
VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER
NEURAL NETWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FERHAT CAN ATAMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2021

Approval of the thesis:

VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER
NEURAL NETWORK

submitted by FERHAT CAN ATAMAN in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering, METU

Prof. Dr. Alptekin Temizel
Graduate School of Informatics, METU

Assoc. Prof. Dr. Seniha Esen Yüksel
Electrical and Electronics Engineering, Hacettepe University

Date: 07.09.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ferhat Can Ataman

Signature :

iv

ABSTRACT

VISIBLE AND INFRARED IMAGE FUSION USING ENCODER-DECODER
NEURAL NETWORK

Ataman, Ferhat Can
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

September 2021, 129 pages

The image fusion aims to gather all important information from the source images

into a single image. While the data is reduced, the fusion image has a high spa-

tial and spectral resolution. It includes more informative and complete information.

In this work, we reviewed state-of-the-art methods in the infrared and visible spec-

trum image fusion literature and we present a novel deep learning-based solution.

Our proposed method is inspired by encoder-decoder network U-Net architecture [1].

Furthermore, we analyzed the fusion quality measurement metrics. We integrated fu-

sion quality measurements into our proposed method’s training step. In this way, we

achieved superior performance. The analysis is performed qualitatively and quanti-

tatively on TNO [2] and VIFB [3] datasets. The proposed method is compared with

state-of-the-art methods and detailed experiments are conducted. It shows the best

performance among deep learning-based methods. Project codes can be found at

https://github.com/ferhatcan/pyFusionSR.

Keywords: image fusion, visible image, infrared image, encoder-decoder network

v

https://github.com/ferhatcan/pyFusionSR

ÖZ

KODLAYICI-KOD ÇÖZÜCÜ SİNİR AĞI İLE KIZILÖTESİ VE GÖRÜNÜR
SPEKTRUM GÖRÜNTÜLERDE FÜZYON

Ataman, Ferhat Can
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Eylül 2021 , 129 sayfa

Görüntü füzyonunun amacı kaynak olarak kullanılan görüntülerdeki bütün önemli

bilgilerin tek bir görüntüde toplanması işlemidir. Data boyutu azalırken, üretilen füz-

yon görüntüsü yüksek uzamsal ve spektral çözünürlüğü sahip olur. Bu görüntü daha

bilgi verici ve eksiksiz bilgileri içerir. Bu çalışmada literatürde en iyi olan methodları

inceledik ve derin öğrenme tabanlı orjinal bir çözün sunduk. Ayrıca, füzyon kalite

ölçümü için kullanılan metrikler analiz edildi. Sunduğumuz modelin eğitim aşama-

sına füzyon kalite metriklerini dahil ettik. Nitelikli ve nicelikli analizler TNO [2]

ve VIFB [3] veri kümelerinde uygunlanmıştır. Sunulan yöntem literatürdeki en iyi

metotlar ile karşılaştırılmıştır ve detaylı deneyler yapılmıştır. Derin öğrenme tabanlı

yöntemler arasında en iyi sonucu vermektedir. Proje kodları şu linkte bulunabilir

https://github.com/ferhatcan/pyFusionSR.

Anahtar Kelimeler: görüntü füzyon, görünür görüntü, kızılötesi görüntü, kodlayıcı-

kod çözücü ağı

vi

https://github.com/ferhatcan/pyFusionSR

To my lovely wife Zehra, Ataman and Bektaş families...

vii

ACKNOWLEDGMENTS

I would like to express my special thanks to gratitude to my supervisor Prof. Dr.

Gözde Bozdağı AKAR for her guidance and encouragement. I am very proud to

work with her. Also, I wish to thank my colleagues in ASELSAN A.Ş. and Innovita

Technologies for their support and ideas to improve this work. Especially, Tolga

AKSOY and Yunus Emre KILIÇER help me a lot while discussing and generating

ideas and they deserve sincere thanking.

I am also grateful to my wife Zehra, my parents, and my friends for their patience,

support, and belief in me.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Contributions and Novelties . 3

1.3 The Outline of the Thesis . 4

2 CONVOLUTIONAL NEURAL NETWORKS (CNNS) 5

2.1 Introduction . 5

2.1.1 The Convolutional Operation 5

2.2 Some Common Architectures of CNNs 6

2.2.1 VGG [4] . 6

2.2.2 ResNet [5] . 7

ix

2.2.3 U-Net [1] . 8

3 LITERATURE REVIEW . 11

3.1 Introduction . 11

3.2 Infrared and Visible Image Fusion Methods 11

3.2.1 Multi-scale Transform Based Methods 11

3.2.1.1 ADF Method [6] . 13

3.2.1.2 CBF Method [7] . 13

3.2.1.3 Hybrid_MSD Method [8] 14

3.2.1.4 GFCE and HMSD_GF Methods [9] 15

3.2.1.5 MSVD Method [10] 17

3.2.2 Saliency Based Methods . 17

3.2.2.1 MGFF [11] . 17

3.2.2.2 GFF [12] . 18

3.2.2.3 TIF [13] . 19

3.2.3 Sparse Representation Based Methods 20

3.2.3.1 SR Method [14] . 21

3.2.3.2 SOMP [15] . 23

3.2.3.3 GSR Method [16] . 25

3.2.3.4 NNSR Method . 26

3.2.4 Sub-space Based Methods 26

3.2.4.1 MDLatLRR [17] . 27

3.2.4.2 FPDE [18] . 28

3.2.5 Hybrid Methods . 28

x

3.2.5.1 MST_SR Methods [19] 29

3.2.5.2 VSMWLS Method [20] 30

3.2.6 Deep Learning Based Methods 31

3.2.6.1 CNN Method [21] . 32

3.2.6.2 DLF Method [22] . 33

3.2.6.3 ResNet Method [23] 35

3.2.6.4 DenseFuse Method [24] 36

3.2.6.5 DeepFuse Method [25] 37

3.2.6.6 FusionGAN Method [26] 39

3.2.6.7 RFN-Nest Method [27] 41

3.2.6.8 Dual-Branch Method [28] 43

3.2.6.9 TFSNet Method [29] 45

3.2.7 Other Methods . 46

3.2.7.1 GTF Method [30] . 47

3.2.7.2 IFEVIP Method [31] 47

3.3 Quality Measurements for Image Fusion Applications 48

3.3.1 Entropy (EN) . 48

3.3.2 Mutual Information (MI) . 49

3.3.3 Feature Mutual Information (FMI) 49

3.3.4 Structural Similarity Index Measure (SSIM) 50

3.3.5 Standard Deviation (SD) . 51

3.3.6 Spatial Frequency (SF) . 51

3.3.7 Average Gradient (AG) . 52

xi

3.3.8 Mean Squared Error (MSE) 52

3.3.9 L1 error . 53

3.3.10 Root Mean Squared Error (RMSE) 53

3.3.11 Peak Signal To Noise Ratio (PSNR) 53

3.3.12 Correlation Coefficient (CC) 54

3.3.13 Edge Intensity (EI) . 54

3.3.14 Q, QW, and QE . 54

3.3.15 QAB/F, LAB/F, NAB/F . 56

3.3.16 QCB . 57

3.3.17 QCV . 58

3.3.18 QY . 59

3.4 Applications . 60

4 PROPOSED ARCHITECTURE . 61

4.1 Introduction . 61

4.2 Network Architecture . 62

4.2.1 Encoder . 63

4.2.2 Fusion . 65

4.2.3 Decoder . 66

4.3 Loss Functions . 68

5 EXPERIMENTAL RESULTS . 73

5.1 Introduction . 73

5.2 Training and Inference Details . 73

5.3 Experiments on Proposed Method 76

xii

5.3.1 Effect of Loss Function . 76

5.3.2 Effect of Pre-trained Encoder Layer 80

5.3.3 Effect of Fusion Layer . 82

5.4 Performance Evaluation . 85

5.4.1 Only Deep Learning Based Methods Comparisons 85

5.4.1.1 TNO Dataset Comparisons 87

5.4.1.2 VIFB Dataset Comparisons 92

5.4.2 Overall Comparisons . 96

6 CONCLUSIONS . 105

REFERENCES . 107

APPENDICES

A BACKGROUND INFORMATION ON DEEP LEARNING 119

A.1 Introduction . 119

A.2 History . 120

A.3 Perceptron . 120

A.4 Back-propagation Algorithm . 122

A.5 Regularization . 126

A.5.1 Norm Penalties: L1 and L2 Regularization 126

A.5.2 Dataset Augmentation . 127

A.5.3 Dropout . 128

A.5.4 Early Stopping . 128

xiii

LIST OF TABLES

TABLES

Table 5.1 Number of parameters of the different types of the proposed method. 74

Table 5.2 MSE, L1, Q, QW , QE and QY scores of the proposed method with

indicated loss functions. Scores are generated on TNO Dataset [2]. Green

results indicates the best result in the corresponding metric among all of

the methods. 77

Table 5.3 MSE, L1, Q, QW , QE and QY scores of the proposed method with

indicated loss functions. Scores are generated on VIFB Dataset [3]. Green

results indicates the best result in the corresponding metric among all of

the methods. 77

Table 5.4 MSE, L1, Q, QW , QE and QY scores of the proposed method

with indicated loss functions weights. Scores are generated on VIFB and

TNO datasets. The network are trained 1 epoch using the Eqn. 4.5 as

loss function. Green results indicates the best result in the corresponding

metric among all of the methods. 79

Table 5.5 MSE, L1, Q, QW , QE and QY scores of the proposed method

with indicated loss functions weights. Scores are generated on VIFB and

TNO datasets. The network are trained 10 epoch using the Eqn. 4.5 as

loss function. Green results indicates the best result in the corresponding

metric among all of the methods. 79

Table 5.6 MSE , L1 , Q, QW , QE and QY scores of the proposed method

with indicated training networks. Scores are generated on VIFB Dataset

[3]. Green results indicates the best result in the corresponding metric. . . 81

xiv

Table 5.7 MSE , L1 , Q, QW , QE and QY scores of the proposed method

with indicated training networks. Scores are generated on TNO Dataset

[2]. Green results indicates the best result in the corresponding metric. . . 81

Table 5.8 MSE , L1 , Q, QW , QE and QY scores of the proposed method

with indicated fusion methods. Scores are generated on VIFB Dataset [3].

Green results indicates the best result in the corresponding metric among

all of the methods. 82

Table 5.9 MSE , L1 , Q, QW , QE and QY scores of the proposed method

with indicated fusion methods. Scores are generated on TNO Dataset [2].

Green results indicates the best result in the corresponding metric among

all of the methods. 82

Table 5.10 Method names and corresponding numbers used in TNO and VIFB

dataset comparisons. 86

Table 5.11 Reliable performance metrics with the MSE and L1 scores that

show numerically distance to the input images. Top three scores are high-

lighted with green, blue and red respectively for each metric. Results are

obtained in TNO dataset. 87

Table 5.12 Part 1 of other performance metrics that is not mentioned in the

Table 5.11. Top three scores are highlighted with green, blue and red

respectively for each metric. Results are obtained in TNO dataset. 89

Table 5.13 Part 2 of other performance metrics that is not mentioned in the

Table 5.11. Top three scores are highlighted with green, blue and red

respectively for each metric. Results are obtained in TNO dataset. 89

Table 5.14 Reliable performance metrics with the MSE and L1 scores that

show numerically distance to the input images. Top three scores are high-

lighted with green, blue and red respectively for each metric. Results are

obtained in VIFB dataset. 92

xv

Table 5.15 Part 1 of other performance metrics that is not mentioned in the

Table 5.14. Top three scores are highlighted with green, blue and red

respectively for each metric. Results are obtained in VIFB [3] dataset. . . 93

Table 5.16 Part 2 of other performance metrics that is not mentioned in the

Table 5.14. Top three scores are highlighted with green, blue and red

respectively for each metric. Results are obtained in VIFB [3] dataset. . . 93

Table A.1 Expressions and definitions used 125

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Convolution operation on an image. Image taken from [32] . . . 6

Figure 2.2 VGG-16 architecture taken from [33]. 7

Figure 2.3 Residual building block for ResNet architecture taken from [5] . 8

Figure 2.4 U-Net architecture. Gray arrows show skip connections of the

architecture. The number of channels is denoted on top of the boxes.

Image taken from [1]. 9

Figure 3.1 Multi-scale transform based infrared and visible image fusion

scheme taken from [34]. 12

Figure 3.2 Proposed ADF Method taken from [6] 13

Figure 3.3 Proposed CBF Method taken from [7] 14

Figure 3.4 Construction of three level decomposition taken from [8] 15

Figure 3.5 Proposed Hybrid_MSD Method taken from [8] 15

Figure 3.6 Proposed HMSD_GF Method taken from [9] 16

Figure 3.7 Proposed GFCE Method taken from [9] 16

Figure 3.8 Proposed MSVD Method taken from [10] 17

Figure 3.9 Proposed MGFF Method taken from [11] 19

Figure 3.10 Proposed GFF Method taken from [12] 20

xvii

Figure 3.11 Proposed TIF Method taken from [13] 21

Figure 3.12 Sparse representation of an image taken from [35] 22

Figure 3.13 Sparse representation based fusion scheme taken from [34] . . . 22

Figure 3.14 Overall architecture of SR method taken from [14] 23

Figure 3.15 Over-complete dictionaries and the training data. The over-

complete DCT dictionary, the hybrid overcomplete dictionary, and the

trained overcomplete dictionary from left to right respectively. The bot-

tom row shows the training data. Credit to [15] 24

Figure 3.16 Overall architecture of SOMP method taken from [15] 25

Figure 3.17 Overall architecture of NNSR method taken from [36] 27

Figure 3.18 Proposed MDLatLRR Method taken from [17] 28

Figure 3.19 Block diagram of proposed FPDE method taken from [18] 29

Figure 3.20 The schematic diagram of proposed general MST_SR method

taken from [19] . 30

Figure 3.21 The schematic diagram of proposed VSMWLS method taken

from [20] . 31

Figure 3.22 The schematic diagram of proposed CNN method taken from [21] 32

Figure 3.23 The proposed Siamese network to find weight map taken from

[37] . 33

Figure 3.24 The schematic diagram of proposed DLF method taken from [22] 34

Figure 3.25 The procedure of detail content fusion taken from [22] 35

Figure 3.26 The procedure of the ResNet method taken from [23] 36

Figure 3.27 The training procedure of the proposed method taken from [24] . 37

Figure 3.28 The overall architecture of the proposed method taken from [24] 38

xviii

Figure 3.29 The proposed neural network to fuse input images taken from [24] 39

Figure 3.30 The overall architecture of the proposed method taken from [25] 39

Figure 3.31 The overall architecture of the proposed method taken from [26] 40

Figure 3.32 The overall architecture of the proposed method taken from [26] 40

Figure 3.33 The overall architecture of the proposed method taken from [27] 41

Figure 3.34 The residual fusion layer called RFN taken from [27] 42

Figure 3.35 The decoder layer inspired from UNet++ [38]. Image is taken

from [27] . 42

Figure 3.36 The overall architecture of the Dual-Branch method in the train-

ing phase. Image is taken from [28] 44

Figure 3.37 The architecture of the Dual-Branch method in the inference

phase. Image is taken from [28] . 44

Figure 3.38 The fusion strategies of the Dual-Branch method. Image is taken

from [28] . 45

Figure 3.39 The overall architecture of TFSNet method. Image is taken from

[29]. 46

Figure 3.40 The schematic diagram of proposed IFEVIP method taken from

[31] . 48

Figure 4.1 Autoencoder architecture. U-Net architecture can be considered

as autoencoder but it has some improvements over it to overcome bot-

tleneck problem. Image is taken from [39]. 63

Figure 4.2 Convolution operation with stride 2 and kernel size 2 by 2. Im-

age is taken from [40]. 63

Figure 4.3 Basic encoder architecture. Includes only convolution layers. . . 64

Figure 4.4 ResNet 34 architecture. Image is taken from [41] 65

xix

Figure 4.5 Fusion method visualizations. Yellow boxes are the result of

the convolution layer. Green boxes are the results of the fusion layer.

Red boxes are the inputs that came from encoder layers. Purple circles

define the operation used. ’+’ means element-wise adding while ’||’
means concatenation in channel dimension. 67

Figure 4.6 Decoder architecture. Blue boxes show transposed convolution

results while green boxes are feature maps coming from the fusion

layer. The yellow box is the convolution layer. If more than one ar-

row exists for any layer, these feature maps are concatenated at depth

dimension which is indicated as the width of the boxes. 68

Figure 4.7 Overall architecture. Yellow boxes represent the encoder lay-

ers. Blue boxes represent the decoder layer. Green boxes represent the

fusion layer. The architecture is called as Encoder-Decoder-Fusion. . . . 69

Figure 5.1 Sample images that is used in the training. They include night

and day conditions. 75

Figure 5.2 Input images that is used to compare methods qualitatively. . . . 78

Figure 5.3 The fusion results of the different loss functions given in Tables

5.2 and 5.5. The proposed method is trained with MSE + QE + Q,

QE , andQE+Q loss functions separately and results are generated from

trained neural networks in the mentioned order from top to bottom. Red

squares show the regions that are some important visual information

that is used to check overall quality with the naked eye. Better viewed

in digital zoom these red rectangles. 80

xx

Figure 5.4 The fusion results of the different fusion methods given in Tables

5.8 and 5.9. The proposed method is constructed using these fusion

methods. Concatenate + Convolution, Convolution + Concatenate and

Add fusion methods are used from top to bottom respectively. Red

squares show the regions that are some important visual information

that is used to check overall quality with the naked eye. Better viewed

in digital zoom these red rectangles. 84

Figure 5.5 Average perceptual quality (PaQ-2-PiQ) [42] scores for deep

learning-based methods. Results are obtained in the TNO dataset. Our

proposed method obtains the best score among all other methods. 88

Figure 5.6 Perceptual quality scores with respect toQE ,QW andQY scores.

Upper right corner in the graphs is the best place for a method. Results

are obtained in TNO dataset. 90

Figure 5.7 Some examples of the fused images of the deep learning based

methos on TNO dataset. 91

Figure 5.8 Average perceptual quality (PaQ-2-PiQ) scores for deep learning

based methods. Results are obtained in VIFB dataset. 94

Figure 5.9 Perceptual quality scores with respect toQE ,QW andQY scores.

Upper right corner in the graphs is the best place for a method. Results

are obtained in VIFB dataset. 95

Figure 5.10 Some examples of the fused images of the deep learning based

methos on VIFB dataset. 96

Figure 5.11 Average perceptual quality (PaQ-2-PiQ) scores for all methods.

Results are obtained in TNO dataset. 97

Figure 5.12 Average perceptual quality (PaQ-2-PiQ) scores for all methods.

Results are obtained in VIFB dataset. 97

xxi

Figure 5.13 Perceptual quality scores with respect toQE ,QW andQY scores.

Upper right corner in the graphs is the best place for a method. Results

are obtained in VIFB dataset. 98

Figure 5.14 Perceptual quality scores with respect toQE ,QW andQY scores.

Upper right corner in the graphs is the best place for a method. Results

are obtained in TNO dataset. 99

Figure 5.15 Sequence 21 in TNO dataset. First row is the visible and in-

frared images respectively. Each fused image has a number that can be

checked from Table 5.10. The number 27 is our proposed method. . . . 100

Figure 5.16 Sequence 12 in TNO dataset. First row is the visible and in-

frared images respectively. Each fused image has a number that can be

checked from Table 5.10. The number 27 is our proposed method. . . . 101

Figure 5.17 ’carWhite’ image pairs in VIFB dataset. First row is the visible

and infrared images respectively. Each fused image has a number that

can be checked from Table 5.10. The number 28 is our proposed method.102

Figure 5.18 ’elecbike’ image pairs in VIFB dataset. First row is the visible

and infrared images respectively. Each fused image has a number that

can be checked from Table 5.10. The number 28 is our proposed method.103

Figure A.1 Biological Neuron Model taken from Wikipedia[43] 121

Figure A.2 Detailed explained parts of single layer perceptron[44] 121

Figure A.3 Illustration of a deep learning model. It is taken from [45]. It

shows that each hidden layer learns different features. First layers learn

simple representations like edges, corners, etc. Through the final layers,

the network learns more abstract features like object parts. 123

Figure A.4 Demonstration of underfitting, correct fit and overfitting from

left to right respectively . It is taken from [46] 126

xxii

Figure A.5 Artificial neural network with and without dropout. With ran-

dom probability some neurons are closed. Crossed units have been

dropped. Image is taken from [47] . 128

Figure A.6 Loss curves of the artificial neural network. This shows that

from a point validation loss started to increase even if training loss con-

tinues to decrease. 129

xxiii

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

AI Artificial Intelligence

DL Deep Learning

MLP Multilayer Perceptrons

MST Multi-scale transform

BF Bilateral filter

2DSVD 2D multi-resolution singular value decomposition

GF Guided filter

DCT Discrete Cosine Transforms

OMP Orthogonal Matching Pursuit

GOMP Group Orthogonal Matching Pursuit

PCA Principal Component Analysis

ICA Independent Component Analysis

NMF Non-negative matrix factorization

LP Laplacian Pyramid

GP Gradient Pyramid

DWT Discrete Wavelet Transform

SWT Stationary Wavelet Transform

DTCWT Dual-tree Complex Wavelet Transform

CVT Curvelet Transform

NSCT Nonsubsampled Contourlet Transform

VSM Visual Saliency Map

SSIM Structural Similarity

GAN Generative Adversarial Network

xxiv

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Imaging is a process that captures electromagnetic radiations in a spatial range. Vis-

ible spectrum imaging collects visible lights in the range 400-700 nm and converts

them to digital values that are arranged and perceived as an image by humans. The

visible imaging cameras are designed to replicate human vision by capturing red,

green, and blue wavelengths of the visible electromagnetic spectrum. They collect

reflected lights from the objects. Their performance is affected by atmospheric con-

ditions such as fog, clouds, smoke, etc. They need good illumination to construct an

image. Thus, in night conditions, they show poor performance. On the other hand,

the source of thermal imaging is the heat of the objects. All objects that have a tem-

perature higher than absolute zero in Kelvin (O°K of -273°C) emit electromagnetic

radiation which cannot be seen by the naked eye [48]. When the heat of the ob-

ject increases, the electromagnetic radiation increases as well. This radiation places

mostly in the infrared wavelength. It can penetrate some atmospheric conditions like

fog, smoke, rain, etc. Infrared imaging converts infrared radiation to the image that

renders the spatial distribution of the temperature differences in the scene.

