75, hence a
combinational treatment targeting to PI3K-a, Sorafenib and BOLA2B gene would be
a better strategy. Hence, BOLA2 can be a potential drug target potentially combined
with other for clinical studies.

There are many studies establishing diabetes as a the stimulant factor in HCC
(Aleksandrova et al., 2016; El-Serag et al., 2004, 2006) tough the main mechanism is
still unknown. Previously, it was shown that a high glucose in HCC, a diabetes
characteristic, can fasten tumorigenesis process. Advanced glycosylation end product-
specific receptor (AGER) was one of the proteins upregulated in diabetes related to
Glucose metabolism. AGER was also found to be involved in liver carcinogenesis
(Qiao et al., 2016a). AGER gene was a Steiner node in TGX-221 + Sorafenib treated
Mahlavu network. The combination of TGX-221 + Sorafenib treatment resulted with
growth promotion in PTEN deficient Mahlavu cells, so that inhibition of PI3K-3
antagonizing Sorafenib function. Here, A GER inhibition together with Sorafenib could
be a clinical strategy for aggressive Mahlavu cells. By this way, one of the energy
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mechanisms would be blocked and a multi-kinase inhibitor, Sorafenib may potentially
work better in inhibition of cancer cells growth.

GAB?2, Grb2-associated binding protein 2 is a key protein in PI3K and ERK signaling
pathways which is closely related to cell proliferation and tumor progression (Y. Chen
et al., 2016). The overexpression of GAB2 gene was identified in HCC tissues in a
study. In that study, they also identified microRNA-663b targeting GAB2 to ablate
cancerous cell proliferation and invasion (Guo et al., 2019). In this study, AGER was
also upregulated in TGX-221 + Sorafenib and Sorafenib alone treated Huh7 cells.
Maybe using microRNA-663b together with TGX-221 + Sorafenib combination or
Sorafenib treatment may suppress cell proliferation which was still in function in Huh7
treatments.

AOX1, Aldehyde oxidase 1, is a highly expressed protein in the liver and associates
with the generation of reactive oxygen species. Studies on AOX1 revealed that it is
essential for energy generation and drug metabolism (Weigert et al., 2008). AOX gene
was upregulated in PIK-75 and Sorafenib combinatory treatment in Mahlavu. Since
the best working combination to eliminate the cancerous cells was PIK-75+Sorafenib
in PTEN deficient Mahlavu, AOX1 knockdown together with the same combination of
treatment in Mahlavu cell may destroy the energy metabolism of the cell diminishing
cellular progression.

Finally, AOXI and AGER genes were selected to be validated by mRNA expression
through qPCR experiments. Mahlavu and Huh7 cells were treated with Sorafenib or
its combinations with PIK-75 and TGX-221 inhibitors. The gene AGER was selected
because it is a pure Steiner node and not found in any DEG lists. Whereas AOX1 is in
both Steiner node and part of the DEG list. The experimental analysis was performed
at the CANSYL laboratory by one of my collogues. Initial gPCR result correlated and
validated the network analysis results. Knockdown experiments for AOX1 and AGER
genes were also performed on HCC cells to investigate the effects of these genes on
cell toxicity and proliferation. siRNA treatments resulted in significant knockdown of
both genes at 25 nM concentrations in Mahlavu and Huh7 cells after 48 h of treatment.
Moreover, real-time cell analysis has shown that, silencing AGER and AOXI
significantly inhibited growth of these cells with respect to negative control siRNA
treatments. Overall, results from in vitro experiments have supported and validated the
systems level network analysis results. AOX1 is considered one of the key biomarkers
in HCC and abnormal expression of AOX1 is correlated with the poor prognosis (Jovel
et al., 2018). AGER, also is shown as one of the main responsible factors in
tumorigenesis of HCC cells in the presence of high glucose for diabetes (Qiao et al.,
2016a).
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CHAPTER V

CONCLUSION

Hepatocellular carcinoma (HCC), one of the major cancer types, is a leading cause of
morbidity and mortality in patients with advanced liver disease. PI3K/Akt/mTOR is
the key pathway in HCC since it is a hub to essential functions consisting of regulating
cellular growth, glucose metabolism, apoptosis, cell proliferation, cell migration,
cellular modification, and cell cycle progression. Consequently, mutations in this
signaling pathway leads to constitutive expressions of Akt kinases. These kinases host
many downstream effectors like Bel-2, NF-kB, TFEB and MDM2 controlling cellular
survival and metabolism. Sorafenib is the only FDA approved therapeutic agent to
HCC serving as a multi-kinase inhibitor in this pathway, yet its single treatment cannot
effectively remove cancer cells. One of the reasons for Sorafenib’s ineffectiveness is
redundancy in the major signaling pathways in HCC.

An emerging strategy to avoid the redundant signaling pathways’ functioning is to
combine kinase inhibitors to repress multiple compensatory pathways instantaneously.
For an efficient screening of more than one combination of kinase inhibitors, next
generation sequencing technologies can be used. Analysis of whole transcriptome
statues of a targeted cell comparing to a negative control is very an effective approach
to capture whole differential regulations of the signaling pathways. Moreover, since
combinatory treatments affect more than one kinase, omics data should be interpreted
through top to bottom strategy. As human transcriptome hints thousands of protein-
protein interaction possibilities, a servant network-level understanding, and systems-
level analysis are needed.

