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ABSTRACT 

 

OPTIMAL INPUT DESIGN AND SYSTEM IDENTIFICATION FOR AN 

AGILE AIRCRAFT 

 

 

 

Millidere, Murat 

Doctor of Philosophy, Engineering Sciences 

Supervisor: Assoc. Prof. Dr. Ferhat Akgül 

Co-Supervisor: Prof. Dr. Kemal Leblebicioğlu 

 

 

September 2021, 216 pages 

 

This doctorate study aims to provide a methodology for developing aerodynamic and 

engine thrust models using simulated flight test data for the F16 fighter aircraft. An 

accurate and comprehensive representation of an aircraft's aerodynamic 

characteristics is required to design a flight control system or develop a high-fidelity 

flight simulator. Modern computational methods and wind tunnel testing can provide 

the aerodynamic database, but flight test data is required to obtain a more accurate 

and realistic aerodynamic database. As a result, system identification methods can 

characterize applied forces and moments acting on the aircraft. The F-16 nonlinear 

model also includes sensor models to simulate the actual flight data. The flight tests 

are carried out in the F16 simulation model using different excitations on the control 

surfaces. Simulation data is collected in predefined trim points. The equation error 

and output error methods are employed to analyze simulated data to estimate 

aerodynamic parameters in the time domain. The equation-error method is used 

firstly to identify aerodynamic parameters, and the results are then utilized as a 

starting point in the output-error process for fine-tuning. In general, thrust forces and 

moments are obtained from ground tests. The contribution of this doctoral study is 

to implement an iterative aerodynamic and thrust estimation approach in the absence 
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of engine manufacturer data. The validation of resulting models is accomplished by 

comparing the measured flight data to the model’s predictions for identical control 

inputs, as specified by the Federal Aviation Administration (FAA). 

 

Keywords: Parameter Estimation, Sensitivity Analysis, Equation Error Method, 

Output Error Method, Aerodynamic Database 
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ÖZ 

 

ÇEVİK UÇAKLARIN OPTİMAL GİRDİ TASARIMI VE SİSTEM 

TANIMLAMASI 

 

 

 

Millidere, Murat 

Doktora, Mühendislik Bilimleri 

Tez Yöneticisi: Doç. Dr. Ferhat Akgül 

Ortak Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 

 

 

Eylül 2021, 216 sayfa 

 

Bu doktora çalışmasının amacı, F16 savaş ucağının simule test verileri kullanılarak 

aerodinamik ve itki modellerinin belirlenmesinde kullanılacak yöntemi 

geliştirmektir. Uçuş control sistemi tasarlarken veya yüksek sadakat seviyeli uçuş 

simulatörleri geliştirirken, hava aracının tutarlı ve kapsamlı aerodinamik modeli 

gerekmektedir. Aerodinamik veritabanı, hesaplamalı yöntemler ve rüzgar tüneli ile 

çıkarılmasına ragmen daha doğru ve gerçekçi aerodinamik veritabanı için uçuş 

testlerine ihtiyaç duyulmaktadır. Bu sebeple, sistem belirleme yöntemleri ile uçağa 

etki eden kuvvet ve momentler karakterize edilmektedir. Daha gerçekçi uçuş test 

verisi benzetmek için, 6DOF model içerisinde sensor modelleri mevcuttur. 

Simulasyon modeli içerisinde, kontrol yüzeyleri farklı türde girdilerle aktif duruma 

getirilerek uçus testleri gerçeklestirilmistir. Simulasyon datası önceden belirlenen 

denge noktalarında toplanmıştır. Aerodinamik modellerin tahmininde zaman 

bölgesinde denklem hatası ve sonuç hatası yöntemleri kullanılmaktadır. İlk olarak 

denklem hatası yöntemi kullanılmakta olup, çıkan sonuçlar sonuç hatası yöntemine 

ilk değer olarak verilip, modelin ince ayarı yapılmaktadır. Genelde itki kuvvet ve 

momenti üretici firmadan hazır alınır. Bu doktora çalışmasının literatüre katkısı, 
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üretici firmadan itki verisi alınamaması durumunda, tekrarlayan aerodinamik ve itki 

tahmin yöntemi geliştirmektir. Elde edilen modelere sisteme verilen girdilerin aynısı 

verilerek, Federal Havacılık Dairesi kılavuzu standartlarına göre sonuçları 

karşılaştırılıp, modeller doğrulanır. 

 

Anahtar Kelimeler: Parametre Kestirimi, Duyarlılık Analizi, Denklem Hatası 

Yöntemi, Sonuç Hatası Yöntemi, Aerodinamik Veritabanı 
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CHAPTER 1  

1 INTRODUCTION  

1.1 System Identification 

Developing mathematical models for physical systems based on imperfect 

observations or measurements is one of the oldest and most fundamental scientific 

endeavors. This procedure is referred to as system identification [1]. 

The system identification is linked to other problems in dynamics. The inputs 𝑢, the 

outputs 𝑧 or 𝑦, and the system model functions 𝑓 and 𝑔 are three quantities 

representing a dynamic system described in state space, see Figure 1.1 [1]. 

 

Figure 1.1 Representation of Dynamic System in Time Domain 

The identification problem attempts to determine the system model 𝑓 and 𝑔 based 

on the given inputs 𝑢 and outputs 𝑧. 
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Although the state variables 𝑥 are not directly specified in the preceding description, 

they are implicitly mentioned since the outputs are functions of internal system state 

variables. Similarly, the system functions 𝑓 and 𝑔 contain unknown parameters Θ⃗⃗⃗. 

The process of establishing an appropriate mathematical model, usually containing 

differential equations, with unknown parameters that must be derived indirectly from 

observed data is known as system identification. System identification is one of the 

three general problems in aircraft dynamics and control, which can be understood in 

Figure 1.2 (duplicated from Ref. [2]). 

 

Figure 1.2 Aircraft Dynamics and Control 

Several critical elements of system identification include the following: 

• Accessibility to input and output data,  

• Asserting plausible models (i.e., class of systems),  

• Selecting the most appropriate model from the given class (i.e., equivalency). 

𝐶𝑚 = 𝐶𝑚(𝑀, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟, 𝛿𝑒 , 𝛿𝑎, 𝛿𝑟 …) (1.1) 

which can be expanded as: 

𝐶𝑚 =
𝜕𝐶𝑚

𝜕𝛼
𝛼 + ⋯+

𝜕𝐶𝑚

𝜕𝑞
𝑞 + ⋯+ 

𝜕𝐶𝑚

𝜕𝛿𝑒
𝛿𝑒 + ⋯  (1.2) 

The stability and control derivatives are the partial derivatives with regard to the 

motion variables and control inputs in the Taylor series expansion. 
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1.2 Modern Methods of Aircraft Parameter Estimation 

Figure 1.3 depicts the four essential components of flight vehicle system 

identification: maneuver, measurements, methods, and models [1]. 

1) The design of the control input form to stimulate various flying modes of the 

flight vehicle motion. 

2) The selection of instruments and filters. 

3) The selection of the most appropriate identification approach. 

4) Defining the structure of a possible mathematical model. 

 

Figure 1.3 Quad-M Basics of Flight Vehicle System Identification 

1.3 The Motivation for System Identification 

Aircraft flight simulation is used extensively in modern aircraft design, certification, 

and pilot training. The fidelity of the aerodynamic dataset has an impact on how 

closely the aircraft in flight simulation matches the actual aircraft. The aerodynamic 

model is the core of a flight simulator. Inaccuracies in the aerodynamic model may 

result in a simulation failing in the qualification process [3]. Therefore, high-fidelity 

aerodynamic datasets are required to provide an accurate actual aircraft behavior to 
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the pilots. The aerodynamic dataset is obtained in a variety of ways. In increasing 

order of fidelity, these include semi-empirical datasheet methods, linear flow solvers, 

nonlinear flow solvers, small-scale wind tunnel tests, full-scale wind tunnel tests, 

and flight tests. The processing time and cost increase as fidelity increases. 

Several computational and experimental approaches can be utilized to generate the 

aerodynamic database, depending on the cost and accuracy requirements of the 

design phase. References [4] [5].summarize these approaches and provide sample 

tools and classifications. As expected, the higher the cost of the aerodynamic 

database, the more accurate it is. The resource and time costs associated with each 

approach are often tens to hundreds of times more than those associated with the less 

accurate approach [6], as shown in Figure 1.4. 

 

Figure 1.4 Aerodynamic Database Generation Methods with Examples 

The semi-empirical approach is based on generalized and formalized experimental 

results. Datcom and ESDU are two well-known examples of this approach. As 

compared to other approaches, the computational effort is considerably decreased. A 

comprehensive aerodynamic dataset can be obtained in a matter of minutes. They do 

not require the generation of a computational grid. 
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Linear flow solvers are based on the principle of potential flow. This approach is 

exemplified by the panel and vortex lattice methods (VLM). They may contain 

corrections for the compressibility, boundary layer, dynamic motions, and nonlinear 

flow characteristics. They require computational grids; however, the grids are 

substantially smaller than those used by nonlinear flow solvers. VSaero, Panair, 

Tranair, and AVL are typical examples of panel and vortex lattice methods. While 

the linear flow regimes can be computed more precisely than the semi-empirical 

approach, the accuracy diminishes dramatically as the flow becomes non-linear [4]. 

Semi-empirical methods and linear flow solvers are commonly utilized in the 

conceptual design phase. 

Nonlinear flow solvers attempt to define all conservation equations, including those 

for continuity, momentum, and energy equations, and deal with a variety of 

turbulence models, compressibility, and boundary layer-related issues. The nonlinear 

flow solvers consider the finite volume and finite element methods. Ansys-Fluent, 

Star-CCM+, Open Foam, CFL3D, and SU2 are well-known nonlinear flow solvers. 

This approach has been investigated in detail within a low angle of attack sweeps 

(linear region) in the subsonic-supersonic regions. Nonetheless, the results in the 

transonic region, including shock-induced separations and at a high angle of attack 

sweeps (nonlinear part), differ from the actual aerodynamic data due to volatile flow 

characteristics. It is challenging to determine dynamic effects, including forced 

oscillations and spin conditions, using these solvers. They demand more 

computational power than linear flow solvers due to the additional processing and 

computations [4]. 

In wind tunnel tests, based on scale similarity, the aerodynamic database is 

developed through experiments. A wind tunnel test model should be designed and 

manufactured to conduct these experiments, which is a substantially more expensive 

approach when compared to the computational approaches. However, wind tunnel 

tests are required to resolve highly unsteady flight conditions. In small-scale wind 

tunnels, scaling issues such as Reynolds number, aeroelastic characteristics, and so 

on exist so that a full-scale wind tunnel is preferred [7]. Supersonic aerodynamics, 
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forced oscillation, and spin characteristics can be obtained in small-scale wind 

tunnels while taking off-landing features are accurately observed in large-scale wind 

tunnels. Forced oscillation and high-speed tests can also be conducted in large-scale 

wind tunnels. Indeed, there is some deviation from actual aerodynamic data because 

of Reynolds correction, the experimental system errors, the effect of wind tunnel 

airflow quality, the interference of tunnel walls/supports, and other factors [6]. 

Flight tests are the final option for eliminating the errors in wind tunnel tests. The 

aerodynamic database can be developed from flight test data using comprehensive 

system identification methods [8] [9] [10] [11] [12] [13]. Aerodynamic data should 

be validated with flight tests prior to further aircraft development. 

1.4 Literature Review 

The field of system identification is vast and encompasses a broad range of topics. 

The primary objective of system identification is to establish the mathematical model 

structure that best reflects the dynamic system, which is not unique. Numerous model 

postulates may need to be examined. The parameters of a given model have been 

quantitatively quantified, often via statistical procedures. This process in the entire 

model development phase is referred to as parameter estimation [1]. Parameter 

estimation is described as a function that quantifies the difference between measured 

system and predicted model responses. The time domain and frequency domain 

techniques of system identification are summarized by Jategaonkar [1], Klein and 

Morelli [2], and Tischler and Remple [14]. Jategaonkar [1] discusses time-domain 

applications, while Tischler and Remple [14]  and Morelli, Grauer, and Cooper [15] 

[16] discuss frequency-domain approaches, an overview and theoretical basis for 

each of the approaches mentioned above are provided in Morelli and Klein [2]. 

System identification in time and frequency domains are considered as competing 

methods. Both have advantages and disadvantages that are mutually beneficial [17] 

[18]. The time-domain is more intuitive since it refers to space where mathematical 
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functions are expressed in terms of time. Moreover, the parameters of a particular 

model have a physical meaning in the time domain [17] [18]. 

Numerous methods are available for system identification in the time-domain, 

including the equation-error method [1] [2] [6] [13] [19] [20] [21] [22], the output 

error method [1] [2] [13], the filter error method [1] [23] and the artificial neural 

network [6] [24] [25] [26] [27]. These methods are interchangeable [1] [9] [13] [28]. 

In this doctoral study, the equation-error and output-error methods are employed 

successively, e.g., the equation error method can be employed initially to determine 

the aerodynamic parameters. The acquired results are then used as the starting point 

for the output error method for fine-tuning. The equation-error and output-error 

estimation approaches can be distinguished from each other. Without knowledge of 

their history, non-state parameters such as non-dimensional force and moment 

coefficients are determined without knowing their history. This procedure is referred 

to as the equation-error method [1] [2] [29] [30]. The outputs of the system, such as 

the angle of attack, angular rates, etc., are integrated throughout the simulation, and 

therefore estimation technique is referred to as the output-error method [1] [2] [29] 

[30]. The predicted parameters of the output error technique converge mostly 

towards the truth ones. Nonetheless, this technique is extremely susceptible to non-

convergent solutions in agile aircraft. A combined equation/output error is 

recommended to address this issue [29]. 

Selecting independent variables in the equation error method is often a problematic 

issue. There are many approaches for selecting regression models, and the first one 

is the expert-based selection. The statistical criteria and flight mechanic intuition are 

used to select model terms [12] [13] [31]. However, it requires extensive knowledge 

of Flight Mechanics. Subset selection is the second approach, which divides into two 

parts: best subset selection and stepwise selection [1] [2] [32]. The best subset 

selection entails choosing the optimal model from among all possible models. When 

there is a large number of predictors, the best subset selection suffers 

computationally [32] [33]. Due to computational constraints, the best subset 

selection cannot be applied with a vast predictor number. The stepwise methods, 
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which examine a much smaller set of models than the best subset selection, are 

appealing alternatives. The stepwise selection may be classified into three types: 

forward stepwise selection, backward stepwise selection, and hybrid selection. The 

stepwise approach is a kind of local search, and its main disadvantage is that it 

eventually converges to local optima [32]. In this doctorate study, the binary Particle 

Swarm Optimization is considered to identify the most related independent variables 

in the equation error method, which forms the contribution of the thesis. 

In the first phase, the equation-error method is used firstly to identify aerodynamic 

parameters in the expert-based selection. The obtained results in the first phase are 

used as a starting point in the output-error process for fine-tuning, concerning FAA 

specified guidelines regarding tolerances on each variable for some maneuvers. 

In chapter 2, aircraft modeling and trim are discussed. In chapter 3, data gathering is 

briefly covered. The methodology is presented in chapter 4. In chapter 5, the results 

are presented, and in chapter 6, the contributions are mentioned. 
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CHAPTER 2  

2 AIRCRAFT MODELING AND TRIM 

2.1 Air Vehicle Flight Simulation Model 

The general equations of motion of a system of rigid bodies are described in many 

well-known textbooks, articles, and reports. Stevens, et.al. [34], Zipfel [35], Cook 

[36], Allerton [37], Etkin and Reid [38], Stengel [39], Raol and Singh [40], and 

Schmidt [41] are some examples. This section provides a cohesive framework for 

the definition of different coordinate systems, conventions, and associated equations 

derived under these definitions. The air-vehicle flight simulation model is based on 

[42] [43] [44]. 

Air-vehicle flight in 6 Degrees of Freedom (6-DoF) comprises three translational and 

three rotational motions along and about the three axes of its reference frame, 

respectively. The coordinate system associated with the body-fixed reference frame 

is often utilized to resolve the air vehicle’s equations of motion. All forces and 

moments acting on the aircraft are transformed into the body coordinates. It is 

common to utilize the body reference frame as the resolution frame. Furthermore, 

the wind frame can be selected for model-based analyses. The wind frame is utilized 

as the resolution frame for the equations of motion in this research. Finally, based on 

the variable states, a set of equations including translational and rotational motions 

and kinematic relations is produced. 

The equations of motion, aerodynamics, propulsion, weight and balance, landing 

gear, atmosphere, flight control system, actuator, and sensor models are all utilized 

to simulate an air vehicle in flight. Figure 2.1 is an example flow diagram. The 

objective of the equation of motion for flight dynamics is to provide adequate 

information on the motion of the air vehicle, in particular, the states of the air vehicle. 
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The other subsystem models are used to generate air-vehicle data for the EOM 

model. 

 
Figure 2.1 Aircraft Model 

2.1.1 Definition of Reference Systems 

Five frames must be introduced to model the motion of a rigid body air vehicle; 

These are described as follows: 

Local Geodetic North-East-Down frame, ℱ𝑁{𝑁; 𝑥𝑁𝑦𝑁𝑧𝑁}, with origin N, and with 

N𝑧𝑁 axis directed vertically down along the local normal at the surface. N𝑥𝑁𝑦𝑁 is 

the local horizontal plane, N𝑥𝑁 axis points toward the north, and N𝑥𝑁 axis points 

toward the east. This frame is used for navigation purposes and is often named the 

local navigation frame, which is the reason for using N to denote this frame [34] [38] 

[45].  

Vehicle body-fixed frame, ℱ𝐵{𝐵; 𝑥𝐵𝑦𝐵𝑧𝐵} with origin B, instantaneous CM of the 

air vehicle. 𝐵𝑥𝐵 axis is called the roll axis and points towards the nose of the air 
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vehicle, 𝐵𝑦𝐵 is called the pitch axis and directed to the right when viewed from the 

rear, and 𝐵𝑧𝐵 is called the yaw axis and points towards the fuselage belly. 

Wind frame, ℱ𝑊{𝑊; 𝑥𝑊𝑦𝑊𝑧𝑊} with origin W, instantaneous CM of the air vehicle. 

𝑊𝑥𝑊 axis points towards the local air velocity vector, 𝐵𝑧𝑊 points towards the 

symmetry plane of the air vehicle, and 𝑊𝑦𝑤 forms a right-handed coordinate system. 

Velocity frame, ℱ𝑉{𝑉; 𝑥𝑉𝑦𝑉𝑧𝑉}, with origin V, is an additional frame (also known 

as flight path frame). Two angles 𝛾 and 𝜒 denote the instantaneous angular 

orientation of velocity coordinates with respect to local NED coordinates.  

Propulsion frame, ℱ𝑃{𝑃; 𝑥𝑃𝑦𝑃𝑧𝑃}, with the thrust application point P.   

2.1.2 Nonlinear Equations of Motion 

2.1.2.1 Force Equations 

The generalized equations of motion (EOM) of an air vehicle can be expressed using 

the principles of Newton’s Second Law for translational motion and Euler’s Law for 

rotational movement. For conventional air vehicles, the body can be assumed to be 

rigid, symmetric about the XY-plane, and with all forces and moments acting about 

the center of mass. The translational motion for stationary, flat Earth is defined in 

tensor form as 

�⃗�𝐵 𝑁⁄
𝑁 = 𝒟𝑁�⃗�𝐵 𝑁⁄

𝑁 = 𝒟𝐵�⃗�𝐵 𝑁⁄
𝑁 + �⃗⃗⃗�𝐵 𝑁⁄ × �⃗�𝐵 𝑁⁄

𝑁 =
1

𝑚
𝑓 (2.1) 

Resolution of vector components in body coordinates are given as 

{𝒟𝐵�⃗�𝐵 𝑁⁄
𝑁 }

(𝐵)
= [

�̇�
�̇�
�̇�

] , {𝑓}
(𝐵)

= [

𝑓𝑥
𝑓𝑦
𝑓𝑧

] , {�⃗�𝐵 𝑁⁄
𝑁 }

(𝐵)
= [

𝑢
𝑣
𝑤

] ,

{�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

= [
𝑝
𝑞
𝑟
] 

(2.2) 
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Ordinary differential equations of translational motion, obtained in coordinate-

dependent component form in body coordinates and the body-axes accelerations, 

expanded out for each component, are given by 

[
�̇�
�̇�
�̇�

] =
1

𝑚
[

𝑓𝑥
𝑓𝑦
𝑓𝑧

] − [
𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤

] 

�̇� = 𝑓𝑥 𝑚⁄ − 𝑞𝑤 + 𝑟𝑣 

�̇� = 𝑓𝑦 𝑚⁄ − 𝑟𝑢 + 𝑝𝑤 

�̇� = 𝑓𝑧 𝑚⁄ − 𝑝𝑣 + 𝑞𝑢 

(2.3) 

When no specific landing gear contact forces are present, the accepted formulation 

for the resulting force is as follows: 

𝑓 = 𝑓𝑎 + 𝑓𝑔 + 𝑓𝑝 (2.4) 

where 𝑓𝑎 , 𝑓𝑝 and 𝑓𝑔 are the resultant forces due to aerodynamics, propulsion, and 

thrust, respectively. 

The velocity of vehicle CM w.r.t. Earth �⃗�𝐵 𝑁⁄
𝑁  is expressed in terms of �⃗�𝐵 𝑊⁄

𝑁  (velocity 

of the CM w.r.t. the air mass) and �⃗�𝑊 𝑁⁄
𝑁  (velocity of the wind w.r.t. Earth) as 

�⃗�𝐵 𝑁⁄
𝑁 = �⃗�𝐵 𝑊⁄

𝑁 + �⃗�𝑊 𝑁⁄
𝑁  (2.5) 

so that �⃗�𝐵 𝑁⁄
𝑁  and �⃗�𝐵 𝑊⁄

𝑁  represent the same vector when omitting wind (i.e., when 

�⃗�𝑊 𝑁⁄
𝑁 = 0⃗⃗). 

Figure 2.2 illustrates the orientation of the wind coordinates in relation to the body 

coordinates. Note that wind has been omitted (�⃗�𝑊 𝑁⁄
𝑁 ≡ 0⃗⃗ with �⃗�𝐵 𝑁⁄

𝑁 ≡ �⃗�𝐵 𝑊⁄
𝑁 ), purely 

for ease of illustration of the aerodynamic wind angles 𝛼 and 𝛽. 

Using the definitions for the body-axes components of �⃗�𝐵 𝑁⁄
𝑁  and �⃗�𝑊 𝑁⁄

𝑁 , together with 

the wind-axis component of �⃗�𝐵 𝑊⁄
𝑁  (the true airspeed, denoted by 𝑉𝑇𝐴𝑆), described by 
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{�⃗�𝐵 𝑁⁄
𝑁 }

(𝐵)
= [

𝑢
𝑣
𝑤

] , {�⃗�𝑊 𝑁⁄
𝑁 }

(𝐵)
= [

𝑢𝑊

𝑣𝑊

𝑤𝑊

] , {�⃗�𝐵 𝑊⁄
𝑁  }

(𝑊)
= [

𝑉𝑇𝐴𝑆

0
0

] (2.6) 

the expression for true airspeed (TAS) relative to undisturbed air, 𝑉𝑇𝐴𝑆, which is 

defined as the magnitude of the velocity vector �⃗�𝐵 𝑊⁄
𝐸  of the CM w.r.t. the air mass, 

is obtained from 

𝑉𝑇𝐴𝑆 = |�⃗�𝐵 𝑊⁄
𝑁 | = √�⃗�𝐵 𝑊⁄

𝑁 ∙ �⃗�𝐵 𝑊⁄
𝑁 , �⃗�𝐵 𝑊⁄

𝑁 = �⃗�𝐵 𝑁⁄
𝑁 − �⃗�𝑊 𝑁⁄

𝑁  (2.7) 

so that the substitution gives 

𝑉𝑇𝐴𝑆 = √(𝑢 − 𝑢𝑊)2 + (𝑣 − 𝑣𝑊)2 + (𝑤 − 𝑤𝑊)2 (2.8) 

 

Figure 2.2 Axis Orientations 

The transformation matrix from body fixed to wind axis, in terms of the combination 

of the transformation matrices from body-fixed to stability and stability to wind axes, 

is given as 
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�̆�(𝑊,𝐵) = �̆�(𝑊,𝑆)�̆�(𝑆,𝐵) 

= [
cos 𝛼 0 sin 𝛼

0 1 0
sin 𝛼 0 cos 𝛼

] [
cos 𝛽 sin 𝛽 0
−sin 𝛽 cos 𝛽 0

0 0 1

] 

= [
cos 𝛼 cos 𝛽 sin 𝛽 sin 𝛼 cos 𝛽

− cos 𝛼 sin 𝛽 cos𝛽 − sin 𝛼 sin 𝛽
− sin 𝛼 0 cos𝛼

] 

(2.9) 

Using s(∙) and c(∙) as shorthand notations for sin(∙) and cos(∙) respectively, we get 

�̆�(𝑊,𝐵) = �̆�(𝑊,𝐵) = [

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼 0 c𝛼

] (2.10) 

The definitions for Cartesian incidence (wind) angles in the presence of wind are 

derived from the relation 

[�̆�(𝑊,𝐵)]
𝑇
{�⃗�𝐵 𝑊⁄

𝐸 }
(𝑊)

= {�⃗�𝐵 𝑁⁄
𝑁 }

(𝐵)
− {�⃗�𝑊 𝑁⁄

𝑁 }
(𝐵)

 (2.11) 

expanding [Eq. (2.11)] in component form 

[

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼 0 c𝛼

]

𝑇

[
𝑉𝑇𝐴𝑆

0
0

] = [
𝑢
𝑣
𝑤

] − [

𝑢𝑊

𝑣𝑊

𝑤𝑊

] (2.12) 

obtaining the following trigonometric relationships for the angle of attack 𝛼 and true 

sideslip angle 𝛽, respectively: 

𝛼 = arctan2[  𝑤 − 𝑤𝑊 , 𝑢 − 𝑢𝑤   ] , −𝜋 < 𝛼 ≤ 𝜋 (2.13) 

𝛽 = arcsin (
𝑣 − 𝑣𝑊

𝑉𝑇𝐴𝑆
) = arctan (

𝑣 − 𝑣𝑊

√(𝑢 − 𝑢𝑊)2 + (𝑤 − 𝑤𝑊)2
) ,

−
𝜋

2
< 𝛽 <

𝜋

2
 

(2.14) 

2.1.2.2 Moment Equations 

The equations for rotational motion are represented in tensor form as 
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∑ �⃗⃗⃗⃗�𝐵 = 𝒟𝑁𝑙𝐵
𝐵 𝑁⁄

= 𝒟𝐵𝑙𝐵
𝐵 𝑁⁄

+ �⃗⃗⃗⃗�
𝐵 𝑁⁄

× 𝑙𝐵
𝐵 𝑁⁄

, 𝑙𝐵
𝐵 𝑁⁄

= �̆�𝐵
𝐵
�⃗⃗⃗⃗�

𝐵 𝑁⁄
 

∑ �⃗⃗⃗⃗�𝐵 = 𝒟𝐵 (�̆�𝐵
𝐵
�⃗⃗⃗⃗�

𝐵 𝑁⁄
) + (�⃗⃗⃗⃗�

𝐵 𝑁⁄
× �̆�𝐵

𝐵
�⃗⃗⃗⃗�

𝐵 𝑁⁄
)

≈ �̆�𝐵
𝐵
(𝒟𝐵 �⃗⃗⃗⃗�

𝐵 𝑁⁄
) + (�⃗⃗⃗⃗�

𝐵 𝑁⁄
× �̆�𝐵

𝐵
�⃗⃗⃗⃗�

𝐵 𝑁⁄
) 

(2.15) 

Where the components in body coordinates are 

{𝒟𝐵 �⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

= [
�̇�
�̇�
�̇�

] , {�⃗⃗⃗�𝐵}(𝐵) = [
𝑙
𝑚
𝑛
] ,

{�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

= [
𝑝
𝑞
𝑟
] ,  {𝐼𝐵

𝐵}
(𝐵)

= [
𝐼𝑋𝑋 −𝐼𝑋𝑌 −𝐼𝑋𝑍

−𝐼𝑋𝑌 𝐼𝑌𝑌 −𝐼𝑌𝑍

−𝐼𝑋𝑍 −𝐼𝑌𝑍 𝐼𝑍𝑍

] 

(2.16) 

The coordinate-dependent component form in body coordinates as, 

{𝒟𝐵 �⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

= [{𝐼𝐵
𝐵(𝑡)}

(𝐵)
]
−1

{{�⃗⃗⃗�𝐵}(𝐵) − {�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

× {𝐼𝐵
𝐵(𝑡)}

(𝐵)
{�⃗⃗⃗�𝐵 𝑁⁄ }

(𝐵)
} 

(2.17) 

Expanding Eq.(2.17) in component form 

[
�̇�
�̇�
�̇�

] = [
𝐼𝑋𝑋 −𝐼𝑋𝑌 −𝐼𝑋𝑍

−𝐼𝑋𝑌 𝐼𝑌𝑌 −𝐼𝑌𝑍

−𝐼𝑋𝑍 −𝐼𝑌𝑍 𝐼𝑍𝑍

]

−1

{[
𝑙
𝑚
𝑛
]

− [
𝑝
𝑞
𝑟
] × [

𝐼𝑋𝑋 −𝐼𝑋𝑌 −𝐼𝑋𝑍

−𝐼𝑋𝑌 𝐼𝑌𝑌 −𝐼𝑌𝑍

−𝐼𝑋𝑍 −𝐼𝑌𝑍 𝐼𝑍𝑍

] [
𝑝
𝑞
𝑟
]} 

(2.18) 

Assuming further that the airplane has symmetry about the xz plane, then we have 

𝐼𝑋𝑌 = 𝐼𝑌𝑍 = 0. Equation (2.18) now simplifies to 

[
�̇�
�̇�
�̇�

] = [
𝐼𝑋𝑋 0 −𝐼𝑋𝑍

0 𝐼𝑌𝑌 0
−𝐼𝑋𝑍 0 𝐼𝑍𝑍

]

−1

{[
𝑙
𝑚
𝑛
] − [

𝑝
𝑞
𝑟
] × [

𝐼𝑋𝑋 0 −𝐼𝑋𝑍

0 𝐼𝑌𝑌 0
−𝐼𝑋𝑍 0 𝐼𝑍𝑍

] [
𝑝
𝑞
𝑟
]} (2.19) 

The inverse of inertia tensor is found as 

[
𝐼𝑋𝑋 0 −𝐼𝑋𝑍

0 𝐼𝑌𝑌 0
−𝐼𝑋𝑍 0 𝐼𝑍𝑍

]

−1

=
1

 Γ
[

𝐼𝑍𝑍 0 𝐼𝑋𝑍

0  Γ/𝐼𝑌𝑌 0
𝐼𝑋𝑍 0 𝐼𝑋𝑋

] (2.20) 
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where Γ = 𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

Expanding out each component in Eq.(2.19), the body-axes angular accelerations are 

given by 

�̇� =
𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑝𝑞 − (𝐼𝑍𝑍

2 − 𝐼𝑌𝑌𝐼𝑍𝑍 + 𝐼𝑋𝑍
2 )𝑞𝑟 + 𝐼𝑍𝑍𝑙 + 𝐼𝑋𝑍𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

�̇� =
(𝐼𝑍𝑍 − 𝐼𝑋𝑋)𝑝𝑟 − 𝐼𝑋𝑍(𝑝

2 − 𝑟2) + 𝑚

𝐼𝑌𝑌
 

�̇� =
(𝐼𝑋𝑋

2 − 𝐼𝑋𝑋𝐼𝑌𝑌 + 𝐼𝑋𝑍
2 )𝑝𝑞 − 𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑞𝑟 + 𝐼𝑋𝑍𝑙 + 𝐼𝑋𝑋𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

(2.21) 

2.1.2.3 Kinematic Equations 

The angular velocities in the navigation frame in body-axes are defined as 

[
𝑝
𝑞
𝑟
] = [

�̇�
0
0

] + [
1 0 0
0 cos𝜙 sin𝜙
0 −sin𝜙 cos𝜙

] [
0
�̇�
0
]

+ [
1 0 0
0 cos𝜙 sin𝜙
0 −sin𝜙 cos𝜙

] [
cos 𝜃 0 −sin 𝜃

0 1 0
sin𝜃 0 cos 𝜃

] [
0
0
�̇�
] 

[
𝑝
𝑞
𝑟
] = [

1 0 −sin 𝜃
0 cos𝜙 sin𝜙 cos𝜃
0 −sin𝜙 cos𝜙 cos 𝜃

] [

�̇�

�̇�
�̇�

] 

(2.22) 

Taking the inverse, Euler-angle rates are governed by the following expressions 

[

�̇�

�̇�
�̇�

] = [

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙 / cos 𝜃 cos𝜙 / cos 𝜃

] [
𝑝
𝑞
𝑟
] (2.23) 

Using s(∙) ,c(∙), and t(∙) as shorthand notations for sin(∙), cos(∙), and tan(∙) 

respectively, we obtain 
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[

�̇�

�̇�
�̇�

] = [

1 s𝜙t𝜃 c𝜙t𝜃
0 c𝜙 −s𝜙

0 s𝜙/c𝜃 c𝜙/c𝜃

] [
𝑝
𝑞
𝑟
] (2.24) 

The rotation matrix from body fixed to navigation axis is 

�̆�(𝑁,𝐵) = [−

c𝜓 𝑠𝜓 0

𝑠𝜓 c𝜓 0

0 0 1

] [
c𝜃 0 −𝑠𝜃

0 1 0
𝑠𝜃 0 c𝜃

] [

1 0 0
0 c𝜙 𝑠𝜙

0 −𝑠𝜙 c𝜙

] (2.25) 

Multiplying each matrix, we get 

�̆�(𝑁,𝐵) = [

c𝜃c𝜓 −c𝜙s𝜓 + s𝜙s𝜃c𝜓 s𝜙s𝜓 + c𝜙s𝜃c𝜓

c𝜃s𝜓 c𝜙c𝜓 + s𝜙s𝜃s𝜓 −s𝜙c𝜓 + c𝜙s𝜃s𝜓

−s𝜃 s𝜙c𝜃 c𝜙c𝜃

] (2.26) 

Therefore, the desired kinematic expressions relating to the translational rates are 

given by 

{�⃗�𝐵 𝑁⁄
𝑁 }

(𝑁)
= �̆�(𝑁,𝐵){�⃗�𝐵 𝑁⁄

𝑁 }
(𝐵)

 (2.27) 

Expanding Eq.(2.27) in component form 

[

�̇�𝑁

�̇�𝐸

�̇�𝐷

] = [

c𝜃c𝜓 −c𝜙s𝜓 + s𝜙s𝜃c𝜓 s𝜙s𝜓 + c𝜙s𝜃c𝜓

c𝜃s𝜓 c𝜙c𝜓 + s𝜙s𝜃s𝜓 −s𝜙c𝜓 + c𝜙s𝜃s𝜓

−s𝜃 s𝜙c𝜃 c𝜙c𝜃

] [
𝑢
𝑣
𝑤

] (2.28) 

Expanding out �̇�𝐷 the component in Eq.(2.28), we get  

�̇�𝐷 = −s𝜃𝑢 + s𝜙c𝜃𝑣 + c𝜙c𝜃𝑤 (2.29) 

Altitude rate is calculated as 

ℎ̇ = −�̇�𝐷 = +s𝜃𝑢 − s𝜙c𝜃𝑣 − c𝜙c𝜃𝑤 (2.30) 
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2.1.3 Auxiliary Equations 

Flight path angle (𝛾) and heading angle (𝜒) are expressed in terms of the components 

of {�⃗�𝐵 𝑁⁄
𝑁 }

(𝑁)
 and ℎ̇ = −�̇�𝐷, respectively. 