In imaging technology, there are two main resolutions definition that define the qual-

ity of the image. The first one is spatial resolution. It specifies the physical pixel size

of the imaging device. Details and features of the objects in the scene can be seen

with high spatial resolution more clearly [49]. The second one is spectral resolution.

It specifies the sensitivity of the imaging device to the electromagnetic spectrum. The

number of spectral bands and width of the spectral bands that the device is sensi-

1

tive are the important parameters for the spectral resolution. Visible spectrum images

use red, green, and blue spectral bands whereas infrared images use thermal spec-

tral bands which the wavelengths are from the red spectral band edge around 700

nanometers to 1 millimeter. In current imaging technology, visible spectrum images

have better spatial resolution than infrared images. However, thermal images use a

different spectral band that reveals a different kinds of features and details of the ob-

jects. Due to it uses the infrared radiation of the scene, it can operate in day and

night conditions without losing any information. Also, in bad atmospheric conditions

such as fog, smoke, etc., it provides a sight because of the nature of infrared imag-

ing. Thus, both visible and infrared images have advantages and they are required for

different real-world scenarios.

The imaging technology is rapidly improving and sensors become more and more in-

formative. The images are used in various applications so, the quality of the image is

important. In surveillance, imaging technology is excessively used. The objects in the

scene should be distinguishable. The operators should need to identify objects, read

the important information in the image. For instance, they need to read the car plate

from far distances. The spatial and spectral resolution is so important for them. Also,

they need to keep track of the multiple-image sources which can be time-consuming

and some important features can be skipped. Reducing the multiple images to a single

image makes easy their jobs. On the other hand, images are used for machine per-

ception applications which are called computer vision. Relevant applications work

top on the image such as object classification, object detection, object tracking, etc.

These applications need high spatial resolution and can benefit from high spectral

resolution. The applications generally run through the multi-dimensional images that

are stacking of the visible and infrared images. This behavior increases the time or

memory consumption of the applications. Rather than work on multi-spectral images,

the application can use a single image that includes all relevant information regard-

ing the scene. To address these issues, image fusion is defined. Image fusion is a

technique that combines different kinds of images to generate a single image that in-

cludes all important information without any artifact. In this work, we are focusing

on infrared and visible image fusion applications. It gathers all important informa-

tion from visible and infrared images to construct a complete single image. The aim

2

is to create a new image that includes more understandable and compact features of

the scene while reducing the amount of data. By the way, the spatial and spectral

resolution of the fused image increase. It completes the weaknesses of both images.

The solution decreases the need for complex physical solutions and costs. These two

imaging modalities offer different aspects of the scene. For instance, visible spectrum

imaging provides color and shape information by capturing reflected light from the

scene. Whereas, infrared spectrum imaging constructs an image by capturing thermal

radiation. The source of the image formation affects the visibility, shape, color, and

other aspects of the objects in the digital image. The visible images can be influenced

by the scene conditions such as fogging, raining. Thermal images are resistant to such

conditions but, they have low resolution and poor texture information. Combining the

advantages of these different imaging technologies can boost the performance of the

computer vision applications mentioned above or present a quality image to the user,

i.e. a human that reviews the camera footage.

The spatial and spectral resolutions of the image are important but, deciding which

information is important and needs to be preserved when fusing images. Measuring

the quality of the fused image is very challenging and it is changing in the direction

of the requirements. Moreover, there is no exact true fusion result to understand and

examine the solution. Thus, image quality is measured through important features

for desired tasks. For instance, image contrast and brightness are important for the

human visual system in surveillance applications. Considering these features and

applications, image quality is measured with different metrics.

1.2 Contributions and Novelties

Our contributions are as follows:

• We propose a novel neural network architecture to address the fusion problem

without needing any formulation or additional steps. All parameters in the

proposed architecture are trained together. Thus, the process is optimized to

learn to extract complex interactions and features, to fuse these features, and

reconstruct the fused feature as a whole. Also, in the proposed architecture, we

3

use only convolutional and pooling layers which decreases the computational

load and makes it more suitable for real-time applications.

• We propose a novel loss function using no-reference quality metrics. The mean

square error function is also integrated into the loss function to increase visual

perception quality. In this way, generated color images become more realis-

tic and natural. To measure the perceived qualities of our results, we use no

reference perception quality metric mentioned in [42].

1.3 The Outline of the Thesis

In the Chapter 1, background information about deep leaning is given. It is required to

understand the concepts of the proposed method. The chapter starts with the history

of deep learning and continues to explain core concepts on it. In the end, common

methods and novelties are explained.

In the Chapter A, image fusion literature is reviewed. The chapter consists of three

parts: image fusion methods, fusion quality measurements, and applications of image

fusion.

In the Chapter 3, our proposed method is presented with great details. The archi-

tecture and the training process are explained. The design choices of the proposed

method are also given.

In the Chapter 4, experiment results are shared. In the first part, experiments con-

ducted on the proposed method are given. In the second part, the best-proposed

method is compared with the state-of-the-art methods quantitatively and qualitatively.

The image quality measurements mentioned in Chapter A are used for the compar-

isons. Also, visual results are shared.

4

CHAPTER 2

CONVOLUTIONAL NEURAL NETWORKS (CNNS)

2.1 Introduction

Convolutional neural networks are a special kind of neural network for processing

data. It uses convolutional operation instead of matrix multiplication. It becomes

sparse relative to feed-forward networks also known as fully connected networks be-

cause weights are shared for input data. Thus, the network parameters are signifi-

cantly decreased. Also, it is shown that CNNs are successful in various applications.

It can extract good internal representations. These reasons make CNNs popular.

We continue with an explanation of some common architectures.

2.1.1 The Convolutional Operation

Convolution is an operation that takes two input function. It can be considered that

it is a weighted average operation as defined in Eqn. 2.1. One of the input functions

defines weights whereas the other one is input signal. The weight input is called as

kernel and output of convolution operation is called as feature map in deep learning

area. In CNNs, 2D convolution operations are used commonly which is given in Eqn.

2.2. The kernel is generally much more smaller than the input image which equals to

kernel has non-zero elements in a a bounded region in 2D. For example, kernel size is

generally taken as 3 by 3, 5 by 5 or similar, whereas the image size generally bigger

5

than 32 by 32.

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (2.1)

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.2)

Figure 2.1: Convolution operation on an image. Image taken from [32]

2.2 Some Common Architectures of CNNs

The convolutional neural networks become popular when they show the best perfor-

mance in various fields like image classification, object detection. There are some

architectures that present innovations to improve the concepts. Thus, the innovative

architectures should be reviewed to understand key points that bring success. The

VGG, ResNet and U-Net architectures are fundamental methods in CNNs.

2.2.1 VGG [4]

VGG [4] architecture was proposed by Karen Simonyan and Andrew Zisserman from

the University of Oxford in 2014. Their main contribution is to add smaller kernel-

size convolution layers with deeper networks. They introduced CNN models that

have 16 and 19 layers. Previously, in AlexNet, 8 layer CNN was proposed with 11

by 11 kernel sizes. In VGG, layers have 3 by 3 kernels. Decreasing kernel size of the

6

convolution layer decreased the number of network parameters and increasing depth

of the network increased accuracy as well. Thus, VGG showed that deeper networks

with small receptive fields, i.e. small kernel size, achieve better results. VGG-16

architecture is shown in Figure 2.2.

Figure 2.2: VGG-16 architecture taken from [33].

2.2.2 ResNet [5]

VGG network showed increasing the depth of the network increases accuracy as well.

However, simply stacking layers do not work because vanishing gradient problem

when training network. Thus, ResNet [5] presented a novel solution to prevent from

vanishing gradient problem. The core idea is to add skip or shortcut connections be-

tween layers. With the help of shortcut layers, gradients can flow through the end of

the network. The residual building block of the ResNet architecture is shown in Fig-

ure 2.3. The comparison between VGG network with ResNet is shown in Figure ??.

ResNet has only one fully connected layer with deeper architecture and the number of

parameters is significantly dropped compared to VGG. Also, adding skip connections

doesn’t affect the size of the parameters but, training becomes more stable.

7

Figure 2.3: Residual building block for ResNet architecture taken from [5]

2.2.3 U-Net [1]

VGG and ResNet architectures are successful methods to extract features and clas-

sify images. To classify each pixel that is segmentation, the U-Net [1] architecture

presented a novel method. It consists of two parts: encoder and decoder layers. The

encoder layer extracts image features with convolution layers and downsamples input

images with maximum pooling layers. The decoder layer reconstructs the segmenta-

tion result using extracted features from the encoder layer. It uses convolution trans-

pose layers to upsample feature maps. The overall architecture is shown in Figure

2.4. A similar idea to the skip connection in ResNet is used between encoder and de-

coder layers. It becomes popular for image generation tasks such as segmentation and

ResNet and VGG models are integrated into the encoder layer in further researches.

8

Figure 2.4: U-Net architecture. Gray arrows show skip connections of the architec-

ture. The number of channels is denoted on top of the boxes. Image taken from

[1].

9

10

CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

In this chapter, we reviewed the existing methods and quality measurements for in-

frared and visible image fusion.

3.2 Infrared and Visible Image Fusion Methods

Fusion methods are divided into seven categories in [34]. These are multi-scale trans-

form, sparse representation, neural network, subspace, saliency-based, hybrid, and

other methods. Image fusion algorithms are composed of three steps: Extracting

good representations of images, a fusion rule, and reconstruction of the fused image.

Each method can be reviewed by following these steps. In this section, each category

will be explained according to their theory briefly. Then, some common methods of

the category will be reviewed.

3.2.1 Multi-scale Transform Based Methods

Multi-scale transform-based methods are the most common technique that is applied

in various algorithms for image fusion. Input images are decomposed into several

components of different scales. Thus, each component can represent different real-

world object features. It is shown that multi-scale transforms are similar to the human

visual system so, using this can give good visual effects in the final reconstructed im-

age. One of the most fundamental transforms used in the multi-scale transform is

11

pyramid transform and its concept dated back to the 1980s. In the Laplacian pyramid

transform [50], the following steps are applied iteratively: low-pass filtering, sam-

pling, interpolating, and differencing. Other transforms that is commonly used are

wavelet transforms [51], nonsubsampled contourlet transform [52], edge-preserving

filter [53], curvelet transform [54]. More details about these transforms can be found

in [34]. After multi-scale decomposition, these representations are fused according to

a fusion rule defined by the method. To combine the multi-scale representations, the

global or regional fusion rule is defined. The methods compare the coefficients based

on a metric that can extract image features like contrast, energy, and detail. According

to the comparison result, multi-scale representations are combined. In the last step

which is the reconstruction of fused image, the inverse transform is applied to fused

multi-scale representations to generate the fused image. In Figure 3.1, the multi-scale

transform-based infrared and visible image fusion methods’ overall scheme is shown.

Figure 3.1: Multi-scale transform based infrared and visible image fusion scheme

taken from [34].

12

3.2.1.1 ADF Method [6]

ADF [6] is shortening of Anisotropic diffusion-based image fusion. They use anisotropic

diffusion to extract base and detail layers from the image. Then, they define Karhunen-

Loeve transform [55] to fuse detail layers and weighted superposition to fuse base

layers. In the final step, fused detail and base layers are superposed and the final

fused image is generated. Proposed ADF method is shown in Figure 3.2.

Figure 3.2: Proposed ADF Method taken from [6]

3.2.1.2 CBF Method [7]

CBF [7] uses cross bilateral filter to extract and fuse image features. The bilateral

filter (BF) is introduced in [56]. The cross bilateral filter uses a second image to shape

the filter kernel and operates in the first image. Thus, In CBF, the cross bilateral filter

is used with both orders which are first and second images are visible and infrared

and vice versa. Thus, representations for visible and infrared images are extracted

and they generate pixel-based weights by measuring the strength of details for both

of them. The images are combined with found weights to reconstruct the final fused

image. Proposed CBF method is shown in Figure 3.3.

13

Figure 3.3: Proposed CBF Method taken from [7]

3.2.1.3 Hybrid_MSD Method [8]

Hybrid_MSD [8] uses Gaussian and bilateral filters [56] to extract representations of

the input images. Changing bilateral filter parameter σr which is the standard de-

viation of the range Gaussians that control the influences of the neighboring pixels’

intensity difference. With different σr values, they stated that large or small scale

features of the input image can be extracted. They define three different levels which

are small, large, and base levels. In Figure 3.4, decomposition of an input image for

three-level Hybrid_MSD is shown. I ib shows the bilateral filter output where I ig shows

the output of Gaussian filter with ith level parameters. I0 means input image whereas

B means base level decomposition. After three-layer decomposition results are gen-

erated for infrared and visible images separately, corresponding decomposition layers

are combined. Base layers and the other two layers are combined with different fusion

rules. Detailed explanations can be found [8]. In the final step, fused image result is

generated by applying inverse Hybrid_MSD transform to fused decomposition layers

which are the sum of all levels of decomposed information with the base image. The

overall architecture of the method is shown in Figure 3.5.

14

Figure 3.4: Construction of three level decomposition taken from [8]

Figure 3.5: Proposed Hybrid_MSD Method taken from [8]

3.2.1.4 GFCE and HMSD_GF Methods [9]

In [9], they investigated that guided filter (GF) [57] can be used instead of bilateral

filter [56] in the Hybrid_MSD method 3.2.1.3. They showed that GF can be a good

edge-preserving filter or a good smoothing filter with adjusting related parameters

of GF. Thus, the Gaussian filter and bilateral filter are replaced by GF. Proposed

HMSD_GF method is shown in Figure 3.6. They grouped decomposed layers as

Hybrid_MSD 3.2.1.3. Decomposed information combination is defined for each level

separately and there is a regularization parameter that controls the relative amount of

IR spectral information injected into the visible image to prevent some artifacts. The

final fused image is reconstructed by summing all level combinations. The GFCE

method enhances image quality with some additional steps to the HMSD_GF. Firstly,

they apply a preprocessing step to enhance visible image quality. Also, they chose

the regularization parameter with measuring the perceptual saliency of preprocessed

input images. In Figure 3.7, steps of GFCE are shown.

15

Figure 3.6: Proposed HMSD_GF Method taken from [9]

Figure 3.7: Proposed GFCE Method taken from [9]

16

3.2.1.5 MSVD Method [10]

In MSVD [10], to decompose source images, 2D multi-resolution singular value de-

composition (2DSVD) [58] is used. In the second step, according to the designed

fusion rule, the larger absolute value of two corresponding detailed coefficients for

each level. Only in the coarsest level (last level), an average of the coefficients is

calculated. In the last step, inverse 2DSVD is applied since the steps are reversible.

The proposed method is shown in Figure 3.8.

Figure 3.8: Proposed MSVD Method taken from [10]

3.2.2 Saliency Based Methods

Saliency regions are important for the human visual system because it attracts at-

tention to itself. Furthermore, It can be distinguished by its neighborhood objects.

To increase visual quality, the integrity of salient regions should be maintained for

image fusion application. Generally, methods use the saliency information in their

fusion method for example GFF 3.2.2.2 and MGFF 3.2.2.1.

3.2.2.1 MGFF [11]

MGFF [11] uses guided filter (GF) [57] to construct multi-scale decomposition lay-

ers. The approach is close to GFF 3.2.2.2 but it uses more than two scales and it uses

guided filter when decomposing source images. Source images are regarded as 0th

base layer decomposition result. To generate the next base layer decomposition, GF

17

is applied to the previous layer with the guidance of another image spectrum decom-

position layer that is for visible image decomposition, infrared image decomposition

is used as guidance vice versa. Furthermore, detail layer decomposition is calculated

as consecutive base layer differences. In the second step of the method, the fusion

rule is defined to reconstruct the fused image. The detail layers are combined with a

weighted summation. The corresponding weights are calculated from salience maps

which are the absolute value of the detail layers. Each corresponding detail layer of

the source images is combined with these weights and all detail layers are superposed

to produce the final detail layer. Also, the final base layer is calculated by superposing

of last base layers of source images. In the last step, the fused image is reconstructed

by superposing the final base layer and final detail layer. In Figure 3.9, methods steps

are shown.

3.2.2.2 GFF [12]

GFF [12] is another method that integrates guided filter [57] to image fusion. The

difference from other multi-scale methods is GFF uses only two scales to construct the

fused image. In the first step, image representations are generated. These are called

as base layer and detail layer. The base layer is generated using average filtering and

the detail layer is generated by subtracting the base layer from source images. In the

second step, they define a fusion rule. The Laplacian filter is applied to the source

image to obtain a high pass image. Then, a Gaussian filter is applied to a high pass

image to smooth the image and the result is called a saliency map. Saliency maps

of source images are compared. For each pixel, if a saliency value is higher than the

other’s value, the pixel value becomes 1, otherwise becomes 0. Thus, saliency maps

become binary images, called weight maps and they become complementary of each

other, i.e, corresponding pixel sum becomes 1. The guided filter is applied to the

weight maps with the guidance of the source image. The refined weight maps are

normalized to provide a summation of corresponding pixel values equal to 1. In the

last step, base and detail layers are combined with refined weight maps separately.

Then, combined base and detail layers were superposed to construct the fused image.

In Figure 3.10, steps are visualized.

18

Figure 3.9: Proposed MGFF Method taken from [11]

3.2.2.3 TIF [13]

TIF [13] is similar to GFF 3.2.2.2. It uses two scales to construct fused images like

GFF. In the first step, it extracts base layers of source images applying an average

filter. In addition, the detail layers are extracted by subtracting base layers from source

images. In the second step, the visual saliency detection algorithm is defined to define

weight maps used for the fusion of detail layers. Saliency regions are found by the

19

Figure 3.10: Proposed GFF Method taken from [12]

following process. A mean and median filter is applied to source images. Saliency

maps are calculated by taking the absolute value of the differences between these

filters applied for each source image separately. The weights maps are calculated by

normalizing saliency maps that the summation of each corresponding pixel should be

equal to 1. Detail layers are combined using calculated weight maps and base layers

are combined simply taking average. In the last step, fused detail and base layers

are superposed to construct the fused image. Figure 3.11 shows the schematic of

explained method TIF.

3.2.3 Sparse Representation Based Methods

Sparse representation aims to learn a dictionary that can define images sparsely. Nat-

ural images can be defined by sparse features. Sparse representation reduces the

dimension of images with the help of a learned dictionary. An example of sparse

representation of image can be seen in Figure 3.12. Before sparse coding, the im-

age is divided into several patches. The patches are defined by sparse coefficients

and reconstructed from these coefficients. In this way, visual artifacts such as noise

20

Figure 3.11: Proposed TIF Method taken from [13]

decreases, and the quality of the image potentially increases whenever the image is

reconstructed from sparse coding [59]. In Figure 3.13, general architecture applied

for sparse representation-based methods is shown. Algorithm steps are organized as:

1. Vectorize input image using sliding window strategy and apply sparse coding

using learned dictionary

2. Define a fusion rule to combine sparse coefficients

3. Reconstruct image from fused sparse coefficients

3.2.3.1 SR Method [14]

In sparse representation, the source image is divided into patches because the dic-

tionary size is growing exponentially when the patch size increases. Thus, smaller

size patches lead to smaller size overcomplete dictionary and required computational

power decreases as well. In SR method [14], source image is divided into patches

with size of nxn. These patches are lexicographically ordered as a vector. All vectors

are combined in a matrix in which each column corresponds to a vector. Then, sparse

21

Figure 3.12: Sparse representation of an image taken from [35]

Figure 3.13: Sparse representation based fusion scheme taken from [34]

coefficients are found using given overcomplete dictionary. The dictionary that is

used in this method is constructed with discrete cosine transforms (DCT). Sampling

the cosine wave in different frequencies is adopted for the DCT dictionary. To cal-

22

culate best matching sparse representation, orthogonal matching pursuit (OMP) [60]

which is a greedy algorithm that sequentially selects the dictionary elements. In the

second step of the image fusion, sparse coefficients of the source images are com-

bined choosing the largest activity level in each pixel location. In the last step, fused

sparse coefficient converted to lexicographically ordered vector matrix. Then, the fi-

nal fused image is constructed inverse process of vectorization explained above. If

any pixel value comes from different patches, the average of them is taken. The over-

all architecture of the proposed method is shown in Figure 3.14.

