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İSMAİL HAKKI KOÇDEMİR
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ABSTRACT

AN ANALYSIS ON THE EFFECT OF DYNAMIC RANGE ON OBJECT
DETECTION WITH DEEP NEURAL NETWORKS

Koçdemir, İsmail Hakkı

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sinan Kalkan

Co-Supervisor: Prof. Dr. A. Aydın Alatan

September 2021, 60 pages

An important problem in computer vision, particularly in object detection, is being

able to perceive objects even under challenging illumination conditions. Being robust

to such conditions is especially important in applications, such as autonomous driv-

ing. Despite the significance of the problem, existing autonomous driving systems

use deep object detection networks with low-dynamic range (LDR) images during

both the training phase and the testing phase. In this thesis, we investigate whether

high-dynamic range (HDR) images can provide better performance for object de-

tection in autonomous driving systems. For this purpose, we provide a comprehen-

sive analysis of the effect of dynamic range on object detection performance. We

compare LDR and HDR images on different illumination conditions and show that

HDR performs on par with to LDR counterparts when used without pre-processing

including normalization and gamma correction. We also show that after applying this

certain pre-processing operations, HDR is able achieve on par detection performance

with tone-mapped LDR. Moreover, we propose a novel framework to jointly optimize

deep-learning-based tone-mapping operators and object detection networks by using
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a Generative Adversarial approach. Our architecture achieves the best tone-mapping

quality score while maintaining a competitive performance to the best classical tone-

mapping operator in terms of detection performance.

Keywords: Object Detection, High Dynamic Range, Low Dynamic Range, Tone-

Mapping, Generative Adversarial Networks
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ÖZ

DİNAMİK ARALIĞIN DERİN SİNİR AĞLARI İLE NESNE TESPİTİNDEKİ
ETKİSİNİN ANALİZİ

Koçdemir, İsmail Hakkı

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Eylül 2021 , 60 sayfa

Bilgisayarlı görü için, özellikle nesne tespiti için, zorlu ışık koşullarında etraftaki

nesnelerin algılanabilmesi önemli bir problem teşkil etmektedir. Özellikle sürücüsüz

araçlar gibi nesne tespiti algoritmalarının uygulama alanlarının çoğu, bu koşullara

karşı dayanıklı olmayı gerektirmektedir. Fakat, bu probleme karşın var olan otonom

sürüş sistemleri nesne tespiti için düşük dinamik aralıklı imgelerde eğitilmekte ve test

edilmektedirler. Bu tezde, yüksek dinamik aralıklı (YDA) imgelerin daha iyi nesne te-

piti performansı sağlayıp sağlamadığı analiz ediyoruz. Bu doğrultuda, dinamik aralı-

ğın nesne tespiti performansına etkisinin kapsamlı analizini vermekteyiz. YDA imge-

ler ile Düşük Dinamik Aralıklı (DDA) imgeleri farklı aydınlanma koşullarını dikkate

alan yeni performans kategorilerinde değerlendirmekteyiz. Bu değerlendirmlere so-

nucunda, normalizasyon ve gama düzeltme gibi ön işleme yöntemleri kullanılmadığı

takdirde, YDA imgeler DDA imgelere göre daha kötü nesne tespiti performansı gös-

terdiği görülmektedir. Ayrıca, bahsedilen ön işleme yöntemleri kullanıldığında YDA

imgeler en iyi performans veren ton*dönAn Ek olarak, derin öğrenme tabanlı ton-

vii



dönüşümü operatörlerinin ve nesne tespiti yapan derin ağların ortak optimizasyonu

için bir mimari önermekteyiz. Önerdiğimiz mimari, en iyi ton dönüşümü kalite skor-

larını elde ederken, nesne tespiti performansında da en başarılı ton-dönüşümü ile ya-

rışır skor elde edebilmektedir.

Anahtar Kelimeler: Nesne Tespiti, Yüksek Dinamik Aralık, Düşük Dinamik Aralık,

Ton-dönüşümü, Üretici Çekişmeli Ağlar
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

(a) LDR image.

(b) Tone-mapped HDR image.