𝛾 = arcsin (
ℎ̇

|�⃗�𝐵 𝑁⁄
𝑁 |

) = arctan (
ℎ̇

√�̇�𝑁
2 + �̇�𝐸

2
) , −

𝜋

2
< 𝛾 <

𝜋

2
 (2.31) 

𝜒 = arctan2[  �̇�𝐸 , �̇�𝑁  ] , −𝜋 < 𝜒 ≤ 𝜋 (2.32) 

Accelerometers measure the specific linear accelerations. The body-axes 

components of specific linear accelerations at the vehicle center of mass, 𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
, can 

be obtained excluding the gravity force, 𝑓𝑔⃗⃗⃗⃗  as 

𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
=

1

𝑚
(𝑓 − 𝑓𝑔⃗⃗⃗⃗ ) (2.33) 

When the air vehicle is flying, the force and moment caused by ground handling 

(landing gear) is equal to zero; thus, the total force excluding the gravity force is 

equal to aerodynamic (𝑓𝑎⃗⃗⃗⃗ ) and propulsive (𝑓𝑝⃗⃗⃗⃗ ) forces 

𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
=

1

𝑚
(𝑓𝑎⃗⃗⃗⃗ + 𝑓𝑝⃗⃗⃗⃗ ) (2.34) 

with the resolution of vector components into body coordinates as 

{𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
}
(𝐵)

= [

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] , {𝑓𝑎⃗⃗⃗⃗ }
(𝐵)

= [
𝑋𝑎

𝑌𝑎

𝑍𝑎

] , {𝑓𝑃⃗⃗ ⃗⃗ }
(𝐵)

= [

𝑋𝑝

𝑌𝑝

𝑍𝑝

] (2.35) 

Expanding Eq.(2.34) in component form and writing the specific accelerations for 

each axis component yields the following: 

[

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] =
1

𝑚
([

𝑋𝑎 + 𝑋𝑝

𝑌𝑎 + 𝑌𝑝

𝑍𝑎 + 𝑍𝑝

]) (2.36) 
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2.1.4 Off-Nominal Calculations 

2.1.4.1 Determination of Velocity at Off-Nominal Point 

Using the following definitions for the body-axes components of �⃗�𝐵 𝑁⁄
𝑁  and �⃗�𝑃 𝑁⁄

𝑁 , and 

the body-axis component of 𝑟𝑃 𝐵⁄  (displacement vector of an arbitrary point P w.r.t 

vehicle CM)  

{�⃗�𝑃 𝑁⁄
𝑁 }

(𝐵)
= [

𝑢𝑃

𝑣𝑃

𝑤𝑃

] , {�⃗�𝐵 𝑁⁄
𝑁 }

(𝐵)
= [

𝑢
𝑣
𝑤

] , {�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

= [
𝑝
𝑞
𝑟
] ,

{𝑟𝑃 𝐵⁄ }
(𝐵)

= [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] 

(2.37) 

the velocity at any arbitrary point P on the vehicle is obtained as  

{�⃗�𝑃 𝑁⁄
𝑁 }

(𝐵)
= {�⃗�𝐵 𝑁⁄

𝑁 }
(𝐵)

+ {�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

× {𝑟𝑃 𝐵⁄  }
(𝐵)

 (2.38) 

where {𝑟𝑃 𝐵⁄ }
(𝐵)

= −{𝑟𝐵 𝑃⁄ }
(𝐵)

 

Expanding Eq.(2.38) in component form and writing the velocity transfer for each 

axis component yields 

[

𝑢𝑃

𝑣𝑃

𝑤𝑃

] = [
𝑢
𝑣
𝑤

] + [
𝑝
𝑞
𝑟
] × [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] 

𝑢𝑃 = 𝑢 + 𝑞𝑧𝑃/𝐵 − 𝑟𝑦𝑃/𝐵 

𝑣𝑃 = 𝑣 + 𝑟𝑥𝑃/𝐵 − 𝑝𝑧𝑃/𝐵 

𝑤𝑃 = 𝑤 + 𝑝𝑦𝑃/𝐵 − 𝑞𝑥𝑃/𝐵 

(2.39) 
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2.1.4.2 Determination of the Specific Acceleration at Off-Nominal Point 

The body-axes components of specific linear accelerations at an arbitrary point P 

(accelerometer sensor position), {𝑎𝑠⃗⃗ ⃗⃗
𝑃 𝑁⁄

𝑁
}
(𝐵)

, instead of the CM are obtained as  

{𝑎𝑠⃗⃗ ⃗⃗
𝑃 𝑁⁄

𝑁
}
(𝐵)

= {𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
}
(𝐵)

+ {𝒟𝐵 �⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

× {𝑟𝑃 𝐵⁄ }
(𝐵)

+ {�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

× ({�⃗⃗⃗�𝐵 𝑁⁄ }
(𝐵)

× {𝑟𝑃 𝐵⁄ }
(𝐵)

) 

(2.40) 

with the resolution into vector components in body coordinates  

{𝑎𝑠⃗⃗ ⃗⃗
𝑃 𝑁⁄

𝑁
}
(𝐵)

= [

𝑎𝑠𝑥,𝑃

𝑎𝑠𝑦,𝑃

𝑎𝑠𝑧,𝑃

] , {𝑎𝑠⃗⃗ ⃗⃗
𝐵 𝑁⁄

𝑁
}
(𝐵)

= [

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] , {𝑟𝑃 𝐵⁄ }
(𝐵)

= [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] (2.41) 

Expanding Eq.(2.41) in component form and writing the results for each axis 

component yields 

[

𝑎𝑠𝑥,𝑃

𝑎𝑠𝑦,𝑃

𝑎𝑠𝑧,𝑃

] = [

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] + [
�̇�
�̇�
�̇�

] × [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] + [
𝑝
𝑞
𝑟
] × ([

𝑝
𝑞
𝑟
] × [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

]) 

𝑎𝑠𝑥,𝑃
= 𝑎𝑠𝑥

− (𝑞2 + 𝑟2)𝑥𝑃/𝐵 + (𝑝𝑞 − �̇�)𝑦𝑃/𝐵 + (𝑝𝑟 + �̇�)𝑧𝑃/𝐵 

𝑎𝑠𝑦,𝑃
= 𝑎𝑠𝑦

+ (𝑝𝑞 + �̇�)𝑥𝑃/𝐵 − (𝑝2 + 𝑟2)𝑦𝑃/𝐵 + (𝑞𝑟 − �̇�)𝑧𝑃/𝐵 

𝑎𝑠𝑥,𝑃
= 𝑎𝑠𝑥

+ (𝑝𝑟 − �̇�)𝑥𝑃/𝐵 + (𝑞𝑟 + �̇�)𝑦𝑃/𝐵 − (𝑝2 + 𝑞2)𝑧𝑃/𝐵 

(2.42) 

2.1.4.3 Transfering Moments to Off-Nominal Point 

Using the following definitions for the body-axes components of �⃗⃗⃗�𝑃, �⃗⃗⃗�𝐵, and 𝑓, 

together with the body-axis component of 𝑟𝑃 𝐵⁄  (displacement vector of an arbitrary 

point P w.r.t vehicle CM) 
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{�⃗⃗⃗�𝑃}
(𝐵) = [

𝑙𝑃
𝑚𝑃

𝑛𝑃

] , {�⃗⃗⃗�𝐵}(𝐵) = [
𝑙
𝑚
𝑛
] , {𝑓}

(𝐵)
= [

𝑓𝑥
𝑓𝑦
𝑓𝑧

] ,

{𝑟𝑃 𝐵⁄ }
(𝐵)

= [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] 

(2.43) 

the moments referred to any arbitrary point P on the vehicle is computed as 

{�⃗⃗⃗�𝑃}
(𝐵) = {�⃗⃗⃗�𝐵}(𝐵) + {𝑟𝐵 𝑃⁄ }

(𝐵)
× {𝑓}

(𝐵)
 (2.44) 

where {𝑟𝑃 𝐵⁄ }
(𝐵)

= −{𝑟𝐵 𝑃⁄ }
(𝐵)

 

Expanding in component form and writing the results for each axis component yields 

the following: 

[
𝑙𝑃
𝑚𝑃

𝑛𝑃

] = [
𝑙
𝑚
𝑛
] − [

𝑥𝑃/𝐵

𝑦𝑃/𝐵

𝑧𝑃/𝐵

] × [

𝑓𝑥
𝑓𝑦
𝑓𝑧

] 

𝑙𝑃 = 𝑙 − 𝑓𝑧𝑦𝑃/𝐵 + 𝑓𝑦𝑧𝑃/𝐵 

𝑚𝑃 = 𝑚 + 𝑓𝑧𝑥𝑃/𝐵 − 𝑓𝑥𝑧𝑃/𝐵 

𝑛𝑃 = 𝑛 − 𝑓𝑦𝑥𝑃/𝐵 + 𝑓𝑥𝑦𝑃/𝐵 

(2.45) 

2.2 Forces and Moments 

The sum of all applied forces and moments in the preceding equations arises from 

aerodynamics, gravity, and propulsion. Since gravity acts through the center of mass 

(CM) and the gravity field is uniform, there is no gravity moment acting on the air 

vehicle. The resultant force and moment are thus expressed as  

𝑓 = 𝑓𝑎 + 𝑓𝑝 + 𝑓𝑔 , �⃗⃗⃗�𝐵 = �⃗⃗⃗�𝐵,𝑎 + �⃗⃗⃗�𝐵,𝑝 (2.46) 

where 𝑓𝑎 , 𝑓𝑝 and 𝑓𝑔 are the resultant forces due to aerodynamics, propulsion, and 

thrust, respectively. 
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Note that gravity force produces no external moment about the CM, so the total 

external moment is due to the total aerodynamic and propulsive moment alone. 

2.2.1 Aerodynamic Forces and Moments 

Aerodynamic forces and moments result from the relative motion of the air and the 

aircraft. Aerodynamic forces and moments can be represented using non- 

dimensional coefficients as follows: 

{𝑓𝑎}
(𝐵)

= [
𝑋𝑎

𝑌𝑎

𝑍𝑎

] = �̅�𝑆 [
𝐶𝑋

𝐶𝑌

𝐶𝑍

] =
1

2
𝜌𝑉𝑇𝐴𝑆

2 [
𝐶𝑋

𝐶𝑌

𝐶𝑍

] (2.47) 

{�⃗⃗⃗�𝐵,𝑎}
(𝐵)

= [
𝑙𝑎
𝑚𝑎

𝑛𝑎

] = �̅�𝑆 [

𝑏𝐶𝑙

𝑐̅𝐶𝑚

𝑏𝐶𝑛

] (2.48) 

where �̅� is the dynamic pressure, 𝑉𝑇𝐴𝑆 is the magnitude of the air-relative velocity 

(also called the airspeed), 𝜌 is the air density, 𝑆 is the wing reference area, 𝑏 is the 

wingspan, and 𝑐̅ is the mean aerodynamic chord. 

Dynamic pressure is calculated as follows: 

�̅� =
1

2
𝜌𝑉𝑇𝐴𝑆

2
 (2.49) 

The dimensionless force components resolved into the wind axes can be obtained 

using the transformation matrix in Eq. (2.10) as follows: 

[
−𝐶𝐷

−𝐶𝐶

−𝐶𝐿

] = [

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼 0 c𝛼

] [
𝐶𝑋

𝐶𝑌

𝐶𝑍

] (2.50) 

In overall, the non-dimensional force and moment coefficients are nonlinear in their 

dependence on the aircraft translational and angular velocity vector components, as 

well as the control surface deflections, and also their time derivatives and other non-

dimensional quantities, such as Mach number and Reynolds number. 



 

 

 

23 

The aerodynamic force and moment coefficients are calculated using the following 

relationships and represented as a function of a combination of independent variables 

[2] [46] [47] [48] [49]. 

𝐶𝑎 = 𝐶𝑎(𝑀, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟, 𝛿𝑒 , 𝛿𝑎, 𝛿𝑟 , 𝛿𝑙𝑒𝑓, 𝛿𝑠𝑏) (2.51) 

where 𝑎 stands for 𝑋, 𝑌, 𝑍, 𝑙,𝑚, 𝑛 . 

For longitudinal coefficients, the dependency is expressed as 

𝐶𝑎 = 𝐶𝑎(𝛼) + 𝛥𝐶𝑎(𝛽, 𝛼) + 𝛥𝐶𝑎(𝛿ℎ, 𝛼) + 𝛥𝐶𝑎(𝛿𝐿𝐸𝐹 , 𝛼, 𝛽)

+
𝑞𝑐̅

2𝑉𝑇
{[𝐶𝑎𝑞

(𝛼) + 𝛥𝐶𝑎𝑞
(𝛼, 𝛿𝐿𝐸𝐹)]} 

(2.52) 

where 𝑎 stands for 𝑋, 𝑍,𝑚 . 

For lateral coefficients, the dependency is expressed as 

𝐶𝑎 = 𝐶𝑎(𝛽) + 𝛥𝐶𝑎(𝛽, 𝛼) + 𝛥𝐶𝑎(𝛿𝐿𝐸𝐹, 𝛼, 𝛽)

+ [𝛥𝐶𝑎(𝛿𝑎, 𝛼, 𝛽) + 𝛥𝐶𝑎(𝛿𝑎, 𝛼, 𝛽, 𝛿𝐿𝐸𝐹)] + [𝛥𝐶𝑎(𝛿𝑟 , 𝛼, 𝛽)]

+
𝑏

2𝑉𝑇
{[𝐶𝑎𝑝

(𝛼) + 𝛥𝐶𝑎𝑝
(𝛼, 𝛿𝐿𝐸𝐹)] 𝑝 + [𝐶𝑎𝑟

(𝛼) + 𝛥𝐶𝑎𝑟
(𝛼, 𝛿𝐿𝐸𝐹)]𝑟} 

(2.53) 

where 𝑎 stands for 𝑌, 𝑙,𝑚 .  

When the whole range of aircraft flight envelope is examined, these aerodynamic 

coefficients exhibit nonlinear correlations with their dependent variables. 

Polynomial functions or spline functions can be used to represent the nonlinearity in 

a postulated model. When the (equally spaced) nodes of an interval are used in the 

interpolation, exceptionally high degree polynomials exhibit oscillation. Conversely, 

spline functions can avoid the drawbacks of the polynomial representation. They are 

defined only on the subintervals and are very capable of approximating 

nonlinearities. In aerodynamic coefficients, parameters dependency on the angle of 

attack are represented via spline functions [2] in the form 
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𝛼𝛼𝑖

𝑚 = (𝛼 − 𝛼𝑖)+
𝑚 = {

(𝛼 − 𝛼𝑖)
𝑚            𝛼 ≥ 𝛼𝑖

0                             𝛼 < 𝛼𝑖
 (2.54) 

rather than the usual B-splines. 

As an example, the aerodynamic structure for 𝐶𝐷 is shown below. The structure of 

other longitudinal aerodynamic coefficients is similar. 

𝐶𝐷 = 𝐶𝐷0
+ [𝐶𝐷𝛼

∙ 𝛼 + 𝐶𝐷𝛼2 ∙ 𝛼2] + [𝐶𝐷𝛿𝑒
∙ 𝛿𝑒 + 𝐶𝐷𝛿𝑒𝛼

∙ 𝛿𝑒 ∙ 𝛼]

+ [𝐶𝐷𝑞
∙
𝑞𝑐

2𝑉
+ 𝐶𝐷𝑞𝛼

∙
𝑞𝑐

2𝑉
∙ 𝛼]

+ [𝐶𝐷𝛿𝑙𝑒𝑓
∙ 𝛿𝑙𝑒𝑓 + 𝐶𝐷𝛿𝑙𝑒𝑓𝛼

∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼 + 𝐶𝐷𝛿𝑙𝑒𝑓𝛼10
1 ∙ 𝛿𝑙𝑒𝑓

∙ (𝛼 − 𝛼10°)+𝐶𝐷𝛿𝑙𝑒𝑓𝛼15
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼15°)+]

+ [𝐶𝐷𝛽
∙ 𝛽 + 𝐶𝐷𝛽0

1 ∙ (𝛽 − 𝛽0°)+ + 𝐶𝐷𝛽2 ∙ 𝛽2] 

(2.55) 

2.2.2 Propulsion Forces and Moments 

Assuming that the thrust from the propulsion systems acts along the x body axis with 

an inclination angle of the engines, the applied force from propulsion is 

𝑓𝑝⃗⃗  ⃗ = [
𝑇 cos 𝛼𝑇

0
−𝑇 sin 𝛼𝑇

] (2.56) 

�⃗⃗⃗�𝐵,𝑝 = 𝑓𝑝⃗⃗  ⃗ × 𝑟𝐸𝑁/𝐵 = [
0

𝑇 cos 𝛼𝑇 𝑧𝐸𝑁/𝐵 + 𝑇 sin 𝛼𝑇 𝑥𝐸𝑁/𝐵

0

] (2.57) 

where 𝑟𝐸𝑁/𝐵 (𝑥𝐸𝑁/𝐵, 𝑦𝐸𝑁/𝐵, 𝑧𝐸𝑁/𝐵) is the position of the engine with respect to CM 

along the body-fixed coordinate axes. 
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2.2.2.1 Turbofan Engine Model Inputs and Outputs 

The inputs and outputs of a generic turbofan engine in the context of a flight vehicle 

system identification are depicted in Figure 2.3 [50]. 

 

Figure 2.3 Generic Turbofan Engine Model Inputs and Outputs 

2.2.2.2 Turbofan Engine Components 

The turbofan engine operates according to a thermodynamic cycle. In this cycle, the 

air is ingested, compressed, combusted, expanded, and expelled from the engine 

throughout this cycle. As a result, thrust is generated to propel the flight vehicle. Five 

main engine components perform for this operation:  

• the fan, 

• low- and high-pressure compressors, 

• combustion  

• low- and high- pressure turbines 

• nozzle.  

Figure 2.4 illustrates these components. 
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Figure 2.4 Turbofan Engine Components 

The fan generates most of the thrust produced by a turbofan engine. 

Compression works by adding energy to the pressure and heat already present to 

prepare the air for combustion. Compressors are classified into two types: low-

pressure compressors and high-pressure compressors. 

The combustor’s function is to supplement the energy in the airflow by heat addition. 

Fuel is injected into the combustion chamber and mixed with the air. Following that, 

the mixture of fuel and air is subsequently ignited, drastically increasing the 

temperature and energizing the flow, propelling it back towards the high-pressure 

turbine. 

The turbines extract energy from the flow and utilize it to drive the compressors and 

the fan. The rotating fan draws more air through the engine's core, thus completing 

the cycle, and it draws additional bypass air around the engine, thereby producing 

continual thrust. 

The exhaust nozzle’s purpose is to push the core flow out of the engine, thus 

generating extra thrust.  

This is a continuous process, with each component performing a particular function 

to keep the engine functioning. In principle, the idea of a turbofan engine is 
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straightforward: add energy to the air passing through the engine and then extract 

this energy to power the fan and generate thrust.  

2.2.2.3 Simplified Turbofan Thrust Model 

This section introduces a mathematical engine model capable of estimating the thrust 

force for any flight condition. 

Numerous researchers have concentrated their efforts on developing generic engine 

models with the least amount of data. Yadav, Kapadi, and Pashilkar [51] proposed 

an aero thermodynamic model for turbofan engine digital simulation. Similarly, 

Roberts and Eastbourn in Reference [52] proposed novel methods for developing a 

dynamic turbofan engine model using thermodynamic equations. Additionally, 

NASA Glenn Research Center developed a general high-bypass ratio, twin-spool 

commercial turbofan engine model [53]. However, the goal of this study is to provide 

a turbofan engine model to calculate the turbofan engine thrust force for any flight 

condition, and the models provided by [51] [52] [53] were found to be too complex 

for this purpose. As a result, several techniques to estimate the thrust force of a 

turbofan engine from simple equations were investigated. 

Two sub-models comprise the engine model. The first sub-model is concerned with 

the static engine state, while the second sub-model is concerned with the engine 

dynamics (i.e., transient state). Figure 2.5 illustrates these sub-models. Each sub-

model is discussed separately in the two following sections. 

 

Figure 2.5 Turbofan Engine Simplified Thrust Model Block Diagram 
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2.2.2.3.1 Static Engine Model 

Numerous simple static models exist in the literature [46] [47] [54] [55] [56], and 

[57], and it is shown that the model in Ref. [54] is superior to others. 

There are three significant external variables and one internal variable which affects 

the thrust variation. The external variables include air density, Mach number, and 

altitude; internal variables include throttle position. The static model is described as 

follows: 

𝑇(ℎ,𝑀, 𝛿𝑇𝐿𝐴)

𝑇0
= 𝜎(ℎ,𝑀) × �̃�(ℎ,𝑀, 𝛿𝑇𝐿𝐴) (2.58) 

where  𝑇(ℎ,𝑀, 𝛿𝑇𝐿𝐴) is the engine static thrust force at the altitude ℎ, the Mach 

number 𝑀and the throttle position 𝛿𝑇𝐿𝐴, 𝑇0 is the maximum thrust value, 

�̃�(ℎ,𝑀, 𝛿𝑇𝐿𝐴) is the nondimensional thrust coefficient and 𝜎 is the relative air density 

ratio defined as: 

𝜎(ℎ,𝑀) =
𝜌(ℎ)

𝜌0
[1 +

(𝛾 − 1)

2
𝑀2]

1
𝛾−1

 (2.59) 

and �̃�(ℎ,𝑀, 𝛿𝑇𝐿𝐴) is a polynomial defined as: 

�̃�(ℎ,𝑀, 𝛿𝑇𝐿𝐴) = ∑∑�̃�𝑖𝑗(ℎ)𝑀𝑖𝛿𝑇𝐿𝐴
𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 (2.60) 

where �̃�𝑖𝑗(ℎ) denotes the polynomial coefficients depending on the altitude ℎ, and 

{𝑛,𝑚} represent the order of �̃� for Mach number and throttle position. The order of 

the polynomial for throttle position and the order of the polynomial to the Mach 

number are assigned as 𝑚 and 𝑛, respectively. These numbers, 𝑚, and 𝑛, are 

optimized later to give better results, i.e., minor errors. In Figure 2.6, 𝑇0 for different 

altitudes can be seen. 



 

 

 

29 

 

Figure 2.6 Maximum Thrust Values at Different Mach Numbers and Altitudes 

2.2.2.3.2 Transient (Dynamic) Engine Model 

The transient engine dynamic response for a turbofan was modeled with a state equation as 

a first-order lag in the actual thrust to the commanded thrust as shown below [46] [47] [48] 

[50] [54]: 

𝑇𝑎 =
1

𝜏𝑒𝑛𝑔

(𝑇 − 𝑇𝑎) (2.61) 

where 𝜏𝑒𝑛𝑔 is the engine time constant, 𝑇𝑎 is the actual thrust, and 𝑇 is the steady-state thrust 

at defined altitude, Mach number, and throttle position. 𝜏𝑒𝑛𝑔 is dependent on the flight 

condition. In this study, for aerodynamic identification purposes, 𝜏𝑒𝑛𝑔 can be kept fixed, or 

the transient engine dynamics can be neglected not to increase the number of unknown 

parameters. 

2.2.3 Gravity Force 

Gravitational forces resolved into body coordinates are given as  

{𝑓𝑔⃗⃗⃗⃗ }
(𝐵)

= [

𝑋𝑔

𝑌𝑔
𝑍𝑔

] = �̆�(𝑁,𝐵) [
0
0

𝑚𝑔
] = [

−𝑚𝑔s𝜙

𝑚𝑔s𝜙c𝜃

𝑚𝑔c𝜙c𝜃

] (2.62) 
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2.3 Sensor Models 

This subsection discusses the sensor models that were used in the simulation model. 

The sensor models composed of an accelerometer and a rate gyroscope model. 

Stochastic and deterministic errors are the two main types of sensor errors that may 

appear. The most common types of sensor errors are depicted in Figure 2.7 [58]. 

 

Figure 2.7 Major Types of Sensor Errors 

Bias error, scale factor error, and misalignment are all examples of determinist 

errors. The bias error is a constant offset between the output and the input values. 

Scale factor is a multiplier applied to a signal that is composed of the output to the 

input ratio over the measurement range. Misalignment is an orthogonality error 

resulting from a rigid-body rotation that offsets all axes relative to the expected input 

axes [59]. Generally, highly accurate mounting of the sensor is achievable; the 

misalignments are quite minor [1]. 

Errors that occur as a result of random bias or scale factor drift, as well as random 

sensor noise, are known as stochastic errors. Random variations in bias and scale 

factor are the low frequency components and their influence is minimal. The sensor 

noise is responsible for a large portion of the stochastic errors [58]. Sensor noise may 

be reduced via filtering. In sensor error models, random sensor noise is represented 

as a zero mean white noise.  
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The error model of any sensor is given by: 

𝑦𝑚 = (1 + 𝑆𝑦 + 𝛿𝑆𝑦)y + (∆y + 𝛿∆y) + 𝑛𝑦 (2.63) 

where 𝑆𝑦 is the scale factor error, 𝛿𝑆𝑦 is the scale factor instability, ∆𝑦 the unknown 

instrument bias, 𝛿∆y is the bias instability and 𝑛𝑦 is sensor noise in the measured 

variable. The measured quantity is denoted by the left-hand subscript 𝑚. The time 

constant is omitted since no time delay is introduced in the measured variables.  

The characteristics for the sensor models are given in Table 2.1. 

Table 2.1 Characteristics of the Sensor Models 

Symbol Accelerometer Gyroscopes 

Bias 0.005 g 10 deg/hr 

Scale Factor Error 1000 ppm or 0.1% 500 ppm or 0.05% 

Random Sensor Noise 0.005 g/h/√𝐻𝑧 0.004 deg/h/√𝐻𝑧 

2.4 Aircraft Trim and Linearization 

2.4.1 Dynamic Model Representation for Aircraft Trim 

Mathematical model of the dynamic system can be represented in state-space form 

as 

�̇⃗� = 𝑓(�⃗�, �⃗⃗�),   �⃗�(𝑡0) = �⃗�0 

�⃗� = 𝑔(�⃗�, �⃗⃗�) 

(2.64) 

where �⃗� is the 𝑛𝑥 × 1 column vector of state variables, �⃗⃗� is the 𝑛𝑢 × 1 control input 

vector and  �⃗� is the 𝑛𝑦 × 1 output vector. 

Simplified linear models are valid over minor perturbations about the equilibrium 

points. The dynamic system equations can be linearized around a suitable operation 

point, results in 
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�̇⃗� = 𝐴�⃗� + 𝐵�⃗⃗�,   𝑥(𝑡0) = 𝑥0 

𝑦 = 𝐶�⃗� + 𝐷�⃗⃗� 
(2.65) 

The system matrices 𝐴, 𝐵, 𝐶, and 𝐷 are respectively denoted by 

A𝑖𝑗 =
𝑓𝑖(x + 𝜖𝑒𝑗, 𝑢) − 𝑓𝑖(x − 𝜖𝑒𝑗 , 𝑢)

2𝜖
; 𝑖 = 1,2,⋯ , 𝑛�̇�;  𝑗 = 1,2,⋯ , 𝑛𝑥 

B𝑖𝑗 =
𝑓𝑖(x, 𝑢 + 𝜖𝑒𝑗) − 𝑓𝑖(x, 𝑢 − 𝜖𝑒𝑗)

2𝜖
; 𝑖 = 1,2,⋯ , 𝑛�̇�;  𝑗 = 1,2,⋯ , 𝑛𝑢 

C𝑖𝑗 =
𝑔𝑖(x + 𝜖𝑒𝑗 , 𝑢) − 𝑔𝑖(x − 𝜖𝑒𝑗 , 𝑢)

2𝜖
; 𝑖 = 1,2,⋯ , 𝑛𝑦;  𝑗 = 1,2,⋯ , 𝑛𝑥 

D𝑖𝑗 =
𝑔𝑖(x, 𝑢 + 𝜖𝑒𝑗) − 𝑔𝑖(x, 𝑢 − 𝜖𝑒𝑗)

2𝜖
; 𝑖 = 1,2,⋯ , 𝑛𝑦;  𝑗 = 1,2,⋯ , 𝑛𝑢 

(2.66) 

where 𝜖 is a small positive scalar, 𝑒𝑗 is the 𝑗th unit vector, and 𝑛𝑢, 𝑛𝑥, 𝑛�̇� , and 𝑛𝑦 

stand for the number of elements in 𝑢, 𝑥, �̇� and 𝑦 vectors, respectively.  

Nonlinear equations must be solved to determine the trim condition. At least 12 states 

are needed to characterize aircraft motion. These are the translational, rotational, 

kinematic, and navigation equations. In 𝐴, 𝐵, 𝐶, and 𝐷 system matrices, the columns 

correspond to the input/state vectors, while the rows correspond to state 

derivative/output vectors. 

The input vector depends on the type of air vehicle. It typically comprises the 

deflections of an elevator, aileron, and rudder, as well as a throttle setting.  
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The air vehicle state, output, and input vectors are defined, respectively, as  

�⃗� = [𝑉, 𝛼, 𝛽, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟, 𝑝𝑁 , 𝑝𝐸 , ℎ]𝑇  

�⃗� = [𝑎𝑧, 𝑎𝑦, 𝛾]
𝑇

 

�⃗⃗� = [𝛿𝑇 , 𝛿𝑒 , 𝛿𝑎, 𝛿𝑟]
𝑇 

(2.67) 

For a nonlinear, time-invariant system, the trim point is equivalent to the equilibrium 

point of the nonlinear system, which is represented by 𝑥𝑒𝑞. In state-space, this 

equilibrium point, or trim condition, is described as �̇� = 0, with the set of control 

settings 𝑢𝑒𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 enabling steady-state possible. This solution generally can 

only be found numerically. 

In this study, firstly, the Newton-Raphson method is utilized to determine the trim 

condition. Then the Line Search Newton-Raphson method is examined for its ability 

to provide global convergence to trim problems. To utilize the Newton-Raphson 

method, linearization is required; the procedure is shown in Figure 2.8 [31] [47] [48] 

[60]. The perturbations are selected as a fraction of the equilibrium values and maybe 

defined some prescribed values for an equilibrium value of zero. 

 

Figure 2.8 Flowchart of the Linearization Process 
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The following are the linearized steady-state equations of motion in matrix form, 

using the Jacobian matrix: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�
�̇�
�̇�

�̇�

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
ℎ̇ ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝑉

𝜕�̇�

𝜕𝛼
…

𝜕�̇�

𝜕ℎ
𝜕�̇�

𝜕𝑉

𝜕�̇�

𝜕𝛼
…

𝜕�̇�

𝜕ℎ
⋮ ⋮ ⋱ ⋮

𝜕ℎ̇

𝜕𝑉

𝜕ℎ̇

𝜕𝛼
…

𝜕ℎ̇

𝜕ℎ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑉
𝛼
𝛽
 𝜙
𝜃
𝜓
𝑝
𝑞
𝑟
𝑁
𝐸
ℎ ]

 
 
 
 
 
 
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝛿𝑒
…

𝜕�̇�

𝜕𝛿𝑇

𝜕�̇�

𝜕𝛿𝑒
…

𝜕�̇�

𝜕𝛿𝑇

⋮ ⋱ ⋮
𝜕ℎ̇

𝜕𝛿𝑒
…

𝜕ℎ̇

𝜕𝛿𝑇]
 
 
 
 
 
 
 

 [

𝛿𝑒

𝛿𝑎

𝛿𝑟

𝛿𝑇

] (2.68) 

2.4.2 Numerical Methods for Aircraft Trim 

2.4.2.1 Newton-Raphson Method 

A Newton-Raphson method is a practical approach for solving equations 

numerically. It is based on the straightforward concept of linear approximation. In a 

generalized vector form, the Newton-Raphson method is expressed as 

�⃗�(Θ⃗⃗⃗) = 0 (2.69) 

where Θ⃗⃗⃗ ∈ ℝ𝑛 is an unknown vector parameter with 𝑛 ≥ 1 components, and �⃗�: 

ℝ𝑛 → ℝ𝑛 is a vector-valued function, that is,  

�⃗�(Θ⃗⃗⃗) =

[
 
 
 
 𝐹1(Θ⃗⃗⃗)

𝐹2(Θ⃗⃗⃗)

⋮

𝐹𝑛(Θ⃗⃗⃗)]
 
 
 
 

= [

𝐹1(Θ1, Θ2, … , Θ𝑛)

𝐹2(Θ1, Θ2, … , Θ𝑛)
⋮

𝐹2(Θ1, Θ2, … , Θ𝑛)

] = 0  (2.70) 



 

 

 

35 

where each 𝐹𝑖: ℝ
𝑛 → ℝ, 𝑖 = 1,2,⋯ , 𝑛, is a scalar-valued function of 𝑛 variables. A 

vector Θ∗ for which Eq. 15 is satisfied is called a solution or root of the nonlinear 

equations. 

To derive the formulas for the NR method, Taylor series for the function 𝐹 at the 

point 𝛩𝑘 is written as 

�⃗�(Θ⃗⃗⃗𝑘 + 𝛼𝑘�⃗�𝑘) ≈ 𝐹(Θ⃗⃗⃗𝑘) + 𝛼𝑘𝛻�⃗�(Θ⃗⃗⃗𝑘)
𝑇�⃗�𝑘 (2.71) 

where 𝑝𝑘 is a search direction that improves the solution in some sense, the scalar 

𝛼𝑘 is the step length that determines the next point, and 𝛻𝐹(Θ𝑘)
𝑇 is the transpose of 

the Jacobian matrix of 𝐹 at the point Θ𝑘. Then Eq. (2.71) can be rewritten as  

�⃗�(Θ⃗⃗⃗𝑘 + 𝛼𝑘�⃗�𝑘) ≈ �⃗�(Θ⃗⃗⃗𝑘) + 𝛼𝑘𝐽(Θ⃗⃗⃗𝑘)
𝑇�⃗�𝑘 (2.72) 

If 𝐽(Θ𝑘) is nonsingular, then solving the equation 

�⃗�(Θ⃗⃗⃗∗) ≈ �⃗�(Θ⃗⃗⃗𝑘) + 𝛼𝑘 𝐽(Θ𝑘)�⃗�𝑘 = 0 (2.73) 

𝛼𝑘𝑝𝑘 can be obtained as 

𝛼𝑘�⃗�𝑘 = − 𝐽(Θ⃗⃗⃗𝑘)
−1�⃗�(Θ⃗⃗⃗𝑘) (2.74) 

In the Newton-Raphson method, 

𝛼𝑘 = 1 (2.75) 

and p reduces to  

�⃗�𝑘 = −𝐽(Θ⃗⃗⃗𝑘)
−1�⃗�(Θ⃗⃗⃗𝑘) (2.76) 

Algorithm 1: Newton-Raphson Method for Nonlinear Equations  

1. Choose initial condition 𝑥0 and maximum iteration number 𝑘𝑚𝑥 

2. for 𝑘 =  0 𝑡𝑜 𝑘𝑚𝑎𝑥 

3.    Calculate a solution to 𝑝𝑘 to the Newton equations, 

4.    �⃗�𝑘 = −𝐽(Θ⃗⃗⃗𝑘)
−1�⃗�(Θ⃗⃗⃗𝑘) 

5.    Θ⃗⃗⃗k+1 = Θ⃗⃗⃗k + �⃗�𝑘 

6. end for 
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Newton-Raphson method needs the knowledge of the Jacobian of the nonlinear 

function. The derivatives in the scalar-valued function can be approximated 

numerically with a finite difference approach. This strategy is based on Taylor’s 

theorem. By observing the change in function values in response to small 

perturbations of the unknowns near a given point 𝑥, the derivatives can be 

approximated. The partial derivative of the scalar-valued function 𝑓𝑖 with respect to 

the 𝑗th independent variable can be approximated by the central-difference formula 

𝜕𝐹𝑖

𝜕Θ𝑗

(𝑥)

= lim
𝜖→0

𝐹𝑖(Θ1, ⋯ , Θ𝑗−1, Θ𝑗 + 𝜖𝑒𝑗 , Θ𝑗+1, ⋯ , Θ𝑛) − 𝐹𝑖(Θ1, ⋯ , Θ𝑗−1, Θ𝑗 − 𝜖𝑒𝑗 , Θ𝑗+1, ⋯ , Θ𝑛)

2𝜖
 

≈
𝐹𝑖(Θ + 𝜖𝑒𝑗) − 𝐹𝑖(Θ − 𝜖𝑒𝑗)

2𝜖
 

(2.77) 

where 𝜖 is a small positive scalar and 𝑒𝑗 is the 𝑗th unit vector.  

Now considering the function 𝐹𝑖 : ℝ
𝑛 → ℝ, which is a scalar-valued function of 𝑛 

independent variables, Θ⃗⃗⃗ the variable can be written componentwise as Θ⃗⃗⃗ =

(Θ1, Θ2, ⋯ , Θ𝑛).  The gradient vector, the 𝑛 vector of first derivatives of 𝐹𝑖 can be 

built up by merely applying Eq. (2.77) for 𝑗 = 1,2,⋯ , 𝑛. This process requires the 

evaluation of 𝑓 at the points Θ + 𝜖𝑒𝑗, 𝑗 = 1,2,⋯ , 𝑛, and  Θ − 𝜖𝑒𝑗, 𝑗 = 1,2,⋯ , 𝑛: a 

total of 2𝑛 points. 

The vector of the first derivatives of 𝑓𝑖, the scalar-valued function is called the 

gradient of the function and is denoted as 

∇𝐹𝑖(Θ⃗⃗⃗) ≡ [
𝜕𝐹𝑖(Θ)

𝜕Θ1

𝜕𝐹𝑖(Θ)

𝜕Θ2
…

𝜕𝐹𝑖(Θ)

𝜕Θ𝑛

]

𝑇

 (2.78) 
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To define the Jacobian, the vector-valued function, 𝐹(Θ), is used: 

�⃗�(Θ⃗⃗⃗) =

[
 
 
 
 𝐹1(Θ⃗⃗⃗)

𝐹2(Θ⃗⃗⃗)

⋮

𝐹𝑛(Θ⃗⃗⃗)]
 
 
 
 

= [

𝐹1(Θ1, Θ2, … , Θ𝑛)

𝐹2(Θ1, Θ2, … , Θ𝑛)
⋮

𝐹2(Θ1, Θ2, … , Θ𝑛)

] (2.79) 

where each of the functions, 𝐹𝑖 is a scalar-valued function. Then ∇𝐹 is the matrix 

with entries 

(∇F(Θ⃗⃗⃗))
𝑗𝑖

≡
𝜕𝐹𝑖(Θ⃗⃗⃗)

𝜕Θ𝑗
 (2.80) 

Note that the 𝑖th column of ∇𝐹(𝑥) is the gradient of 𝑓𝑖. It can be shown as 

∇𝐹(Θ⃗⃗⃗) =  [∇𝐹1(Θ) ∇𝐹2(Θ) ⋯ ∇𝐹𝑖(Θ) ⋯ ∇𝐹𝑛(Θ)] (2.81) 

The Jacobian of 𝐹 at the point Θ is defined as ∇𝐹(Θ)𝑇 and represented as 

𝐽(Θ) = ∇𝐹(Θ⃗⃗⃗)
𝑇
 (2.82) 

The Jacobian is the matrix with entries 

(𝐽(Θ))
𝑖𝑗

≡
𝜕𝐹𝑖(Θ)

𝜕Θ𝑗

 (2.83) 

where 𝑖 represents the equation index, and 𝑗 represents the independent variable 

index. 