Figure 3.14: Overall architecture of SR method taken from [14]

3.2.3.2 SOMP [15]

Similar to the SR method 3.2.3.1, the SOMP method uses a given dictionary to con-

struct sparse coefficients of the source images. Before applying the proposed method

to the source images, a dictionary is constructed to define sparse representation. They

use three kinds of overcomplete dictionaries. The first one is an overcomplete DCT

dictionary. The second one is the hybrid overcomplete dictionary that consists of DCT

bases, wavelet ’db1’ bases, Gabort bases, and ridgelet bases functions. The last one

is the trained overcomplete dictionary that uses 50000 8 by 8 sample blocks from 50

natural images to learn dictionary atoms. In Figure 3.15, dictionary types are shown.

23

Figure 3.15: Over-complete dictionaries and the training data. The overcomplete

DCT dictionary, the hybrid overcomplete dictionary, and the trained overcomplete

dictionary from left to right respectively. The bottom row shows the training data.

Credit to [15]

In the first step, source images are divided into patches using a sliding window. Patch

size is the same as the atom size of the given dictionary. The patches are transformed

into vectors via lexicographical ordering and all of them are combined in a vector

matrix. To extract sparse representations, a simultaneous orthogonal matching pursuit

algorithm [35] is applied. In the second step, sparse coefficients are combined using

the absolute maximum rule. The maximum absolute value of coefficients is chosen

to define fused sparse coefficients. Lastly, fused sparse coefficients are converted to

fused vectors. Each vector is reshaped into the original patch size. Each reshaped

patch is added to the corresponding region in the image. Thus, each pixel consists

of several patch values. The final pixel value is divided by the number of patches

used to construct the pixel. Thus, the final fused image is reconstructed. The overall

architecture of the proposed method is shown in Figure 3.16.

24

Figure 3.16: Overall architecture of SOMP method taken from [15]

3.2.3.3 GSR Method [16]

In GSR method [16], fused image reconstruction steps are similar to other sparse

representation-based methods. The difference of the proposed method, it uses group

sparse representation to define a sparse representation of the image. It combines dif-

ferent types of dictionaries. It uses group orthogonal matching pursuit (GOMP) to

derive sparse coefficients of vectorized source image patches. In the first step of the

proposed method, source images are divided into overlapping patches with a square

area. Each path is normalized by extracting the mean value of the patch from each

pixel value in the patch. Then, The normalized patches are transformed into vectors

via lexicographical ordering and all of them are combined in a vector matrix. The

sparse coefficients are calculated using GOMP. In the second step, a fusion rule is de-

fined to combine group sparse coefficients. Maximum l2-norm of sparse coefficients

are selected. Also, to reconstructed a fused image, the mean value of paths is required.

Thus, the final mean value of the patches is selected as the maximum mean value of

the source images’ corresponding patches. In the final step, fused mean values and

fused group sparse representation are combined to the reconstructed fused image.

25

3.2.3.4 NNSR Method

NSSR method [36] uses non-negative sparse representation. The overcomplete dic-

tionary is learned from source images using an online dictionary learning algorithm

[61]. Also, a traditional sparse representation which is orthogonal matching pursuit

(OMP) [60] is used.

In the first step, source images are divided into overlapping patches and vector matri-

ces are constructed from these patches. Vector matrices are used to train dictionaries

for non-negative sparse representation. The non-negative sparse coding and tradi-

tional sparse coding (OMP) vectors of vector matrices are constructed. In the second

step, they define some fusion rules for sparse coding. Salient features of both visible

and infrared images are extracted using activity level. Target features (IT) and specific

contour (IC) features of infrared image and texture features (VT) of the visible image

are extracted from sparse coefficients. Then, a regional consistency rule is defined

to combine traditional sparse coefficients using non-negative sparse representation-

based features, called the fusion guide map and weights to help the combination of

the visible and infrared coefficients. The regional consistency function defines which

traditional sparse coefficients are used in a region. In some regions, infrared features

are much more important than visible features vice versa. If a region consists of re-

lated features of both images, the weight map is used to combine the traditional sparse

coefficients. The fused sparse coefficient is generated at the end of this step. In the

last step, the fused image is reconstructed using a traditional sparse dictionary. Non-

negative sparse representation is only used in extracting features and generating the

fusion guide and weight maps. Overall schematic diagram of the proposed method is

shown in Figure 3.17.

3.2.4 Sub-space Based Methods

Dimensionality reduction is commonly used to compress input high dimensional data

to low dimensional spaces or sub-spaces while preserving data’s variation as much

as possible. This method eliminates redundant information without losing structural

information. Moreover, low-dimensional space consumes less time and memory to

26

Figure 3.17: Overall architecture of NNSR method taken from [36]

process. PCA, ICA, and NMF, detailed explanations can be found in [62], are com-

mon methods for dimensionality reduction.

3.2.4.1 MDLatLRR [17]

MDLatLRR [17] use LatLRR [63] decomposition method to find low dimensional

space representation of source images. To calculate low dimensional decomposition

Vd, projection matrix L should be learned from training data patches. The LatLRR

method defines P (.) and R(.) functions that extract features from the source im-

age and reconstruct detail images from decomposition respectively. In the first step,

multi-level decomposition maps are extracted for each source image separately. The

low dimensional decomposition V i
d , i corresponds to layer number, holds detail in-

formation called as detail layer. Reconstructed detail image subtracted from the input

image to obtain first base layer I1
b . The process continues iteratively, V i+1

d is calcu-

lated using I ib, then I i+1
b is calculated using V i+1

d and I ib. In the second step, V i
d layers

for i = 1, ..., r are combined using detail part fusion rule FS(.). The weights are

calculated by normalizing V i
d layers by dividing each to the element-wise summation

of all of them. In the final step, The low dimensional decomposition V i
d layers are

combined using calculated weights and each one is reconstructed and superposed.

Then, the final base layers and constructed detail layer are superposed to generate the

27

fused image. Figure 3.18 shows the overall architecture of the MDLatLRR.

Figure 3.18: Proposed MDLatLRR Method taken from [17]

3.2.4.2 FPDE [18]

FPDE uses fourth-order differential equation [64] which gives name to this method

to decompose image to detail and approximation layers. In the first step, FPDE is

applied to extract approximation layers. Detail layers are computed by subtracting

the approximation layers from source images. In the second step, two different fusion

rule is defined for detail and approximation layers. For detail layers, detail layers are

considered as a column vector and their principal components are computed. These

computations are used as a weight to combine detail layers. For approximation layers,

the average fusion rule is applied. In the final step, the element-wise summation is

applied to fused layers to calculate the fused image. Block diagram of the approach

is shown in Figure 3.19.

3.2.5 Hybrid Methods

All other image fusion methods have their advantages and disadvantages. Hybrid

methods try to combine the other methods to improve fusion performance. Thus,

some hybrid methods are explained in this chapter.

28

Figure 3.19: Block diagram of proposed FPDE method taken from [18]

3.2.5.1 MST_SR Methods [19]

All other image fusion methods have their advantages and disadvantages. Hybrid

methods try to combine the other methods to improve fusion performance. Thus,

some hybrid methods are explained in this chapter. MST_SR [19] tries to com-

bine multi-scale transform (Chapter 3.2.1) and sparse representation (Chapter 3.2.3).

Firstly, source images are decomposed into low-pass bands and high-pass bands. As

the default option, they tried the Laplacian pyramid (LP) [50] which is a pyramid-

based decomposition method. Other methods that are used to decompose images are

ratio of low-pass pyramid (RP) [65], gradient pyramid (GP) [66], discrete wavelet

transform (DWT) [67], stationary wavelet transform (SWT) [68], dual-tree complex

wavelet transform (DTCWT) [69], curvelet transform (CVT) [70] and nonsubsam-

pled contourlet transform (NSCT) [71]. In the second step, for each band, different

fusion rules are defined. For low-pass bands, a sparse representation approach is ap-

29

plied to fuse low-pass bands. Low-pass response images are divided into patches.

These patches are lexicographically ordered as a vector. All vectors are combined

in a matrix in which each column corresponds to a vector. Then, sparse coefficients

are found using given overcomplete dictionary. Using the maximum L1 value rule,

sparse coefficients are combined. Then, fused coefficients are converted to fused vec-

tor matrix and each vector in the vector-matrix is reshaped into the original patch

size. Overlapped patches are averaged over their accumulation times to construct

fused low-pass images. For high-pass bands, the maximum absolute value fusion rule

is applied to construct the fused high-pass image. In the last step, inverse multi-scale

transform is applied to construct a fused image from fused high-pass and low-pass

images. The schematic diagram of the proposed method is shown in Figure 3.20.

Figure 3.20: The schematic diagram of proposed general MST_SR method taken

from [19]

3.2.5.2 VSMWLS Method [20]

VSMWLS method combine multi-scale transform (Chapter 3.2.1) and saliency-based

(Chapter 3.2.2) approaches. In the first step, source images are decomposed into base

30

and detail layer using rolling guidance filter [72] and Gaussian filter. In the second

step, a different fusion rule is defined for detail and base layers. For base layers,

in the beginning, a visual saliency map (VSM) [73] is computed. Then, base layers

are combined using weighted averaging which weights are computed from VSMs.

For detail layers, weighted least square optimization is applied. Weights used in

optimization are calculated using the maximum absolute rule for each corresponding

layer (infrared and visible layers pair). In the last step, fused detail layers and fused

base layers are superposed to reconstruct the fused image. Overall algorithm steps

are shown in Figure 3.21

Figure 3.21: The schematic diagram of proposed VSMWLS method taken from [20]

3.2.6 Deep Learning Based Methods

The deep learning area inspired biological neuron systems to solve problems that are

easy for human beings but hard to formulate mathematically. For instance, in the

real-life, a human can easily classify, recognize, detect and track a cat in a video

sequence. However, these problems are challenging for computers and with the help

of mimicking the neural system of humans can present solutions closer or better from

humans. Like all of us learn gradually in our whole life, the deep learning models

are trained using samples. This approach gives promising results for computer vision

tasks like image generation, segmentation, etc. Thus, image fusion applications also

take advantage of deep learning. In the last years, these methods dominate the image

31

fusion field in both quantitative and qualitative comparisons. Some of them present a

solution only deep learning-based while some of them combine the previous methods

such as multi-scale transform 3.2.1. In this work, we are mainly focusing on deep

learning area-based solutions so, we collect all methods that use the deep learning

approach in any part of the solution to this chapter.

3.2.6.1 CNN Method [21]

This method integrates deep learning to the fusion step in the multi-scale transform

using the Laplacian pyramid. They find weight maps for each decomposition layer. It

is used to fuse the decomposition layers that will be explained in the next paragraph.

The remaining procedure is the same with multi-scale transform methods 3.2.1. The

decomposed images are fused and inverse multi-scale transform is applied to recon-

struct the fused image. Figure 3.22 shows the overall architecture of the proposed

CNN method.

Figure 3.22: The schematic diagram of proposed CNN method taken from [21]

The coefficient fusion step is defined as follows in CNN [21]. First of all, a Siamese

network is used to generate a weight map. The designed network shown in Figure

3.23. A 16 by 16 image patches taken from source images are given to the network as

inputs. The network includes convolutional and max-pooling layers. Fully connected

layers are used to generate two outputs that give the probability of the source patch

pairs at the corresponding location. If the probability of the infrared image patch is

larger, the infrared patch has more valuable information than the corresponding vis-

32

ible image patch. They improve the Siamese network to compute weight maps in

the whole image by replacing a fully connected layer with an equivalent convolution

layer with an 8x8x512 kernel size. Thus, any arbitrary input patch size can be used

as input. The whole network is trained using high-resolution image patches with dif-

ferent Gaussian blur ratios. The details about training can be found in [37]. Gaussian

pyramid decomposition is applied to the output weight map. In the next part, they

define a fusion rule. In this rule, they calculate the local energy map and similarity

measure. The Sum of squares of the coefficients in a small region gives a local en-

ergy map. The similarity measure is computed as follows. Two times of sum of the

local region in the decomposition map is divided by the sum of corresponding local

energy map values. The similarity measure is between -1 and 1, a higher value means

higher similarity. The fusion rule is a conditional function. In the first condition, if

the similarity measure is higher than a defined threshold, coefficients are combined

by weighted average using decomposed weight map. Otherwise, the ’choose-max’

fusion rule is applied.

Figure 3.23: The proposed Siamese network to find weight map taken from [37]

3.2.6.2 DLF Method [22]

This method integrates deep learning to the fusion step in the multi-scale transform

method GFF 3.2.2.2. They used a pre-trained VGG Network [4] to extract features

from decomposed detail layers of the source images. On the outside of detail layer

33

fusion, the proposed method is the same as GFF. In the first step, the source im-

ages are decomposed into base and detail layers. Secondly, base layers are combined

with averaging strategy, and detail layers are combined using deep learning included

method that will be explained later. In the last step, fused base and detail layers are

superposed to reconstruct the fused image. The overall architecture of the proposed

method is shown in Figure 3.24.

Figure 3.24: The schematic diagram of proposed DLF method taken from [22]

The detailed content fusion procedure includes the following steps, also shown in

Figure 3.25. Firstly, the detail layers are given as input to the VGG network to extract

deep features called feature maps. The feature maps are obtained from four different

layers in the VGG network. Each feature layer is normalized using l1-norm across the

channel dimension. The normalized feature maps called the activity level maps are

smoothed using the block-based average operator. The initial weight maps are com-

puted by the soft-max operator using corresponding activity level maps of the source

images. Subsampling of inputs caused by the pooling layer in the VGG network de-

creases the feature map size. Thus, the initial weight maps should be upsampled to

34

equalize dimensions with input detail layers. The detail layers are combined with the

resized weight maps that generate four fused detail images. These four fused detail

images are fused using maximum pixel value in each pixel location.

Figure 3.25: The procedure of detail content fusion taken from [22]

3.2.6.3 ResNet Method [23]

In ResNet method [23], deep residual architecture [5] is used to extract features. They

design a simple architecture that fused image is reconstructed as the weighted average

of the source images. The weight maps are found using fixed ResNet50 architecture

[5] that is trained by ImageNet [74]. First of all, source images are given to ResNet50

as input, and different feature layer outputs are extracted called feature maps. For each

feature map, zero-phase component analysis (ZCA) [75] is used to project features

to the same space. Then, a block-based l1-norm through the feature map channels is

applied and the result is called the initial weight maps. The initial weight maps should

be resized to match input source image size. Furthermore, the resized weight maps

of the source images are combined using a soft-max operation. Thus, the sum of the

corresponding pixel weights becomes one. Then, the weight maps are generated and

the fused image is reconstructed by the weighting average method mentioned above.

In Figure 3.26, the overall architecture of the proposed method is shown.

35

Figure 3.26: The procedure of the ResNet method taken from [23]

3.2.6.4 DenseFuse Method [24]

DenseFuse method [24] present an approach that uses only neural network to recon-

struct fused image. They divide the architecture into three main parts: encoder, fusion

layer, and decoder. In the encoder layer, image features are extracted using only con-

volutional layers. Skip connection strategy is used to preserve deep features as much

as possible. The channel dimension increases throughout the encoder layer. In the

decoder layer, four convolutional layers are used. There are no skip connections. The

channel dimension decreases throughout the decoder layer and finally, the output be-

comes a single channel fused image. The training phase of the architecture does not

include a fusion layer. The encoder and decoder layers are directly connected and a

single input single output model is used. There is no absolute ground truth for image

fusion applications so, they need to train networks in a single image base. The train-

ing image is processed through the encoder-decoder network. The generated output is

compared with the input image. The loss function uses pixel lossLp (l2-norm between

images) and structural similarity (SSIM) loss Lssim (SSIM is computed between im-

ages and subtracted from one). These loss functions are combined with weight. The

aim is to teach the network to extract features and construct an image from extracted

features. In Figure 3.27, The training phase is shown. The trained network is ready to

36

use in fusion applications. The source image is propagated through the encoder layer.

The feature maps of the source images are fused in the fusion layer. Then, the fused

image is reconstructed by the fused feature map.

Figure 3.27: The training procedure of the proposed method taken from [24]

They introduce two fusion strategies. The first one is simply adding the feature maps.

The second one is called l1-norm strategy. the l1-norm of each pixel through the

channel is used to calculate the initial activity level map. The initial activity level

maps smoothed using the block-based average operator. The soft-max is applied to

the final activity level maps to find weight maps that are used to combine the feature

maps of the source images. The overall architecture of the proposed method is shown

in Figure 3.28.

3.2.6.5 DeepFuse Method [25]

DeepFuse method [25] introduces a completely neural network-based solution that

can be trained end-to-end without any additional operation. The training and infer-

ence phases of the neural network are also the same. The whole architecture has three

components: a feature extraction layer, a fusion layer, and a reconstruction layer. The

first part of the network consists of two convolution layers and the weights of these

37

Figure 3.28: The overall architecture of the proposed method taken from [24]

layers are shared by all source images. Thus, the first part of the network is forced

to learn common features from source images and they claim that this helps to fuse

features better. The second component of the network is the fusion layer. The feature

maps are superposed, also known as tensor addition. They tried several approaches to

combine features such as concatenation, max, mean, and product operations. How-

ever, the best fusion result is obtained with addition operation among all other fusion

approaches. In the last part, there is there convolutional layer used to reconstruct

the fused image. The neural network architecture is shown in Figure 3.29. One of

the main advantages of the proposed method is to include only convolutional layers

that have a low number of parameters. To train the network, MEF-SSIM [76] image

quality measure is used. MEF-SSIM compares source images with fused images in

patches. The final score is the average of all patch scores. The final score is in the

range [0,1]. Thus, the loss function is computed by subtracting MEF-SSIM from 1.

It gives zero when the fused image takes the maximum score from MEF-SSIM.

In the overall architecture, input images are converted to YCbCr color space. The

Y(luminance)-channels of the source images are fused using the DeepFuse method

and other(chroma) channels are combined by weighting fusion. The fusion weights

have a higher value for good color components. The schematic diagram of the overall

38

Figure 3.29: The proposed neural network to fuse input images taken from [24]

architecture is shown in Figure 3.30.

Figure 3.30: The overall architecture of the proposed method taken from [25]

3.2.6.6 FusionGAN Method [26]

FusionGAN method [26] uses a powerful deep learning-based method called gener-

ative adversarial network (GAN) which is invented by Goodfellow et al. [77]. GAN

is based on a minimax algorithm in game theory. It consists of two parts: generator

and discriminator. The discriminator part tries to distinguish which input is real or

fake. The generator part tries to generate a fake output that fools the discriminator.

Convolutional layers are used in both parts. The aim of the FusionGAN is to train a

generator that can reconstruct the fused image from source images directly. To train

39

the generator, they need a discriminator and a few training samples. Visible and in-

frared source images are concatenated through the channel layer. It is fed into the

generator and The generator outputs fused image. The loss function of the genera-

tor has two terms: adversarial loss that tries to fool the discriminator to believe the

generator output is real and, context loss which enforces fused image to have similar

intensities as the infrared image and similar gradients as the visible image. To train

discriminator, the fused image and visible image are fed into the discriminator and

expected to predict fused image as fake and visible image as real. After the training

process finishes, only a trained generator is used to reconstruct the fused image. The

detailed architecture of the generator is shown in Figure 3.32. Also, training and test

processes are shown in Figure 3.31.

Figure 3.31: The overall architecture of the proposed method taken from [26]

Figure 3.32: The overall architecture of the proposed method taken from [26]

40

3.2.6.7 RFN-Nest Method [27]

RFN-Nest method [27] differs from other deep learning-based methods in some as-

pects. The most important contribution of the method is that source image features

are combined using a residual convolutional layer. The architecture consists of three

parts: encoder layer, fusion layer, and decoder layer. The encoder layer extracts input

image features while the input downsamples. Extracted source image features are

fused by a fusion layer called RFN shown in Figure 3.34. Outputs of RFN layers are

fed into the decoder layer to generate fused images demonstrated in Figure 3.35. The

overall architecture is shown in Figure 3.33.

Figure 3.33: The overall architecture of the proposed method taken from [27]

41

Figure 3.34: The residual fusion layer called RFN taken from [27]

Figure 3.35: The decoder layer inspired from UNet++ [38]. Image is taken from [27]

42

The training process includes two stages. In the first stage, RFN layers are dropped

and encoder layer features are directly connected to the decoder layer. The network is

trained like auto-encoder networks. The network tries to reconstruct the input image.

Thus, the encoder layer learns to extract good features while the decoder layer learns

to reconstruct the image from features. They define a loss function that combines

pixel loss and structural similarity loss. Pixel loss is square of the Frobenius norm

and structural similarity loss is computed by subtracting SSIM measure [78] from 1.

In the second stage of the training process, trained encoder and decoder layer weights

are fixed. RFN layers are connected as the proposed method. With the infrared and

visible image pairs, only RFN layers are trained. The loss function to train RFN

consists of two parts. In the first part, detailed information from the visible image is

considered and SSIM metric [78] between fused image and the visible image is used.

In the second part, the output of RFN is compared with the weighted combination of

the source image features i.e. input of the RFN. The Frobenius norm is calculated

between them. The combination weights of the features are the hyper-parameter of

the training process.

3.2.6.8 Dual-Branch Method [28]

Dual-Branch method [28] designs a encoder-decoder neural network. The encoder

layer extracts source image features and the decoder layer reconstructs the fused im-

age using the features extracted. The network has a fusion layer during inference only.

The fusion layer does not include any learnable parameters, so it is thrown in the train-

ing phase. The overall architecture of the proposed method in the training phase is

shown in Figure 3.36. The encoder layer is separated into two branches called detail

branch and semantic branch after the initial feature map generated which is a blue

box in the encoder layer shown in Figure 3.36. In the detailed branch, a dense block

structure is used to extract good detail and texture information. The detail branch ar-

chitecture is inspired from DenseFuse method’s encoder layer 3.2.6.4. The semantic

branch downsamples the input feature map to extract global features of the image.