This compressive network-level analysis of RNA-seq data show that combinatory
treatment of multi-kinase inhibitor Sorafenib and dual inhibitor of PI3Ki-a (PIK-75)
stimulates apoptosis both in Huh7 and Mahlavu HCC cell lines correlated with the
previous studies. While Sorafenib treatment is more effective in Huh7, PIK-75
treatment in Mahlavu is more successful than Sorafenib to stimulate cell death. The
combinational therapy of PI3Ki-fB (TGX-221) with Sorafenib may be more efficient in
Huh7 cells than PIK-75 combination considering enriched apoptotic pathways in the
network. Yet, PI3Ki-B (TGX-221) + Sorafenib treatment antagonizes apoptosis and
stimulates growth in Mahlavu, whereas single treatment with TGX-221 has a limited
action on both cell lines. This finding was correlated with the previous studies which
also shown that PI3K signaling is mainly through p110-f isoform when PTEN is
mutated and its inhibition leads p110-a isoform to be activated (Schwartz et al., 2016).
Detailed networks assisting for more deep understanding of molecular level actions of
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kinase inhibitions are marks of this study. The initial findings supporting these
relations were exploited in CANSYL laboratory and details of the study were
discussed in the introduction section.

Combination of targeted drugs to inhibit alternative compensatory pathways holds
great promise for effective treatment of cancer including HCC. As it has been clearly
shown in this study, system-level analysis of cellular networks in response to
combination treatments and the investigation of the regulation signaling pathways are
of necessity, because such treatments may result in an opposite action. The importance
of context-dependent (PTEN status) PI3K/Akt/mTOR signaling inhibition must be
taken into consideration during the use of isoform specific or pan-PI3K inhibitors in
combination therapies with Sorafenib with respect to a resistance in HCC cells. In this
study, many specific or general effects of kinase inhibitors were observed and
represented through easy-to-observe visualizations of the gene-to-gene interaction
networks.

Furthermore, through network-topology level prioritizations, this thesis proposes drug
targets that potentially could be studied more in the future. Expression levels two of
the predicted drug targets in this study, AUX! and AGER genes, were shown to be
correlated with the network analysis in CANSYL laboratory. Their qRT-PCR
expression verifications were complete. The preliminary results of silencing
experiments were also indicated an efficient knock-down of those genes resulted with
a decline in growth of these cells.

Finally, the work is presented with this thesis is a united study that born and grow in
CANSYL laboratory. My contribution to prove the original hypothesis of the thesis
brings the systems level analysis. My insight is that this study will set an example for
other cancer studies based on the methodology developed in this thesis work.
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APPENDIX A

EXPERIMENTAL FIGURES

Characterization of HCC cells in the presence of small molecules inhibitors were
explained in Figure 8. Realtime cell growth analysis of Huh7 and Mahlavu cells with
increasing concentrations (40uM, 20uM, 10uM, 5uM, 2.5uM) of Sorafenib, PI3K
inhibitor LY294002, PI3Ki-f inhibitor (TGX-22) and PI3Ki-a (1pM, 0.5uM, 0.25uM,
0.125uM, 0.0625uM) PI3Ki-a (PIK-75) along with DMSO vehicle control (Control is
black and increasing drug concentrations is given in grey level, highest concentration is
being the darkest). These figures are published at (Narci et al., 2021).
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Figure 39. Realtime cell growth analysis of Huh7 and Mahlavu cells with increasing
concentrations.

115



PI3Ki-B

Huh7

Mahlawu

Figure 40. Wound healing assay for 24 and 48 hours for cell migration
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Figure 41. Cell cycle analysis with flow cytometry. Sub-G1population represents apoptotic cells.
10pM of Sorafenib, LY294002 and PI3Ki-B(TGX-221) and 0.1uM of PI3Ki-a(PIK-75) were used.

Real-time cell growth analysis was mentioned in Figure 10. Cell index measurements
were obtained by RT-CES software. DMSO was used as negative control A. B. 72 hours
of the percent growth inhibition values were used to calculate drug interactions with The
SynergyFinder web application. Positive delta score reflects synergistic and negative
score reflects antagonistic drug interactions. Experiments were performed in triplicate.
Corresponding figures are published in (Narci et al., 2021).
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Figure 42. Real-time cell growth analysis. Human liver cancer cells Huh7 and Mahlavu (MV)
were treated with the Sorafenib, PI3Ki-o.and PI3Ki-f alone or in combination with increasing
concentrations as indicated. Cell index measurements were obtained by RT-CES software.
DMSO was used as negative control.
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Figure 43. SynergyFinder view for Huh7 treated with Sorafenib and PI3Ki-a.
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Figure 44. SynergyFinder view for Huh7 treated with Sorafenib and PI3Ki-p.
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Figure 45. SynergyFinder view for Mahlavu treated with Sorafenib and PI3Ki-a.
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Figure 46. SynergyFinder view for Mahlavu treated with Sorafenib and PI3Ki-p.
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APPENDIX B

GITHUB REPOSITORY

The raw RNA-seq files used in this study can be found in NCBI SRA with though
PRINAS556552 id and the results of this study shared in CANSYL GitHub repository at;
https://github.com/cansyl/Isoform-spesific-PI3K-inhibitor-analysis.