2.4.2.2 Line Search Newton-Raphson Method 

A line search strategy can be used to make the Newton-Raphson Method more 

robust. To begin, a merit function needs to be defined, a scalar-valued function of 𝑥 

whose value indicates whether a new candidate iterate is better or worse than the 

current iterates, in terms of progress towards a solution of 𝑓. The most often used 

merit function is the Euclidean norm ‖∙‖2, defined as 
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‖𝐹(Θ)‖2 = √∑𝐹𝑖
2(Θ)

𝑛

𝑖=1

 (2.84) 

The algorithm used in Line Search Newton-Raphson uses the sufficient decrease 

condition, known as the Armijo condition, which is the only difference from the 

Newton-Raphson method: 

‖𝐹(Θ𝑘 + 𝛼𝑘𝑝𝑘)‖2 ≤ ‖𝐹(Θ𝑘) + 𝑐𝛼𝑘𝛻𝐹(Θ𝑘)
𝑇𝑝𝑘‖2  (2.85) 

The norm of the Armijo condition is illustrated in Figure 2.9 [61] 

 

Figure 2.9 Armijo Condition 

If the initial point (Θ0) is away from the solution; the Armijo condition is applied to 

the Newton-Raphson method to help convergence.  

Algorithm 2: Line Search Newton-Raphson Method for Nonlinear Equations  

1. Choose initial condition 𝑥0, maximum iteration number 𝑘𝑚𝑎𝑥, and 𝑐 

2. for 𝑘 =  0 to 𝑘𝑚𝑎𝑥 

3.   Calculate a solution to 𝑝𝑘 to the Newton equations, 

4.   𝑝𝑘 = −𝐽(Θ⃗⃗⃗𝑘)
−1𝐹(Θ⃗⃗⃗𝑘) 

5.  if 𝛼 = 1 satisfies the Armijo condition  

6.     Set 𝛼𝑘 = 1    

7.   else 

8.   Perform Armijo condition line search to find 𝛼𝑘 > 0 that satisfies Eq. 

(2.85) 

9.      end if  

10.    Θ⃗⃗⃗⃗ 𝑘+1 = Θ⃗⃗⃗𝑘 + 𝑝𝑘 

11. end for 
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Procedure 1: Armijo Condition Line Search  

1. Choose 𝜌 with 0 < 𝜌 < 1 and �̅� = 1; set 𝛼𝑘 ← �̅� 

2. while  ‖𝐹(Θ𝑘 + 𝛼𝑘𝑝𝑘)‖2 ≤ ‖𝐹(Θ𝑘) + 𝑐𝛼𝑘𝛻𝑓(Θ𝑘)
𝑇𝑝𝑘‖2 do 

3.    𝛼𝑘 ← 𝜌𝛼𝑘 

4. end while 

5. Terminate with 𝛼𝑘 

2.4.3 Steady-State Flight Conditions (Trim Conditions) 

The steady-state flight is important since it is the starting condition for flight 

simulation and a flight condition in which the aircraft is linearized. As far as flight 

dynamics are concerned, the steady-state flight is defined as a condition when all 

force and moment components in the body-fixed coordinate system are constant or 

zero. Additionally, aerodynamic angles and the angular rate components must be 

constant, with zero derivatives. As a result, the following basic restrictions are 

specified as follows:  

Linear accelerations:  

Angular accelerations:  

�̇�, �̇�, �̇� (𝑜𝑟 �̇�, �̇�, �̇�) ≡ 0  

�̇�, �̇�, �̇� ≡ 0 
(2.86) 

When the steady-state conditions �̇�, �̇�, �̇� = 0 are satisfied, the aerodynamic and thrust 

moments must be zero or constant, indicating that the angular rates to be zero or 

constant. The conditions �̇�, �̇�, �̇� (𝑜𝑟 �̇�, �̇�, �̇�) = 0 necessitates that the airspeed, angle 

of attack, and sideslip angle be constant, and thus the aerodynamic forces must be 

zero or constant. As a result, additional constraints based on widely used steady-state 

flight (trim) conditions are defined as: 

Straight and level flight: �̇�, �̇�, �̇�, 𝛾, 𝑝, 𝑞, 𝑟 ≡ 0 𝑉, ℎ =  𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

Steady climb or descent: �̇�, �̇�, �̇�, 𝑝, 𝑞, 𝑟 ≡ 0 𝑉, ℎ, 𝛾, 𝛿𝑡 = 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

Steady turn: �̇�, �̇�, 𝛾 ≡ 0 𝑉, ℎ, 𝜙 = 𝑢𝑠𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

The reader is referred to Ref. [42] [43]for the detailed knowledge of the trim 

conditions stated above.
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CHAPTER 3  

3 FLIGHT DATA GATHERING AND ANALYSIS 

3.1 Flight Data Gathering 

The flight test data used in this study are collected from a high-fidelity F-16 

simulator. The stability and control augmentation systems have been developed 

using the aircraft model to carry out the maneuvers. The stability and control 

derivatives are estimated mainly from the aircraft’s dynamic reaction to control 

inputs. Typically, a variety of maneuvers are required to stimulate dynamic motion 

about different axes utilizing separate inputs on each control. In general, it is 

suggested to begin each maneuver with a trimmed level flight to allow for 5 to 10 

seconds of steady flight before applying particular control inputs and provide 

adequate time for the aircraft to oscillate depending on the mode of motion [1] [13]. 

Trim data for discrete flight conditions defined in Mach numbers (𝑀 = 0.2 to 𝑀 =

0.6), altitudes (ℎ = 0 ft to ℎ = 40000 ft) and different flight path angles (𝛾 = −5° 

to 𝛾 = 5°) are collected to generate a preliminary engine thrust model. Maneuvers 

for system identification (individual models), with two different altitudes and six 

different speed combinations, are performed out in twelve different trim points in 

this study. Control inputs of the pilot have been designed to do short-period, phugoid, 

Dutch-roll, and bank-to-bank maneuvers. The angles of attack and sideslip are 

covered between −5° ≤  𝛼 ≤ 18° and  −8° ≤  𝛽 ≤ 8°. The longitudinal maneuvers 

covered an angle of attack range of 0°-18°. The lateral maneuvers covered an angle 

of attack range of 4°-13° and an angle of sideslip range -8°-8°, respectively. Aircraft 

geometry, nominal mass, and inertia properties are given in Table 3.1 and Table 3.2 
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Table 3.1 F-16 Aircraft Geometry and Mass Properties 

Property Symbol Value Units 

Mass 𝑚 9295 kg 

Wingspan 𝑏 30 m 

Wing area 𝑆 300 m 

Mean aerodynamic chord 𝑐̅ 11.32 m 

Reference moment center (𝑥-direction) 𝑥𝑀𝐶 0.35𝑐̅ m 

Reference moment center (𝑦-direction) 𝑦𝑀𝐶 0 m 

Reference moment center (𝑧-direction) 𝑧𝑀𝐶 0 m 

Center of mass (𝑥-direction) 𝑥𝐵 0.3𝑐̅-0.38𝑐̅ m 

Center of mass (𝑦-direction) 𝑦𝐵 0 m 

Center of mass ((𝑧-direction) 𝑧𝐵 0 m 

 

Table 3.2 Aircraft Inertia Tensor in kg-m2 

Symbol Value Symbol Value Symbol Value 

𝐼𝑋𝑋 12875 𝐼𝑋𝑌 0 𝐼𝑋𝑍 1331 

𝐼𝑌𝑋 0 𝐼𝑌𝑌 75674 𝐼𝑌𝑍 0 

𝐼𝑍𝑋 1331 𝐼𝑍𝑌 0 𝐼𝑍𝑍 85552 

3.1.1 Optimized Maneuvers 

The primary objective of the system identification maneuvers detailed in this section 

is to stimulate associated modes of the aircraft motion adequately. In general, while 

exciting a specific mode, it should be avoided by exciting other modes. The short 

period, phugoid, Dutch roll, and bank-to-bank maneuvers are described in detail 

below and shown in Figure 3.1. 
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Figure 3.1 Control Inputs for the Short Period, Phugoid, Dutch-Roll, and Bank-to-

Bank Maneuvers 

The pilot's control inputs are applied to stimulate the different modes of air vehicle 

via short-period, phugoid, Dutch-roll, and bank-to-bank maneuvers. All test 

procedures began with level flight trim conditions. Trims were not performed at idle 

or maximum power settings since the aerodynamic coefficients are not affected by 

thrust change. The flight test scope is shown in Figure 3.2. 

 

Figure 3.2 Flight Test Scope 

3.1.1.1 Short Period Mode (SP) 

It is a multi-step 3-2-1-1 elevator input that excites the short period motion with a 

variation of approximately 4 degrees in angle of attack and 0.5g in vertical 
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acceleration. It provides enormous information for estimating the vertical and 

pitching motion derivatives [1].  

3.1.1.2 Dutch Roll (DR) 

The Dutch Roll maneuver provides knowledge for predicting the lateral motion 

variables [1]. This maneuver is excited by rudder inputs. Multiple oscillations cycles 

are often seen. The maximum change in the sideslip angle is typically in the range 

of ±4 degrees or 0.1g lateral acceleration. The Dutch roll maneuvers are performed 

at different trim speeds and altitudes since the lateral-direction derivatives depend 

on the angle of attack. 

3.1.1.3 Bank to Bank (BTB) 

Bank-to-Bank maneuver provides extra knowledge on lateral-direction motion 

variables relating to rolling rate and aileron deflection [1]. Aileron input is applied, 

rolling the aircraft from wings-level to 30 degrees banking on one side; this is 

continued by changing input and smoothly transitioning to the wings-level and the 

opposite bank angle, and then back to wings-level condition. The aileron adjustment 

causes a rapid change in roll rate and acceleration. 

3.1.2 Optimal Input Design 

Several different input patterns can be applied to induce oscillatory motion: pulse, 

doublet, 3-2-1-1 signal, and modifications of the 3-2-1-1 signal. The procedures 

described by Jategaonkar in Ref. [1] (pages 41–52) are used as guidelines. A pulse 

input is the most straightforward way to trigger the oscillatory motion. After a certain 

amount of time has passed, the control is released, allowing the aircraft to oscillate 

freely without pilot inputs. A pulse input quickly obtains the excitation of long-

period modes (e.g., phugoid), but the fast-reacting modes (short-period, dutch-roll) 
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are more critical than long-period modes. A doublet is a more often utilized input to 

stimulate the dynamic motion. The doublet input generates a symmetrical signal 

from a two-sided pulse. Its excitation power varies with time steps, and tuning time 

steps is critical. Extending the logic of the doublet input, 3-2-1-1 multi-step input 

can be utilized, which offers a much broader excitation power spectrum than the 

doublet input. This is why the 3-2-1-1 signal outperforms the doublet input. The 

other virtue of the 3-2-1-1 is its simplicity and ability to be executed manually. When 

flown manually, inputs do not have highly sharp edges due to the pilot’s filtering 

effect. It is worth noting that the exact form and time step are not critical. The 3-2-

1-1 input on the elevator is suggested to excite the short-period motion, while the 

doublet input on the rudder is recommended to excite the dutch roll motion. Although 

the 3-2-1-1 input can be designed for dutch roll excitation, it is weakly damped in 

comparison to the short period, and therefore a doublet input is found to be sufficient 

for excitation of the dutch roll. In the following subsections, how to choose the 

optimal time step is mentioned. 

3.1.2.1 Short Period Mode (SP) 

Firstly, the longitudinal linearized matrices are obtained from the nonlinear 

simulation model for the discrete flight conditions performed by maneuvers. 

[

∆�̇�
∆�̇�
∆�̇�

∆�̇�

] =

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝑢

𝜕�̇�

𝜕𝑤

𝜕�̇�

𝜕𝑞

𝜕�̇�

𝜕𝜃
𝜕�̇�

𝜕𝑢

𝜕�̇�

𝜕𝑤

𝜕�̇�

𝜕𝑞

𝜕�̇�

𝜕𝜃
𝜕�̇�

𝜕𝑢

𝜕�̇�

𝜕𝑤

𝜕�̇�

𝜕𝑞

𝜕�̇�

𝜕𝜃
0 0 1 0 ]

 
 
 
 
 
 
 

0

[

∆𝑢
∆𝑤
∆𝑞
∆𝜃

] + 

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝛿𝑒

𝜕�̇�

𝜕𝛿𝑒

𝜕�̇�

𝜕𝛿𝑒

0 ]
 
 
 
 
 
 
 

0

∆𝛿𝑒 (3.1) 

where subscript 0 represents the equilibrium (trim) point.  

Two complex conjugate pairs of eigenvalues result from the four states, 

corresponding to two stable oscillatory modes. It is possible to determine the natural 

frequency and period of these pairs of eigenvalues. Because the periods of these 
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modes are separated by more than an order of magnitude, they are easily 

distinguished as the short-period and phugoid modes. The phugoid mode has a low 

damping factor, whereas the short-period mode has a moderate damping factor. 

Typically, the time step for the 3-2-1-1 input is set such that the short period’s natural 

frequency falls in the middle of the upper third of the input spectrum. This leads to 

an estimate for Δ𝑡3211 given by 

Δ𝑡3211 ≈
1.6

𝜔𝑛𝑆𝑃

≈
𝜋

2𝜔𝑛𝑆𝑃

≈
1

4
∙ period of oscillation (3.2) 

or 

Δ𝑡3211 ≈
2.1

𝜔𝑛𝑆𝑃

≈
1

3
∙ period of oscillation (3.3) 

where 𝜔𝑛𝑆𝑃
 is the short period frequency. 

3.1.2.2 Dutch Roll (DR) 

Firstly, the lateral linearized matrices are obtained from the nonlinear simulation 

model for the discrete flight conditions performed by maneuvers. 

[

∆�̇�
∆�̇�
∆�̇�
∆�̇�

] =

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝑣

𝜕�̇�

𝜕𝑝

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝜙
𝜕�̇�

𝜕𝑣

𝜕�̇�

𝜕𝑝

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝜙
𝜕�̇�

𝜕𝑣

𝜕�̇�

𝜕𝑝

𝜕�̇�

𝜕𝑟

𝜕�̇�

𝜕𝜙
0 𝑐𝜙 −𝑠𝜙 0 ]

 
 
 
 
 
 
 

0

[

∆𝑣
∆𝑝
∆𝑟
∆𝜙

] +

[
 
 
 
 
 
 
 
𝜕�̇�

𝜕𝛿𝑎

𝜕�̇�

𝜕𝛿𝑟

𝜕�̇�

𝜕𝛿𝑎

𝜕�̇�

𝜕𝛿𝑟

𝜕�̇�

𝜕𝛿𝑎

𝜕�̇�

𝜕𝛿𝑟

0 0 ]
 
 
 
 
 
 
 

0

[
∆𝛿𝑎

∆𝛿𝑟
] (3.4) 

where subscript 0 represents the equilibrium (trim) point.  

There are two real eigenvalues and a pair of complex conjugate eigenvalues for 

lateral/directional motion. The conjugate pairs of eigenvalues represent the dutch roll 

mode, which is characterized by a rolling and yawing motion with some sideslipping. 

The natural frequency and period of this pair of eigenvalues can be calculated.  
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The time step for the doublet input is usually chosen as 

Δ𝑡𝐷𝐵𝐿𝑇 =
2.3

𝜔𝑛𝐷𝑅

≈
1

3
∙ period of oscillation (3.5) 

where 𝜔𝑛𝐷𝑅
 is the dutch roll frequency. 

3.1.3 Flight Test Instrumentation and Measurement 

The quality of measured data influences the parameter estimation accuracy. To use 

system identification methods effectively, accurate measurements of control inputs 

and motion variables are recommended. 

For the estimate of rigid-body aerodynamic models, a sampling frequency of 20-25 

Hz is typically adequate [1] [2]. Since simulation results are recorded at a 20 Hz 

sampling rate. To identify the aerodynamic model, a typical set of measured 

quantities are as follows [1] [2] 

• Control surface deflections (𝛿𝑎, 𝛿ℎ, 𝛿𝑟, 𝛿𝑙𝑒𝑓, 𝛿𝑠𝑏),  

• The linear accelerations (𝑎𝑥, 𝑎𝑦, 𝑎𝑧),  

• Angular rates (𝑝, 𝑞, 𝑟),  

• Euler angles (𝜃, 𝜃,𝜓),  

• Air data (𝑀,𝛼, 𝛽),  

• Static pressure, static temperature, and altitude (𝑃𝑠, 𝑇𝑠, ℎ), 

• Propulsion parameters (𝛿𝑡, 𝑇) 
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The resolution of flight test instrumentation is shown in Table 3.3 [60]  

Table 3.3 Flight Test Instrumentation Accuracy and Resolution 

SENSOR RANGE ACCURACY RESOLUTION 

Pitch Attitute ∓90 [deg] ∓0.5 [deg] 0.1 [deg] 

Roll Attitute ∓90 [deg] ∓0.5 [deg] 0.1 [deg] 

Heading 0 to 360 [deg] ∓0.5 [deg] 0.2 [deg] 

Pitch Rate ∓100 [deg/s] ∓0.5 [deg/s] 0.1 [deg/s] 

Roll Rate ∓300 [deg/s] ∓1.0 [deg/s] 0.2 [deg/s] 

Yaw Rate ∓100 [deg/s] ∓0.5 [deg/s] 0.1 [deg/s] 

Axial Acceleration ∓5 [g] ∓0.02 [g] 0.01 [g] 

Lateral Accelaration  ∓5 [g] ∓0.02 [g] 0.01 [g] 

Normal Acceleration −5 to10 [g] ∓0.02 [g] 0.01 [g] 

Angle of Attack −45 to 70 [deg] ∓0.3 [deg] 0.1 [deg] 

Angle of Sideslip ∓45 [deg] ∓0.3 [deg] 0.1 [deg] 

Pressure Altitute 0 to 60000 [ft] ∓150 [ft] 20 [ft] 

Radar Altitute 0 to 1000 [ft]   

True Airspeed 0 to 1500 [kt] ∓2 [kt] 1 [kt] 

Mach Number 0 to 2.4 [ft] ∓0.005 0.005 

Elevator Position Limits of Travel ∓0.2 [deg] 0.2 [deg] 

Aileron Position Limits of Travel ∓0.1 [deg] 0.1 [deg] 

Rudder Position Limits of Travel ∓0.2 [deg] 0.2 [deg] 

Flap Position Limits of Travel ∓0.2 [deg] 0.2 [deg] 

3.2 Flight Data Analysis 

It is a known fact that errors in measurements can severely degrade the estimation 

results from flight data [1] [12] [31]. Two data preprocessing steps were taken before 

the model identification to avoid parameter estimation errors.  
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3.2.1 Flight Data Prefiltering 

It is recommended to record raw data, and occasionally eliminating high-frequency 

noise is required prior to using the signals. The numerical differentiation of measured 

angular rates, followed by filtering, is preferred to generate the angular accelerations. 

To accomplish this, digital filters based on a linear combination of input values are 

used extensively. They do not introduce any delay in the filtered values owing to 

symmetry. This study uses Spencer’s low-pass digital filter, based on 15 points, the 

present value, and the preceding as well as the following seven data points as 

formulated as follows: 

𝑦𝑛 =
1

320
[−3𝑢𝑛−7 − 6𝑢𝑛−6 − 5𝑢𝑛−5 + 3𝑢𝑛−4 + 21𝑢𝑛−3 + 46𝑢𝑛−2  

+ 67𝑢𝑛−1 + 74𝑢𝑛 + 67𝑢𝑛+1 + 46𝑢𝑛+2 + 21𝑢𝑛+3 + 3𝑢𝑛+4 − 5𝑢𝑛+5

− 6𝑢𝑛+6 − 3𝑢𝑛+7] 

(3.6) 

For all data points except for the first and the last seven, the above equation can be 

accurately applied. A filter that uses fewer data points is applied to the two ends of 

the time series to make it smooth. The first two and the last two data points cannot 

be adequately filtered due to a lack of adequate information. Ensure to use the 

procedure.  The following filter for two data points can be incorporated: 

𝑦𝑛 =
1

96
[7𝑢𝑛−2  + 24𝑢𝑛−1 + 34𝑢𝑛 + 24𝑢𝑛+1 + 7𝑢𝑛+2] (3.7) 

3.2.2 Flight Path Reconstruction 

Secondly, flight path reconstruction [1] [2] [62], which is also called the data 

compatibility check, is utilized. The goal of flight path reconstruction is to guarantee 

that kinematically consistent and error-free flight measurements are obtained. Flight 

data are kinematically consistent if the integrated state variables (e.g., the air data 

obtained from linear accelerations, or the attitude angles obtained from the rotational 

kinematics) match up with direct measurements [28]. Flightpath reconstruction 
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involves two main parts: 1) state integration 2) observer equations for comparison of 

estimated (reconstructed) and measured outputs. The state integration consists of 

integrating translational dynamics, integrating rotational kinematics, and integrating 

navigational kinematics. Generally, accurate mounting of the sensor is possible; 

misalignments are very minimal. Additionally, these correction components are 

often less than the measurement noise. For these reasons, we generally ignore these 

corrections in practice [1]. Some drifts in the estimated and measured outputs suggest 

introducing time lags (delays), biases, and/or scale factors in the measurement 

signals (e.g., linear accelerations, angular rates, angle of attack, and angle of sideslip) 

as well as time-invariant atmospheric wind speeds [1] [2] [9] [22] [63]. The output 

error technique is used to estimate the time lags, biases, and/or scale factors in the 

measurement signals and time-invariant atmospheric wind speeds. Since the body-

fixed axes system is defined with respect to CM, the measured accelerations and 

velocity components were transferred from the sensor locations to the CM [1] [64]. 

Any typically measured variable can be expressed as 

𝑦𝑚(𝑡) = 𝐾𝑦𝑦(𝑡 − 𝜏) + ∆𝑦 (3.8) 

where 𝐾𝑦 is the calibration factor, ∆𝑦 the unknown instrument bias, and 𝜏 the time 

delay in the measured variable. The subscript 𝑚 on the left-hand side indicates the 

measured quantity. The time constant is omitted since no time delay is introduced in 

the measured variables. The equation turns out to be 

𝑦𝑚(𝑡) = 𝐾𝑦𝑦(𝑡) + ∆𝑦 (3.9) 

The state variable, control input, and observation vectors for data compatibility are 

given in Table 3.4. 
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Table 3.4 Input, State, Observation, and Unknown Variables Vectors for Data 

Compatibility 

Symbol Description Variables 

𝑢 Control Input Vector [𝑎𝑠𝑥,𝐴𝑆
, 𝑎𝑠𝑦,𝐴𝑆

, 𝑎𝑠𝑧,𝐴𝑆
, 𝑝, 𝑞, 𝑟] 

𝑥 State Variable Vector [𝑢, 𝑣, 𝑤, 𝜙, 𝜃, 𝜓, 𝑝𝐷] 

𝑦 Observation Vector [𝑉, 𝛼, 𝛽, 𝜙, 𝜃, 𝜓, ℎ] 

Θ Unknown Variables [∆𝑎𝑠𝑥
, ∆𝑎𝑠𝑦

, ∆𝑎𝑠𝑧
, ∆𝑝, ∆𝑞, ∆𝑟, 𝐾𝛼 , ∆𝛼, 𝐾𝛽 , ∆𝛽] 

 

As seen in Table 3.4, the linear accelerations and angular rates’ the scale factors are 

not included. This is because scale factors are highly correlated with biases and lead 

to poor quantitative identifiability. Furthermore, scale factor errors are negligible in 

the high precision accelerometers and rate gyros, and their calibrating is more 

accurate than that of other measured variables. The bias errors are also negligible for 

the same reason, but they are included in the model to prevent drifting in the 

integrated variables. 

It is worth noting that the sensor errors ∆𝑎𝑠𝑦
, ∆𝑝, ∆𝑞, 𝐾𝛽, and ∆𝛽 appear as bias 

parameters within the estimation model, but their determination for the longitudinal 

variable consistency procedure is not critical. For practical use, it is recommended 

to divide maneuvers as longitudinal and lateral. The procedure to estimate 

longitudinal and lateral error terms is as follows: First, the flight data from 

longitudinal maneuvers are concatenated, and primary longitudinal unknown 

variables are estimated. And then, the time history plots are observed, and primary 

variables related to longitudinal maneuvers are frozen. Finally, lateral maneuvers are 

utilized to estimate the primary lateral variables. Table 3.5 summarizes the primary 

variables for different maneuvers. 
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Table 3.5 Maneuvers and Primary Unknown Variables for Data Compatibility. 

Maneuvers Primary Variables 

Longitudinal (Short-Period, Phugoid) [∆𝑎𝑠𝑥
, ∆𝑎𝑠𝑧

, ∆𝑞, 𝐾𝛼 , ∆𝛼] 

Lateral (Dutch-Roll, Bank-to-Bank) [∆𝑎𝑠𝑦
, ∆𝑝, ∆𝑟, 𝐾𝛽 , ∆𝛽] 

State and observation equations for flight path reconstruction are given in the coming 

subsections. 

3.2.2.1 State Equations 

The following transformation is used to compute the body-axes specific 

accelerations at the CM from the specific accelerations measured at the 

accelerometer sensor position (AS): 

[

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

]

= [

𝑎𝑠𝑥,𝐴𝑆𝑚
− ∆𝑎𝑠𝑥

𝑎𝑠𝑦,𝐴𝑆𝑚
− ∆𝑎𝑠𝑦

𝑎𝑠𝑧,𝐴𝑆𝑚
− ∆𝑎𝑠𝑧

] − [
�̇�
�̇�
�̇�

] × [

𝑥𝐴𝑆/𝐵

𝑦𝐴𝑆/𝐵

𝑧𝑆𝐴/𝐵

]

− [

𝑝𝑚 − ∆𝑝
𝑞𝑚 − ∆𝑞
𝑟𝑚 − ∆𝑟

] × ([

𝑝𝑚 − ∆𝑝
𝑞𝑚 − ∆𝑞
𝑟𝑚 − ∆𝑟

] × [

𝑥𝐴𝑆/𝐵

𝑦𝐴𝑆/𝐵

𝑧𝐴𝑆/𝐵

]) 

(3.10) 

The complete set of nonlinear system equations are given by 

[
�̇�1

�̇�2

�̇�3

] = [
�̇�
�̇�
�̇�

] = [

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] + [

−𝑔s𝜙𝑚

𝑔s𝜙𝑚
c𝜃𝑚

𝑔c𝜙𝑚
c𝜃𝑚

] − [

𝑝𝑚 − ∆𝑝
𝑞𝑚 − ∆𝑞
𝑟𝑚 − ∆𝑟

] × [
𝑢
𝑣
𝑤

] 

[

�̇�4

�̇�5

�̇�6

] = [

�̇�

�̇�
�̇�

] = [

1 s𝜙t𝜃 c𝜙t𝜃
0 c𝜙 −s𝜙

0 s𝜙/c𝜃 c𝜙/c𝜃

] [
𝑝
𝑞
𝑟
] 

[�̇�7] = [�̇�𝐷] = [−s𝜃 s𝜙c𝜃 c𝜙c𝜃] [
𝑢
𝑣
𝑤

] 

(3.11) 
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3.2.2.2 Observation Equations 

The velocity components along the body axes at the air data boom (subscript ADB) 

are computed from velocity components along the body axes at CM as follows: 

[

𝑢𝐴𝐷𝐵

𝑣𝐴𝐷𝐵

𝑤𝐴𝐷𝐵

] = [
𝑢
𝑣
𝑤

] + [

𝑝𝑚 − ∆𝑝
𝑞𝑚 − ∆𝑞
𝑞𝑚 − ∆𝑞

] × [

𝑥𝐴𝐷𝐵/𝐵

𝑦𝐴𝐷𝐵/𝐵

𝑧𝐴𝐷𝐵/𝐵

] (3.12) 

The observation equations are given by 

𝑦1 = 𝑉𝐴𝐷𝐵 = √(𝑢𝐴𝐷𝐵)2 + (𝑣𝑣𝐴𝐷𝐵
)
2
+ (𝑤𝐴𝐷𝐵)2 

𝑦2 = 𝛼𝐴𝐷𝐵 = 𝐾𝛼 (tan−1
𝑤𝐴𝐷𝐵

𝑢𝐴𝐷𝐵
) + ∆𝛼 

𝑦3 = 𝛽𝐴𝐷𝐵 = 𝐾𝛽 (𝑡𝑎𝑛−1
𝑤𝐴𝐷𝐵

𝑢𝐴𝐷𝐵
) + ∆𝛽 

𝑦4 = 𝜙 

𝑦5 = 𝜃 

𝑦6 = 𝜓 

𝑦7 = −𝑝𝐷 

(3.13) 
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CHAPTER 4  

4 METHODOLOGY 

4.1 Model Description 

The following general nonlinear system provides a mathematical model of the 

dynamic system in state space  [1] [2] [60]: 

�̇⃗�(𝑡) = 𝑓[�⃗�(𝑡), �⃗⃗�(𝑡), 𝛽] + 𝐹(𝜆)�⃗⃗⃗�(𝑡) , �⃗�(𝑡0) = �⃗�0 

�⃗�(𝑡) = 𝑔[�⃗�(𝑡), �⃗⃗�(𝑡), 𝛽] 
(4.1) 

where �⃗� is the 𝑛𝑥 × 1 state variables vector, �⃗⃗� is the 𝑛𝑢 × 1 control input vector, �⃗� 

is the 𝑛𝑦 × 1 system output vector, 𝛽 is the 𝑛𝛽 × 1 system parameter vector, 𝑛𝑥 and 

𝑛𝑦 are the dimensional system functions, and 𝑓 and 𝑔 are general nonlinear scalar-

valued functions. Along with the deterministic control input �⃗⃗�, the system is also 

excited by process noise �⃗⃗⃗�(𝑡), a stochastic input, which is usually nonmeasurable 

𝑛𝑤 × 1 column vector. The matrix 𝐹 represents the additive process (state) noise 

distribution matrix. 

Due to the impossibility of measuring the system parameters 𝛽, they must be 

estimated from discrete measurements 𝑧(𝑡𝑘) of the model outputs �⃗�(𝑡𝑘). The output 

equation is formulated as  

𝑧(𝑡𝑘) = �⃗�(𝑡𝑘) + 𝐺�⃗�(𝑡𝑘) (4.2) 

where 𝑘 is the discrete-time index and 𝑣(𝑡𝑘) is the 𝑛𝑣 × 1 measurement noise vector. 

The measurement noise vector is assumed to be characterized by a sequence of 

independent Gaussian random variables with zero mean and identity covariance. The 

matrix 𝐺 represents the additive measurement noise distribution matrix. 
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Apart from the system parameters 𝛽, it is assumed that  the elements 𝜆 of process 

noise distribution matrix 𝐹, and the starting conditions 𝑥0 are also unknown. As a 

result, the unknown parameter vector is as follows: 

Θ⃗⃗⃗ = [𝛽𝑇 𝜆𝑇 �⃗�0
𝑇]

𝑇
 (4.3) 

In this study, there is no stochastic input, process noise. So, the formulation becomes 

�̇⃗�(𝑡) = 𝑓[�⃗�(𝑡), �⃗⃗�(𝑡), 𝛽] + 𝐹(𝜆)�⃗⃗⃗�(𝑡) , �⃗�(𝑡0) = �⃗�0 

�⃗�(𝑡) = 𝑔[�⃗�(𝑡), �⃗⃗�(𝑡), 𝛽] 

𝑧(𝑡𝑘) = �⃗�(𝑡𝑘) + 𝐺�⃗�(𝑡𝑘) 

(4.4) 

and the unknown vector is 

Θ⃗⃗⃗ = [𝛽𝑇 �⃗�0
𝑇]

𝑇
 (4.5) 

In the aircraft system identification problem, 𝛽 correspond to aerodynamic forces 

and moments related parameters.  

4.2 Integration of State Equations 

There are many algorithms to integrate the state equations numerically. The Euler, 

Runge-Kutta 2nd and Runge-Kutta 4th order integration methods are concentrated in 

the study. The Euler integration needs just one evaluation of the state derivative 

function at each time point; the Runge-Kutta 2nd and 4th order algorithms need two 

and four evaluations. The computational burden is related to the number of function 

evaluations [31]. The Euler integration is the fastest, while the Runge-Kutta 4th is the 

slowest. The higher-order integration algorithms provide more accurate results than 

low-order integration formulas. 

The Runge-Kutta 4th is usually suggested for rigid body system identification. Due 

to adverse error propagation, the Euler integration is not recommended, especially 

for long-duration maneuvers and sampling rates larger than 20 milliseconds [31]. 
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However, second-order integration suffices [65]. For substantial problems, the 

computational time can be reduced by starting with a more straightforward 

integration method, the Euler method, the Runge-Kutta 2nd order method, and a few 

iterations or convergence switching over to a higher-order algorithm Runge-Kutta 

4th order method. 

4.3 Parameter Estimation Methods 

For regression, the sum of squared errors as an objective function (cost function) is 

used and given in Eq. (4.6). 

𝑓(Θ⃗⃗⃗) =
1

𝑁
∑ (𝑧(𝑡𝑘) − �⃗� (Θ⃗⃗⃗; �⃗⃗�(𝑡𝑘)))

𝑇
𝑁

𝑘=1

(𝑧(𝑡𝑘) − �⃗� (Θ⃗⃗⃗; �⃗⃗�(𝑡𝑘))) (4.6) 

This problem can be solved using any minimization optimization problem. Gauss-

Newton algorithm is one of the most widely used minimization algorithms and is 

selected for this study. 

The parameter estimation process is frequently usually unstable, in that a little 

change in measurement might result in a large change in the estimated model. Inverse 

problems that develop because of this scenario are referred to as ill-conditioned 

problems. Regularization is the process of enhancing the stability of the inversion 

process by introducing extra constraints that bias the result. Tikhonov regularization 

is the most often used approach for regularization. Another possibility is to employ 

the bounds constraint technique, which is inserting lower and upper bounds in model 

parameters [66]. The unconstrained optimization problem may be modified to 

include these lower and upper bounds. This results in the formulation of a linearly 

constrained optimization problem as [67]: 

min
Θ⃗⃗⃗

𝑓(Θ⃗⃗⃗) subject to Θ⃗⃗⃗𝑚𝑖𝑛 ≤ Θ⃗⃗⃗ ≤ Θ⃗⃗⃗𝑚𝑎𝑥 (4.7) 
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In standard form, 

min
Θ⃗⃗⃗

𝑓(Θ⃗⃗⃗) subject to   𝑐1: Θ⃗⃗⃗ − Θ⃗⃗⃗𝑚𝑖𝑛 ≥ 0, 𝑐2: Θ⃗⃗⃗𝑚𝑎𝑥 − Θ⃗⃗⃗ ≥ 0 (4.8) 

Barrier methods [61] provide an effective solution to this constrained optimization 

problem. The constrained optimization problem is reconstructed as an unconstrained 

problem with logarithmic barrier terms added to the objective function. As a point 

approaches the boundary of an optimization problem's feasible area, a logarithmic 

barrier term increases to infinity. For regions that are possible further from the 

boundary, the logarithmic terms are negligible. The new optimization problem 

(combined objective/barrier function) is formulated for the inequality-constrained 

optimization problem. 

𝑓(Θ⃗⃗⃗; 𝜇) ← 𝑓(Θ⃗⃗⃗) − 𝜇[log(Θ⃗⃗⃗ − Θ⃗⃗⃗𝑚𝑖𝑛) + log(Θ⃗⃗⃗𝑚𝑎𝑥 − Θ⃗⃗⃗)] (4.9) 

To estimate aerodynamic parameters defined in the model postulate, equation error 

and output error methods in the time domain are used to analyze simulated data. In 

the first phase, the equation-error method is utilized firstly to identify aerodynamic 

parameters, and in the second phase, the result from the equation-error process is 

used as a starting point in the output-error method for fine-tuning.  