To concatenate branch outputs, the semantic branch upsamples the feature map. The

concatenated feature map is fed into the decoder layer to reconstruct the fused image.

To train a network, the loss function consists of four different loss functions. The first

43

one called pixel loss finds mean square error (MSE) between input and output images.

The second one called gradient loss is MSE between gradients which are computed

by the Laplacian operator of the input and output images. The third one called color

loss is calculated by l2-norm between histograms of input and output images. The

last one called perceptual loss compares feature maps of the input and output images.

The feature maps are obtained by feeding the images into VGG [4] pre-trained net-

work. All four-loss functions are combined with balancing hyper-parameters. It is

important to note that in the training phase, only one input image is used.

Figure 3.36: The overall architecture of the Dual-Branch method in the training phase.

Image is taken from [28]

In the inference phase, visible and infrared images are fed into weighted shared

Siamese encoder layers shown in Figure 3.37. The fusion layer combines the fea-

ture maps that will be explained later. Then, the fused image is reconstructed by a

trained decoder layer using a fused feature map.

Figure 3.37: The architecture of the Dual-Branch method in the inference phase.

Image is taken from [28]

44

They choose two fusion strategy which is addition and channel strategy. The addi-

tion strategy is simply adding corresponding pixel values. The channel strategy is

a weighting addition that calculates weights from feature maps. In each channel, a

global average is applied. Thus, each channel has an initial weight. Then, initial

weight maps from different source images are normalized which the corresponding

weight map summation for a channel becomes one. The normalized weights are mul-

tiplied with the feature maps and the results are summed element-wise. These two

strategies are shown in Figure 3.38.

Figure 3.38: The fusion strategies of the Dual-Branch method. Image is taken from

[28]

3.2.6.9 TFSNet Method [29]

In this method, they also proposed encoder-decoder architecture that encoder layer

is responsible of extracting features of the source images while decoder layer recon-

struct image from fused features. The difference of the method is adaptive weight

allocation strategy and an end-to-end trainable network. The network consists of two

identical encoder layers structures but their parameters are learned. In the encoder

layer, the source image are fed into a shallower convolutional network, then a three

layer cascade-connected dense blocks are used. The corresponding extracted four

feature maps from source images are fused and given to decoder layer. In the fusion

step and feature extraction, adaptive weight allocation strategy (AWA) is used. AWA

is based on channel attentions. Briefly, each channel are averaged and the results

constructs a one dimensional vector, Z. Then, a 1 by 1 convolution operation is per-

formed on Z and the sigmoid function is applied to normalize weights. Normalized

weights, Z ′ , are multiplied with corresponding feature layer’s channel to complete

45

AWA operation. In the fusion layer, respective feature maps comes from encoder

layers are added after applying AWA to each of them. Then, the combined value is

multiplied with a constant, α that called intensity stretch factor set as 2.7. In the de-

coder layer, the deconvolution layers are used to reconstruct fused image. The overall

architecture of the TFSNet method is shown in Figure 3.39.

Figure 3.39: The overall architecture of TFSNet method. Image is taken from [29].

In the training phase, loss function composed of two metric. For infrared image,

pixel-wise image loss (MSE) between input infrared image and fused image. For

visible image, SSIM is used to preserve image structure similar to visible image. The

VT5000 dataset [79] is used for training.

3.2.7 Other Methods

Other methods are generally inspired by new ideas and present new approaches. The

methods that have success in other computer vision applications are tried to integrate

into the image fusion area and it becomes important to improve the perspective to the

problem. Even if the performance of these methods is poor, the approach leads to

new ideas and improvements over successful methods.

46

3.2.7.1 GTF Method [30]

GTF method [30] tries to preserve thermal radiation information and detailed appear-

ance information on both source images. The method estimates fused images directly

using an objective function. The objective function is composed of two main parts.

The first one defines the relationship between the source infrared image and the fused

image. They stated that the fused image should have a similar pixel intensity distribu-

tion with the source infrared image. This constraint is measured by lp norm (p >= 1).

The second constraint defines the source visible image should have similar pixel gra-

dients rather than pixel intensity to extract detailed appearance information. They

present an optimization algorithm to minimize the objective function defined above.

Total variation minimization is used for optimization. The fused image is directly

obtained after applying optimization.

3.2.7.2 IFEVIP Method [31]

IFEVIP method [31] tries to extract useful infrared image features and add these fea-

tures to the visible image to construct the fused image. The proposed method consists

of three procedures. In the first part, infrared image background is extracted using

quadtree decomposition [80] and Bézier interpolation [81]. The background image is

smoothed using Gaussian blur operation and it is extracted from the source infrared

image to extract infrared bright features. Secondly, the infrared bright features are

refined using a source visible image. Even if background information is eliminated,

there are some artifacts that are related to the background. Thus, the source infrared

image is subtracted from the source visible image, and the negative values are equal-

ized to zero. They define a hyper-parameter called suppression ratio that is multiplied

by the previous result and subtracted from the infrared bright features. In this way,

redundant background information is eliminated. In the last part, the final infrared

bright features are added to the source visible image to reconstruct the fused image.

In Figure 3.40, the proposed method is shown with a visual example.

47

Figure 3.40: The schematic diagram of proposed IFEVIP method taken from [31]

3.3 Quality Measurements for Image Fusion Applications

In image fusion applications, there is no absolute ground truth to measure perfor-

mance. Thus, the internal information of the source images and fused image should

be compared to evaluate the performance of the methods. Furthermore, subjective

evaluation is required because it bases on the human visual system. Humans compare

several criteria, such as image details, contrast and brightness, object completeness,

image distortions, and natural-looking of the scene. These qualitative and quantitative

comparisons are used to evaluation of the performances of the methods. However, all

evaluation metrics have good sides and drawbacks. Thus, the comparisons should be

included as many metrics as possible for the robust evaluation. In the following parts,

commonly used evaluation metrics and their pros and cons will be reviewed.

3.3.1 Entropy (EN)

Entropy (EN) is used in information theory to measure the amount of information

contained in the signal. In [82], they introduced a procedure for the assessment of

fused image quality. They defined EN as Eqn. 3.1 where L denotes the number

of gray levels in the histogram of the image and pl is the corresponding normalized

value of the histogram at gray level l. The larger value of EN means more information

48

contained in the image. However, noise can affect greatly the result.

EN = −
L−1∑
l=0

pl log2 pl (3.1)

3.3.2 Mutual Information (MI)

Mutual Information (MI) measures mutual dependence between two random vari-

ables. To be more specific, MI quantifies the shared amount of information on two

images. In [83], the amount of information transferred to the fused image from the

source image is measured. The MI between two random variables is calculated by

the Kullback-Leibler measure defined in Eqn. 3.2 where pX(x) and pF (f) denote the

marginal histogram of source image X and fused image F respectively. pX,F (x, f)

defines the joint histogram of the source image X and fused image F .

MIX,F =
∑
x,f

pX,F (x, f) log
pX,F (x, f)

pX(x)pF (f)
(3.2)

MI is calculated separately with source images A and B. The results are summed to

obtain the final MI score as given in Eqn. 3.3. The higher MI score indicates that

more information is transferred to the fused image from the source images.

MI = MIA,F +MIB,F (3.3)

3.3.3 Feature Mutual Information (FMI)

Feature mutual information (FMI) is introduced by [84] and they considered to calcu-

late MI metric between feature maps of the source images and the fused image. The

feature map can include edges, details, and contrast of the images. In the computation

of the metric, Eqn. 3.2 is used. The final FMI score is computed as Eqn. 3.4 where Â,

B̂ and F̂ denote the feature maps of the infrared, visible and fused image respectively.

49

The higher FMI score is better as indicated in MI score 3.3.2.

FMI = MIÂ,F̂ +MIB̂,F̂ (3.4)

3.3.4 Structural Similarity Index Measure (SSIM)

Image distortion and structural losses in the image take the attention of the human

visual system. Thus, measuring image distortion and structural losses can give in-

tuition about the quality of the image. In [78], they proposed a metric called SSIM

to model loss and distortion. SSIM composes of three components: luminance (l),

structure (s) and contrast (c). The product of these components gives the final SSIM

score. The score is in the range [0, 1]. The score of one means the compared images

are identical. A higher SSIM score means more similarity in the input images. SSIM

score is calculated as follows:

SSIMX,F =
∑
x,f

l(x, f) · c(x, f) · s(x, f) (3.5)

where l(x, f), c(x, f) and s(x, f) denote luminance, contrast and structure compo-

nents and computed as given in Eqns. 3.6, 3.7 and 3.8 respectively. x and f denotes

the patches of the source image and fused image. µx and µf are the mean value of

the patches. σx, σf and σxf are the variance of the source image patch x, variance of

the fused image patch f and covariance of source and image patches. The c1, c2 and

c3 is used to make metric stable. Final SSIM score is computed by summing SSIM

scores between fused and source images as stated in Eqn. 3.9.

l(x, f) =
2µxµf + c1

µ2
x + µ2

f + c1
(3.6)

c(x, f) =
2σxσf + c2

σ2
x + σ2

f + c2
(3.7)

50

s(x, f) =
σxf + c3

σxσf + c3
(3.8)

SSIM = SSIMA,F + SSIMB,F (3.9)

3.3.5 Standard Deviation (SD)

Standard deviation (SD) measures the amount of variation of data. It is commonly

used in statistical concepts. In the image, SD gives the contrast ratio of the image. It

is mathematically defined as follow:

SD =

√√√√ M∑
i=1

N∑
j=1

(F (i, j)− µ)2 (3.10)

where µ is the mean value of the whole image, F (i, j) is the corresponding pixel in

the image The idea behind this metric is that high contrast attracts human attention.

Large SD means more contrast image and the only fused image is used to compute

the SD metric.

3.3.6 Spatial Frequency (SF)

Spatial Frequency (SF) is based on horizontal and vertical image gradients which are

also called spatial row frequency (RF) and spatial column frequency (CF). It measures

the gradient distribution of an image. A higher SF score means the image has more

details and texture. RF and CF are computed as follows:

RF =

√√√√ M∑
i=1

N∑
j=1

(F (i, j)− F (i, j − 1))2 (3.11)

CF =

√√√√ M∑
i=1

N∑
j=1

(F (i, j)− F (i− 1, j))2 (3.12)

51

The SF score is l2 norm of the RF and CF shown in the Eqn. 3.13.

SF =
√
RF 2 + CF 2 (3.13)

3.3.7 Average Gradient (AG)

Average gradient (AG) uses gradient information to define a metric. Gradient repre-

sents details and texture information so, it can be used for quality assessment of an

image. In AG score calculation, the only fused image is used.

AG =
1

MN

M∑
i=1

N∑
j=1

√
∇F 2

x (i, j) +∇F 2
y (i, j)

2
(3.14)

where∇F 2
x (i, j) = F (i, j)−F (i+ 1, j) and∇F 2

y (i, j) = F (i, j)−F (i, j + 1). The

larger AG score means better gradient information exists in the image.

3.3.8 Mean Squared Error (MSE)

Mean squared error (MSE) measures the dissimilarity of the images at the pixel level.

Most basic evaluation metric to find the distance of the images. MSE is calculated

separately for source images with the fused image. The MSE score is defined as

follows:

MSE =
MSEAF +MSEBF

2
(3.15)

where MSEXF = 1
MN

∑M−1
i=0

∑N−1
j=0 (X(i, j) − F (i, j))2. The higher MSE means

the dissimilarity between source images and fused image is high. Thus, a good MSE

score should be small.

52

3.3.9 L1 error

L1 error measures the dissimilarity of the images at the pixel level. Most basic evalu-

ation metric to find the distance of the images. L1 is calculated separately for source

images with the fused image. The L1 score is defined as follows:

L1 =
L1AF + L1BF

2
(3.16)

where L1XF = 1
MN

∑M−1
i=0

∑N−1
j=0 |(X(i, j) − F (i, j))|. The higher L1 means the

dissimilarity between source images and fused image is high. Thus, a good L1 score

should be small.

3.3.10 Root Mean Squared Error (RMSE)

Root mean squared error is similar to MSE 3.3.8. When calculating MSEXF , the

squared of the result is calculated to find RMSEXF . Then, Eqn. 3.17 is used to

compute overall RMSE score. As stated in MSE, small scores are desired.

RMSE =
RMSEAF +RMSEBF

2
(3.17)

3.3.11 Peak Signal To Noise Ratio (PSNR)

Peak Signal To Noise Ratio (PSNR) uses MSE 3.3.8 between source images and fused

image and peak value of the fused image. The larger PSNR value means the fused

image is closer to the source images and has less distortion. PSNR is computed as

shown in Eqn. 3.18 where r denotes the peak value of the fused image.

PSNR = 10 log10

r2

MSE
(3.18)

53

3.3.12 Correlation Coefficient (CC)

The correlation coefficient (CC) measures how strong the relationship has in the

source images and fused images. It is in the range [-1, 1]. The zero CC score means

the images do not have any relationship. A negative valued relationship shows corre-

lation is opposite. The CC score is calculated using Eqn. 3.20 where rAF and rBF are

calculated using Eqn. 3.19.

rXF =

∑M
i=1

∑N
j=1(X(i, j)− µX)(F (i, j)− µF)√∑M

i=1

∑N
j=1(X(i, j)− µX)2

(∑M
i=1

∑N
j=1(F (i, j)− µF)2

) (3.19)

CC =
rAF + rBF

2
(3.20)

3.3.13 Edge Intensity (EI)

The edge intensity (EI) metric simply computes the edge strength of the fused image.

If the fused image has a higher EI score, it is assumed that the image is more clear

and has a higher quality. The Sobel edge operator is used to extract vertical and

horizontal gradients. In Eqn. 3.21, sx and sy represent the horizontal and vertical

edges calculated using Sobel edge operator respectively.

EI =
√
s2
x + s2

y (3.21)

3.3.14 Q, QW, and QE

Universal quality index (Q) is a special case of the SSIM metric 3.3.4 that c1 = c2 =

0. In the [85], the sliding window approach is used to overall image quality rather

than comparing whole images as given in Eqn. 3.22. Thus, the mean score of all

regions is calculated. It is more appropriate because the image is non-stationary and

54

space-variant.

Q(a, b) =
1

W

∑
wεW

Q(a, b|w) (3.22)

In [86], a fusion quality index (Q0) is introduced using Q metric. They use local

weights λ(w) to combine Q scores in each image window. Local weights λ(w) are

calculated using local salience where these are selected as variances of the local image

patches. Q0 is computed as follows:

Q0(a, b, f) =
1

|W |
∑
wεW

(λ(w)Q(a, f |w)) + (1− λ(w))Q(b, f |w) (3.23)

where the local weights λ(w) are computed in Eqn. 3.24 using s(a|w), s(b|w) saliency

metrics of the input image a and b respectively.

λ(w) =
s(a|w)

s(a|w) + s(b|w)
(3.24)

Furthermore, each window in the image is treated equally but, it is not correct in

the image. Some regions have more important information than others. Thus, they

present a local region weight c(w) which is computed as follows:

c(w) =
C(w)∑

w′εW C(w′)
(3.25)

where C(w) = max(s(a|w), s(b|w)). Final weighted fusion quality index (QW)

becomes,

QW (a, b, f) =
1

|W |
∑
wεW

c(w) ∗ ((λ(w)Q(a, f |w)) + (1− λ(w))Q(b, f |w)) (3.26)

They proposed a final modification that considers the edge response of the images.

The inputs of the QW score can be the edge response of the images a, b, and f. The

edge-dependent QW score is combined with the original QW score to construct edge-

dependent fusion quality index QE which is given in Eqn. 3.27.

QE(a, b, f) = QW (a, b, f) ·QW (a′, b′, f ′)α (3.27)

55

3.3.15 QAB/F, LAB/F, NAB/F

QAB/F [87] is a fusion quality metric that uses edge information that is associated

with Human Visual System. First of all, horizontal sx and vertical sy edges are com-

puted using the Sobel edge operator. In each pixel location, edge strength g(n,m)

and orientation α(n,m) are computed as follows:

g(n,m) =
√
sx(n,m)2 + sy(n,m)2 (3.28)

α(n,m) = tan−1(
sy(n,m)

sx(n,m)
) (3.29)

Relative edge strength GXF (n,m) and orientation AXF (n,m) is calculated with re-

spect to the fused image as given in Eqns. 3.30 and3.31 which X refers to input

images.

GXF (n,m) =


gF (n,m)
gX(n,m)

if gX(n,m) > gF (n,m)

gX(n,m)
gF (n,m)

otherwise
(3.30)

AXF (n,m) =
||αX(n,m)− αF (n,m)| − π/2|

π/2
(3.31)

These relative maps and sigmoid function are used to deriveQXF
g (n,m) andQXF

α (n,m)

which are perceptual loss information in terms of edge strength and orientation. Edge

information preservation value is defined as follows:

QXF (n,m) = QXF
g (n,m) ·QXF

α (n,m) (3.32)

where 0 <= QXF (n,m) <= 1 that is higher is better preservation of the edge in-

formation on the fused image. Final fusion quality score is calculated using Eqn.

3.33 where wA(n,m) = [gA(n,m)]L and wB(n,m) = [gB(n,m)]L, L is constant.

Also, 0 <= QAB/F <= 1 which QAB/F = 1 means perfect preservation of the edge

56

information in the fused image F from input images A and B.

QAB/F =

∑N
n=1

∑M
m=1Q

AF (n,m)wA(n,m) +QBF (n,m)wB(n,m)∑N
n=1

∑M
m=1 w

A(n,m) + wB(n,m)
(3.33)

With the QAB/F that is the information transferred from the source images, LAB/F

and NAB/F metrics can be also calculated which are total loss of information and

noise or artifacts added to fused image respectively. The information loss metric,

LAB/F , is calculated using Eqn. 3.34. The lower score is better for the fusion quality.

Also, the score that measures additive noise or artifacts to the fused image is calcu-

lated using Eqns. 3.35 and 3.36. This score also should be as low as possible and in

the theory, the sum of three scores should be equal to 1: QAB/F +LAB/F +NAB/F =

1.

LAB/F =

∑N
n=1

∑M
m=1(1−QAF (n,m))wA(n,m) + (1−QBF (n,m))wB(n,m)∑N

n=1

∑M
m=1w

A(n,m) + wB(n,m)
(3.34)

Nn,m =

2−QAF (n,m)−QBF (n,m) , if gF (n,m) > (gA(n,m) & gB(n,m))

0 , otherwise
(3.35)

NAB/F =

∑N
n=1

∑M
m=1 Nn,m(wA(n,m) + wB(n,m))∑N

n=1

∑M
m=1w

A(n,m) + wB(n,m)
(3.36)

3.3.16 QCB

QCB [88] is a fusion quality metric that is inspired by the human visual system. It in-

cludes five steps that contrast sensitivity filtering, the local contrast computation, the

contrast preservation calculation, the saliency map generation, and the global qual-

ity measure computation. In the first step, Fourier transform is applied to the source

and fused images. Let IA(u, v) is the Fourier transform of an image where A can

57

be the source or fused images. The results are multiplied by a S(r) function that

r =
√
u2 + v2. Then, inverse Fourier transform is applied to find filtered images.

In the second step, local contrast computation is calculated. The result is called CA.

Detailed calculations can be found in [88]. After CA is calculated, the masked re-

sult C ′A is computed as seen in Eqn. 3.37. The masked results are used in contrast

preservation calculation and saliency map generation. The third step is defined in

Eqn. 3.38.

C
′

A =
k(CA)p

k(CA)q + Z
(3.37)

QAF =


C
′
A(x,y)

C
′
F (x,y)

, if C ′A(x, y) < C
′
F (x, y)

C
′
F (x,y)

C
′
A(x,y)

, otherwise
(3.38)

In the fourth step, saliency maps are generated to combine contrast preservation val-

ues in the last step as shown in Eqn. 3.39. In the last step, the contrast preservation

values are combined using saliency maps as shown in Eqn. 3.40. Higher scores are

better.

λA(x, y) =
C
′2
A

C
′2
A + C

′2
B

(3.39)

QCB = λA(x, y) ∗QAF + λB(x, y) ∗QBF (3.40)

3.3.17 QCV

QCV [89] is also inspired from human visual system similar to QCB 3.3.16. How-

ever, the approach is quite different than QCB and the lower scores are better for fu-

sion quality. The approach consists of five steps that are extracting edge information,

partitioning into non-overlapping local regions, local region saliency, similarity mea-

sure of the local regions, and global quality measure computation. In the first step,

the edge responses of each image are computed. Lets say edge responses as GX(i, j)

58

whereX can be source imagesA,B, and fusion image F . In the next step, images are

divided into non-overlapping local regions Wi. Window size is the hyper-parameter

of this quality metric. Then, the local saliency of each window is calculated. The

saliency of the local region λA(XW) is the basic summation of the edge intensities

of the region. In the fourth step, local region differences fWk are found that the fused

image is extracted from source images. The similarity of local regions is measured

by the mean squared value of contrast sensitivity function (CSF) filtered images f̂Wk .

In the last step, the global quality measure is calculated by a weighted summation

of the similarity of the local regions. λA(XW) is used as weights of each region to

compute the final score. Selecting CSF filter and window size are the most important

parameters to be decided.

