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ABSTRACT

WASSERSTEIN GENERATIVE ADVERSARIAL ACTIVE LEARNING FOR
ANOMALY DETECTION WITH GRADIENT PENALTY

Duran, Hasan Ali
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Şeyda Ertekin

September 2021, 80 pages

Anomaly detection has become a very important topic with the advancing machine

learning techniques and is used in many different application areas. In this study,

we approach differently than the anomaly detection methods performed on standard

generative models and describe anomaly detection as a binary classification problem.

However, in order to train a highly accurate classifier model, the number of anomaly

data in data-sets is very limited, and with synthetic data produced using generative

models, it can be brought to a usable level to train the model. In our model like GANs

while Generator produces potential informative anomaly data, the Discriminator tries

to determine whether the generated data is fake or real. In addition to these, we have

added the Critic network to our model in order to enable the Generator to produce

more realistic and informative data. In this way, we designed our model the Discrimi-

nator to be trained with the data produced by the Generator which is improved by the

Critic network. Therefore, after sufficient training, the Discriminator turns into a nat-

ural anomaly detection classification tool. Since the Generator produce more realistic

data in each epoch during the training phase, created ones more informative poten-

tial anomaly data for the Discriminator, which will allow the algorithm to develop
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with more informative data with active learning logic. Our novelty is a generative ad-

versarial active learning (GAAL) structure designed over the Wasserstein Generative

Adversarial Network with Gradient Penalty (WGAN-GP) instead of just applying this

method over the standard GAN model. Both our Generator model can produce more

realistic and more informative data than before, and at the same time, it prevents the

mode collapse problem, which is one of the biggest problems of the standard GAN

model. We have obtained a model that can detect anomalies with higher accuracy.

Improved version of Wasserstein Generative Adversarial Active Learning (WGAAL-

GP) has been tested on different data sets and the results obtained are presented by

comparing them with previous studies.

Keywords: Deep Learning, Machine Learning, Generative Models, GAN, Wasser-

stein Gan, Outlier Detection, Anomaly Detection, Active Learning
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ÖZ

GRADYAN CEZALI WASSERSTEIN ÜRETİCİ ÇEKİŞMELİ AĞLAR İLE
AKTİF ÖĞRENME KULLANILARAK ANOMALİ TESPİTİ

Duran, Hasan Ali
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Şeyda Ertekin

Eylül 2021 , 80 sayfa

Gelişen makine öğrenmesi teknikleri ile anomali tespiti çok önemli bir konu haline

gelmiş ve birçok farklı uygulama alanında kullanılmaktadır. Bu çalışmada, standart

üretici modeller üzerinde gerçekleştirilen anomali tespit yöntemlerinden farklı olarak

yaklaşılıyor ve anormallik tespitini bir ikili sınıflandırma problemi olarak tanımlıyo-

ruz. Ancak, yüksek doğrulukta bir sınıflandırıcı modeli eğitmek için veri setlerindeki

anomali verisi sayısı çok sınırlıdır ve üretici modeller kullanılarak üretilen sentetik

veriler modeli eğitmek için kullanılabilir bir düzeye getirilebilir. GAN’lardaki gibi

modelimizde Generator potansiyel bilgilendirici anomali verileri üretirken, Discri-

minator üretilen verilerin sahte mi gerçek mi olduğunu belirlemeye çalışır. Bunlara

ek olarak Generator’ın daha gerçekçi ve bilgilendirici veriler üretebilmesi için mo-

delimize Critic ağını da ekledik. Bu şekilde, Critic tarafından eğitilen Generator’ın

ürettiği verilerle eğitilecek Discriminator modelimizi tasarladık. Bu nedenle yeterli

eğitimden sonra Discriminator doğal bir anomali tespit sınıflandırma aracına dönüşür.

Generator eğitim aşamasında her turda daha gerçekçi veriler üreteceğinden, Discrimi-

nator için daha bilgilendirici potansiyel anomali verileri üretecek ve bu da algoritma-
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nın aktif öğrenme mantığı ile daha bilgilendirici verilerle gelişmesini sağlayacaktır.

Çalışmamızda, bu yöntemi standart GAN modeli üzerinden çözmek yerine, Wassers-

tein Generative Adversarial Network’ün gradient cezasıyla (WGAN-GP) geliştirilmiş

versiyonu üzerinden tasarlanmış üretken bir çekişmeli aktif öğrenme (GAAL) yapısı-

dır. Bu sayede hem Generator modelimiz eskisinden daha gerçekçi ve daha bilgilen-

dirici veriler üretebilmekte hem de standart GAN modelinin en büyük sorunlarından

biri olan mod collapse sorununun önüne geçmektedir. Bu sayede anomalileri daha

yüksek doğrulukla tespit edebilen bir model elde etmiş olduk. Wasserstein Genera-

tive Adversarial Active Learning’in (WGAAL-GP) geliştirilmiş versiyonu farklı veri

setleri üzerinde denenmiş ve elde edilen sonuçlar önceki çalışmalarla karşılaştırılarak

bu çalışmada sunulmuştur.

Anahtar Kelimeler: Derin Öğrenme, Makine Öğrenmesi, Generative Modeller, GAN,

Wasserstein Gan, Anomali Tespiti, Aktif Öğrenme, Outlier tespiti
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Anomaly, in the most basic terms, refers to something that does not fit into an ex-

pected situation or flow. It can also be described as abnormal or outlier in the litera-

ture. Anomaly detection, on the other hand, is the case of a specific data deviating too

much from standard data within a data set, more simply, it is the detection of points

that we can define as abnormal in the data. [67]

The process of discovering patterns in data that do not conform to a model of typical

behavior is known as anomaly detection [68]. The ideas underpinning anomaly de-

tection may appear complicated and unapproachable unless you’re a data scientist or

practitioner familiar with technologies that offer algorithms for pattern identification.

However, the advantages are obvious.

The purpose of anomaly detection is to find cases that are out of the ordinary among

data that appears to be similar[69]. Anomaly detection is a useful tool for detect-

ing fraud, network intrusion, and other unusual events that may be relevant but are

difficult to notice.

We should first understand why anomaly detection is an important problem. We can

explain the importance of anomaly detection with the example below. For example,

you, as a customer, spend around 250-300 dollars per month with your credit card.

In other words, you are a customer in your bank’s low-budget customer portfolio.

But when you suddenly spend $1500 the next month, this transaction is a move away

from low-budget customer portfolio behavior. If the bank notices this situation and

informs you about this expenditure in some way, the customer will be able to notice
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if he has been defrauded. Therefore, anomaly detection plays a very important role

in this example or while examining MRI results in the medical field [60][61][62][66],

we can distinguish the results of a normal person and a sick person, perhaps without

the need for a doctor, or we will not overlook a problem that the doctor overlooked

with advanced computers for anomaly detection. So anomaly detection tools has wide

usage on various applications. [2],[7],[9],[10],[38],[13],[24]

Another area where anomaly detection application is important can be considered as

aviation. In our study, we can understand the flight patterns and characteristics of

passenger and cargo planes with the flight data of civil aircraft, for which we used

a sample data. In this way, when flight movements that do not comply with the

patterns of civil flights are noticed, it can be realized that it is not a normal flight.

This awareness can prevent a possible danger, for example, a plane can be detected

early or unmanned aerial vehicles can be prevented from flying in areas where there

is no permission. We can show this as a direct use in the field of air defense in the

defense industry and military systems.

1.2 Proposed Methods and Models

Machine Learning is used in anomaly detection approaches. Machine learning can

be used to learn a system’s properties from observed data, which can help to improve

detection speed. Machine-learning algorithms are capable of not only learning from

data, but also making predictions based on that data, as well as improving their pre-

dictive abilities by "learning" from the outcomes of their initial predictions as events

unfold in real life (the feedback loop). Anomaly detection using machine learning

encompasses approaches for detecting and classifying abnormalities in vast and com-

plicated big data sets. Sequential hypothesis testing are one way for detecting anoma-

lies. For identifying changes in the distributions of real-time data and setting alarm

settings, such as cumulative sum charts and sequential probability ratio tests can be

used.

Recently, a wide variety of machine learning methods have been used for anomaly de-

tection. Basically, there are 4 different main approaches to anomaly detection process.
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First, statistical methods [1],[4],[6] secondly linear based methods [2],[5],[7],[14]

thirdly distance based methods [8],[9],[12],[21] and finally reconstruction-based [16],[27],[22],[24]

methods. In the statistical method, which is the simplest method, the similarity of the

incoming data with the general average and its standard deviation are calculated and

its difference from the mean is calculated. By comparing the result with a threshold

value, it is decided whether there is an anomaly or not. As another method, the most

popular distance based method is K nearest neighbor [8],[9],[12],[21]. The most pop-

ular linear based method is Principal component analysis [15],[16],[17]. The method

that we can describe as the most advanced is reconstruction based methods. Among

these, one of the most popular methods used for anomaly detection is Auto-encoder

[16],[17],[22], but the method used in our study is not one of them.

However, in our study, we developed an anomaly detection tool with generative adver-

sarial networks which is one of the most popular reconstruction based deep learning

methods of recent times. Generative adversarial networks (GAN) [18] have become

much more useful and popular with recent studies[24],[27],[29], [28]. After that,

it is possible to use it as an anomaly detection tool. First of all, it is necessary to

understand the working principle of GAN structure in general. GAN is basically a

model consisting of two different networks, a model in which these two networks

(generator - discriminator) play the min-max game mutually. Networks improve each

other thanks to this mutually contentious work. GAN is used as an anomaly detection

tool in two different ways. The first [29] and the more popular one is to make an

anomaly decision by evaluating how close the data is created by using the generator’s

reconstruction capabilities. The second method that works with active learning logic

in GAN has many example studies [30],[31],[3]. In this method, it determines the

anomaly by generating potential anomaly data using the generator, enabling the dis-

criminator to make the distinction between fake data and real data much more clearly.

Thus, it evaluates the anomaly detection as a classification problem and uses the dis-

criminator as a classifier. Our method is also a method that uses the GAN method

for anomalies by generating potential anomaly data. In the GAAL with anomaly

detection study [30], anomaly detection is made using the standard GAN structure.
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1.3 Contributions and Novelties

As an additional novelty to GAAL based anomaly detection study [30], we produced

more informative potential anomaly data by supporting this method with Wasserstein

GAN with gradient penalty [25],[26], not with standard GAN. In this way, we both

produced more informative data and prevented the mode collapse problem. In our

study, the Wasserstein GAN with gradient penalty (WGAN-GP) cannot be used alone

because the discriminator working in the WGAN-GP model does not discriminate

directly on fake data or real data. In this study, which renames the Discriminator

network as Critic. Critic measures the distance of the generated data to the real data,

so it does not act directly as a classifier. Therefore, we need a classifier and we build

our model on three different networks. Two networks (Generator and Critic) come

via WGAN-GP, in addition to these, we also set up a Discriminator network. In this

context, while the generator network improves itself with the feedback it receives

from the Critic, both the Critic and the Discriminator develop itself with the data and

feedback produced by the Generator. As a result, we call this model Improved version

of Wasserstein Generative Adversarial Active Learning (WGAAL-GP). During the

Generator training process, each epoch will improve itself and will be able to produce

more informative data. The model combines GAN with the active learning context as

it tries to produce anomaly data close to reality instead of producing data very similar

to normal data directly. Thus, the discriminator network, as a classifier, can draw its

boundaries much more accurately with more informative data and perform anomaly

prediction and detection with higher accuracy.

As a summary our contributions can be summed up as follows:

• Compared to other studies, Wasserstein Gan is used in this study, so it pro-

duces more realistic potential anomaly data, so that while the algorithm is be-

ing trained, it is trained with sufficient and more realistic anomaly data. In

this way, it prevents the problem of low number of anomaly data under normal

conditions.

• By using Wasserstein Gan with gradient penalty, it prevents the mode collapse

problem that will occur during the training process due to the nature of this
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algorithm. In this way, more serious problems in making wrong decisions that

may occur during testing or decision-making are prevented. In addition, it is

ensured that the resulting accuracy scores are at a higher level.

• By using Wasserstein Gan and the standard Gan Discriminator jointly, the po-

tential anomaly data produced in each epoch is produced more realistically,

ensuring that the data produced in each epoch is more informative. In this way,

it increases the level of informativeness by improving the active learning logic

compared to other GAAL studies.

1.4 The Outline of the Thesis

The organization of the thesis can be expressed as, Chapter 2 researches and the chap-

ter with the necessary background to understand our solution proposal. This chapter

summarizes the techniques used in our proposed solution on 5 different topics. Chap-

ter 3, on the other hand, is the chapter where the previous studies on the subject of

anomaly detection are summarized and a general literature search is available. In this

chapter, which is divided into 2 main titles, first anomaly types are explained, then

different algorithms used for anomaly detection are explained. In Chapter 4, we de-

scribe what kind of methodology we follow and how our proposed solution works.

Chapter 5 is the section where we present our experiments on different datasets and

our comparison of their results. This section is evaluated under two main headings,

and in the first section, the introduction of the datasets and specifying their proper-

ties are made, while the second section includes the tests and interpretation of these

tests. In our last chapter, Chapter 6, we make a summary conclusion of our study and

present our suggestions that can be done as future work.
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CHAPTER 2

BACKGROUND

2.1 Anomaly Detection

The technique of detecting outliers in a data-set is known as anomaly detection. Out-

liers are data items that stand out from the rest of the data-set and do not follow the

expected pattern of behavior. Anomaly detection techniques have a wide range of

applications [2],[7],[9],[10],[38],[13],[24] in business, science, and security, where

isolating and acting on outlier detection findings is crucial. Algorithms such as cat-

egorization, regression, and clustering can be used to find abnormalities. Any of the

supervised data science methods may be used to discover anomalies if the training

data-set contains items with known anomalous outcomes.There are specific (unsuper-

vised) algorithms that identify outliers without the need of a labeled training data-set,

in addition to supervised techniques. In the case of unsupervised anomaly detection,

algorithms can estimate distance from other data points or density in the data point’s

vicinity. Another method for identifying abnormalities is to rebuild data and compare

reconstruction losses. Even clustering algorithms may be used to discover anomalies.