Figure 1.1: (a) LDR images make it difficult for detection of objects (shown in blue

boxes) in adverse illumination conditions e.g. in tunnels. (b) This can be allevi-

ated using HDR images or tone-mapped LDR images. Blue: detected objects. Red:

Missed objects. (Input image: from the “tunnel video clip” of the EU NEVEx Project.

Tone-mapping: Durand et al. [4])

One of most-studied problems in computer vision is object detection. It occupies a

central spot in the community’s interest and has seen significant amount of progress in

the recent years. This progress has been mostly due to the realization that the artificial

neural networks (ANNs), and Convolutional Neural Networks (CNNs) in particular,

can solve object detection and other relevant tasks better than hand-crafted methods

1



given enough computing power and data [9].

One of the key applications of object detection algorithms is autonomous driving. In

autonomous driving, a vehicle needs to be able to locate and classify every object

around it, through the images coming from its sensors/cameras, then plan its move-

ment in real time in a robust way [10]. This heavily depends on how good and robust

the performance of perception (incl. object detection) is.

A robust object detection algorithm should be able to preserve its accuracy in chal-

lenging environments, such as different weather conditions (rainy, foggy) or adverse

lighting. Especially, lighting conditions such as direct sunlight hitting the sensor, or

just before the exit of a dark tunnel makes the detection task much more challeng-

ing, as can be seen in Figure 1.1. In such scenarios, a camera’s ability to capture the

lightest and brightest areas in a scene without losing any detail, i.e. the the dynamic

range of the camera, makes a significant difference [11]. The problem usually arises

from the fact that cameras with low dynamic range (LDR) struggle with such condi-

tions, whereas a human can quickly adapt to different brightness and perceive objects

in both dark and bright areas in the same scene thanks to the adaptation and wider

dynamic range capabilities of the human eye [12].

Modern cameras with high dynamic range (HDR) capabilities can also capture the

details in a scene with extremely bright and quite dark regions. Although scenario

is a crucial issue, utilization of HDR cameras for challenging lighting conditions in

object detection, and more importantly in autonomous driving, has not been studied

extensively.

To this end, in this thesis, the following research problems are studied:

• Do deep object detectors perform better with LDR or HDR images?

• Which tone-mapping operators are more suitable for object detectors?

• Can we perform tone mapping in such a way that the performance of an object

detector is maximized, while simultaneously maintaining a perceptual quality

for the tone-mapped images?
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1.2 Contributions and Novelties

In this thesis, we propose the following main contributions:

• A comparative analysis of HDR, standard LDR and tone-mapped LDR images

in object detection. Our analysis reveals that, while raw HDR performs slightly

worse on the average compared to standard LDR and tone-mapped LDR. We

also observe that HDR needs pre-processing operations such as normalization

and gamma correction before using with modern object detection networks to

achieve similar performance to the best performing tone-mapped LDR images.

Finally, we observe that when the detection network is pre-trained with LDR

images before HDR training, the gap in detection performance between HDR

and LDR widens.

• A modified version of the object detection performance metric (mean average

precision) for different illumination conditions (luminance, dynamic range and

entropy) inside object bounding boxes, (similar to the calculation of the perfor-

mance for different object area intervals).

• A novel methodology for training a deep learning-based tone-mapping oper-

ator and an object detection network jointly. We analyse different ways to

combine the feedback from tone-mapping quality and object detection quality

during training (e.g. different weights for each objective). We provide a com-

parative analysis of the proposed methodology against both the hand-crafted

tone-mapping operators and also deep-learning based tone-mapping operators,

in terms of object detection quality and image/HDR quality. By fine-tuning the

contributions from tone-mapping and object detection objective, we are able

to achieve a tone-mapping operator which achieves significantly higher tone-

mapping quality scores and also slightly improves the detection performance.

1.3 The Outline of the Thesis

This thesis is comprised of five chapters.

3



In the first chapter (Introduction), the problem to be addressed and contributions are

declared in brief and simple terms.

In Chapter 2 (Background), required theoretical background is given for the problem

domain, which are HDR imaging and Object detection; and also the existing algo-

rithms for solving these problems, which are generative adversarial networks, object

detection and tone-mapping algorithms.

