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ABSTRACT

ANALYSIS AND IMPLEMENTATION OF BINARY POLYNOMIAL
MULTIPLICATION

OLUDO, Mary Achieng

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2021, 47 pages

N. Koblitz and V. Miller originally proposed the concept of elliptic curve cryptogra-
phy in 1985. It is fast gaining popularity in public key cryptosystems as it boasts of
an advantage over current public key cryptosystems, that is, the requirement of the
key size be smaller and still maintain the same level of security. It takes advantage of
elliptic curves’ mathematical properties in finite fields. Elliptic curve cryptographic
systems perform operations on points on elliptic curves. Elliptic curves can be repre-
sented over prime fields and can also be represented over binary fields. In the binary
field representation, the elements of these finite fields are binary polynomials. Poly-
nomial multiplication is a key operation in binary field elliptic curve cryptographic
implementation and hence an area of interest in cryptography. In this thesis,we anal-
yse some polynomial multiplication algorithms over binary fields. For 2-way algo-
rithms we investigate schoolbook, Karatsuba and refined Karatsuba and for 3-way
algorithms we investigate schoolbook, Karatsuba and CNH 3-way split algorithms.
We define a 64-bit by 64-bit multiplication as the smallest unit of computation for a
polynomial multiplication which can also be improved by the sliding window method.
We have observed that an optimal size of eight for the window size is attained with a
time memory trade off.
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ÖZ

İKİLİK TABANDA POLİNOMLARIN ÇARPIMININ ANALİZİ VE
UYGULANMASI

OLUDO, Mary Achieng

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2021, 47 sayfa

N. Koblitz ve V. Miller ilk olarak 1985 yılında eliptik eğri kriptografisi kavramını
önerdiler. Eliptik eğri kriptografi, aynı güvenlik seviyesi için daha küçük anahtar bo-
yutu kullanarak mevcut açık anahtar şifreleme sistemlerine göre avantaj sağladığı için
açık anahtarlı şifreleme sistemleri arasında hızla popülerlik kazanmaktadır. Bu sis-
tem, sonlu cisimlerde eliptik eğrilerin matematiksel özelliklerinden yararlanır. Eliptik
eğri şifreleme sistemleri, eliptik eğriler üzerindeki noktalar üzerinde işlem gerçekleş-
tirir. Eliptik eğriler, asal cisimler üzerinde temsil edilebilir ve ayrıca ikili cisimler
üzerinde de temsil edilebilir. İkili cisim gösteriminde, sonlu cisim elemanları ikili
cisimler üzerindeki polinomlardır. Polinom çarpımı, ikili cisim eliptik eğri kriptog-
rafik uygulamasında önemli bir işlemdir ve bu nedenle kriptografide bir ilgi alanıdır.
Bu tezde, ikili cisimler üzerinde bazı polinom çarpma algoritmalarını analiz ediyo-
ruz. 2-yollu algoritmalar için okul kitabı, Karatsuba ve rafine Karatsuba ve 3-yollu
algoritmalar için okul kitabı, Karatsuba ve CNH 3-yollu bölünmüş algoritmaları in-
celiyoruz. Bir polinom çarpımı için en küçük hesaplama birimi olarak 64 bit’e 64 bit
çarpmayı tanımlıyoruz ve bunu da kayan pencere yöntemiyle inceliyoruz. Bir zaman
belleği değiş tokuşu yaklaşımı kullanarak en uygun pencere boyutunun sekiz oldu-
ğunu gözlemledik.
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CHAPTER 1

INTRODUCTION

Cryptography involves transforming data using established algorithms with the pur-

pose of securing it. It is very important in this digital as age as information is primarily

exchanged electronically. It is therefore essential to protect data from being accessed

by malicious parties that the data was not intended to reach. According to [19], there

are four key objectives that are to be achieved in a cryptographically secure system.

Namely:

• Confidentiality: None other than the parties that are authorized to obtain the

data have access to it.

• Data integrity: Makes sure that the exchanged data is not tampered with.

• Authentication: Only genuine data and parties are involved in the information

exchange.

• Non-repudiation: Prevents the involved parties from retracting their previous

actions.

Cryptography can be broadly divided into three main areas of interest:

1. Symmetric key cryptography whereby the participants share the same key, en-

cryption and decryption methods.

2. Public key cryptosystems that use different keys for each participating party.

3. Cryptographic protocols which entail the standardized algorithms, how to use

and apply both symmetric and public key cryptography.
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1.1 Symmetric Key Cryptography

This is the branch of cryptography where both parties use an identical key for the

encryption and the decryption of data. The key is initially exchanged using a secure

method to prevent unauthorized parties from gaining access to it. This key exchange

is usually done using public key algorithms which will be discussed more in the next

section. Examples of symmetric key cryptographic schemes include AES [24] and

DES [7] and its variants.

1.2 Asymmetric Key Cryptography

Public/Asymmetric key cryptography first came to light in the 1970s after a proposal

by Diffie and Hellman [8]. It is different from symmetric key cryptography in that

it uses different keys for the different parties involved in the communication. It is

a very crucial branch of cryptography as it has vast applications in confidentiality

where information encrypted by a party’s public key can only be decrypted by that

party’s secret key. It can also be useful during authentication of data as done with

digital signature algorithms.

Definition 1.2.1. Public key cryptography is an encryption scheme that can be de-

scribed by the following spaces and algorithms all depending on a security parameter

k ∈ N [9]

Mk : The message space

PKk: The public key space

SKk: The secret key space

Ck: The ciphertext space

For an m ∈Mk, pk ∈ PKk, sk ∈ SKk and c ∈ Ck it is required that:

Decrypt(Encrypt(m, pk)sk) = m

Where there exists an algorithm that generates keys that produces the public key and

private key with the security parameter, k, an encrypt algorithm accepts in input m

and public key and outputs c, the ciphertext and a decrypt algorithm that takes c and

sk and outputs m.
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1.3 Security in Asymmetric Key Cryptography

The security of asymmetric key cryptographic systems depends on three main fea-

tures. Namely:

1. An attacker cannot evaluate m from c.

2. Other than the length, an attacker cannot deduce any other property of m from

c.

3. An attacker cannot distinguish between the encryption of any pair of different

m0 and m1 both of equal length.

To ensure the security of the data as is required by the three features mentioned above

special mathematical functions referred to as one-way/trapdoor functions have been

used.

1.4 Trapdoor Functions

One-way functions also known as trapdoor functions are mathematically challenging

functions which are simple to evaluate but the inverse is considered infeasible to eval-

uate without knowledge of specific information about the function [19]. That is, if

f is a trapdoor/one-way function with some hidden information y, given f(x), x can

only be computed when y is known.

Examples of such problems in cryptography are the prime factorization problem used

by RSA which is based on how difficult it is to factorise integers to their product of

primes and another, the discrete logarithm problem either in a group defined over an

elliptic curve or modulo a prime, specifically, for a group G, that has generator g and

an element h in G, evaluate the discrete logarithm of h, to the base g. Because of this

second example, Elliptic curves become a key area of interest in cryptography.
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1.5 Aim of This Thesis

The main aim of this thesis is to discuss the performance of binary polynomial mul-

tiplication algorithms in software and present some optimisation techniques that im-

prove their performance. This is important for cryptographic applications especially

in binary field elliptic curve cryptosystems whereby polynomial multiplication is a

key underlying arithmetic operation that is useful when performing operations on

points on an elliptic curve.

In this thesis, we have analysed the schoolbook, Karatsuba-like, CNH, and windows

methods for binary polynomial multiplication. After introducing the algorithms and

their complexities, we have implemented them using combination of algorithms so

that better results are achieved. In the base case, we have used the sliding window

method for 64 bit sizes. To improve the results, we have optimal windows size has

been searched and we found that the size 8 is a good choice with the reasonable

amount of memory.

In the next chapter, we shall give some mathematical background and Galois field

concepts. In chapter 3, we discuss elliptic curves, and their application in Cryptogra-

phy. Chapter 4 shall discuss some polynomial multiplication algorithms. In chapter

5, we analyse the software implementation of the algorithms discussed in chapter 4.

In chapter 6 will give a conclusion to this thesis.
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CHAPTER 2

GROUPS, RINGS AND GALOIS FIELDS

Galois theory, that studies groups and finite fields was made popular by Evariste Ga-

lois [1811-1832].In the next sections, we briefly discuss concepts in Galois theory as

they shall be used in the remainder of this thesis to perform mathematical operations

on points on Elliptic curves. For a more comprehensive study, we suggest reading

[26] [17] [3] [18] [5] [21].

2.1 Groups

A group can be defined as G 6= ∅, a non-empty set with an operation, ∗, on group G

which satisfies:

• G is closed under ∗. That is, a ∗ b is in group G, for a, b which are elements in

G.