Because the outlier is so far away from the other data points, it generally forms a

distinct cluster from the others.

To summarize, using supervised and unsupervised techniques, it is called anomaly

detection to detect data that is farther or more irrelevant than it should be from the

normal data or the general distribution of the data. Among the currently used anomaly

detection methods[37] [38] [39] [57] [64], the most popular ones among the unsuper-

vised ones can be considered as reconstruction based algorithms. Since these algo-

rithms use deep learning techniques more efficiently, they allow better results than

traditional methods. Although anomaly detection in these methods is different in
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general (supervised or unsupervised), it somehow detects the behavior and distribu-

tion of the normal data and then tests the suitability of the data for this distribution or

behavior. If the values obtained as a result of this test are more than a predetermined

threshold value, the data is considered an anomaly. If this result is lower than the

threshold value, it is considered normal like other data. Basically, all algorithms work

on this logic, the differences with each other are the methods and capacity to under-

stand the behavior of normal data. At the same time, the ways of comparing new data

change according to the normal learning method in the past during the testing phase.

For example, in a distance-based method [34], the distance of the new point to the

nearest n points is calculated and averaged. This average distance taken is compared

with the predetermined threshold value and it is decided whether it is an anomaly or

normal data [21]. However, in auto encoders [22], which is a reconstruction-based

method, a neural network is obtained by training the auto encoder model with normal

data. This neural network first compresses the data by reducing its size, then expands

the compressed state and brings it back to data size. The weights of the model are

trained according to the normal data. Afterwards, when an abnormal data comes in

the testing phase, this data is taken as an input to this model, which has been trained

with normal data before. Then, the reconstruction loss of this reconstructed data is

calculated and this loss value is compared with the previously determined threshold

value. If it is higher than the threshold value, it is decided that there is an anomaly,

if it is lower than the threshold value, it is considered a normal data. As a result,

although the methods of the algorithms change, as the general logic, the method of

calculating the difference between the new data and the normal data changes, but the

anomaly is detected by measuring the difference.

2.2 Deep Learning

Machine Learning, on the other hand, is a subset of Artificial Intelligence, while

Deep Learning is a subset of Machine Learning. Artificial intelligence (AI) is a broad

phrase that refers to methods that allow computers to emulate human behavior. All of

this is made possible through machine learning, which is a set of algorithms based on

data. Deep Learning, on the other hand, is a form of Machine Learning that is inspired
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by the human brain’s structure. Deep learning algorithms analyze data with a prede-

termined logical framework in order to reach similar conclusions as humans. Deep

learning does this by employing a multi-layered structure of algorithms known as neu-

ral networks.The neural network’s architecture is inspired by the structure of the hu-

man brain. Neural networks can be trained to do the same tasks on data that our brains

do when identifying patterns[40] and classifying different sorts of information.Also

Deep learning can be used for prediction, many studies [41][42][43][44][45] prove

that.

Individual layers of neural networks may also be thought of as a kind of filter that

works from the most obvious to the most subtle, improving the chance of detecting

and producing a right result.The human brain operates in a similar manner. When

we acquire new knowledge, our brain attempts to compare it to previously encoun-

tered items. Deep neural networks make use of the same principle. We can use

neural networks to accomplish a different tasks, such as grouping, regression, and

classification. We can use neural networks to group or sort unlabeled data based on

similarities between the samples. Alternatively, in the instance of classification, we

can train the network on a labeled dataset in order to categorize the samples in the

dataset.Deep learning models can solve challenges that basic machine learning mod-

els can’t do efficiently. Artificial neural networks offer unique characteristics that

allow deep learning models to handle tasks that basic machine learning models can’t

do efficiently.

As a result, to summarize deep learning, it is a technique that can do feature extraction

on its own without the need for preprocessing such as machine learning, in cases

where machine learning cannot do it or works more unsuccessfully, so it is a technique

that tries to make sense of data very similar to how the human brain works. Models

built on this similarity are also called neural networks. If the working logic is to be

explained in a simple way, these neural networks are composed of different numbers

of nodes. And a network is formed in such a way that these nodes are completely

dependent or limited to each other. The properties of the data are transferred to the

model from the nodes on the input layer, then this data starts to be processed in the

hidden layers, if any, and as a result of the process, it is transferred to the next layer.

Finally, since we have designed our output layer to consist of as many nodes as we
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want, the size of the output is at the level we want. While reaching the output layer,

the final operation is done on the incoming data and the output value is reached.

Well, to talk about what is the process done in each layer, it can be summarized in the

simplest form as follows. There is a bond created with a certain weight between the

nodes connected to each other, then these weights are updated to approach the desired

output at each step of the training process, allowing the model to give more accurate

results. The update process is provided by calculating gradient descent by taking the

derivative of the process there. Thanks to this gradient descent, it is decided how the

weight should be updated and it is increased or decreased accordingly in the simplest

way. During the training process, the result for each input and the required result are

compared, and then a difference is calculated. Then, using this difference, gradient

descents are calculated and the weights of the connections between the nodes are

updated. As a result, when the training process is over, this model, whose weights

have been created before, gives a new test data to this model as an input and the result

it reaches in the output layer is the desired result. We can summarize deep learning

in the simplest way like this. We can obtain larger models by using different models

in combination with each other.

2.3 Generative Adversarial Networks

Goodfellow et al. in 2014 [18] have introduced a new generative unsupervised learn-

ing neural network. GAN’s are specifically trained to learn a mapping G: z → X to

data distribution Preal on which they are trained, so that the network models and ap-

proximates the distribution Pmodel and is able to produce new data points that fall in

the data distribution Pmodel. A probabilistic generative model called generative adver-

sarial networks consists of two neural networks, a Generator, and a Discriminator that

compete in a min-max game. The Discriminator takes a data point X from Xreal and

Xfake as an input and predicts whether it is real (from training data) or generated by a

Generator (G(z)), where G(z) has a label of 0 and X has a label of 1. Generator G, on

the other hand, takes a random noise vector z from a preset latent space z −→ Z as an

input and generates a synthetic data point G(z) that the Discriminator recognizes as

coming from the real data distribution Preal. The high level overview is illustrated in
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the figure 2.1. Because these two networks are connected, during the training both are

improving in their tasks through back-propagation. The Generator becomes better at

producing synthetic data in a way that the Discriminator gets fooled into predicting it

as real, while the Discriminator gets better at distinguishing real from synthetic data.

During the training, a Generator and a Discriminator play the min max game with a

value function V (G, D), which is an objective of the GAN, as formulated in equation

2.1:

MinGMaxDV (G,D) = Ex[log(D(x))] + Ez[1−D(log(G(x)))] (2.1)

GANs, or Generative Adversarial Networks, are a type of generative modeling that

use deep learning techniques such as convolutional neural networks.In machine learn-

ing, generative modeling is an unsupervised learning job that entails automatically

identifying [52] and learning regularities[53] or patterns[54] in input data such that

the model may be used to create or output new instances that might have been drawn

from the original data-set. GAN’s are a clever approach to train a generative model

by identifying the problem with two sub-models as a supervised learning issue: the

model that we train to generate new models and the model that tries to categorize in-

stances as real (from the domain) or as false (generated). In zero sum games, the two

models will be trained jointly in adversarial ways until about half the time is tricked,

meaning that the model Generator creates believable instances. GANs, in essence,

generate their own training data. The Generator will begin to produce higher-quality

output as the feedback loop between the adversarial networks continues, and the Dis-

criminator will grow better at detecting falsely manufactured data.
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Figure 2.1: GAN’s Structure [35]

Defining the intended end result and gathering an initial training data-set based on

those parameters is the first step in constructing a GAN. This data is then randomized

and fed into the Generator until it achieves basic output accuracy.

The produced pictures, together with real data points from the original concept, are

then put into the Discriminator. The Discriminator sorts through the data and assigns

a probability between 0 and 1 to each image’s genuineness (1 correlates with real and

0 correlates with fake). The success of these values is manually checked, and the

process is repeated until the desired result is achieved.

GANs are an exciting and quickly evolving field that promises to create generative

models that are capable of creating realistic examples across a range of problem fields,

particularly in image-to-image translation, for example in translating pictures in sum-

mer to winter and day after night.

2.3.1 Evolution of Generative Models

There is no common approach to evaluating and comparing generative models, which

is an ongoing research area. The likelihood is the default metric because the GAN’s

objective function is a binary cross-entropy. The main concept is to create a func-

tion that is proportional to the quality of the photographs generated. Based on the

estimation of the distribution of the real image embeddings in the Discriminator, the

approach constructs the likelihood function [63]. Then, using the embeddings of the

Discriminator, this function can determine the likelihood that an image corresponds
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to the learned data distribution Pdata. Models can, however, have a high probability

but suffer from issues such as mode collapse (section 2.3.3).

However, there are a few alternative options. For example, in [32], they conducted an

experiment with human annotators in which they were asked to compare created and

actual photographs and try to discern between them. However, when human annota-

tors are weary or unmotivated, they are more likely to make mistakes. Furthermore, if

the photographs contain fuzzy or confusing objects or patterns, this strategy becomes

more difficult for humans.

The Inception score is an option provided in [32]. The conditional label distribution

P(y | G(z)) is calculated using the pre-trained Inception neural network model on the

generated images. This label distribution P(y | G(z)) should have low entropy if the

image contains meaningful items (so that the Inception model is more certain about

what it identifies in it) (so small uncertainty). We wish to have a variety of generated

images, in addition to photographs with relevant objects. That is, the label distribution

among different generated samples must have a high entropy. Researchers in [32]

introduce metric by integrating these two criteria as follows:

exp(ExKL(p(y|x)||p(y))) (2.2)

2.3.2 Instability of Training GAN’s

GAN training is a difficult and insecure procedure with no systematic approach to

solving the problem. There are several reasons for this, the most important of which

is that the Generator and Discriminator are trained individually without a unified loss

function, and one of them might be over-trained in comparison to the other. Another

problem is the lack of a sufficient metric for evaluation. Because we don’t know

anything about how well the network is operating based on the actual loss. Low loss

of a Generator, for example, can indicate either that the Generator is good or that

the Discriminator is terrible, resulting in poor Generator training while fooling the

Discriminator with bad data. Furthermore, there is no method to identify when the

learning procedure should be stopped or to compare different models. However, there
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are a number of approaches that can help to stabilize the training:

• Normalizing inputs between -1 and 1

• Loss function can be modified. Ez[1 − D(log(G(x)))] term of GAN equation

should be updated Ez[D(log(G(x)))]

• Rather than using a uniform distribution, sample a noise vector z from the nor-

mal distribution.

• Separate batches of real and fake data were used to train the Discriminator.

• If the Discriminator or Generator’s loss becomes too small, stop training them.

• Add noise to the Discriminator’s inputs and/or to the Generator’s layers with

Gaussian noise.

• In the Generator, use dropout (50 percent).

• Using Adam optimizer [36]

2.3.3 Mode Collapse

The effect of mode collapse occurs when the Generator produces the same or nearly

the same output for any given noise vector from latent space z. This occurs because

the Generator learns to produce a single output that is constantly deceiving to the

Discriminator. When the output is different but only by a slight fraction, it is called

partial mode collapse. Normally, we would want as many different outputs as feasi-

ble. However, it is frequently noticed that data diversity and quality are sometimes

mutually exclusive. The addition of label smoothing is one technique proposed in

[30]. That is, instead of using the labels l = 0 and l = 1, try using the new labels l =

0.1 and l = 0.9.

Typically, you’ll want your GAN to generate a wide range of outputs. You might want

a distinct face for each random input to your face Generator, for example If a Genera-

tor provides a very believable result, however, the Generator may learn to exclusively

produce that output. In fact, the Generator is continually striving to discover the one

14



output that the Discriminator thinks is the most believable.The Discriminator’s best

technique is to learn to always reject the same output (or a small set of outputs) if the

Generator starts producing the same output (or a small set of outputs) over and over

again. However, if the following generation of Discriminator becomes stuck in a local

minimum and fails to identify the optimum strategy, the next Generator iteration will

find the most feasible output for the present Discriminator far too easily.

Each iteration of the Generator over-optimizes for a specific Discriminator, and the

Discriminator never learns how to escape the trap. As a result, the Generators alter-

nate between a limited number of output kinds. Mode collapse is the term for this

type of GAN failure.

2.3.4 Wasserstein Generative Adversarial Networks

Wasserstein generative adversarial network (WGAN) is a form of GAN introduced

in a publication by M. Arjovsky et al. [25] in 2017 that addressed the challenges of

training stability and loss function interpretability. Furthermore, it has been discov-

ered that WGANs are extremely vulnerable to mode collapse.

The Generator Equation for GAN:

∇θg

1

m

m∑
i=1

log(D(G(z(i)))) (2.3)

The Generator Equation for WGAN:

∇θ
1

m

m∑
i=1

f(G(z(i))) (2.4)

The Discriminator Equation for GAN:

∇θd

1

m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))] (2.5)

The Critic Equation for WGAN:

∇ω
1

m

m∑
i=1

[f(x(i))− f(G(z(i)))] (2.6)
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The goal of GANs is to minimize f-divergence (the distance between two distributions

= Pmodel and Pdata) over region D in order to learn the distribution of the data Pdata).