The mathematical model required for the equation error and the output error methods 

is shown in Figure 4.1.  
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Figure 4.1 Mathematical Model Required for the Equation Error and the Output 

Error Methods 

4.3.1 Gauss-Newton Algorithm 

In this part, the derivation of the Gauss-Newton algorithm is presented in two parts: 

(1) Newton's algorithm and (2) Gauss–Newton's algorithm. Before the derivation, let 

us introduce some commonly used terminologies: 

In least-squares problems, the observed values, 𝑧, are compared with the model 

prediction vector, y⃗⃗, and the difference between these values is referred to as the 

residual vector, 𝑟. The objective (cost) function 𝑓 incorporates the residual and is 

denoted by the following form: 
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𝑓(Θ⃗⃗⃗) =
1

𝑁
∑(𝑧𝑗 − �⃗�(Θ⃗⃗⃗; �⃗⃗�𝑗))

2
𝑁

𝑗=1

 

=
1

𝑁
∑(𝑧𝑗 − �⃗�𝑗(Θ⃗⃗⃗))

2
𝑁

𝑖=1

 

=
1

𝑁
∑𝑟𝑗(Θ⃗⃗⃗)

2
𝑁

𝑗=1

 

(4.10) 

where 𝑁 is the number of data points, Θ⃗⃗⃗ ∈ ℝ𝑚 denotes variable vector with 𝑚 ≥ 1 

components, also called unknowns or parameters, and �⃗⃗� is the control input vector. 

During training, the unknown variables are repeatedly adjusted to minimize the 

objective function: mean square error. 

The vector of first derivatives of 𝑓 is called the function gradient and is notated as a 

first-order derivative of the objective function. 

∇𝑓(Θ⃗⃗⃗) = [
𝜕𝑓(Θ⃗⃗⃗)

𝜕Θ1
⋯

𝜕𝑓(Θ⃗⃗⃗)

𝜕Θ𝑚

]

𝑇

  (4.11) 

The matrix of second derivatives of 𝑓 is called the Hessian matrix or simply the 

Hessian and is notated as ∇2𝑓 . It is the matrix with entries.  

[∇2𝑓(Θ⃗⃗⃗)]
𝑖𝑗

=
𝜕2𝑓(Θ⃗⃗⃗)

𝜕Θ𝑖𝜕Θ𝑗
  (4.12) 

To define the Jacobian, a vector-valued function, 𝑟: ℝ𝑛 → ℝ𝑚, that is used: 

𝑟(Θ⃗⃗⃗) =

[
 
 
 
 𝑟1(Θ⃗⃗⃗)

𝑟2(Θ⃗⃗⃗)

⋮

𝑟𝑁(Θ⃗⃗⃗)]
 
 
 
 

= [

𝑟1(Θ1, Θ2, … , Θ𝑚)

𝑟2(Θ1, Θ2, … , Θ𝑚)
⋮

𝑟𝑁(Θ1, Θ2, … , Θ𝑚)

] (4.13) 

where each 𝑟𝑗: ℝ
𝑚 → ℝ, 𝑗 = 1,2,⋯ ,𝑁 , is a scalar-valued function of 𝑚 variables. 

 



 

 

 

61 

The Jacobian is the matrix with entries. 

(𝐽(Θ⃗⃗⃗))
𝑖𝑗

≡
𝜕𝑟𝑖(Θ⃗⃗⃗)

𝜕Θ𝑗
 (4.14) 

where 𝑖 represents the equation index, and 𝑗 represents the independent variable 

index.  Then, we have 

∇𝑓(Θ⃗⃗⃗) =
1

𝑁
2∑𝑟𝑗(Θ⃗⃗⃗)∇𝑟𝑗(Θ⃗⃗⃗)

𝑁

𝑗=1

 

=
2

𝑁
𝐽(Θ⃗⃗⃗)

𝑇
𝑟(Θ⃗⃗⃗) 

(4.15) 

and  

∇2𝑓(Θ⃗⃗⃗) =
2

𝑁
[∑∇𝑟𝑗(Θ⃗⃗⃗)∇𝑟𝑗(Θ⃗⃗⃗)

𝑇
𝑁

𝑗=1

+ ∑𝑟𝑗(Θ⃗⃗⃗)∇2𝑟𝑗(Θ⃗⃗⃗)

𝑁

𝑗=1

] 

=
2

𝑁
[𝐽(Θ⃗⃗⃗)

𝑇
𝐽(Θ⃗⃗⃗) + ∑𝑟𝑗(Θ⃗⃗⃗)∇2𝑟𝑗(Θ⃗⃗⃗)

𝑁

𝑗=1

] 

(4.16) 

One of the critical search directions is the Newton direction. This direction is 

obtained using the second-order Taylor series approximation to 𝑓 ([Θ⃗⃗⃗]
𝒌
+ �⃗�𝑘) and 

is computed as follows: 

∇2𝑓 ([Θ⃗⃗⃗]
𝒌
) [�⃗�𝑘]𝑁 = −∇𝑓 ([Θ⃗⃗⃗]

𝒌
) (4.17) 

and then uses a line search to determine 

[Θ⃗⃗⃗]
𝒌+𝟏

= [Θ⃗⃗⃗]
𝒌
+ [�⃗�𝑘]𝑁 (4.18) 

The computation of the Hessian matrix is a critical step in the implementation of 

Newton’s method. While Newton's method produces excellent local convergence, it 

has some drawbacks: 

• The Newton algorithm does not work if the Hessian is not invertible. 
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• The Newton algorithm may not converge. 

• The Newton algorithm can converge to a saddle point instead of to a local 

minimum. 

Gauss-Newton's technique is regarded as just a modification of Newton's method. 

The Hessian is approximated by the first term of Eq. (4.16), assuming 𝐽(Θ⃗⃗⃗)
𝑇
𝐽(Θ⃗⃗⃗) is 

often more crucial than the second summation term. The direction is computed from 

Eqs. (4.15)(4.16)(4.18) and dividing both sides by as follows 
2

𝑁
, 

𝐽 ([Θ⃗⃗⃗]
𝒌
)
𝑇

𝐽 ([Θ⃗⃗⃗]
𝒌
) [�⃗�𝑘]𝐺𝑁 = −𝐽 ([Θ⃗⃗⃗]

𝒌
)
𝑇

𝑟 ([Θ⃗⃗⃗]
𝒌
) (4.19) 

and then uses a line search to determine 

[Θ⃗⃗⃗]
𝒌+𝟏

= [Θ⃗⃗⃗]
𝒌
+ [�⃗�𝑘]𝐺𝑁 (4.20) 

While the Gauss-Newton technique often works well in practice, it is based on 

Newton's method and, therefore, may fail for the same reasons as Newton’s Method. 

Additionally, when the matrix 𝐽(Θ⃗⃗⃗)
𝑇
𝐽(Θ⃗⃗⃗) is singular, the technique can fail. 

4.3.2 Equation Error Method 

Non-state parameters which are not integrated throughout the simulation, such as 

force and moment coefficients, are determined without considering their history. 

This technique is referred to as the equation-error method and is computationally 

efficient since it does not require integration of the assumed model. 

The equation-error method is one of the earliest analytical methods for estimating 

aircraft dynamic model parameters from flight data. Instead of matching the states 

or outputs, the equation-error method matches state time-derivative knowledge from 

the dynamic system. When using this approach, model outputs does not need to be 

integrated since the matching is done directly in those equations themselves (hence 



 

 

 

63 

the name “equation-error”). This method works well with data from inherently 

unstable aircraft flying under closed-loop feedback control [1] [68]. 

This technique is used to calculate the aerodynamic parameter estimates by 

minimizing the cost function which is obtained nondimensional force and moment 

coefficients and the estimated model values. The non-dimensional force and moment 

coefficients are calculated by replacing measured and known quantities. 

For the equation error estimation, the control input, state variables, measured / model 

output vectors, and unknown (estimated) variables are shown in Table 4.1. 

Table 4.1 Input, State Variable, and Output Vectors and Unknown Variables for the 

Equation Error Method. 

Symbol Description Variables 

�⃗⃗� Control Input Vector [𝑉, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟, 𝛿𝑙𝑒𝑓, 𝛿𝑒 , 𝛿𝑎, 𝛿𝑟 , 𝛿𝑠𝑏 , 𝑀] 

�⃗� State Variable Vector [] 

�⃗� Model Observation Vector [𝐶𝑋 , 𝐶𝑌, 𝐶𝑍, 𝐶𝑙, 𝐶𝑚, 𝐶𝑛] 

Θ⃗⃗⃗ Unknown Variables [𝐶𝑋 , 𝐶𝑌, 𝐶𝑍, 𝐶𝑙, 𝐶𝑚, 𝐶𝑛] Model Variables 

 

The model structure for each aerodynamic coefficient is found separately since this 

approach simplifies the training task and focuses on one coefficient each time. 

Some properties of the equation error method can be summarized as: 

• The equation error method minimizes the equation error between measured 

and estimated dependent variables 

• Presents a single shot solution; no iterations are required 

• Easy to implement, involves simple matrix operations 

• Preferred for a nonlinear and unstable system 
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4.3.2.1 Observation Equations 

Because the aerodynamic forces and moments are not directly measured, a 

preprocessing step is necessary in the case of aerodynamic parameter identification. 

Aerodynamic force and moment coefficients can be computed using the 

measurements of the associated variables such as linear accelerations, and angular 

rates, mass properties, and other external forces and moments as shown in Figure 

4.2. 

 

Figure 4.2 Schematic of Data Preprocessing to Compute Aerodynamic Force and 

Moment Coefficients from Flight Measured Data 

To summarize, the equation-error method minimize the cost function to estimate 

aerodynamic parameters, and the non-dimensional force and moment coefficients 

are computed by replacing measured and known quantities. Since thrust-related 

forces and moments are determined from the manufacturer engine database, the 

equation error approach is utilized in order to simulate the functional dependence of 

aerodynamic forces and moments on aircraft control, state and output variables. See 

Figure 4.3 (modified from Ref. [69][p.15][Fig. 12]). 
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Figure 4.3 Flowchart of the Equation Error Method 

How to compute the nondimensional force and moment coefficients are shown in the 

following equations. The body-axes specific accelerations at the CM are computed 

from measured accelerations at the accelerometer sensor position using the following 

transformation: 

[

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] = [

𝑎𝑠𝑥,𝐴𝑆
𝑎𝑠𝑥,𝐴𝑆
𝑎𝑠𝑧,𝐴𝑆

] − [
�̇�
�̇�
�̇�

] × [

𝑥𝐴𝑆/𝐵

𝑦𝐴𝑆/𝐵

𝑧𝑆𝐴/𝐵

] − [
𝑝
𝑞
𝑟
] × ([

𝑝
𝑞
𝑟
] × [

𝑥𝐴𝑆/𝐵

𝑦𝐴𝑆/𝐵

𝑧𝐴𝑆/𝐵

]) (4.21) 

The body-axes aerodynamic force coefficients are obtained as follows: 

[
𝐶𝑋

𝐶𝑌

𝐶𝑍

] =
1

�̅�𝑆
(𝑚 [

𝑎𝑠𝑥
𝑎𝑠𝑦

𝑎𝑠𝑧

] − [
𝑇
0
0
]) (4.22) 

The non-dimensional force components resolved in the wind axis can be obtained 

using the transformation matrix from body to wind and written as follows: 

[
𝐶𝐷

𝐶𝐶

𝐶𝐿

] = −
1

�̅�𝑆
[

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼 0 c𝛼

] [

𝑚𝑎𝑠𝑥
− 𝑇

𝑚𝑎𝑠𝑦

𝑚𝑎𝑠𝑧

] (4.23) 
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The aerodynamic body-axes moments at the CM are computed as follows: 

[
𝑙𝑎
𝑚𝑎

𝑛𝑎

] = [
𝑝
𝑞
𝑟
] × [

𝐼𝑋𝑋 −𝐼𝑋𝑌 −𝐼𝑋𝑍

−𝐼𝑋𝑌 𝐼𝑌𝑌 −𝐼𝑌𝑍

−𝐼𝑋𝑍 −𝐼𝑌𝑍 𝐼𝑍𝑍

] [
𝑝
𝑞
𝑟
] + [

𝐼𝑋𝑋 −𝐼𝑋𝑌 −𝐼𝑋𝑍

−𝐼𝑋𝑌 𝐼𝑌𝑌 −𝐼𝑌𝑍

−𝐼𝑋𝑍 −𝐼𝑌𝑍 𝐼𝑍𝑍

] [
�̇�
�̇�
�̇�

] (4.24) 

The body axes rolling, pitching, and yawing coefficients referred to CM are obtained 

by 

[

𝐶𝑙

𝐶𝑚

𝐶𝑛

] =
1

�̅�𝑆
[
1 𝑏⁄ 0 0
0 1 𝑐̅⁄ 0
0 0 1 𝑏⁄

] [
𝑙𝑎
𝑚𝑎

𝑛𝑎

] (4.25) 

The moment coefficients referred to aerodynamic moment reference point (MRP) on 

the vehicle is obtained as  

𝐶𝑙𝑀𝑅𝑃
= 𝐶𝑙 − 𝐶𝑍

𝑥𝑀𝑅𝑃/𝐵

𝑏
+ 𝐶𝑌

𝑧𝑀𝑅𝑃/𝐵

𝑏
 

𝐶𝑚𝑀𝑅𝑃
= 𝐶𝑚 − 𝐶𝑋

𝑧𝑀𝑅𝑃/𝐵

𝑐̅
+ 𝐶𝑍

𝑥𝑀𝑅𝑃/𝐵

𝑐̅
 

𝐶𝑛𝑀𝑅𝑃
= 𝐶𝑛 − 𝐶𝑌

𝑥𝑀𝑅𝑃/𝐵

𝑏
+ 𝐶𝑋

𝑦𝑀𝑅𝑃/𝐵

𝑏
 

(4.26) 

4.3.2.2 Sensitivity Analysis 

Since the output error method is a computationally expensive technique and updating 

all parameters obtained with the equation error method is not feasible, identifying 

the most influential parameters in each aerodynamic coefficient model is necessary. 

To do so, sensitivity analysis is utilized. The sensitivity analysis aims to determine 

the most effective longitudinal and lateral/directional terms, which is tuned in the 

output error method. 

Sensitivity analysis is the process of determining how different types of uncertainty 

in the model input influence the model's uncertainty. The sensitivity analysis is 

considered how the parameters of a model influence the optimization cost function 

from a parameter estimation viewpoint. Sensitivity analysis is employed to assess 
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the impact of a model’s parameters on the output by ranking them in order of 

importance. 

The derivative-based method for sensitivity analysis is known as local sensitivity 

analysis. A parameter’s sensitivity to the cost function equals the partial derivative 

of the cost function with regard to that value. The term “local” leads to concept that 

all derivatives are computed at a single point. This method works well for basic cost 

functions. Local sensitivity analysis is a method that is performed one at a time 

(OAT). OAT methods examine the impact of only one parameter on the cost function 

at a time while keeping the other parameters constant. 

4.3.2.2.1 Quantifying Parameter Sensitivity 

To quantify the parameter sensitivity, aerodynamic coefficient parameters with the 

optimum model structure are estimated for each coefficient and recorded as baseline 

parameters, and the cost function is recorded as baseline cost function. Then each 

parameter is changed by 1% from its baseline value. The model is simulated with the 

same control input vectors, and the resulting cost function is calculated and recorded. 

Finally, the sensitivity magnitude is computed as 

𝑆𝑖 =
𝑓𝑖(Θ⃗⃗⃗ + 0.01 ∙ Θ⃗⃗⃗𝑖, �⃗⃗�) − 𝑓(Θ⃗⃗⃗, �⃗⃗�)

𝑓(Θ⃗⃗⃗, �⃗⃗�)
; 𝑖 = 1,2,⋯ , 𝑛Θ (4.27) 

where Θ⃗⃗⃗ is the baseline parameter vector, �⃗⃗� the control input vector 𝑓(Θ⃗⃗⃗, �⃗⃗�) the base cost 

function, 𝑓𝑖(Θ⃗⃗⃗ + 0.01 ∙ Θ𝑖, �⃗⃗�) the resulting cost function for the ith parameter in the model, 

and 𝑆𝑖 the sensitivity magnitude for the ith parameter in the model. 

Since the optimum parameters are varied, the resulting cost function increased, and 

sensitivity magnitude is always positive. To make a more consistent comparison for 

each coefficient, values of sensitivity magnitudes are normalized by the most 

significant sensitivity magnitude.  
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𝑆𝑛𝑖
=

𝑆𝑖

max(𝑆)
; 𝑖 = 1,2,⋯ , 𝑛Θ (4.28) 

This is carried out for each parameter in each aerodynamic coefficient. Parameters 

with greater sensitivity magnitudes highly influence the model output and are 

selected to be tuned in the second phase. On the other hand, parameters with less 

influence have lower sensitivity magnitudes. For the rest of the study, the parameters 

whose normalized sensitivity magnitude fell below 5% are not tuned in the second 

phase (output error method). 

4.3.3 Output Error Method 

Since the outputs of the system, such as the angle of attack, angle of sideslip, roll-

pitch-yaw rates, and so on, are integrated throughout the simulation, the technique is 

referred to as the output-error method. The output-error method can be regarded of 

as a technique in which the model is used to match the dynamic system’s states or 

outputs. A model which uses the parameter estimates obtained with equation error 

method does not achieve the necessary fit the dynamic system’s measured outputs 

since that is not what is being optimized.  Any mismatch in equation-error model is 

integrated over time, and numerical integration of unstable systems may result in 

numerical divergence during the simulation. Unless the modeling errors caused by 

from the equation-error parameter estimation are minimal in amplitude (magnitude) 

and zero in mean, the result can be a considerable difference between measured 

outputs and the model outputs calculated using the equations of motion. In the 

output-error case, the discrepancy between measured and model outputs is 

deliberately reduced via the parameter estimation adjustment. The estimates 

obtained with the equation-error method are used as initial guesses, which are 

bounded at ∓10 of the initial values. The output error method has been the most 

commonly used time-domain method for estimating aerodynamic parameters from 

flight data since its establishment [1].  The flowchart of the output-error method is 
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shown in Figure 4.4. The result obtained in the equation error method is used as a 

starting point in the output method for fine-tuning. 

 

Figure 4.4 Flowchart of the Output Error Method 

In longitudinal maneuvers, drag, lift, and pitch moment coefficients are the primary 

concern, and side force, roll moment, and yaw moment coefficients are the secondary 

concern and vice versa. Hence, longitudinal and lateral/directional dynamics are 

considered decoupled. 

Additional terms, which are the measured variables, are added to the control input 

vector 𝑢. These measured additional terms were then considered as pseudo-inputs. 

By including the pseudo-control inputs, the size of the model is lowered and the 

impacts of additional motion variables, which are not considered as state variables, 

are taken into consideration. For instance, in the longitudinal decoupled model with 

the forward speed, vertical speed, pitch rate, pitch attitude, and pressure altitude 

(𝑢,𝑤, 𝑞, 𝜃, ℎ) as state variables, and elevator deflection, 𝛿𝑒, as input, we may include 

the variables relating to the lateral-directional motion as pseudo inputs. The opposite 

is also true in that we may evaluate the lateral-directional motion using conventional 

variables of longitudinal motion, such as angle of attack, as pseudo inputs. The use 
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of pseudo-control inputs enables the effects of other motion variables, which are not 

regarded as state variables. 

4.3.3.1 Longitudinal Dynamics 

4.3.3.1.1 Reduced Longitudinal Model 

A reduced longitudinal model is first employed to reduce the model size and 

unknown parameters. The aim of using this model is to tune the parameters of the 

drag and lift coefficients. After tuning the drag and lift coefficient parameters, the 

identification of pitch moment becomes easier. 

For the output error estimation, the control input, state variables, measured / model 

output vectors, and unknown (estimated) variables for the reduced longitudinal 

motion are shown in Table 4.2. 

Table 4.2 Input, State Variable, and Output Vectors and Unknown Variables in the 

Reduced Longitudinal Motion for the Output Error Method 

Symbol Description Variables 

�⃗⃗� Control Input Vector [𝛿𝑒 , 𝛿𝑙𝑒𝑓 , 𝑣, 𝑝, 𝑞, 𝑟, 𝜙, 𝜃, 𝐶𝐶 , �̇�, 𝜌, 𝑇] 

�⃗� State Variable Vector [𝑢, 𝑤] 

�⃗� Model Observation Vector [𝑉𝐴𝐷𝐵 , 𝛼𝐴𝐷𝐵] 

Θ⃗⃗⃗ Unknown Variables [𝐶𝐷 and 𝐶𝐿] Model Variables 

4.3.3.1.1.1 State Equations 

True airspeed 𝑉, angle of attack 𝛼, angle of sideslip 𝛽 and dynamic pressure are 

calculated as follows: 
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𝑉 = √(𝑢)2 + (𝑣𝑚)2 + (𝑤)2 

𝛼 = (tan−1
𝑤

𝑢
) 

𝛽 = (sin−1
𝑣𝑚

V
) 

�̅� =
1

2
𝜌𝑚V2 

(4.29) 

The non-dimensional drag, lift, and pitch moment coefficients are computed as 

𝐶𝐷 = 𝐶𝐷(𝛼, 𝛽, 𝑞∗, 𝛿𝑒 , 𝛿𝑙𝑒𝑓) 

𝐶𝐿 = 𝐶𝐿(𝛼, 𝛽, 𝑞∗, 𝛿𝑒 , 𝛿𝑙𝑒𝑓) 
(4.30) 

The aerodynamic force coefficients at the body axis are transformed to 

[
𝐶𝑋

𝐶𝑌

𝐶𝑍

] = (�̅�𝑆 [

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼𝑚

0 c𝛼

]

𝑇

[

−𝐶𝐷

−𝐶𝐶𝑚

−𝐶𝐿

]) (4.31) 

The body-axis accelerations are given by 

[

�̇�1

�̇�2

] = [
�̇�
�̇�
�̇�

] = (�̅�𝑆 [
𝐶𝑋

𝐶𝑌

𝐶𝑍

] + [
𝑇𝑚

0
0

]) + [

−𝑔s𝜙𝑚

𝑔s𝜙𝑚
c𝜃𝑚

𝑔c𝜙𝑚
c𝜃𝑚

] − [

𝑝𝑚

𝑞𝑚

𝑝𝑚

] × [
𝑢
𝑣𝑚

𝑤
] (4.32) 

4.3.3.1.1.2 Observation Equations 

The velocity components along the body axes at the air data boom (subscript ADB) 

are computed from velocity components along the body axes at CM as follows: 
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[

𝑢𝐴𝐷𝐵

𝑣𝐴𝐷𝐵

𝑤𝐴𝐷𝐵

] = [
𝑢
𝑣𝑚

𝑤
] + [

𝑝𝑚

𝑞
𝑟𝑚

] × [

𝑥𝐴𝐷𝐵/𝐵

𝑦𝐴𝐷𝐵/𝐵

𝑧𝐴𝐷𝐵/𝐵

] 

𝑉𝐴𝐷𝐵 = √(𝑢𝐴𝐷𝐵)2 + (𝑣𝐴𝐷𝐵)2 + (𝑤𝐴𝐷𝐵)2 

𝛼𝐴𝐷𝐵 = (tan−1
𝑤

𝑢
) 

(4.33) 

The observation equations are given by 

𝑦1 = 𝑉𝐴𝐷𝐵 

𝑦2 = 𝛼𝐴𝐷𝐵 
(4.34) 

4.3.3.1.2 Full Longitudinal Model 

After updating the lift and drag coefficient in the reduced longitudinal model, the full 

longitudinal model is utilized to tune the pitch moment. 

For the output error estimation, the control input, state variables, measured / model 

output vectors, and unknown (estimated) variables for the full longitudinal motion 

are shown in Table 4.3. 

Table 4.3 Input, State Variable, and Output Vectors and Unknown Variables in the 

Full Longitudinal Motion for the Output Error Method. 

Symbol Description Variables 

�⃗⃗� Control Input Vector [𝛿𝑒 , 𝛿𝑙𝑒𝑓 , 𝑣, 𝑝, 𝑟, 𝜙, 𝐶𝐶 , �̇�, 𝜌, 𝑇] 

�⃗� State Variable Vector [𝑢, 𝑤, 𝑞, 𝜃, ℎ] 

�⃗� Model Observation Vector [𝑉𝐴𝐷𝐵 , 𝛼𝐴𝐷𝐵, 𝑞, 𝜃, ℎ, 𝑎𝑠𝑧,𝐴𝑆] 

Θ⃗⃗⃗ Unknown Variables [𝐶𝐷 , 𝐶𝐿, and 𝐶𝑚] Model Variables 
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4.3.3.1.2.1 State Equations 

True airspeed 𝑉, angle of attack 𝛼, angle of sideslip 𝛽 and dynamic pressure are 

calculated as follows: 

𝑉 = √(𝑢)2 + (𝑣𝑚)2 + (𝑤)2 

𝛼 = (tan−1
𝑤

𝑢
) 

𝛽 = (sin−1
𝑣𝑚

V
) 

�̅� =
1

2
𝜌𝑚V2 

(4.35) 

The non-dimensional drag, lift, and pitch moment coefficients are computed as 

𝐶𝐷 = 𝐶𝐷(𝛼, 𝛽, 𝑞∗, 𝛿𝑒 , 𝛿𝑙𝑒𝑓) 

𝐶𝐿 = 𝐶𝐿(𝛼, 𝛽, 𝑞∗, 𝛿𝑒 , 𝛿𝑙𝑒𝑓) 

𝐶𝑚𝑀𝑅𝑃
= 𝐶𝑚(𝛼, 𝛽, 𝑞∗, 𝛿𝑒 , 𝛿𝑙𝑒𝑓) 

(4.36) 

The aerodynamic force coefficients at the body axis are transformed to 

[
𝐶𝑋

𝐶𝑌

𝐶𝑍

] = (�̅�𝑆 [

c𝛼c𝛽 s𝛽 s𝛼c𝛽
−c𝛼s𝛽 c𝛽 −s𝛼s𝛽
−s𝛼𝑚

0 c𝛼

]

𝑇

[

−𝐶𝐷

−𝐶𝐶𝑚

−𝐶𝐿

]) (4.37) 

The pitching moment coefficient referred to the CM are computed by the following 

formula 

𝐶𝑚 = 𝐶𝑚𝑀𝑅𝑃
− 𝐶𝑋

𝑧𝑀𝑅𝑃/𝐵

𝑐̅
+ 𝐶𝑍

𝑥𝑀𝑅𝑃/𝐵

𝑐̅
 (4.38) 

The body-axis accelerations are given by 

[

�̇�1

�̇�2

] = [
�̇�
�̇�
�̇�

] = (�̅�𝑆 [
𝐶𝑋

𝐶𝑌

𝐶𝑍

] + [
𝑇𝑚

0
0

]) + [

−𝑔s𝜙𝑚

𝑔s𝜙𝑚
c𝜃

𝑔c𝜙𝑚
c𝜃

] − [

𝑝𝑚

𝑞
𝑝𝑚

] × [
𝑢
𝑣𝑚

𝑤
] (4.39) 
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The equations for rotational motion are represented as 

�̇�3 = �̇� =
(𝐼𝑍𝑍 − 𝐼𝑋𝑋)𝑝𝑚𝑟𝑚 − 𝐼𝑋𝑍(𝑝𝑚

2 − 𝑟𝑚
2) + �̅�𝑆𝑐̅𝑐𝑚

𝐼𝑌𝑌
 

(4.40) 

The Euler-pitch angle rate is obtained by  

�̇�4 = θ̇ = cos𝜙𝑚 𝑞 − sin𝜙𝑚 𝑟𝑚 (4.41) 

The altitude rate is obtained by  

[�̇�5] = [ℎ̇] = −[−s𝜃𝑢 + s𝜙𝑚
c𝜃𝑣𝑚 + c𝜙𝑚

c𝜃𝑤] (4.42) 

4.3.3.1.2.2 Observation Equations 

The velocity components along the body axes at the air data boom (subscript ADB) 

are computed from velocity components along the body axes at CM as follows: 

[

𝑢𝐴𝐷𝐵

𝑣𝐴𝐷𝐵

𝑤𝐴𝐷𝐵

] = [
𝑢
𝑣𝑚

𝑤
] + [

𝑝𝑚

𝑞
𝑟𝑚

] × [

𝑥𝐴𝐷𝐵/𝐵

𝑦𝐴𝐷𝐵/𝐵

𝑧𝐴𝐷𝐵/𝐵

] 

𝑉𝐴𝐷𝐵 = √(𝑢𝐴𝐷𝐵)2 + (𝑣𝐴𝐷𝐵)2 + (𝑤𝐴𝐷𝐵)2 

𝛼𝐴𝐷𝐵 = (tan−1
𝑤

𝑢
) 

(4.43) 

The specific acceleration at CM is computed as 

𝑎𝑠𝑧
=

1

𝑚
(�̅�𝑆𝐶𝑍) (4.44) 

The specific acceleration referred to accelerometer sensor is computed as 

𝑦6 = 𝑎𝑠𝑧,𝐴𝑆

= 𝑎𝑠𝑧
+ (𝑝𝑚𝑟𝑚 − �̇�)𝑥𝐴𝑆/𝐵 + (𝑞𝑟𝑚 + �̇�𝑚)𝑦𝐴𝑆/𝐵

− (𝑝𝑚
2 + 𝑞𝑚

2)𝑧𝐴𝑆/𝐵 

(4.45) 
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The observation equations are given by 

𝑦1 = 𝑉𝐴𝐷𝐵 

𝑦2 = 𝛼𝐴𝐷𝐵 

𝑦3 = 𝑞 

𝑦4 = 𝜃 

𝑦5 = ℎ 

𝑦6 = 𝑎𝑠𝑧,𝐴𝑆
 

(4.46) 

4.3.3.2 Lateral/Directional Dynamics 

For the output error estimation, the control input, state variables, measured / model 

output vectors, and unknown (estimated) variables for the longitudinal motion are 

shown in Table 4.3. 

Table 4.4 Input, State Variable, and Output Vectors and Unknown Variables in the 

Lateral Motion for the Output Error Method 

Symbol Description Variables 

�⃗⃗� Control Input Vector [𝛿𝑎 , 𝛿𝑟 , 𝛿𝑙𝑒𝑓 , 𝑢, 𝑤, 𝑞, 𝜃, 𝐶𝑋, 𝐶𝑍, 𝜌, 𝑇] 

�⃗� State Variable Vector [𝑣, 𝑝, 𝑟, 𝜙] 

�⃗� Model Output Vector [𝛽𝐴𝐷𝐵, 𝑝, 𝑟, 𝜙, 𝑎𝑠𝑦,𝐴𝑆] 

Θ⃗⃗⃗ Unknown Variables [𝐶𝑌, 𝐶𝑙 , 𝐶𝑛] Model Variables 

4.3.3.2.1 State Equations 

True airspeed 𝑉, angle of attack 𝛼, and angle of sideslip 𝛽 are calculated as follows: 
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𝑉 = √(𝑢𝑚)2 + (𝑣)2 + (𝑤𝑚)2 

𝛼 = (tan−1
𝑤𝑚

𝑢𝑚
) 

𝛽 = (sin−1
𝑣

V
) 

(4.47) 

The non-dimensional drag, lift, and pitch moment coefficients are computed as 

𝐶𝑌 = 𝐶𝑌(𝛼, 𝛽, 𝑝∗, 𝑟∗, 𝛿𝑎, 𝛿𝑟 , 𝛿𝑙𝑒𝑓) 

𝐶𝑙𝑀𝑅𝑃
= 𝐶𝑙(𝛼, 𝛽, 𝑝∗, 𝑟∗, 𝛿𝑎, 𝛿𝑟 , 𝛿𝑙𝑒𝑓) 

𝐶𝑛𝑀𝑅𝑃
= 𝐶𝑛(𝛼, 𝛽, 𝑝∗, 𝑟∗, 𝛿𝑎, 𝛿𝑟 , 𝛿𝑙𝑒𝑓) 

(4.48) 

Dynamic pressure is calculated as follows: 

�̅� =
1

2
𝜌𝑚𝑉 (4.49) 

The following formula computes the roll and yaw moment coefficients referred to 

the CM 

𝐶𝑙 = 𝐶𝑙𝑀𝑅𝑃
− 𝐶𝑍𝑚

𝑦𝑀𝑅𝑃/𝐵

𝑐̅
+ 𝐶𝑌

𝑧𝑀𝑅𝑃/𝐵

𝑐̅
 

𝐶𝑛 = 𝐶𝑛𝑀𝑅𝑃
− 𝐶𝑌

𝑥𝑀𝑅𝑃/𝐵

𝑐̅
+ 𝐶𝑋𝑚

𝑌𝑀𝑅𝑃/𝐵

𝑐̅
 

(4.50) 

The body-axis accelerations are given by 

�̇�1 = �̇� = �̅�𝑆𝐶𝑌 𝑚⁄ − 𝑟𝑢𝑚 + 𝑝𝑤𝑚 (4.51) 

The equations for rotational motion are represented in tensor form as 

�̇�2 = �̇�

=
𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑝𝑞𝑚 − (𝐼𝑍𝑍

2 − 𝐼𝑌𝑌𝐼𝑍𝑍 + 𝐼𝑋𝑍
2 )𝑞𝑚𝑟 + 𝐼𝑍𝑍�̅�𝑆𝑏𝑐𝑙 + 𝐼𝑋𝑍�̅�𝑆𝑏𝑐𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

�̇�3 = �̇�

=
(𝐼𝑋𝑋

2 − 𝐼𝑋𝑋𝐼𝑌𝑌 + 𝐼𝑋𝑍
2 )𝑝𝑞𝑚 − 𝐼𝑋𝑍(𝐼𝑋𝑋 − 𝐼𝑌𝑌 + 𝐼𝑍𝑍)𝑞𝑚𝑟 + 𝐼𝑋𝑍�̅�𝑆𝑏𝑐𝑙 + 𝐼𝑋𝑋�̅�𝑆𝑏𝑐𝑛

𝐼𝑋𝑋𝐼𝑍𝑍 − 𝐼𝑋𝑍
2  

(4.52) 
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The Euler-roll angle rate is obtained by  

�̇�4 = �̇� = 𝑝 + sin𝜙 tan 𝜃𝑚 𝑞𝑚 − cos𝜙 tan 𝜃𝑚 𝑟 (4.53) 

4.3.3.2.2 Observation Equations 

The velocity components along the body axes at the air data boom (subscript ADB) 

are computed from velocity components along the body axes at CM as follows: 

[

𝑢𝐴𝐷𝐵

𝑣𝐴𝐷𝐵

𝑤𝐴𝐷𝐵

] = [

𝑢𝑚

𝑣
𝑤𝑚

] + [
𝑝
𝑞𝑚

𝑟
] × [

𝑥𝐴𝐷𝐵/𝐵

𝑦𝐴𝐷𝐵/𝐵

𝑧𝐴𝐷𝐵/𝐵

] 

𝛽𝐴𝐷𝐵 = (sin−1
𝑣𝐴𝐷𝐵

𝑉𝐴𝐷𝐵
) 

(4.54) 

The specific acceleration at CM is computed 

𝑎𝑠𝑦
=

1

𝑚
(�̅�𝑆𝐶𝑌) (4.55) 

The specific acceleration referred to as accelerometer sensor is  

𝑦5 = 𝑎𝑠𝑦,𝐴𝑆

= 𝑎𝑠𝑦
+ (𝑝𝑞𝑚 + �̇�)𝑥𝐴𝑆/𝐵 − (𝑝2 + 𝑟2)𝑦𝐴𝑆/𝐵 + (𝑞𝑚𝑟 − �̇�)𝑧𝐴𝑆/𝐵 

(4.56) 

The observation equations are given by 

𝑦1 = 𝛽𝐴𝐷𝐵 

𝑦2 = 𝑝 

𝑦3 = 𝑟 

𝑦4 = 𝜙 

𝑦5 = 𝑎𝑠𝑦,𝑃
 

(4.57) 
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4.4 Model Structure Determination and Validation 

This section covers the means of determining the accuracy, reliability, and usefulness 

of the specified model. For each coefficient, each model structure represents a multi-

input, single-output subspace. This strategy enables more adaptability and simplifies 

the training process.[11]. The primary goal of aerodynamic model development is to 

optimize the model structure. Simplicity is preferable but yet possessing a significant 

level of complexity. Although restricting the number of terms used simplifies 

computing, it is essential to use the correct terms to ensure accuracy. Choosing which 

terms to include in each coefficient model is a tedious process and named feature 

selection. There are numerous well-known methods for selecting appropriate terms 

(feature selection), including Stepwise Regression, Multivariate Orthogonal 

Functions (MOFs), and Generalized Additive Models (GAMs). The aerodynamic 

model structure used in this study is based on the one developed by Grauer and 

Morelli in Ref [23]. Grauer and Morelli used multivariate orthogonal function 

modeling to investigate measured wind tunnel aerodynamic datasets for eight aircraft 

over a wide variety of flight regimes. The most critical modeling terms (the number 

of selected instances is high) for each coefficient are selected as frozen model terms. 

The remaining model terms for longitudinal and lateral coefficients are selected 

using expert-based selection and a correlation-based binary particle swarm 

optimization method, respectively. Certain additions and rejections to the structure 

of the underlying aerodynamic model are made using quantitative and qualitative 

graphical findings analyzed by Jategaonkar [65] and resampling methods analyzed 

by Millidere et al. in Ref. [24]. 