• G is associative. Whereby a ∗ (b ∗ c) = (a ∗ b) ∗ c = a ∗ b ∗ c, for a, b, c which

are elements in G.

• G has identity element, e with respect to ∗. That is, ∃e ∈ G whereby a ∗ e =

a = e ∗ a , for all a in G

• All elements in G have an inverse. For all a in G, ∃a−1 also in G such that

a ∗ a−1 = e . The element a−1 is referred to as the inverse of a in G with

respect to ∗

If the above four requirements are fulfilled, the pair {G, ∗} is referred to as a group.

5



If also, the ∗ operation is commutative, such that is a ∗ b = b ∗ a, for a, b which are

elements in G, then G is referred to as a commutative group.

2.1.1 Cyclic Groups

A group is cyclic when it is generated using one element in it. G = <α> for some

element α ∈ G called the generator.

2.1.2 Subgroups

If there exists a G with {G, ∗} and there is a subset K in G such that ∅ 6= K ⊂ G. If

{K, ∗} is also a group under the same operation as G, that is ∀a, b ∈ K
1. a ∗ b ∈ K
2. ∀a ∈ K, a−1 ∈ K
3. a ∗ e = a = e ∗ a , ∀a ∈ K
Then K is called a subgroup of group G, denoted by K ≤ G. If ∀k ∈ K ,∀g ∈ G
and g−1kg ∈ K that is, the conjugate of k by g is invariant, then K is referred to as a

normal subgroup of group G denoted by K / G

2.1.3 Cyclic Subgroups

Suppose G, a group with an element a ∈ G. Therefore <α> = {an|n ∈ Z} is a

subgroup of group G. And <a> is a cyclic subgroup that is generated by element a.

2.1.4 Homomorphism and Isomorphism

If a group {G, ∗} and {H, ◦} are two groups, and if f : G → H is a function from

groupG toH . If function f preserves the operation ∗ and ◦, that is, for every a, b ∈ G,

then f(a ∗ b) = f(a) ◦ f(b) then f is called a group homomorphism.

f : G → H is injective for any two elements a, b ∈ G, then f(a) = f(b) if and only

if a = b. If f is injective then it is called a monomorphism.

6



∀y ∈ H , there exists element x ∈ G where y = f(x) If the function f is surjective,

then it is a group isomorphism.

If the function f : G→ G is a group isomorphism, then f is called a group automor-

phism.

2.2 Rings

A ring can be defined as an non-empty set that has two operations, namely multipli-

cation and addition and satisfies:

• {R,+} is an additive commutative group

• It is closed under the multiplication operation. That is, if a ∈ R and if b ∈ R
then a ∗ b ∈ R

• It is associative. That is a ∗ (b ∗ c) = (a ∗ b) ∗ c = a ∗ b ∗ c, ∀a, b, c ∈ R

If a ∗ b = b ∗ a, ∀a, b ∈ R then R is a commutative ring. If R has an identity

element(unity) with respect to multiplication, then R is a ring with unity. If R is

commutative and with unity, then R is called a commutative ring with unity.

2.2.1 Zero Divisors and Integral Domains

If {R,+, ∗} is a ring and if a, b is in R and a is not equal to 0, b is not equal to 0 but

a ∗ b = ab = 0, then b is a right zero divisor and a is a left zero divisor in R.

An integral domain is defined as a commutative ring that has no zero divisors. In a

ring with unity, a zero divisor does not have a multiplicative inverse.

2.2.2 Ideals and Quotient Rings

If I be a subgroup of R, that is (I,+) ≤ (R,+) If rx ∈ I , ∀r ∈ R, ∀x ∈ I then

(I,+, ∗) is the left ideal of R.

7



If xr ∈ I , ∀r ∈ R, ∀x ∈ I then (I,+, ∗) is the right ideal of R.

If I is both a right ideal and also a left ideal of R then I is referred to as an ideal of R.

If R is a commutative ring, each ideal is two-sided. A quotient or factor ring of R by

I is the set of equivalence classes of R with respect to I .

2.2.3 Units

An element a of R, a ring with unity is called a unit in R. That is, if a has a multi-

plicative inverse in R, there is an a−1 ∈ R whereby a ∗ a−1 = 1R = a−1 ∗ a. In a ring

R, with unity, the units forms a group under multiplication.

2.2.4 Equivalence Class

Let I be a ideal with two sides(left and right ideal) of R. If a, b are in R then a is

equivalent/congruent to b relative to I (mod I) if (b − a) ∈ I .Then ∼ is the equiv-

alence relation R when the following properties, namely, reflexivity, symmetry and

transivity are fulfilled.

If A be a set and R is an equivalence relation on A. For any element a ∈ A, the

equivalence class can be defined as [a] = {x ∈ A : x ∼ A}. Then:

• For any element a ∈ A, a ∈ [a]

• For any two elements a, b ∈ A, a ∼ b ⇐⇒ [a] = [b]

• For any two elements a, b ∈ A, either [a] ∩ [b] = ∅ or [a] = [b]

For the equivalence class S, any element a ∈ S can be used to represent S guarantee-

ing [a] = S.

2.2.5 Characteristic of a Ring

Let (R,+, ◦) be a ring. If there is a positive integer n, whereby nx = x + x + x +

· · · + x = 0, n-times the minimum such times, n, is the characteristic of the ring R.

8



If no such positive integer exists where nx = 0 ∀x ∈ R then R has characteristic 0.

An integral domain has characteristic 0 or a prime number.

2.3 Fields

A field, (F,+, ∗), can be defined as an integral domain in which all non-zero elements

have a multiplicative inverse. It has to have the following properties:

• (F,+) is a commutative group.

• (F ∗, ∗) is a commutative group.

• The ∗ operation is distributative over +.

2.3.1 Galois Fields

These are fields that have a finite number of elements, pn, whereby p is a prime

number and n is in Z+.A finite field has characteristic of a prime number greater than

0. Examples of Galois fields include prime fields represented as GF (p) and binary

extension fields represented as GF (2n).

• Prime Fields: Let’s take a number n ∈ N+. If n = p where p is prime Z/pZ =

0̃, 1̃, 2̃, . . . , ˜p− 1 is an integral domain that is finite so Z/pZ is a field also called

a prime field.

• Binary Extension Fields: These are Galois fields with 2n elements whereby

each element is a polynomial that has degree less than n and the coefficients of

these elements are in GF (2).

2.3.2 Finite Field Bases

Galois fields can be represented in many different ways. A basis for a field pn relative

to a prime p can be defined as a set with n elements of the field with pn elements

which are linearly independent with respect to p. The two most common bases for

finite field representation are polynomial bases and normal bases.
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2.3.2.1 Normal Bases

A normal basis for a field with pn elements contains n conjugates of the primitive

root α of the field. That is the set containing {α, αp, αp2 , . . . , αpn−1}. This forms an

n dimensional vector space. The primitive root α is normal over the field Fp. If we

denote αi′s as αi = αpi where α is in Fpn and i = 0, 1, . . . , n − 1. Then the normal

basis becomes the set {α0, α1, α2, . . . , αn−1} and αiαj is a linear combination of the

conjugates of the primitive root whose coefficients are in Fp and 0 ≤ i, j ≤ n. If there

is an n by n matrix, B, whose elements are in Fp as in the equation below, we can

define B as the multiplication table of this basis. The number of non-zero elements in

the multiplication table can be referred to as the density, δ. Therefore multiplication

of two elements in Fpn is done with at most 2nδ multiplications in Fp.

2.3.2.2 Polynomial Bases

A polynomial basis for a field with pn elements contains the set {1, α, α2, . . . , αn−1}
whereby α is the primitive root. This also forms an n dimensional vector space.

A Galois field element in the polynomial basis representation can be formed by a

linear combination of the elements in the set, that is,
∑n

k=0 ak · αk where ak is in

Fp. Multiplication of any two elements in Fpn in the polynomial basis representation

is done by multiplying every term of the first element by every term of the second

element as shown in equation 2.1.(
n∑

k=0

ak · αk

)(
n∑

k=0

bk · αk

)
=

n−1∑
k=0

(
αk

n−1∑
l+m=n

albm

)
(2.1)

This multiplication requires at most 2n2 operations in Fp. Then, the result is reduced

modulo f(x) which is the defining polynomial of Fpn = Fp(x)

<f(x)>
.