In the min max game, this convergence in classical GAN is understood as minimizing

Jensen Shannon (JS) or KL divergence. The authors of the publication [25] discuss

the shortcomings of such metrics and propose that Earths Mover’s/Wasserstein dis-

tance be used instead. In a physical world metaphor, this distance metric could be

expressed as determining how much work is required to transfer one distribution to

another, which is equal to the amount (mass) multiplied by the distance traveled. To

put it another way, it seeks to find the smallest/easiest route to get from one pile to

another (learned distribution Pmodel to the real distribution Pdata). The authors of the

paper show that there are some distributions for which KL or JS divergence fails to

find a solution but EM distance does.

The following are the major architectural differences in the WGAN:

• The output of the Discriminator is no longer sigmoid and no longer represents

the probability.

• The difference between the generated and real samples is the Discriminator

loss.

• The Discriminator is trained n times more than the Generator (n = 5 according

to the paper).

• Weight clipping: Using 1-Lipschitz in the Discriminator weights to force them

to have small values centered around zero.

The research shown that utilizing Earth’s mover’s distance as a candidate for the

divergence of the two distributions is a strong candidate. Weight clipping, on the

other hand, causes the weights to be pushed in one direction, and clipping them can

sometimes result in loops. This issue was addressed in [26] by introducing a more

advanced WGAN.
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Figure 2.2: WGAN’s Structure [35]

2.3.5 Wasserstein Generative Adversarial Networks with Gradient Penalty

The Wasserstein generative adversarial network with the gradient penalty [26] (also

known as upgraded WGAN) solves the problem of weight clipping in the Discrim-

inator by removing it and replacing it with the gradient penalty. Instead of clip-

ping the weights, it penalizes the Discriminator’s gradient with respect to the input.

Ltotal = Lreal +Lfake +LGP is the total loss function of an upgraded GAN. Gradient

penalization occurs by itself, as discussed in [17], because it is included in the general

loss function. As a result, the authors advise against using batch normalization. For

the critic (Discriminator in WGAN), batch normalization is avoided . Correlations

between samples in the same batch are created via batch normalization. Experiments

show that it has an effect on the gradient penalty’s efficiency. Some new cost func-

tions, whether by design or not, include a gradient penalty in the cost function. Some

of it is based only on empirical evidence that models misbehave as the gradient rises.

Gradient penalty, on the other hand, increases computational complexity that may or

may not be desirable, but it does result in higher-quality data.

For past implementations such as vanilla GANs, DCGANs, and WGANs, Batch Nor-

malization was utilized to stabilize the training process. Batch Normalization, on the

other hand, has an impact on the mapping of the input to the output since it causes

association between samples from the same batch. Because WGAN-GP penalizes

the norm of the critic’s gradient for each of its inputs independently, it replaces Batch

Normalization with Layer Normalization.
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2.4 Active Learning

To train with decent results, most supervised machine learning models require a sub-

stantial amount of data. Even if this remark appears simplistic, most firms struggle to

offer this data, particularly tagged data, to their data scientists. The latter is necessary

for every supervised model to be trained and can constitute a major bottleneck for any

data team. Most of the time, data scientists are given large, unlabeled data sets and

asked to train high-performing models on them. In most cases, the amount of data

is too large to manually categorize, making it difficult for data teams to train good

supervised models with it.

The technique of prioritizing the data that has to be labeled in order to have the most

influence on training a supervised model is named as Active learning [70]. Active

learning can be utilized in instances when there is too much data to label and it is

necessary to prioritize labeling the data in a wise way.[72]

The main hypothesis in active learning is that if an algorithm can choose the data from

which it wishes to learn, it is more effective than standard methods with significantly

fewer training data [71]. These are jobs that entail acquiring a huge amount of data

that has been randomly sampled from the underlying distribution and using that data

to train a model that can make a prediction. This is what you’d call a normal approach

of passive learning.

The collection of labelled data is one of the most time consuming tasks in passive

learning. There may be limiting factors in many settings which impede the collection

of large volumes of labelled data. Take the pancreatic cancer study as an example.

You may want to predict if a patient has pancreatic cancer, but you could only have

the opportunity to perform a few more exams to gather features, etc. In this case,

we can choose patients based on certain criteria rather than randomly selecting them.

One example could be the drinking of alcohol over forty years in the patient dataset.

This criteria must not be static, but may change according to previous patients’ re-

sults. This might be your new criteria if, for example, you realize that your model is

good at predicting pancreatic cancer for those over 50 years of life, but strive to pre-

dict exactly for people over 40-50 years. The selection process of those patients (or

more generally instances) is called active learning based on the data we have gathered

to date.
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2.4.1 Steps for Active Learning

In the literature we are examining several approaches to how data points are priori-

tized in labeling and how they are iterated. Even though, only the most common and

simple methods will be presented. The steps to use active learning on an unlabelled

data set are:

• The first thing that has to be done is to properly label an extremely small sample

of this data.

• Once a small number of labeled data is available, the model needs to be trained.

The model will of course not be great, but will help us understand which pa-

rameter space areas must first be labeled to improve it.

• The model is used, once the model is trained, to predict the class of every

unlabeled data point that remains.

• A score is selected based on the model prediction on each unlabeled data point.

There may be various score methods.

• If the best approach to prioritization of the labeling is chosen, it can be repeated

iteratively: A new model can be training on a new, label-based data set. Upon

training the new model with the data subset, the unlabelled data points can be

used to update priority scores to continue labelling. Thus the labeling strategy

can be optimized as the models improve and improve.

2.5 Generative Adversarial Active Learning

Generative adversarial active learning is a technique [31] that enables smarter selec-

tion of inputs in the training process, which is the basic working principle of active

learning, by using generative adversarial networks. Before explaining this selection

process directly, it is necessary to examine how a standard selection process works in

active learning under normal conditions. There is a sample pool with training data.

In each epoch, a certain number of samples are selected from this pool. This selec-

tion process should be chosen among the data that is closest to the boundaries of the

19



classifier and the model is uncertain, which can be done with different techniques in

the literature. After this selection process takes place, this data needs to be labeled.

It can be said that the main purpose of active learning is to reduce this labeling cost.

Because instead of labeling all of the data, it allows this operation to be performed

only for a specially selected subset of the model that has been determined to be most

useful for the model. In this way, it is possible to save a lot of development level and

labeling cost without sacrificing the self-development of the model.

However, in order for these useful data to be selected over the existing data set, there

must be sufficient informative data. This is not possible for every dataset because

datasets that are unevenly distributed or the number of data is very limited can be

used. Not every dataset is optimal and very usable. In these cases, training the model

is not easy even with standard active learning. This is where Generative Adversar-

ial Networks come into play. It has been seen that Generative Adversarial Networks

can basically learn from the training dataset and produce synthetic data, and this data

is produced as high quality and similar to real data as possible. This capability of

Generative Adversarial Networks is actually a very convenient way to expand limited

datasets and to contribute more to the development of models. In this way, we will be

able to obtain data in which the classifier will be much more uncertain. Even if this

data is synthetic, it is very close to the truth, so it will not cause a problem in terms of

similarity to the dataset, which is not actually in our dataset.

These artificial data produced allow much more data to be selected for the active

learning algorithm [31]. As the number of this data increases, it turns into a much

more instructive algorithm compared to the classical algorithm. Due to the nature of

the GAN, the informativeness level of the data increases, as it creates more realistic

data in each epoch. Basically, in the classical algorithm, the data that will develop

the model were chosen wisely, but the selection set was only as much as the training

sample pool, so the development of the model was limited to a certain level. However,

when Generative Adversarial Networks are included in the event, this data set is not

only limited to the sample pool, but this pool is supported by artificial data produced

by the Generator, and since the informative level of this data is very high, it greatly

increases the development of the model. Generative adversarial active learning can

be summarized in this way.
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CHAPTER 3

LITERATURE SEARCH

3.1 Types of Anomalies

Anomaly detection is basically a method that is eliminated in 3 different ways. Point

anomalies, contextual anomalies and collective anomalies.

3.1.1 Point Anomalies

Point anomalies, contextual anomalies and collective anomalies. The part called point

anomalies is simply a type of anomaly that occurs when a single specific point is

distant from other normal points in space in which the data is located. However, in

order to define this, the data must be in a format that can be defined in certain spaces

and the distance can be measured.

3.1.2 Contextual Anomalies

Contextual anomalies as the second type of anomaly. Contextual anomalies can be

basically defined as follows, if a data is defined as an anomaly in some cases and as

normal in some cases, that is, if the anomaly is determined according to the context

in which it is located and is evaluated as an anomaly, this type of anomaly is called

contextual anomalies. To illustrate this situation, for example, 3 degrees weather is

considered a normal air temperature in winter, if the weather is measured as 3 degrees

any day in July in the summer season, we consider this situation as an anomaly. This

is an example of contextual anomalies.
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3.1.3 Collective Anomalies

The last type of anomaly is Collective anomalies. In the case of collective anomalies,

some data alone do not indicate an anomaly situation, but when the data is combined

and the whole dataset is examined, we can infer that this situation is actually an

anomaly. To illustrate this situation, a person’s heart rate range can range from 60 to

150. If the 60 relaxing time pulse value , 150 can be considered as the exercise time

heart rate value. However, if the pulse rate of 1000 people rises to 150 and above

at 11 o’clock at night, this actually indicates an anomaly. Because it is unlikely that

1000 people exercise in the middle of the night, this situation may indicate a decrease

in oxygen level in the environment. Therefore, to summarize, collective anomalies is

a type of anomaly that occurs when data that do not appear as an anomaly alone point

to an anomaly when combined.

3.2 Anomaly Detection Methods

Anomaly detection techniques can be handled in many different ways and thus clas-

sified in many different ways.There are plenty of works done before [37] [38] [39]

[57] [64]. These classifications can be made according to algorithms or techniques.

One of the most comprehensive classifications is shown in the figure 3.1.
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Figure 3.1: "Different Type of Anomaly Detection Techniques"

But going over all of the classifications here may not make much sense. With a

more basic classification, the best practices of these methods and the best quality

studies made on these methods should be evaluated. When developing models for

anomaly detection, unsupervised methods are used rather than supervised methods

due to the lack of sufficient number and level of labeled data. The unsupervised

methods used are basically divided into three. The first is linear-based methods, the

second is distance-based methods, and finally, deep learning methods.

3.2.1 Linear-Based Methods

The most popular approach among linear-based methods is Principal Component

Analysis (PCA). Principal component analysis is basically a method of calculating

the projection of a multidimensional data in space to a lower dimensional space so

that the maximum variance is preserved. The line with the lowest average distance

to all points is determined from the multidimensional space of all points in the data.

Then another line is determined perpendicular to the first line and this process can be
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repeated as many times as desired. In general, a threshold is determined for this pro-

cess to converge, this threshold is determined according to the variance value. When

it falls below the threshold value, the process should be terminated, otherwise, this

process may not benefit. The lines obtained as a result are defined in a way that they

form the foundations of the space that the projection of the data will create. And the

data is updated so that all data are expressed here.

So how is this method used as an anomaly detection tool? PCA based anomaly de-

tection study [20] can be summed up as follows.The data that needs to be decided

whether there is an anomaly or not is converted into a designed space with new di-

mensions previously calculated. Then, the distance of this projected point to all lines

of space in reduced dimensions is calculated and the average distance score is ob-

tained. If this score is above the previously determined threshold, this actually means

that the data given in the space with reduced dimension number is expressed farther

from the original data. This situation is interpreted as that data is an anomaly.

However, this method has different problems. First of all, in order for this method

to give correct and healthy results, the training data used should consist of highly

correlated points. If this situation is not provided, the fundamental lines in the reduced

space cannot be selected with good quality. In addition, the data used is expected to

be in the Gaussian distribution format, otherwise the data will be very scattered and

there will be no healthy representation in the reduced space. As a result, Principal

Component Analysis may not always be a very good method for anomaly detection

due to the problems mentioned above.

3.2.2 Distance Based Methods

Among the Distance-based methods, the most popular approach is K-Nearest Neigh-

bor [34]. The nearest neighbors algorithm is considered one of the most basic ma-

chine learning algorithms. The basic working principle of the algorithm can be

thought as follows; First of all, a value of k is determined and all subsequent steps

will proceed in relation to this k value. When a new individual data arrives, the dis-

tances to the old points are calculated. In general, the distance measurement method

here is Euclidean distance, but Manhattan distance and Minkovski distance methods
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can also be used. Then, from the calculated distances, the nearest k points to the new

point are found. The weighted average is taken according to the distances of this k

point. In this averaging process, the farther should have a lower weight, mathemat-

ically it can be thought of as a 1
d

ratio. Then, the location where the new point will

be found from the space of the model as a result of this proportioning is calculated

and added to the space as a new point. When the next point is reached, this process

is repeated, and all previously placed points should be checked, and the operation of

the algorithm should continue. Due to the natural functioning of the algorithm, the K

nearest neighbors algorithm is an algorithm that does not require training. The testing

and training process can be thought of as jointly occurring.

If we need to evaluate the K nearest neighbors algorithm as an anomaly tool [21], we

can explain what differences it exhibits as follows: again, we need to find the position

of the new point as if we apply the standard operation of the algorithm, and while

applying this process, we need to find a total distance by taking the weighted average

of k nearest neighbors. Using these distances, an anomaly score is calculated in any

way we want (the simplest method is the addition process). Then we compare it with

a threshold value that we previously defined, if this anomaly score is higher than our

threshold, we can evaluate the new incoming data as an anomaly.

But KNN is an algorithm that starts to slow down very quickly as the data-set grows.

Also, similar to this situation, if the data has a multivariate structure, it becomes

increasingly difficult to determine the location of the new point. Also, if the data ex-

presses different features in different units, it becomes difficult to use this algorithm.

If the features of the data are in different ranges, the distance calculation algorithms

cannot give accurate results. All the features should be in the same scale if you want

to calculate the effects and distances correctly. It is necessary to work on such data.