In the next chapter (Does Wider Dynamic Range Improve Object Detection?), an

analysis of the effect of the dynamic range on object detection performance is pro-

vided.

In Chapter 4 (Joint Optimization of Tone-mapping and Object Detection Algorithms),

a training methodology is introduced for joint optimization of tone-mapping and ob-

ject detection objectives. Additionally, The proposed method is compared against

different methods and baselines.

In the final chapter (Conclusion), the objective of the thesis and the contributions are

summarised.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Generative Adversarial Networks

Generator

Discriminator Fake/Real

G(z)z

x
Real 

Samples

Figure 2.1: Overall architecture of Generative Adversarial Networks.

Generative Adversarial Networks (GANs), originally proposed by [13], are a frame-

work for training deep neural networks for drawing samples from highly complex

distributions (e.g. dog images). They are based on an adversarial min-max game

between two components, namely the discriminator D and the generator G, which

can be seen in Figure 2.1. On one hand, the generator is trained to map a sample

z from an easy-to-sample distribution pz (e.g. Multivariate Gaussian), which is also

called the latent distribution, to the target distribution pdata. On the other hand, the

discriminator is trained to discriminate between the real samples x from pdata and the

samples obtained by the generator.

Although there have been many variations proposed since the invention of the GANs

[14, 15], the original objective function for the each of the components, the generator
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and the discriminator, is as follows:

LGAN(G,D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z))], (2.1)

and the optimal generator is obtained by:

G∗ ← min
G

max
D
LGAN , (2.2)

where the discriminator’s output D(·) defines the probability of the sample being

real. Apart from the novel variations [16, 17], training is traditionally performed

using Stochastic Gradient Descent (SGD), where each of the components is trained

for a single SGD step in an alternating fashion.

There exist well-known problems in the training of GANs, such as vanishing gradi-

ents, mode collapse and general convergence problems due to the instability of the

min-max objective. Vanishing gradient occurs when the discriminator becomes quite

strong, to the point that it cannot provide useful feedback for the generator, which in

turn causes the sizes of updates to the generator tend to zero. On the other hand, mode

collapse occurs when generator learns to output only a single mode of the desired dis-

tribution to fool the discriminator more easily. Although over time the discriminator

learns to discriminate in this single mode, the generator then usually jumps to another

mode. Consequently, the generator ends up looping over the modes of the distribu-

tion.

There are several works addressing the vanishing gradient [14, 13] and the mode

collapse [14, 16] problems by various strategies including novel objectives and reg-

ularization techniques. Additionally, convergence properties and possible remedies

also have been studied extensively since the invention of GANs [18, 19, 20].

2.1.1 Conditional Generative Adversarial Networks

Conditional GAN [21] modifies the original GAN objective in Equation 2.1 by intro-

ducing a new variable on which G and D conditions their mapping. This is achieved

with the following objective:

LCGAN(G,D) = Ex∼pdata(x)[log D(x, y)] + Ez∼pz(z)[log(1−D(G(z, y), y)], (2.3)
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Figure 2.2: Overall architecture of Conditional Generative Adversarial Networks.

where y is the additional variable on which generation and discrimination are condi-

tioned. In practice, one way to integrate the additional variable y is to simply con-

catenate it to the inputs of D and G, namely z and x, respectively [22].

2.1.2 Least Squares Generative Adversarial Networks

Least Squares GAN [15] is one of the solutions proposed as a remedy for the vanish-

ing gradient problem. It is claimed to improve the quality of the generated samples,

while also stabilizing the training process. The objective of Least Squares GAN is

given as follows:

LLSGAN(D) =
1

2
Ex∼pdata(x)[(D(x)− b)2] +

1

2
Ex∼pz(z)[(D(G(z))− a)2]

LLSGAN(G) =
1

2
Ex∼pz(z)[(D(G(z))− c)2],

(2.4)

where x is the input image. Additionally; a, b, and c need to satisfy the conditions

of b − c = 1 and b − a = 2. This is required so that the minimization of Equation

2.4 corresponds to the minimization of Pearson χ2 divergence between pdata+pg and

2pg, where pg denotes the distribution of generated samples output by G.