3.3.18 QY

QY [90] is the fusion quality metric that is calculated based on SSIM [78]. As men-

tioned in the SSIM metric 3.3.4, the images are divided into square regions and each

corresponding region in the input images are compared in structure, luminance, and

contrast components. Luminance comparison is insignificant for local patches and it

is discarded from the calculation. The SSIM result for each region is called a ssim-

map that is calculated using the formula given in Eqn. 3.41 which uses Eqns. 3.7

and 3.8. First of all, the following ssim-maps are calculated: ssim-map between in-

frared and visible image (ssim-map-xy), ssim-map between infrared and fused image

(ssim-map-xf), and ssim-map between visible and fused image (ssim-map-yf). These

metrics are combined to construct the final QY score as given in Eqn. 3.43. To com-

bine the ssim-maps, the lambda λ weights are calculated as seen in Eqn. 3.42. The

λ aims to specify the relative importance of the regions. In Eqn 3.43, r shows the

region number and total region number is R. After summing all regions’ scores, it is

divided to R to find the average score.

ssim−map− xy = c(x, y) ∗ s(x, y) (3.41)

59

λx =
σx

σx + σy

λy = 1− λx
(3.42)

QY =
1

R

R∑
r

λx(r)∗(ssim−map−xf)(r)+λy(r)∗(ssim−map−yf)(r) (3.43)

3.4 Applications

Image fusion is used by the various application. Both infrared and visible spectrum

images have strengths and weaknesses in some imaging conditions. The most basic

one is that visible images can have color information while infrared images can see

objects through smoke or fog for example.

There is two main application area for the image fusion: surveillance and computer

vision tasks. In surveillance, clear, robust, high contrast, and bright images that ex-

press the details and object features properly are needed. Rather than keeping track of

multiple images on two screens, it is easier to keep track of one screen that combines

images. It makes objects easily identified, more clear and sharp. The fused image has

a high spatial resolution that makes these possible. In computer vision applications

such as object detection, tracking, and recognition, the features extracted from image

for an object is used to complete these tasks. Some of the applications use multiple

spectrum images without fusing images and that increases the processing time of the

application significantly. Thus, a fused image that reconstructs the useful information

better can give benefit to these applications.

60

CHAPTER 4

PROPOSED ARCHITECTURE

4.1 Introduction

An important issue in image fusion is that there is no absolute correct reference to

evaluate the results. Thus, no reference image fusion quality metrics are presented

to measure the accuracy of the methods applied mentioned in Chapter 3.3. However,

these evaluation metrics suffer from distinguishing results’ strengths and weaknesses.

In addition to objective metrics, subjective evaluations are required to examine exper-

iments more accurately. The solutions generated for the image fusion problem are

examined using these metrics. To overcome the issues related to the fusion quality,

the problem is generally divided into three parts. However, this leads to another prob-

lem that the relationships between these parts may not be built up as desired. There

can be some artifacts and related to connections between the parts. An artificial neu-

ral network presents a solution that handles the connection problems between parts.

Furthermore, Each part can learn to represent its task better with data.

Deep learning methods need defining a metric called loss function to train the network

in the desired way. The network should differentiate results’ accuracy. In image

fusion applications, we have no reference image to compare so, this makes it difficult

to solve the problem with this approach. Commonly, pre-trained networks are used to

extract features and classical methods are preferred to fuse these features. We try to

learn extracting features of visible and infrared images, combining and reconstructing

a fused image using an end-to-end deep neural network that handles all of them. To

address both of these issues, we present a deep convolutional neural network(DCNN)

architecture. Our main contributions are designing a solution that can represent the

61

problem as a whole and can be trained using a combination of no-reference quality

metrics.

4.2 Network Architecture

The proposed architecture is mainly inspired by U-Net architecture. The reason

behind this choice is U-Net architecture [1] tries to find representation in lower-

dimensional space. Information represented in the lower dimensions should include

compressed features of the input. Figure 4.1 shows the top-down explanation of the

autoencoder architecture. U-Net architecture can be considered as autoencoder but

it has some improvements over it to overcome bottleneck problems. Image fusion

applications need a good internal representation of input images to create a single

image that includes all important information of all of the inputs. For instance, in-

frared images are successful in distinguish objects that have different thermal radia-

tion whereas color images are successful in gathering color information of the object.

When these two images are fused, the desired result should include both color in-

formation and thermal visibility information. Thus, intuitively, the architecture can

extract rich features of all imaging conditions separately and we can combine them

and recover desired fused images.

The U-Net architecture takes one input image and generates a single output image.

In our case, we have two input images and we desire to obtain a single output image.

To achieve this, we use two encoder layer that is exactly same structure but, each one

has different parameters specializations. After the encoder layers, we get two feature

maps in each level and we need to fuse them to give decoder layer. Thus, a fusion

layer is added to the design. In the end, U-Net architecture is adapted to image fusion

applications adding an extra encoder layer and new fusion layer.

The proposed architecture is composed of 3 parts: Encoder, Decoder, and Fusion. The

complete overall architecture is shown in Figure 4.7. Encoder, Decoder, and Fusion

layers are represented by yellow, blue, and green boxes respectively. Each part can

be explained separately to understand overall architecture better. Thus, we are going

to explain these parts in great detail.

62

Figure 4.1: Autoencoder architecture. U-Net architecture can be considered as au-

toencoder but it has some improvements over it to overcome bottleneck problem.

Image is taken from [39].

4.2.1 Encoder

The encoder can be considered as feature extraction and dimensionality reduction part

of the architecture. It takes input and downscales in each layer to generate compressed

features at the end. To downscale input, convolution with stride or pooling layer can

be used. To recap knowledge, convolution needs two input functions. One is called

kernel and another one is the input. In the deep learning area, kernel size is generally

much smaller than input size which is typically 3 by 3 or 5 by 5. In Figure 4.2,

convolution with stride 2 can downscale input to its half. The kernel moves along

the input with step size 2. In each step, the kernel and corresponding input part are

multiplied and summed. If the example input size is 6 by 6, the 2 by 2 kernel takes 3

positions across and down the input, so output becomes 3 by 3.

Figure 4.2: Convolution operation with stride 2 and kernel size 2 by 2. Image is taken

from [40].

63

Figure 4.3: Basic encoder architecture. Includes only convolution layers.

Another downsampling method is pooling. It is generally quite a simple function

that is the maximum or average operator. The pooling size specifies the downsam-

pling rate. Input is divided into regions specified with the pooling size. The pooling

operator is applied to each region separately.

A simpler encoder can be defined series of convolutional layers with stride 2. In each

stage, feature map dimensions fold to 2 whereas width and height are cut in half. In

Figure 4.3, the basic architecture is shown. Yellow boxes show that feature maps after

convolutional operation applied. While the dimension of the feature map increases,

the width and height of the input decrease. The advantage of such a design is that

including fewer parameters thanks to the parameter sharing feature of the convolu-

tional layer. Another advantage is that the input shape is not strictly determined. The

only constraint exists for input’s shape is they should be dividable by 32 because the

network has 5 convolution layer with stride 2.

ResNet architecture [5] is commonly used in various tasks and it can extract good

features of the input image. In chapter 2.2.2, detailed explanation and used areas of

the ResNet can be found. It is generally used as a backbone network that extracts

useful features because it is trained on a large dataset that is called ImageNet [74]

64

that contains more than a billion images for a thousand object classes. Thus, this

pre-trained network can decrease training time and also, can achieve better results.

ResNet [5] uses both downsampling method mentioned in above. In Figure 4.4, an

alternative view of the architecture that shows downsampling in ResNet [5] clearly. In

the Conv1 layer, the max-pooling operation is used to downsample feature size. The

remaining parts use convolution with stride to downsample the input feature map.

The input image is reduced to one in 32. That is if the input image is a shape of 224

by 224, the last layer output will be 7 by 7. The last layers of the ResNet [5] are

extracted and pre-trained layers are used as an encoder for our proposed architecture.

Figure 4.4: ResNet 34 architecture. Image is taken from [41]

4.2.2 Fusion

The fusion layer combines feature maps of different spectrum images that are infrared

and visible spectrum images in the proposed case. We need a design choice to unify

feature maps. Thus, we come up with combination ideas that are used in neural net-

work designs commonly to downsample feature maps such as in the ResNet model.

There are 3 different methods to combine feature maps that we tried. The first one

is to add feature maps. The feature map size is strictly equal and they can be added

element-wise. The second one is to concatenate feature maps in the channel dimen-

sion and then applying a convolution layer to cut channel dimension to half without

changing the width and height of the feature maps. The last method is the reverse or-

der of the second method. The convolution operation is applied before concatenation.

In Figure 4.5, methods are visualized. Our final proposed method recommends the

65

second method that will be explained with great detail in Chapter 5 with experimental

results.

4.2.3 Decoder

The decoder needs to upsample given feature maps and generate a result that should

have the same dimensions as the input image given to the encoder. The transposed

convolution operation is used to upscale input feature maps. Before going into detail

about the architecture of the decoder layer, transposed convolution operation should

be understood better. First of all, mostly, the term deconvolution is used instead of

transposed convolution. However, deconvolution is mathematically defined as the in-

verse of the convolution which is not related to transposed convolution. The main

idea behind transposed convolution is to transform the convolution result to its origi-

nal input.

In our architecture, the decoder takes inputs from the fusion layer that includes 5 fea-

ture maps. Each one should be upsampled and concatenated with the previous feature

layer until reaching the input image’s dimensions. In Figure 4.6, decoder architecture

is visualized. Each box drawn in the figure is the feature map after the corresponding

operation. The width of the boxes represents the depth of the feature maps whereas

the other two dimensions correspond to the width and height of the feature maps. Blue

boxes show the result of deconvolution operation, green boxes are the outputs of the

fusion layer and yellow box is the convolution layer to reduce the depth of the feature

map to meet desired output channel size, for example, the channel size should be 3

for color(RGB) output image. Also, the output of the last layer should be normalized

to view the image. Thus, after the last convolution layer, the yellow box in the figure,

hyperbolic tangent, tanh, function applied to bound result between -1 and 1. In Eqn.

A.2, the applied formula is given. In each transposed convolution layer, we used a

4 by 4 kernel with stride 2 and padding 1. Also, we used grouped convolutions to

become a wider network to extract better representations of the inputs. In each trans-

posed convolution layer, 32 groups are used. In the AlexNet [91], groups are used

to train networks on multiple GPUs with smaller memory. Their methods require

approximately 3 GB of GPU RAM to train, whereas their GPU, Nvidia GTX 580,

66

(a) Method 1: Add (b) Method 2: Concatenate + Convolution

(c) Method 3: Convolution + Concatenate

Figure 4.5: Fusion method visualizations. Yellow boxes are the result of the convo-

lution layer. Green boxes are the results of the fusion layer. Red boxes are the inputs

that came from encoder layers. Purple circles define the operation used. ’+’ means

element-wise adding while ’||’ means concatenation in channel dimension.

67

has 1.5 GB RAM. Although they were used for practical reasons, Deep Roots publi-

cation [92] investigates the effect of grouping in various architecture and they found

that group convolution increases computational efficiency via decreasing parameter

number and floating-point operations and achieve lower error rates.

Figure 4.6: Decoder architecture. Blue boxes show transposed convolution results

while green boxes are feature maps coming from the fusion layer. The yellow box is

the convolution layer. If more than one arrow exists for any layer, these feature maps

are concatenated at depth dimension which is indicated as the width of the boxes.

4.3 Loss Functions

There is no reference or ground truth images for the image fusion task, thus, it is

crucial to choose a suitable metric that can measure the quality of the fused image by

comparing input images. There exist some fusion quality metrics in the literature and

our aim is to use these metrics as loss functions to train our network. We useQw [86],

that compares two input images with result image in local regions and mean square

68

Fi
gu

re
4.

7:
O

ve
ra

ll
ar

ch
ite

ct
ur

e.
Y

el
lo

w
bo

xe
s

re
pr

es
en

tt
he

en
co

de
rl

ay
er

s.
B

lu
e

bo
xe

s
re

pr
es

en
tt

he
de

co
de

rl
ay

er
.G

re
en

bo
xe

s
re

pr
es

en
t

th
e

fu
si

on
la

ye
r.

T
he

ar
ch

ite
ct

ur
e

is
ca

lle
d

as
E

nc
od

er
-D

ec
od

er
-F

us
io

n.

69

errors(MSE) between result and input images. Our choice depends on the idea that

the quality and edge information can be beneficial to extract object information more

clearly. Image quality measurements are considered and compared in Chapter 3.

Let x̄ is the mean of x, ȳ is the mean of y, σx denote square-root of variance, σxy is

the covariance of input image patches x and y, i.e.,

σ2
x =

1

n− 1

n∑
i=1

(xi − x̄)2, σxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

The quality assessment measure can be computed as follows between two input x and

y, the equation can be decomposed and as Eqn. 4.1 which is introduced by Wang and

Bovik in [85].

Q0 =
4σxyx̄ȳ

(x̄2 + ȳ2)(σ2
x + σ2

y)

In the each comparison, it takes into account correlation coefficient σxy
σxσy

, luminance

distortion 2x̄ȳ
x̄2+ȳ2

and contrast distortion 2σxσy
σ2
x+σ2

y
between images given in Eqn.4.1. It’s

range is between -1 and 1.

Q0 =
σxy
σxσy

∗ 2x̄ȳ

x̄2 + ȳ2
∗ 2σxσy
σ2
x + σ2

y
(4.1)

The Q0 metric compares only two inputs in patches. In the fusion quality metric, a

function should be defined to take inputs of more than 2, in our case, it is 3, infrared,

visible, and result image. To calculate the fusion quality index, Qw, the image is

divided into square regions. For all these regions, Q0 scores are calculated. The final

score is calculated as an average of all local scores shown in Eqn. 4.2. Fusion quality

score compares the fused image with input images separately in local regions. To

combine them, the local relevance of each region should be determined. If the infrared

image includes a feature that does not exist in the visible image, the infrared image’s

local region score should be more important than the visible image’s. This feature can

be contrast, sharpness or entropy, etc. Thus, a local weight λ(w) is calculated using

local saliency s(a|w) and s(b|w) of the images a and b. The λ(w) is between 0 and 1

that indicates relative importance of the image a over image b. That is the larger λ(w)

means image a has more weight when calculating score for this local region. Eqn.

70

4.3 shows the calculation of the weight for region w.

Q0(a, b) =
1

W

∑
w∈W

Q0(a, b|w) (4.2)

λ(w) =
s(a|w)

s(a|w) + s(b|w)
(4.3)

In the [86], they define the local saliency s(a|w) and s(b|w) as variances of input

image a and b respectively so, Eqn. 4.3 becomes

λw =
σ2

(a|w)

σ2
(a|w) + σ2

(b|w)

and patch size is taken as 8 by 8. Also, to combine all patches’ scores, [85] defines a

weight c(w) for each local region. Thus, each local region has a different impact on

the final quality index score. c(w) is calculated as

c(w) =
max(s(a|w), s(b|w))∑

w′εW max(s(a|w), s(b|w))

.

The final score is defined in the Eqn. 4.4 which is called a fusion quality index. The

score becomes higher if the fused image is constructed better and it bounds between

-1 and 1. Thus, to use Q0 in the loss function, we extract it from 1 to give zero loss

when the fusion result is excellent. The Q0 score can be calculated with edge images

instead of original images. Thus, it can compare the edge responses of the images

which are beneficial to us to construct fused results better. Let a′, b′ and f ′ is the edge

responses of a, b and f respectively. Thus edge score QE equals to Q0(a′, b′, f ′).

Edge responses are calculated using Canny Edge detection algorithm [93] and GPU

supported code is implemented with following guide given by Thevenot [94].

Qw(a, b, f) =
1

W

∑
w∈W

c(w)

(
λ(w)Q0(a, f |w) + (1− λ(w))Q0(b, f |w)

)
(4.4)

71

Besides Q0 score, mean square error MSE is implemented to recover image similar-

ities better. The MSE calculation is

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)2

.

MSE compares only two inputs so, MSE scores are calculated between fused image f

and input images a and b separately and the average of total MSE score is computed.

This score is strictly positive and gives smaller outputs when the images are similar.

The overall loss function is defined in the Eqn.4.5. α, β, and γ are the loss weights to

normalize losses to make them equally important.

L(a, b, f) = α ∗ (1−Qw(a, b, f)) + β ∗ (1−Qe(a, b, f))

+γ ∗ 0.5 ∗ (MSE(a, f),MSE(b, f))
(4.5)

72

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

The fusion methods are compared quantitatively and qualitatively to show weaknesses

and strengths. The performance evaluation metrics explained in Chapter 3.3 are used

to compare the methods quantitatively. Also, the mean opinion score metric is used

to specify the overall image quality of the fused images.

In this chapter, the experiments conducted on the proposed method and performance

evaluation are explained and quantitative results are shared. First of all, the train-

ing and inference details of our neural network are shared and the design choices

of the proposed method are investigated. Then, the performance evaluation of our

best-proposed method is done. The results are compared with deep learning-based

methods to see the success in its group. Finally, all methods are compared. Further-

more, in all comparisons, the fused images obtained using some sequences of TNO

[2] and VIFB [3] datasets are shown. It is important to see the differences between

the methods visually.

5.2 Training and Inference Details

The entire network described in the previous sections is trained with Flir ADAS [95]

and KAIST [96] datasets which both of them include day and night conditions. In

Figure 5.1, some sample images from the training datasets are shown. There are

8363 image pairs in FLIR ADAS [95] dataset and 12539 image pairs in KAIST [96]

dataset. In total, there are 20902 image pairs are used in the training. In addition to

73

Table 5.1: Number of parameters of the different types of the proposed method.

Model Types
Fusion Types

Add Concatenate + Convolution Convolution + Concatenate

Encoder with ResNet50 pre-trained 100,000,467 111,161,939 102,791,827

Basic Encoder 13,414,912 16,210,368 14,114,272

training datasets, we have two visible and infrared image pairs datasets that are TNO

[2] and VIFB [3] datasets that include various scenes but smaller samples. Most of

the fusion algorithms are compared using these datasets. In TNO [2], visible images

are grayscaled whereas, in VIFB [3], most of the visible images are colored. In both

datasets, there are 21 visible and infrared image pairs. In the training phase, Gaussian

blur and Gaussian noise are added to the input images. Input image size is fixed

to 256x256 and input images are normalized between -1 and 1. The initial learning

rate is 0.001. ADAM optimizer is used with β1 = 0.9, β2 = 0.99 and ε = 10−8 as

mentioned in the [97]. Also, a multi-step learning rate scheduler is used. Steps are

decided as 10, 20, and 30, and the decay factor for the learning rate is 0.5. That is

after reaching the above epoch numbers in the training, the learning rate is cut in half.

30 epochs are generally enough to train the network with stated data sets. In Table

5.1, the number of parameters used in the different types of the proposed method is

given. The number of parameters affects the inference and training times.

All system is implemented in Pytorch 1.6.0 with CUDA 10.2. The computer has Intel

i5 4460 CPU, Nvidia GTX 970 4GB GPU, and 8 GB system memory. Approximately,

whole training datasets include 20K samples. One epoch, i.e. whole training dataset

used once, takes 161 mins with the above setup for Encoder with ResNet50 pre-

trained model using Concatenate + Convolution fusion type which is the maximum

parameter size among all proposed methods given in Table 5.1.

74

(a) Sample images from Flir ADAS [95] dataset. Each column shows the visible and infrared image

pairs exist in the dataset.

(b) Sample images from KAIST [96] dataset. Each column shows the visible and infrared image pairs

exist in the dataset.

Figure 5.1: Sample images that is used in the training. They include night and day

conditions.

75

5.3 Experiments on Proposed Method

Experiments are conducted to construct the best model that achieves the best scores

both qualitatively and quantitatively on image fusion and analyze the effects of design

choices. Fusion layer type, pre-trained encoder layer, and loss function are the design

choices of the proposed method. To find the best model, the following experiments

are made. First of all, the learning capability of the basic network with different

loss functions is analyzed. The basic network model means that the encoder layer

is composed of the only convolutional layer without any pre-training phase and the

fusion layer is simply add. Then, the effect of the pre-trained encoder layer that uses

the ResNet-50 network is investigated. Lastly, the effect of the fusion layer type is

examined.

5.3.1 Effect of Loss Function

In the proposed method, loss function is composed of three parts: Q [86], QE [86]

and MSE mentioned in the Section 4.5. Firstly, only QE that measures fusion qual-

ity with respect to edge response is used. Then, Q that measures fusion quality with

respect to visual silences is added to loss function and trained with this setup. Lastly,

MSE that measures the distance of the source and fused images pixel-based is added

to see if there are further improvements. Thus, intuitions about the fusion quality

score Q, QE , and MSE are as follows. Q measures the transformation quality of ob-

jects and their features like texture, shape, and color that are important for the scene.

QE measures the edge quality of the fusion image relative to source images. MSE

measures the closeness of the fused image to the source images in pixel value in order

to understand how a natural looking image is obtained because, the mathematically

optimal solution for other fusion quality metrics can achieve a result that has unreal-

istic, dark, or bright images.

The results are compared both quantitatively and qualitatively on TNO and VIFB

datasets. MSE, L1, QW , QE , and QY scores are compared. Table 5.2 and 5.5

show the average scores of the proposed methods that are trained with different loss

functions. It is seen that combining MSE, QE , and Q in the loss function gives the

76

best result while holding other design choices the same.

Table 5.2: MSE, L1, Q, QW , QE and QY scores of the proposed method with indi-

cated loss functions. Scores are generated on TNO Dataset [2]. Green results indi-

cates the best result in the corresponding metric among all of the methods.