2.3.3 Polynomials Over a Finite Field

If F is a finite field, then a polynomial f over field F is defined as a sum

f(x) =
n∑

k=0

ak · xk = a0 + a1x
1 + · · ·+ an−1x

n−1 + anx
n (2.2)

10



Where the coefficients a0, a1, . . . , an ∈ F and x is indeterminate. The degree of

f is n. anxn is the leading term an is the leading coefficient. The polynomial can

be described as monic if the leading coefficient is 1. If the polynomial has addition

and multiplication operations where addition is commutative, associative and has an

identity and have inverses and the multiplication operation is commutative, associa-

tive and has an identity and is distributive over the addition operation, then the set of

all the polynomials F[x] over field F will form a commutative ring. If

f(x) =
n∑

k=0

ak · xk = a0 + a1x
1 + · · ·+ an−1x

n−1 + anx
n (2.3)

g(x) =
n∑

k=0

bk · xk = b0 + b1x
1 + · · ·+ bn−1x

n−1 + bnx
n (2.4)

2.3.3.1 Polynomial Addition

Given polynomial f(x) and g(x), polynomial addition is the summation of the same

degree terms of two these two polynomials.

f(x) + g(x) =

Max(m,n)∑
k=0

(ak + bk)xk (2.5)

2.3.3.2 Polynomial Multiplication

Given polynomial f(x) and g(x), polynomial multiplication is the multiplication of

each term of the first polynomial by each term of the second polynomial.

f(x)g(x) =
n−1∑
k=0

(
xk

n−1∑
l+m=n

albm

)
(2.6)

2.3.3.3 Polynomial Division

If F is a finite field, if f(x) and g(x) are polynomials, and degree of g(x) is greater

or equal to the degree of f(x) we can say that f(x) divides g(x) if g(x) = f(x)q(x)

whereby q(x) is also a polynomial in the field.
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2.3.3.4 Irreducible Polynomials

If F is a finite field and polynomial f(x) is monic over field F with degree (f) ≥ 1.

Then f(x) is called an irreducible polynomial if the only divisors of f(x) that are

monic are 1 and itself. If F is a field and there is an m(x) which is an irreducible

polynomial over F[x]. Then F[x]/m(x) is also a field.

2.3.4 Binary Finite Field Extensions

Binary extension fields, Galois fields with 2m elements also denoted as F2m are finite

fields with characteristic of 2. They are represented by binary polynomials. They can

be constructed with f(x), which is irreducible over GF (2) of degree m as F2m =
F2[x]

<f(x)>
where

f(x) = xm + am−1x
m−1 + · · ·+ (a1x) + 1 (2.7)

and ai ∈ GF (2). The elements of F2m are polynomials which have degree at most

m− 1.
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CHAPTER 3

ELLIPTIC CURVES

Elliptic curve cryptographic systems were first proposed by both Koblitz [16] and

Miller independently in 1985 [20]. Since then, they have gained popularity in public

key cryptographic systems. In this chapter, we briefly discuss elliptic curves, their ap-

plications in cryptography and give examples of elliptic curves used in modern cryp-

tosystems. We begin by giving a background of elliptic curves in Mathematics, that

is the basic definition, the group definition and the mathematical operations applied

to points that are on an elliptic curve. Namely, point addition, doubling and multipli-

cation operations. We shall then give some examples of elliptic curves recommended

for cryptographic purposes.

3.1 Basic Definition

This section explains the basic definition of elliptic curves. For more indepth material,

one can refer to [15] [25] [6] [12] [11].

Definition 3.1.1. An elliptic curve over a Galois field, K, is described as the set

containing all points defined by the Weierstrass Equation:

E : y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6 (3.1)

Where c1, c2, c3, c4, c6 are all elements in K and whereby the discriminant of E is
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defined as follows:

∆ = −m2
2m8 − 8m4

3 − 27m6
2 + 9m2m4m6

m2 = c1
2 + 4c2

m4 = 2c4 + c1c3

m6 = c3
2 + 4c6

m8 = c1
2c6 + 4c2c6 − c1c3c4 + c2c3c4 + c2c3

2 − c42

(3.2)

Restricting the discriminant to non-zero values makes sure that the elliptic curve is

not singular.

Definition 3.1.2. For a Galois field K, that has characteristic 2, if c1 = 0, and change

the variables from (x, y) −→ (x+ c2, y) will transform the curve equation to

y2 + cy = x3 + ax2 + b whereby a, b, c ∈ K and c 6= 0 such curves are called

supersingular and have discriminant ∆ = c4

Definition 3.1.3. For a Galois field K with characteristic 2, c1 = 0, and a change of

variables (x, y) −→ (c1
2x+ c3

c1
, c3

2y+ c12c4+c32

c13
) the elliptic curve equation transforms

to

y2 + xy = x3 + ax2 + b whereby a, b, c ∈ K and b 6= 0. These kinds of curves are

called non-supersingular and have discriminant ∆ = c4.

Definition 3.1.4. If K is a Galois field that has characteristic of 2 that is, K =

GF (2m) then the elliptic curve over K is

E : y2 + cy = x3 + ax+ b; for, a = 0,∆ = c4 6= 0(supersingularcurve) (3.3)

E : y2 + xy = x3 + ax2 + b; for, a 6= 0,∆ = b 6= 0(non− supersingularcurve)
(3.4)

3.2 Group Definition

Taking a point at infinity, O, the identity element together with all the points on an

elliptic curve are an Abelian group. This group is defined by a binary operator, ◦, and

upholds the following conditions:
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1. Identity: O + P = P +O = P , for all P in E/K

2. Negative: If point P is in E/K, then P + (−P ) = O and −P is referred to as

the negative of P and −P is also in E/K. Also, −O = O

3. Addition of points: If P,Q is in E/K where P 6= ±Q. Then there is a point

P +Q = R also in E/K

4. Doubling of points: If P is in E/K where P 6= −P . Then there is a point

2P = S also in E/K

3.2.1 Point Addition

Point addition which is defined as adding two distinct points of an elliptic curve is:

Definition 3.2.1. Let point P and Q in E/K be taken as two distinct points on the

curve. If we draw a straight line that passes through point P and point Q, the third

point on the curve E/K at which the line intersects the curve that is the reflection

about the x-axis is the point P + Q. The formula can be defined algebraically as

follows in affine coordinates:

For a non-supersingular curve, E/F2m : y2 + xy = x3 + ax2 + b :

x3 = λ2 + λ+ x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

where : λ =
(y1 + y2)

(x1 + x2)

(3.5)

For the supersingular curve E/F2m : y2 + cy = x3 + ax+ b :

x3 = λ2 + x1 + x2

y3 = λ(x1 + x3) + y

where : λ =
(y1 + y2)

(x1 + x2)

(3.6)

3.2.2 Point doubling

The doubling of a point on the curve is defined as:
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Definition 3.2.2. If P ∈ E/K be a point on the curve. If the curve’s tangent at P is

drawn, the point on the curve E/K at which the line intersects the curve is the reflection

about the x-axis of the point 2P. The formula can be defined algebraically as follows

in affine coordinates: For a non-supersingular curve E/F2m : y2 +xy = x3 +ax2 +b

:
x3 = λ2 + λ+ a = x1

2 +
b

x12

y3 = x1
2 + λx3 + x3

where : λ = x1 +
y1
x1

(3.7)

For the supersingular curve E/F2m : y2 + cy = x3 + ax+ b :

x3 = λ2

y3 = λ(x1 + x3) + y1 + c

where : λ =
(x1

2 + a)

c

(3.8)

3.2.3 Scalar Multiplication

Scalar or point multiplication can be described as follows:

Definition 3.2.3. Let P ∈ E/K be a point on the curve and let k be an integer,

scalar or point multiplication can be defined as the addition of P to itself k times.

This results to a point, kP which is also on the curve.

3.2.4 Elliptic Curves over GF (p)

One form of representing elliptic curves is over the Galois field GF (p). This field

contains p, number of elements whereby p is prime and whose elements are the inte-

gers mod p and arithmetic is done in terms of the arithmetic of integers mod p. They

are the elliptic curves:

y2 = x3 + ax+ b mod p (3.9)

where the discriminant is 4a3 + 27b2 6= 0 mod p

Ep (a, b) will be a represention of all the points (x, y) that satisfy the conditions above

along with point O at infinity where (x, y ∈ Zp) , (a, b ∈ Zp). The set of points is
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the collection of all discrete points on the (x, y) plane. That is the Cartesian product

Zp x Zp.