2.2 Object Detection

Computer vision problems have seen significant improvements over the hand-crafted

methods thanks to deep learning approaches. Object detectors mainly solve two tasks:
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localization and classification [9]. While the former is solved by regressing bounding

box coordinates around the object in the image, the latter is addressed by classifying

(identifying) the category of the localized object. A high-level objective for an object

detection network can be generally defined as follows:

LDet = Lcls(p, p∗) + λLloc(t, t∗), (2.5)

where x is the input image, p∗ and t∗ are the ground-truth category and location of

the target object, Fθ is the detection network parametrized by θ, p and t are category

and the location of the detected object output by Fθ and λ is the weighting parameter

for the localization objective. For the classification objective, the cross entropy loss

is commonly used:

CE(p, p∗) = −
∑
i

p∗i log(pi), (2.6)

where pi’s, which is output by Fθ, are the estimated probabilities for each category,

and p∗i ’s are the ground-truth probabilities. For the localization objective, generally,

smooth L1 is used [23] between the coordinates output by the network t and ground

truth coordinates t∗:

Lloc(t, t∗) =
∑

i∈{x,y,w,h}

smoothL1(ti − t∗i ), (2.7)

where x, y, w and h are the coordinates defining row index, column index, width and

height of the estimated bounding box t and ground truth bounding box t∗, respec-

tively.

Approaches on how to design Fθ using deep networks can be considered under two

categories: namely one-stage and two-stage detection.

2.2.1 Two-stage Object Detection Networks

Two-stage detectors have two distinct parts; one for region (object) proposal gener-

ation and another stage for classification of region proposals into objects as shown

in Figure 2.3. The region proposal stage is generally a convolutional neural network

that first extracts features and using these features, produces coordinates for regions
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Figure 2.3: Overall architecture of Faster R-CNN taken from [5]. Faster R-CNN

consists of a Region Proposal Layer, followed by classification and regression heads.

The Region of Interest Pooling layer extracts the features for a region proposal.

possibly containing objects together with how confident it is that the coordinates con-

tain an object. The second stage aims to classify the proposed regions and find tighter

bounding boxes around the objects.

R-CNN [24], which stands for Region-based Convolutional Neural Networks, is the

seminal work for two-stage detectors. Later, it was extended by Fast R-CNN [25],

Faster R-CNN [5] and with many features ranging from better feature extractors

(ResNet [26], MobileNets [27], HRnet [28]) to design changes (Cascade R-CNN [29],

Feature Pyramids [7] etc.).

2.2.1.1 One-stage Detection Networks

One-stage detectors unify the two stages in a single architecture. Unlike two-stage

detectors that first extract regions then operate on the a narrower set of extracted re-

gions; one stage-detection directly produces the detection output in densely sampled

locations in the image with a single pass. YOLO [30] and SSD [31] were the first

well-known examples of one-stage detectors, with the difference being how the pre-

diction is made on multi-scale features. However, making predictions over densely
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Figure 2.4: Overall architecture of RetinaNet taken from [6]. Backbone (a) is ex-

tended with convolutional feature pyramid [7] (b). It is followed by two subnetworks,

one for classifying anchor boxes (c) and one for regressing from anchor boxes to

object boxes (d).

sampled locations turned out to cause imbalance problems due to the fact that many

locations did not contain objects, which overwhelmed the loss with background sam-

ples. As a solution to this problem, RetinaNet [6], whose architecture is shown in Fig-

ure 2.4, introduced so-called focal loss for the single-stage detectors which is given

by the following formula:

FocalLoss(p, p∗) = −(1− pc)γ log(pc), (2.8)

where pc is the probability for the correct category. This is shown to help reducing

the effect of imbalance problems both in foreground-background and foreground-

foreground classes when γ > 0, which that puts more emphasise on the mis-classified

examples [6].

2.3 High Dynamic Range (HDR) Imaging

Dynamic range, although its definition may vary for different domains, is generally

defined to be the ratio of smallest and largest value that a certain quantity can take

[32]. Particularly, in the imaging domain, luminance is the quantity for which we

calculate the dynamic range.