4.4.1 The Correlation Based Particle Swarm Optimization 

The lateral/directional coefficients are identified using the correlation-based particle 

swarm optimization. Initial model terms pool are generated based on a set of base 

regressors and a maximum term order. And then, pairwise correlation among the 
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model terms is compared, and certain terms are removed. Finally, binary Particle 

Swarm Optimization is utilized to generate the best subset of the remaining terms. 

The flowchart of this process is shown in Figure 4.5. 

 

Figure 4.5 Correlated-Based Binary Particle Swarm Optimization Flowchart 

4.4.1.1 Generating Candidate Pool 

For lateral aerodynamic coefficients, candidate model terms are as follows: 

𝐶𝑎 = ∑∑(𝐶𝑎𝛽𝑖𝛼𝑗) 𝛽𝑖𝛼𝑗

2

𝑗=0

3

𝑖=0

+ ∑∑∑(𝐶𝑎𝛿𝑙𝑒𝑓
𝑖 𝛼𝑗𝛽𝑘) 𝛿𝑙𝑒𝑓

𝑖 𝛼𝑗𝛽𝑘

1

𝑘=0

2

𝑗=0

1

𝑖=1

+ ∑∑∑(𝐶𝑎𝛿𝑎
𝑖 𝛼𝑗𝛽𝑘) 𝛿𝑎

𝑖 𝛼𝑗𝛽𝑘

1

𝑘=0

2

𝑗=0

1

𝑖=1

+ ∑∑∑∑(𝐶𝑎𝛿𝑎
𝑖 𝛿𝑙𝑒𝑓

𝑗
𝛼𝑘𝛽𝑙) 𝛿𝑎

𝑖 𝛿𝑙𝑒𝑓
𝑗

𝛼𝑘𝛽𝑙

1

𝑙=0

2

𝑘=0

1

𝑗=1

1

𝑖=1

+ ∑∑∑(𝐶𝑎𝛿𝑟
𝑖 𝛼𝑗𝛽𝑘) 𝛿𝑟

𝑖𝛼𝑗𝛽𝑘

1

𝑘=0

2

𝑗=0

1

𝑖=1

+ ∑∑(𝐶𝑎𝑝∗𝑖𝛼𝑗) 𝑝∗𝑖𝛼𝑗

2

𝑗=0

1

𝑖=1

+ ∑∑∑(𝐶𝑎𝑝∗𝑖𝛼𝑗𝛿𝑙𝑒𝑓
𝑘 ) 𝑝∗𝑖𝛼𝑗𝛿𝑙𝑒𝑓

𝑘

1

𝑘=1

2

𝑗=0

1

𝑖=1

+ ∑∑(𝐶𝑎𝑟∗𝑖𝛼𝑗)𝑟∗𝑖𝛼𝑗

2

𝑗=0

1

𝑖=1

+ ∑∑∑(𝐶𝑎𝑟∗𝑖𝛼𝑗𝛿𝑙𝑒𝑓
𝑘 ) 𝑟∗𝑖𝛼𝑗𝛿𝑙𝑒𝑓

𝑘

1

𝑘=1

2

𝑗=0

1

𝑖=1

 

(4.58) 

where 𝑎 = 𝑌, 𝑙, 𝑚. 
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The simplest way to generate regressor pool is to utilize the conventional regressors 

such as 𝛼, 𝛽, 𝛿𝑙𝑒𝑓, 𝛿𝑎, 𝛿𝑟, 𝑝∗, and 𝑟∗ for lateral/directional coefficients. If there are 

no useful terms in the regressor pool, the quality of the model never improves. 

Some model terms defined by Ref. [23] are so critical so that these terms are frozen 

for the model structure. After deciding frozen terms, to avoid correlations of model 

terms, the correlation between the model terms is checked before implementing 

binary particle swarm optimization. That is why this procedure is called the 

correlation-based binary particle swarm optimization technique. 

4.4.1.2 Pearson’s Correlation Coefficient 

Pairwise correlation is a statistic that indicates the linear relationship between two or 

more variables. Correlation is used to select variables since the appropriate variables 

are strongly associated with the output. Additionally, variables should be associated 

with the output but not with one another. When two terms are correlated, the model 

requires just one of them, since the second provides no new information.  

Given paired data {(𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛)} consisting of 𝑛 pairs, the Pearson's 

correlation coefficient, 𝑟𝑥𝑦, is defined as [70] 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 (4.59) 

where: 

𝑛 is the sample size 

𝑥𝑖, 𝑦𝑖 are the individual sample points indexed with 𝑖 

�̅�, �̅� are the mean for 𝑥 and 𝑦 samples 
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The value of Pearson’s correlation ranges from -1 to +1. When the coefficient 

approaches to one end, then there is a high correlation. A value of 0 indicates that 

variables are not linearly dependent on one another. If the variables are correlated, 

we can eliminate the one with lower correlation coefficient value with the output 

variable. Additionally, we may calculate multiple correlation coefficients to 

determine if more than two variables are correlated to each other. This is referred to 

as multi-collinearity. 

4.4.1.3 Binary Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based stochastic optimization 

technique [71]. This method is very popular because to its simplicity and low 

computing cost [72]. The PSO offers many advantages over other global 

optimization methods, including ease of implementation, and minimal number of 

hyperparameters to adjust. PSO has been effectively used in a wide range of fields, 

including parameter estimation as well as artificial neural network training, and 

feature selection [73] [74] [75] [76] [77] [78] [79]. 

PSO begins with a collection of random particles (solutions) and then seek for 

optimal solutions. Each particle is updated by using personal best and global best at 

each iteration. Personal best refers to best solution (fitness) of the particle. Global 

best refers the best value attained by any particle in the population [71]. 

Following the determination of particle’s personal and global best values, the 

particle’s velocity and positions are updated using the following equations [71] : 

�⃗�𝑖
𝑘+1 = 𝑤�⃗�𝑖

𝑘 + 𝑐1𝑟1(�⃗�𝑖
𝑘 − �⃗�𝑖

𝑘) + 𝑐2𝑟2(�⃗�
𝑘 − �⃗�𝑖

𝑘) (4.60) 

�⃗�𝑖
𝑘+1 = �⃗�𝑖

𝑘 + �⃗�𝑖
𝑘+1 (4.61) 

where �⃗�𝑖
𝑘 is the particle velocity, �⃗�𝑖

𝑘 is the current particle solution, 𝑟1 and 𝑟2 are 

random numbers between 0 and 1 and 𝑐1 and 𝑐2 acceleration coefficients. 
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The search mechanism of the PSO is illustrated in Figure 4.6. 

 

Figure 4.6 Search Mechanism of the PSO 

The first term in equation (4.60) is referred to as the inertia component. It maintains 

the particle’s original direction. The second term is called the cognitive component, 

which serve as the particle’s memory, leading it to return to its optimal regions of 

the search space on individual basis. The last term is referred to the social 

component. It leads the particle to gravitate toward the best global solution the swarm 

has discovered so far. 

The binary variant of this method has been developed to address binary problems. A 

transfer function which is the essential component of the binary version maps search 

space from continuous to discrete. 

Two distinct components differentiate the continuous and binary versions of PSO: a 

new transfer function and a different position update method. The transfer function 

is used to map search space from continuous to binary, and the updating process 

changes the positions of particles in binary search spaces between 0 and 1. 

Particles can move around the search space in the continuous version of PSO by 

employing position vectors. As a result, the notion of position updating for particles 

may be simply realized by adding velocities to positions through equation (4.61). 

However, position updating is different in the binary space [26]. Due to fact that 
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binary space contains just two integers (“0” and “1”), the operation of position 

updating cannot be accomplished using equation (4.61). As a result, a method should 

be developed for altering agents’ positions from “0” to “1” or vice versa. In other 

words, a relationship between velocity and position must be established [80]. 

Essentially, changing the position in discrete binary spaces entails flipping between 

"0" and "1" values. This flipping should be dependent on the agents' velocities. The 

issue here is how to update the positions in a binary space using the idea of velocity 

in a real space. The notion is to adjust an agent's location based on the likelihood of 

its velocity. To do this, a transfer function is required to convert velocity values to 

probability values for position updates. 

Two concerns must be adressed when recasting the feature selection as an 

optimization problem. The first concern is with the solution's representation. Given 

that binary nature of feature selection, we chose to express the solution as a binary 

vector, with 1 values indicating that the associated feature is selected and 0 values 

indicating that it is not. The size of the solution corresponds to the number of features 

in each dataset. The second concern is with the objective function's design. In the 

binary PSO feature selection task, the predicted squared error (PSE) metric is 

used.[23] [81] is used as the objective function to choose the model without 

overparameterizing the model. 

𝑃𝑆𝐸 =
1

𝑁
∑(𝑧𝑗 − �⃗�𝑗(Θ⃗⃗⃗))

2
𝑁

𝑖=1

+ 𝜎2
𝑛

𝑁
 (4.62) 

The first component in the PSE reduces monotonically with each additional 

modeling term and quantifies the model fit error and is referred to as mean squared 

fit error. The second component is the overfit penalty, which rises monotonically 

with each additional model term and prevents the model from being over-

parameterized, resulting in poor prediction outcomes. With each additional model 

term, one component increases continually whereas the other term decreases 

continually, ensuring that PSE is always minimum at a single point. By selecting this 
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point as the number of modeling terms, a model with low mean squared fit error and 

high prediction capacity is developed. The variance 𝜎2 is  formulated as follows: 

[23] 

𝜎2 =
1

𝑁 − 1
∑(𝑧𝑖 − 𝑧̅)

2
𝑁

𝑖=1

 (4.63) 

The general steps of the BPSO algorithm are as follows: 

a. Define the objective function to be minimized, Eq. (4.62). 

b. Each particle is assigned a random value. 

c. Initialize the hyperparameters of PSO: 𝑤 (Table 4.8), 𝑐1 and 𝑐2(Table 4.9). 

d. Repeat the following steps e to g until meeting the end condition. 

e. The  velocities of each particle are updated using Eq. (4.60). 

f. Utilize Table 4.5 or Table 4.6 to determine the probability of changing the 

components of position vector. 

g. Update the position vectors using (4.65) or (4.66). 

4.4.1.3.1 Hyperparameters of Binary Particle Swarm Optimization 

The BPSO algorithm is an extremely efficient approach for solving feature selection 

problems. However, certain components of the feature selection process, called 

hyperparameters, are not updated autonomously. The hyperparameter is not the 

variable that is optimized through the feature selection process, but rather the 

variable specified by previous information, e.g., transfer function scheme, inertia 

weight updating strategy, and the value of acceleration coefficients [80]. The setting 

for these hyperparameters has a considerable impact on the performance of BPSO, 

and there are no universally optimal default values for various problems and data 

sets. The fundamental issue in designing a BPSO is determining the optimal 

hyperparameters. The brute force technique is applied to find the best 

hyperparameters. The numbers of population and generation number are taken to be 

20 and 30, respectively. The dimension number is the number of terms in the 
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generated pool. Each configuration is run 30 times, and the min, max, mean, and 

standard deviation of the PSE are recorded. The mean values are compared, and the 

one giving the minimum mean value is selected as the best configuration. 

4.4.1.3.1.1 Transfer Function Scheme 

Binary PSO depends on a transfer function to convert a continuous search space to a 

discrete search space for its core component. S-shaped and v-shaped transfer 

functions are the two main families of transfer functions described in the literature. 

A transfer function's range should be restricted to the range [0,1]. All real values 

of velocity are transformed to probability values in the range [0,1] using an equation 

(4.64) that uses a sigmoid function [80]. 

𝑇(𝑣𝑖
𝑘+1)  =

1

1 + 𝑒−𝑣𝑖
𝑘+1 (4.64) 

Position vectors may be updated as follows with the likelihood of their velocities 

once velocities have been converted to probability values: 

𝑥𝑖
𝑘+1 = {

1     𝑖𝑓     𝑟𝑎𝑛𝑑 < 𝑇(𝑣𝑖
𝑘+1)  

0     𝑖𝑓     𝑟𝑎𝑛𝑑 ≥ 𝑇(𝑣𝑖
𝑘+1) 

 (4.65) 

The other s-shaped transfer functions are listed in Table 4.5. 

Table 4.5 S-Shaped Family of Transfer Functions 

Name Transfer Function 

S1 𝑇(𝑥)  =
1

1 + 𝑒−2𝑥
 

S2 𝑇(𝑥)  =
1

1 + 𝑒−𝑥
 

S3 𝑇(𝑥)  =
1

1 + 𝑒−𝑥/2
 

S4 𝑇(𝑥)  =
1

1 + 𝑒−𝑥/3
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Table 4.6 lists the most common v-shaped transfer functions. 

Table 4.6 V-Shaped Family of Transfer Functions 

Name Transfer Function 

V1 𝑇(𝑥)  = |erf (
√𝜋 

2
𝑥)| 

V2 𝑇(𝑥)  = |tanh(𝑥)| 

V3 𝑇(𝑥)  = |
𝑥

√1 + 𝑥2
| 

V4 𝑇(𝑥)  = |
2

𝜋
arctan (

𝜋

2
𝑥)| 

 

Because v-shaped functions are distinct from the s-shaped ones, additional rules for 

changing their positions are required. Position vectors should be updated using a 

formula based on velocities when using these types of transfer functions. 

𝑥𝑖
𝑘+1 = {

(𝑥𝑖
𝑘)

−1
     𝑖𝑓     𝑟𝑎𝑛𝑑 < 𝑇(𝑣𝑖

𝑘+1)  

𝑥𝑖
𝑘              𝑖𝑓     𝑟𝑎𝑛𝑑 ≥ 𝑇(𝑣𝑖

𝑘+1) 
 (4.66) 

where (𝑥𝑖
𝑘)

−1
is the complement of 𝑥𝑖

𝑘. 

Table 4.7 Different Transfer Functions 

No 1 2 3 4 5 6 7 8 

Name S1 S2 S3 S4 V1 V2 V3 V4 

4.4.1.3.1.2 Inertia Weight Updating Strategy 

Each population-based algorithm undergoes two main phases of optimization: 

exploration and exploitation. By maintaining a favorable balance between those 

phases, the algorithm may converge to the global optima in an acceptable amount of 

time. The ideal solution for any algorithm is to begin the search process by using the 

exploration operator more than the exploitation operator. One of the hyperparameters 
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that control this balance is the inertia weight. There are many strategies for the inertia 

weight in the literature [79] [82] [83] [84]. In this study, only ten different inertia 

weight update strategies, which are listed in Table 4.8, are tested as follows: 

Table 4.8 Different Inertia Weight Update Strategies 

No Name of the Inertia Weight Formula of the Inertia Weight 

1 Constant Inertia Weight 𝑤 = 0.2 

2 Constant Inertia Weight 𝑤 = 0.5 

3 Constant Inertia Weight 𝑤 = 0.7 

4 Constant Inertia Weight 𝑤 = 1.0 

5 Linear Decreasing Inertia Weight 
𝑤𝑘 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑘

𝑘𝑚𝑎𝑥
 

𝑤𝑚𝑖𝑛 = 0.2, 𝑤𝑚𝑎𝑥 = 0.8 

6 Nonlinear Decreasing Inertia Weight (
2

𝑘
)
0.3

 

7 Linear Increasing Inertia Weight 
𝑤𝑘 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑘

𝑘𝑚𝑎𝑥
 

𝑤𝑚𝑖𝑛 = 0.2, 𝑤𝑚𝑎𝑥 = 0.8 

8 Simulated Annealing Inertia Weight 
𝑤𝑘 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)0.99

𝑘 

𝑤𝑚𝑖𝑛 = 0.2, 𝑤𝑚𝑎𝑥 = 0.8 

9 Random Inertia Weight 𝑤𝑘 = 0.5 +
𝑟𝑎𝑛𝑑

2
 

10 Global-Local Best Inertia Weight 𝑤𝑖
𝑘 = 1.1 −

�⃗�𝑘

�⃗�𝑖
𝑘  

4.4.1.3.1.3 The Value of Acceleration Coefficients 

The second hyperparameter that controls this balance is the acceleration coefficients. 

To have a good balance, the sum of c1 and c2 must be equal to 4 [71]. 

𝑐1 + 𝑐2 = 4 (4.67) 
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There are many options for 𝑐1 and 𝑐2 selection, but just 2 options are evaluated for 

this study. In the first one, both of them are set to 2. And in the second option, 𝑐1 

decreases from 3.5 to 0.5 and 𝑐2 grows linearly from 0.5 to 3.5 to balance exploration 

and exploitation. 

Table 4.9 Different Acceleration Update Strategies 

No Name of the Inertia Weight The Formula of the Inertia Weight 

1 Constant Accelerations 
𝑐1 = 2 

𝑐2 = 2 

2 Adaptive Accelerations 

𝑐1 = 3.5 − 3
𝑘

𝑘𝑚𝑎𝑥
 

𝑐2 = 0.5 + 3
𝑘

𝑘𝑚𝑎𝑥
 

4.4.2 Statistical Accuracy 

Firstly, it is checked if the expected value is reasonable. The magnitude of the order 

must be close to real value. Otherwise, we are doing something wrong. And then, we 

check the standard deviation, coefficient of variation (relative standard deviation), 

and correlation matrix results. The coefficient of variation should not exceed 50%. 

The coefficient of variation is a statistic that indicates the degree of relative 

variability. It is the ratio of the standard deviation to the estimate. The larger the 

coefficient, the more dispersion around mean. The smaller the coefficient, the more 

accurate the estimate. The formula for the coefficient of variation is as follows:  

𝐶𝑜𝑉 =  |
𝜎

Θ
| × 100% (4.68) 

where 𝜎 is the standard deviation and Θ is the estimate. 
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4.4.3 Qualitative Graphical Results 

Time History Plots: Comparing the time histories of measured and estimated 

responses is a standard procedure to evaluate the model fidelity qualitatively. Any 

discrepancies in the match between the two responses often provide important clues 

to improve the model fidelity. 

Cross Plots: In addition to plotting time histories of measured and estimated 

responses, cross plots of arbitrary two variables, such as lift coefficient versus angle 

of attack, Rolling and yawing moment coefficients versus angle of sideslip, drag 

coefficient versus lift coefficient, are occasionally necessary. These cross plots are 

helpful for gaining more insight into the modeling aspects. 

Cross Plots of Residuals; the test of the residuals is a valuable indication of the 

validity of assumptions made. The low spread of residual cantered around zero is 

desirable, whereas non-flat spread indicates that the model needs improvement with 

the observed variable. 

4.4.4 Resampling Methods 

To determine how effective the equation error method on a given dataset is, how 

well its estimations resemble the measured data is examined. The mean squared error 

is the most often used metric in regression problems: 

MSE𝑇𝑟𝑎𝑖𝑛 =
1

𝑛𝑡𝑟𝑎𝑖𝑛
∑ (𝑧𝑖 − 𝑦𝑖)

2

 𝑛𝑡𝑟𝑎𝑖𝑛

𝑖=1

 (4.69) 

where 𝑛𝑡𝑟𝑎𝑖𝑛 is the number of samples in the training dataset, 𝑧𝑖 and 𝑦𝑖 are the actual 

and the estimated values for the ith observation in the training set. 

Rather than how well the method performs on the training data, what matters is how 

well the trained model performs on the data in the testing dataset, which has not been 

used to train the network. That is,  
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MSE𝑇𝑒𝑠𝑡 =
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑧𝑖 − 𝑦𝑖)

2

 𝑛𝑡𝑒𝑠𝑡

𝑖=1

 (4.70) 

should be computed for assessing the model, where 𝑛𝑡𝑒𝑠𝑡 is the number of samples 

in the testing dataset, 𝑧𝑖 and 𝑦𝑖 are the actual and the estimated values for the ith 

observation in the testing dataset we have separated aside. 

Adding many variables (increasing complexity), which decreases the training MSE, 

has no effect on reducing the test MSE. Overfitting occurs when a given method 

yields a small training MSE but a high test MSE. The small changes in the training 

data may have a significant effect on the estimated model. In this instance, the 

random error is modeled rather than the pattern hidden in the data. This is not the 

desired case [32]. Such a case is demonstrated in  Figure 4.7 [33]. The resampling 

methods, essential tools in modern statistics, are discussed to minimize this 

undesired case [32] [33] 

The performance of the regression model is a crucial criterion for determining the 

optimal variable selection. In the beginning, the available dataset is split into two 

sets, training dataset, and testing dataset. The testing dataset, which is not seen in the 

identification phase, is used to evaluate the ultimate performance of the identified 

model. However, during the identification phase, it is worth noting that the training 

dataset may be utilized in a variety of ways to evaluate the identified model, 

including train-validation split, cross-validation sets, or random resamples.  The use 

of such methods is illustrated in Figure 4.8, in which the enclosed box indicates that 

several iterations may be required to obtain the final trained model to be assessed by 

the testing dataset. Below we describe some commonly used validation techniques 

to determine how well the trained model might work on the testing dataset. For more 

information on the subject, the reader is referred to Ref. [33]. 
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Figure 4.7 Test and Training Error as a Function of Model Complexity 

 

Figure 4.8. Model Analysis Engineering Flowchart 

4.4.4.1 Train Validation Split 

It is a straightforward procedure that comprises randomly partitioning the available 

training dataset into two parts: a training dataset and a validation dataset, illustrated 

in Figure 4.9.a. The model is fitted to the newly generated training dataset, and the 

performance of the fitted model is evaluated in the validation set. The trained model 

is then used for the testing dataset. Generally, the training data consists of %80 of 
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the available data set. This simple approach is easy to implement, but it has a 

significant drawback: testing MSE can be highly variable, depending on which 

observations are included in the training and the validation datasets. 

4.4.4.2 K-fold Cross-Validation 

This procedure addresses the drawback of the train-validation split approach. This 

approach divides the set of observations randomly into 𝒌 groups, or folds, of 

approximately equal size, illustrated in Figure 4.9.b. The first fold is used to validate 

the model, while the remaining 𝒌 − 𝟏 folds are used to train the model. The mean 

square error for the validation set (first fold) is computed. This procedure is repeated 

𝒌 times; each time, a new group of observations is used as a validation set. As a 

consequence, 𝒌 estimates of the validation MSEs are produced. The 𝒌-fold cross-

validation error estimate is then computed by the average [32] [33]  

CV(𝑘) =
1

𝑘
 ∑MSE𝑉𝑎𝑙𝑖

 𝑘

𝑖=1

 (4.71) 

In comparison to the hold-out cross-validation approach, which produces 

inconsistent results when applied with varying splits owing to unpredictability in the 

train and validation splits, performing a 𝒌-fold cross-validation is more robust in that 

regard. Generally, the number of folds, 𝒌, to be used in this approach for a given 𝒏 

observations, as recommended in [85], is 

𝑘 =  min {√𝑛, 10} (4.72) 

Figure 4.9 illustrates the resampling techniques. 
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(a) 

 

(b) 

Figure 4.9. Resampling Methods. (a) Hold-out Cross-Validation (b) K-fold Cross-

Validation 

4.4.5 Proof-of-Match (POM) 

The estimated model’s capacity is evaluated by comparing the measured responses 

to the model’s predictions with the duplicated control inputs. This process is referred 

to as proof-of-match in the context of flight vehicles, and it is a critical part of flight 

simulator certification and acceptance. Throughout this process, the estimated 

aerodynamic model is kept fixed [1] [2] [13]. According to a fundamental principle 

of sciences, supplementary flight data and flight maneuvers are utilized to verify the 

model capability.  

Additionally, the FAA has established standards, which defines the criteria for 

evaluating, qualifying, and maintaining Flight System Training Devices (FSTD). 

The standards include six appendices: these are requirements, full flight simulators, 

objective tests, subjective evaluation, sample documents, wind shear training, and 

FSTD directives, respectively [86].  
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The simulation should begin under the identical initial conditions as in the flight. The 

initial conditions must be adjusted appropriately to fit the flight conditions. The 

control inputs and outputs during the actual flight test are exposed to measurement 

errors and noise. Similarly, the estimated models are imprecise. As a result, 

aerodynamic coefficients also should be adjusted. A practical methodology is to 

introduce minor biases on the initial conditions, the measured control deflections, 

and the aerodynamic coefficients. The effective aerodynamic parameters in several 

maneuvers are listed in Table 4.10 [87]. 

Table 4.10 Effective Aerodynamic Parameters in Proof-of-Match Maneuvers 

Maneuver Maneuver Parameters Model Parameters 

Short Period a. Frequency 𝐶𝑚𝛼
 

   

Phugoid 
a. Time to double/half 

b. Period 

𝐶𝐷 

𝐶𝐷 

   

Longitudinal Static  

Stability (LSS) 

a. Stick position gradient 

b. AOA gradient 

𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

 

𝐶𝐿𝛼 

   

Maneuvering Longitudinal  

Stability 

a. Stick position gradient 

b. AOA gradient 

𝐶𝑚𝛼
, 𝐶𝑚𝛿𝑒

, 𝐶𝑚0
 

𝐶𝐿𝛼 

   

Steady State Trim 

a. Airspeed, Weight, AOA 

b. Longitudinal Trim 

c. Throttle Position 

𝐶𝐿𝛼 

𝐶𝐿𝑇𝑅𝐼𝑀 

𝐶𝐷 and 𝑇 balance 

   

Dutch Roll 
a. Frequency: 

b. Damping:  

𝐶𝑛𝛽
 

𝐶𝑛𝑟
 

   

Bank To Bank 

a. Initial roll response to  

partial deflection inputs 

b. Full deflection rolls 

𝐶𝑙𝛿𝑎
, 𝐶𝑙𝑝 

 

𝐶𝑛𝛿𝑎
, 𝐶𝑛𝑝

 

   

Steady State Sideslip 

a. Bank/Rudder slope 

b. Bank/Beta slope 

c. Aileron/Bank slope 

𝐶𝑛𝛽
, 𝐶𝑛𝛿𝑟

 

𝐶𝑌𝛽 

𝐶𝑙𝛿𝑎
, 𝐶𝑙𝛽 
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To avoid subjective assessment of the match between measured system responses 

and model predicted outputs, FAA has established standards for each variable in 

terms of tolerances. As an example, Table 4.11 specifies many flight tests, including 

the tolerances and flight conditions for each validation test. The reader is referred to 

Refs. [86] [88] for a complete list of validation tests. 

Table 4.11 FAA Validation Tests and Tolerance Values 

Test  

Number 
Maneuver Parameters Tolerance 

2.c.5 Longitudinal Trim 
Elevator 

Pitch Angle 

±1.0 deg  

±1.0 deg 

    

2.c.6 
Longitudinal Maneuvering 

Stability 
Elevator 

±1.0 deg or 

±10% 
    

2.c.7 Longitudinal Static Stability Elevator 
±1.0 deg or 

±10% 
    

2.c.9 Phugoid Dynamics 
Period 

Time to ½ or 2 

±10%  

±10% 

    

2.c.10 Short Period Dynamics 

Pitch Angle 

Pitch Rate 

Normal 

Acceleration 

±1.5 deg 

±1.5 deg 

±0.1 g 

    

2.d.2 and 

2.d.3 
Bank To Bank 

Roll Rate 

Yaw Rate 

Lateral 

Acceleration 

Sideslip Angle 

Bank Angle 

±2 deg 

±2 deg 

±0.1 g  
±1.5 deg 

±2.0 deg or 

±10%  

    

2.d.7 Dutch Roll 

Roll Rate 

Yaw Rate 

Lateral 

Acceleration 

Sideslip Angle 

±2 deg 

±2 deg 

±0.1 g  
±1.5 deg 

    

2.d.8 Steady State Sideslip 

Sideslip Angle 

Bank Angle 

 

Aileron 

±1.5 deg 

±2 deg or  

±10% 

±2.0 deg  
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Longitudinal parameter matching is performed in two phases. The static part of 

aerodynamic coefficients is validated with Longitudinal Maneuvering Stability and 

Longitudinal Static Stability tests. The dynamic portion of the aerodynamic 

coefficient is confirmed with the Short-Period, Phugoid, and Trust Variation tests 

[8]. 

4.4.6 Theil’s Inequality Coefficient 

Residual analysis is a popular statistical method for determining how well a model 

fits the data. Theil’s inequality coefficient is used as the criteria. It sheds light on the 

relationship between the two time series, in this instrance the measured and model 

responses (𝑧 and �⃗�). Theil’s inequality coefficient for each of the variables is defined 

as [1] 

𝑈𝑖 =
√1

𝑁
∑ [𝑧𝑖(𝑡𝑘) − 𝑦𝑖(𝑡𝑘)]2

𝑁
𝑖=1

√1
𝑁

∑ [𝑧𝑖(𝑡𝑘)]2
𝑁
𝑖=1 + √1

𝑁
∑ [𝑦𝑖(𝑡𝑘)]2

𝑁
𝑖=1

, 𝑖 = 1,2,⋯ , 𝑛𝑦 (4.73) 

where 𝑁 is the total number of data points, 𝑧 is the measurement vector, �⃗� is the 

model output vector and 𝑛𝑦 is the dimension of the output vector. Eq. provides 𝑛𝑦 

separate Theil’s inequality coefficients corresponding to the number of outputs. 

𝑈 is the normalized index, constrained within the zero and unity interval. 𝑈 = 0 

denotes a perfect fit, and 𝑈 = 1 denotes to the maximal inequality. As a rule of 

thumb, the maximum acceptable values of this coefficient is in the range of 0.25 to 

0.30. The TIC value will be investigated for the conditions stated below: 

• Zero input initial condition 

• Noise driven behavior  

• Combination of short-period, dutch-roll, and bank-to-bank maneuvers 

• Short-period, dutch-roll, and bank-to-bank maneuvers with respect to strong 

control deflection inputs  
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4.4.7 Range of Model Applicability in Frequency Domain 

Even though validation tests are often carried out in the time domain, the application 

range of the estimated model may be shown more clearly in frequency domain. This 

is especially critical for systems with flight control systems or in situations where 

aeroelastic effects may be dominating.  

The magnitude and phase angle bode plots illustrate the model's accuracy and 

validity range in the frequency domain. For a perfect match, we'll require 0-dB 

magnitude and 0-deg phase angle throughout the whole frequency range. MUAD 

(Maximum Unnoticeable Added Dynamics) limits are used to define the magnitude 

and phase mismatch thresholds at which a pilot would notice a difference in the 

aircraft's response characteristics, similarly to how they are used in time domain 

verification in terms of tolerances [14]. To maintain adequate fidelity, the size and 

phase of the error function should be maintained within these bounds. 

Tischler [14] suggested using the MUAD limits as a fidelity criterion for FAA level 

D simulations. DLR researchers separately developed and used the same technique 

of mismatching frequency domain boundaries to identify the impacts of unnoticed 

dynamics in helicopters and to evaluate the accuracy of in-flight simulations. 

The procedure to compute the frequency responses can be found in Ref. [14]. Pitch-

rate response to elevator input (𝑞 𝛿𝑒⁄ ), roll-rate response to aileron input (𝑝 𝛿𝑎⁄ ),  

and yaw-rate response to rudder input (𝑟 𝛿𝑟⁄ ) at different trim settings will be 

investigated. 
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4.5 Thrust Calculation from Steady State Flight Tests 

4.5.1 Introduction to Flight Performance 

This section discusses flight mechanics, which is the study of aircraft translational 

motions. Figure 4.10 illustrates the geometry for flight mechanics [89]. 

 

Figure 4.10 Geometry for Performance Calculation. 

The climb angle, 𝛾, is the angle between the horizontal and the wind (stability) X-

axis. Summing forces in the Xs and Zs directions yield Eqs. (4.74) and (4.75). 

∑𝐹𝑥 = 𝑇 cos(𝛼 + 𝛼𝑇) − 𝐷 − 𝑊 sin 𝛾 (4.74) 

∑𝐹𝑧 = 𝑇 sin(𝛼 + 𝛼𝑇) + 𝐿 − 𝑊 cos 𝛾 (4.75) 

where 𝑇 is thrust, 𝐷 is drag, 𝐿 is lift, W is weight, 𝛼 is the angle of attack, 𝛾 is flight path 

angle and 𝛼𝑇 is thrust incidence angle.  
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For most aircraft and in F16 aircraft, the thrust axis has little incidence with respect to the 

wind axis, i.e., 𝛼𝑇 = 0. So Eqs. (4.74) and (4.75) are simplified as follows: 

∑𝐹𝑥 = 𝑇 cos 𝛼 − 𝐷 − 𝑊 sin 𝛾 (4.76) 

∑𝐹𝑧 = 𝐿 − 𝑊 cos 𝛾 (4.77) 

In Eqs. (4.76) and (4.77), the drag (D) and lift (L) is as follows: 

𝐷 =  𝑞𝑆𝑅𝑒𝑓𝐶𝐷 (4.78) 

𝐿 =  𝑞𝑆𝑅𝑒𝑓𝐶𝐿 (4.79) 

where 𝑞 = 1 2⁄ 𝜌𝑉𝑇𝐴𝑆
2 is the dynamic pressure and 𝑆𝑅𝑒𝑓 is the reference area. 

4.5.2 Steady State Flight 

If the aircraft is flying in steady-state flight, the sum of the forces must equal to zero, ∑𝐹𝑥 =

∑𝐹𝑥 = 0. This leads to Eqs. (4.80) and (4.81), the purest versions of the translational 

equations of motion. 

𝑇 cos 𝛼 − 𝐷 − 𝑊 sin 𝛾 = 0 (4.80) 

𝐿 − 𝑊 cos 𝛾 = 0 (4.81) 

From Eqs. (4.80) and (4.81), we get that 

𝐶𝐷 =
𝐷

𝑞𝑆𝑅𝑒𝑓
 (4.82) 

𝐶𝐿 =
𝐿

𝑞𝑆𝑅𝑒𝑓
 (4.83) 

There is a relation between 𝐶𝐷 and 𝐶𝐿 as shown below [1] [3] [48] [89]. 

𝐶𝐷 = 𝐶𝐷0 + 
1

𝜋𝑒𝐴𝑅
𝐶𝐿

2 (4.84) 
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= 𝐶𝐷0 +  𝐾𝐶𝐿
2 

where 𝐶𝐷0 is the drag coefficient at zero angle of attack, e is Oswald efficiency factor, and 

AR is the aspect ratio. 

For swept-wing aircraft, Oswald efficiency, e, is assumed to be as follows [89] : 

𝑒 = 4.61(1 − 0.045 × 𝐴𝑅0.68)(cos Λ𝐿𝐸)
0.15 − 3.1 (Λ𝐿𝐸 > 30 𝑑𝑒𝑔) (4.85) 

where AR is the aspect ratio, and Λ𝐿𝐸 is the leading-edge swept angle. 

In F16 aircraft, AR equals 3 and Λ𝐿𝐸 equals to 40°. So Eq. (4.85) turns out to be Eq. (4.86). 

𝑒 = 4.61(1 − 0.045 × 𝐴𝑅0.68)(cos Λ𝐿𝐸)
0.15 − 3.1 (Λ𝐿𝐸 > 30 𝑑𝑒𝑔)  

= 4.61(1 − 0.045 × 30.68)(cos40)0.15 − 3.1 

= 0.9086 

(4.86) 

In a flight, the weight of the aircraft, and we can measure the angle of attack,𝛼, and flight 

path angle, 𝛾, and true airspeed, 𝑉𝑇𝐴𝑆  are measured, and the air density 𝜌 is calculated using 

the standard atmosphere model. So the only unknown components in Eqs. (4.80) and (4.81) 

are 𝐿 and 𝐷,i.e. 𝐶𝐷 and 𝐶𝐿 coefficients. Hence, using Eqs. (4.80)(4.81)(4.82)(4.83)(4.84) 

and (4.86), we can conclude that if we know 𝐶𝐷0 coefficients, we can find 𝐶𝐷 and 𝐶𝐿 

aerodynamic coefficients using Newton-Raphson algorithm discussed in Subsection 2.4.2.1. 

How to calculate 𝐶𝐷0 in flight are covered in the next subsection. 

4.5.3 Gliding Flight 

In gliding flight, 𝑇 = 0 and the sum of the forces must equal to zero, ∑𝐹𝑥 = ∑𝐹𝑥 =

0. This leads to Eqs. (4.87) and (4.88). 

𝐷 − 𝑊 sin 𝛾 = 0 (4.87) 

𝐿 − 𝑊 cos 𝛾 = 0 (4.88) 

From Eqs. (4.82) and (4.83), we get that 
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𝐶𝐷 =
𝑊 sin 𝛾

𝑞𝑆𝑅𝑒𝑓
 

(4.89) 

𝐶𝐿 =
𝑊 cos 𝛾

𝑞𝑆𝑅𝑒𝑓
 

(4.90) 

Using Eq. (4.84), we can calculate 𝐶𝐷0. 

𝐶𝐷0 = 𝐶𝐷 − 
1

𝜋𝑒𝐴𝑅
𝐶𝐿

2 
(4.91) 

We collected some flight data for gliding flights, and we get the results in Figure 

4.11. The averaged 𝐶𝐷0value for the flight is 0.0208 ,𝐶�̅�0 = 0.0208,  and it is very 

close to actual value, 0.0202. 

 

Figure 4.11 𝐶𝐷0
Values for Different Gliding Flights 

0 1 2 3 4
0.02

0.0202

0.0204

0.0206

0.0208

0.021

0.0212

0.0214

0.0216

0.0218

(°)

C
D

0

 

 

estimated



 

 

 

102 

4.5.4 Calculating Thrust Using Newton-Raphson Algorithm 

Now we can go back to our primary concern, calculating the thrust coefficient from 

equations in Section 4.5.2 using the Newton-Raphson algorithm already discussed in Section 

2.4.2.1. 