3.2.5 Elliptic Curves Over GF (2n)

Another representation of elliptic curves is over binary extension fields. A binary field

GF (2n) contains 2n elements where the degree of the field is n and whose elements

are strings of bits with length m and their arithmetic can be computed in terms of the

operations on this bits. Addition done in GF (2n) was described as the bitwise XOR

operation since a finite field GF (2n) has characteristic 2. The elliptic curve that is

used when GF (2n) is the underlying field is

y2 + xy = x3 + ax2 + b, b 6= 0 (3.10)

The discriminant of these curves can be singular even when b is not 0. This changes

the behavior of the operator of this group. Given a point P = (x, y) then its additive

inverse is P = (x,−(x + y)). Given P = (xP , yP ) and Q = (xQ, yQ) addition of

these two points R = (xP+Q, yP+Q) is given by

xP+Q = λ2 + λ− xP − xQ − a (3.11)

yP+Q = −λ(xP+Q − xP )− xP+Q − yP (3.12)

With

λ =
yQ − yP
xQ − xP

(3.13)

For point doubling, that is getting 2P from P

x2P = λ2 + λ− a− 2xP (3.14)

y2P = −λ2 + λ+ a+ (2 + λ)xp − λx2P − yP (3.15)

With

λ =
3xP

2 + 2axP − yP
2yP + xP

(3.16)

λ′s value is obtained as follows:

When y2 + xy = x3 + ax2 + b is differentiated with respect to x on both sides and an

expression written for dy
dx

.
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E2n(a, b) is all the points (x, y) inGF (2n) that satisfy y2+xy = x3+ax2+bwhereby

(a, b) ∈ GF (2n) and distinguished point O which is the additive identity element, b

is not allowed to be the identity with respect to addition, of the finite field GF (2n). If

there is g, a generator for GF (2n) then the elements of GF (2n) can be expressed as

0, 1, g, g2, . . . , g2n−2 (3.17)

So, most points on an elliptic curve E2n(a, b) can be expressed as gi, gj where i, j =

0, 1, . . . , 2r − 2 and also the point O. The order of the elliptic curve is the number of

points in the group E2n(a, b)

3.3 Elliptic Curve Cryptography

Elliptic curve cryptography makes use of elliptic curves defined over Galois fields.

Suppose G is a base point chosen by the user on a curve Eq(a, b) such that q = p

for a prime number p when the Galois field has q = 2n elements then the underlying

Galois field is a binary field. With respect to the group’s operator then kG = G +

G+ . . . +G(k − times).

The core notion of elliptic curve cryptography is that when G is chosen properly, it is

very easy to calculate C = M x G but difficult to obtain M from the C obtained even

when the eavesdropper knows the G and the curve Eq(a, b) used. This problem is the

elliptic curve discrete logarithm problem.

3.3.1 Elliptic Curve Discrete Logarithm Problem

With E, the elliptic curve over a Galois field F and P a point in E(Fq) that has order

n, and a point Q ∈ <P> find an integer k ∈ [0, n− 1] where Q = kP . The integer k

is referred to as the discrete logarithm of Q, to the base P , denoted by k = logpQ

3.3.2 Elliptic Curve Cryptographic Security

Elliptic curve cryptography relies on the difficulty of the discrete logarithm calcula-

tion for large numbers. This is the elliptic curve discrete logarithm problem. Before
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using an elliptic curve cryptographic scheme, careful consideration should be taken

as the security of elliptic curve cryptographic systems can be compromised by various

factors such as:

1. Elliptic curves whereby the sum of points equal the number of elements in the

Galois field. These curves are not cryptographically secure.

2. When using binary fields, the Weil descent attack can be performed therefore

when using these fields, n has to be prime.

3. In 1993, MOV showed that for elliptic curves that are supersingular, the prob-

lem of solving the elliptic curve discrete logarithm problem where Eq(a, b) can

be reduced to finding logarithms in a finite field.

4. Another attack that can be performed on elliptic curve cryptosystems is the

Frey-Ruck attack which is a generalisation of the MOV attack that applies to

curves E/Fpn with group order |E(Fpn)| coprime to p.

5. The SSSA attack determines the discrete logarithm of some point P with re-

spect to the base point G by reducing the ECDLP of a prime field anomalous

curve E(Fp) to the DLP of the additive group (Zp,+) of integers modulo p.

3.4 Binary Curves

Elliptic curves defined over binary extension fields E/F2m are represented as non-

supersingular curves as follows: y2 + xy = x3 + ax2 + b.

There are two main types of curves over F2m:

1. Pseudo-random curves over F2m which have a pseudo-random structure where

the parameters are chosen by a specified algorithm.

2. Koblitz curves over F2m that are defined over E/F2m by equations of form

y2 + xy = x3 + ax2 + 1 and where a ∈ {0, 1}.
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Specific parameters have to be defined to generate a curve over F2m .

The domain parameters for both pseudo-random curves and Koblitz curves are de-

fined as the following:

1. M , defined as the extension of the field F2m

2. A reduction polynomial f(z) with degree m.

3. Coefficients a, b ∈ F2m of the curve.

4. The order of point P , the base point, that is represented by n.

5. The cofactor that is defined as h = #(E/F2m)/n where #(E/F2m) is the order

of the curve E over F2m

6. The (xp, yp) ∈ E/F2m the coordinates of point P .

A seed is also applied for random generation of the curve’s coefficients.

3.5 NIST Curves

NIST recommends some binary curves over fields F2m where m is prime to be used

for cryptographic purposes. Some NIST recommended elliptic curves are as follows:

3.5.1 Koblitz Curves over F2m

1. Curve K-163

This curve is used for legacy purposes only.

2. Curve K-233

A Weierstrass curve with m = 233, a = 0, b = 1. The order of which is

h · n whereby h = 4 and n is a prime and a reduction polynomial f(z) =

z233 + z74 + 1.

3. Curve K-283

A Weierstrass curve with m = 283, a = 0, b = 1. The order of which is
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h · n whereby h = 4 and n is a prime and a reduction polynomial f(z) =

z283 + z12 + z7 + z12 + 1.

4. Curve K-409

A Weierstrass curve with m = 409, a = 0, b = 1. The order of which is

h · n whereby h = 4 and n is a prime and a reduction polynomial f(z) =

z409 + z8 + 1.

5. Curve K-571

A Weierstrass curve with m = 571, a = 0, b = 1. The order of which is

h · n whereby h = 4 and n is a prime and a reduction polynomial f(z) =

z571 + z10 + z5 + z2 + 1.

3.5.2 Pseudo-random Curves over F2m

1. Curve B-163

This curve used for legacy purposes only.

2. Curve B-233

A Weierstrass curve with m = 233, a = 1. The order of which is h ·n whereby

h = 2 and n is a prime and a reduction polynomial f(z) = z233 + z74 + 1.

3. Curve B-283

A Weierstrass curve with m = 283, a = 1. The order of which is h ·n whereby

h = 2 and n is a prime and a reduction polynomial f(z) = z283 + z12 + z7 +

z12 + 1.

4. Curve B-409

A Weierstrass curve with m = 409, a = 1. The order of which is h ·n whereby

h = 2 and n is a prime and a reduction polynomial f(z) = z409 + z8 + 1.

5. Curve B-571

A Weierstrass curve with m = 571, a = 1. The order of which is h ·n whereby

h = 2 and n is a prime and a reduction polynomial f(z) = z571 + z10 + z5 +

z2 + 1.
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We introduced the concept of elliptic curves in this chapter and how they are applied

in cryptography. We then discussed some security parameters to consider when mak-

ing a choice for an elliptic curve for cryptographic purposes. We finally concluded by

giving examples of acceptable binary elliptic curves recommended by NIST. In the

next chapter, we shall dive deeper into binary polynomial multiplication algorithms

which play a major role in performing operations on binary elliptic curves discussed

in section 3.2.
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CHAPTER 4

POLYNOMIAL MULTIPLICATION ALGORITHMS

Until the 1960s, the complexity of multiplying two polynomials was O(n2) using the

schoolbook method. Karatsuba and Ofman discovered a faster multiplication algo-

rithm which had a complexity of O(n1.58) called the Karatsuba method [14]. Since

then, further optimizations have been done to decrease the time complexity hence

increasing the speed of computing polynomial multiplications. Some of these multi-

plication algorithms shall be discussed in this chapter.

4.1 2-Way Algorithms

2-way algorithms divide each polynomial into two parts before evaluating the prod-

uct. In such algorithms, if the degree of the polynomial is not divisible by 2, this can

be achieved by padding the higher degree coefficients with zeros before the compu-

tation. In the next sections, some 2-way algorithms shall be discussed.

4.1.1 Schoolbook 2-Way Algorithm

This is the basic way of multiplying two polynomials. Say there is a polynomialA(x)

and B(x) each of degree equal to n− 1. Their product can be computed as

A(x) =
n−1∑
i=0

ai · xi = Ah(x)X + Al(x) (4.1)

B(x) =
n−1∑
i=0

bi · xi = Bh(x)X +Bl(x) (4.2)
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where X = xn/2

The product is

C(x) = AhBhX
2 + (AhBl + AlBh)X + AlBl (4.3)

The time complexity for the schoolbook algorithm can be computed by the number of

multiplication operations and addition operations needed to carry out this polynomial

multiplication. It can be observed from equation 4.1, 4.2 and 4.3 that there are 4

multiplication each of size n
2

and (n− 1) additions for the middle terms and (n− 2)

additions are needed for the final computation [13]. In total,M(n) = 4M(n
2
)+2n−3.