In addition, it is necessary to determine the value of k as optimum, if it is determined

as 1, it may be overfit, if it is determined as very large values, it may not give Dis-

criminatory results. In addition, one of the biggest problems of this method is that it

has problems with imbalanced data, if there is an outlier, this algorithm is very sen-

sitive in the training set, which affects the algorithm and prevents other results from

being healthy. As a result, this method is not always seen as an efficient algorithm for

anomaly detection due to the reasons mentioned above.
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3.2.3 Deep Learning based Methods

Finally, the most popular anomaly detection methods used today are deep learn-

ing based methods[55].The most popular two algorithm of the deep learning based

anomaly detection methods is Auto-encoders and Generative Adversarial Networks.

3.2.3.1 Auto-encoder based Anomaly Detection

Auto-encoders are one of the most frequently used of these methods. Auto-encoder

method can be described as one of the most basic methods of deep learning algo-

rithms. In fact, when considered simple, the auto-encoder is a compression and re-

building mechanism that consists of two parts. Its two basic parts are defined as

encoder and decoder. Encoder tries to bring the given data from the multidimensional

expression method to the data size on the latent space, and it tries to understand only

the important features of the data in less dimensions and compresses it in this way.

Decoder, on the other hand, tries to generate data in the size of real data from the

vector expressed as compressed in latent space. The dimensions of the data produced

by the decoder as a result and the data input to the encoder must be equal. The layer

in the latent space is called hidden layer. The main purpose is to use the hidden layer

as a bottleneck and force it to extract important features of the data. When defining

the model, if the hidden layer layer is defined as n layers instead of a single layer,

this model is called a deep auto-encoder. In the training phase, the reconstructed data

and the original form of the data are compared and a loss value is calculated from the

differences. This calculated loss value is called reconstruction loss.

Basically, when the method is examined, it can be considered as a dimension reduc-

tion method and it is very similar to the Principal Component Analysis method in this

regard. But the main difference between them is that Principal Component Analysis

is a linear dimension reduction method, while Auto-encoders are a non-linear method

of reducing the dimensions of the data. If the activation function for the Auto-encoder

is defined as linear, this method actually converges to Principal Component Analysis.

If we evaluate auto-encoders as an anomaly detection tool [22], in fact, a very differ-

ent technique is not used from other methods. Encoder and Decoder models come out
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as sufficiently advanced models after sufficient training. After a new data arrives, it is

first encoded and then this data is given as input to the decoder from the latent space

and reconstructed. A reconstruction loss is calculated between the resulting data and

the original data. It is then compared with a predetermined threshold value. If this

loss value is higher than the threshold value, this data is considered an anomaly.

Auto-encoders are actually a very data dependent method, even if they are the most

capable of the algorithms mentioned earlier. If the training data cannot express the

world to be tested sufficiently, it may not give very efficient results. Also, auto-

encoders need a lot of data to be trained. During the training phase, the model tries

to express the data in less dimensions, but tries to preserve all its features as much as

possible, but does not give information about which feature is more important or not.

For these reasons, although it is superior to other algorithms for anomaly detection,

there may be situations where it is not efficient.

3.2.3.2 Generative Adversarial Network based Methods

Another deep learning algorithm that has been used recently is Generative Adversarial

Networks. Before using it as an anomaly detection tool, it is necessary to talk about

what a generative adversarial network is. [18] The generative adversarial network is

actually a structure based on two different models trying to fool each other in a way

that they mutually provide developer output. It consists of two different models in

basic structure. The name of one is defined as Generator and the name of the other

is defined as Discriminator. Generator develops as a model that tries to produce data

very similar to real data. While doing this, it uses a random latent vector basis to

produce data in the size of the real data and the values it should be. It tries to learn the

distribution of real data during the training process, and a model is formed that can

produce data suitable for the distribution of real data as a result of adequate training

in optimum condition.

At the same time, the Discriminator takes on a different task. Discriminator takes

a piece of data in the dimensions of the real data as input, and the provider of this

input is undertaken by both the real training data and the fake data produced by the

Generator. Discriminator’s task is to understand whether the source of the incoming
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data is real training data or a fake data originating from a Generator.

However, in this case, the improvement of one model means that the other model

is actually weak because the strong model becomes able to deceive the other. In

fact, this situation constitutes the main idea of mutual development and development

that underlies the general idea of GAN. The two models mutually contribute to each

other’s development as if they play a minimum maximum game with each other.

After the training phase is completed, we have two different models, one of which is

Generator: a model where we can produce random data very close to the real data,

Discriminator: a model that can detect the existence of this difference and perceive the

fact that when data is different from the real data. This method can be regarded as the

state of the art in creating new data in a very realistic way. GAN methodologies used

for many different applications it is proven many studies[46][47][48][49][50][51].

However we focus on anomaly detection studies and tasks.

It has proven to be an important tool for anomaly detection, even if it has pre-

viously been used mainly to generate new pictures or to transfer data in different

domains[56][58] [65] to each other.Also literature has different studies [59] of GAN’s

as anomaly detector. First of all, it is stated in this study [23] how the GAN model

will turn into an anomaly detection tool. The system here is first designed to gener-

ate mutual input. Generator is trying to produce a copy of the original data using a

random latent vector. Discriminator takes both the data produced by the Generator

and the real data as input and tries to predict which data is real data and which data

is artificial data. In the training process, the Discriminator and Generator develop

each other mutually. After sufficient training, if the Discriminator detects a data as

fake , this data can be evaluated as an anomaly. Likewise, when the distance between

a data produced by a sufficiently trained Generator and the suspicious data is cal-

culated, if this distance is above a certain threshold, this data can also be evaluated

as an anomaly. After the two networks have turned into separate anomaly detection

tools, we have been able to use these two together or separately for anomaly detec-

tion. In this study, two networks are used separately, but a total score is calculated and

it is decided whether there is an anomaly or not. Coefficient values are determined

separately for Discriminator and Generator, the sum of these two values must be 1.

Then the values provided by the two networks are multiplied by coefficients. The two
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results we obtained are added together and the value we have obtained in total can

be considered as our common anomaly score. Anomaly is determined by comparing

this score with our Threshold values. As a result, two networks can produce separate

anomaly scores, in this way, a total anomaly score is obtained and GAN can be used

as an anomaly tool.

One of the other fundamental studies on this topic is Anomaly Detection with Gen-

erative Adversarial Networks for Multivariate Time Series [24]. In order to explain

the related study, it is necessary to explain the Long Short Term Memory mechanism

first. When the data is evaluated as time series, historical data can affect the data in

the present time. Therefore, it is necessary to predict future data or evaluate the past

while producing new data. Multiple methods are used to evaluate historical data in

the machine learning world. Recurrent Neural Network and Convolutional Neural

Network mechanisms can be given as examples. However, the study shown as state

of the art on this subject is the Long Short Term Memory method. Basically, while

designing the model, each node of the model is designed dependent on the previous

node and a data sharing is provided between them. In general, when sharing this

data, the sigmoid function is chosen as the activation function. But Relu and Leaky

Relu functions can also be selected. The logic of the activation function is as follows,

the result of the activation function varies between 0 and 1, if it is 1, it ensures that

the data passes completely, if it is 0, it prevents the transition completely. With the

activation function, nodes connected to each other transmit data from the past to the

current node, and since the newest of the past nodes transmits data with the highest

coefficient and the ones in the past with a much less coefficient, the dependence on

the past is set up correctly. How many nodes were interested in the past can be set

parametrically and this data is called window size. As a result, LSTM method can be

integrated into networks and is a method used to obtain efficiency in time series data

by evaluating historical data.

In this study, instead of using a standard Generator and Discriminator network, a Long

Short Term Memory based network was built. These networks are then organized to

be used as Generator and Discriminator. In this way, the data can be evaluated as a

time series instead of being meaningful alone. Only the residual loss and reconstruc-

tion loss that occur on the Generator side become available efficiently for anomaly
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detection. The model is developed using these obtained loss values. Anomaly de-

tection is made by using the anomaly detection method applied in the standard GAN

structure over the model that has reached its final form as a result of sufficient training.

The biggest difference is that historical data is evaluated over LSTM while training,

and in the same way, the data becomes meaningful with the historical data in the in-

ference section and anomaly detection is made in this way. A single data is not taken

as input, but historical data is evaluated as a total. Basically, the difference from the

standard Gan Anomaly process can be defined as the LSTM based infrastructure.

In addition to these issues, there is a very common problem in the GAN method.

The name of this problem is the Mode Collapse problem. In fact, it is basically

the problem of Generator going on a single line and generating uniform data due to

this, losing data diversity. A study to solve this problem is [25] [26] Wasserstein

GAN and Wasserstein GAN with Gradient Penalty. In this study, unlike the standard

GAN, the Wasserstein distance method is used in distance calculations. This method

is basically based on finding the minimum number of moves one of the data sets

containing two different distributions can be transformed into the other. In addition,

Discriminator can be trained much faster, as a result, the Generator tries to move

forward from the data piece it is strong and brings the mode collapse problem with it.

In order to prevent this, gradient penalty is used to penalize situations where the data

is not used completely, thus Generator mode can be blocked without falling into a

collapse state. As a result of this study, the model can escape from the mode collapse

problem compared to the standard GAN, and in addition to this, even if Discriminator

completes its development, Generator can continue to learn. In addition, by using

Wasserstein distance calculation, the situation such as not being able to converge is

prevented. [33] In Haloui’s study Wasserstein Gan is used for the anomaly detection

Another study on this subject is Efficient Gan Anomaly [27]. Basically, this study

was built on the infrastructure of another study without turning it into an anomaly

detection tool. The name of this work is Bidirectional Generative Adversarial Net-

works. This work, called BiGAN [28] for short, differs from the standard Generative

Adversarial Networks. This difference basically occurs with the inclusion of another

network in the model, while Generator and Discriminator continue to develop each

other mutually, a new Encoder network is included in the environment. Generator

30



tries to generate fake data from a random latent space vector, while the Encoder plays

the opposite role of Generator. Trying to generate latent space vectors from real

dataset data. In addition to this work, the role of Discriminator needs to be updated.

Discriminator not only takes fake or real data as input, it also takes latent space vec-

tors as input. Thus, the clusters to be decided by the Discriminator are defined as

follows; Real data with fake latent space vector or fake data with real latent space

vector. When the training process is over, we have a Generator network that can

produce realistic data and an encoder network that can express a real data in latent

space.

There is no difference in the training part in the "Efficient Gan Anomaly" study, which

creates an anomaly detection tool using the BiGAN method. In the inference part, it

compresses the incoming test data using the advanced Encoder network in hand, then

the latent space vector obtained becomes an input for the Generator, and the Gener-

ator network generates a new data using this vector, the obtained data is compared

with the original test data and the difference is calculated. In addition, the Discrimi-

nator network turns into a natural anomaly detection tool like in other studies. A total

anomaly score is obtained by multiplying the values obtained by these two methods

with the determined coefficients. If the calculated anomaly score is above the deter-

mined threshold value, the data is considered as an anomaly.

Another study among the anomaly detection studies conducted with the Generative

Adversarial Network is the study named GAN-omaly [29]. It was used in Auto-

encoders as an extra for Generator and Discriminator. In this way, the author tried to

get the good features of two different deep learning algorithms, and a more complex

network model was obtained by integrating the two algorithms. This model basically

includes one encoder, a decoder and a Generator consisting of an encoder, and a

Discriminator. The first encoder (encoder, which is part of the Generator) encodes

the incoming data and the resulting latent space vector enters the decoder part of the

Generator as input. This network outputs a data in the size of the original data, this

data is used as input to two different networks, the first is the Discriminator network

and the second is the other encoder network. The second encoder network converts

the data back to the latent space vector and a loss is calculated by comparing it with

the first latent space vector, and it improves itself by using the corresponding loss
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value. Generator and Discriminator improve itself in the same way as in other models.

When we evaluate this study as an anomaly detection tool, we first insert the data into

the encoder part of the Generator and save the resulting latent space vector, then we

input the relevant latent space vector to the decoder part of the Generator. We encode

the result produced by Generator thanks to our other encoder network and obtain a

second latent space vector. Then we compare the first latent space vector with the

latent space vectors we have produced last. We compare the benchmark result with

the threshold value we have determined before. If it is higher than our threshold

value, we consider the data as an anomaly, if it is less than the threshold value, we

understand that it is normal.

Another method solving anomaly detection problem as a binary classification prob-

lem, by generating artificial anomaly data, which also plays a major role in our

study.[30] The difference of this method from the standard artificial data generating

methods is that it can produce much more realistic and more qualified artificial data

by performing this process with GAN. In fact, in this method, GAN networks take

two different roles. Generator tries to produce anomaly data that is very close to the

real data instead of trying to produce an exact replica of the data itself. Discriminator

acts as a classifier trying to understand whether the incoming data is coming from

real data or fake data. In this case, the Discriminator turns into a natural anomaly

detection classifier. To train a classifier under normal circumstances, there must be

sufficient data for each class in the training data. However, anomaly data are not

frequently encountered data, so we increase the number of anomaly data by using a

high-fidelity Generator. In this way, our classifier can improve itself much better. In

addition, due to the natural working principle of GAN, Generator will start to pro-

duce more realistic anomaly data at every stage of training, and these data will turn

into much more informative data for the Discriminator. In this way, it will be able to

detect an anomaly by combining active learning logic with GAN.[30], [31]
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CHAPTER 4

METHODOLOGY

In this section, we detail our methodology. In order to fully explain our methodol-

ogy, let’s first explain the working principle of generative adversarial active learning

(GAAL) based anomaly detection study [30]. First, consider the anomaly detection

problem as a binary classification problem. There are two different classes and these

classes are labeled as anomaly data and normal data. The main purpose of the study is

to determine a division boundary for these two different classes and to draw this divi-

sion boundary as sharply and accurately as possible. In order for a classifier to create

this boundary more accurately, it should be trained with sufficient data belonging to

each class. Otherwise, the created boundary is quite rough and cannot be classified

at the desired levels. However, as previous studies clearly show, there is a dramatic

difference between normal data and the number of abnormal data in a standard data

set. This has the potential to be a big problem when the anomaly detection problem

is considered as a classification problem. In addition, since we do not have prior label

information for the data, we must be able to detect anomaly data during the training

process of the model. To solve this problem, all of the training data is evaluated as a

uniform distribution and the data calculated at a distance above a specified threshold

value is evaluated as anomaly. However, this situation becomes more difficult as the

size of the data grows.Because it is more difficult to express high-dimensional data

with a uniform distribution, there may be situations that do not converge, and it is

much more difficult when making similarity measurements. Due to the insufficient

number of anomaly data, the necessary information for drawing the division bound-

ary cannot be learned sufficiently by the model. When these operations are not done

correctly enough, the classifier can find results that are very different from what is

desired. In order to solve this problem, it is necessary to support the model with

33



artificial anomaly data. Standard Artificially Generating Potential Outlier (AGPO)

based methods are obtained by randomly generating the anomaly data in this training

data. However, this amount may still be insufficient for high dimensional data like

Figure 4.1. If we make the number of anomaly data as high as possible, eventually

our classifier will get much sharper division boundary if we cover every place outside

the Gaussian distribution space, which our data describes as normal, with potential

anomaly data.