Codes: Includes the codes in this study.

bingo_functions.r : reads a list of .bgo results from BINGO tool, merges,
annotates and filters by evidence codes.

common_dispersion.r: calculates common dispersion for Huh7 and
Mahlavu RNA-seq differential expression analysis results using a list of
housekeeping genes.

correlation.r:  Calculates and plots correlation between RNA-seq
differential expression analysis results.

edgeR noRep.r: Given a count table including control vs sample
expression values and filtration values for cpm, dispersion, FDR and P
value Differentially Expressed Genes calculated and annotated and written
into the output file.

heatmaply.r: The heatmap function to draw heatmap dendrograms.

network.py: Calculates centrality metrics for PCST networks using raw .sif
files.

prioritization.r: The code used to prioritize in the networks separately and
visualize the nodes together using ggplot.

FASTQC reports: Includes FASTQC reports in zip files for each kinase inhibitors.
HALPHA; PI3Ki-a inhibitor (PIK-75), HSALPHA; PIK-75 and Sorafenib, HBETA;
PI3Ki-B inhibitor (TGX-221), HSBETA; TGX-221 and Sorafenib, HSOR; Sorafenib
treatments of Huh7 cells and MALPHA; PI3Ki-a inhibitor (PIK-75), MSALPHA; PIK-
75 and Sorafenib, MBETA; PI3Ki-B inhibitor (TGX-221), MSBETA; TGX-221 and
Sorafenib, H-MSOR; Sorafenib treatments of Mahlavu cells.
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Gene_Ontologies: Includes the excel file for gene ontologies found for each cluster for
each treatment.

Heatmaply images: The dendrograms created for this thesis study were made using
heatmaply which offers interactive analysis though HTML generation. Produced HTML
files were included in this directory.

Networks-SIF files: The network visualizations made though Cytoscape tool, the final
network representations provided in the .cys formatted files provided in this directory. The
files can be open using Cytoscape tool (File -> Open)

Required Files: Additional text formatted files required for running of the codes included.
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APPENDIX C

COMMEND LINE AND PARAMETERS OF THE TOOLS

An example flow of the tools and parameters shown below.

1. RNA-Seq workflow:

fastgc --noextract --outdir . --threads 1 input.fqg.gz

bwa index

GRCh38 full analysis set plus decoy hla.phiX1l74.fa ; tar
-cf

GRCh38 full analysis set plus decoy hla.phiX1l74.fa.tar
GRCh38 full analysis set plus decoy hla.phiX174.fa *.amb
*.ann *.bwt *.pac *.sa *.alt

tophat-2.1.0.Linux x86 64/tophat2 --num-threads 8 --
output-dir ./tophat out --no-coverage-search --keep-
fasta-order --GTF Homo sapiens.GRCh38.84.gtf
./GRCh38 full analysis set plus decoy hla.phiX174
input.fq.gz && mv tophat out/align summary.txt
tophat out/input.fq.gz align summary.txt && mv
tophat out/deletions.bed

tophat out/input.fq.gz deletions.bed && mv

tophat out/insertions.bed

tophat out/input.fq.gz insertions.bed && mv

tophat out/junctions.bed

tophat out/input.fq.gz junctions.bed && mv

tophat out/accepted hits.bam

tophat out/input.fq.gz accepted hits.bam && mv
tophat out/unmapped.bam

tophat out/input.fq.gz unmapped.bam

bamtools/bin/bamtools index -in
input.fg.gz accepted hits.bam

Java -Xmx2048M -jar picard-tools-1.140/picard.jar
CollectAlignmentSummaryMetrics
INPUT=/TopHat2/tophat out/input.fq.gz accepted hits.bam
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OUTPUT=input.fqg.gz accepted hits.summary metrics.txt
REFERENCE SEQUENCE=GRCh38 full analysis set plus decoy hl
a.phiX174.fa VALIDATION STRINGENCY=SILENT

htseg-count -f bam -r name -0
input.fg.gz accepted hits.annotated.sam
BamTools Index/HDMSO.fq.gz accepted hits.bam
Homo sapiens.GRCh38.84.gtf >
input.fg.gz accepted hits.table.txt

perl /edgeR-noReplicate/prepare countMatrix.pl
control.fg.gz accepted hits.table.txt
input.fg.gz accepted hits.table.txt input CountMatrix.txt

Rscript edgeR predict dispersion.r
boentempo HK genes mart export.txt count matrix.txt >

analysis-output.txt

Rscript edgeR noRep.r input CountMatrix.txt 5 0.045 2 -2
0.05 input CountMatrix 0.05 0.045 2.txt

Rscript heatmaply.r input logFC matrix.csv

2. Network construction workflow:

Rscript EdgeRfile2PCSTfile.r
input CountMatrix 0.05 0.045 2.txt
input 045 2 PCSTfile.txt

python /forest-tuner.py --workingDir /home/ --forestPath
/OmicsIntegrator/scripts/forest.py —--msgsteinerPath
/msgsteiner-1.3/msgsteiner --edgePath

/forest interaction filtbyzeropointseven v2.txt --
prizePath input CountMatrix ALL PCSTfile.txt --
outputsName input CountMatrix ALL PCSTfile output --
dataPath input CountMatrix ALL PCSTfile data.tsv --
logPath input CountMatrix ALL PCSTfile logs.log && zip -r
input CountMatrix ALL PCSTfile output.zip