In order to form an HDR image that captures the full range of luminance values that

exist in a real-life scene, there exist two main approaches [32]. The first approach is

to design sensors that have extended abilities to capture wider dynamic range. In the

second approach, one achieves an HDR image by merging multiple LDR images that
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are captured with different exposure levels [33, 34, 35].

The dynamic range of a captured scene can be calculated as follows:

L = log2(γpeak)− log2(γnoise), (2.9)

where L is called the log exposure range which captures the ratio between the darkest

and brightest regions in a scene.

2.3.1 Tone Mapping Operators

Most monitors do not have the ability to display the range of luminance values in

an HDR image [12]. The purpose of tone-mapping operators (TMOs) is to map the

luminance values of an HDR image into the range of a standard monitor that can only

represent LDR scenes, while also keeping the perceptual information (such as color

and contrast) intact as much as possible [36]. In the rest of this section, two different

approaches for TMOs are explained.

2.3.1.1 Classical Tone Mapping Operators

Classical TMOs rely on hand-crafted algorithms for compressing the dynamic range

in an HDR image. These algorithms can be divided into two categories: global and

local [37]. Global TMOs [38, 39, 40, 41] apply the same mapping to every region of

the image. Local TMOs, however, use adaptive mapping depending on the statistics of

the local neighborhood of a pixel [42, 4, 43, 41, 44]. On top of these broad categories,

other methods [45, 46, 47, 48] have been proposed, mimicking the related aspects of

the human visual system so that the final mapping would be perceptually more natural

[37].

2.3.1.2 Deep Learning-based Tone Mapping Operators

Tone mapping operators have been no exemption from the areas that have benefited

from the success of the deep learning algorithms. In the recent years, several works

have proposed using generative models (most commonly GANs) for learning tone
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mapping from the data [1, 49, 50, 51]. Approaches introduced in these works mostly

rely on the image-to-image translation algorithms that are based on conditional gen-

erative adversarial networks [22]. A baseline formulation of these approaches can be

defined within the conditional GAN framework as follows:

LCGAN(G,D) = Ex∼pdata(x)[log D(x, T (x))] + Ex∼px(data)[log(1−D(x,G(x))],

(2.10)

where x is the HDR image, and T is the classical tone mapping operator that pro-

duces the ground-truth tone-mapped image T (x). G(x) is the image produced by the

generator which tries to mimic the behaviour of the classical tone-mapping operator.

Finally, D tries to discriminate between the images tone-mapped by T and G.

Rana et al. [1] improve the baseline objective given in Equation 2.10 by adding

feature matching loss which penalizes the generator with the discrepancy between

representations of the generated image and the ground-truth image in the intermediate

layers of D:

LFM(G,D) =
∑
i

1

Ni

||D(i)(x, T (x))−D(i)(x,G(x))||i, (2.11)

where index i represents the activations in the ith layer of the D and Ni represents the

number of elements in the ith layer. Furthermore, they add a so-called perceptual loss

which similarly penalizes the discrepancy between the representations of generated

and ground-truth images in the intermediate layers of a pre-trained feature extractor

of an object recognition network as follows:

LPRP (G) =
∑
i

1

Ni

||F (i)
Φ (T (x))− F (i)

Φ (G(x))||i, (2.12)

where index i represents the activations in the ith layer of the pretrained object recog-

nition backbone FΦ (e.g. a VGGNet [52] or ResNet [26]).

In addition to feature matching and perceptual losses, [50] claims further improve-

ments by using the gradient profile loss which measures the similarity between gra-

dient maps of the generated and the ground-truth image:

LGPL =
∑
c

(
1

H
trace(∇G(x)∇T (x)ᵀ) + 1

W
trace(∇G(x)ᵀ∇T (x))

)
, (2.13)

where H and W represents height and width of the sample, (·)ᵀ represents transpose

operation, and c represents the channel index.
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Another approach that diverges from the aforementioned approaches is proposed by

Su et al. [51], introducing a more structured design for the generator architecture

where a global compression curve γ and edge preserving kernels are estimated ex-

plicitly with separate deep networks, instead of learning the parameters of a single

generator that directly outputs the tone-mapped image in a more black-box manner.