Considering n = 2k and taking M(1) = 1, solving for this results in M(n) = 2n2 −
2n+ 1 and therefore this algorithm’s complexity is O(n2).

4.1.2 Karatsuba 2-Way Algorithm

This is a faster multiplication algorithm than the schoolbook 2-way that was discov-

ered in 1963 by Karatsuba and Ofman [14]. Say we have two polynomials A(x) and

B(x) as shown in equations 4.1 and 4.2. Their product is computed as

C(x) = AhBhX
2 + ( (Al + Ah)(Bl +Bh) + AhBh + AlBl)X + AlBl (4.4)

The time complexity for the Karatsuba algorithm can be computed by observing that

there are 3 multiplication each of size n
2

and 3n−4 additions in total [13]. This results

in, M(n) = 3M(n
2
) + 3n − 4. Considering n = 2k and M(1) = 1, solving for this

results in M(n) = 7nlog23 − 8n+ 2 and therefore the complexity of this algorithm is

O(n1.58).

4.1.3 Refined Karatsuba 2-Way Algorithm

Bernstein in [1], [2] proposed an improvement of the Karatsuba 2-way algorithm as

follows. Consider a polynomial A(x) and B(x) as in equations 4.1 and 4.2. Their

product is

C(x) = (1 +X)(AlBl +X(AhBh)) +X(Ah + Al)(Bh +Bl) (4.5)
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The time complexity for the refined Karatsuba algorithm can be computed by observ-

ing that there are 3 multiplication each of size n
2

and 2 additions each of size n − 1

for the (Ah +Al) and (Bh +Bl) terms and n
2
− 1 additions for the first term therefore

5n
2
− 3 additions in total. This results in, M(n) = 3M(n

2
) + 5n

2
− 3. Considering

n = 2k and M(1) = 1, solving for this results in M(n) = 6.5nlog23 − 7n + 3
2

and

therefore the complexity of this algorithm is O(n1.58).

4.2 3-Way Algorithms

3-way algorithms divide each polynomial into 3 parts before evaluating the product.

In such algorithms, if the degree of the polynomial is not divisible by 3, this can be

achieved by padding the higher degree coefficients with zeros before the computation.

In the next sections, some 3 way algorithms shall be discussed.

4.2.1 Schoolbook 3-Way Algorithm

In the schoolbook 3-way algorithm, polynomials A(x) and polynomial B(x) are first

divided into three equal parts:

A(x) =
n−1∑
i=0

ai · xi = Ah(x)X2 + Am(x)X + Al(x) (4.6)

B(x) =
n−1∑
i=0

bi · xi = Bh(x)X2 +Bm(x)X +Bl(x) (4.7)

where X = xn/3

The product is computed as

C(x) = AhBhX
4 + (AmBh + AhBm)X3 + (AlBh + AmBm + AhBl)X

2+

(AmBl + AlBm)X + AlBl

(4.8)

The time complexity for the schoolbook 3-way algorithm can be computed by observ-

ing that there are 9 multiplications each of size n
3

and 4 additions each of size n − 1

therefore 4n − 8 additions in total [13]. This results in, M(n) = 9M(n
3
) + 4n − 8.

Solving for this results in M(n) = 2n2 − 2n+ 1 and therefore the complexity of this

algorithm is O(n2).
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4.2.2 Karatsuba 3-way Algorithm

The Karatsuba 3-way algorithm requires polynomial A(x) and polynomial B(x) be

divided into three parts as equations 4.6 and 4.7 . Their product can be computed as

C(x) = AhBhX
4 + ((Am + Ah)(Bm +Bh)) + AmBm + AhBh)X3+

((AlAh) + (BlBh) + AlBl + AmBm + AhBh)X2+

((Al + Am)(Bl +Bm)) + AlBl + AmBm)X + AlBl

(4.9)

The time complexity for the Karatsuba 3-way algorithm can be computed by observ-

ing that there are 6 multiplications each of size n
3

and 7 additions each of size 2n
3
− 1

and 4 additions each of size n
3
− 1 for the middle terms therefore 6n − 11 additions

and 6 additions of n
3

for reconstruction. In total there are 8n− 11 additions [13]. This

results in, M(n) = 6M(n
3
) + 8n − 11. This results in M(n) = 34

5
nlog36 − 8n + 11

5

and therefore the complexity of this algorithm is O(n1.63).

4.2.3 CNH 3-Way Split Algorithm

Cenk, Negre and Hasan in [4], [22], [23] proposed a 3-way split algorithm as follows.

Say there are two polynomials A(x) and B(x) that are divided into three parts as

equations 4.6 and 4.7 . The product is computed as

P1 = P1l + P1hX = A0B0

P2 = P2l + P2hX = (A0 + A1)(B0 +B1)

P3 = P3l + P3hX = A1B1

P4 = P4l + P4hX = (A0 + A2)(B0 +B2)

P5 = P5l + P5hX = A2B2

P6 = P6l + P6hX = (A1 + A2)(B1 +B2)

(4.10)
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where X = xn/3

C(x) = P5hX
5 + (P3h + P5l + P5h + P6h)X4+

(P1h + P3l + P3h + P4h + P5l + P5h + P6l)X
3+

(P1l + P1h + P2h + P3l + P3h + P4l + P5l)X
2+

(P1l + P1h + P2l + P3l)X + P1l

(4.11)

The time complexity for the CNH 3-way split algorithm can be computed by observ-

ing that there are 6 multiplications each of size n
3

and 9 additions each of size n
3
− 1

and 7 additions each of size n
3

for the middle terms therefore 16n
3
− 9 additions and

6 additions of n
3

for reconstruction. In total there are 22n
3
− 9 additions [13]. This

results in, M(n) = 6M(n
3
) + 22n

3
− 9. This results in M(n) = 98

15
nlog36− 22n

3
+ 9

5
and

therefore the complexity of this algorithm is O(n1.63).

4.3 Shift and Add Method For Binary Polynomial Multiplication

Consider a degree m binary field in a polynomial basis. In this representation, each

element a(x) in the field is a polynomial represented as:

a(x) = am−1x
m−1 + am−2x

m−2 + am−3x
m−3 + · · ·+ a2x

2 + a1x
1 + a0

The coefficients of these elements can be represented in n 64-bit words where
⌈
m
64

⌉
.

This polynomial can therefore be stored in an array of length n in software. The

multiplication of a and b can be computed using different algorithms as discussed

in [12]. We shall focus only on three of these algorithms, the shift and add, left to

right comb method and finally we shall consider the left to right comb method with

precomputation.

The shift and add method is an algorithm for multiplying binary polynomials that is

computed on noticing that

a · b = am−1x
m−1b+ am−2x

m−2b · · ·+ a2x
2b+ a1x

1b+ a0b (4.12)

The ith iteration of the algorithm computes xib. If ai = 1, the result obtained is added

to the solution c. From the above, it can be observed that this computation requires
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a large amount of shift operations, that is equivalent to the bit length of a making

it slow in software implementation. An improvement of this algorithm is the left to

right comb method [10].

4.4 Left to right comb method For Binary Polynomial Multiplication

The left to right comb method is based by observing that once b(x)·xk is precomputed

for k ∈ [0, 63] then it is easy to obtain b(x) ·x64j+k by adding to the right side of b(x) ·
xk, j zero words. This is done by left shifting the solution vector at each iteration.

This algorithm can be improved by precomputing some values with a memory trade

off.

4.5 Left to Right Comb method with Precomputation For Binary Polynomial

Multiplication

As discussed in the previous section, the left to right comb method can be further

sped up by some precomputation of u(x)b(x) where polynomial u(x) with degree less

than w, and w is the window size which divides the word length. These precomputed

values are stored for all w from [0, 2w − 1]. In the multiplication loop, this is done by

taking w bits of the A[j]′s at a time. Considering b(x) is of length m, this results in

additional memory usage of 2w(w +m) bits.

The implementation of the algorithms described above shall be discussed further in

the next chapter. Considering polynomial multiplication of large field sizes, we shall

first recursively subdivide the problem into smaller size using the recursive implemen-

tation of the algorithms discussed in 4.1 and 4.2, the binary polynomial multiplication

shall then be done using a binary multiplication algorithm and finally the solution

shall be computed by reconstructing the results of these calls made recursively to get

the result.
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CHAPTER 5

SOFTWARE IMPLEMENTATION OF POLYNOMIAL

ALGORITHMS

In this chapter, the software implementation of the algorithms discussed in chapter

4 shall be discussed. We take the recursive approach for higher degree polynomi-

als [27]. We then analyze the timing results. Once this is done, we shall optimize the

algorithms by combining them. The implementation is written in C++ and timings

obtained on a 2GHz Quad-Core Intel Core i5.