Loss Functions

Quality Metrics
MSE L1 QE Q QW QY

MSE + QE + Q 0.128 0.002 0.836 0.864 0.725 0.876

QE 0.153 0.014 0.807 0.739 0.599 0.774

QE + Q 0.181 0.008 0.792 0.839 0.669 0.805

Table 5.3: MSE, L1, Q, QW , QE and QY scores of the proposed method with in-

dicated loss functions. Scores are generated on VIFB Dataset [3]. Green results

indicates the best result in the corresponding metric among all of the methods.

Loss Functions

Quality Metrics
MSE L1 QE Q QW QY

MSE + QE + Q 0.109 0.008 0.797 0.796 0.634 0.882

QE 0.146 0.021 0.743 0.566 0.423 0.756

QE + Q 0.175 0.021 0.722 0.735 0.533 0.806

Furthermore, the results are compared qualitatively. Figure 5.3 shows the qualitative

results for input image pairs given in Figure 5.2. For TNO [2] dataset input pairs,

results of the proposed method that is trained with MSE + QE + Q loss have more

contrast and clarity. The method trained with only QE loss function can help to

recover edges better but, visual salient regions are not reconstructed well. The method

used QE +Q loss function give better result than only QE loss function used method,

however, some information in infrared images are not recovered well. For example,

in the third row of the Figure 5.3a, The jeep is hot, that is probably parked yet, and

the information only exists in the first row. On the other hand, using VIFB [3] dataset

input pairs, we can see the effect of loss function type to recover colors in Figure

5.3b. Using only QE loss function couldn’t reconstruct colors well. Thus, in the

below experiments, the loss function is taken as a combination of MSE, QE , and Q

77

(a) Visible and infrared image pairs in TNO Dataset [2]. The sequence numbers are 12, 13, 16 and 21

from left to right respectively. Top row is infrared images while bottom row is visible images.

(b) Visible and infrared image pairs in VIFB Dataset [3]. The names of the image pairs are ’carWhite’,

’elecbike’, ’fight’ and ’manlight’ from left to right respectively. Top row is infrared images while

bottom row is visible images.

Figure 5.2: Input images that is used to compare methods qualitatively.

that is explained in Chapter 4.3.

After choosing loss function combination, we investigated effects of the weights of

the each part to the training accuracy. These weights α, β, and γ are given in Eqn. 4.5.

We tried to change weights of the method. At the end of the first epoch, the quality

metric that has higher weight than others have higher score than other training setups.

When importance of the quality metric in the loss function increases, the proposed

architecture converges to lowest error for this quality metric faster. Thus, the results

of the first epoch change. However, continuing training until the loss converges, the

changes weight does not effect the overall score of the method.

78

Table 5.4: MSE, L1, Q, QW , QE and QY scores of the proposed method with in-

dicated loss functions weights. Scores are generated on VIFB and TNO datasets.

The network are trained 1 epoch using the Eqn. 4.5 as loss function. Green results

indicates the best result in the corresponding metric among all of the methods.

Loss Function Weights Quality Metrics

α β γ MSE L1 QE Q QW QY

1 1 1 0.186 0.008 0.722 0.703 0.525 0.812

10 1 1 0.177 0.007 0.727 0.734 0.552 0.820

1 10 1 0.190 0.010 0.738 0.704 0.535 0.819

1 1 10 0.198 0.023 0.728 0.748 0.557 0.813

Table 5.5: MSE, L1, Q, QW , QE and QY scores of the proposed method with in-

dicated loss functions weights. Scores are generated on VIFB and TNO datasets.

The network are trained 10 epoch using the Eqn. 4.5 as loss function. Green results

indicates the best result in the corresponding metric among all of the methods.

Loss Function Weights Quality Metrics

α β γ MSE L1 QE Q QW QY

1 1 1 0.175 0.005 0.749 0.755 0.563 0.825

10 1 1 0.168 0.004 0.748 0.752 0.574 0.827

1 10 1 0.176 0.009 0.751 0.744 0.549 0.822

1 1 10 0.171 0.003 0.748 0.774 0.590 0.823

79

(a) The fused images using TNO Dataset [2] inputs in Figure 5.2a.

(b) The fused images using VIFB Dataset [3] inputs in Figure 5.2b

Figure 5.3: The fusion results of the different loss functions given in Tables 5.2 and

5.5. The proposed method is trained with MSE + QE + Q, QE , and QE + Q loss

functions separately and results are generated from trained neural networks in the

mentioned order from top to bottom. Red squares show the regions that are some

important visual information that is used to check overall quality with the naked eye.

Better viewed in digital zoom these red rectangles.

5.3.2 Effect of Pre-trained Encoder Layer

In this part, we compare the effect of using a pre-trained network before training

started. Using pre-trained weights in the object classification task can extract bet-

80

ter features and it is obtained through larger datasets. In the Table 5.6 and 5.7, the

effect of pre-trained network is clearly seen. Pre-trained ResNet network boosts per-

formance greater in fusion quality metrics QW , QE , and QY . In MSE, L1 metrics,

performance is not affected much or even worse for the pre-trained option because

these metrics compare the distance of the pixel values. However, the other metrics

show significant improvements.

Table 5.6: MSE , L1 , Q, QW , QE and QY scores of the proposed method with

indicated training networks. Scores are generated on VIFB Dataset [3]. Green results

indicates the best result in the corresponding metric.

Training Networks

Quality Metrics
MSE L1 QE Q QW QY

Pre-trained 0.128 0.002 0.836 0.864 0.725 0.876

Random Initialized 0.146 0.001 0.804 0.834 0.675 0.819

Table 5.7: MSE , L1 , Q, QW , QE and QY scores of the proposed method with

indicated training networks. Scores are generated on TNO Dataset [2]. Green results

indicates the best result in the corresponding metric.

Training Networks

Quality Metrics
MSE L1 QE Q QW QY

Pre-trained 0.109 0.008 0.797 0.796 0.634 0.882

Random Initialized 0.134 0.007 0.745 0.753 0.563 0.822

81

5.3.3 Effect of Fusion Layer

There are 3 different methods to combine feature maps: Add, Concatenate + Convo-

lution, and Convolution + Concatenate. In Chapter 4, how and why we decide these

fusion methods. To explain briefly, these methods are used to downsample feature

maps and various applications obtain benefits from these methods. To see their effec-

tiveness, we conducted the following experiments to decide our last design choice.

Thus, previously selected best design practices were applied to this part. Pre-trained

ResNet-50 network is used in encoder part and combined MSE+QE +Q loss func-

tion is used to train all experiments below. Table 5.8 and 5.9 show the MSE, L1, Q,

QW , QE and QY scores for TNO and VIFB datasets respectively. According to these

scores, Concatenate + Convolution fusion method is the best among all three.

Table 5.8: MSE , L1 , Q, QW , QE and QY scores of the proposed method with

indicated fusion methods. Scores are generated on VIFB Dataset [3]. Green results

indicates the best result in the corresponding metric among all of the methods.

Fusion Methods

Quality Metrics
MSE L1 QE Q QW QY

Concatenate + Convolution 0.128 0.002 0.836 0.864 0.725 0.876

Convolution + Concatenate 0.135 0.003 0.822 0.851 0.703 0.850

Add 0.130 0.001 0.819 0.849 0.698 0.853

Table 5.9: MSE , L1 , Q, QW , QE and QY scores of the proposed method with

indicated fusion methods. Scores are generated on TNO Dataset [2]. Green results

indicates the best result in the corresponding metric among all of the methods.

Fusion Methods

Quality Metrics
MSE L1 QE Q QW QY

Concatenation + Convolution 0.109 0.008 0.797 0.796 0.634 0.882

Convolution + Concatenation 0.116 0.010 0.765 0.775 0.594 0.857

Add 0.110 0.005 0.774 0.780 0.604 0.858

Apart from quantitative experiments, we analyzed visual results to obtain better intu-

82

ition. In Figure 5.4, the results regarding to both TNO and VIFB dataset image pairs

given in Figure 5.2 are shown. The results are so close to each other but, some minor

differences can be noticed when the images are reviewed with digital zoom. In TNO

dataset results, the 3rd column that includes Jeep has better contrast in cloud regions

for Concatenate + Convolution fusion method. Also, a similar observation can be no-

ticed in the VIFB dataset results’ 2nd column. A person who drives an electric bike

is more distinguishable in the first row. Using quantitative and qualitative results, It

is decided to use Concatenate + Convolution fusion method.

83

(a) The fused images using TNO Dataset [2] inputs in Figure 5.2a.

(b) The fused images using VIFB Dataset [3] inputs in Figure 5.2b

Figure 5.4: The fusion results of the different fusion methods given in Tables 5.8 and

5.9. The proposed method is constructed using these fusion methods. Concatenate +

Convolution, Convolution + Concatenate and Add fusion methods are used from top

to bottom respectively. Red squares show the regions that are some important visual

information that is used to check overall quality with the naked eye. Better viewed in

digital zoom these red rectangles.

84

5.4 Performance Evaluation

To understand the success of the proposed method, it should be compared with the

existing state-of-the-art methods. In Chapter 3, existing methods are reviewed and

performance metrics are explained briefly. In the literature, each performance metric

has strengths and weaknesses. However, there does not exist a universal quality metric

that can measure fusion quality perfectly. Thus, it is common to use a mean opinion

score (MOS) that takes into account real individuals’ opinions. MOS experiments are

out of the scope of this thesis work but, we tried to predict MOS using a state-of-the-

art image quality assessment metric that mimics the real human raters. The name of

the metric is PaQ-2-PiQ. Images are compared with both fusion quality measures and

perceptual quality metric (PaQ-2-PiQ). Apart from quantitative comparisons, visual

results are given to explore differences in the image fusion methods.

Firstly, We compare the proposed method in its category that is deep learning-based

methods. Then, all methods are compared to see the overall picture. TNO and VIFB

datasets are used to investigate the strength and weaknesses of the methods. Also,

VIFB has some color images that are used to compare the color information recovery

of the methods. In Table 5.10, method names used in TNO and VIFB datasets are

given in corresponding order. Rfn-Nest, Dual-Branch, and FusionGAN methods can-

not perform color image recovery that is they generate single channel output. They

should be trained with changing the output condition of the design to generate a three-

channel image. In all of the experiments conducted in this part, pre-trained models

are used. The pre-trained weights are obtained through their project pages. Most of

the output fused images of the other methods are given on their projects’ page. The

remaining methods’ output fused images are computed with the help of their project

pages.

5.4.1 Only Deep Learning Based Methods Comparisons

There are currently 8 state-of-the-art deep learning-based methods that exist and they

are reviewed in Chapter 3.2.6. Pre-trained weights shared by authors are used for

these methods. Thus, some methods require a training network because the pre-

85

Table 5.10: Method names and corresponding numbers used in TNO and VIFB

dataset comparisons.

Number TNO Dataset Method Names VIFB Dataset Method Names

1 ADF ADF

2 CBF CBF

3 CNN CNN

4 DeepFuse DeepFuse

5 DenseFuse DenseFuse

6 DLF DLF

7 Dual-Branch-addFusion Dual-Branch-addFusion-grayscaled

8 Dual-Branch-channelFusion Dual-Branch-channelFusion-grayscaled

9 Dual-Branch-l1Fusion Dual-Branch-l1Fusion-grayscaled

10 FPDE FPDE

11 FusionGan FusionGan-grayscaled

12 GFCE FusionGan-YChannelRGB

13 GFF GFCE

14 GTF GFF

15 HMSD_GF GTF

16 Hybrid-MSD HMSD_GF

17 IFEVIP Hybrid_MSD

18 LatLRR IFEVIP

19 MDLatLRR-level-1 LatLRR

20 MDLatLRR-level-2 MDLatLRR-level-1

21 MDLatLRR-level-3 MDLatLRR-level-2

22 MDLatLRR-level-4 MDLatLRR-level-3

23 MGFF MDLatLRR-level-4

24 MST_SR MGFF

25 MSVD MST_SR

26 NSCT_SR MSVD

27 Proposed-Best NSCT_SR

28 ResNet-l1Zca4 Proposed_Best

29 ResNet-l1Zca5 ResNet

30 RFN-Nest Rfn-Nest-grayscaled

31 RP_SR RP_SR

32 TIF TIF

33 VSMWLS VSMWLS

trained network does not support three-channel image generation. For these methods,

either YCbCr image channel is used to recover colors or gray-scaled versions are used

for comparisons. Y channel of the visible image is used to generate the output image

and the result is combined with input’s Cb and Cr channels to construct colors. How-

ever, the results of this method didn’t give satisfying results and gray-scaled options

are used most of them. Rather than colors, we can compare all of the information

regarding visible and infrared imaging physics. The TNO and VIFB datasets will be

reviewed individually to be more clear. First of all,MSE, L1,Q,QW , andQY scores

of the methods will be given. Then, scores of all metrics mentioned in Chapter 3.3

will be given. The perceptual quality measurements versus QW , QE , and QY scores

are given as figures. Lastly, fusion results of the images to some input pairs will be

86

shown.

5.4.1.1 TNO Dataset Comparisons

TNO dataset’s visible spectrum images are grayscaled. Thus, we cannot compare

the color recovery performance of the metrics unless the gray tones. First of all,

deep learning-based metrics are compared quantitatively. The performance metrics

QE , Q, QW , and QY give more reliable results that are consistent and give better

intuition about picture quality. Thus, in Table 5.11, only these scores with the most

fundamental scores MSE and L1 are given. MSE and L1 scores give clues about

how well the input images resemble the fused image. However, in image fusion,

information of the input images should be preserved well and this makes fused images

can recover information well while it cannot numerically resemble well to the input

images. According to Table 5.11, CNN, DeepFuse and our proposed methods give

best results in the QE , Q, QW metrics.

Table 5.11: Reliable performance metrics with the MSE and L1 scores that show

numerically distance to the input images. Top three scores are highlighted with green,

blue and red respectively for each metric. Results are obtained in TNO dataset.

Method Names

Quality Metrics
MSE L1 QE Q QW QY

CNN [21] 0.161 0.029 0.803 0.799 0.642 0.820

DeepFuse [25] 0.123 0.019 0.710 0.725 0.519 0.809

DenseFuse [24] 0.105 0.005 0.609 0.655 0.399 0.830

DLF [22] 0.106 0.007 0.621 0.673 0.418 0.833

Dual-Branch-addFusion [28] 0.117 0.012 0.650 0.682 0.444 0.839

Dual-Branch-channelFusion [28] 0.123 0.004 0.601 0.535 0.349 0.794

Dual-Branch-l1Fusion [28] 0.117 0.012 0.650 0.682 0.444 0.839

FusionGan [26] 0.101 0.061 0.479 0.434 0.212 0.730

Proposed Best 0.109 0.008 0.797 0.796 0.634 0.882

ResNet-l1Zca4 [23] 0.107 0.007 0.635 0.682 0.433 0.837

ResNet-l1Zca5 [23] 0.107 0.007 0.616 0.663 0.409 0.832

RFN-Nest [27] 0.134 0.028 0.651 0.661 0.437 0.772

87

On the other hand, we compare the deep learning-based methods with all perfor-

mance metrics in Tables 5.12 and 5.13. When we look at overall successes over the

performance metrics, CNN, DeepFuse, and our proposed method beat other meth-

ods in most of the performance metrics. In our first comparison in Table 5.11, these

three methods give the best scores. This shows that QE , Q, QW and QY performance

metrics are more reliable compared to others.

Figure 5.5: Average perceptual quality (PaQ-2-PiQ) [42] scores for deep learning-

based methods. Results are obtained in the TNO dataset. Our proposed method

obtains the best score among all other methods.

Furthermore, we tried to predict the mean opinion score,i.e. perceptual quality, us-

ing PaQ-2-PiQ [42] deep learning model. In Figure 5.5, average perceptual quality

scores of all deep learning-based methods are compared. Our Proposed-Best method

achieves the best average score in TNO [2] dataset among all deep learning-based

methods. Moreover, In Figure 5.6, perceptual quality scores are reviewed with re-

spect to QE , QW , and QY scores to show our proposed method is reliable in both

perceptual and quantitative scores. Our proposed model stays at the best possible re-

gion in these graphs, that is upper right corner. Even if the performance metric score

of our proposed method has worse results than other methods, the comparison folder

88

shows the difference clearly.

Table 5.12: Part 1 of other performance metrics that is not mentioned in the Table

5.11. Top three scores are highlighted with green, blue and red respectively for each

metric. Results are obtained in TNO dataset.

Method Names

Quality Metrics
AG CrossEN EI EN MI PSNR RMSE

CNN [21] 4.107 1.037 41.766 7.078 1.645 58.731 0.091

DeepFuse [25] 3.513 1.815 34.737 6.699 1.549 58.717 0.092

DenseFuse [24] 2.353 1.428 23.306 6.174 1.480 59.471 0.077

DLF [22] 2.426 1.559 24.005 6.183 1.459 59.471 0.077

Dual-Branch-addFusion [28] 2.471 1.521 25.079 6.332 1.505 59.426 0.077

Dual-Branch-channelFusion [28] 4.303 1.668 41.341 6.408 1.651 59.061 0.087

Dual-Branch-l1Fusion [28] 2.471 1.521 25.079 6.332 1.505 59.426 0.077

FusionGan [26] 2.205 2.633 22.148 6.363 1.559 57.871 0.115

Proposed-Best 3.586 1.606 35.986 6.414 1.291 59.363 0.079

ResNet-l1Zca4 [23] 2.425 1.488 24.057 6.235 1.349 59.456 0.077

ResNet-l1Zca5 [23] 2.372 1.495 23.499 6.195 1.403 59.469 0.077

RFN-Nest [27] 2.734 1.733 29.147 6.841 1.405 58.501 0.098

Table 5.13: Part 2 of other performance metrics that is not mentioned in the Table

5.11. Top three scores are highlighted with green, blue and red respectively for each

metric. Results are obtained in TNO dataset.

Method Names

Quality Metrics
SF SSIM SD QCB QCV QAB/F LAB/F NAB/F

CNN [21] 10.705 1.395 45.496 0.556 360.765 0.559 0.100 0.371

DeepFuse [25] 8.918 1.462 33.653 0.506 484.688 0.506 0.146 0.233

DenseFuse [24] 6.041 1.562 22.546 0.496 471.968 0.406 0.232 0.001

DLF [22] 6.409 1.561 22.707 0.493 479.489 0.426 0.226 0.001

Dual-Branch-addFusion [28] 6.214 1.550 27.023 0.480 362.319 0.446 0.212 0.007

Dual-Branch-channelFusion [28] 13.146 1.407 32.200 0.486 840.068 0.422 0.190 0.172

Dual-Branch-l1Fusion [28] 6.214 1.550 27.023 0.480 362.319 0.446 0.212 0.007

FusionGan [26] 5.791 1.312 26.067 0.428 1061.593 0.280 0.331 0.104

Proposed-Best 9.827 1.501 26.968 0.522 408.588 0.594 0.129 0.146

ResNet-l1Zca4 [23] 6.328 1.560 23.742 0.502 447.528 0.430 0.225 0.001

ResNet-l1Zca5 [23] 6.135 1.561 22.940 0.496 461.457 0.412 0.230 0.001

RFN-Nest [27] 6.127 1.403 35.270 0.508 534.248 0.425 0.201 0.140

89

(a) Perceptual quality vs QE score graph.

(b) Perceptual quality vs QW score graph.

(c) Perceptual quality vs QY score graph.

Figure 5.6: Perceptual quality scores with respect to QE , QW and QY scores. Upper

right corner in the graphs is the best place for a method. Results are obtained in TNO

dataset.

90

In addition, to make visual comparisons of the deep learning-based methods, we

shared some fused image samples shown in Figure 5.7. The results can be viewed

better with digital zoom. There are small detail differences in the methods. For ex-

ample, In the Jeep sequence which is the 4th column of the Figure 5.7, CNN and our

proposed method results are sharper and details more clear. However, in the smoke

sequence which is the 5th sequence, CNN shows poor performance. The soldier in

the smoke is not distinguishable. In our proposed method, both smoke and soldier are

seen.

Figure 5.7: Some examples of the fused images of the deep learning based methos on

TNO dataset.

91

5.4.1.2 VIFB Dataset Comparisons

In VIFB [3] dataset, some visible spectrum images have color channels. Thus, we

can compare the color recovery performance of the metrics. As mentioned in the

above chapter, we started to compare deep learning-based methods with more reli-

able performance metrics QE , Q, QW , and QY . This gives better intuition about to

overall picture. In Table 5.14, as in TNO [2] dataset comparisons, CNN and our pro-

posed method give the best scores among all of the methods. However, Dual-Channel

[28] and Rfn-Nest [27] methods only provide gray-scaled results, and this affects the

overall scores but we can compare edge details and information not related to color.

Table 5.14: Reliable performance metrics with the MSE and L1 scores that show

numerically distance to the input images. Top three scores are highlighted with green,

blue and red respectively for each metric. Results are obtained in VIFB dataset.