2.4 Related Work

In this section, we present studies directly relevant for our work.

2.4.1 Object Detection/Recognition with HDR content

Scientific efforts on object detection/recognition that input HDR images are limited

in the literature. One possible reason is the lack of a general purpose HDR detection

dataset, e.g. at a scale similar to COCO [53] or Pascal VOC [54] datasets, which

provided a significant boost for the deep object detection literature. For this reason,

the few studies that perform object detection/recognition from HDR images use either

a limited number of tone-mapped images [55] or synthetic data [56, 57]. Mukherjee et

al. [55], for example, collect their own dataset and test well-known object detection

networks on tone-mapped images. This study is limited in that the authors do not

use HDR or tone-mapped LDR images for training the network. Instead they use a

network pre-trained on LDR images and then test this network only on tone-mapped

LDR images.

In a more related study, Mukherjee et al. [57] generate an HDR dataset from LDR

images and train their network on the generated HDR dataset. Then they test their

network on real-world HDR images and measure its performance on the subset of the

images where the dynamic range is larger. This study is also limited in that it does

not use real-world images for training the network but only for testing. Furthermore,

the subset they use has limited size and does not consider the analysis of the different

ranges of dynamic range spectrum such as lower or medium dynamic range scenes.

Weiher [56], on the other hand, applies domain adaptation methods to a synthetic

HDR dataset and train a semantic segmentation network on this adapted dataset. They
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test the network with real-world LDR and HDR images to see whether the domain

adaptation improves the performance. Due to the limited size of the synthetic dataset,

they also pretrain the network on the COCO dataset.

2.4.2 Augmenting Downstream Vision Tasks with Generative (Adversarial) Net-

works

In this section we present studies which combine generative adversarial networks with

downstream vision tasks, such as image classification and object detection. Usually,

the approaches either primarily aim to improve the performance in the downstream

task by the help of generative objective, or aim to generate better examples with the

help of the downstream task.

Odena et al. [58] although do not train a separate network for the downstream task,

their approach augments the GAN objective by adding a classification output to the

discriminator. They also condition the generator on the class to be generated. Talebi et

al. [8] propose to learn a image resizer model while also jointly trying to classify the

given image, whose architecture diagram is given in Figure 2.5 leading to a resizing

operation optimized for classification task. They claim to achieve better classification

performance compared to classical resizing operations such as resizing with bilinear

interpolation, while also introducing noise to the resized image which can be seen in

Figure 2.6. Liu et al. [59] uses GANs to generate samples as a data augmentation for

small object detection. The generator in the architecture tries to fool discriminator

while also trying to maximize the detection loss of the detector. Simultaneously,

discriminator tries to discriminate the fake samples and detector tries to detect object

in the fake sample. Similarly, Rashid et al. [60] performs data augmentation with

GANs for skin lesion classification. On a more related study, Vandenhende et al.[61]

designs a three-player GAN for hard example generation, where the additional third

player is a image classifier.

On the other hand, Liang et al. [59] integrates GANs to object detection architecture

in order to boost the performance on small objects by trying to generate represen-

tations of small objects which are similar to that of large objects. Finally, Prakash

et al. [62] propose a GAN-based detection framework where the discriminator tries
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Figure 2.5: Overall architecture of the image resizer model. Figure taken from Talebi

et al. [8].

to discriminate between the detection results coming from original and distorted ver-

sions of the same image. A summary of the methods combining generative tasks with

downstream vision tasks is given in Table 2.1.

Table 2.1: Studies which propose to use generative networks for the augmentation of

the downstream vision tasks.

Method Generation Task Downstream Task Joint Training Adversary

[58] Data Generation Classification X Discriminator

[8] Resizing Classification X -

[60] Data Augmentation Detection X Discriminator

[59] Data Augmentation Detection X Discriminator, Detector

[61] Data Augmentation Classification X Discriminator, Classifier

[63] Feature Enhancement Detection X Discriminator

[62] Detection Detection X Discriminator
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Figure 2.6: Sample images produced by the original resizer and the resizer. Figure

taken from Talebi et al. [8].
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CHAPTER 3

DOES HIGHER DYNAMIC RANGE IMPROVE OBJECT DETECTION?