To do this, we have to generate an exponential number of potential anomaly data.

The more informative this potential anomaly data is, the more accurate and sharp our

classifier is. The GAAL for unsupervised anomaly detection [30] study solved this

problem using generative adversarial networks. In our study, as a novelty, we gener-

ate the potential anomaly data with the Improved version of Wasserstein Generative

Adversarial Network (WGAN-GP) [26] to be more informative, thus making the di-

vision boundaries of our classifier more accurate and sharp. To illustration of this

algorithm can be seen in figure 4.2.
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Figure 4.1: A illustrates real data, B illustrates AGPO based generated potential

anomaly points, C illustrates GAAL based generated potential anomaly points

Before going into the details of this method, the working principles of Generative

Adversarial Networks should be examined. Generative adversarial networks are one

of the most popular deep learning algorithms of recent times. This method can be

seen as two networks playing a min-max game mutually. When examined in more
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detail, we can evaluate the generator network as a network that tries to produce real-

like data by using a noise vector as an input. In this case, the Discriminator network is

trying to understand by using the data as input, calculating the probability of whether

the related data is generator or belongs to the real data set. G represents the Generator

and D represents the Discriminator. Also x randomly selected data from real data and

z represents the noise vector for the Generator. The GAN optimization formula can

be summed up mathematically as like Equation 4.1.

minGmaxDV (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (4.1)

In our study, similar to the GAAL study [30], the generator using the noise vector

as an input was assigned to produce data with potential anomalies. Discriminator,

on the other hand, distinguishes between the data produced by the generator and the

real data, and in fact, it undertakes the task of creating a division boundary between

anomaly data and normal data. In this case, we can qualify Discriminator as a clas-

sifier, and as a result of sufficient training, a Discriminator that has shown sufficient

development turns into an anomaly data normal data classifier. In the early stages of

training, our classifier cannot draw a very clear division boundary, as the generator

cannot yet produce more realistic potential anomaly data. However, as the genera-

tor learns the distribution of real data much better in the later stages of the training

process, it begins to produce much more realistic data. This realistic data produced

becomes much more challenging for the classifier, which actually means that the

data are much more informative. In this way, the classifier starts to draw its division

boundary much more sharply and accurately and determines its own boundaries to

cover normal data in the smallest volume. forcing. This process is basically realized

by the fact that the data produced by the generator in each training step is more re-

alistic. More realistic artificial data means more informative potential anomaly data,

which means that we actually increase the level of information at each training step,

which is the active learning process itself. These anomaly data, which are created

more rationally than the standard artificial anomaly data generating methods (ran-

domly generated ones), further enhance the capabilities of the classifier. We can

obtain a much sharper division boundary between anomaly and normal by obtaining
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more informative data by using the Generator’s capacity to learn the distribution of

data at a very high level. In addition, with this method, we can use the ability of the

GAN model to learn the structure of the data strongly in high-dimensional data, and

we can create an anomaly detection tool that is much less affected by the size of the

data.

Figure 4.2: GAAL based anomaly detection algorithm. The red dots illustrates that

anomaly points, the blue dots illustrates normal points, the grey ones illustrates po-

tential anomaly points

But the biggest problem facing this study is the mode collapse problem. What is mode
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collapse problem? If the generator starts producing the same output (or a small set

of outputs) over and over again, the discriminator’s best strategy is to learn to always

reject that output. But if the next generation of discriminator gets stuck in a local

minimum and doesn’t find the best strategy, then it’s too easy for the next generator

iteration to find the most plausible output for the current discriminator. Each iteration

of generator over-optimizes for a particular discriminator, and the discriminator never

manages to learn its way out of the trap. As a result the generators rotate through a

small set of output types. This form of GAN failure is called mode collapse. In or-

der to solve this problem, a different technique was applied in the GAAL study [30].

Instead of generating potential anomaly data with a single Generator, they tried to

prevent the mode collapse problem by using the number of generators as a parametric

value and using more generator networks. However, in order to use this solution, it is

necessary to choose the right number of generators and this number is directly related

to how many clusters the data consists of. Since we do not have prior information

about the data, it is difficult to decide on the number of generators and to guaran-

tee that any of the selected generators will not encounter the mode collapse problem

again. In this study, we build a similar structure to GAAL study [30], with Improved

Version of Wasserstein Generative Adversarial Network (WGAN-GP) as a novel to

solve this problem and aim to increase data realism and informativeness while avoid-

ing the mode collapse problem. However, due to the natural structure of WGAN-GP,

it is not enough to use WGAN instead of GAN while this process is taking place, we

also have to modify the general structure accordingly.
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Figure 4.3: The feedback mechanism of our structure.

To explain the new structure in figure 4.4 is illustrated our general structure. This

structure does not contain only a generator and a discriminator as in the standard

GAAL structure. Because in the standard GAAL structure the discriminator is used

as a classifier, The discriminator is actually assigned as a distinguish mechanism be-

tween fake data and real data. In the GAAL structure, this classifier actually works as

a classifier between anomaly and normal data. In order to prevent the mode collapse

problem, which is the most important problem of this structure, when we try to build

a structure again with Wasserstein GAN version of GAAL, it is not enough to simply

remove the standard GAN structure and replace it with Wasserstein GAN.

Because in the standard GAN structure, the cost function used to understand how

realistic the data produced by the generator is is KL divergence or JS divergence.

Let’s call the distribution of real data P and let’s call the estimated data distribution

Q, also assume that the distributions of these data are Gaussian. When the difference

between the estimated distribution and the distribution of the actual data is 0, these

two data sets are considered to be the same. As the mean of Q increases, the diver-

gence increases. The gradient of the divergency will eventually diminish. We have
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close to a zero gradient, i.e. the generator learns nothing from the gradient descent.

One of these cost function methods, KL divergence that mathematically illustrated in

Equation 4.2, calculates it with a logarithmic-based formula and this method does not

provide a symmetrical result. In order for this formula to give symmetrical results,

this method has been updated by taking the average of two different distributions and

calculating the sum of the distances of the distributions to this mean as mathemati-

cally illustrated in Equation 4.3, this method is also called JS divergence.

DKL(P ||Q) =
N∑
x=1

P (x) = log
P (x))

Q(x)
(4.2)

DJS(P ||Q) =
1

2
DKL(P ||P +Q

2
) + (Q||P +Q

2
) (4.3)

WGAN solved the problem that the generator stopped developing due to the vanishing

gradient problem experienced by the cost functions mentioned above by proposing a

new cost function. The name of this proposed cost function is Earth-Moving Distance

(Wasserstein Distance). This method basically calculates the similarity between dis-

tributions based on the cost of transforming one distribution into another. However,

there may be an infinite method of converting one distribution to another. In this

method, the cheapest conversion plan that will enable one distribution to transform

into another is calculated. As a summary, the Wasserstein distance is the minimum

cost of transporting mass in converting the data distribution q to the data distribution

p as mathematically illustrated in Equation 4.4.

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[||x− y||] (4.4)

With this proposed [25] cost function, the WGAN study made the distance between

distributions measurable everywhere with a smoother gradient. In this way, the learn-

ing of the generator does not stop after a certain period of time and our model becomes

able to produce higher quality data. But this Wasserstein distance is highly intractable

as can be seen at Equation 4.5. This is why we need a 1-Lipschitz function to calcu-

late least upper bound. In this case, we get a very similar structure to the discriminator
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in our network, but here the results do not come from a sigmoid function, so we get a

score result directly instead of obtaining a probability. Therefore, this structure turns

into a network that generates a score about how realistic the data is. Along with his

new role, his name is used as a critic instead of a discriminator. But as a deficiency in

this critic network, f function has to be 1-Lipschitz. In order to provide this situation,

as a very simple method, WGAN clips the weights in the range of values specified

as hyper parameter. This clipping forces the model to provide Lipschitz constraint

so that the Critic Wasserstein calculates the distance. However, in some cases, very

realistic data cannot be obtained and the model is very dependent on hyper parame-

ters to solve this problem instead of clipping [26] WGAN-GP study proposes a new

technique, Lipschitz formula can be seen at Equation 4.6, a differentiable function f is

1-Lipschitz if and only if it has gradients with norm at most 1 everywhere. Therefore,

the gradient norms should be around 1. Instead of applying clipping, the WGAN-GP

penalized model if the gradient norm value moves away from the norm value 1. Thus,

we obtain a model that produces higher quality data.

W (Pr, PΘ) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex∼PΘ
[f(x)] (4.5)

L = ( E
∼
x∼PΘ

[D(
∼
x)]− E

x∼Pr

[D(x)]) + (λ E
∧
x∼P∧

x

[(||∆∧
x
D(
∧
x ||)2 − 1)2]) (4.6)

We use these studies on our anomaly detection model as follows: With the new cost

function proposed by the WGAN-GP study, the Critic network was included instead

of a Discriminator, which is different from a standard GAN structure. With this dif-

ference, as mentioned above, the Critic network does not produce its results as a result

of a sigmoid function, so it generates a scalar score and does not directly calculate

probability. When we evaluate this situation together with the GAAL study, it is not

possible to use it directly because the discriminator in the GAAL study [30] acts as

a classifier as a task, but instead of acting as a classifier, the Critic network is only a

score generator on how much the generated data is similar to the distribution of real

data. We want to produce more realistic data and therefore more informative potential

anomaly data, but we also want to approach the problem of anomaly detection as a

classification problem and obtain a classifier thanks to the discriminator.
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However, although WGAN-GP solves our first request, our second problem persists.

In order to overcome this problem, as a novelty, we designed our model to consist

of 3 different networks instead of only generator and discriminator. These networks

are designed to be Generator, Discriminator and Critic. However, in the working

mechanism here, we have slightly updated the development and feedback processes

of networks, not all inter-network connections are two-way. First of all, as you can

see from the Figure 4.3, we send the data generated by the generator as input to the

other two networks. Both the discriminator and the critic also take the data of the

actual data set as input. In this way, a generator plays a direct role in the development

of two different networks with the data it produces. However, the generator does not

receive direct feedback from the discriminator like the old GAAL structure during the

development process, it evaluates the scores produced by the Critic network as feed-

back in order to develop the generator and updates its network accordingly. In this

way, Generator can produce much more realistic data and these data become much

more informative potential anomaly data. The discriminator that develops itself using

this data and will turn into an anomaly-normal classifier as a result of adequate train-

ing. Similar to the old GAAL build, Discriminator develops itself with real data and

fake data. And it draws a division boundary between these two data. However, since

fake data is produced by supporting WGAN-GP method, it becomes more realistic

and more informative potential anomaly data. In each phase of the training, more

informative data will be given to the discriminator from the generator network, which

tries to produce more informative data than the previous round using the feed-backs

of the critical network. This situation is actually considered as a model that develops

itself with the logic of active learning, as more informative data are always selected

and produced as in the GAAL study. In this way, as a result of sufficient training, we

get a Discriminator trained with much more informative data than before. Then we

get this discriminator as an anomaly detection classifier with more reliable and high

accuracy results. At the same time, we prevent the mode collapse problem as the gen-

erator network is trained with the WGAN-GP [26] method. Therefore, the multiple

objective generative adversarial active learning [30] method used in the GAAL study,

to summarize simply, does not need to use n generators instead of one. In this way, we

both produce more informative potential data and get rid of the mode collapse prob-

lem. This results in a Discriminator network with sharper borders. A sharper division
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boundary makes the discriminator in the classifier task work better while detecting

more anomalies.

Figure 4.4: Our general structure.

If we want to summarize the logic and methodology of the study, we should first

consider anomaly detection as a classification problem. Then, as in standard GAAL-

based anomaly detection studies [30], the discriminator is developed as the first tool

for anomaly detection in the later stages. Because the discriminator is basically a

classifier. A classifier that distinguishes between artificially produced data and data

that actually exists on the dataset. But standard generative adversarial networks have

some problems. One of the most important of these problems is the mode collapse

problem and the realism and quality level of the data. In order to overcome these

problems, instead of using the standard generative adversarial network directly, we

use the Wasserstein Generative Adversarial Network [25], which is currently one

of the most popular among GANs and is a solution to many problems. However,

Wasserstein uses the weight clipping method to prevent the Generative Adversarial

Network mode collapse problem. Since this is not a very healthy method, Wasserstein

Generative Adversarial Network with Gradient Penalty, which is presented as the

development of Wasserstein Generative Adversarial Network presented in another

study[26], is used.