Method Names

Quality Metrics
MSE L1 QE Q QW QY

CNN [21] 0.176 0.015 0.836 0.841 0.709 0.849

DeepFuse [25] 0.148 0.076 0.494 0.595 0.297 0.724

DenseFuse [24] 0.112 0.002 0.644 0.705 0.456 0.810

DLF [22] 0.113 0.000 0.678 0.740 0.504 0.821

Dual-Branch-addFusion-grayscaled [28] 0.109 0.003 0.635 0.580 0.369 0.817

Dual-Branch-channelFusion-grayscaled [28] 0.143 0.004 0.611 0.545 0.358 0.775

Dual-Branch-l1Fusion-grayscaled [28] 0.123 0.005 0.685 0.624 0.430 0.829

FusionGan-grayscaled [26] 0.094 0.004 0.452 0.417 0.191 0.753

FusionGan-YChannelRGB [26] 0.220 0.140 0.313 0.379 0.128 0.681

Proposed Best 0.128 0.002 0.836 0.864 0.725 0.876

ResNet [23] 0.115 0.002 0.666 0.729 0.488 0.815

Rfn-Nest-grayscaled [27] 0.135 0.006 0.695 0.607 0.428 0.788

In Table 5.15 and 5.16, all performance metrics for deep learning-based methods

can be seen. CNN and our proposed method take the best scores from most of the

metrics. However, the results are not enough to compare methods. We need to show

perceptual qualities. In Figure 5.12, perceptual quality scores of each method in the

VIFB dataset are shown. Our proposed method achieves the best score. To review the

methods, perceptual quality versus QE , QW , and QY score figures are generated. In

92

both perspectives, the success of our proposed method is seen. In Figure 5.8, the deep

learning-based methods can be compared more accurately. The figure supports the

comparison metrics give a good intuition about the success of the method, but further

experiments are needed to justify final thoughts.

Table 5.15: Part 1 of other performance metrics that is not mentioned in the Table

5.14. Top three scores are highlighted with green, blue and red respectively for each

metric. Results are obtained in VIFB [3] dataset.

Method Names

Quality Metrics
AG CrossEN EI EN MI PSNR RMSE

CNN [21] 5.775 1.119 60.037 7.318 2.564 57.676 0.130

DeepFuse [25] 2.651 1.495 27.717 6.362 1.868 56.959 0.144

DenseFuse [24] 3.520 1.375 36.037 6.698 1.939 58.193 0.113

DLF [22] 3.797 1.444 38.422 6.722 1.943 58.190 0.114

Dual-Branch-addFusion-grayscaled [28] 3.195 1.388 33.537 6.678 2.043 58.164 0.114

Dual-Branch-channelFusion-grayscaled [28] 5.164 1.387 51.686 6.890 2.121 57.856 0.126

Dual-Branch-l1Fusion-grayscaled [28] 3.475 1.333 36.592 6.811 2.100 58.107 0.117

FusionGan-grayscaled [26] 2.950 2.442 30.613 6.370 1.592 57.344 0.133

FusionGan-YChannelRGB [26] 1.577 0.923 16.688 5.560 1.348 55.019 0.219

Proposed Best 5.246 1.594 54.778 6.942 1.732 58.005 0.119

ResNet [23] 3.647 1.391 37.110 6.732 1.899 58.184 0.114

Rfn-Nest-grayscaled [27] 3.650 1.556 39.314 7.147 1.992 57.903 0.120

Table 5.16: Part 2 of other performance metrics that is not mentioned in the Table

5.14. Top three scores are highlighted with green, blue and red respectively for each

metric. Results are obtained in VIFB [3] dataset.

Method Names

Quality Metrics
SF SSIM SD QCB QCV QAB/F LAB/F NAB/F

CNN [21] 18.558 1.316 60.007 0.603 729.367 0.672 0.091 0.267

DeepFuse [25] 7.929 1.295 27.660 0.497 1063.807 0.290 0.234 0.031

DenseFuse [24] 10.850 1.389 34.182 0.429 932.323 0.403 0.169 0.072

DLF [22] 12.284 1.390 34.652 0.435 932.190 0.459 0.161 0.075

Dual-Branch-addFusion-grayscaled [28] 9.811 1.412 33.341 0.425 978.830 0.411 0.183 0.031

Dual-Branch-channelFusion-grayscaled [28] 18.212 1.342 41.935 0.445 1269.351 0.441 0.140 0.146

Dual-Branch-l1Fusion-grayscaled [28] 10.827 1.407 39.098 0.446 758.580 0.473 0.169 0.038

FusionGan-grayscaled [26] 9.261 1.267 26.864 0.342 1767.965 0.279 0.235 0.123

FusionGan-YChannelRGB [26] 4.788 1.127 15.222 0.341 1751.603 0.155 0.389 0.072

Proposed Best 16.737 1.360 40.405 0.497 768.403 0.599 0.117 0.229

ResNet [23] 11.538 1.389 34.877 0.435 896.176 0.437 0.166 0.071

Rfn-Nest-grayscaled [27] 9.987 1.343 45.276 0.471 997.649 0.447 0.165 0.122

93

Finally, some fused results from the VIFB dataset are shown in Figure 5.10. In the first

column of the figure, a sequence called ’carWhite’, CNN shows poor performance

that our proposed method. When the sky region is reviewed, the clouds and the mast

seen in the infrared image only cannot be recovered in the CNN method. Also, in the

sixth column of the same figure, a sequence called ’kettle’, the human that holds a

bag under the building is more distinct in our proposed method. The details can be

viewed in digital zoom.

Figure 5.8: Average perceptual quality (PaQ-2-PiQ) scores for deep learning based

methods. Results are obtained in VIFB dataset.

94

(a) Perceptual quality vs QE score graph.

(b) Perceptual quality vs QW score graph.

(c) Perceptual quality vs QY score graph.

Figure 5.9: Perceptual quality scores with respect to QE , QW and QY scores. Upper

right corner in the graphs is the best place for a method. Results are obtained in VIFB

dataset.
95

Figure 5.10: Some examples of the fused images of the deep learning based methos

on VIFB dataset.

5.4.2 Overall Comparisons

Our proposed method is compared with all other existing state-of-the-art methods in

both TNO and VIFB datasets. First of all, all methods’ perceptual scores in TNO and

VIFB datasets are given in Figure 5.11 and 5.12 respectively. To express benchmark

results more clearly, in Figure 5.13 and 5.14, perceptual quality is compared with per-

formance evaluation metrics QE , QW and QY which are more stable for comparison.

In these figure, we can see that even if our proposed method has lower scores on both

perceptual and evaluation metrics, it stays in the upper right corner which beats ex-

isting methods. Furthermore, ’carWhite’ and ’elecbike’ image pairs in VIFB dataset

and sequence 12 and 21 in TNO dataset is used to compare all methods visually. The

96

fused image results are given in Figures 5.15, 5.16, 5.17 and, 5.18.

Figure 5.11: Average perceptual quality (PaQ-2-PiQ) scores for all methods. Results

are obtained in TNO dataset.

Figure 5.12: Average perceptual quality (PaQ-2-PiQ) scores for all methods. Results

are obtained in VIFB dataset.

97

(a) Perceptual quality vs QE score graph.

(b) Perceptual quality vs QW score graph.

(c) Perceptual quality vs QY score graph.

Figure 5.13: Perceptual quality scores with respect to QE , QW and QY scores. Upper

right corner in the graphs is the best place for a method. Results are obtained in VIFB

dataset.

98

(a) Perceptual quality vs QE score graph.

(b) Perceptual quality vs QW score graph.

(c) Perceptual quality vs QY score graph.

Figure 5.14: Perceptual quality scores with respect to QE , QW and QY scores. Upper

right corner in the graphs is the best place for a method. Results are obtained in TNO

dataset.

99

Figure 5.15: Sequence 21 in TNO dataset. First row is the visible and infrared images

respectively. Each fused image has a number that can be checked from Table 5.10.

The number 27 is our proposed method.

100

Figure 5.16: Sequence 12 in TNO dataset. First row is the visible and infrared images

respectively. Each fused image has a number that can be checked from Table 5.10.

The number 27 is our proposed method.

101

Figure 5.17: ’carWhite’ image pairs in VIFB dataset. First row is the visible and

infrared images respectively. Each fused image has a number that can be checked

from Table 5.10. The number 28 is our proposed method.

102

Figure 5.18: ’elecbike’ image pairs in VIFB dataset. First row is the visible and

infrared images respectively. Each fused image has a number that can be checked

from Table 5.10. The number 28 is our proposed method.

103

104

CHAPTER 6

CONCLUSIONS

We present a novel method that is called Encoder-Decoder Network for Fusion. It is

inspired from U-Net [1] and ResNet [5] architectures. It takes a visible three-channel

image, i.e. RGB image, an infrared image as input and produces a three-channel

output that merges the information on the input images. The proposed architecture

is an end-to-end trainable neural network that is composed of convolution and pool-

ing layers only. Most of the state-of-the-art methods propose a three separate step

solution: feature extraction, fusion, and reconstruction. Each step is studied sepa-

rately. However, our proposed method combines all three steps and optimizes all the

steps together. That enables the creation of more strong connections between steps

and the method becomes more stable. Moreover, the proposed method is trained

with a custom loss function that takes into account the fusion quality and information

transferred from input images. Thus, the fused image becomes of high quality both

quantitatively and qualitatively. To show the success of the proposed method, it is

compared with both deep learning-based methods and state-of-the-art methods.

As future work, the fusion result can be compared in further computer vision ap-

plications such as object detection, object tracking, and object recognition. Also,

the perceived quality of the fused images could be rated by real human raters to see

the overall opinion score of the fusion methods clearly. For real-time applications,

the proposed method can be applied in embedded devices such as NVIDIA Jetson

boards.

105

106

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” 2015.

[2] A. Toet, “Tno image fusion dataset,” Apr 2014.

[3] X. Zhang, P. Ye, and G. Xiao, “Vifb: A visible and infrared image fusion

benchmark,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops, 2020.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” CoRR, vol. abs/1512.03385, 2015.

[6] D. P. Bavirisetti and R. Dhuli, “Fusion of infrared and visible sensor images

based on anisotropic diffusion and karhunen-loeve transform,” IEEE Sensors

Journal, vol. 16, no. 1, pp. 203–209, 2016.

[7] B. S. Kumar, “Image fusion based on pixel significance using cross bilateral

filter,” Signal, image and video processing, vol. 9, no. 5, pp. 1193–1204, 2015.

[8] Z. Zhou, B. Wang, S. Li, and M. Dong, “Perceptual fusion of infrared and

visible images through a hybrid multi-scale decomposition with gaussian and

bilateral filters,” Information Fusion, vol. 30, pp. 15–26, 2016.

[9] Z. Zhou, M. Dong, X. Xie, and Z. Gao, “Fusion of infrared and visible images

for night-vision context enhancement,” Appl. Opt., vol. 55, pp. 6480–6490,

Aug 2016.

[10] V. Naidu, “Image fusion technique using multi-resolution singular value de-

composition,” Defence Science Journal, vol. 61, no. 5, p. 479, 2011.

107

[11] D. P. Bavirisetti, G. Xiao, J. Zhao, R. Dhuli, and G. Liu, “Multi-scale guided

image and video fusion: A fast and efficient approach,” Circuits, Systems, and

Signal Processing, vol. 38, no. 12, pp. 5576–5605, 2019.

[12] S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Trans-

actions on Image Processing, vol. 22, no. 7, pp. 2864–2875, 2013.

[13] D. P. Bavirisetti and R. Dhuli, “Two-scale image fusion of visible and infrared

images using saliency detection,” Infrared Physics & Technology, vol. 76,

pp. 52–64, 2016.

[14] B. Yang and S. Li, “Multifocus image fusion and restoration with sparse repre-

sentation,” IEEE Transactions on Instrumentation and Measurement, vol. 59,

no. 4, pp. 884–892, 2010.

[15] B. Yang and S. Li, “Pixel-level image fusion with simultaneous orthogonal

matching pursuit,” Information Fusion, vol. 13, no. 1, pp. 10–19, 2012.

[16] S. Li, H. Yin, and L. Fang, “Group-sparse representation with dictionary learn-

ing for medical image denoising and fusion,” IEEE Transactions on Biomedi-

cal Engineering, vol. 59, no. 12, pp. 3450–3459, 2012.

[17] H. Li, X.-J. Wu, and J. Kittler, “Mdlatlrr: A novel decomposition method for

infrared and visible image fusion,” IEEE Transactions on Image Processing,

vol. 29, p. 4733–4746, 2020.

[18] D. P. Bavirisetti, G. Xiao, and G. Liu, “Multi-sensor image fusion based on

fourth order partial differential equations,” in 2017 20th International Confer-

ence on Information Fusion (Fusion), pp. 1–9, 2017.

[19] Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on

multi-scale transform and sparse representation,” Information Fusion, vol. 24,

pp. 147–164, 2015.

[20] J. Ma, Z. Zhou, B. Wang, and H. Zong, “Infrared and visible image fusion

based on visual saliency map and weighted least square optimization,” Infrared

Physics & Technology, vol. 82, pp. 8–17, 2017.

108

[21] Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, “Infrared and visible image

fusion with convolutional neural networks,” International Journal of Wavelets,

Multiresolution and Information Processing, vol. 16, no. 03, p. 1850018, 2018.

[22] H. Li, X.-J. Wu, and J. Kittler, “Infrared and visible image fusion using a

deep learning framework,” in 2018 24th international conference on pattern

recognition (ICPR), pp. 2705–2710, IEEE, 2018.

[23] H. Li, X.-j. Wu, and T. S. Durrani, “Infrared and visible image fusion with

resnet and zero-phase component analysis,” Infrared Physics & Technology,

vol. 102, p. 103039, Nov 2019.

[24] H. Li and X.-J. Wu, “Densefuse: A fusion approach to infrared and visible

images,” IEEE Transactions on Image Processing, vol. 28, p. 2614–2623, May

2019.

[25] K. R. Prabhakar, V. S. Srikar, and R. V. Babu, “Deepfuse: A deep unsupervised

approach for exposure fusion with extreme exposure image pairs,” 2017.

[26] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, “Fusiongan: A generative adversar-

ial network for infrared and visible image fusion,” Information Fusion, vol. 48,

pp. 11–26, 2019.

[27] H. Li, X.-J. Wu, and J. Kittler, “Rfn-nest: An end-to-end residual fusion net-

work for infrared and visible images,” Information Fusion, vol. 73, p. 72–86,

Sep 2021.

[28] Y. Fu and X.-J. Wu, “A dual-branch network for infrared and visible image

fusion,” 2021.

[29] L. Liu, M. Chen, M. Xu, and X. Li, “Two-stream network for infrared and

visible images fusion,” Neurocomputing, vol. 460, pp. 50–58, 2021.

[30] J. Ma, C. Chen, C. Li, and J. Huang, “Infrared and visible image fusion via gra-

dient transfer and total variation minimization,” Information Fusion, vol. 31,

pp. 100–109, 2016.

109

[31] Y. Zhang, L. Zhang, X. Bai, and L. Zhang, “Infrared and visual image fu-

sion through infrared feature extraction and visual information preservation,”

Infrared Physics & Technology, vol. 83, pp. 227–237, 2017.

[32] P. Khurana, “Swir resolution+ unlocks potential.” https:

//prvnk10.medium.com/the-convolution-operation-

48d72a382f5a, 2020. Accessed: 2021-10-01.

[33] D. Frossard, “Vgg in tensorflow.” https://www.cs.toronto.edu/

~frossard/post/vgg16/, 2016. Accessed: 2021-05-06.

[34] J. Ma, Y. Ma, and C. Li, “Infrared and visible image fusion methods and appli-

cations: A survey,” Information Fusion, vol. 45, pp. 153–178, 2019.

[35] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous

sparse approximation. part i: Greedy pursuit,” Signal Processing, vol. 86, no. 3,

pp. 572–588, 2006. Sparse Approximations in Signal and Image Processing.

[36] J. Wang, J. Peng, X. Feng, G. He, and J. Fan, “Fusion method for infrared and

visible images by using non-negative sparse representation,” Infrared Physics

& Technology, vol. 67, pp. 477–489, 2014.

[37] Y. Liu, X. Chen, H. Peng, and Z. Wang, “Multi-focus image fusion with a

deep convolutional neural network,” Information Fusion, vol. 36, pp. 191–207,

2017.

[38] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested

u-net architecture for medical image segmentation,” 2018.

[39] P. Singh, “How to ___ variational autoencoder ?.” https:

//spraphul.github.io/blog/VAE, 2020. Accessed: 2021-05-07.

[40] M. NeuralNet, “Calculating the output size of con-

volutions and transpose convolutions.” http://

makeyourownneuralnetwork.blogspot.com/2020/02/

calculating-output-size-of-convolutions.html, 2020.

Accessed: 2021-05-06.

110

https://prvnk10.medium.com/the-convolution-operation-48d72a382f5a
https://prvnk10.medium.com/the-convolution-operation-48d72a382f5a
https://prvnk10.medium.com/the-convolution-operation-48d72a382f5a
https://www.cs.toronto.edu/~frossard/post/vgg16/
https://www.cs.toronto.edu/~frossard/post/vgg16/
https://spraphul.github.io/blog/VAE
https://spraphul.github.io/blog/VAE
http://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html
http://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html
http://makeyourownneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html

[41] P. Ruiz, “Understanding and visualizing resnets.” https:

//towardsdatascience.com/understanding-and-

visualizing-resnets-442284831be8, 2020. Accessed: 2021-

05-13.

[42] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D. Ghadiyaram, and A. Bovik, “From

patches to pictures (paq-2-piq): Mapping the perceptual space of picture qual-

ity,” 2019.

[43] “Biological neuron model.” https://en.wikipedia.org/wiki/

Biological_neuron_model, 2021. Accessed: 2021-04-30.

[44] “Single layer perceptron in tensorflow.” https://

www.javatpoint.com/single-layer-perceptron-in-

tensorflow, 2021. Accessed: 2021-04-30.

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[46] J. Hoffman, “Cramnet: Layer-wise deep neural network compression with

knowledge transfer from a teacher network,” 2019.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The jour-

nal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[48] C. Gomes, “8 - designing military uniforms with high-tech materials,” in Mili-

tary Textiles (E. Wilusz, ed.), Woodhead Publishing Series in Textiles, pp. 183–

203, Woodhead Publishing, 2008.

[49] “Swir resolution+ unlocks potential.” https://www.geoimage.com.au/

SWIR%20Series/resolution, 2018. Accessed: 2021-04-30.

[50] P. Burt and E. Adelson, “The laplacian pyramid as a compact image code,”

IEEE Transactions on Communications, vol. 31, no. 4, pp. 532–540, 1983.

[51] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet rep-

resentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 7, pp. 674–693, 1989.

111

https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/Biological_neuron_model
https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
http://www.deeplearningbook.org
https://www.geoimage.com.au/SWIR%20Series/resolution
https://www.geoimage.com.au/SWIR%20Series/resolution

[52] M. Do and M. Vetterli, “The contourlet transform: an efficient directional mul-

tiresolution image representation,” IEEE Transactions on Image Processing,

vol. 14, no. 12, pp. 2091–2106, 2005.

[53] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving decom-

positions for multi-scale tone and detail manipulation,” ACM Trans. Graph.,

vol. 27, p. 1–10, Aug. 2008.

[54] E. C and D. Donoho, “Curvelets - a surprisingly effective nonadaptive repre-

sentation for objects with edges,” Curves and Surfaces, 04 2000.

[55] R. Dony et al., “Karhunen-loeve transform,” The transform and data compres-

sion handbook, vol. 1, pp. 1–34, 2001.

[56] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-

ages,” in Sixth International Conference on Computer Vision (IEEE Cat.

No.98CH36271), pp. 839–846, 1998.

[57] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE transactions on

pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397–1409, 2012.

[58] R. Kakarala and P. O. Ogunbona, “Signal analysis using a multiresolution form

of the singular value decomposition,” IEEE Transactions on Image processing,

vol. 10, no. 5, pp. 724–735, 2001.

[59] Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, “Sparse representation

based multi-sensor image fusion for multi-focus and multi-modality images:

A review,” Information Fusion, vol. 40, pp. 57–75, 2018.

[60] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for design-

ing overcomplete dictionaries for sparse representation,” IEEE Transactions

on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[61] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factor-

ization and sparse coding.,” Journal of Machine Learning Research, vol. 11,

no. 1, 2010.

[62] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:

112

data mining, inference, and prediction. Springer Science & Business Media,

2009.

[63] G. Liu and S. Yan, “Latent low-rank representation for subspace segmentation

and feature extraction,” in 2011 International Conference on Computer Vision,

pp. 1615–1622, 2011.

[64] Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise

removal,” IEEE transactions on image processing : a publication of the IEEE

Signal Processing Society, vol. 9 10, pp. 1723–30, 2000.

[65] A. Toet, “Image fusion by a ratio of low-pass pyramid,” Pattern Recognition

Letters, vol. 9, no. 4, pp. 245–253, 1989.

[66] V. S. Petrovic and C. S. Xydeas, “Gradient-based multiresolution image fu-

sion,” IEEE Transactions on Image processing, vol. 13, no. 2, pp. 228–237,

2004.

[67] H. Li, B. Manjunath, and S. Mitra, “Multisensor image fusion using the

wavelet transform,” Graphical Models and Image Processing, vol. 57, no. 3,

pp. 235–245, 1995.

[68] M. Beaulieu, S. Foucher, and L. Gagnon, “Multi-spectral image resolution re-

finement using stationary wavelet transform,” in IGARSS 2003. 2003 IEEE In-

ternational Geoscience and Remote Sensing Symposium. Proceedings (IEEE

Cat. No. 03CH37477), vol. 6, pp. 4032–4034, IEEE, 2003.

[69] J. J. Lewis, R. J. O’Callaghan, S. G. Nikolov, D. R. Bull, and N. Canagarajah,

“Pixel- and region-based image fusion with complex wavelets,” Information

Fusion, vol. 8, no. 2, pp. 119–130, 2007. Special Issue on Image Fusion:

Advances in the State of the Art.

[70] F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, “Remote sensing image

fusion using the curvelet transform,” Information Fusion, vol. 8, no. 2, pp. 143–

156, 2007. Special Issue on Image Fusion: Advances in the State of the Art.