Now we should construct the 𝐹 function to be solved in the Newton-Raphson algorithm. 

Using Eqs. (4.80), (4.81), (4.82), (4.83), and (4.84), we get the following formula in which 

there are two equations and two unknowns which are 𝑇 and 𝐶𝐿. 

𝐹(1) = 0 = 𝑇 cos 𝛼 − (𝐶𝐷0 +  𝐾𝐶𝐿
2)𝑞𝑆𝑅𝑒𝑓 − 𝑊 sin 𝛾 

𝐹(2) = 0 = 𝐶𝐿𝑞𝑆𝑅𝑒𝑓 − 𝑊 cos 𝛾 

(4.92) 

where 𝐹 = [
𝐹(1)

𝐹(2)
] and 𝑥 = [

𝑇
𝐶𝐿

]. 

4.6 Iterative Equation Error Method 

When the thrust force is known, the equation error method is used to find the 

reasonable starting point in the Output Error Method. 

But when there is no available thrust data, thrust is calculated using assumption from 

Steady State Flight Tests (Section 4.5), and a preliminary simplified turbofan engine 

thrust model is developed (Section 2.2.2.3). All optimization-based design 

techniques need a good preliminary design as a starting point. There is no assurance 

that search engine discovers a suitable solution. The classical methods are used for 

the preliminary design. And then iterative equation error method is employed. 

The iterative equation error method approach consisted of a starting point and then 

used a systematic method to obtain a refined solution estimate. In the end, it is 

expected to obtain a solution that simultaneously satisfies the given output vector. 

The process is started by choosing a reasonable starting point for an unknown 

parameter vector, Θ(0). Specific estimations do not lead to a converged solution if 
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the starting point is far from optimum. The unknown parameter vector is subdivided 

into two components, namely, Θ𝐹 and Θ𝐸 . The vector with the subscript F contains 

fixed coefficients, and the other with the index E contains the parameters to be 

estimated. The starting point can be substituted into cost function, which can be used 

firstly to calculate a new estimate for 𝐶𝐷 coefficient parameters. the fixed parameters, 

then these new estimates of 𝐶𝐷 coefficient parameters along with the previous 

estimates for �̃�𝑁𝐷 is substituted into cost function to compute a new estimate for 𝐶𝐿 

coefficient parameters. This process is repeated to calculate a new estimate for �̃�𝑇 

coefficient. Then the entire procedure is repeated until percent relative error, ε𝑎,  fall 

below a prespecified stopping criterion, ε𝑠 or the maximum number of iterations is 

achieved. The motivation of using the iterative equation error method is as follows: 

the drag coefficient parameters and thrust coefficient parameters are nearly collinear 

or linearly dependent, and the classical methods cannot decipher between 

parameters, and resulting parameter estimates are biased with large uncertainties and 

leads to poor regression results.  

For the iterative equation error estimation, the control input, state variables, 

measured / model output vectors, and unknown (estimated) variables are shown in 

Table 4.12. 

Table 4.12 Input, State Variable, and Output Vectors and Unknown Variables for 

the Iterative Equation Error Method. 

Symbol Description Variables 

�⃗⃗� Control Input Vector [𝑉, 𝛼, 𝛽, 𝑝, 𝑞, 𝑟, 𝛿𝑙𝑒𝑓, 𝛿𝑡ℎ, 𝛿𝑒 , 𝛿𝑎, 𝛿𝑟 , 𝛿𝑠𝑏 ,𝑀] 

�⃗� State Variable Vector [] 

�⃗� Observation Vector [𝑎𝑠𝑋
, 𝑎𝑠𝑍

] 

Θ⃗⃗⃗ Unknown Variables [𝐶𝐷 , 𝐶𝐿 , 𝐶𝑇] Model Variables 
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Algorithm1: The Iterative Equation Error Method Algorithm 

1: Specify a tolerable error, 휀𝑠  

2: Choose the maximum number of iterations, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  

3: Choose output vector as 𝑧 = [𝑎𝑥
𝑐𝑔

, 𝑎𝑧
𝑐𝑔

]  

4: Define cost function to be minimized, 𝐽(𝛩) =
1

𝑁
∑ [𝑧(𝑡) − 𝑔(𝑥(𝑡), 𝛩)]2𝑁

𝑡=1  

5: Choose an initial guess 𝛩(0) = [
(𝐶𝐷𝑖, 𝑖 = 1,… , 𝑛𝐶𝐷

)
𝑇
, (𝐶𝐿𝑖, 𝑖 = 1,… , 𝑛𝐶𝐿

)
𝑇
,

(�̃�𝑇𝑖, 𝑖 = 1,… , 𝑛�̃�𝑇
)
𝑇 ]

𝑇

  

6: for 𝑘 = 1 𝑡𝑜 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do 

7:  for 𝑗 = 1 𝑡𝑜 3 do  

8:   Resolve unknown parameter vector into fixed (𝛩𝐹) and estimated 
(𝛩𝐸)  
9:   if 𝑗 = 1 then 

10:                            𝛩𝐸
(𝑘)

= [(𝐶𝐷𝑖, 𝑖 = 1,… , 𝑛𝐶𝐷
)
𝑇
]
𝑇

 

11:    𝛩𝐹
(𝑘)

= [(𝐶𝐿𝑖, 𝑖 = 1,… , 𝑛𝐶𝐿
)
𝑇
, (�̃�𝑁𝐷𝑖, 𝑖 = 1,… , 𝑛�̃�𝑁𝐷

)
𝑇
]
𝑇

 

12:   elseif 𝑗 = 2 then  

13:                            𝛩𝐸
(𝑘)

= [(𝐶𝐿𝑖, 𝑖 = 1,… , 𝑛𝐶𝐿
)
𝑇
]
𝑇

 

14:    𝛩𝐹
(𝑘)

= [(𝐶𝐷𝑖, 𝑖 = 1,… , 𝑛𝐶𝐷
)
𝑇
, (�̃�𝑁𝐷𝑖, 𝑖 =

1,… , 𝑛�̃�𝑁𝐷
)
𝑇
]
𝑇

 

15:   elseif 𝑗 = 3 then 

16:                            𝛩𝐸
(𝑘)

= [(�̃�𝑁𝐷𝑖, 𝑖 = 1,… , 𝑛�̃�𝑁𝐷
)
𝑇
]
𝑇

 

17:    𝛩𝐹
(𝑘)

= [(𝐶𝐷𝑖, 𝑖 = 1,… , 𝑛𝐶𝐷
)
𝑇
, (𝐶𝐿𝑖, 𝑖 = 1,… , 𝑛𝐶𝐿

)
𝑇
]
𝑇

 

18:   end if 

19:   𝛩𝐸
(𝑘+1)

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽 (𝛩𝐹
(𝑘)

, 𝛩𝐸
(𝑘)

) 

20:  end for  

21:  Calculate percent relative error, 휀𝑎 = |
𝛩(𝑘+1)−𝛩(𝑘)

𝛩(𝑘+1) | × 100% 

22:  if 휀𝑎 < 휀𝑠 then 

23:  Stop 

24: end if 

25: end for 
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CHAPTER 5  

5 RESULTS AND DISCUSSION 

5.1 Case 1: Availability of Engine Database from Manufacturer 

5.1.1 Phase 1.1: Model Structure Determination 

The longitudinal aerodynamic coefficients are determined using expert based 

method. This technique requires flight mechanics intuition and statistical knowledge. 

The reader is referred to Section 4.4.2, 4.4.3 and 4.4.4.  

The lateral/directional aerodynamic coefficients are determined using the hybrid 

BPSO approach and results are presented in the next subsections. The algorithm 

starts by generating 44 candidate model variables (terms). And then, pairwise 

correlation of the output variable with model variables and pairwise correlation 

among the model variables is calculated. If the variables are correlated among 

themselves, i.e., the correlation is higher than 0.95, the variables with a lower 

correlation coefficient value with the output variable are dropped. Almost half of the 

variables are dropped after correlation analysis, and finally the binary Particle Swarm 

Optimization algorithm is run to decide the best subset. 

5.1.1.1 𝑪𝒀 Force Coefficient 

In the Table 5.1, the correlated variables are shown. The total number of dropped 

variables is 24 for 𝐶𝑌 coefficient. 
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Table 5.1 The Dropped Variables of 𝐶𝑌 model after Correlation Analysis 

Variable Dropped Variables 

𝐶𝑌𝛽 {𝐶𝑌𝛿𝑎𝛽 , 𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓𝛽} 

𝐶𝑌𝛽𝛼 {𝐶𝑌𝛿𝑎𝛼𝛽 , 𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓𝛼𝛽 , 𝐶𝑌𝛿𝑙𝑒𝑓𝛽} 

𝐶𝑌𝛽𝛼2 {𝐶𝑌𝛿𝑎𝛼2𝛽 , 𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓𝛼2𝛽 , 𝐶𝑌𝛿𝑙𝑒𝑓𝛼𝛽 , 𝐶𝑌𝛿𝑙𝑒𝑓𝛼2𝛽} 

𝐶𝑌𝛿𝑎
 {𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓

} 

𝐶𝑌𝑝𝛼 {𝐶𝑌𝑝𝛿𝑙𝑒𝑓
, 𝐶𝑌𝑝𝛼2 , 𝐶𝑌𝑝𝛼𝛿𝑙𝑒𝑓

} 

𝐶𝑌𝛿𝑟𝛼
 {𝐶𝑌𝛿𝑟𝛼

2} 

𝐶𝑌𝑟𝛼 {𝐶𝑌𝑟𝛿𝑙𝑒𝑓
} 

𝐶𝑌𝑟𝛼2 {𝐶𝑌𝑟𝛼𝛿𝑙𝑒𝑓
, 𝐶𝑌𝑟𝛼2𝛿𝑙𝑒𝑓

} 

𝐶𝑌𝛿𝑎𝛼 {𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓𝛼 , 𝐶𝑌𝛿𝑎𝛼2 , 𝐶𝑌𝛿𝑎𝛿𝑙𝑒𝑓𝛼2 , 𝐶𝑌𝛿𝑙𝑒𝑓
, 𝐶𝑌𝛼 , 𝐶𝑌𝛿𝑙𝑒𝑓𝛼 , 𝐶𝑌𝛼2} 

 

The remaining variables after correlation analysis are listed from most influential to 

the least influential as shown in Table 5.2. 

Table 5.2 The Remaining Variables of 𝐶𝑌 Model after Correlation Analysis 

Remaining Set of Variables 

{
𝑪𝒀𝜷, 𝐶𝑌𝛽3 , 𝐶𝑌𝛽𝛼, 𝐶𝑌𝛽3𝛼 , 𝑪𝒀𝒑, 𝐶𝑌𝛽3𝛼2 , 𝐶𝑌𝛽𝛼2 , 𝑪𝒀𝜹𝒂

, 𝐶𝑌𝑝𝛼, 𝐶𝑌𝑝𝛼2𝛿𝑙𝑒𝑓
, 𝐶𝑌𝛿𝑟𝛽

, 𝑪𝒀𝜹𝒓

, 𝐶𝑌𝛿𝑟𝛼𝛽 , 𝐶𝑌𝛿𝑟𝛼
, 𝐶𝑌𝛿𝑟𝛼

2𝛽,𝐶𝑌𝑟𝛼 , 𝑪𝒀𝒓, 𝐶𝑌𝑟𝛼2 , 𝐶𝑌𝛿𝑎𝛼, 𝐶𝑌𝛿𝑙𝑒𝑓𝛼2
} 

 

In Table 5.2, some variables are represented in bold, because these variables are 

considered the most influential variables for a generic aircraft in Ref. [23] and are 

kept fixed in this study. 

After fixing the variables recommended by Ref. [23] , the optimized variables are 

listed in Table 5.3. 
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Table 5.3 The Optimized Variables of 𝐶𝑌 Model 

# Variable # Variable # Variable 

1 𝐶𝑌𝛽3 6 𝐶𝑌𝑝𝛼 11 𝐶𝑌𝛿𝑟𝛼
2𝛽, 

2 𝐶𝑌𝛽𝛼 7 𝐶𝑌𝑝𝛼2𝛿𝑙𝑒𝑓
 12 𝐶𝑌𝑟𝛼 

3 𝐶𝑌𝛽3𝛼 8 𝐶𝑌𝛿𝑟𝛽
 13 𝐶𝑌𝑟𝛼2 

4 𝐶𝑌𝛽3𝛼2 9 𝐶𝑌𝛿𝑟𝛼𝛽 14 𝐶𝑌𝛿𝑎𝛼 

5 𝐶𝑌𝛽𝛼2 10 𝐶𝑌𝛿𝑟𝛼
 15 𝐶𝑌𝛿𝑙𝑒𝑓𝛼2 

 

There is total 160 configurations for different acceleration schemes (AS), transfer 

functions (TF) and inertia weight schemes (IWS). Table 5.4 gives the best fitness, 

worst fitness, mean fitness and standard deviations for the best 10 BPSO 

configurations with respect to mean fitness. It can be seen that mean fitness produced 

by Acceleration Scheme (AS) 1, Transfer Function (TF) 1, and Inertia Weight 

Scheme (IWS) 9 is the least with the lowest standard deviation as compared to other 

configurations. All configurations achieve the same best fitness, but Conf. 1 has 

better consistency. 

Table 5.4 The Results of the Best 10 BPSO Configurations for 𝐶𝑌 Model 

Conf # AS TF IWS Best Fitness Worst Fitness Mean Fitness Std. Dev 

1 1 1 9 2.56E-06 2.66E-06 2.57E-06 3.3E-08 

2 1 1 7 2.56E-06 2.69E-06 2.58E-06 3.8E-08 

3 2 8 7 2.56E-06 2.83E-06 2.58E-06 6.3E-08 

4 2 2 4 2.56E-06 2.66E-06 2.58E-06 4.2E-08 

5 1 1 8 2.56E-06 2.72E-06 2.58E-06 4.7E-08 

6 2 1 4 2.56E-06 2.81E-06 2.59E-06 6.9E-08 

7 2 1 8 2.56E-06 2.73E-06 2.59E-06 4.8E-08 

8 1 3 4 2.56E-06 2.72E-06 2.59E-06 5.0E-08 

9 1 1 4 2.56E-06 2.72E-06 2.59E-06 5.5E-08 

10 2 8 6 2.56E-06 2.74E-06 2.59E-06 4.9E-08 
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In Table 5.5, the optimal subsets for the best fitness for the best 10 configurations 

are listed. The optimal subsets are the same. The optimal subset includes the 3rd, 5th, 

9th, 14th, and 15th variables. 

Table 5.5 The Optimal Subset of the Best 10 BPSO Configuration for 𝐶𝑌 Model 

  Variables 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C
o
n
f 

#
 

1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

2 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

3 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

4 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

5 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

6 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

7 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

8 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

9 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

10 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 

 

Table 5.6 display displays the modeling terms as well as the number of instances in 

which they were selected for all configurations. The 14th and 15th variables were 

selected for each configuration. The 3rd, 5th, and 9th variables were selected for 158, 

143 and 127 out of 160 instances, respectively. The best solutions are obtained for 

133 instances out of 160 configurations. The modeling terms which appeared in more 

than half of the configurations are represented in bold and they are exactly the same 

with first the best configuration.  
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Table 5.6 The Number of Instances the Model Variables are Selected Using All 

BPSO Configurations for 𝐶𝑌 Model 

Variables 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 1 158 16 143 0 0 0 134 0 17 0 0 160 160 

5.1.1.2 𝑪𝒍 Moment Coefficient 

In Table 5.7, the correlated variables of 𝐶𝑙 model are shown. The total number of 

dropped variables is 24 for 𝐶𝑙 coefficient. 

Table 5.7 The Dropped Variables of 𝐶𝑙 model after Correlation Analysis 

Variable Dropped Variables 

𝐶𝑙𝑟𝛼 {𝐶𝑙𝑟𝛿𝑙𝑒𝑓
} 

𝐶𝑙𝑟𝛼2 {𝐶𝑙𝑟𝛼𝛿𝑙𝑒𝑓
, 𝐶𝑙𝑟𝛼2𝛿𝑙𝑒𝑓

} 

𝐶𝑙𝛽𝛼 {𝐶𝑙𝛿𝑙𝑒𝑓𝛽 , 𝐶𝑙𝛿𝑎𝛼𝛽 , 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼𝛽} 

𝐶𝑙𝛽𝛼2  {𝐶𝑙𝛿𝑙𝑒𝑓𝛼𝛽 , 𝐶𝑙𝛿𝑎𝛼2𝛽 , 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼2𝛽, 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2𝛽} 

𝐶𝑙𝛽 {𝐶𝑙𝛿𝑎𝛽 , 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛽} 

𝐶𝑙𝛿𝑟𝛼
2 {𝐶𝑙𝛿𝑟𝛼

} 

𝐶𝑙𝛿𝑎
 {𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓

} 

𝐶𝑙𝑝𝛼 {𝐶𝑙𝑝𝛿𝑙𝑒𝑓
, 𝐶𝑙𝑝𝛼2 , 𝐶𝑙𝑝𝛼𝛿𝑙𝑒𝑓

} 

𝐶𝑙𝛿𝑙𝑒𝑓
 {𝐶𝑙𝛼, 𝐶𝑙𝛿𝑙𝑒𝑓𝛼 , 𝐶𝑙𝛼2 , 𝐶𝑙𝛿𝑎𝛼, 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼, 𝐶𝑙𝛿𝑎𝛼2 , 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼2} 

 

The remaining variables after correlation analysis are listed from most influential to 

the least influential as shown in Table 5.8. 
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Table 5.8 The Remaining Variables of 𝐶𝑙 Model after Correlation Analysis 

Remaining Set of Variables 

{
𝐶𝑙𝑟𝛼 , 𝑪𝒍𝒓, 𝐶𝑙𝑟𝛼2 , 𝐶𝑙𝛽𝛼, 𝐶𝑙𝛽𝛼2 , 𝐶𝑙𝛽3𝛼2 , 𝐶𝑙𝛽3𝛼, 𝑪𝒍𝜷, 𝐶𝑙𝛽3 , 𝐶𝑙𝛿𝑟𝛼

2 , 𝑪𝒍𝜹𝒓
, 𝑪𝒍𝜹𝒂

, 𝐶𝑙𝛿𝑟𝛼
2𝛽, 𝐶𝑙𝛿𝑟𝛽

, 𝑪𝒍𝒑, 𝐶𝑙𝛿𝑟𝛼𝛽 , 𝐶𝑙𝑝𝛼, 𝐶𝑙𝛿𝑙𝑒𝑓
, 𝐶𝑙𝑝𝛼2𝛿𝑙𝑒𝑓

, 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2
} 

 

In Table 5.8, some variables are represented in bold, because these variables are 

considered the most influential variables for a generic aircraft in Ref. [23] and are 

kept fixed in this study. 

After fixing the variables recommended by Ref. [23] , the optimized variables are 

listed in Table 5.9. 

Table 5.9 The Optimized Variables of 𝐶𝑙  Model 

# Variable # Variable # Variable 

1 𝐶𝑙𝑟𝛼
 6 𝐶𝑙𝛽3𝛼

 11 𝐶𝑙𝛿𝑟𝛼𝛽
 

2 𝐶𝑙𝑟𝛼2 7 𝐶𝑙𝛽3 12 𝐶𝑙𝑝𝛼
 

3 𝐶𝑙𝛽𝛼
 8 𝐶𝑙𝛿𝑟𝛼

2 13 𝐶𝑙𝛿𝑙𝑒𝑓
 

4 𝐶𝑙𝛽𝛼2 9 𝐶𝑙𝛿𝑟𝛼
2𝛽

 14 𝐶𝑙𝑝𝛼2𝛿𝑙𝑒𝑓
 

5 𝐶𝑙𝛽3𝛼2 10 𝐶𝑙𝛿𝑟𝛽
 15 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 

 

There is total 160 configurations for different acceleration schemes, transfer 

functions and inertia weight schemes. Table 5.10 gives the best fitness, worst fitness, 

mean fitness and standard deviations for the best 10 BPSO configurations with 

respect to mean fitness. It can be seen that mean fitness produced by Acceleration 

Scheme (AS) 1, Transfer Function (TF) 1, and Inertia Weight (IW) 8 is the least with 

the lowest standard deviation as compared to other configurations. All configurations 

achieve the same best fitness, but Conf. 1 has better consistency. 



 

 

 

111 

Table 5.10 The Results of the Best 10 BPSO Configurations for 𝐶𝑙 Model 

Conf # AS TF IWS Best Fitness Worst Fitness Mean Fitness Std. Dev 

1 2 1 8 4.318E-08 4.341E-08 4.327E-08 5.351E-11 

2 2 1 4 4.318E-08 4.384E-08 4.328E-08 1.480E-10 

3 2 2 4 4.318E-08 4.374E-08 4.330E-08 1.560E-10 

4 1 1 9 4.318E-08 4.384E-08 4.332E-08 1.699E-10 

5 1 1 3 4.318E-08 4.421E-08 4.336E-08 2.735E-10 

6 1 3 4 4.318E-08 4.410E-08 4.336E-08 2.497E-10 

7 1 1 4 4.318E-08 4.434E-08 4.337E-08 2.878E-10 

8 1 2 9 4.318E-08 4.395E-08 4.337E-08 2.062E-10 

9 2 1 9 4.318E-08 4.414E-08 4.337E-08 3.079E-10 

10 2 6 2 4.318E-08 4.421E-08 4.338E-08 2.809E-10 

 

In Table 5.11, the optimal subsets for the best fitness for the best 10 configurations 

are listed. The optimal subset includes the 3rd, 6th, 10th, 13th, and 15th variables. 

Table 5.11 The Optimal Subset of the Best 10 BPSO Configuration for 𝐶𝑙 Model 

  Variables 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C
o

n
f 

#
 

1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

2 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

3 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

4 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

5 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

6 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

7 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

8 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

9 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 

10 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 
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Table 5.12 displays the modeling terms as well as the number of instances in which 

they were selected for all configurations. The 3rd, 13th and 15th variables were 

selected for each configuration. The best solutions are obtained for 118 instances out 

of 160 configurations. The modeling terms which appeared in more than half of the 

configurations are represented in bold.  

Table 5.12 The Number of Instances the Model Variables are Selected Using All 

BPSO Configurations for 𝐶𝑙 Coefficient 

Variables 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

140 0 160 127 0 42 118 0 0 30 130 123 160 0 160 

5.1.1.3 𝑪𝒏 Moment Coefficient 

In Table 5.13, the correlated and dropped variables of 𝐶𝑛 model are shown. 

Table 5.13 The Dropped Variables of 𝐶𝑛 model after Correlation Analysis 

Variable Dropped Variables 

𝐶𝑛𝛽
 {𝐶𝑛𝛿𝑎𝛽

, 𝐶𝑛𝛿𝑎𝛿𝑙𝑒𝑓𝛽} 

𝐶𝑛𝛿𝑎
 {𝐶𝑛𝛿𝑎𝛿𝑙𝑒𝑓

} 

𝐶𝑛𝛽𝛼
 {𝐶𝑛𝛿𝑎𝛼𝛽

, 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼𝛽 , 𝐶𝑙𝛿𝑙𝑒𝑓𝛽} 

𝐶𝑛𝑝𝛼
 {𝐶𝑛𝑝𝛿𝑙𝑒𝑓

, 𝐶𝑛𝑝𝛼2 , 𝐶𝑛𝑝𝛼𝛿𝑙𝑒𝑓
} 

𝐶𝑛𝛽𝛼2 {𝐶𝑙𝛿𝑎𝛼2𝛽, 𝐶𝑙𝛿𝑎𝛿𝑙𝑒𝑓𝛼2𝛽 , 𝐶𝑙𝛿𝑙𝑒𝑓𝛼𝛽, 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2𝛽} 

𝐶𝑛𝛿𝑟𝛼
2 {𝐶𝑛𝛿𝑟𝛼

} 

𝐶𝑛𝛿𝑎𝛼
 {𝐶𝑛𝛿𝑎𝛿𝑙𝑒𝑓𝛼

, 𝐶𝑛𝛿𝑎𝛼2 , 𝐶𝑛𝛿𝑎𝛿𝑙𝑒𝑓𝛼2 , 𝐶𝑛𝛿𝑙𝑒𝑓𝛼
, 𝐶𝑛𝛼2 , 𝐶𝑛𝛿𝑙𝑒𝑓

, 𝐶𝑛𝛼} 

𝐶𝑛𝑟𝛼𝛿𝑙𝑒𝑓
 {𝐶𝑛𝑟𝛼2𝛿𝑙𝑒𝑓

, 𝐶𝑛𝑟𝛼2} 

𝐶𝑛𝑟𝛿𝑙𝑒𝑓
 {𝐶𝑛𝑟𝛼} 
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The remaining variables after correlation analysis are listed from most influential to 

the least influential as shown in Table 5.14. 

Table 5.14 The Remaining Variables of 𝐶𝑛 Model after Correlation Analysis 

Remaining Set of Variables 

{
𝑪𝒏𝜷

, 𝑪𝒏𝜷𝟑 , 𝑪𝒏𝒑
, 𝑪𝒏𝜹𝒂

, 𝐶𝑛𝛽3𝛼
, 𝐶𝑛𝛽𝛼

, 𝐶𝑛𝑝𝛼
, 𝐶𝑛𝛽3𝛼2 , 𝐶𝑛𝛽𝛼2 , 𝐶𝑛𝑝𝛼2𝛿𝑙𝑒𝑓

, 𝐶𝑛𝛿𝑟𝛽

, 𝐶𝑛𝛿𝑟𝛼𝛽
, 𝐶𝑛𝛿𝑟𝛼

2 , 𝑪𝒏𝜹𝒓
, 𝐶𝑛𝛿𝑟𝛼

2𝛽
, 𝐶𝑛𝛿𝑎𝛼

, 𝐶𝑛𝑟𝛼𝛿𝑙𝑒𝑓
, 𝐶𝑛𝑟𝛿𝑙𝑒𝑓

, 𝑪𝒍𝒓, 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2
} 

 

In Table 5.14, some variables are represented in bold, because these variables are 

considered the most influential variables for a generic aircraft in Ref. [23] and are 

kept fixed in this study. 

After fixing the variables recommended by Ref. [23] , the optimized variables are 

shown in Table 5.15. 

Table 5.15 The Optimized Variables of 𝐶𝑛  Model 

# Variable # Variable # Variable 

1 𝐶𝑛𝛽3𝛼
 6 𝐶𝑛𝑝𝛼2𝛿𝑙𝑒𝑓

 11 𝐶𝑛𝛿𝑎𝛼
 

2 𝐶𝑛𝛽𝛼
 7 𝐶𝑛𝛿𝑟𝛽

 12 𝐶𝑛𝑟𝛼𝛿𝑙𝑒𝑓
 

3 𝐶𝑛𝑝𝛼
 8 𝐶𝑛𝛿𝑟𝛼𝛽

 13 𝐶𝑛𝑟𝛿𝑙𝑒𝑓
 

4 𝐶𝑛𝛽3𝛼2 9 𝐶𝑛𝛿𝑟𝛼
2 14 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 

5 𝐶𝑛𝛽𝛼2 10 𝐶𝑛𝛿𝑟𝛼
2𝛽

   

 

There is total 160 configurations for different acceleration schemes, transfer 

functions and inertia weight schemes. Table 5.16 gives the best fitness, worst fitness, 

mean fitness and standard deviations for the best 10 BPSO configurations with 

respect to mean fitness. All configurations achieve the same best fitness, but Conf. 1 

has better consistency. 
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Table 5.16 The Results of the Best 10 BPSO Configurations for 𝐶𝑛 Model 

Conf # AS TF IWS Best Cost Worst Cost Mean Cost Std. Dev 

1 1 1 9 1.045E-07 1.114E-07 1.061E-07 2.21E-09 

2 2 2 4 1.045E-07 1.110E-07 1.063E-07 2.34E-09 

3 1 1 3 1.045E-07 1.110E-07 1.066E-07 2.54E-09 

4 1 2 4 1.045E-07 1.128E-07 1.066E-07 2.85E-09 

5 1 1 8 1.045E-07 1.142E-07 1.067E-07 2.72E-09 

6 2 3 4 1.045E-07 1.113E-07 1.067E-07 2.43E-09 

7 1 6 5 1.045E-07 1.101E-07 1.068E-07 2.31E-09 

8 1 3 4 1.045E-07 1.114E-07 1.069E-07 2.78E-09 

9 1 6 2 1.045E-07 1.153E-07 1.070E-07 3.14E-09 

10 2 1 4 1.045E-07 1.110E-07 1.070E-07 2.46E-09 

 

In Table 5.17, the optimal subsets for the best fitness for the best 10 configurations 

are listed. The optimal subset includes the 1st,3rd, 5th, 8th, and 14th variables. 

Table 5.17 The Optimal Subset of the Best 10 BPSO Configuration for 𝐶𝑛 Model 

  Variables 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o

n
f 

#
 

1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

2 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

3 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

4 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

5 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

6 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

7 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

8 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

9 0 1 1 0 1 0 0 1 0 0 0 0 0 1 

10 0 1 1 0 1 0 0 1 0 0 0 0 0 1 
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Table 5.18 displays the modeling terms as well as the number of instances in which 

they were selected for all configurations. The 3rd, 13th and 15th variables were 

selected for each configuration. The 2nd and 8th variables were selected for 158 and 

149 out of 160 instances, respectively. The best solutions are obtained for 146 

instances out of 160 configurations. The modeling terms which appeared in more 

than half of the configurations are represented in bold.  

Table 5.18 The Number of Instances the Model Variables are Selected Using All 

BPSO Configurations for 𝐶𝑛 Coefficient 

Variables 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 158 160 1 160 2 0 149 0 11 0 0 0 160 

5.1.1.4 Model Structure Evaluation Using BPSO For Lateral/Directional 

Coefficients 

Each configuration yields good performance. At least 80% of best solutions among 

30 trials for each configuration are the same. But to make overall evaluation for 

BPSO hyperparameters, a fitness scaling function is introduced. Fitness scaling 

function scales the raw scores based on the rank of each individual. The rank of an 

individual is its position in the sorted scores. An individual with rank r has scaled 

fitness score proportional to 1 √𝑟⁄ . The scaled score of the most fit individual is 

proportional to 1, the scaled score of the next most fit is proportional to 1 √2⁄ . Table 

5.19 shows the best 10 BPSO Configurations with respect to fitness scaling sum. S1 

type transfer function is seen 6 times out of 10 times. The 9th Inertia Weight Scheme is 

ranked first, but the 7th and 4th schemes are repeated most.  
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Table 5.19 The Results of the Best 10 BPSO Configurations with respect to Fitness 

Scaling Sum (FSS) for Lateral/Directional Coefficients 

Conf # AS TF IWS FSS 

1 1 1 9 3.000 

2 1 1 7 2.121 

3 2 8 7 1.732 

4 2 2 4 1.500 

 5 1 1 8 1.342 

6 2 1 4 1.225 

7 2 1 8 1.134 

8 1 3 4 1.061 

9 1 1 4 1.000 

10 2 8 6 0.949 

 

The correlation of each hyperparameter were calculated with respect to fitness sum 

and shown in Table 5.20. As shown in Table 5.20, the most correlated 

hyperparameter with fitness sum is transfer function selection, and acceleration 

scheme selection is the least correlated and does not affect the performance of BPSO. 

Table 5.20 Correlation Analysis of BPSO Hyperparameters with respect to Fitness 

Scaling Sum for Lateral/Directional Coefficients 

Correlation AS TF IWS 

FSS 0.0158 -0.1563 0.0519 

 

The normalized fitness scaling sum for each hyperparameter and selection are 

tabulated in Table 5.21. The results of Table 5.21 supported the results of Table 5.20. 

The normalized fitness scaling sums of Acceleration Scheme 1 and 2 are almost the 

same so anyone of them can be used. The normalized fitness scaling sum of S1 

transfer function is the highest and almost double of next best alternative so that S1 

is preferred. Among inertia weight schemes, the most influential ones are 4th, 7th and 
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9th inertia weight strategies which are Constant Inertia Weight, Linear Increasing 

Inertia Weight, and Random Inertia Weight. 

Table 5.21 Normalized Fitness Scaling Sum for Each Hyperparameter Selections 

Type AS TF IWS 

1 49.39 22.82 7.44 

2 50.61 12.55 9.19 

3  9.12 10.03 

4  7.15 12.97 

5  10.97 8.92 

6  11.60 8.58 

7  12.08 12.78 

8  13.71 10.16 

9   12.57 

10   7.37 

Sum  100 100 100 

5.1.2 Phase 1.2: Equation Error Method 

The results of longitudinal (𝐶𝐷, 𝐶𝐷 and 𝐶𝑚) and lateral (𝐶𝑌, 𝐶𝑙 and 𝐶𝑛)  aerodynamic 

coefficients, obtained with Equation Error Method, are provided in this section.  
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5.1.2.1 𝑪𝑫 Force Coefficient 

The resulting model structure for the 𝐶𝐷 coefficient is as follows: 

𝐶𝐷 = 𝐶𝐷0
+ [𝐶𝐷𝛼

∙ 𝛼 + 𝐶𝐷𝛼2 ∙ 𝛼2] + [𝐶𝐷𝛿𝑒
∙ 𝛿𝑒 + 𝐶𝐷𝛿𝑒𝛼

∙ 𝛿𝑒 ∙ 𝛼]

+ [𝐶𝐷𝑞
∙
𝑞𝑐

2𝑉
+ 𝐶𝐷𝑞𝛼

∙
𝑞𝑐

2𝑉
∙ 𝛼]

+ [𝐶𝐷𝛿𝑙𝑒𝑓
∙ 𝛿𝑙𝑒𝑓 + 𝐶𝐷𝛿𝑙𝑒𝑓𝛼

∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼 + 𝐶𝐷𝛿𝑙𝑒𝑓𝛼10
1 ∙ 𝛿𝑙𝑒𝑓

∙ (𝛼 − 𝛼10°)+𝐶𝐷𝛿𝑙𝑒𝑓𝛼15
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼15°)+]

+ [𝐶𝐷𝛽
∙ 𝛽 + 𝐶𝐷𝛽0

1 ∙ (𝛽 − 𝛽0°)+ + 𝐶𝐷𝛽2 ∙ 𝛽2] 

(5.1) 

The parameter estimates of 𝐶𝐷 is tabulated in Table 5.22. As shown in Table 5.22, 

the relative standard deviation for each coefficient is below 50. It indicates that 

estimates are reasonable. 

Table 5.22 The Estimates, Standard Deviations, and Relative Standard Deviations 

of the 𝐶𝐷 Coefficient Parameters 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝐷0 1.92E-02 6.11E-05 0.32 

2 𝐶𝐷𝛼 -9.04E-02 3.39E-03 3.75 

3 𝐶𝐷𝛼2 4.02E+00 2.49E-02 0.62 

4 𝐶𝐷𝛿𝑒
 -1.10E-01 1.53E-03 1.4 

5 𝐶𝐷𝛿𝑒𝛼
 1.01E+00 8.93E-03 0.88 

6 𝐶𝐷𝑞 -5.75E-01 4.61E-02 8.02 

7 𝐶𝐷𝑞𝛼 2.20E+01 2.73E-01 1.24 

8 𝐶𝐷𝛿𝑙𝑒𝑓
 6.92E-02 1.91E-03 2.76 

9 𝐶𝐷𝛿𝑙𝑒𝑓𝛼 -9.49E-01 1.57E-02 1.65 

10 𝐶𝐷𝛿𝑙𝑒𝑓𝛼10
1  -2.49E-01 2.49E-03 1 

11 𝐶𝐷𝛿𝑙𝑒𝑓𝛼15
1  5.83E-01 3.38E-03 0.58 

12 𝐶𝐷𝛽 3.47E-02 1.16E-03 3.34 

13 𝐶𝐷𝛽0
1 -7.17E-02 2.32E-03 3.24 

14 𝐶𝐷𝛽2 1.05E+00 1.13E-02 1.08 
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The time history results for 𝐶𝐷 in the training dataset is given in Figure 5.1.  

 

(a) 

 

(b) 

Figure 5.1 Training Dataset Results of 𝐶𝐷 Coefficient a) Time Histories of the 

Input Variables b) Time Histories of the Output variable  

No discrepancy is observed in Figure 5.1. 

Residual cross plot for 𝐶𝐷 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝐷 with respect to the angle of attack in the training 

dataset are given in Figure 5.2. As stated earlier, in the residual cross plot, the flat 

spread of residual centered around zero is ideal, whereas non-flat spread indicates 

that the model needs improvement with the observed variable.  

In Figure 5.2, higher 𝛽 effect to residual error, can be seen in the cross plot of 𝐶𝐷 vs 

𝛽. As seen in figure, higher 𝛽 cause more residual error. However, residual error is 

still small, and it is in an acceptable range (residual up to 50 drag count is acceptable).  
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Figure 5.2 Residual Cross Plots and Cross Plot for 𝐶𝐷 in Training Dataset. 