In WGAN-GP study unlike the standard Generative Adversarial Networks, the dis-
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criminator is named differently. It’s called Critic. However, this difference is not

only in the name but also in the working logic. This loss function is dependent on an

amendment of the GAN scheme in which a discriminator does not classify instances

(the "Wasserstein GAN" or the "WGAN"). It gives a number for each instance. This

number should not be less than one or larger than 0, so we cannot use 0.5, if an in-

stance is real or fake, as a threshold. Training for discriminators only tries to increase

the output for real cases rather than for false instances. Since it cannot really distin-

guish between true and fake, the discriminator from the WGAN is actually referred

to as "critic" rather than "discriminator." This distinction is of theoretical importance,

but we can treat it for practical purposes as an awareness that the inputs for the loss

functions must not be probabilities.

However, in GAAL-based structures [30],[31], the discriminator plays a leading role

as a classifier in the general structure, so simply replacing the discriminator with critic

is not correct in terms of anomaly detection and GAAL logic. But it is necessary to

take advantage of the advantages of Wasserstein Generative Adversarial Networks.

In order to achieve this, as you can see in Figure 4.4, a triple model with both critic,

discriminator and generator is set up. If the tasks are to be expressed in this model,

the task of the critic is to ensure that the generator produces more realistic data than

normal generative adversarial networks, while preventing it from entering the mode

collapse problem. In fact, simply to summarize, to bring the pluses of Wassertein

GAN with GP [26]. The task of our second network generator is to artificially gen-

erate real-like potential anomaly data, thus helping our classifier to best understand

the difference between normal and abnormal. Finally, the task of the discriminator

is to turn into a classifier in the last case, and to turn into a classifier that detects

anomaly by using the boundaries that it learns and draws between fake and real dur-

ing the training process for normal and abnormal in the testing phase. The fact that

the generator, which GAAL-based infrastructures [31] naturally have, produces more

realistic and more informative data in every phase of the training, allows the model to

be developed by feeding with much more useful data, while providing the develop-

ment of the model, instead of using useless data for itself. In fact, this is the fact that

the selection and training of informative data, which is the basis of active learning,

emerged under the GAN structure. The support of the critic in each round and the fact
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that the data produced due to the nature of the generator is more informative allows

the discriminator to develop continuously. With sufficient training, the discriminator

can now be used as an anomaly detection classifier in the testing phase.
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CHAPTER 5

EXPERIMENTS

It does not make sense to work on a single dataset in order to prove the anomaly

detection and whether the algorithm is at a sufficient level. For this reason, we worked

on 8 different datasets for accuracy level tests in our study. Using these 8 different

datasets, we tried to prove that our study is not dependent on a single data and can

give healthy results in various data. Since it would not be an accurate technique to

show the results we obtained by only displaying the scores of our own study, we

have created a study that can compare our algorithm with different existing studies.

The number of these algorithms tried on different datasets is 8 with our study. To

name these algorithms, WGAAL-GP, which is our work, MO-GAAL, SO-GAAL, K

nearest neighbor, K-Means, OCSVM, Auto-Encoder and finally Principal Component

Analysis. In this way, we enable us to make more accurate and comfortable inferences

about what level of results our study can achieve compared to other studies and how

successful or unsuccessful the results are. In addition, by testing these 8 different

algorithms on 8 different datasets, we can observe the effects of the differences of the

datasets on the results. Or, we can examine the behavior of any specific algorithm

in datasets with different structures according to the accuracy value. By diversifying

the dataset, we avoid the suspicion that our study will yield good results depending

on the data. We show results from different datasets and compare these results by

sorting between algorithms for each dataset. By collecting the ranking values of the

algorithms on different datasets in a table, we enable evaluations only on success.

We also did more specific studies on another dataset. To summarize, these studies

progressed as follows. First, we developed the developmental aspects of the GAAL-

based anomaly detection study, which our study characterized as fundamental. The
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GAAL based anomaly detection study is a structure that exists to detect anomaly with

two different basic algorithms. These studies can be expressed as "Single Objective

Generative Adversarial Active Learning" and "Multi Objective Generative Adversar-

ial Active Learning". The main difference of these two is that SO-GAAL is trying

to produce artificial informative data using a single generator, while MO-GAAL is

algorithms that try to produce artificial informative anomaly data using multiple gen-

erators. In our work, we train the Generator through Critic using the logic of the

Wasserstein Generative Adversarial Network. For this reason, we specifically com-

pared 3 algorithms instead of all algorithms used for anomaly detection in our tests

on different metrics on FlightRadar24 data, which we determined as our main dataset.

These algorithms were firstly our own work, Wasserstein Generative Adversarial Ac-

tive Learning with Gradient Penalty (WGAAL-GP), secondly Multi Objective Gener-

ative Adversarial Active Learning (MO-GAAL) and finally Single Objective Adver-

sarial Active Learning (SO-GAAL). To summarize the work we have done on these

three algorithms, we aimed to increase the reliability and diversity value of the results

obtained by activating different metrics instead of working only on accuracy met-

rics. To specify these metrics in order, we first used the accuracy metric because the

most important criterion when calculating the success of anomaly detection is how

accurately anomaly data can be detected. We used the precision value as the second

metric. Simply put, the precision metric is the metric that expresses how much of

what algorithms consider normal is actually normal. The third metric we compared

was the recall metric. Summarizing the Recall metric is the metric that expresses

how much of the data that should actually be normal is considered normal by the al-

gorithm. Our last metric is the F1 score metric. To summarize this metric simply, we

can describe it as the ratio of twice the product of precision and recall values to the

sum of precision and recall values. When we compare algorithms on these metrics,

we prove on different metrics how our work improves the work we base it on and

causes better results.
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5.1 Datasets

First of all, a single dataset was not used in this study, so the characteristics of the

datasets used are shown in Table 5.1.

• The first dataset used is the Mulcross dataset.This dataset is available for down-

load in a CSV format at OpenML (https://www.openml.org/d/40897)

Mulcross is a synthetic data set produced with a multivariative normal distribu-

tion and containing sufficient number of anomaly data. This dataset consists of

262144 data, and 10 percent of this data is in the class that we will describe as

anomaly. In addition, one element of the data consists of 4 different columns.

• Our second dataset is the Ionosphere dataset.This dataset is avaliable for down-

load at UCI machine learning repository (https://archive.ics.uci.

edu/ml/datasets/ionosphere). This data set has fewer samples, but

the anomaly sample rate is much higher. This radar data was collected by a

system in Goose Bay, Labrador. In this data, which consists of two different

classes, there are two classes, good signals and bad signals. 126 of the Iono-

sphere dataset, which consists of 351 data, consists of data belonging to the

group classified as anomaly. In addition, a data consists of 36 different dimen-

sions.

• Our third dataset is the Arrhythmia dataset.This dataset is avaliable for down-

load at UCI machine learning repository (https://archive.ics.uci.

edu/ml/datasets/arrhythmia). The aim of this dataset distinguish be-

tween the presence and absence of cardiac arrhythmia and classify it in one of

the 16 groups. However, the importance of this dataset for our study is that the

dimension value is very high compared to other datasets. A data consists of 279

dimensions. In addition, this data set contains 452 samples. To express approx-

imately 15 percent of these samples as numbers, 66 data represents anomaly

data.

• Our fourth dataset is the Pima dataset.This dataset is avaliable for download

at kaggle (https://www.kaggle.com/uciml/pima). This data set can

be described as a data set that is very similar to the Ionosphere data set in terms
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of distribution. This dataset is originally from the National Institute of Diabetes

and Digestive and Kidney Diseases. The objective of the dataset is to diagnos-

tically predict whether or not a patient has diabetes, based on certain diagnostic

measurements included in the dataset. This dataset consists of 768 data and

268 of these data are members of the class to be considered an anomaly. In

addition, the data consists of 8 different columns.

• Our fifth data set is our data set called Vertebral.This dataset is avaliable for

download at UCI machine learning repository (http://archive.ics.uci.

edu/ml/datasets/vertebral+column). This dataset can be charac-

terized as a more balanced dataset compared to other data. Data set containing

values for six biomechanical features used to classify orthopedic patients into

3 classes (normal, disc hernia, or spondylolisthesis) or 2 classes (normal or ab-

normal). In this study, we used the second option, normal and abnormal classes.

The Vertebral dataset, which consists of 240 data, has an anomaly data rate of

12.5 percentage. This rate shows that 30 data are anomalies. In addition, a data

consists of 6 different dimensions.

• Our sixth dataset is our dataset called Shuttle.This dataset is avaliable for down-

load at UCI machine learning repository (https://archive.ics.uci.

edu/ml/datasets/Statlog+(Shuttle)). When this data set is com-

pared with other data, it becomes the number two data set used in our study

in order of sample number. The original Statlog (Shuttle) dataset from UCI

machine learning repository is a multi-class classification dataset with dimen-

sionality 9. Here, the training and test data are combined. The smallest five

classes, i.e. 2, 3, 5, 6, 7 are combined to form the outliers class, while class 1

forms the inlier class. This data set contains 49097 data and 3511 of these data

represent data in the anomaly data class. According to these numbers, about

7 percent of the data can be described as anomaly data. In addition, a data

consists of 9 dimensions.

• Our seventh dataset is our dataset called Waveform.This dataset is avaliable for

download at UCI machine learning repository (https://archive.ics.

uci.edu/ml/datasets/waveform) The most important feature of this

data set in our tests is that the anomaly data rate is very low. It is a 3 class
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classification problem based on 3 waveforms, each of which is sampled at 21

intervals. Each class is a random convex combination of two of the waveforms.

The data was generated using David Aha’s program from the UCI repository

of machine learning databases. This data set contains 3343 data in total. Class

0 member data is defined as anomaly data. The number of these data is about

100. As a percentage, 0.3 percent of the data is considered an anomaly. A

data consists of 21 dimensions, which shows that it is a high-dimensional data

compared to other data.

• Our eighth dataset is our Stamps dataset.This dataset is avaliable for download

at kaggle (https://www.kaggle.com/rtatman/stamp). The stamps

assure the authenticity of the contents of the documents. The general objective

of this dataset is to enable researchers in the field of pattern recognition to an-

alyze, detect, localize and recognize different types of stamps. In this data set,

those belonging to the Genuine class are considered as normal data and those

belonging to Forged are considered as anomaly data. In total, 31 of 309 data

were classified as anomalies. It corresponds to about 10 percent. In addition, a

data consists of 9 dimensions.

The summary information of the datasets given above is shown in Table 5.1.

The last data set and the data we can call the main dataset in which detailed studies

are carried out is the aircraft tracking data provided by FlightRadar24. After careful

literature investigation, we decided to work with the radar track datasets consisting of

the ADS-B (ASTERIX CAT21) messages converted FlightRadar24 data. ASTERIX

is a EURO-CONTROL air traffic monitoring message format designed for the trans-

mission of information between any monitoring system and automatic monitoring. It

defines the structure of the data over a media, from the coding of each piece of data

to the arrangement of data in the data block, without any loss of information in all

data. Our dataset comprises one day civil flights on 17.10.2019. About one point five

million radar tracks are available in our data set. The original data set contains regis-

ter addresses, latitude, longitude, heading, altitude, speed, squawk code, aircraft type,

tail number, departure, arrival flight number and call sign information. However, in

this study, we extracted the unique values used to determine the identity of the air
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Table 5.1: Dataset Descriptions and Properties

Dataset Anomaly

Percentage

Number of

Samples

Number of

Anomaly

Samples

Dimension

Mulcross %10 262144 26214 4

Ionosphere %36 351 126 33

Arrhythmia %15 452 66 279

Pima %35 768 268 8

Vertebral %12,5 240 30 6

Shuttle %7 49097 3511 9

Waveform %0.3 3343 100 21

Stamps %10 309 31 9

trace and worked with the remaining data set. The characteristics of the data that

formed the basis of our study were latitude, longitude, heading, altitude and speed

parameters. In addition, the data, which is an aircraft type unmanned aerial vehicle,

was not used in the training phase. As it can be understood from here, our data is a

5-dimensional data.

By using this data, we wanted to train our model with data containing the kinetic

properties of aircraft that can actually be obtained from radars. In this way, we used

the data obtained from any other radar to be converted into a format suitable for

the model with a little pre-processing.While using this data set, we considered the

air tracks in the type of unmanned aircraft as anomaly data. Since it has patterns

that are not very similar to civil aircraft, it differs from standard aircraft movements.

Therefore, we evaluated unmanned aerial vehicles as anomalies in our dataset. This

constitutes approximately 4 % of our total data.
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5.2 Results

First, results were obtained on joint datasets on more than one algorithm to decide

how accurate anomaly detection was and how successful or unsuccessful it was com-

pared to other algorithms. While obtaining these results, the accuracy metric was

used as a criterion. Accuracy, in the simplest terms, is the knowledge of how many

percent of the data considered anomaly or normal actually belong to the class that

the model says. Mulcross, Ionosphere, Arrhythmia, Pima, Vertebral, Shuttle, Wave-

form and Stamps datasets, which we mentioned in the previous section, were used.

These datasets were tested with MO-GAAL, SO-GAAL, KNN, K-means, OCSVM,

AutoEncoder and PCA algorithms, respectively, which are used for anomaly detec-

tion. And in addition to these, it was run with the WGAAL-GP algorithm, which is

our work, and results were obtained on the basis of accuracy. These algorithms were

run on the common dataset without being implemented directly from scratch using

the Pyod library. While testing, the library’s default parameter values were used and

tested as such. Training and test datasets were kept constant for each algorithm to

ensure an objective comparison of the results.We shared the results of all these stud-

ies in a table, making it easy to understand and follow. The results on this table are

displayed in Table 5.2.

Before presenting the results, we should explain how the different algorithms used in

the results are used for anomaly detection and how the results are obtained.