[71] Q. Zhang and B. long Guo, “Multifocus image fusion using the nonsubsampled

contourlet transform,” Signal Processing, vol. 89, no. 7, pp. 1334–1346, 2009.

113

[72] Q. Zhang, X. Shen, L. Xu, and J. Jia, “Rolling guidance filter,” in European

conference on computer vision, pp. 815–830, Springer, 2014.

[73] Y. Zhai and M. Shah, “Visual attention detection in video sequences using spa-

tiotemporal cues,” in Proceedings of the 14th ACM International Conference

on Multimedia, MM ’06, (New York, NY, USA), p. 815–824, Association for

Computing Machinery, 2006.

[74] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on com-

puter vision and pattern recognition, pp. 248–255, Ieee, 2009.

[75] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decorrelation,”

The American Statistician, vol. 72, p. 309–314, Jan 2018.

[76] K. Ma, K. Zeng, and Z. Wang, “Perceptual quality assessment for multi-

exposure image fusion,” IEEE Transactions on Image Processing, vol. 24,

no. 11, pp. 3345–3356, 2015.

[77] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”

2014.

[78] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE transactions

on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[79] Z. Tu, Y. Ma, Z. Li, C. Li, J. Xu, and Y. Liu, “Rgbt salient object detection: A

large-scale dataset and benchmark,” arXiv preprint arXiv:2007.03262, 2020.

[80] X. Bai, Y. Zhang, F. Zhou, and B. Xue, “Quadtree-based multi-focus image

fusion using a weighted focus-measure,” Information Fusion, vol. 22, pp. 105–

118, 2015.

[81] L. Zhang, “In situ image segmentation using the convexity of illumination dis-

tribution of the light sources,” IEEE transactions on pattern analysis and ma-

chine intelligence, vol. 30, no. 10, pp. 1786–1799, 2008.

114

[82] J. W. Roberts, J. A. Van Aardt, and F. B. Ahmed, “Assessment of image fu-

sion procedures using entropy, image quality, and multispectral classification,”

Journal of Applied Remote Sensing, vol. 2, no. 1, p. 023522, 2008.

[83] G. Qu, D. Zhang, and P. Yan, “Information measure for performance of image

fusion,” Electronics letters, vol. 38, no. 7, pp. 313–315, 2002.

[84] M. B. A. Haghighat, A. Aghagolzadeh, and H. Seyedarabi, “A non-reference

image fusion metric based on mutual information of image features,” Comput-

ers & Electrical Engineering, vol. 37, no. 5, pp. 744–756, 2011.

[85] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE signal

processing letters, vol. 9, no. 3, pp. 81–84, 2002.

[86] G. Piella and H. Heijmans, “A new quality metric for image fusion,” in

Proceedings 2003 International Conference on Image Processing (Cat. No.

03CH37429), vol. 3, pp. III–173, IEEE, 2003.

[87] V. Petrovic and C. Xydeas, “Objective image fusion performance characterisa-

tion,” in Tenth IEEE International Conference on Computer Vision (ICCV’05)

Volume 1, vol. 2, pp. 1866–1871, IEEE, 2005.

[88] Y. Chen and R. S. Blum, “A new automated quality assessment algorithm for

image fusion,” Image and vision computing, vol. 27, no. 10, pp. 1421–1432,

2009.

[89] H. Chen and P. K. Varshney, “A human perception inspired quality metric for

image fusion based on regional information,” Information fusion, vol. 8, no. 2,

pp. 193–207, 2007.

[90] C. Yang, J.-Q. Zhang, X.-R. Wang, and X. Liu, “A novel similarity based qual-

ity metric for image fusion,” Information Fusion, vol. 9, no. 2, pp. 156–160,

2008.

[91] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

eds.), vol. 25, Curran Associates, Inc., 2012.

115

[92] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, “Deep roots: Improv-

ing cnn efficiency with hierarchical filter groups,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1231–1240, 2017.

[93] J. Canny, “A computational approach to edge detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698,

1986.

[94] A. Thevenot, “Implement canny edge detection from scratch with pytorch.”

https://towardsdatascience.com/implement-canny-edge-

detection-from-scratch-with-pytorch-a1cccfa58bed,

2020. Accessed: 2021-05-17.

[95] “Free flir thermal dataset for algorithm training.”

=https://www.flir.com/oem/adas/adas-dataset-form/. Accessed: 2021-06-

27.

[96] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral pedes-

trian detection: Benchmark dataset and baselines,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[97] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[98] M. Minsky and S. Papert, Perceptrons: An introduction to computational ge-

ometry. MIT Press, 1969.

[99] J. McGonagle, G. Shaikouski, C. Williams, A. Hsu, J. Khim, and

A. Miller, “Backpropagation.” https://brilliant.org/wiki/

backpropagation/, 2021. Accessed: 2021-04-30.

[100] C. Hansen, “Neural networks: Feedforward and backpropagation explained &

optimization.” https://mlfromscratch.com/neural-networks-

explained/#/, 2019. Accessed: 2021-05-2.

[101] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[102] A. Oppermann, “Regularization in deep learning — l1, l2, and dropout.”

https://towardsdatascience.com/regularization-in-

116

https://towardsdatascience.com/implement-canny-edge-detection-from-scratch-with-pytorch-a1cccfa58bed
https://towardsdatascience.com/implement-canny-edge-detection-from-scratch-with-pytorch-a1cccfa58bed
=
https://brilliant.org/wiki/backpropagation/
https://brilliant.org/wiki/backpropagation/
https://mlfromscratch.com/neural-networks-explained/#/
https://mlfromscratch.com/neural-networks-explained/#/
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036

deep-learning-l1-l2-and-dropout-377e75acc036, 2020.

Accessed: 2021-05-06.

[103] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

117

https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036

118

APPENDIX A

BACKGROUND INFORMATION ON DEEP LEARNING

A.1 Introduction

Humans have desired to create machines that are programmed to think and mimic

actions of human intelligence. This is called Artificial Intelligence (AI). Our aim

is to automate routines, learn, understand and make a diagnosis in various topics

that humans are good at. For instance, AI may tracks objects in security cameras,

scans camera footage to find anomalies in real-time. It supports humans in various

ways. Development on both hardware and software technologies enables to speed up

studies on AI. Computers are straightforward. That is they should be programmed by

following formal and mathematical rules. However, there exists some problems that

are hard to describe formally but they are easy for humans.

Before AI solves problems, they need to learn relevant representations of data. Each

information given in data is a feature. However, how features are extracted is impor-

tant and it affects the performance of the AI system. To decide whether a person has

cancer or not, relevant information like the presence of some type of scars on their

MRI result or blood test results is needed. It can be challenging to describe a feature

related to a task. For instance, to detect cats in pictures, we can define some features

like cats have tails, paws, etc. However, we do not know exactly how the tail is rep-

resented in terms of pixel values. It is hard to describe because the tail can change

shape and color. Even if these are stable, the picture may be taken in different light

conditions, some pictures may include shadows, and so on.

AI systems need to acquire their knowledge from raw data. They should figure out

patterns from data. This is known as Machine Learning. This enabled computers

119

to solve problems that require making decisions relative to knowledge of the real

world. A simple machine learning algorithm called logistic regression can predict

house prices in a region by considering some features like overall quality, total living

area, garage area, etc. AI predicts house prices with given some knowledge that

called features. Obtaining these simpler feature representations can be solved via

Deep Learning that tries to represent simpler and more efficient features from input

raw data. We said that Deep Learning because a solution to problems consists of

simpler blocks that build complicated blocks and this can be shown as a graph and it

becomes deep. A simple deep learning algorithm Multilayer Perceptron can classify

raw visible images whether includes cat or dog.

A.2 History

Deep learning can be thought that is a relatively new technology, but its foundations

date back to the 1940s. Throughout history, it has had different names like cyber-

netics, connectionism, artificial neural network. Lastly, the deep learning (DL) name

becomes popular. Even though the names were changed, the idea behind the name

stays the same. DL tries to mimic biological neurons to compute and store infor-

mation related to any task desired. Like humans, DL should have a training phase

to master its application. The training phase is the most challenging part of DL be-

cause it needs strong hardware and software with a large amount of training data.

Improvements in computational power enable DL to learn simple tasks like recog-

nizing handwritten numbers. Over time the overall accuracy for applied applications

has been increased and this leads to a revolution that transformed the AI industry

according to researchers.

A.3 Perceptron

The perceptron is an algorithm that tries to solve binary classification problems in a

supervised way. It is composed of three pieces: input layer, weights, and activation

function. Simply, it learns a function that maps input x to an output f(x) which is a bi-

nary value. It is inspired by the biological neuron that includes multiple connections

120

(inputs of the perceptron) in synapses and each synapse has a different connection

amplitude (weights in the perceptron) and output response is generated with combin-

ing connections to decide whether a spike, i.e. neuronal action potential, is generated

or not (activation function in the perceptron). Figure A.1 shows complete biological

neuron model.

Figure A.1: Biological Neuron Model taken from Wikipedia[43]

Figure A.2: Detailed explained parts of single layer perceptron[44]

The input layer is connected to the output neuron with a connection weight. Each

input multiplies with corresponding weights and their total summation is sent to the

activation function. The activation function is simply a thresholding function that

outputs the binary result. Binary classification is completed with these steps as shown

in Figure A.2

121

The perceptron learns to classify two separate classes with updating weights. There

is only one layer to classify, so the perceptron is called a single-layer perceptron.

Single-layer perceptrons are only capable of solving linearly-separable patterns. In

1969, it is proved in Perceptrons(book) [98] that single-layer perceptron can not learn

XOR function which is not linearly separable.

Although it is achieved good results in binary classification for linearly-separable

data, it could not be used efficiently for multi-class classification. Until a multilayer

perceptron or feed-forward network that consists of multiple layers is invented, neural

network research stagnates for years.

After the invention of the back-propagation algorithm, explained with great detail

in section A.4, it made it possible to update network parameters, i.e. connection

weights, efficiently. This enabled to use of multiple layers in addition to the input

and output layer of a perceptron. These additional layers are called hidden layers. In

hidden layers, each neuron has an activation function as an output layer. If a linear

activation function is used in all neurons, it can be shown that this model can be

reduced to a single-layer perceptron model. Thus, In Multilayer Perceptrons (MLP),

there are used some nonlinear activation functions. Sigmoid and hyperbolic tangent

functions are commonly used nonlinear functions in MLPs. Sigmoid ranges from 0

to 1 whereas hyperbolic tangent ranges from -1 to 1. These functions are described in

Eqn. A.1 and A.2.

sigmoid(x) =
1

1 + ε−x
(A.1)

hyperbolic_tangent(x) = tanh x =
εx − ε−x

εx + ε−x
(A.2)

A.4 Back-propagation Algorithm

The back-propagation algorithm is a supervised algorithm to train artificial neural

networks using gradient descent. The error of network output is calculated and it is

propagated through network layers in reverse. The neural network’s weights are up-

122

dated according to its’ gradients. Calculating gradients of final layer and use these to

calculate previous layers gradients until reaching out the first layer. Thus, gradients

flow through the final layer to the first layer and it makes it system efficient because

there is no need to calculate the gradient of all layers separately at one computation-

ally expensive step. Detailed explanations can be found in [99] and [100].

It is a general optimization method to differentiate complex nested functions. It

is invented in the 1970s, however, it did not become popular until 1986, a paper

published by Rumelhart, Hinton, and Williams, "Learning Representations by Back-

Propagating Errors" [101], shows that artificial neural networks, for instance, mul-

tilayer perceptrons, could learn good internal representations as seen in Figure A.3.

With this algorithm, it was shown that artificial neural networks can learn features

that are hard to extract with classical image processing approaches. This enabled the

generation of solutions to problems that could not be solved or limited due to time or

computational cost constraints.

Figure A.3: Illustration of a deep learning model. It is taken from [45]. It shows that

each hidden layer learns different features. First layers learn simple representations

like edges, corners, etc. Through the final layers, the network learns more abstract

features like object parts.

123

The method requires three things to work: A neural network that defines the weights

and activation functions, a dataset that includes input and desired output pair, and an

error function to calculate gradients.

1. Dataset is defined as X = {(xi, yi)|i = 1, 2, .., N} where xi is input and yi is

desired output.

2. A neural network defines the parameters θ and activation functions.

3. A cost function, E(X, θ), defines relationship between desired output, yi and

generated output, ŷi on input xi. Thus, it is depending on network parameters

and dataset.

The idea behind the algorithm requires to calculate gradients of the error function

in the given sample (or samples, before running algorithm more than one result can

be computed) with respect to network parameters θ. The opposite direction of the

calculated gradients points minimum error region. In each update of the parameters,

Ideally, the network becomes closer to the optimal point that gives the minimum error

that is called the global minimum. Eqn. A.3 shows the gradient descent update rule.

θt denotes the parameters at iteration t and α is the learning rate that specifies the

change rate of the parameters.

θt+1 = θt − α∂E(X, θt)

∂θ
(A.3)

As mentioned above, gradients flow reversely in the network. Before calculating

gradients, network should calculate output, ŷi for given input xi. It is called forward

pass. Then, the error function can be calculated. Forward pass for the network can

be defined as Eqns. A.4 and A.5. Definition of the mathematical expressions given in

Table A.1.

z(l) = θ(l) × a(l−1) (A.4)

a(l) = σ(z(l)) (A.5)

124

Table A.1: Expressions and definitions used

Expressions Definitions

L Last Layer

l current layer

ŷ Predicted Output

y Desired Output

zl Output of layer l

zL Output of Last layer (ŷ)

al Activation result of layer l

aL = ŷ Activation result of output layer L

σ(.) Activation function of nodes

To explain more clearly, error function can be defined as Eqn. A.6. The chain rule

is used to calculate the gradients as given in Eqn. A.7. Starting from last layer Eqn.

A.7 is calculated. According to gradients, last layer’s parameters are updated using

gradient descent in Eqn. A.3. The process continues with previous layer, L − 1. To

calculate gradients of layer L− 1, we need to compute ∂E
∂a(L−1) which is given in Eqn.

A.8. First two part of the equation, ∂E
∂a(L)

∂a(L)

∂z(L) , is computed in the final layer gradient

calculation which can be extracted in Eqn. A.7 putting l = L. Thus, previous cal-

culations are reused. It can be imagined that gradient flows through layers reversely

that is final to initial layer.

E(X, θ) =
1

2N

N∑
i=1

(ŷi − yi)2 (A.6)

∂E

∂θ(l)
=

∂E

∂a(l)

∂a(l)

∂z(l)

∂z(l)

∂θ(l)
(A.7)

∂E

∂a(l−1)
=

∂E

∂a(l)

∂a(l)

∂z(l)

∂z(l)

∂a(l−1)
(A.8)

Sample calculation for output layer, L is given in Eqn. A.9.

∂E

∂θ(L)
=

∂E

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂θ(L)
= (

1

N
(ŷ − y))(σ

′
(zL))(aL−1) (A.9)

125

A.5 Regularization

It is desired that the artificial neural network architecture performs well not only in

training data but also on new inputs. It is called overfitting. It is caused by noise in

the training data. Artificial neural networks are too complex an architecture that is

designed to learn any function. Thus, It can fit training data noise and it causes to fail

in test examples that do not include the noise. Figure A.4 shows this phenomena with

a simple example.

Figure A.4: Demonstration of underfitting, correct fit and overfitting from left to right

respectively . It is taken from [46]

To avoid overfitting, there are several strategies and these are called regularization.

Detailed explanations can be found in [102], [45].

A.5.1 Norm Penalties: L1 and L2 Regularization

These are also known as weight decay regularization. During L1 or L2 regularization,

the regularization term is added to the loss function. This term Ω is equal to the L1

or L2 norm of the network parameters as defined in the Eqn. A.10. The term Ω is

weighted by scalar α divided by 2 and added to the loss function as shown in Eqn.

A.11. The alpha is called as regularization rate. In the next step, to update network

parameters according to the loss function, the gradient of the loss function is calcu-

lated. When the gradient of the Eqn. A.11 is computed and gradient descent update

rule is applied, the Eqn. A.12 is obtained. The term ε∇WL(Wold)) in Eqn. A.12 is

the penalty added to weight update equation. Thus, norm penalties try to minimize

126

network parameters whereas the accuracy is maximized. Intuitively, smaller param-

eters reduce the impact of a neuron in the architecture. The overall complexity is

reduced in this way. It is important to note that if the regularization term is weighted

too much, the model becomes less complex and the accuracy of the model can not

achieve certain goals.

Ω(W) = ‖W‖2
2 =

∑
i

∑
j

w2
ij L2norm

= ‖W‖1 =
∑
i

∑
j

wij L1norm
(A.10)

L̂(W) =
α

2
Ω(W) + L(W) (A.11)

Wnew = Wold − ε(αWold +∇WL(Wold))

= (1− εα)Wold − ε∇WL(Wold))
(A.12)

A.5.2 Dataset Augmentation

To make our trained model more stable and resistant to noise, the best way is to obtain

more data that includes different aspects of the task and cover most of the input space.

If the dataset is broad enough, our model can generalize the task better. Dataset aug-

mentation is a method to create new fake data to increase dataset size. However, it

can be difficult for various tasks to generate fake data unless mathematical solutions

exist for this task. It is important to know task-dependent invariant transformations.

For instance, the image classification task is independent of rotation, scaling, mirror-

ing, etc. Thus, these transformations can be used to generate new fake data from the

existing dataset. Furthermore, adding random noise to input images can be useful but

the magnitude of the noise is carefully tuned. Further details can be found in [103].

127

A.5.3 Dropout

Dropout is a famous and powerful method for the regularization of artificial neural

networks. The idea behind is quite simple. With a probability P , a neuron of the

model is turned off during the training phase. Figure A.5 shows a feed-forward net-

work with 2 hidden layers with and without dropout application. As mentioned ear-

lier, closing some neurons make architecture simpler so, it can generalize task better

and not overfit the training dataset.

Figure A.5: Artificial neural network with and without dropout. With random prob-

ability some neurons are closed. Crossed units have been dropped. Image is taken

from [47]

A.5.4 Early Stopping

When training artificial neural networks, the error rate decreases steadily over time

while the validation set error does not. Thus, the aim is to find the point that validation

set error minimum which is more probably to show better performance in the real test

set. It is important to note that the validation set is not used for training. It is used to

validate the model performance in a relatively smaller dataset. This strategy is known

as early stopping. The Figure A.6 shows early stopping visually.

128

Figure A.6: Loss curves of the artificial neural network. This shows that from a point

validation loss started to increase even if training loss continues to decrease.

129

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Contributions and Novelties
	The Outline of the Thesis

	Convolutional Neural Networks (CNNs)
	Introduction
	The Convolutional Operation

	Some Common Architectures of CNNs
	VGG ch3-VGG
	ResNet resnet
	U-Net unet

	Literature Review
	Introduction
	Infrared and Visible Image Fusion Methods
	Multi-scale Transform Based Methods
	ADF Method ch3-ADF
	CBF Method ch3-CBF
	Hybrid_MSD Method ch3-hybridMSD
	GFCE and HMSD_GF Methods ch3-GFCE
	MSVD Method ch3-msvd

	Saliency Based Methods
	MGFF ch3-mgff
	GFF ch3-GFF
	TIF ch3-tif

	Sparse Representation Based Methods
	SR Method ch3-sparseSR
	SOMP ch3-SOMP-method
	GSR Method ch3-gsr
	NNSR Method

	Sub-space Based Methods
	MDLatLRR ch3-MDLatLRR
	FPDE ch3-fpde

	Hybrid Methods
	MST_SR Methods ch3-MST-SR
	VSMWLS Method ch3-VSMWLS

	Deep Learning Based Methods
	CNN Method ch3-CNN
	DLF Method ch3-DLF
	ResNet Method ch3-ResNet
	DenseFuse Method ch3-denseFuse
	DeepFuse Method ch3-deepfuse
	FusionGAN Method ch3-fusionGAN
	RFN-Nest Method ch3-rfnnest
	Dual-Branch Method ch3-dualbranch
	TFSNet Method ch3-tsfnet

	Other Methods
	GTF Method ch3-GTF
	IFEVIP Method ch3-IFEVIP

	Quality Measurements for Image Fusion Applications
	Entropy (EN)
	Mutual Information (MI)
	Feature Mutual Information (FMI)
	Structural Similarity Index Measure (SSIM)
	Standard Deviation (SD)
	Spatial Frequency (SF)
	Average Gradient (AG)
	Mean Squared Error (MSE)
	L1 error
	Root Mean Squared Error (RMSE)
	Peak Signal To Noise Ratio (PSNR)
	Correlation Coefficient (CC)
	Edge Intensity (EI)
	Q, QW, and QE
	QAB/F, LAB/F, NAB/F
	QCB
	QCV
	QY

	Applications

	Proposed Architecture
	Introduction
	Network Architecture
	Encoder
	Fusion
	Decoder

	Loss Functions

	Experimental Results
	Introduction
	Training and Inference Details
	Experiments on Proposed Method
	Effect of Loss Function
	Effect of Pre-trained Encoder Layer
	Effect of Fusion Layer

	Performance Evaluation
	Only Deep Learning Based Methods Comparisons
	TNO Dataset Comparisons
	VIFB Dataset Comparisons

	Overall Comparisons

	Conclusions
	REFERENCES
	Background Information on Deep Learning
	Introduction
	History
	Perceptron
	Back-propagation Algorithm
	Regularization
	Norm Penalties: L1 and L2 Regularization
	Dataset Augmentation
	Dropout
	Early Stopping