In this chapter, we propose and investigate using high-dynamic range (HDR) images

for better object detection in autonomous driving systems. To be specific, we present

and analyze the following approaches for integrating HDR information into object

detection:

• Directly using the LDR image obtained by the camera as input to the existing

object detectors.

• Using the HDR image (either reconstructed from multiple LDR images with

different exposures or captured by an HDR camera) as input to existing object

detectors.

• Using the tone-mapped LDR image (tone-mapped by commonly used tone-

mapping operators in the literature) from HDR images as input to existing ob-

ject detectors.

Our Contributions and Main Results. Existing studies analyzing the different ways

HDR images can be used for object detection are limited. Moreover, to the best of our

knowledge, there is no study training object detection networks with real-world HDR

images from scratch and comparing it with LDR images in a fair way. Our contribu-

tion is to provide a systematic and fair analysis on using LDR, HDR and tone-mapped

LDR images for object detection in autonomous driving systems. Additionally, we

introduce novel performance measures for analyzing the performance of detectors for

different illumination conditions.

Our results argue that, tone-mapped HDR images on the average produce better de-
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tection results. Surprisingly, using raw HDR images directly without tone-mapping,

however, shows inferior performance on average, compared tone-mapped LDR im-

ages. Furthermore, not every tone-mapping operator (TMO) is able to bring this

performance improvement over LDR or raw HDR images. To find out its reason, we

analyse and compare each of these approaches by the proposed evaluation categories

based on the dynamic range of the object bounding boxes and number of instances in

each class.

To test the hypothesis that HDR image content can help to improve object detection

accuracy in autonomous driving settings, we train our object detection network with

standard LDR images, tone-mapped LDR images and real-world HDR images, sepa-

rately and from scratch, as illustrated in Figure 3.1.

HDR 
Dataset

LDR
Detection 
Network

LDR
Detection 
Network

HDR
Detection 
Network

LDR
Detection 
Network

Standard LDR 
(Optimal Exposure)

Local
Tone-mapping

Global
Tone-mapping

Detected 
Objects

Detected 
Objects

Detected 
Objects

Detected 
Objects

LDR (std)

Local 
TMO

Global 
TMO

HDR

Figure 3.1: The different methods we have analyzed for object detection with LDR

and HDR images.

3.1 Methodology

In this section, we describe the methods that we have analyzed and the dataset that

we used for evaluating the methods.
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3.1.1 Tone-mapping Operators and the Compared Approaches

Tone-mapping operators (TMOs) try to project high-dimensional HDR content into

LDR images while preserving the details and color appearance of the original content.

For our paper, we have chosen widely used local and global TMOs and compared

them with standard LDR and HDR images, namely (see also Figure 3.1):

(i) Standard LDR: As the baseline, we take the “standard” LDR images as input to

the object detection network. However, since this was not available in the Cityscapes

dataset, we used the method of optimal exposure compression proposed by [64] to

achieve the best exposed LDR image from the HDR one.

(ii) HDR:

• HDR: We directly provided the 16-bit HDR images of the CityScapes dataset

as input to the detection network.

• HDR with Gamma: Gamma correction with γ = 2.2 is performed on the HDR

images.

(iii) LDR with global tone-mapping:

• Reinhard: The widely-used photographic tone mapping method by Reinhard et

al. [41] in global mode.

• Logarithmic compression: Logarithmic compression on the HDR images – this

is provided by the CityScapes dataset.

(iv) LDR with local tone-mapping:

• Reinhard: The tone mapping method by Reinhard et al. [41] in local mode.

• Durand: The tone mapping method by Durand et al. [4]. Target contrast is set

to 4. For the rest of the parameters, default values in the PFSTools [65] are

used.
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• Mantiuk: The tone mapping method by Mantiuk et al. [43]. Scaling factor

is set to 0.7 and saturation correction is set to 1.0, as used in the OpenCV

implementation [66].

• Fattal: The tone mapping method by Fattal et al. [42]. All parameters are

default parameters provided by PFSTools [65].