• The algorithm that should be mentioned first is SO-GAAL. SO-GAAL stands

for Single Objective Generative Adversarial Active Learning. This algorithm

is basically very similar to our work, but it has a structure that uses only Dis-

criminator and Generator, not 3 networks as a structure. In addition, instead of

using WGAN-GP as the generative model, he developed the algorithm using the

standard GAN model. While making an anomaly decision, anomaly detection

is made by using the classifier feature of the sufficiently trained Discriminator,

as in our study.

• The second algorithm used is MO-GAAL. This abbreviation means Multi-

Objective Adversarial Active Learning. This algorithm is actually a work put
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forward to avoid SO-GAAL’s problems. The number of Generators in the

model has been increased in order to prevent this mode collapse problem, where

there is a possible mode collapse problem in SO-GAAL. In this way, although

the problem could not be prevented theoretically, it reduced the possibility of

its occurrence. In the tests, this model was designed with 3 Generators, which

were generally specified as the optimum value in the study. And the results

obtained were again obtained by using the classifier feature of Discriminator.

• The third algorithm used KNN for anomaly detection. This means K is the

nearest neighbor. In this method, the distances of the newly incoming data with

its k closest neighbors are calculated and it is decided which class the incoming

data is a member of according to the classes of these neighbors. However, when

the average of these distances is taken, if it is above a certain threshold, it can

be decided that this point is an anomaly. Because if the distance is far enough,

it can mean that the relevant point is not a member of any class. During the

tests, we determined the K value as 5 and the results were obtained in this way.

• The fourth algorithm is K-means clustering. Although this method is actu-

ally similar to the KNN method, instead of finding its K nearest neighbors, its

distances from its clusteroid centers are calculated. After these distances are

calculated, the new point actually needs to be considered as a member of the

clusteroid closest to it. However, if the distance between the nearest clusteroid

and the point is above the predetermined threshold, this point can be considered

as not belonging to any cluster. Such a point can be considered as an anomaly.

While doing our tests, we tried to detect anomaly with this method. We tried

to select the K value by examining the cluster numbers of the data. And after

training with data not found in the anomaly class, it was tested with a test data

containing normal and anomaly data together.

• The fifth study is OCSVM. This method stands for One Class Support Vector

Machine. This method can actually be interpreted as a customized version of

the standard SVM method to detect rare events. In the standard SVM tech-

nique, the data is tried to be separated into two separate clusters using a hy-

perplane with maximum margin. Similarly, OCSVM tries to cover the existing

data with the smallest margin with a hypersphere. If the new incoming data is
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outside of this hypersphere, the data is considered an anomaly. We also used

this algorithm in the testing phase in this way and obtained the results from this

algorithm.

• The sixth algorithm is Autoencoders, one of the most popular deep learning

based methods. Autoencoders are basically used as a method that compresses

the data and then tries to reconstruct the data from the jammed state. Calculates

the difference between the reconstructed data and the original data. This dif-

ference is called reconstruction loss. If this reconstruction loss is greater than

the predetermined threshold value, this data can be considered an anomaly. We

also detected anomaly classes in this way while testing in our study.

• PCA was used as the final algorithm. This method stands for principal com-

ponent analysis. Although this method is logically similar to Autoencoders,

it provides a more primitive approach in terms of working logic. The data is

transferred to the plane in a way that can be expressed with smaller dimensions.

If it tries to express the new data in the same way, and if the data re-expressed

on the plane reveals much larger loss values compared to other data, this data

can be considered as an anomaly. The size of this loss value is determined by

comparing it with the previously determined threshold value. In this study, we

performed anomaly detection with PCA in this way.

Table 5.2: Experimental Results of Anomaly Detection Methods on Different

Datasets

Datasets WGAAL-GP MO-GAAL SO-GAAL KNN K-Means OCSVM AutoEncoder PCA

Mulcross 0.913 0.904 0.889 0.839 0.831 0.784 0.911 0.707

Ionosphere 0.867 0.829 0.729 0.919 0.924 0.747 0.875 0.739

Arrhythmia 0.744 0.711 0.689 0.708 0.703 0.661 0.699 0.462

Pima 0.722 0.733 0.644 0.706 0.655 0.544 0.724 0.514

Vertebral 0.819 0.844 0.712 0.811 0.821 0.512 0.872 0.578

Shuttle 0.909 0.902 0.891 0.920 0.917 0.651 0.887 0.633

Stamps 0.917 0.899 0.644 0.901 0.868 0.702 0.914 0.681

Waveform 0.841 0.821 0.826 0.766 0.731 0.585 0.824 0.591

The first dataset tried was the Mulcross dataset. The results obtained on this dataset

were higher in percentage terms when compared to the others. When the algorithms
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are compared, it is noteworthy that the most successful algorithms are deep learning

based algorithms. But it seems that WGAAL-GP achieved the highest result. In sec-

ond place is the Ionosphere data. Here, the most successful algorithm is the K-Means

algorithm, followed by the KNN algorithm. This shows that distance-based cluster-

ing algorithms are more useful on this data, but our study also gets a good result. If

the next dataset is Arrhythmia data, WGAAL-GP is again the algorithm that gives the

highest result. The fact that the MO-GAAL algorithm is in the second place reveals

how effective the algorithms that pass the training process by producing artificial

anomaly data are for this data. When the results on the Pima dataset, which is another

dataset, are examined, it is seen that the most successful study is the MO-GAAL

algorithm, but it is right behind it with a very small difference in our study. Consider-

ing the results of experiments on another dataset, the Vertebral dataset, it is seen that

reconstruction-based algorithms are more successful. In this context, algorithms that

learn the structure of the data better come to the fore. Although the Autoencoder gave

the best result, it still achieves a result that is in the top 3 in WGAAL-GP. When the

results on the Shuttle dataset are examined, it is seen that distance-based clustering

algorithms give good results, but even for this dataset, WGAAL-GP is ahead of other

algorithms, just behind K-means, and gives the best results among the rest. When

the results for Stamps data, another frequently used data set, are examined, it is seen

that our study is the algorithm with the highest accuracy value. It was the study that

detected the highest percentage of anomaly among 8 algorithms for this data. For the

last dataset, Waveform data, WGAAL-GP is the algorithm with the highest accuracy

value, and when evaluated in general, it is roughly in the top 3 for each data set and

has the highest accuracy values on average when compared to the others. Again, a

more complete summary of all these results can be seen in Table 5.2.

When we evaluated the results on the basis of accuracy, specific to datasets and al-

gorithms, the results in Table 5.2 were obtained. By sorting these results among the

algorithms separately for each dataset, creating a success ranking among the algo-

rithms increases the interpretability of the results. The information on which this

ranking is collected can be seen in Table 5.3.

When the table is examined, WGAAL-GP has the highest accuracy result in 4 out of 8

datasets. It showed a very successful result as the 4th worst among other datasets. On
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Table 5.3: Ranking Comparison between Anomaly Detection Algorithms on Differ-

ent Datasets

Metric Rank

Datasets WGAAL-GP MO-GAAL SO-GAAL KNN K-Means OCSVM AutoEncoder PCA

Mulcross 1 3 4 5 6 7 2 8

Ionosphere 4 5 8 2 1 6 3 7

Arrhythmia 1 2 6 3 4 7 5 8

Pima 3 1 6 4 5 7 2 8

Vertebral 4 2 6 5 3 8 1 7

Shuttle 3 4 5 1 2 7 6 8

Stamps 1 4 8 3 5 6 2 7

Waveform 1 4 2 5 6 8 3 7

Average Ranks 2.25 3.12 6.37 3.50 4.12 7.00 3.0 7.50

average, it was the algorithm with the lowest average ranking among other algorithms

with 2.25. MO-GAAL study, which is likely to be the biggest competitor, with 3.12

average ranking and Autoencoder study with 3.0 average ranking were also the closest

algorithms in the results. Among other algorithms, although KNN is a distance-based

algorithm, it achieved a very close result to deep learning based algorithms with an

average ranking of 3.5. However, as a result, WGAAL-GP was the algorithm that

gave the most successful results among 8 different algorithms with 8 different datasets

on the basis of accuracy.

Examining this table, it seems that the algorithm with the highest average ranking is

our study WGAAL-GP. There are different factors that put this work ahead of other

algorithms. Since these factors are examined, the first factor is to learn the proper-

ties of the data with a deep learning-based technique and work with a structure built

through reconstruction. In this way, the model learns more information about the data

compared to distance-based or linear-based algorithms. Among the deep learning al-

gorithms, the most important feature that makes it stand out is that it is a generative

algorithm, so it is not only satisfied with the data provided by the dataset during the

training process, but also provides more opportunity for the development of the model

by producing artificial data. Especially when GAAL based deep learning algorithms,

namely WGAAL-GP, MO-GAAL and SO-GAAL are examined, the biggest advan-

tage against Autoencoder is these generative structures. Because, especially when a
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problem such as anomaly detection is examined, the number of anomaly data is very

limited in normal data, which is one of the biggest obstacles to training the model well

during the training process. However, AGPO based methods avoid this limited data

and training problem by generating potential anomaly data. In addition, GAAL based

methods make the quality and production of these potential anomaly data produced

by blending this with active learning more intelligently than randomness. Finally,

the biggest reason why our study got higher results compared to other GAAL-based

structures is that it uses Wasserstein GAN instead of using standard GAN. In this way,

it already has a more advanced Generator compared to the standard GAN Generator.

This Generator is therefore able to generate higher quality and informative potential

anomaly data. And the model is making more significant strides by being trained

with more informative data. In addition, since it gets rid of the mode collapse prob-

lem, which is the most important of the possible GAN problems, with WGAN, for

example, it does not allow the SO-GAAL algorithm to get a very low result compared

to the others in Stamps data.

While evaluating the test results, comparisons were made on Precision, Recall, Ac-

curacy and F1 score metrics. How these metrics are calculated and with what values

they are formed are available in the explanations below. These metrics ensure that

the data is not evaluated only on accuracy values, and more realistic and accurate

comparisons are made by obtaining results on different metrics.

Precision =
TP

TP + FP
F1score =

2 ∗ Precision ∗Recall
Precision+Recall

Accuracy =
TP + TN

TP + FP + TN + FN
Recall =

TP

TP + FN

True Positives (TP) : Number of correct normal labeled data.

True Negatives (TN) : Number of correct labeled abnormal labeled data.

False Positives (FP) – Number of incorrect normal labeled data.

False Negatives (FN): Number of incorrect abnormal labeled data.
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Table 5.4: Precision Results of Anomaly Detection Methods on Different Datasets

Datasets WGAAL-GP MO-GAAL SO-GAAL KNN K-Means OCSVM AutoEncoder PCA

Mulcross 0.852 0.826 0.819 0.779 0.791 0.724 0.851 0.650

Ionosphere 0.811 0.799 0.621 0.888 0.901 0.641 0.789 0.599

Arrhythmia 0.699 0.611 0.582 0.605 0.601 0.559 0.597 0.392

Pima 0.687 0.685 0.574 0.601 0.535 0.414 0.629 0.441

Vertebral 0.731 0.724 0.610 0.734 0.692 0.442 0.751 0.487

Shuttle 0.904 0.883 0.878 0.913 0.865 0.581 0.792 0.573

Stamps 0.901 0.829 0.547 0.809 0.818 0.632 0.857 0.593

Waveform 0.802 0.761 0.791 0.752 0.701 0.595 0.784 0.601

Average Ranks 1.50 3.12 5.25 3.50 4.50 7.12 3.57 7.50

Table 5.5: Recall Results of Anomaly Detection Methods on Different Datasets

Datasets WGAAL-GP MO-GAAL SO-GAAL KNN K-Means OCSVM AutoEncoder PCA

Mulcross 0.814 0.802 0.791 0.735 0.732 0.681 0.808 0.601

Ionosphere 0.759 0.731 0.626 0.824 0.814 0.657 0.769 0.641

Arrhythmia 0.746 0.691 0.673 0.689 0.623 0.591 0.638 0.492

Pima 0.713 0.709 0.577 0.616 0.575 0.449 0.694 0.483

Vertebral 0.721 0.729 0.622 0.727 0.751 0.502 0.793 0.528

Shuttle 0.893 0.881 0.874 0.902 0.899 0.631 0.871 0.644

Stamps 0.899 0.879 0.624 0.866 0.848 0.691 0.903 0.687

Waveform 0.803 0.791 0.794 0.742 0.703 0.572 0.785 0.602

Average Ranks 2.25 3.12 5,37 3.75 4.25 7.25 3.12 7.25

In addition, it is seen that our study has made a significant difference to its competitors

in precision values, while it has more similar results in recall values. When this situ-

ation is examined, first of all, it should be understood what exactly the precision and

recall metrics mean. Precision data expresses how many percent of what the model

classifies as normal is actually normal. The Recall metric is the metric that indicates

what percentage of truly normal data is classified as normal by the model. Our work,

on the other hand, tries to create the narrowest lines where all of the normal data is

covered by producing more realistic data. In this way, more anomalies allow data to

be left out. However, while this actually increases the precision of the model, it does

not improve recall when compared to more roughly drawn boundaries. Therefore,

while it makes a significant difference to other algorithms in terms of precision, it is

normal to get more similar results when examined in the recall metric.
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Table 5.6: F1 Score Results of Anomaly Detection Methods on Different Datasets

Datasets WGAAL-GP MO-GAAL SO-GAAL KNN K-Means OCSVM AutoEncoder PCA

Mulcross 0.832 0.813 0.804 0.756 0.760 0.701 0.828 0.624

Ionosphere 0.784 0.763 0.623 0.854 0.855 0.648 0.778 0.619

Arrhythmia 0.746 0.648 0.624 0.644 0.611 0.574 0.616 0.436

Pima 0.699 0.696 0.575 0.608 0.554 0.445 0.659 0.461

Vertebral 0.725 0.726 0.615 0.730 0.720 0.470 0.771 0.506

Shuttle 0.898 0.881 0.875 0.907 0.881 0.631 0.829 0.606

Stamps 0.900 0.853 0.582 0.836 0.832 0.660 0.879 0.636

Waveform 0.802 0.775 0.799 0.733 0.707 0.552 0.788 0.604

Average Ranks 1.75 3.12 5,12 3.37 4.75 7.12 3.25 7.50

It is seen that our study was generally successful, but it has lower ranking values in

some datasets compared to others. To understand the reasons for this, it is necessary

to examine the datasets. Ionosphere and Pima are examples of these datasets. When

we look at the common features of these data, it is seen that the data with the highest

anomaly data rate among the benchmark datasets. This rate constitutes approximately

one third of the data. Normally, the anomaly rates in the data for anomaly detection

are at lower percentages. In cases where the anomaly rate is this high, other algo-

rithms can also achieve high results. Because finding anomalies on the data becomes

an easier problem. However, when we look at the datasets with lower anomaly rate,

we can see that WGAAL-GP is much more successful, and it is clearly stated in the

tables that it has the most successful results in most of them. This happens because

we produce much more realistic potential anomaly data, and our classifier can draw

sharper and clearer boundaries with clearer information about the data.