Each algorithm was run a 100 times and an average of the total time taken computed

to get the final result. The bit sizes ranged from 64 bit by 64 bit multiplication to

2048 bit by 2048 bit multiplication for the 2-way algorithms, doubling the bit sizes

at each step. For the 3-way algorithms, the bit sizes ranged from 64 bit by 64 bit

multiplication to 1728 bit by 1728 bit multiplication, with each next step being triple

the size of the previous.

For the base case, which will be considered as the smallest unit of polynomial mul-

tiplication computation, that is, the multiplication of a 64 bit by a 64 bit polynomial,

two approaches were taken. The first was using the shift and add algorithm, the most

primitive method to multiply two binary polynomials and the second using a sliding

window of precomputed values. An experiment of varying window sizes is also done

in order to find the best window size to achieve optimal performance.
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5.1 Implementation of Binary Polynomial Multiplication Algorithms

Consider two binary polynomial a(x) = x4+x2+x+1 and polynomial b(x) = x3+1.

The binary representation of polynomial a(x) and of b(x) is a = 10111 and b =

01001. The multiplication of a(x) and b(x) results in c(x) = x7+x5+x3+x2+x+1

and in binary representation 10101111.

Binary polynomial multiplication of the two operands a and b can simply be described

in two steps; a left shift of b at each iteration and an XOR operation of the left shift

result to the solution vector if the value of bit i in operand a is 1. This is the primitive

shift and add multiplication described in the next section.

5.1.1 Shift and Add Multiplication

This algorithm is used to carry out binary polynomial multiplication for two 64 bit

polynomials. The result shall be stored in an array of size two whereby each element

of the array is 64 bits long. As shown by Algorithm 1.

Algorithm 1 Shift and Add Method
Input: Polynomials a(x) and b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

if a0 = 1 then

c← b

else

c← 0

end if

for i← 1 to m− 1 do

b← b · x . left shift

if ai = 1 then

c← c+ b

end if

end for

return c
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5.1.2 Left to Right comb method

This algorithm is similar to the shift and add algorithm but instead of left shifting

operand b at each iteration, the solution vector is instead shifted whenever the value

of bit i in operand a is 1. This algorithm is also used to carry out binary polynomial

multiplication for two 64 bit polynomials. It is computed as as shown by Algorithm

2.

Algorithm 2 Left to Right Comb Method
Input: Polynomials a(x) and b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x), C{j} = (C[n] , . . . , C[ j + 1] , C[ j] )

c← 0

for k ← n− 1 to 0 do

for j ← 0 to t− 1 do

if kth bit of A[j]is1 then

add B to C{j}
end if

end for

if k 6= 0 then

C ← Cx

end if

end for

return C

5.1.3 Left to right Comb method with Precomputation

If extra memory is available, the left to right comb method can be optimized by first

choosing an arbitrary window size, w which divides the word size 64, so the window

sizes can range from values 2 to 64. We define a vector u(x) which contains the

values from 0 to 2w − 1.

We can then precompute u(x)b(x) for each ui value in the u(x) vector and store the

results in a look up table which shall be used to fetch these values in the computation

of a(x)b(x). The left to right comb method with precomputation is done as shown by
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Algorithm 3.

Algorithm 3 Left to Right Comb Method with precomputation
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x), C{j} = (C[n] , . . . , C[ j + 1] , C[ j] )

Compute Bu = u(x)b(x) for u from [0,255]

c← 0

for k ← w − 1 to 0 do

for j ← 0 to 63 do

Let u = (u7, u6, u5, u4, u3, u2, u1, u0) where ui is bit (8k + i) of A[j]

add Bu to Cj

if k 6= 0 then C ← Cx8

end if

end for

if k 6= 0 then

C ← Cx

end if

end for

return C

5.2 2-Way Algorithms

Implementation of 2-way algorithms is as follows; at each step, the polynomials a(x)

and b(x) are each recursively divided into 2 lower degree polynomials of half the size

of the previous step. Once the base case is reached, the binary polynomial algorithm

of choice is used to compute the 64 bit by 64 bit polynomial multiplication after which

a reconstruction step follows to compute the final solution.

5.2.1 Schoolbook 2-Way Algorithm

Consider two high degree binary polynomials each of degree which is less than or

equal to n − 1. We can compute the schoolbook 2-way algorithm by first dividing
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A(x) and B(x) to 4 polynomials of size X
N
2 then recursively calling the schoolbook

algorithm to the lower degree polynomials and finally reconstructing before returning

the solution as shown by Algorithm 4.

Algorithm 4 Schoolbook Algorithm(SB)
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
N
2 + Al(x) and B(x) = Bh(x)X

N
2 +Bl(x)

P0 ← SB(Al, Bl)

P1 ← SB(Ah, Bl)

P2 ← SB(Al, Bh)

P3 ← SB(Ah, Bh)

return P3 ·XN + (P1 + P2) ·X
N
2 + P0

5.2.2 Karatsuba 2-Way Algorithm

Consider two high degree binary polynomials each of degree which is less than or

equal to n − 1. We can compute the Karatsuba 2-way algorithm similary by first di-

vidingA(x) andB(x) to 4 polynomials each having sizeX
N
2 , then recursively calling

the karatsuba algorithm to the lower degree polynomials and finally reconstructing be-

fore returning the solution as shown by Algorithm 4. The Karatsuba 2-way algorithm

can be computed as shown by Algorithm 5.

5.2.3 Refined Karatsuba 2-Way Algorithm

The Bernstein’s improvement of the karatsuba 2-way algorithm can be computed by

subdiving A(x) and B(x) to 4 polynomials of size X
N
2 , then recursively calling the

refined Karatsuba algorithm to the lower degree polynomials before reconstructing

the solution as shown by Algorithm 6.
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Algorithm 5 Karatsuba Algorithm(KA)
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
N
2 + Al(x) and B(x) = Bh(x)X

N
2 +Bl(x)

P0 ← KA(Al, Bl)

P1 ← KA((Ah + AL), (Bh +BL))

P2 ← KA(Ah, Bh)

return P2 ·XN + (P1 − P0 − P2) ·X
N
2 + P0

Algorithm 6 Refined Karatsuba Algorithm(RK)
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
N
2 + Al(x) and B(x) = Bh(x)X

N
2 +Bl(x)

P0 ← RK(Al, Bl)

P1 ← RK((Ah + AL), (Bh +BL))

P2 ← RK(Ah, Bh)

return (1 +X
N
2 )(P0 +X

N
2 P2) +X

N
2 P0
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5.3 3-Way Algorithms

Implementation of 3-way algorithms is as follows; at each step, the polynomials a(x)

and b(x) are each recursively divided into 3 lower degree polynomials of a third the

size of the previous step. Once the base case is reached, the binary polynomial al-

gorithm of choice is used to compute the 64 bit by 64 bit polynomial multiplication

after which a reconstruction step follows to compute the final solution.

5.3.1 Schoolbook 3-Way Algorithm

Consider two high degree binary polynomials each of degree which is less than or

equal to n − 1. We can compute the schoolbook 3-way algorithm by first dividing

A(x) andB(x) to 6 polynomials of sizeX
N
3 then recursively calling the schoolbook 3

algorithm to the lower degree polynomials and finally reconstructing before returning

the solution as shown by Algorithm 7.

5.3.2 Karatsuba 3-Way Algorithm

Consider two high degree binary polynomials each of degree which is less than or

equal to n − 1. We can compute the schoolbook 3-way algorithm by first dividing

A(x) and B(x) to 6 polynomials of size X
N
3 then recursively calling the Karatsuba

3-way algorithm to the lower degree polynomials and finally reconstructing before

returning the solution as shown by Algorithm 8.