/home/input CountMatrix ALL PCSTfile output/

python makeConf.py -w 7.75 -b 5.5 -D 10 -mu 0.04 -
garnetBeta undefined -noise undefined && python
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/OmicsIntegrator/scripts/forest.py -p forest-

py Prepare PCSTinput/045 2 PCSTfile.txt -e

/forest interaction filtbyzeropointseven v2.txt --msgpath
/msgsteiner-1.3/msgsteiner -c conf.txt --outlabel HALPHA
--shuffledPrizes 5

python makeConf.py -w 5 -b 7 -D 10 -mu 0.04 -garnetBeta
undefined -noise undefined && python
/OmicsIntegrator/scripts/forest.py -p /forest-

py Prepare PCSTinput/5 PCSTfile.txt -e

forest interaction filtbyzeropointseven v2.txt --msgpath
/msgsteiner-1.3/msgsteiner -c conf.txt --outlabel
MSOR 1 5 --randomTerminals 100

python networkx.py -sif input optimalForest.sif -o
input networkx.txt

Rscript prioritization.r random nodeattributes/
centrality measures/
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APPENDIX D

RNA-SEQ FASTQ QUALITY REPORTS

The quality scores across all bases of raw reads for Huh7 and Mahlavu cells; DMSO, PIK-
75, TGX-221, Sorafenib, PIK-75 and Sorafenib combined and TGX-221 and Sorafenib
combined treatments were represented in this section.
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Figure 47: Quality score plot for DMSO treated Huh7 and Mahlavu cells
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Figure 48: Quality score plots for PIK-75 treated Huh7 and Mahlavu cells
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Figure 49: Quality score plots for TGX-221 treated Huh7 and Mahlavu cells
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Figure 50: Quality score plots for Sorafenib treated Huh7 and Mahlavu cells
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Figure 51: Quality score plots for combinational treatment of PIK-75 and Sorafenib to Huh7
and Mahlavu cells
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Figure 52: Quality scores for combinational treatment of TGX-221 and Sorafenib to Huh7
and Mahlavu cells
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APPENDIX E

NETWORK CLUSTER GENE ENRICHMENTS

In this section, the cluster specific gene enrichments for kinase inhibitor treated Huh7
and Mahlavu cells were listed. The pathway gene set enrichment analysis was performed
using BiNGO. Please see the methods section to find how the analyses were carried out.
In the table which column shows the category of the enrichment: F: Cellular Function, P:
Cellular Process, and C: Cellular Component.

Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells

GOID Description which  Evidence Cluster
G0:0043565 sequence-specific DNA binding F IDA 11
GO0:0030154  cell differentiation P IDA 11
GO0:0000307 cyclin-dependent  protein  kinase C IDA 11
holoenzyme complex
GO:0001701 ' in utero embryonic development P IEP 10
G0:0030492 hemoglobin binding F IDA 10
GO:0009653 ' anatomical structure morphogenesis P IMP 10
GO:0050801 ' ion homeostasis P IMP 10
GO0:0007399 nervous system development P IMP 10
GO0:0030003 ' cellular cation homeostasis P IDA 10
GO:0006333  chromatin assembly or disassembly P IMP 14
GO:0071103 DNA conformation change P IDA 14
GO:0006301  postreplication repair P IDA 14
GO0:0008203 ' cholesterol metabolic process P IDA 14
GO:0005777 peroxisome C IDA 14
G0:0008299  isoprenoid biosynthetic process P IDA 14
GO:0034622  cellular macromolecular complex P IDA 14
assembly
G0:0002455 humoral immune response mediated P IMP 7
by circulating immunoglobulin
GO0:0051604 protein maturation P IDA 7
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Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells ( continued )

GO:0002541

G0:0002250
G0O:0002253
GO:0000152
G0O:0005680
GO:0031401

GO:0070695
G0O:0030247
GO:0005539
GO:0009611
GO:0006953
GO:0030193
GO:0061041
GO:0006952
GO:0050716

GO:0050718

GO:0033198
GO:0045087
GO:0000186
GO:0006139

GO:0016226
GO:0006418

GO:0034645

GO:0008156

G0O:0006520
GO:0005388
GO:0015085

GO:0016462
GO:0016486
GO:0017111

activation
involved
response
adaptive immune response

of plasma proteins
in acute inflammatory

activation of immune response
nuclear ubiquitin ligase complex
anaphase-promoting complex

positive  regulation
modification process
FHF complex

of protein

polysaccharide binding
glycosaminoglycan binding
response to wounding
acute-phase response
regulation of blood coagulation
regulation of wound healing
defense response

positive regulation of interleukin-1
secretion

positive regulation of interleukin-1
beta secretion

response to ATP

innate immune response
activation of MAPKK activity

nucleobase-containing
metabolic process
iron-sulfur cluster assembly

compound

tRNA aminoacylation for protein
translation

cellular macromolecule biosynthetic
process
negative
replication
cellular amino acid metabolic process

regulation of DNA

calcium-transporting ATPase activity

calcium ion transmembrane

transporter activity
pyrophosphatase activity

peptide hormone processing
nucleoside-triphosphatase activity
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Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells  ( continued )
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Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells ( continued )

G0O:0005923
G0O:0070160
GO:0016327
GO:0043296
GO:0001726
GO:0043407

GO:0070373

GO:0000188
GO:0007623

Table 17: Cluster specific gene ontologies for TGX-221 treated Huh7 cells

GOID
GO:0006621
GO:0035437

GO:0003756
GO:0045454
GO:0003865

G0O:0006740
G0O:0008202
GO:0009055
GO:0016052
GO:0016229
GO:0016491
GO:0017057
G0O:0019322
GO:0044275

GO:0055114

Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells

GOID

tight junction

occluding junction
apicolateral plasma membrane
apical junction complex

ruffle

negative regulation of MAP kinase
activity

negative regulation of ERKI and
ERK2 cascade

inactivation of MAPK activity

circadian rhythm

Description
protein retention in ER lumen

maintenance of protein localization
in endoplasmic reticulum

protein disulfide isomerase activity
cell redox homeostasis
3-ox0-5-alpha-steroid 4-
dehydrogenase activity