As stated earlier, the results of training data are significant, but the final performance 

of the aerodynamic model should be tested with testing data reserved and are not 

used in the identification phase. The time history results for 𝐶𝐷 in the testing dataset 

are shown in Figure 5.3. 
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(a) 

 

(b) 

Figure 5.3 Testing Dataset Results of 𝐶𝐷 Coefficient a) Time Histories of the Input 

Variables b) Time Histories of the Output variable  

In Figure 5.3, the time history of 𝐶𝐷 coefficient for testing dataset is plotted. 

Measured and estimated data are almost the same. As seen in this figure, the residual 

error is so tiny (less than 5x10-3) that our aerodynamic coefficient model for 𝐶𝐷 is 

acceptable.  

5.1.2.2 𝑪𝑳 Force Coefficient 

The resulting model structure for 𝐶𝐿 coefficient is as follows: 
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𝐶𝐿 = [𝐶𝐿0
+ 𝐶𝐿𝛼

∙ 𝛼 + 𝐶𝐿𝛼5
1 ∙ (𝛼 − 𝛼5°)+ + 𝐶𝐿𝛼10

1 ∙ (𝛼 − 𝛼10°)+ + 𝐶𝐿𝛼15
1

∙ (𝛼 − 𝛼15°)+] + [𝐶𝐿𝛿𝑒
∙ 𝛿𝑒 + 𝐶𝐿𝛿𝑒𝛼

∙ 𝛿𝑒 ∙ 𝛼 + 𝐶𝐿𝛿𝑒𝛼
2 ∙ 𝛿𝑒 ∙ 𝛼2]

+ [𝐶𝐿𝑞
∙
𝑞𝑐

2𝑉
]

+ [𝐶𝐿𝛿𝑙𝑒𝑓
∙ 𝛿𝑙𝑒𝑓 + 𝐶𝐿𝛿𝑙𝑒𝑓𝛼

∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼 + 𝐶𝐿𝛿𝑙𝑒𝑓𝛼5
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼5°)+

+ 𝐶𝐿𝛿𝑙𝑒𝑓𝛼10
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼10°)+𝐶𝐿𝛿𝑙𝑒𝑓𝛼15

1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼15°)+]

+ [𝐶𝐿𝛽
∙ 𝛽 + 𝐶𝐿𝛽0

1 ∙ (𝛽 − 𝛽0°)+] 

(5.2) 

The parameter estimates of 𝐶𝐿 is tabulated in Table 5.23. As shown in Table 5.23, 

the relative standard deviation for each coefficient is below 50, which indicates that 

estimates uncertainty is very low.  

Table 5.23 The Estimates, Standard Deviations, and Relative Standard Deviations 

the 𝐶𝐿 Coefficient Parameters. 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝐿0 9.97E-02 9.34E-05 0.09 

2 𝐶𝐿𝛼 3.75E+00 2.28E-03 0.06 

3 𝐶𝐿𝛼5
1 1.42E-01 2.64E-03 1.85 

4 𝐶𝐿𝛼10
1  1.26E-01 5.27E-03 4.19 

5 𝐶𝐿𝛼15
1  -1.83E+00 4.75E-02 2.59 

6 𝐶𝐿𝛿𝑒
 4.92E-01 3.51E-03 0.71 

7 𝐶𝐿𝛿𝑒𝛼
 -5.45E-01 4.82E-02 8.84 

8 𝐶𝐿𝛿𝑒𝛼
2 5.41E+00 1.52E-01 2.82 

9 𝐶𝐿𝑞 3.01E+01 2.80E-02 0.09 

10 𝐶𝐿𝛿𝑙𝑒𝑓
 -1.85E-01 1.85E-03 1 

11 𝐶𝐿𝛿𝑙𝑒𝑓𝛼 5.61E-01 1.51E-02 2.69 

12 𝐶𝐿𝛿𝑙𝑒𝑓𝛼5
1 4.48E-01 1.49E-02 3.32 

13 𝐶𝐿𝛿𝑙𝑒𝑓𝛼10
1  -8.98E-01 1.41E-02 1.57 

14 𝐶𝐿𝛿𝑙𝑒𝑓𝛼15
1  3.16E+00 1.08E-01 3.42 

15 𝐶𝐿𝛽 6.15E-02 5.28E-04 0.86 

16 𝐶𝐿𝛽0
1 -1.23E-01 8.01E-04 0.65 
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The time history results for 𝐶𝐿 in the training dataset is given in Figure 5.4. 

(a) (b) 

Figure 5.4 Training Dataset Results of 𝐶𝐿 Coefficient a) Time Histories of the Input 

Variables b) Time Histories of the Output variable 

Residual cross plot for 𝐶𝐿 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝐿 with respect to the angle of attack in the training 

dataset are given in Figure 5.5. 
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Figure 5.5 Residual Cross Plots and Cross Plot for 𝐶𝐿 in Training Dataset. 

The time history results for 𝐶𝐿 in the testing dataset are shown in Figure 5.6. 

 

(a) 

 

(b) 

Figure 5.6 Testing Dataset Results of 𝐶𝐿 Coefficient a) Time Histories of the Input 

Variables          b) Time Histories of the Output variable  

5.1.2.3 𝑪𝒎 Moment Coefficient 

The resulting model structure for 𝐶𝑚 coefficient is as follows: 
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𝐶𝑚 = [𝐶𝑚0
+ 𝐶𝑚𝛼

∙ 𝛼 + 𝐶𝑚𝛼5
1 ∙ (𝛼 − 𝛼5°)+ + 𝐶𝑚𝛼10

1 ∙ (𝛼 − 𝛼10°)+

+ 𝐶𝑚𝛼15
1 ∙ (𝛼 − 𝛼15°)+]

+ [𝐶𝑚𝛿𝑒
∙ 𝛿𝑒 + 𝐶𝑚𝛿𝑒𝛼

∙ 𝛿𝑒 ∙ 𝛼 + 𝐶𝑚𝛿𝑒𝛼10
1 ∙ 𝛿𝑒 ∙ (𝛼 − 𝛼10°)+]

+ [𝐶𝑚𝑞
∙
𝑞𝑐

2𝑉
+ 𝐶𝑚𝑞𝛼

∙
𝑞𝑐

2𝑉
∙ 𝛼]

+ [𝐶𝑚𝛿𝑙𝑒𝑓
∙ 𝛿𝑙𝑒𝑓 + 𝐶𝑚𝛿𝑙𝑒𝑓𝛼

∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼 + 𝐶𝑚𝛿𝑙𝑒𝑓𝛼10
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼10°)+

+ 𝐶𝑚𝛿𝑙𝑒𝑓𝛼15
1 ∙ 𝛿𝑙𝑒𝑓 ∙ (𝛼 − 𝛼15°)+]

+ [𝐶𝑚𝛽
∙ 𝛽 + 𝐶𝑚𝛽0

1 ∙ (𝛽 − 𝛽0°)+ + 𝐶𝑚𝛽𝛼
∙ 𝛽 ∙ 𝛼] 

(5.3) 

The parameter estimates of 𝐶𝑚 is tabulated in Table 5.24. As shown in Table 5.24, 

the relative standard deviation for each coefficient is below 50. It indicates that 

estimates are reasonable.  

Table 5.24 The Estimates, Standard Deviations, and Relative Standard Deviations 

the 𝐶𝑚 Coefficient Parameters. 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝑚0
 -8.00E-03 4.60E-05 0.57 

2 𝐶𝑚𝛼
 1.69E-01 1.31E-03 0.77 

3 𝐶𝑚𝛼5
1 -2.87E-02 1.45E-03 5.05 

4 𝐶𝑚𝛼10
1  4.65E-01 3.62E-03 0.78 

5 𝐶𝑚𝛼15
1  -1.26E+00 2.72E-02 2.16 

6 𝐶𝑚𝛿𝑒
 -5.94E-01 1.64E-03 0.28 

7 𝐶𝑚𝛿𝑒𝛼
 1.95E-01 1.26E-02 6.48 

8 𝐶𝑚𝛿𝑒𝛼10
1  -1.03E+00 2.70E-02 2.63 

9 𝐶𝑚𝑞
 -5.13E+00 3.72E-02 0.72 

10 𝐶𝑚𝑞𝛼
 -4.93E+00 2.07E-01 4.21 

11 𝐶𝑚𝛿𝑙𝑒𝑓
 -7.68E-02 1.01E-03 1.32 

12 𝐶𝑚𝛿𝑙𝑒𝑓𝛼
 -1.19E-01 5.75E-03 4.81 

13 𝐶𝑚𝛿𝑙𝑒𝑓𝛼10
1  -6.48E-01 8.11E-03 1.25 

14 𝐶𝑚𝛿𝑙𝑒𝑓𝛼15
1  2.13E+00 6.18E-02 2.89 

15 𝐶𝑚𝛽
 1.55E-02 5.57E-04 3.6 

16 𝐶𝑚𝛽0
1 -6.36E-02 4.59E-04 0.72 

17 𝐶𝑚𝛽𝛼
 1.57E-01 2.94E-03 1.87 
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The time history results for 𝐶𝑚 in the training dataset is given in Figure 5.7. 

 

(a) 

 

(b) 

Figure 5.7 Training Dataset Results of 𝐶𝑚 Coefficient a) Time Histories of the 

Input Variables b) Time Histories of the Output Variable 

Residual cross plot for 𝐶𝑚 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝑚 with respect to the angle of attack in the training 

dataset are given in Figure 5.8. 
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Figure 5.8 Residual Cross Plots and Cross Plot for 𝐶𝑚 in Training Dataset. 

The time history results for 𝐶𝑚 in the testing dataset are shown in Figure 5.9. 

 

(a) (b) 

Figure 5.9 Testing Dataset Results of 𝐶𝑚 Coefficient a) Time Histories of the Input 

Variables b) Time Histories of the Output Variable  
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5.1.2.4 𝑪𝒀 Force Coefficient 

The resulting model structure for 𝐶𝑌 coefficient is as follows: 

𝐶𝑌 = 𝐶𝑌0
+ [𝐶𝑌𝛽

∙ 𝛽 +∙ 𝛽 ∙ 𝛼2 + 𝐶𝑌𝛽3𝛼
∙ 𝛽3 ∙ 𝛼]

+ [𝐶𝑌𝛿𝑟
∙ 𝛿𝑟 + 𝐶𝑌𝛿𝑟𝛼𝛽

∙ 𝛿𝑟 ∙ 𝛼 ∙ 𝛽] + [𝐶𝑌𝛿𝑎
∙ 𝛿𝑎 + 𝐶𝑌𝛿𝑎𝛼

∙ 𝛿𝑎 ∙ 𝛼]

+ [𝐶𝑌𝑝
∙
𝑝𝑏

2𝑉
] + [𝐶𝑌𝑟

∙
𝑟𝑏

2𝑉
] + [𝐶𝑌𝛿𝑙𝑒𝑓𝛼2 ∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼2] 

(5.4) 

The parameter estimates of 𝐶𝑌 is tabulated in Table 5.25. As shown in Table 5.25, 

the relative standard deviation for each coefficient is below 50. It indicates that 

estimates are reasonable.  

Table 5.25 The Estimates, Standard Deviations, and Relative Standard Deviations 

the 𝐶𝑌 Coefficient Parameters 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝑌0 -5.09E-03 3.13E-05 0.61 

2 𝐶𝑌𝛽 -1.07E+00 2.33E-03 0.22 

3 𝐶𝑌𝛽𝛼2 1.63E+00 4.15E-02 2.55 

4 𝐶𝑌𝛽3𝛼 -4.51E+01 1.05E+00 2.33 

5 𝐶𝑌𝛿𝑟
 1.68E-01 4.44E-04 0.26 

6 𝐶𝑌𝛿𝑟𝛼𝛽 -8.99E-01 3.23E-02 3.60 

7 𝐶𝑌𝛿𝑎
 7.58E-02 4.80E-03 6.34 

8 𝐶𝑌𝛿𝑎𝛼 -3.26E-02 2.52E-02 37.04 

9 𝐶𝑌𝑝 1.22E-01 4.04E-03 3.33 

10 𝐶𝑌𝑟 5.09E-01 1.00E-02 1.96 

11 𝐶𝑌𝛿𝑙𝑒𝑓𝛼2 3.36E-02 3.41E-03 10.15 

 

The time history results for 𝐶𝑌 in the training dataset for the dutch roll maneuver is 

given in Figure 5.10. 
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(a) 

 

(b) 

Figure 5.10 Training Dataset Results of 𝐶𝑌 Coefficient for the Dutch Roll Motion 

a) Time Histories of the Input Variables b) Time Histories of the Output Variable  

The time history results of 𝐶𝑌 in the training dataset for the bank-to-bank motion is 

given in Figure 5.11. 

 

(a) 

  

(b) 

Figure 5.11 Training Dataset Results of 𝐶𝑌 Coefficient for the Bank-To-Bank 

Motion a) Time Histories of the Input Variables b) Time Histories of the Output 

Variable  
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Residual cross plot for 𝐶𝑌 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝑌 with respect to the angle of attack in the training 

dataset are given in Figure 5.12. 

  

 

 

Figure 5.12 Residual Cross Plots and Cross Plot for 𝐶𝑌 in Training Dataset 

 

 

 



 

 

 

131 

The time history results for 𝐶𝑌 in the testing dataset are shown in Figure 5.13. 

 

(a) (b) 

Figure 5.13 Testing Dataset Results of 𝐶𝑌 Coefficient a) Time Histories of the 

Input Variables b) Time Histories of the Output variable  

5.1.2.5 𝑪𝒍 Moment Coefficient 

The resulting model structure for 𝐶𝑙 coefficient is as follows: 

𝐶𝑙 = 𝐶𝑙0
+ [𝐶𝑙𝛽

∙ 𝛽 + 𝐶𝑙𝛽𝛼
∙ 𝛽 ∙ 𝛼 + 𝐶𝑙𝛽𝛼2 ∙ 𝛽 ∙ 𝛼2 + 𝐶𝑙𝛽3 ∙ 𝛽3]

+ [𝐶𝑙𝛿𝑟
∙ 𝛿𝑟 + 𝐶𝑙𝛿𝑟𝛼𝛽

∙ 𝛿𝑟 ∙ 𝛼 ∙ 𝛽] + [𝐶𝑙𝛿𝑎
∙ 𝛿𝑎]

+ [𝐶𝑙𝑝
∙
𝑝𝑏

2𝑉
+ 𝐶𝑙𝑝𝛼

∙
𝑝𝑏

2𝑉
∙ 𝛼] + [𝐶𝑙𝑟

∙
𝑟𝑏

2𝑉
+ 𝐶𝑙𝑟𝛼

∙
𝑟𝑏

2𝑉
∙ 𝛼]

+ [𝐶𝑙𝛿𝑙𝑒𝑓
∙ 𝛿𝑙𝑒𝑓 + 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 ∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼2] 

(5.5) 

The parameter estimates of 𝐶𝑙 is tabulated in Table 5.26. As shown in Table 5.26, 

the relative standard deviation for each coefficient is below 50. It indicates that 

estimates are reasonable.  
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Table 5.26 The Estimates, Standard Deviations, and Relative Standard Deviations 

the 𝐶𝑙 Coefficient Parameters. 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝑙0 -3.75E-04 5.75E-06 1.53 

2 𝐶𝑙𝛽 -8.88E-02 6.97E-04 0.79 

3 𝐶𝑙𝛽𝛼 -4.19E-01 1.09E-02 2.60 

4 𝐶𝑙𝛽𝛼2 -2.89E-01 3.86E-02 13.33 

5 𝐶𝑙𝛽3 -5.14E-01 2.07E-02 4.03 

6 𝐶𝑙𝛿𝑟
 2.66E-02 6.00E-05 0.23 

7 𝐶𝑙𝛿𝑟𝛼𝛽 -1.09E-01 4.25E-03 3.91 

8 𝐶𝑙𝛿𝑎
 -1.30E-01 1.90E-04 0.15 

9 𝐶𝑙𝑝 -2.05E-01 6.66E-04 0.32 

10 𝐶𝑙𝑝𝛼 7.40E-02 3.99E-03 5.39 

11 𝐶𝑙𝑟 4.12E-02 1.68E-03 4.07 

12 𝐶𝑙𝑟𝛼 3.42E-01 1.18E-02 3.45 

13 𝐶𝑙𝛿𝑙𝑒𝑓
 2.43E-03 4.93E-05 2.03 

14 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 -3.01E-02 6.92E-04 2.30 

12 𝐶𝑙𝑟𝛼 3.42E-01 1.18E-02 3.45 

13 𝐶𝑙𝛿𝑙𝑒𝑓
 2.43E-03 4.93E-05 2.03 

14 𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 -3.01E-02 6.92E-04 2.30 

 

The time history results for 𝐶𝑙 in the dutch roll training dataset is given in Figure 

5.14. 
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(a) 

 

 

(b) 

Figure 5.14 Dutch Roll Training Dataset Results of 𝐶𝑙 Coefficient a) Time 

Histories of the Input Variables b) Time Histories of the Output Variable  

The time history results for 𝐶𝑙 in the bank-to-bank training dataset is given in Figure 

5.15. 

 (a) 

 

 (b) 

Figure 5.15 Bank-To-Bank Training Dataset Results of 𝐶𝑙 Coefficient a) Time 

Histories of the Input Variables b) Time Histories of the Output Variable 



 

 

 

134 

Residual cross plot for 𝐶𝑙 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝑙 with respect to the angle of attack in the training 

dataset are given in Figure 5.16. 

  

  

Figure 5.16 Residual Cross Plots and Cross Plot for 𝐶𝑙 in Training Dataset 
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The time history results for 𝐶𝑙 in the testing dataset are shown in Figure 5.17. 

 

(a) 

 

 

(b) 

Figure 5.17 Testing Dataset Results of 𝐶𝑙 Coefficient a) Time Histories of the Input 

Variables b) Time Histories of the Output variable 

5.1.2.6 𝑪𝒏 Moment Coefficient 

The resulting model structure for 𝐶𝑛 coefficient is as follows: 

𝐶𝑛 = 𝐶𝑛0
+ [𝐶𝑛𝛽

∙ 𝛽 + 𝐶𝑛𝛽𝛼
∙ 𝛽 ∙ 𝛼 + 𝐶𝑛𝛽3 ∙ 𝛽3]

+ [𝐶𝑛𝛿𝑟
∙ 𝛿𝑟 + 𝐶𝑛𝛿𝑟𝛼𝛽

∙ 𝛿𝑟 ∙ 𝛼 ∙ 𝛽] + [𝐶𝑛𝛿𝑎
∙ 𝛿𝑎]

+ [𝐶𝑛𝑝
∙
𝑝𝑏

2𝑉
+ 𝐶𝑛𝑝𝛼

∙
𝑝𝑏

2𝑉
∙ 𝛼 + 𝐶𝑛𝑝𝛼2 ∙

𝑝𝑏

2𝑉
∙ 𝛼2] + [𝐶𝑛𝑟

∙
𝑟𝑏

2𝑉
]

+ [𝐶𝑛𝛿𝑙𝑒𝑓𝛼2 ∙ 𝛿𝑙𝑒𝑓 ∙ 𝛼2] 

(5.6) 

 

The parameter estimates of 𝐶𝑛 is tabulated in Table 5.27. As shown in Table 5.27, 

the relative standard deviation for each coefficient is below 50. It indicates that 

estimates are reasonable.  
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Table 5.27 The Estimates, Standard Deviations, and Relative Standard Deviations 

the 𝐶𝑚 Coefficient Parameters. 

Index Parameter Estimate Std. Dev. Rel. Std. Dev 

1 𝐶𝑛0
 3.33E-05 5.31E-06 15.91 

2 𝐶𝑛𝛽
 1.86E-01 5.17E-04 0.28 

3 𝐶𝑛𝛽𝛼
 -3.89E-02 2.26E-03 5.83 

4 𝐶𝑛𝛽3 2.98E+00 2.60E-02 0.87 

5 𝐶𝑛𝛿𝑟
 -8.57E-02 7.52E-05 0.09 

6 𝐶𝑛𝛿𝑟𝛼𝛽
 2.45E-01 5.40E-03 2.20 

7 𝐶𝑛𝛿𝑎
 -2.64E-02 3.95E-04 1.50 

8 𝐶𝑛𝑝
 5.54E-02 2.12E-03 3.83 

9 𝐶𝑛𝑝𝛼
 -1.03E+00 2.33E-02 2.27 

10 𝐶𝑛𝑝𝛼2 2.75E+00 6.36E-02 2.31 

11 𝐶𝑛𝑟
 -1.95E-01 1.61E-03 0.83 

12 𝐶𝑛𝛿𝑙𝑒𝑓𝛼2 -1.50E-02 5.82E-04 3.89 

 

The time history results for 𝐶𝑛 in the dutch roll and bank to-bank training datasets 

are given in Figure 5.18 and Figure 5.19, respectively. 

(a) 

 

 

(b) 

Figure 5.18 Dutch Roll Training Dataset Results of 𝐶𝑛 Coefficient a) Time 

Histories of the Input Variables b) Time Histories of the Output Variable  
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(a) 

 

 

(b) 

Figure 5.19 Bank-To-Bank Training Dataset Results of 𝐶𝑛 Coefficient a) Time 

Histories of the Input Variables b) Time Histories of the Output Variable  

Residual cross plot for 𝐶𝑛 with respect to air data, angular rates, and control surface 

deflections and cross plot for 𝐶𝑛 with respect to the angle of attack in the training 

dataset are given in Figure 5.20. 
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Figure 5.20 Residual Cross Plots and Cross Plot for 𝐶𝑛 in Training Dataset 

The time history results for 𝐶𝑛 in the testing dataset are shown in Figure 5.21. 

 

(a) 

 

 

(b) 

Figure 5.21 Testing Dataset Results of 𝐶𝑛 Coefficient a) Time Histories of the 

Input Variables b) Time Histories of the Output Variable 
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5.1.3 Phase 1.3: Sensitivity Analysis 

In this section, sensitivity analysis results are presented for each coefficient. We will 

determine the parameters that highly influence the aerodynamic coefficients in this 

phase. In Phase 2, we will only tune these most influential parameters since updating 

all parameters in the output error method is time-consuming, and the minimization 

problem can be ill-conditioned in this phase. 

5.1.3.1 𝑪𝑫 Force Coefficient 

The parameters of 𝐶𝐷 coefficient are determined using short-period, phugoid, and 

dutch-roll maneuvers. That is why sensitivity analysis is done for longitudinal 

maneuvers, lateral maneuvers, and both of them. In the coming figures, normalized 

cost value for each parameter of 𝐶𝐷 are observed for different maneuvers. It is 

concluded that in this case, the most influential parameters are 𝐶𝐷𝛼2 and 𝐶𝐷𝛿𝑙𝑒𝑓𝛼
. 

The other parameters have a normalized sensitivity magnitude of less than 5% of the 

most significant term’s (𝐶𝐷𝛼2) magnitude.  

 

Figure 5.22 Sensitivities of the 𝑪𝑫 parameters with a 1% change from their original 

value during longitudinal maneuvers. 
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Figure 5.23 Sensitivities of the 𝑪𝑫 parameters with a 1% change from their original 

value during lateral (dutch-roll) maneuver. 

5.1.3.2 𝑪𝑳 Force Coefficient 

The parameters of 𝐶𝐿 coefficient are determined using short-period, phugoid, and 

dutch-roll maneuvers. That is why sensitivity analysis is done for longitudinal 

maneuvers, lateral maneuvers, and both of them. In the coming figures, normalized 

cost value for each parameter of 𝐶𝐿 are observed for different maneuvers. It is 

concluded that in this case, the most influential parameters are 𝐶𝐿𝛼
. This result is not 

surprising since it is already covered in Table 4.10. The other parameters have a 

normalized sensitivity magnitude of less than 5% of the most significant term’s (𝐶𝐿𝛼
) 

magnitude and will not be tuned in Phase 2.  
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Figure 5.24 Sensitivities of the 𝑪𝑳 parameters with a 1% change from their original 

value during longitudinal maneuvers. 

 

Figure 5.25 Sensitivities of the 𝑪𝑳 parameters with a 1% change from their original 

value during lateral (dutch-roll) maneuver. 

5.1.3.3 𝑪𝒎 Moment Coefficient 

The parameters of 𝐶𝑚 coefficient are determined using short-period, phugoid, and 

dutch-roll maneuvers. That is why sensitivity analysis is done for longitudinal 

maneuvers, lateral maneuvers, and both of them. In the coming figures, normalized 

cost value for each parameter of 𝐶𝑚 are observed for different maneuvers. It is 
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concluded that in this case, the most influential parameters are 𝐶𝑚𝛿𝑒
, 𝐶𝑚𝛼

, 𝐶𝑚𝛼10
1 , 

and 𝐶𝑚𝛿𝑙𝑒𝑓
. This result is not also surprising since it is already covered in Table 4.10.  

The other parameters have a normalized sensitivity magnitude of less than 5% of the 

most significant term’s (𝐶𝑚𝛿𝑒
) magnitude and will not be tuned in Phase 2.  

 

Figure 5.26 Sensitivities of the 𝑪𝒎 parameters with a 1% change from their 

original value during longitudinal maneuvers. 

 

Figure 5.27 Sensitivities of the 𝑪𝒎 parameters with a 1% change from their 

original value during lateral (dutch-roll) maneuver. 

So far, the sensitivity of longitudinal coefficients is covered. It is noted that for 

longitudinal and lateral maneuvers, the rank of influential parameters is almost the 
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same, and there are no lateral terms in the most influential parameters of longitudinal 

coefficients. So in the second phase, there is no need to use lateral maneuvers to 

update the longitudinal coefficient parameters. The number of tuned parameters is 

decreased to 7 out of 47 terms. The tuned parameters are shown in red-colored in 

Table 5.28 

Table 5.28 Normalized Sensitivity Magnitudes (SM) for Longitudinal Coefficients 

in Longitudinal Maneuvers (Short-Period and Phugoid) (Most Influential Terms are 

Red-Colored). 

Index Parameter 
Normalized 

SM 
Parameter 

Normalized 

SM 
Parameter 

Normalized 

SM 

1 𝐶𝐷0 0.0072 𝐶𝐿0 0.0291 𝐶𝑚0
     0.0301 

2 𝐶𝐷𝛼 0.0257 𝐶𝐿𝛼 1.0000 𝐶𝑚𝛼
     0.6049 

3 𝐶𝐷𝛼2 1.0000 𝐶𝐿𝛼5
1 0.0005 𝐶𝑚𝛼5

1     0.0053 

4 𝐶𝐷𝛿𝑒
 0.0020 𝐶𝐿𝛼10

1  0.0001 𝐶𝑚𝛼10
1      0.2213 

5 𝐶𝐷𝛿𝑒𝛼
 0.0118 𝐶𝐿𝛼15

1  0.0005 𝐶𝑚𝛼15
1      0.0469 

6 𝐶𝐷𝑞 0.0000 𝐶𝐿𝛿𝑒
 0.0022 𝐶𝑚𝛿𝑒

     1.0000 

7 𝐶𝐷𝑞𝛼 0.0000 𝐶𝐿𝛿𝑒𝛼
 0.0002 𝐶𝑚𝛿𝑒𝛼

     0.0082 

8 𝐶𝐷𝛿𝑙𝑒𝑓
 0.0063 𝐶𝐿𝛿𝑒𝛼

2 0.0005 𝐶𝑚𝛿𝑒𝛼10
1      0.0112 

9 𝐶𝐷𝛿𝑙𝑒𝑓𝛼 0.1604 𝐶𝐿𝑞 0.0003 𝐶𝑚𝑞
     0.0016 

10 𝐶𝐷𝛿𝑙𝑒𝑓𝛼10
1  0.0016 𝐶𝐿𝛿𝑙𝑒𝑓

 0.0049 𝐶𝑚𝑞𝛼
     0.0004 

11 𝐶𝐷𝛿𝑙𝑒𝑓𝛼15
1  0.0001 𝐶𝐿𝛿𝑙𝑒𝑓𝛼 0.0024 𝐶𝑚𝛿𝑙𝑒𝑓

     0.0744 

12 𝐶𝐷𝛽 0.0001 𝐶𝐿𝛿𝑙𝑒𝑓𝛼5
1 0.0006 𝐶𝑚𝛿𝑙𝑒𝑓𝛼

     0.0040 

13 𝐶𝐷𝛽0
1 0.0000 𝐶𝐿𝛿𝑙𝑒𝑓𝛼10

1  0.0004 𝐶𝑚𝛿𝑙𝑒𝑓𝛼10
1      0.0423 

14 𝐶𝐷𝛽2 0.0000 𝐶𝐿𝛿𝑙𝑒𝑓𝛼15
1  0.0003 𝐶𝑚𝛿𝑙𝑒𝑓𝛼15

1      0.0258 

15   𝐶𝐿𝛽 0.0000 𝐶𝑚𝛽
     0.0009 

16   𝐶𝐿𝛽0
1 0.0000 𝐶𝑚𝛽0

1     0.0000 

17     𝐶𝑚𝛽𝛼
     0.0011 

5.1.3.4 𝑪𝒀 Force Coefficient 

The parameters of 𝐶𝑌 coefficient is determined using dutch-roll and bank-to-bank 

maneuvers. To obtain lateral/directional parameters, these maneuvers are combined 

to prevent collinearity. But it was observed that the magnitude 𝐶𝑌 is much higher in 

the dutch-roll maneuvers; hence it was expected that 𝐶𝑌 is most affected with dutch-
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roll maneuvers. In Figure 5.28, normalized cost value for each parameter of 𝐶𝑌 are 

observed for different maneuvers. It is concluded that in this case, the most 

influential parameters are 𝐶𝑌𝛽
, 𝐶𝑌𝛿𝑟

, and 𝐶𝑌𝛿𝑙𝑒𝑓
. The other parameters have a 

normalized sensitivity magnitude of less than 5% of the most significant term’s (𝐶𝑌𝛽
) 

magnitude.  

 

Figure 5.28 Sensitivities of the 𝑪𝒀 parameters with a 1% change from their original 

value during lateral ( dutch-roll and bank-to-bank) maneuvers. 

5.1.3.5 𝑪𝒍 Moment Coefficient 

The parameters of 𝐶𝑙 coefficient are determined using dutch-roll and bank-to-bank 

maneuvers. To obtain lateral/directional parameters, these maneuvers are combined 

to prevent collinearity. In Figure 5.29, the normalized cost value for each parameter 

of 𝐶𝑙 are observed for combined dutch-roll and bank-to-bank maneuvers. It is 

concluded that in this case, the most influential parameters are 𝐶𝑙𝛿𝑎
, 𝐶𝑙𝛽

 , 𝐶𝑙𝑝
, 𝐶𝑙𝛽𝛼

 

and 𝐶𝑙𝛿𝑟
.  The other parameters have a normalized sensitivity magnitude of less than 

5% of the most significant term’s (𝐶𝑙𝛿𝑎
) magnitude.  
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Figure 5.29 Sensitivities of the 𝑪𝒍 parameters with a 1% change from their original 

value during lateral (dutch-roll and bank-to-bank) maneuvers 

5.1.3.6 𝑪𝒏 Moment Coefficient 

The parameters of 𝐶𝑛 coefficient are determined using dutch-roll and bank-to-bank 

maneuvers. To obtain lateral/directional parameters, these maneuvers are combined 

to prevent collinearity. In Figure 5.30, the normalized cost value for each parameter 

of 𝐶𝑛 are observed for combined dutch-roll and bank-to-bank maneuvers. It is 

concluded that in this case, the most influential parameters are 𝐶𝑛𝛿𝑟
, 𝐶𝑛𝛽

, and 𝐶𝑛𝛽𝛼
. 

The other parameters have a normalized sensitivity magnitude of less than 5% of the 

most significant term’s (𝐶𝑛𝛿𝑟
) magnitude.  
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Figure 5.30 Sensitivities of the 𝑪𝒏 parameters with a 1% change from their original 

value during lateral ( dutch-roll and bank-to-bank) maneuvers. 

The sensitivity of lateral coefficients is also covered. The number of tuned 

parameters is decreased to 10 out of 38 terms. The tuned parameters are shown in 

red-colored in Table 5.29. 

Table 5.29 Normalized MSE values for lateral coefficients in dutch-roll and bank-

to-bank maneuvers (most effective terms are red-colored). 

Index Parameter 
Normalized 

SM 
Parameter 

Normalized 

SM 
Parameter 

Normalized 

SM 

1 𝐶𝑌0 0.0138 𝐶𝑙0 0.0240 𝐶𝑛0
 0.000 

2 𝐶𝑌𝛽 1.0000 𝐶𝑙𝛽 0.9075 𝐶𝑛𝛽
 1.000 

3 𝐶𝑌𝛽𝛼2 0.0018 𝐶𝑙𝛽𝛼 0.4115 𝐶𝑛𝛽𝛼
 0.001 

4 𝐶𝑌𝛽3𝛼 0.0033 𝐶𝑙𝛽𝛼2 0.0062 𝐶𝑛𝛽3 0.027 

5 𝐶𝑌𝛿𝑟
 0.0993 𝐶𝑙𝛽3 0.0032 𝐶𝑛𝛿𝑟

 0.860 

6 𝐶𝑌𝛿𝑟𝛼𝛽 0.0004 𝐶𝑙𝛿𝑟
 0.3402 𝐶𝑛𝛿𝑟𝛼𝛽

 0.001 

7 𝐶𝑌𝛿𝑎
 0.0015 𝐶𝑙𝛿𝑟𝛼𝛽 0.0006 𝐶𝑛𝛿𝑎

 0.006 

8 𝐶𝑌𝛿𝑎𝛼 0.0000 𝐶𝑙𝛿𝑎
 1.0000 𝐶𝑛𝑝

 0.009 

9 𝐶𝑌𝑝 0.0013 𝐶𝑙𝑝 0.7012 𝐶𝑛𝑝𝛼
 0.093 

10 𝐶𝑌𝑟 0.0029 𝐶𝑙𝑝𝛼 0.0022 𝐶𝑛𝑝𝛼2 0.032 

11 𝐶𝑌𝛿𝑙𝑒𝑓𝛼2 0.0000 𝐶𝑙𝑟 0.0028 𝐶𝑛𝑟
 0.014 

12   𝐶𝑙𝑟𝛼 0.0039 𝐶𝑛𝛿𝑙𝑒𝑓𝛼2 0.001 

13   𝐶𝑙𝛿𝑙𝑒𝑓
 0.0404   

14   𝐶𝑙𝛿𝑙𝑒𝑓𝛼2 0.0117       
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To show the fitting capacity of the sensitive parameters, R2 of predicted and observed 

data are computed for full and reduced model. In Table 5.30, we can compare results 

of R2 when using all parameters and when keeping only the most sensitive 

parameters and dropping other parameters in the model for all aerodynamic 

coefficients. 

Table 5.30 R2 Values for Full and Reduced Models 

Approach 
Coefficient of Determination(R2) 

𝑪𝑫 𝑪𝑳 𝑪𝒎 𝑪𝒀 𝑪𝒍 𝑪𝒏 

Full Model 1.0000 1.0000 0.9996 0.9973 0.9968 0.9986 

Reduced Model 0.9860 0.9983 09751 0.9937 0.9884 0.9813 

 

Figure 5.31 to Figure 5.34 shows the qualitative accuracy spreads of the full and 

reduced models for each coefficient. All points are clustered along the equality line; 

the predicted values are close to the actual value, which shows that sensitive 

parameters covers the most proportion of total variation. Reduced models exhibit 

better fits in the force coefficients. 𝐶𝑚 coefficient is the most critical coefficient as 

seen in Figure 5.32. 

    
Figure 5.31 Accuracy Spread of the Full Model for Longitudinal Coefficients. 
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Figure 5.32 Accuracy Spread of the Reduced Model for Longitudinal Coefficients. 

 

    
Figure 5.33 Accuracy Spread of the Full Model for Lateral Coefficients. 

 

    
Figure 5.34 Accuracy Spread of the Reduced Model for Lateral Coefficients. 

5.1.4 Phase 2: Output Error Method 

So far, the results obtained with the equation error method (Phase 1.1) are entirely 

satisfactory. The results of Phase 1.1 are implemented in the 6DOF simulation 

model. The aerodynamic model is kept fixed, and the same initial conditions and 

inputs are given. Phase 2 is employed now to tune the most sensitive parameters 
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(determined in Phase 1.2). The parameter tuning by the output error method is done 

in two steps: longitudinal and lateral dynamics.  

5.1.4.1 Longitudinal Dynamics 

First, the reduced longitudinal model is used for a series of short-period maneuvers 

to observe the drag and lift characteristics: see Figure 5.35. 

    

Figure 5.35 Reduced Longitudinal Model Output Comparison for Short-Period 

Maneuvers. 

Without tuning any drag or lift coefficients parameter, there is a good match between 

measured and simulated data, as seen in Figure 5.35. It means that drag and lift 

characteristics are accurately captured in Phase 1.1, and there is no need for any 

tuning. 

And then, the full longitudinal model is used for a series of short-period maneuvers 

to observe the pitch moment characteristic keeping all parameters obtained with 

EEM fixed. The specified initial conditions are reasonably accurate, but for the first 

and fourth maneuvers, the simulation shows drifts in 𝑉𝑇𝐴𝑆, 𝛼, 𝑞, and 𝜃 variables that 

are attributed to minor errors in the aerodynamic pitching coefficient see Figure 5.36. 