5.3.3 CNH 3-way Split Algorithm

Consider two high degree binary polynomials each of degree which is less than or

equal to n − 1. We can compute the schoolbook 3-way algorithm by first dividing

A(x) and B(x) to 6 polynomials of size X
N
3 then recursively calling the CNH 3-

way split algorithm to the lower degree polynomials and finally reconstructing before

returning the solution as shown by Algorithm 9.
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Algorithm 7 Schoolbook 3-Way Algorithm(S3W)
Input: Binary field polynomials a(x), b(x) of degree which is less than or equal

to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
2N
3 + Am(x)X

N
3 + Al(x)

and B(x) = Bh(x)X
2N
3 +Bm(x)X

N
3 +Bl(x)

P0 ← S3W (Al, Bl)

P1 ← S3W (Am, Bl)

P2 ← S3W (Al, Bm)

P3 ← S3W (Al, Bh)

P4 ← S3W (Am, Bm)

P5 ← S3W (Ah, Bl)

P6 ← S3W (Am, Bh)

P7 ← S3W (Ah, Bm)

P8 ← S3W (Ah, Bh)

return P8X
4N
3 + (P7 + P6)X

N + (P5 + P4 + P3)X
2N
3 + (P2 + P1)X

N
3 + P0
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Algorithm 8 Karatsuba 3-Way Algorithm(K3W)
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
2N
3 + Am(x)X

N
3 + Al(x)

and B(x) = Bh(x)X
2N
3 +Bm(x)X

N
3 +Bl(x)

P0 ← K3W (Al, Bl)

P1 ← K3W ((Al + Am), (Bl +Bm))

P2 ← K3W (Am, Bm)

P3 ← K3W ((Al + Ah), (Bl +Bh))

P4 ← K3W ((Am + Ah), (Bm +Bh))

P5 ← K3W (Ah, Bm)

P6 ← (P2 + P4 + P5)

P7 ← (P0 + P2 + P3 + P5)

P8 ← (P0 + P1 + P2)

return P5X
4N
3 + P6X

N + P7X
2N
3 + P8X

N
3 + P0
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Algorithm 9 CNH 3-Way Split Algorithm(CNH3W)
Input: Binary field polynomials a(x), b(x) of degree less or equal to n− 1

Output: c(x) = a(x) · b(x)

N ←Max(degree(A), degree(B)) + 1

if N = 64 then return A ·B
end if

A(x) = Ah(x)X
2N
3 + Am(x)X

N
3 + Al(x)

and B(x) = Bh(x)X
2N
3 +Bm(x)X

N
3 +Bl(x)

P0 ← CNH3W (Al, Bl)

P1 ← CNH3W ((Al + Am), (Bl +Bm))

P2 ← CNH3W (Am, Bm)

P3 ← CNH3W ((Al + Ah), (Bl +Bh))

P4 ← CNH3W (Ah, Bm)

P5 ← CNH3W ((Am + Ah), (Bm +Bh)

P6 ← (P3h + P5l + P5h + P6h)

P7 ← (P1h + P3l + P3h + P4h + P5l + P5h + P6l)

P8 ← (P1h + P1h + P2h + P3l + P3h + P4l + P5l)

P9 ← (P1l + P1h + P2l + P3l)

return P5hX
5N
3 + P6X

4N
3 + P7X

N + P8X
2N
3 + P9X

N
3 + P1l
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5.4 Timing Results

Table 5.1 shows the 2-way algorithms computed by the schoolbook, Karatsuba and

refined Karatsuba algorithms. The base case for degree of a(x), b(x) equal to 64 is

handled by the shift and add binary polynomial multiplication algorithm explained in

algorithm 1. We can observe that for the smaller bit sizes, the schoolbook algorithm

outperforms the other two algorithms but as the bit sizes get bigger, the refined Karat-

suba algorithm is faster, almost 6 times faster than the schoolbook algorithm for bit

size 2048 by 2048 bits.

Table 5.2 shows the 3-way algorithms computed by the schoolbook, Karatsuba and

CNH 3-way split algorithms. Similarly, the base case for degree of a(x), b(x) equal

to 64 is handled by the shift and add binary polynomial multiplication algorithm

explained in algorithm 1. We can observe that for the smaller bit sizes, the Karatsuba

algorithm outperforms the other two algorithms but as the bit sizes get bigger, the

CNH 3-way algorithm is faster, almost 3 times faster than the schoolbook algorithm

for bit size 1728 by 1728 bits.

In the next section, some optimization techniques are applied to the algorithms dis-

cussed in order to make them more time efficient.

Table 5.1: 2-Way Multiplication With Shift And Add Method in (ms)
m bits Schoolbook Karatsuba Refined Karatsuba

64 0.010 0.010 0.012
128 0.026 0.029 0.031
256 0.117 0.189 0.143
512 0.783 0.262 0.238

1024 2.407 0.819 0.742
2048 12.702 2.058 2.004

Table 5.2: 3-Way Multiplication With Shift And Add Method in (ms)
m bits Schoolbook Karatsuba CNH-3 Way Split

64 0.014 0.010 0.012
192 0.137 0.063 0.065
576 0.956 0.372 0.381

1728 6.964 2.209 2.162
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Table 5.3: Left to Right comb with precomputation for base case m = 64 bits in (µs)
w=2 w=4 w=8 w=16

11 6 5 3

Table 5.4: 2-Way Multiplication With Precomputation in (ms)
m bits Schoolbook Karatsuba Refined karatsuba

64 0.004 0.004 0.007
128 0.017 0.014 0.017
256 0.060 0.071 0.040
512 0.254 0.192 0.159

1024 0.075 0.435 0.579
2048 3.038 1.252 1.211

5.5 Discussion

In the following sections, we discuss the software implementation of multiplication

algorithms discussed previously. In section 5.4, the results of polynomial multiplica-

tion using different 2-way and 3-way algorithms of various bit length was discussed.

These algorithms can be optimised for more efficiency during computation. In the

next section two such optimisation techniques are discussed in detail.

5.5.1 Precomputation of Sliding Window

Precomputation involves calculating some preknown values ahead of time and storing

them in memory for look up whenever required for a faster runtime computation if

memory overhead can be traded off to achieve this.

In section 4.3.3, for the left to right comb method with precomputation, a sliding

window of size, w, that divides the word length could be chosen ranging from 2 to

32 and a vector, u(x), of size 2w containing all possible values of the window size

generated. Assuming the base case is reached and b(x) is a 64 bit polynomial, all

possible values of the product uib(x) can be can be precomputed then stored in a

table for look up.

At runtime, when the base case is reached, this algorithm is then used instead of the
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Table 5.5: 3-Way Multiplication With Precomputation in (ms)
m bits Schoolbook Karatsuba CNH 3-Way Split

64 0.007 0.008 0.007
192 0.103 0.035 0.030
576 0.278 0.319 0.233

1728 3.475 2.189 1.052

primitive shift and add method.

An experiment of this algorithm for window sizes 2, 4, 8 and 16 was carried out and

the results shown in Table 5.3.

The memory overhead is given as 2w(w +m) where w is the size of the window and

m is the bit length, in this case 64 bits, can be computed as follows:

• For window size, w = 2, is 2w(w +m) = 22(2 + 64) ≈ 0.03KB

• For window size, w = 4, is 2w(w +m) = 24(4 + 64) ≈ 0.1KB

• For window size, w = 8, is 2w(w +m) = 28(8 + 64) ≈ 2KB

• For window size, w = 16, is 2w(w +m) = 216(16 + 64) ≈ 500KB

• For window size, w = 32, is 2w(w +m) = 232(32 + 64) ≈ 34GB

Optimally, the larger the window size the faster the algorithm but considering the

space complexity of window sizes 16 and 32, the window size chosen as 8 is an

acceptable trade off for this implementation.

Considering for bit size 2048 by 2048 multiplication, there are 32 different b(x) where

b(x) is 64 bits hence a total of 64KB memory overhead. We can observe that if we

repeat the 2-way and 3-way algorithms in Tables 5.1 and 5.2, as seen in Tables 5.4 and

5.5, the computation is almost twice as fast when using these precomputed values.

5.5.2 Algorithm Combination

As seen from Table 5.1 and Table 5.2, the speed of the polynomial algorithms also

varies depending on the bit size of the polynomials, some algorithms dominate for
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larger bit sizes namely refined Karatsuba for 2-way and CNH 3-way split for the 3-

way algorithms but we can also observe that the schoolbook 2-way algorithm and

the Karatsuba 3-way algorithms are faster for smaller bit sizes in comparison to the

rest for the 2-way and 3-way algorithms respectfully. This is brought about by the

decomposition and reconstruction steps of the algorithms slowing down the lower

degree polynomials. Since these algorithms are computed recursively, we can then

combine the faster algorithms depending on the step at which the algorithm is in.

For 2-way algorithms, refined Karatsuba algorithm can be used until bit size is 256

then switch to the schoolbook algorithm and for the 3-way algorithms CNH 3-way

algorithm can be chosen until the bit size is equal to 192 then switched to the Karat-

suba 3-way which is faster for smaller bit sizes. As we can observe from Table 5.6

and Table 5.7, this yields the optimal solution for such polynomial multiplications.