NADPH regeneration

steroid metabolic process

electron carrier activity

carbohydrate catabolic process
steroid dehydrogenase activity
oxidoreductase activity
6-phosphogluconolactonase activity
pentose biosynthetic process
carbohydrate

cellular catabolic

process
oxidation-reduction process

Description

C
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C
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C
P

P

P
P

which
P
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Which Evidence Cluster

GO0:0007026 negative regulation of microtubule P

depolymerization
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Table 16: Cluster specific gene ontologies for PIK-75 treated Huh7 cells ( continued )


Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells ( continued )

GO:0031111

GO:0000188
G0O:0043407

GO:0000165
GO:0016788

G0O:0008203
GO:0005506
G0O:0008202
G0O:0004506
GO:0008398
GO:0022618
GO:0000375

GO:0018024

G0O:0000245
GO:0042054
GO:0006974
GO:0032777

GO:0006301
GO:0008283
GO:0080008
G0O:0006282
G0O:0006284
GO:0007178

GO:0046332
GO:0005391

G0O:0005890

GO:0030433

GO:0051787
GO:0004571

negative regulation of microtubule
polymerization or depolymerization
inactivation of MAPK activity
negative regulation of MAP kinase
activity

MAPK cascade

hydrolase activity, acting on ester
bonds

cholesterol metabolic process

iron ion binding

steroid metabolic process

squalene monooxygenase activity
sterol 14-demethylase activity
ribonucleoprotein complex assembly
RNA splicing, via transesterification
reactions
histone-lysine
activity
spliceosomal complex assembly

N-methyltransferase

histone methyltransferase activity
response to DNA damage stimulus

Piccolo NuA4
acetyltransferase complex
postreplication repair

histone

cell proliferation

CUL4 RING ubiquitin ligase complex
regulation of DNA repair
base-excision repair

transmembrane  receptor  protein
serine/threonine  kinase  signaling
pathway

SMAD binding

sodium:potassium-exchanging
ATPase activity
sodium:potassium-exchanging
ATPase complex
ER-associated
process
misfolded protein binding

protein  catabolic

mannosyl-oligosaccharide 1,2-alpha-
mannosidase activity
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Table 18: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Huh7 cells ( continued )

G0:0005788  endoplasmic reticulum lumen C IDA 7

GO0:0003700 sequence-specific DNA  binding F IDA 6
transcription factor activity

G0O:0034976 response to endoplasmic reticulum P IMP 6
stress

GO0:0006520 = cellular amino acid metabolic process P IDA 6

GO:0071310 = cellular response to organic substance P IDA 6

GO:0016255 attachment of GPI anchor to protein P IMP 12

GO0:0006506 = GPI anchor biosynthetic process P IDA 12

GO:0008654 phospholipid biosynthetic process P IDA 12

GO:0006650 = glycerophospholipid metabolic P IDA 12
process

GO:0008408  3'-5' exonuclease activity F IDA 12

G0:0042254 ribosome biogenesis P IMP 12

GO:0060738 = epithelial-mesenchymal signaling P IDA 11
involved in  prostate gland
development

GO0:0043627 response to estrogen stimulus P IDA 11

GO0:0014902 myotube differentiation P IMP 11

GO:0009725 ' response to hormone stimulus P IDA 11

GO:0008518 ' reduced folate carrier activity F IDA 10

G0:0046483  heterocycle metabolic process P IDA 10

GO:0051173 positive regulation of nitrogen P IGI 10
compound metabolic process

GO:0031328 positive regulation of cellular P IDA 10

biosynthetic process

Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7

cells

GOID Description Which Evidence Cluster

G0:0043296 apical junction complex C IDA 9

GO:0005911  cell-cell junction C IDA 9

GO0:0030165 PDZ domain binding F IPI 9

GO:0000188 ' inactivation of MAPK activity P IMP 6

GO:0006469 negative regulation of protein kinase P IDA 6
activity

GO:0017017 MAP kinase tyrosine/serine/threonine F IDA 6
phosphatase activity

GO0:0033549 MAP kinase phosphatase activity F IDA 6
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Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7
cells (continued )

GO:0033673
GO:0005741
GO:0016298
GO:0005975
GO:0006631
GO:0006641
G0O:0004864
G0O:0019208
GO:0019888
GO:0016192
GO:0048193
G0O:0030127
GO:0012507

G0O:0030282
GO:0031214
G0O:0060348
GO:0001501
GO:0030154
G0O:0032502
GO:0051387

GO:0040037

GO:0042127
GO:0070373

GO:0043410
G0O:0008284
GO:0046580

GO:0051058

G0O:0030099
GO:0048705
GO:0060017
GO:0035196

negative regulation of kinase activity
mitochondrial outer membrane
lipase activity

carbohydrate metabolic process

fatty acid metabolic process
triglyceride metabolic process
protein phosphatase inhibitor activity
phosphatase regulator activity
protein phosphatase regulator activity
vesicle-mediated transport