For other short-period maneuvers, there is a good match between measured and 

simulated data and tuning just a few 𝐶𝑚 parameters will be enough for fine-tuning. 
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Figure 5.36 Full Longitudinal Model Output Comparison for Short-Period 

Maneuvers Keeping All Parameter Fixed. 

After tuning the aerodynamic coefficients determined in Phase 1.2 (𝐶𝑚𝛿𝑒
, 𝐶𝑚𝛼

, 

𝐶𝑚𝛼10
1 , and 𝐶𝑚𝛿𝑙𝑒𝑓

), the updated longitudinal parameters can be seen in Table 5.31.  

Table 5.31 Tuned Longitudinal parameters with the OEM.  

Index Parameter EEM Estimate OEM Estimate Relative Change (%) 

1 𝐶𝑚𝛼
 1.69E-01 1.60E-01 5.38 

2 𝐶𝑚𝛼10
1  4.65E-01 4.71E-01 1.23 

3 𝐶𝑚𝛿𝑒
 -5.94E-01 -6.00E-01 1.02 

4 𝐶𝑚𝛿𝑙𝑒𝑓
 -7.68E-02 -7.28E-02 5.22 

 

There is a good match between measured data and simulated data after tuning 

process, as seen in Figure 5.37. 
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Figure 5.37 The Full Longitudinal Model Output Comparison for Short-Period 

Maneuvers After Tuning  𝐶𝑚𝛿𝑒
, 𝐶𝑚𝛼

, 𝐶𝑚𝛼10
1 , and 𝐶𝑚𝛿𝑙𝑒𝑓

 Process. 

5.1.4.2 The Lateral/Directional Dynamics 

The lateral model is used for a series of dutch-roll and bank-to-bank maneuvers to 

observe the side force, roll moment, and pitch moment characteristic keeping all 

parameters (obtained with EEM) fixed. There is a good match in dutch-roll 

maneuvers except for just a small duration drift in 𝜙 variable in Figure 5.38. 

However, the model predicted output is not within the acceptable range for Level-D 

model fidelity in dutch-roll maneuvers as seen in Figure 5.39.  
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Figure 5.38 The Lateral Model Output Comparison for Dutch-Roll Maneuvers 

Keeping All Parameters Fixed. 

 

Figure 5.39 The Lateral Model Output Comparison for Bank-To-Bank Maneuvers 

Keeping All Parameters Fixed. 
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Note that dutch-roll and bank-to-bank maneuvers are shown in separate figures for 

the sake of better visualization. The most influential lateral parameters are tuned 

together in combined dutch-roll and bank-to-bank maneuvers. The tuned lateral 

parameters and their relative changes are seen in Table 5.32. 

Table 5.32 The Tuned Lateral Parameters with the OEM.  

Index Parameter EEM Estimate OEM Estimate Relative Change (%) 

1 𝐶𝑌𝛽 -1.07E+00 -1.072-01 0.202 

2 𝐶𝑌𝛿𝑟
 1.68E-01 1.72E-01 2.516 

3 𝐶𝑙𝛽 -8.88E-02 -8.89E-02 0.101 

4 𝐶𝑙𝛽𝛼 -4.19E-01 -4.54E-01 8.747 

5 𝐶𝑙𝛿𝑟
 2.66E-02 2.75E-02 0.028 

6 𝐶𝑙𝛿𝑎
 -1.30E-01 -1.33E-01 2.920 

7 𝐶𝑙𝑝 -2.05E-01 -2.14E-01 4.717 

8 𝐶𝑛𝛽
 1.86E-01 1.84E-01 1.156 

9 𝐶𝑛𝛿𝑟
 -8.57E-02 -8.63E-02 0.701 

10 𝐶𝑛𝑝𝛼
 7.40E-02 7.64E-02 3.219 

 

After tuning the lateral aerodynamic coefficients, there is a better match between 

measured data and model-predicted data, as seen in Figure 5.40 and Figure 5.41. The 

small drifts in 𝜙 variable in dutch roll maneuvers were eliminated. And the model 

predicted output is within the allowed band for Level-D model fidelity in bank-to-

bank maneuvers, as seen in Figure 5.41. 
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Figure 5.40 Full Lateral Model Output Comparison for Dutch-Roll Maneuvers 

After Tuning Lateral Parameters. 

 

Figure 5.41 Full Lateral Model Output Comparison for Bank-To-Bank Maneuvers 

After Tuning Lateral Parameters. 
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5.1.5 Phase 3: Model Validation 

5.1.5.1 Proof of Match Results 

Proof of Match is the final testing in Flight Simulator Certification and is done with 

a validation dataset not used in the training phase. 

To summarize, firstly, the parameters of aerodynamic coefficients are estimated 

using the EEM. Then, the most influential parameters are found using sensitivity 

analysis. And then, the most influential parameters are tuned using the OEM for 

longitudinal and lateral maneuvers. And finally, the model and parameters are kept 

fixed, and the performance of the identified model is evaluated using proof-of-match 

(POM) results. When assessing proof-of-match results for dynamic maneuvers, the 

minor biases on the initial conditions and the control deflections (up-to- 0.5 deg) are 

permitted [1]. 

Longitudinal parameter matching is performed in two phases. The static part of 

longitudinal aerodynamic coefficients is validated with Longitudinal Maneuvering 

Stability and Longitudinal Static Stability tests. The dynamic portion of the 

longitudinal aerodynamic coefficient is confirmed with the Short-Period maneuver. 

Lateral parameter matching is confirmed with Dutch-Roll and Bank-To-Bank 

maneuvers. 

5.1.5.1.1 Longitudinal Maneuvering Stability 

The purpose of this test is to show that the maneuvering stability simulation 

correspond to the aircraft. The test is conducting by establishing a steady-state 

condition at various intermediate bank angles and increasing it to the maximum 

angle. A vital aspect of this test is obtaining an accurate trim condition that allows 

steady turning flight at specified bank angles. Steady-state aircraft trim conditions 

for turning flight can be found using the techniques in Section 2.4.3. The results are 
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a "snapshot" of the steady turning aircraft at the specified bank angle and the trim 

airspeed (three different airspeeds). Altitude is set to constant in each case. 

 

Figure 5.42 Low-Speed Maneuvering Stability. 

 

Figure 5.43 Mid Speed Maneuvering Stability. 
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Figure 5.44 High-Speed Maneuvering Stability. 

The tolerance bounds are lower and upper values in which the estimated results are 

expected to lie between. Figure 5.42, Figure 5.43, and Figure 5.44 show that the 

predicted results are in those tolerance bounds. It means our estimated coefficients 

are compatible with the actual aircraft. The predicted results are closer to tolerance 

bounds, which means that the residual between the estimated and measures is a bit 

higher at low airspeed.  

5.1.5.1.2 Longitudinal Static Stability 

The purpose of this test is to establish that the simulator's static longitudinal stability 

characteristics are consistent with those of the aircraft. The longitudinal control 

command is used to the air vehicle to get a deviation from trimmed airspeed, and 

elevator deflection is used to maintain a steady-state condition at various airspeeds, 

as shown in Figure 5.45. 
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Figure 5.45 Longitudinal Static Stability. 

The estimated results are in tolerance bounds. It means our estimated coefficients are 

compatible with the actual aircraft. The estimated results are closer to tolerance 

bounds at low airspeed, corresponding to a high angle of attack values. As we already 

observed in the cross plot of aerodynamic coefficients residual with respect to the 

angle of attack, the residual between the estimated and measured values at a high 

angle of attack is slightly higher. 

5.1.5.1.3 Short Period Maneuver 

Short period dynamics are determined by exciting the short period mode under the 

cruise condition by applying a doublet or 3-2-1-1 longitudinal control input. 

Oscillation in the short-period mode are often highly damped and has a period of a 

few seconds. The aircraft is rapidly pitched around the center of gravity, resulting 

basically variation in the angle-of-attack. 

Figure 5.46 and Figure 5.47 shows the measured and predicted data comparison of 

short-period motions at 10000 ft, CM = 0.35𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  
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Figure 5.46 Short Period Dynamics – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.35 

 

Figure 5.47 Short Period Dynamics – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.50 
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5.1.5.1.4 Phugoid Maneuver 

The phugoid mode exhibit significiant amplitude variation of airspeed, pitch angle, 

and altitude, but almost no variation in the angle-of-attack. Three complete cycles 

should be included in the test (six overshoots after input is completed). 

Figure 5.48 and Figure 5.49 show the measured and predicted data comparison of 

phugoid motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  

 

Figure 5.48 Phugoid Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 
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Figure 5.49 Phugoid Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 

Table 5.33 shows the period of the measured data and estimated model for phugoid 

dynamics. The estimated results are in 10% tolerance bounds of the actual results. It 

means our estimated coefficients are compatible with the actual aircraft. 

Table 5.33 Tolerances for Phugoid Dynamics 

 (Flight Condition 1) (Flight Condition 2) 

 Measured  Model Measured  Model 

Period 62.12 62.17 86.41 87.15 
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5.1.5.1.5 Dutch-Roll Maneuver 

Dutch roll mode are evaluated using a doublet pedal input, allowing the aircraft to 

react freely for at least six oscillation cycles. The amount of rudder deflection should 

be limited to about 25% of the entire rudder pedal. 

Figure 5.50 and Figure 5.51 show the measured and predicted data comparison of 

dutch-roll motions at 10000 ft, CM = 0.35𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  

 

Figure 5.50 Dutch-Roll Dynamics – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.35 
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Figure 5.51 Dutch-Roll Dynamics – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.50 

5.1.5.1.6 Bank-To-Bank Maneuver 

Figure 5.52 and Figure 5.53 show the measured and predicted data comparison of 

dutch-roll motions at 10000 ft, CM = 0.35𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The predicted model is within the allowable band for the 

Level-D flight simulator.  The small bias (-0.0679 deg) on the aileron deflection in 

the first maneuver eliminates the error accumulation on the bank angle variable. The 

first maneuver without any bias term can be seen in Figure 5.54. 
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Figure 5.52 Bank-To-Bank Maneuver – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.35 

 

Figure 5.53 Bank-To-Bank Maneuver – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.50 
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Figure 5.54 Bank-To-Bank Maneuver – at h = 10000 ft, CM = 0.35𝑐̅ and Ma = 0.35 

without any bias term on the initial conditions and control deflections 

5.1.5.2 Theil’s Inequality Coefficient 

5.1.5.2.1 Zero Input Initial Condition 

The zero input solution is the response of the system to the initial conditions, with 

the input set to zero.  The trimmed values of some states are disturbed and predicted 

model and aircraft responses are compared. 

Figure 5.55 and Figure 5.56 show the measured and predicted data comparison of 

longitudinal motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition (FC) for 10 m/s disturbance in z-axis linear velocity 

component.  The model adequacy is quite apparent from the figures.  
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Figure 5.55 Longitudinal Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 

 

Figure 5.56 Longitudinal Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 
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Theil’s inequality coefficient for each of the longitudinal variables are given inTable 

5.34. TIC values for each longitudinal output variable are below the maximum 

acceptable values (in the range of 0.25 to 0.30) for both cases. 

Table 5.34 Theil’s Inequality Coefficient (TIC) for Longitudinal Motion 

Output Variable TIC (Flight Condition 1)  TIC (Flight Condition 2) 

𝑉𝑇𝐴𝑆 1.599e-04 1.474e-04 

𝛼 6.951e-04 0.0013 

𝑞 0.0143 0.0131 

𝜃 0.0017 0.0039 

ℎ 6.497e-05 1.300e-04 

𝑎𝑧 5.316e-04 5.764e-04 

Figure 5.57 and Figure 5.58 show the measured and predicted data comparison of 

lateral/directional motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 

0.35, Ma=0.50) flight condition for 10 m/s disturbance in y-axis linear velocity 

component.  The model adequacy is quite apparent from the figures.  
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Figure 5.57 Lat/Dir Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 

 

Figure 5.58 Lat/Dir Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 
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Theil’s inequality coefficient for each of the lateral variables are given in Table 5.35. 

TIC values for each lateral output variable except the bank angle are below the 

maximum acceptable values (in the range of 0.25 to 0.30) for both cases.  

Table 5.35 Theil’s Inequality Coefficient (TIC) for Lateral/Directional Motion 

Output Variable TIC (Flight Condition 1)  TIC (Flight Condition 2) 

𝑉𝑇𝐴𝑆 6.384e-04 8.808e-04 

𝛽 0.1884 0.2237 

𝑝 0.0514 0.0416 

𝑟 0.0479 0.0039 

𝜙 0.0569 0.3234 

𝑎𝑦 0.0465 0.0273 

5.1.5.2.2 Noise Driven Behavior  

The band-limited white noise with 0.01 noise power has been introduced to control 

deflection inputs in the predicted model and TIC values are compared. 

Figure 5.59 and Figure 5.60 show the measured and predicted data comparison of 

longitudinal motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition with a band-limited white noise (0.01 noise power) in 

elevator deflection.  The model adequacy is quite apparent from the figures.  
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Figure 5.59 Short Period Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 

 

Figure 5.60 Short Period Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 
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Theil’s inequality coefficient for each of the longitudinal variables are given in Table 

5.36 with and without noise on elevator deflections. TIC values for each longitudinal 

output variable are below the maximum acceptable values (in the range of 0.25 to 

0.30) for both cases. When noise is introduced, the TIC values are increased as 

expected.  

Table 5.36 Theil’s Inequality Coefficient (TIC) for Longitudinal Motion 

Output Variable TIC (Flight Condition 1)  TIC (Flight Condition 2) 

 Without Noise With Noise Without Noise With Noise 

𝑉𝑇𝐴𝑆 2.1182e-04 9.8528e-04 4.9693e-04 0.0022 

𝛼 0.0021 0.0117 0.0040 0.0388 

𝑞 0.0169 0.1148 0.0090 0.1341 

𝜃 0.0036 0.0198 0.0173 0.1049 

ℎ 8.1878e-05 3.7086e-04 4.9072e-04 0.0020 

𝑎𝑧 0.0018 0.0315 0.0034 0.0315 

5.1.5.2.3 Combination of Short-Period, Dutch-Roll, and Bank-to-Bank 

Maneuvers 

So far, only one mode of aircraft motion such as short period, phugoid, etc. has been 

triggered. Now we will excite each motion successively and show the performance 

of the predicted model with respect to TIC values. 

Figure 5.61 and Figure 5.62 show the measured and predicted data comparison of 

combined longitudinal, lateral and directional motions at 10000 ft, CM = 0.30𝑐̅ and 

two different speed (Ma = 0.35, Ma=0.50) flight condition. The model adequacy is 

quite apparent from the figures.  
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Figure 5.61 Combined Maneuvers – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 
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Figure 5.62 Combined Maneuvers – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 

Theil’s inequality coefficient for each of the longitudinal and lateral/directional 

variables are given in Table 5.37. TIC values for each longitudinal output variable 

are below the maximum acceptable values (in the range of 0.25 to 0.30) for both 

cases. It is observed that TIC values for longitudinal variables are less than ones for 

lateral/directional variables so we can conclude that longitudinal parameters are 

better estimated. 
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Table 5.37 Theil’s Inequality Coefficient (TIC) for Combined Maneuvers 

Output Variable TIC (Flight Condition 1)  TIC (Flight Condition 2) 

𝑉𝑇𝐴𝑆 6.0987e-04 0.0015 

𝛼 0.0034 0.0308 

𝛽 0.1932 0.1202 

𝑝 0.0496 0.0531 

𝑞 0.0379 0.0549 

𝑟 0.0503 0.0590 

𝜙 0.0543 0.1697 

𝜃 0.0110 0.1829 

ℎ 3.8531e-04 0.0012 

𝑎𝑥 0.0033 0.0335 

𝑎𝑦 0.0479 0.0431 

𝑎𝑧 0.0040 0.0231 

5.1.5.2.4 Proof-of-Match Maneuvers with respect to Strong Control 

Deflection Inputs  

In proof-of-match maneuvers, the control deflections have been excited to stay in the 

linear region. Now the performance of the predicted model has been shown with 

respect to strong control deflection inputs. In these maneuvers, models are shown to 

be accurate for high excursions around the trim point. 

Figure 5.63 and Figure 5.64 show the measured and predicted data comparison of 

short-period motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  
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Figure 5.63 Short Period Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 

 

Figure 5.64 Short Period Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 
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Figure 5.65 and Figure 5.66 show the measured and predicted data comparison of 

dutch-roll motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  

 

Figure 5.65 Dutch-Roll Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 
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Figure 5.66 Dutch-Roll Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 

Figure 5.67 and Figure 5.68 show the measured and predicted data comparison of 

bank-to-bank motions at 10000 ft, CM = 0.30𝑐̅ and two different speed (Ma = 0.35, 

Ma=0.50) flight condition.  The model adequacy is quite apparent from the figures.  
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Figure 5.67 Bank-To-Bank Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.35 

 

Figure 5.68 Bank-To-Bank Dynamics – at h = 10000 ft, CM = 0.30𝑐̅ and Ma = 0.50 
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5.1.5.3 Range of Model Applicability in Frequency Domain 

Frequency response validation of the predicted models are presented in this section. 

The frequency response of pitch-rate to elevator input (𝑞 𝛿𝑒⁄ ), roll-rate to aileron 

input (𝑝 𝛿𝑎⁄ ),  and yaw-rate to rudder input (𝑟 𝛿𝑟⁄ ) at different trim settings will be 

investigated. Frequency sweeps are performed for each control deflection inputs. The 

difference between the frequency responses of the nonlinear model and the predicted 

model are also presented with the allowable frequency response error bounds. If the 

error function is within these allowable error bounds, it indicates that the predicted 

model is a sufficient representation of the real aircraft. Example of frequency sweeps 

for longitudinal dynamics are given in Figure 5.69. 

 

Figure 5.69 Example of a frequency sweep on longitudinal axis. 

Frequency response validation of the predicted models for longitudinal dynamics 

(𝑞 𝛿𝑒⁄ ) at two different trim conditions are presented in Figure 5.70 and Figure 

5.71. We can conclude that the predicted model on longitudinal dynamics is quite 

accurate. 
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Figure 5.70 Frequency Response Validation of 𝑞 𝛿𝑒⁄ – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.35 

 

Figure 5.71 Frequency Response Validation of 𝑞 𝛿𝑒⁄  – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.50 

 

 



 

 

 

181 

Frequency response validation of the predicted models for lateral/directional 

dynamics (𝑝 𝛿𝑎⁄ ) and (𝑟 𝛿𝑟⁄ ) at two different trim conditions are presented from 

Figure 5.72 to Figure 5.75. As seen in the figures, differences remain in the MUAD 

Bounds, so that predicted model is quite accurate.  

 

Figure 5.72 Frequency Response Validation of 𝑝 𝛿𝑎⁄ – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.35 

 

Figure 5.73 Frequency Response Validation of 𝑝 𝛿𝑎⁄  – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.50 
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Figure 5.74 Frequency Response Validation of 𝑟 𝛿𝑟⁄ – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.35 

 

Figure 5.75 Frequency Response Validation of 𝑟 𝛿𝑟⁄  – at h = 10000 ft, CM = 0.30𝑐̅ 
and Ma = 0.50 

5.1.5.4 Comparison of Estimation Results with respect to Wind Tunnel Data 

Figure 5.76, Figure 5.77, and Figure 5.78 show the comparison of estimated 

parameters with the true ones (wind tunnel database) for longitudinal aerodynamic 
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coefficients, a luxury that is usually out of reach in real life. There is quite good fit 

between wind tunnel database and predicted model as seen in the figures. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.76 Estimation Quality of Drag Coefficient  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.77 Estimation Quality of Lift coefficient  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.78 Estimation Quality of Pitch Moment Coefficient 
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5.2 Case 2: Non-Availability of Engine Database from Manufacturer 

In the first case, the engine-related forces and moment are obtained from the engine 

deck and directly feeded back to the 6-DOF equations of motion model to isolate the 

aerodynamic model. But in this case, the engine and aerodynamic database are not 

available. To find an appropriate aerodynamic model, an approximate engine model 

is to be constructed first. The equations in section 4.4, thrust calculation from steady-

state flight tests, are used to do so.  After the approximate engine model is 

constructed, the methodology in Section 5.1 is repeated. 

5.2.1 Calculating Thrust from Steady State Flights 

Many flight tests were made for different flight conditions expressed in Mach 

numbers (𝑀 = 0.2 to 𝑀 = 0.6), altitudes (ℎ = 0ft to ℎ = 40000ft), and different 

flight path angles (𝛾 = −5° to 𝛾 = 5°). Now we can compare the results for different 

flight conditions.  

Firstly, we compare the estimated results from Eqs. (4.84) and (4.92) with the actual 

results for level flight. 
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Figure 5.79 Measured and Constructed Thrust, Lift Coefficient, and Drag 

Coefficient in Steady Level Flight 

Secondly, we compare the estimated results from Eqs. (4.84) and (4.92) with the 

actual results for climbing flight. 
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Figure 5.80 Measured and Constructed Thrust, Lift Coefficient, and Drag 

Coefficient in Steady Climb Flight 

We can conclude from the figures that the results are promising. The lift coefficient 

trend is almost the same, and values are so close to each other for the angle of attack 

values up to 20 deg, which is in our flight scope. The drag coefficient trend is ok, but 

values are slightly different for high angle of attack values as expected since Eq. 

(5.7) is just an approximation for the linear region. So, we can use constructed thrust 

values in place of actual thrust values as initial points in our future work. 
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5.2.2 Turbofan Engine Thrust Model 

Now, go back to Section 2.2.2.3, Simplified Turbofan Thrust Model. Using the 

results obtained in 5.2.1 and using the Eqs. (2.58), (2.59), and (2.60), we get the 

following equation: 

�̃�(ℎ,𝑀, 𝛿𝑇𝐿𝐴) =
𝑇(ℎ,𝑀, 𝛿𝑇𝐿𝐴)

𝑇0 ×
𝜌(ℎ)
𝜌0

[1 +
(𝛾 − 1)

2 𝑀2]

1
𝛾−1

= ∑∑�̃�𝑖𝑗(ℎ)𝑀𝑖𝛿𝑇𝐿𝐴
𝑗

𝑛

𝑗=0

𝑚

𝑖=0

 
(5.8) 

To decide which m and n values make the best fit, we compare the Mean Square 

Error using K-Fold Cross Validation for different 𝑚 and 𝑛 values. For 𝑚 = 3 and 

𝑛 = 2, we get the overall best result. In Table 1, the mean squared error with respect 

to different altitudes is shown. 

Table 5.38 Mean Squared Error Values with respect to Different Altitudes 

Altitute [ft] Mean Square Error 

0 5.2788e-04 

5000 6.8464e-04 

10000 1.2531e-06 

20000 1.0063e-05 

30000 1.9749e-05 
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At ℎ = 0 ft, the constructed and estimated nondimensional thrust coefficient 

comparison is shown below. 

 

Figure 5.81 Measured and Constructed Thrust Coefficient at ℎ = 0 ft 

 

At ℎ = 5000 ft, the constructed and estimated nondimensional thrust coefficient 

comparison is shown below. 

 

Figure 5.82 Measured and Constructed Thrust Coefficient at ℎ = 5000 ft 
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At ℎ = 10000 ft, the constructed and estimated nondimensional thrust coefficient 

comparison is shown below. 

 

Figure 5.83 Measured and Constructed Thrust Coefficient at ℎ = 10000 ft 

 

At ℎ = 20000 ft, the constructed and estimated nondimensional thrust coefficient 

comparison is shown below. 

 

Figure 5.84 Measured and Constructed Thrust Coefficient at ℎ = 20000 ft 
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At ℎ = 30000 ft, the constructed and estimated nondimensional thrust coefficient 

comparison is shown below. 

 

Figure 5.85 Measured and Constructed Thrust Coefficient at ℎ = 30000 ft 

 

The estimated results are compatible with the constructed results from trim values. 

Estimated thrust values are replaced with actual thrust values, and aerodynamic 

coefficients are re estimated and compared with the new aerodynamic force and 

moment coefficient results as future work. 

5.2.3 Iterative Equation Error Method 

After developing the engine thrust model, the next step is to use EEM to obtain the 

reasonable starting point for longitudinal aerodynamic coefficients. In EEM, a 

suitable model has been postulated. Then Iterative-EEM is employed. 

The convergence of the cost function for the iterative equation error method can be 

seen below. 
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Figure 5.86 Convergence of Cost Function for Iterative Equation Error Method 

As it is seen in Figure 5.86, in the first 5 iterations cost function decreases 

dramatically, and the cost function converges to a minimal value after the 40th 

iteration. Hence, 40 iteration is enough to get good results. 

Table 5.39 and Table 5.40 gives the parameter estimates and their errors. The 

estimation error is calculated as 𝛿 = ‖Θ𝑘 − Θ𝑎𝑐𝑡𝑢𝑎𝑙‖ ‖Θ𝑎𝑐𝑡𝑢𝑎𝑙‖⁄  

Table 5.39 Drag Coefficient Parameter Estimates and Errors 

k 𝐶𝐷0 𝐶𝐷𝛼 𝐶𝐷𝛼2 𝐶𝐷𝛼3 𝐶𝐷𝛿𝑒
 𝐶𝐷𝛿𝑒𝛼

 𝐶𝐷𝛿𝑒𝛼
2 

1 0.0206 0.057 2.458 0.027 -0.010 -0.675 5.277 

2 0.0206 0.049 2.581 0.168 -0.038 -0.373 4.673 

3 0.0201 0.032 3.180 -0.764 -0.053 0.218 1.957 

4 0.0200 0.009 3.558 -1.086 -0.059 0.353 1.315 

5 0.0200 -0.011 3.780 -1.074 -0.060 0.347 1.370 

10 0.0202 -0.061 4.173 -0.675 -0.061 0.320 1.702 

15 0.0202 -0.074 4.237 -0.531 -0.062 0.332 1.780 

20 0.0202 -0.079 4.250 -0.466 -0.063 0.343 1.818 

30 0.0202 -0.083 4.256 -0.413 -0.063 0.353 1.849 

40 0.0202 -0.085 4.256 -0.395 -0.064 0.357 1.859 

50 0.0202 -0.085 4.254 -0.389 -0.064 0.357 1.863 

80 0.0202 -0.086 4.258 -0.383 -0.064 0.357 1.868 

Actual 0.0209 -0.1411 4.311 -0.273 -0.057 0.205 2.442 
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Table 5.40 Drag Coefficient Parameter Estimates and Estimation Error – Continued 

k 𝐶𝐷𝑞 𝐶𝐷𝑞𝛼 𝐶𝐷𝛿𝑙𝑒𝑓
 𝐶𝐷𝛿𝑙𝑒𝑓𝛼

 𝐶𝐷𝛿𝑙𝑒𝑓𝛼10
1  𝐶𝐷𝛿𝑙𝑒𝑓𝛼15

1  𝛿(%) 

1 0.534 22.497 -0.088 0.357 -0.337 0.700 74.242 
2 0.564 21.120 -0.080 0.259 -0.368 0.674 62.844 
3 0.122 18.320 -0.057 -0.097 -0.243 0.635 32.398 
4 -0.030 16.393 -0.037 -0.353 -0.159 0.625 34.181 
5 -0.097 15.841 -0.020 -0.530 -0.121 0.627 30.293 

10 -0.205 17.114 0.022 -0.897 -0.114 0.620 17.260 
15 -0.267 18.354 0.033 -0.969 -0.134 0.625 14.387 
20 -0.309 19.142 0.038 -0.989 -0.147 0.631 13.246 
30 -0.348 19.870 0.042 -1.002 -0.159 0.637 12.432 
40 -0.360 20.107 0.043 -1.005 -0.163 0.639 12.191 
50 -0.364 20.184 0.044 -1.005 -0.164 0.640 12.097 
80 -0.366 20.217 0.044 -1.002 -0.164 0.639 11.987 

Actual -0.234 19.579 0.0833 -1.067 -0.146 0.636  

 

Figure 5.87 shows the variation of estimated parameters versus iteration number. 

The parameters showing variation larger than 50% from the converged solution were 

dropped from the assumed model. And the converged solution is very close to that 

obtained with the actual thrust value. 

 

 

Figure 5.87 Converge of Parameter Estimates for the Drag Coefficient 
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Table 5.41 and Table 5.42 give the parameter estimates and their errors for lift 

coefficient. The estimation error is calculated as 𝛿 = ‖Θ𝑘 − Θ𝑎𝑐𝑡𝑢𝑎𝑙‖ ‖Θ𝑎𝑐𝑡𝑢𝑎𝑙‖⁄ . 

Table 5.41 Lift Coefficient Parameter Estimates and Errors 

k 𝐶𝐿0 𝐶𝐿𝛼 𝐶𝐿𝛼5
1 𝐶𝐿𝛼10

1  𝐶𝐿𝛼15
1  𝐶𝐿𝛿𝑒

 𝐶𝐿𝛿𝑒𝛼
 𝐶𝐿𝛿𝑒𝛼

2 

1 0.0992 3.747 0.175 0.114 -1.834 0.477 -0.084 3.788 

2 0.0998 3.740 0.162 0.145 -1.984 0.505 -0.706 6.144 

3 0.0998 3.737 0.156 0.137 -1.982 0.508 -0.804 6.615 

4 0.0999 3.736 0.152 0.135 -1.981 0.509 -0.833 6.750 

5 0.0999 3.735 0.151 0.136 -1.976 0.510 -0.838 6.758 

10 0.0999 3.735 0.149 0.140 -1.953 0.510 -0.844 6.722 

15 0.0999 3.736 0.149 0.139 -1.942 0.510 -0.843 6.687 

20 0.0999 3.736 0.149 0.139 -1.936 0.510 -0.840 6.660 

30 0.0999 3.736 0.149 0.138 -1.932 0.510 -0.838 6.635 

40 0.0999 3.736 0.149 0.137 -1.931 0.510 -0.837 6.627 

50 0.0999 3.736 0.149 0.137 -1.931 0.510 -0.836 6.624 

80 0.0999 3.737 0.149 0.137 -1.931 0.510 -0.835 6.620 

Actual 0.0995 3.737 0.156 0.135 -1.907 0.489 -0.612 4.808 

 

Table 5.42 Lift Coefficient Parameter Estimates and Errors 

k 𝐶𝐿𝑞 𝐶𝐿𝑞𝛼 𝐶𝐿𝛿𝑙𝑒𝑓
 𝐶𝐿𝛿𝑙𝑒𝑓𝛼 𝐶𝐿𝛿𝑙𝑒𝑓𝛼5

1 𝐶𝐿𝛿𝑙𝑒𝑓𝛼10
1  𝐶𝐿𝛿𝑙𝑒𝑓𝛼15

1  𝐶𝐿𝛿𝑙𝑒𝑓𝑞𝛼 𝛿(%) 

1 28.742 28.348 -0.175 0.511 0.345 -0.804 3.150 -74.932 23.474 

2 28.985 21.385 -0.178 0.507 0.430 -0.862 3.620 -54.764 12.770 

3 29.016 21.424 -0.178 0.508 0.473 -0.860 3.625 -52.506 12.316 

4 29.043 21.258 -0.178 0.508 0.494 -0.870 3.624 -51.168 11.905 

5 29.064 21.087 -0.178 0.508 0.504 -0.882 3.609 -50.866 10.577 

10 29.110 20.619 -0.178 0.508 0.515 -0.903 3.550 -51.594 10.412 

15 29.115 20.640 -0.178 0.507 0.516 -0.902 3.519 -52.577 9.521 

20 29.114 20.736 -0.178 0.506 0.516 -0.899 3.501 -53.345 8.487 

30 29.112 20.852 -0.178 0.505 0.516 -0.895 3.489 -54.101 8.134 

40 29.110 20.899 -0.178 0.505 0.516 -0.894 3.486 -54.359 8.004 

50 29.109 20.921 -0.178 0.505 0.516 -0.893 3.485 -54.452 7.892 

80 29.107 20.954 -0.178 0.505 0.516 -0.893 3.485 -54.528 7.812 

Actual 29.136 22.597 -0.178 0.511 0.454 -0.912 3.361 -59.489  

 

Figure 5.88 shows the variation of estimated parameters for lift coefficient versus 

iteration number. No parameter in the assumed postulate showed variation larger 

than 50% from the converged solution. As expected, the converged solution is very 

close to that obtained with the actual thrust value 
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Figure 5.88 Converge of Parameter Estimates for Lift Coefficient 

Figure 5.89, Figure 5.90, and Figure 5.91 show the comparison of estimated 

parameters using iterative -eem and eem methods with the true ones (wind tunnel 

database), a luxury that is usually out of reach in real life. The iterative eem yields 

inferior results (far from the actual value), but the results become much closer with 

increasing iteration numbers. The difference in Figure 5.90.b can be explained such 

that the leading-edge flap is scheduled with the angle of attack, where a high angle 

of attack corresponds to a high leading-edge flap. So, when the leading edge flap is 

zero, the corresponding angle of attack is between -5 and 5 degrees. But when the 

leading-edge flap increases, it corresponds to a high angle of attack values (more 

than 10 degrees). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.89 Estimation Quality of Drag Coefficient Where Wind Tunnel Data is 

Compared with Iterative EEM Method (First Iteration) 

 

(a) 

 

(b) 



 

 

 

197 

 

(c) 

 

(d) 

Figure 5.90 Estimation Quality of Drag Coefficient Where Wind Tunnel Data is 

Compared with Iterative EEM Method (Last Iteration) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.91 Estimation Quality of Drag Coefficient Where Wind Tunnel Data is 

Compared with EEM Method (Actual Thrust) 
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Figure 5.92, Figure 5.93, and Figure 5.94 show the comparison of estimated 

parameters of lift coefficient using iterative -eem and eem methods with the true ones 

(wind tunnel database). The lift coefficient is generally easier to estimate because it 

shows a more linear trend than the drag coefficient. Moreover, the lift coefficient is 

less correlated with engine thrust; that is why we expect a good agreement between 

estimates and actual values.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.92 Estimation Quality of Lift Coefficient Where Wind Tunnel Data is 

Compared with Iterative EEM Method (First Iteration) 



 

 

 

199 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.93 Estimation Quality of Lift Coefficient Where Wind Tunnel Data is 

Compared with Iterative Eem Method (Last Iteration) 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.94 Estimation Quality of Lift Coefficient Where Wind Tunnel Data is 

Compared with EEM Method (Actual Thrust) 

Iterative data processing is the sequential processing of an entire group of data, and 

the database remains the same, and only some estimated variable is modified at each 

iterative step. Simulation results indicate that the proposed algorithms are practical, 

and the iterative EEM algorithm can produce satisfactory estimation accuracy. The 

parameter separation technique introduced in this study can be applied to identify 

large-scale systems by reducing the number of parameters to be identified, thereby 

greatly simplifying the identification procedure. 
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CHAPTER 6  

6 CONCLUSION 

6.1 Iterative Equation Error Estimation Approach 

So far, thrust forces and moments are obtained from ground tests and directly feeded 

back to aircraft models to calculate the aerodynamic forces and moments in the 

equation error method and calculate the states and outputs in the output error method. 

A simplified turbofan engine model was developed for this case. Firstly, initial 

estimate values for some parameters related to the engine are given first, and 

aerodynamic coefficients are estimated. And then, the estimated aerodynamic 

coefficients are kept fixed, and these time engine parameters are tuned. This 

procedure is done while the engine parameters and aerodynamic force, and moment 

coefficients converge to some fixed values. 

The while loop is stopped when the difference between old aerodynamic force and 

moment coefficients and engine-related parameters and new aerodynamic force and 

moment coefficients and engine-related parameters goes to below some predefined 

value. 

6.2 Feature Selection Using Correlation-Based Binary Particle Swarm 

Optimization Approach 

The correlation-based particle swarm optimization is used as a feature selection 

method. The algorithm starts by generating a set of candidate model terms, based on 

a set of base regressor and a maximum term order. And then, pairwise correlation 

among the model terms is compared and some terms are removed. And finally, 

binary Particle Swarm Optimization is utilized to generate the best subset of the 

remaining terms. 
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The BPSO is an efficient algorithm to solve feature selection problems. However, 

specific components, referred to as hyperparameters, are not autonomously updated 

in the feature selection process. The hyperparameters of the binary PSO approach 

are the transfer function scheme, inertia weight updating strategy, and the value of 

acceleration coefficients. The setting for these hyperparameters have a significant 

impact on the performance of BPSO, and there are no universal default values that 

perform well for different problems and data sets. The fundamental issue in 

designing a BPSO is determining the best configuration of the hyperparameters. To 

determine the best configuration hyperparameters, 160 configurations are tested over 

30 times and their mean fitness are compared. It is observed that choice of 

acceleration scheme does not affect the result, and different choices are seen to give 

essentially the same performance. The normalized fitness sum of Acceleration 

Scheme 1 is slightly better than the second one so it can be used for further studies. 

The most dominant hyperparameter affecting the binary PSO performance is the 

choice of transfer function. S1 transfer function is superior to other. Among inertia 

weight schemes, the most influential ones are 4th, 7th and 9th inertia weight strategies 

which are Constant Inertia Weight, Linear Increasing Inertia Weight, and Random 

Inertia Weight. After the analysis, 160 total configuration reduced to 3 total 

configuration. 
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