Table 5.6: Refined Karatsuba 2-Way Multiplication With Schoolbook Combination
(ms)

m bits Refined Karatsuba

64 0.011
128 0.021
256 0.121
512 0.330

1024 0.657
2048 0.946

Table 5.7: CNH 3-Way Multiplication With Karatsuba Combination (ms)
m bits CNH 3-Way Split

64 0.009
192 0.039
576 0.181

1728 0.813
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CHAPTER 6

CONCLUSION

Binary polynomial multiplication algorithms are useful in cryptography, especially

for elliptic curve cryptosystems over binary fields. Different binary polynomial mul-

tiplication algorithms have been analysed in this thesis, namely, the schoolbook 2-

way, the Karatsuba 2-way, the refined Karatsuba 2-way, the schoolbook 3-way, the

Karatsuba 3-way, and the CNH 3-way split algorithms and their optimisations with

the sliding window approach.

We observed that time optimisation of the computations of these algorithms can be

done by trading off some memory using a precomputed look-up table and the sliding

window method with an optimal size of 8, instead of using the shift and add method to

carry out binary multiplication. When we analysed the results, we found that for the

2-way algorithms, the refined Karatsuba algorithm poses a significant improvement

over the schoolbook algorithm and Karatsuba algorithm in higher degree polynomi-

als. For the 3-way algorithms, the CNH 3-way split algorithm poses a significant

improvement over the schoolbook and the Karatsuba algorithm for the higher degree

polynomials.

For smaller degree polynomials, however, the schoolbook algorithm is much faster in

the 2-way algorithms and the Karatsuba 3-way algorithm is faster than both the CNH

3-way split and schoolbook 3-way hence these algorithms can be combined and at

every iteration the optimal algorithm is chosen. This results in the most time-efficient

algorithm, especially for high degree polynomial multiplication.

43



44



REFERENCES

[1] D. J. Bernstein, Batch binary edwards., in S. Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pp. 317–336, Springer, 2009, ISBN
978-3-642-03355-1.

[2] D. J. Bernstein, C. Chuengsatiansup, and T. Lange, Curve41417: Karatsuba
revisited., IACR Cryptology ePrint Archive, 2014, p. 526, 2014.

[3] J. Buchmann, Introduction to Cryptography, Springer, 2002, ISBN 0-387-
95034-6.

[4] M. Cenk, C. Negre, and M. Hasan, Improved three-way split formulas for binary
polynomial and toeplitz matrix vector products, 2012.

[5] B.-Z. Chor, Arithmetic of finite fields., Inf. Process. Lett., 14(1), pp. 4–6, 1982.

[6] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Ver-
cauteren, editors, Handbook of Elliptic and Hyperelliptic Curve Cryptography.,
Chapman and Hall/CRC, 2005, ISBN 978-1-4200-3498-1.

[7] D. Coppersmith, The data encryption standard (des) and its strength against
attacks., IBM J. Res. Dev., 38(3), pp. 243–250, 1994.

[8] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transac-
tions on Information Theory, 22(6), pp. 644–654, November 1976.

[9] S. D. Galbraith, Mathematics of Public Key Cryptography, Cambridge Univer-
sity Press, 2012, ISBN 9781107013926.

[10] D. Hankerson, J. López Hernandez, and A. Menezes, Software implementation
of elliptic curve cryptography over binary fields, in Ç. K. Koç and C. Paar, edi-
tors, Cryptographic Hardware and Embedded Systems — CHES 2000, Springer
Berlin Heidelberg, 2000.

[11] D. Hankerson and A. Menezes, Elliptic curve discrete logarithm problem., in
H. C. A. van Tilborg and S. Jajodia, editors, Encyclopedia of Cryptography and
Security (2nd Ed.), pp. 397–400, Springer, 2011, ISBN 978-1-4419-5905-8.

[12] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptog-
raphy, 2004, ISBN 0-387-95273-X.

[13] M. B. Ilter and M. Cenk, Efficient big integer multiplication, International Jour-
nal of Information Security Science, 6, 2017.

45



[14] A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata,
Soviet Physics-Doklady, 7(7), pp. 595–596, 1963, cited By 510.

[15] Koblitz, A course in number theory and cryptography, Springer, 2 edition, 1994.

[16] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,
48(177), pp. 203–209, January 1987, ISSN 0025-5718.

[17] N. Koblitz, Algebraic aspects of cryptography, volume 3 of Algorithms and
computation in mathematics, Springer, 1998, ISBN 978-3-540-63446-1.

[18] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Pub. Co., Advanced
Book Program/World Science Division, 1983, ISBN 9780521302401.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 2001.

[20] V. S. Miller, Use of elliptic curves in cryptography., in H. C. Williams, edi-
tor, CRYPTO, volume 218 of Lecture Notes in Computer Science, pp. 417–426,
Springer, 1985, ISBN 3-540-16463-4.

[21] G. L. Mullen and D. Panario, editors, Handbook of Finite Fields., Discrete math-
ematics and its applications, CRC Press, 2013, ISBN 978-1-439-87378-6.

[22] C. Negre, Improved three-way split approach for binary polynomial multiplica-
tion based on optimized reconstruction, Technical Report hal-00788646, Team
DALI/LIRMM, on Hyper Articles en Ligne (HAL), 2013, cited By 3.

[23] C. Negre, Efficient binary polynomial multiplication based on optimized karat-
suba reconstruction, Journal of Cryptographic Engineering, 4(2), pp. 91–106,
2014, cited By 6.

[24] N. I. of Standards and Technology, Advanced encryption standard, NIST FIPS
PUB 197, 2001.

[25] R. E. Overill, Review: Advances in elliptic curve cryptography., J. Log. Com-
put., 15(5), p. 815, 2005.

[26] K. H. Rosen, Elementary number theory and its applications (3. ed.)., Addison-
Wesley, 1993, ISBN 978-0-201-57889-8.

[27] A. Weimerskirch and C. Paar, Generalizations of the karatsuba algorithm for ef-
ficient implementations., IACR Cryptology ePrint Archive, 2006, p. 224, 2006.

46



APPENDIX A

LINK TO SOURCE CODE

https://github.com/oludoachieng/multiplications/blob/main/windowoptimized.cpp

47


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Symmetric Key Cryptography
	Asymmetric Key Cryptography
	Security in Asymmetric Key Cryptography
	Trapdoor Functions
	Aim of This Thesis

	GROUPS, RINGS AND GALOIS FIELDS
	Groups
	Cyclic Groups
	Subgroups
	Cyclic Subgroups
	Homomorphism and Isomorphism

	Rings
	Zero Divisors and Integral Domains
	Ideals and Quotient Rings
	Units
	Equivalence Class
	Characteristic of a Ring

	Fields
	Galois Fields
	Finite Field Bases
	Normal Bases
	Polynomial Bases

	Polynomials Over a Finite Field
	Polynomial Addition
	Polynomial Multiplication
	Polynomial Division
	Irreducible Polynomials

	Binary Finite Field Extensions


	ELLIPTIC CURVES
	Basic Definition
	Group Definition
	Point Addition
	Point doubling
	Scalar Multiplication
	Elliptic Curves over GF(p)
	Elliptic Curves Over GF(2n)

	Elliptic Curve Cryptography
	Elliptic Curve Discrete Logarithm Problem
	Elliptic Curve Cryptographic Security

	Binary Curves
	NIST Curves
	Koblitz Curves over F2m
	Pseudo-random Curves over F2m


	Polynomial Multiplication Algorithms
	2-Way Algorithms
	 Schoolbook 2-Way Algorithm
	 Karatsuba 2-Way Algorithm
	Refined Karatsuba 2-Way Algorithm

	3-Way Algorithms
	 Schoolbook 3-Way Algorithm
	Karatsuba 3-way Algorithm
	 CNH 3-Way Split Algorithm

	 Shift and Add Method For Binary Polynomial Multiplication
	 Left to right comb method For Binary Polynomial Multiplication
	 Left to Right Comb method with Precomputation For Binary Polynomial Multiplication

	SOFTWARE IMPLEMENTATION OF POLYNOMIAL ALGORITHMS
	Implementation of Binary Polynomial Multiplication Algorithms
	 Shift and Add Multiplication
	Left to Right comb method
	Left to right Comb method with Precomputation

	2-Way Algorithms
	 Schoolbook 2-Way Algorithm
	 Karatsuba 2-Way Algorithm
	 Refined Karatsuba 2-Way Algorithm

	3-Way Algorithms
	 Schoolbook 3-Way Algorithm
	 Karatsuba 3-Way Algorithm
	 CNH 3-way Split Algorithm

	Timing Results
	Discussion
	Precomputation of Sliding Window
	Algorithm Combination


	CONCLUSION
	REFERENCES
	APPENDICES
	Link To Source Code