Golgi vesicle transport

COPII vesicle coat

ER to Golgi
membrane
bone mineralization

transport  vesicle

biomineral tissue development
bone development

skeletal system development
cell differentiation
developmental process

negative regulation of nerve growth
factor receptor signaling pathway

negative regulation of fibroblast
growth factor receptor signaling
pathway

regulation of cell proliferation
negative regulation of ERK1 and ERK2
cascade

positive regulation of MAPK cascade
positive regulation of cell proliferation
negative regulation of Ras protein
signal transduction

negative regulation of small GTPase
mediated signal transduction

myeloid cell differentiation

skeletal system morphogenesis
parathyroid gland development

production of miRNAs involved in
gene silencing by miRNA
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Table 19: Cluster specific gene ontologies for TGX-221 and Sorafenib treated Huh7

cells (continued )

GO:0034189

G0O:0010324
GO:0034185
G0O:0030662
GO:0021766
GO:0033257
G0:0002250
G0O:0002286

GO:0042752
G0O:0002366

G0O:0002520
GO:0007623
G0O:0008080
GO:0016407
GO:0016410
GO:0006474

GO:0031365

GO:0016740
GO:0001836

GO:0008637
GO:0010941
GO:0042981
GO:0043067
GO:0019104
GO:0007257
GO:0043507

G0O:0043406

GO:0006970
G0O:0008360
GO:0000186
G0O:0022604

very-low-density lipoprotein particle
binding

membrane invagination

apolipoprotein binding

coated vesicle membrane
hippocampus development
Bcl3/NF-kB2 complex

adaptive immune response

T cell activation involved in immune
response
regulation of circadian rhythm

leukocyte activation involved in

immune response
immune system development

circadian rhythm
N-acetyltransferase activity
acetyltransferase activity
N-acyltransferase activity

N-terminal ~ protein amino  acid
acetylation
N-terminal ~ protein amino  acid
modification

transferase activity
release  of

mitochondria
apoptotic mitochondrial changes

cytochrome ¢ from

regulation of cell death

regulation of apoptotic process
regulation of programmed cell death
DNA N-glycosylase activity
activation of JUN kinase activity

positive regulation of JUN kinase
activity

positive regulation of MAP kinase
activity

response to osmotic stress

regulation of cell shape

activation of MAPKK activity

regulation of cell morphogenesis
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Table 20: Cluster specific gene ontologies for Sorafenib treated Huh7 cells

GOID
G0O:0043407

G0O:0034260

GO:0051387

G0O:0040037

GO:0051386

GO:0009653
G0O:0032502
GO:0070373

GO:0051058

G0O:0003824
GO:0046033
GO:0006796

GO:0043687

GO:0008138

GO:0044267
G0O:0006470
G0O:0000287
GO:0016773

GO:0003756
GO:0045216
GO:0006621
GO:0035437

G0O:0034329
GO:0045454

Description

negative regulation of MAP kinase
activity
negative
activity
negative regulation of nerve growth
factor receptor signaling pathway
negative regulation of fibroblast
growth factor receptor signaling
pathway

regulation of nerve growth factor
receptor signaling pathway
anatomical structure morphogenesis

regulation of GTPase

developmental process

negative regulation of ERKI and
ERK2 cascade

negative regulation of small GTPase
mediated signal transduction
catalytic activity

AMP metabolic process

phosphate-containing compound
metabolic process

post-translational protein
modification

protein tyrosine/serine/threonine

phosphatase activity

cellular protein metabolic process
protein dephosphorylation
magnesium ion binding
phosphotransferase activity, alcohol

group as acceptor
protein disulfide isomerase activity

cell-cell junction organization
protein retention in ER lumen

maintenance of protein localization in
endoplasmic reticulum
cell junction assembly

cell redox homeostasis
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Table 20: Cluster specific gene ontologies for Sorafenib treated Huh7 cells (continued )

GO:0006974
GO:0071501
G0O:0043240
GO:0032933
G0:0002102
GO:0046777
GO:0005913
GO:0030154
G0O:0006694
G0O:0006695
GO:0044255
GO:0055114
GO:0016491
GO:0032787

GO:0016628

GO:0015030
GO:0015031
GO:0045184
GO:0008104
G0O:0003924
GO:0016192
G0O:0033036
GO:0006879
GO:0050750

GO:0042157
GO:0001954

GO:0042592
GO:0032872

GO:0005248

GO:0043666

response to DNA damage stimulus
cellular response to sterol depletion
Fanconi anaemia nuclear complex
SREBP-mediated signaling pathway
podosome

protein autophosphorylation
cell-cell adherens junction

cell differentiation

steroid biosynthetic process
cholesterol biosynthetic process
cellular lipid metabolic process
oxidation-reduction process
oxidoreductase activity

monocarboxylic acid  metabolic

process
oxidoreductase activity, acting on the
CH-CH group of donors, NAD or
NADP as acceptor

Cajal body

protein transport

establishment of protein localization
protein localization

GTPase activity
vesicle-mediated transport
macromolecule localization
cellular iron ion homeostasis
low-density  lipoprotein
receptor binding

lipoprotein metabolic process

particle

positive regulation of cell-matrix
adhesion

homeostatic process

regulation of stress-activated MAPK
cascade

voltage-gated  sodium  channel
activity
regulation of phosphoprotein

phosphatase activity
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Table 20: Cluster specific gene ontologies for Sorafenib treated Huh7 cells  (continued )