We conducted tests on FlightRadar24 data more detailed version with this metrics.

In this study, we show whether an improvement has been made on existing GAAL

structures by comparing with GAAL based anomaly detection algorithms instead of

all anomaly detection algorithms. Because we basically offer solutions to the weak-

nesses of these existing studies or to the problems in the areas that can be improved.

To summarize, these tests compare our work (WGAAL-GP) and a MO-GAAL model

designed with three Generators and SO-GAAL algorithms.
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Figure 5.1: Accuracy scores for GAAL algorithms according to number of training

samples

Firstly, the results obtained for the accuracy metric to be compared with these algo-

rithms are displayed in Figure 5.1. The graph here expresses the number of traning

samples on the x-axis and the accuracy score on the y-axis. While WGAAL-GP and

MO-GAAL accuracy results were similar to each other in the first phase of the train-

ing, that is, up to roughly 600,000 data, it seems that WGAAL-GP got more success-

ful results in the second phase of the training process. It is seen that the SO-GAAL

algorithm gives results behind compared to the other two algorithms. The main rea-

son for this situation is that the potential anomaly data produced in the first process of

training is more crude and very unrealistic potential data, so Discriminator cannot cre-

ate its boundaries with sufficient precision when classifying. However, the potential

anomaly data produced in the later phases of training begins to become closer to the

real data and the Discriminator begins to draw its boundaries closer to the real data.

In this process, WGAAL-GP is able to generate more informative potential anomaly

data as it improves its Generator thanks to Critic. In this way, Discriminator draws

its boundaries sharper and more accurately. As a result, as the WGAAL-GP num-

ber of samples increased, the accuracy difference between MO-GAAL increased.As

a result, WGAAL-GP was the most successful study in the tests performed on the
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relevant dataset on the basis of accuracy.

Figure 5.2: Precision scores for GAAL algorithms according to number of training

samples

To make an evaluation within the scope of Precision, as can be clearly seen in Figure

5.2, WGAAL-GP achieved much higher and more successful results from the begin-

ning to the end of the training process compared to the other two algorithms. To

understand getting these results, one must first understand exactly what the Precision

metric represents. Precision expresses what percentage of the data that the model

qualifies as normal is actually normal. In fact, this situation can be thought of as such

in the case of GAN. The boundaries drawn by the Discriminator are actually an area

that tries to include all normal data with the narrowest possible limits. While draw-

ing these boundaries, the most important factor is actually the potential anomaly data

produced by the Generator, because the closer these data are to the truth, the closer

the boundary tried to be drawn will be to the truth. In fact, the number one novelty of

the WGAAL-GP study is that by training the Generator with Critic, it produces more

realistic data than standard GAN models. Therefore, when Figure 5.2 is examined,

it can be interpreted as a graphical reflection of the fact that the boundaries of the

Discriminator are sharper and closer to reality. As a result, it is shown that the data

classified as normal by the WGAAL-GP study are classified with a higher percent-
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age than other studies, and the boundaries drawn for the normal classification by the

Discriminator are more accurate.

Figure 5.3: Recall scores for GAAL algorithms according to number of training sam-

ples

The comparison between WGAAL-GP, MO-GAAL and SO-GAAL in recall values,

which is another different metric, is shown in figure 5.3. First of all, it should be

understood more clearly what the Recall metric actually means. In fact, this can

be evaluated as follows, how much of the data that is actually normal, the model

has qualified as really normal data. Again, when this situation is examined in the

perspective of GAN and anomaly detection, it can be expressed as follows. The area

outside the boundaries drawn by the discriminator is normally considered as anomaly

data. However, normal data in this region may be evaluated as abnormal due to the

fact that the borders are not drawn correctly. This situation actually decreases the

recall score and this situation is shown in figure 5.3. When the figure is examined, it

is seen that the SO-GAAL algorithm achieves much lower recall values compared to

the other two algorithms. This may be due to the fact that the structure using a single

standard Generator does not provide enough diversity or is open to the mode collapse

problem. When the other two algorithms are examined, it is seen that WGAAL-GP

has a more accelerated graph when it is evaluated as a learning curve in the training
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process. However, when the process at the very beginning of the training is excluded,

it is seen that although MO-GAAL is ahead of WGAAL-GP at two different points,

in other cases each WGAAL-GP achieves higher scores. Although the results are

close to each other when the data is fully trained, it is seen that WGAAL-GP achieves

higher scores. Therefore, in general, it can be said that the recall metric of WGAAL-

GP is the most successful algorithm on the relevant data.

Figure 5.4: F1 scores for GAAL algorithms according to number of training samples

Our another metric is F1 score. F1 score and number of samples graph are displayed

in figure 5.4 with the results obtained for GAAL based algorithms. Again, the first

striking situation on the graph is that the SO-GAAL algorithm lags far behind the

other two algorithms. When the other two algorithms are examined, it is seen that

only the MO-GAAL algorithm is ahead of WGAAL-GP in a part of the very early

stages of training. Apart from that, the WGAAL-GP has a higher F1 score than

other studies in absolute terms. When Figure 5.2 and Figure 5.3 are examined, it is

seen that they are ahead in precision and recall metrics. It is a metric obtained by

mathematically proportioning the precision and recall metrics while calculating the

F1 score. Therefore, the most successful result of WGAAL-GP as an F1 score is a

natural result when interpreted together with other metrics.
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Figure 5.5: ROC Curves for GAAL algorithms

Our final metric is the ROC curve. ROC stands for receiver operating characteristic.

A data showing the correct decision making capabilities of this curve classifier and

how it labels data with these capabilities. It is defined over false positive rate and

true positive rate at different threshold values. Before interpreting the ROC curve, let

us state how the superiority among algorithms is demonstrated in this metric. While

interpreting this metric, there is a random classifier line as you can see in Figure

5.5. The graphs above this line indicate that the algorithm makes smarter decisions

instead of randomness. The superiority levels of these algorithms are explained by

looking at the areas under the curve. The larger the area under the curve, the more

successful the classifier means. When Figure 5.5 is examined, it is seen that the curve

of WGAAL-GP has a higher AUC (Area Under the Curve) score compared to the

other two GAAL-based studies. This shows that our study is more successful in this

metric compared to other studies.

To summarize, it is seen that WGAAL-GP is the most successful algorithm in terms

of average ranking as a result of the tests performed on different datasets by compar-

ing them with different algorithms only in terms of accuracy. In addition, precision,

recall and F1 score metrics were compared with GAAL studies, which are the ba-
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sis of our work. As a result of these comparisons, it was seen that the WGAAL-GP

study was ahead of other GAAL-based anomaly detection studies. The main reason

for this is the difference between the distributions by using KL distance in the stan-

dard GAN structure, but Wasserstein uses EM distance instead of GAN KL distance.

In this way, it can give much better feedback for the Generator. The quality of the

potential anomaly data produced by the standard GAN is poor compared to the po-

tential anomaly data produced by the WGAAL-GP. This makes it even easier for the

Discriminator side of the model to distinguish between real and fake data because it

is exposed to more informative data. In addition, since other algorithms use standard

GAN, it is vulnerable to mode collapse problem. They may have had such problems

from different datasets and yielded lower results. However, since WGAAL-GP uses

Wasserstein GAN and one of the main advantages of this study is that it avoids the

mode collapse problem, WGAAL-GP can achieve higher scores.

Another important thing that our study promises is that it avoids the mode collapse

problem. In order to identify the mode collapse problem, the way referenced in the

literature is to examine the outputs and to examine whether the diversity is really lost.

Another way is to examine the loss graphs of the models. Since there are 3 different

models in the WGAAL-GP structure, the loss records of all 3 models are kept and

graphed from the iteration measure. In fact, the training process, which ranges from 0

to 1400 iterations, ranges from 0 to 7000 iterations for the Critic network. The reason

for this is that Wasserstein is run more in the GAN structure than the Critic Generator,

and this number of studies is determined parametrically. In our study, we determined

this number as 5, so Critic 7000 iteration actually worked for 1400 iterations. The

Generator loss chart can be seen in figure 5.5, the Discriminator loss chart in figure

5.6 and finally the Critic loss chart in figure 5.7.
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Figure 5.6: Generator loss for WGAAL-GP algorithm

When we examine these loss charts, there is a lot of fluctuation in the first phase of

Generator training. However, when we take the center of the fluctuations as a basis,

it is seen that the loss values increase first. However, when the process progresses

a little further, it is seen that both the difference value of the fluctuations decreased

noticeably and the loss center began to decrease. At the end of the training, it is

seen that the loss value converges to zero and the fluctuations are much smaller. As

a result, a graph suitable for a healthy Generator loss pattern was obtained. If there

were findings such as mode collapse etc, there should be places where the level and

intensity of fluctuations increased visibly.
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Figure 5.7: Discriminator loss for WGAAL-GP algorithm

When we examine the loss graph of the Discriminator, we can actually interpret the

graph of the Generator as symmetrical or very similar. While the intensity of the

fluctuations was very high at the beginning of the training, the intensity of the fluc-

tuations towards the end of the training became much more reasonable. At the same

time, although the loss value started to decrease at first, it increased a little later and

changed between 0.5 and 1. Again, a result with suspicion of mode collapse does not

appear and behaves like the expected Discriminator loss chart.
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Figure 5.8: Critic loss for WGAAL-GP algorithm

Finally, when the Critic loss chart is examined, it shows a very aggressive rise at the

beginning. But then, with the development of the Generator, it started to balance

and started to decrease gradually after the peak point. Again, while the fluctuations

were very severe at the beginning, as the number of iterations increased, it reached an

acceptable level of fluctuation intensities. Then the loss curve started to converge to

zero. In the process of reaching zero, while the fluctuation intensities were higher at

first, it reached equilibrium around zero with very little fluctuation in 5000 iterations

and afterwards.

As a result, WGAAL-GP was the algorithm with the highest average ranking on the

basis of accuracy with different algorithms on different datasets. It also achieved

higher scores than SO-GAAL and MO-GAAL in precision, recall and F1 score met-

rics on FlightRadar24 data. This means that it has developed these algorithms and

can detect anomalies with a higher rate. In addition, the loss graphs of the models are

shown due to the mode collapse problem, which is another problem it solves. Nothing

out of the ordinary was observed in these loss charts and no mode collapse indica-

tor was found. In other words, this study showed that the two novelties it promised,

detecting anomalies with a higher success rate and preventing the mode collapse prob-

69



lem, on the analyzed data. By using Wasserstein GAN, the potential anomaly data

produced in GAAL-based studies was of higher quality, thus achieving higher success

rates. At the same time, due to the nature of the Wasserstein GAN, it also prevented

the mode collapse problem. Our study also showed these situations with its results.
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CHAPTER 6

CONCLUSIONS

In this thesis, an improvement and development is proposed in which GAAL-based

studies used for anomaly detection can be achieved with higher success and will be

protected from the mode collapse problem. One of the biggest obstacles when de-

tecting anomaly is the very limited number of anomaly data. In order to prevent this

problem, potential anomaly data can be produced thanks to generative models. This

raises the number of anomaly data to an acceptable level and facilitates models that

detect anomaly. However, it is not enough to increase the anomaly data numerically,

but it is also necessary to increase its informativeness. In this study, the main fo-

cus is to make the model more successful by increasing the informative level of the

potential anomaly data produced. This thesis study proposes as a novel to produce

more informative data than existing systems by producing potential anomaly data us-

ing Wasserstein GAN with gradient penalty instead of using standard GAN directly.

By using WGAAL-GP Wasserstein GAN, it not only produces more informative po-

tential anomaly data, but also avoids the mode collapse problem. In this way, more

stable results can be obtained in multidimensional data, and since it does not experi-

ence mode collapse in datasets with a high number of clusters, it can improve itself

with more diverse potential anomaly data and achieve higher results. This study is

compared with different algorithms that have been proven on FlightRadar24 data and

some real world datasets, and its results are presented.

Recently, time-critical situations have become too much when evaluating data. There-

fore, the time information took a very important place in the data and it became more

important to evaluate it together with the past data. When anomaly detection is re-

quired on time series data, the most important situation is the correct use of historical
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data. It is considered as a target for our future studies to redesign the model structures

in an integrated way with LSTM so that our study can handle time series data better.

In this way, our generative model can generate much more reliable potential anomaly

data for time series data by adding historical data to the evaluation. In addition, in

order to shorten the training process, it can be applied to train with a smaller subset

by sorting the potential anomaly data produced in each epoch according to the in-

formative level. In this way, the training time of the model for future works can be

reduced.
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