Table 21: Cluster specific gene ontologies for PIK-75 treated Mahlavu cells

GOID

GO:0016272
G0O:0005829
GO:0047710

GO:0031941
GO:0005884
GO:0015629
GO:0005179
G0O:0006260
GO:0006259
GO:0006325
GO:0051276
GO:0000785
GO:0004965

GO:0007214

GO:0016917
G0O:0030054
GO:0008066
GO:0032376

GO:0032374
GO:0032488
G0O:0090084

G0O:0034380

GO:0065005
GO:0070325
GO:0008285

GO:0043691
GO:0001558
GO:0007266
GO:0042632

Description

prefoldin complex
cytosol
bis(5'-adenosyl)-triphosphatase
activity

filamentous actin

actin filament

actin cytoskeleton
hormone activity

DNA replication

DNA metabolic process
chromatin organization
chromosome organization
chromatin

G-protein coupled GABA receptor
activity

gamma-aminobutyric acid signaling
pathway

GABA receptor activity

cell junction

glutamate receptor activity

positive regulation of cholesterol
transport

regulation of cholesterol transport
Cdc42 protein signal transduction
negative regulation of inclusion
body assembly
high-density
assembly
protein-lipid complex assembly

lipoprotein  particle

lipoprotein particle receptor binding

negative  regulation of  cell
proliferation
reverse cholesterol transport

regulation of cell growth
Rho protein signal transduction
cholesterol homeostasis
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Table 22: Cluster specific gene ontologies for TGX-221 treated Mahlavu cells

GOID

GO:0002237
GO:0042742
GO:0001932
GO:0009617
GO:0032755

GO:0050830

GO:0032675
GO:0007420
GO:0031016
GO:0004180
GO:0004181
GO:0008235

Description

response to molecule of bacterial origin
defense response to bacterium
regulation of protein phosphorylation
response to bacterium

positive regulation of interleukin-6
production
defense response to Gram-positive
bacterium
regulation of interleukin-6 production

brain development

pancreas development
carboxypeptidase activity
metallocarboxypeptidase activity
metalloexopeptidase activity
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Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu

cells

GOID

GO:0004558
GO:0046483
GO:0015085

GO:0000421
GO:0016327
G0O:0043296
GO:0005911
GO:0008509

GO:0005452
GO:0015301
GO:0016323
GO:0004965

G0O:0030695

Description
alpha-glucosidase activity
heterocycle metabolic process

calcium ion transmembrane

transporter activity
autophagic vacuole membrane

apicolateral plasma membrane
apical junction complex
cell-cell junction

anion transmembrane
activity
inorganic anion exchanger activity

transporter

anion:anion antiporter activity
basolateral plasma membrane

G-protein coupled GABA receptor
activity
GTPase regulator activity
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Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu
cells ( continued )

GO:0005355

GO:0070776

GO:0016592
GO:0010887

GO:0010875

GO:0017127
GO:0032376

GO:0006414
G0O:0022627
GO:0001775
GO:0001819

GO:0016174
GO:0032727

GO:0006952
GO:0001774
GO:0032481

GO:0006885
GO:0015078

GO:0006814
G0O:0006024

G0O:0006390

GO:0042645
GO:0006139

GO:0051607
G0O:0002684

GO:0050863
GO:0032673

glucose transmembrane transporter
activity
MOZ/MORF histone

acetyltransferase complex

mediator complex

negative regulation of cholesterol
storage

positive regulation of cholesterol
efflux

cholesterol transporter activity
positive regulation of cholesterol
transport

translational elongation

cytosolic small ribosomal subunit
cell activation
positive regulation of cytokine

production
NAD(P)H oxidase activity

positive regulation of interferon-
alpha production
defense response

microglial cell activation

positive regulation of type I
interferon production
regulation of pH

hydrogen ion  transmembrane
transporter activity

sodium ion transport

glycosaminoglycan biosynthetic
process

transcription from mitochondrial
promoter

mitochondrial nucleoid
nucleobase-containing
metabolic process
defense response to virus

compound

positive regulation of immune
system process

regulation of T cell activation

regulation of interleukin-4

production
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Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu
cells ( continued )

GO:0004674 protein  serine/threonine  kinase F IDA 22
activity

GO:0050870 positive regulation of T «cell P IDA 22
activation

GO:0031461 cullin-RING  ubiquitin ~ ligase C IDA 21
complex

GO:0000151  ubiquitin ligase complex C IDA 21

GO:0032446 protein modification by small P IDA 21
protein conjugation

GO:0008630 DNA damage response, signal P IDA 20
transduction resulting in induction of
apoptosis

GO:0042770 signal transduction in response to P IDA 20
DNA damage

G0:0002098 tRNA wobble uridine modification P IDA 20

G0O:0004594 pantothenate kinase activity F IDA 20

GO:0030056 hemidesmosome C IDA 20

GO:0043065 positive regulation of apoptotic P IDA 20
process

GO0:0043068 positive regulation of programmed P IDA 20
cell death

GO:0090083 regulation of inclusion body P IDA 2
assembly

GO:0016628  oxidoreductase activity, acting on F IDA 2
the CH-CH group of donors, NAD or
NADP as acceptor

GO:0090084 negative regulation of inclusion P IDA 2
body assembly

GO:0007264 small GTPase mediated signal P IDA 19
transduction

GO:0001738 morphogenesis of a polarized P IDA 19
epithelium

GO:0012506  vesicle membrane C IDA 18

GO:0030659 cytoplasmic vesicle membrane C IDA 18

G0:0030658  transport vesicle membrane C IDA 18

GO:0012505 endomembrane system C IDA 18

G0O:0030121 = AP-1 adaptor complex C IDA 18

GO:0016272  prefoldin complex C IDA 17

GO:0030983 mismatched DNA binding F IDA 17

G0O:0006298 mismatch repair P IDA 17

GO:0030968 endoplasmic reticulum unfolded P IDA 15

protein response
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Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu
cells ( continued )

GO:0034976

G0O:0000278
GO:0009411
GO:0045948

GO:0001523
GO:0055114
GO:0047035

G0O:0009890

G0O:0009083

G0O:0009308
GO:0006695
G0O:0004080

GO:0071110
GO:0043170
GO:0010942
GO:0034645

GO:0006164

G0O:0003993
GO:0030833

GO:0031333

GO:0032488
G0O:0008203
GO:0016192
GO:0016569
GO:0003735
GO:0032728

GO:0050776
GO:0042116
GO:0050650

response to endoplasmic reticulum
stress

mitotic cell cycle

response to UV

positive regulation of translational
initiation

retinoid metabolic process
oxidation-reduction process
testosterone dehydrogenase (NAD+)
activity

negative regulation of biosynthetic
process

branched chain family amino acid
catabolic process

amine metabolic process

cholesterol biosynthetic process
biotin-[propionyl-CoA-carboxylase
(ATP-hydrolyzing)] ligase activity
histone biotinylation
macromolecule metabolic process
positive regulation of cell death
cellular macromolecule biosynthetic
process
purine
process
acid phosphatase activity

nucleotide  biosynthetic

regulation of actin  filament
polymerization
negative regulation of protein

complex assembly
Cdc42 protein signal transduction

cholesterol metabolic process
vesicle-mediated transport

covalent chromatin modification
structural constituent of ribosome
positive regulation of interferon-beta
production

regulation of immune response
macrophage activation
chondroitin  sulfate
biosynthetic process

proteoglycan
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Table 23: Cluster specific gene ontologies for PIK-75 and Sorafenib treated Mahlavu
cells ( continued )

GO:0030166
G0O:0007005
G0O:0002682

GO:0080008

G0O:0034227
G0O:0042026
GO:0051056

G0O:0007059
GO:0006986
GO:0009416
GO:0006776
GO:0008265

GO:0030031
G0O:0006091

GO:0018271
GO:0008536
GO:0031625
GO:0030742

Table 24: Cluster specific gene ontologies for PI3Ki-beta and Sorafenib treated Mahlavu

cells

GOID

GO:0006695
GO:0008610
G0O:0032933
GO:0012507

GO:0016628

GO:0030135

GO:0005324

GO:0045218

proteoglycan biosynthetic process
mitochondrion organization

regulation of immune system
process

CUL4 RING ubiquitin ligase
complex

tRNA thio-modification

protein refolding

regulation of small GTPase

mediated signal transduction
chromosome segregation

response to unfolded protein
response to light stimulus
vitamin A metabolic process

Mo-molybdopterin cofactor

sulfurase activity

cell projection assembly

generation of precursor metabolites
and energy

biotin-protein ligase activity

Ran GTPase binding

ubiquitin protein ligase binding
GTP-dependent protein binding

Description

cholesterol biosynthetic process
lipid biosynthetic process
SREBP-mediated signaling pathway
ER to Golgi
membrane
oxidoreductase activity, acting on the
CH-CH group of donors, NAD or
NADP as acceptor

coated vesicle

transport  vesicle

long-chain fatty acid
activity
zonula adherens maintenance

transporter
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Evidence Cluster

IMP
IMP
IDA
IDA

IDA

IDA
IGI

IMP

26
24
22

21

20
2
19

15
15
13
12
12

11
10

1
7
2
19
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Table 24: Cluster specific gene ontologies for PI3Ki-beta and Sorafenib treated Mahlavu
cells ( continued )

GO:0005815 microtubule organizing center C IDA 7
G0:0045217  cell-cell junction maintenance P IMP 7
GO0:0090136  epithelial cell-cell adhesion P IMP 7
GO:0003774 motor activity F IDA 7
GO:0051908 ' double-stranded DNA specific 5'-3' F IDA 7
exodeoxyribonuclease activity
GO:0016327 apicolateral plasma membrane C IDA 7
GO:0016787 hydrolase activity F IDA 7
G0:0006720 ' isoprenoid metabolic process P IDA 6
G0:0033257 Bcl3/NF-kB2 complex C IDA 4
GO:0010608 ' posttranscriptional regulation of gene P IMP 4
expression
GO:0015858 nucleoside transport P IDA 3

Table 25: Cluster specific gene ontologies for Sorafenib treated Mahlavu cells

GOID Description which  Evidence Cluster

GO:0006469 negative regulation of protein kinase P IMP 5
activity

GO0:0033673 negative regulation of kinase activity P IDA 5

GO0:0042325 ' regulation of phosphorylation P IMP 5

G0:0005947 = mitochondrial alpha-ketoglutarate C IDA 6
dehydrogenase complex

GO:0006550 isoleucine catabolic process P IMP 6

GO:0009083 ' branched chain family amino acid P IDA 6
catabolic process

GO:0016779 nucleotidyltransferase activity F EXP 2
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