3.1.2 Object Detection Network

In all experiments, we use Faster R-CNN [23] as our detector, as it is the seminal

work for two stage detectors, providing a good baseline performance without bells

and whistles. We follow the general architecture with backbone Resnet-50 and feature

pyramid networks [7] as commonly performed in the literature [7, 6, 67].

3.1.3 Dataset

Being the only readily available dataset with HDR images for autonomous driving,

we use the CityScapes dataset [68] in this paper. CityScapes provides 16-bit HDR im-

ages and the corresponding LDR images obtained by logarithmic compression. The

dataset contains 30 object categories, 8 with instance segmentation labels (namely;

car, person, bicycle, rider, motorcycle, truck, bus, and train) and 2975 training, 500

validation and 1525 testing images. The dataset does not include bounding boxes for

the objects. We used an existing tool for converting instance segmentation masks to

object bounding boxes available in the mmdetection toolbox [69]. Since we need the

ground-truth labels for extracting the bounding box information, we are unable to use

the actual test set for CityScapes since the ground-truth is not publicly available. In-

stead, we use the validation set as the test set (500 images), and split the training set

into training (2625 images) and validation sets (350 images).
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3.2 Experiments and Results

3.2.1 Implementation and training details

To eliminate any possibility of bias, we preferred to train Faster-RCNN from scratch

on CityScapes in all experiments, instead of using a detector pretrained on LDR im-

ages. We used a similar training configuration for to the ones used in [69, 70] but

slightly adjusted for training from scratch. We also tuned the learning rate for each

input type. As the optimizer, we used Stochastic Gradient Descent (SGD), which is

decreased by a factor of 10 at epoch 88. We also employed linear warm-up with ratio

0.1 at the beginning for 500 iterations. The networks were trained for 104 epochs on

a single GPU with a batch size of 4. We also reduced the size of the images by half

while keeping the ratio intact.

3.2.2 Evaluation measures

Average Precision (AP). We use AP as our evaluation measure, as it is commonly

used in the object detection benchmarks [53, 54]. AP is effectively a measure of the

area under the precision-recall curve and AP@0.5 is calculated with 0.50 intersection-

over-union (IoU) threshold. We also use the COCO-style mAP [53], which averages

AP over 10 IoU thresholds and classes.

AP for different illumination categories. To investigate scenarios where HDR or

LDR might be advantageous, we calculate AP for objects (i.e. their bounding boxes)

separately for different illumination categories. For this, we use

• luminance, which is average of the pixels in the box after converting to gray-

scale, mAPL-LUM for low luminance (0-5 th percentile), mAPL-M-LUM for low-to-

medium luminance (5-50th percentile), mAPM-H-LUM for medium-to-high lumi-

nance (50-95th percentile), and mAPH-LUM for high luminance (95-100th per-

centile).

• dynamic range (DR) [71], which is the logarithm of the ratio of maximum lu-

minance to the minimum luminance for the pixels in the box, mAPL-DR for low
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DR (0-5th percentile), mAPL-M-DR for low-to-medium DR (5-50th percentile),

mAPM-H-DR for medium-to-high DR (50-95th percentile), and mAPH-DR for high

DR (95-100th percentile).

• entropy, which is the entropy of the distribution derived from the luminance

values of the pixels in the box, mAPL-ENT for low entropy (0-5th percentile),

mAPL-M-ENT for low-to-medium entropy (5-50th percentile), mAPM-H-ENT for

medium-to-high entropy (50-95th percentile), and mAPH-ENT for high entropy

(95-100th percentile).

3.2.3 Experiments

On the CityScapes dataset (see Section 3.1.3), we conduct the following experiments.

Table 3.1: Overall performance (mAP scores) for the methods described in Section

3.1.1, where the learning rate is tuned for each method separately.

Method Learning-rate AP@0.5 mAP

Std. LDR 4e-3 55.1 33.1

Local

TMO

Reinhard [41] 2e-3 55.7 33.2

Durand [4] 2e-3 55.7 32.9

Mantiuk [43] 4e-3 55.4 32.7

Fattal [42] 2e-3 53.9 32.1

Global

TMO

Log comp. 2e-3 53.7 31.9

Reinhard [41] 2e-3 55.0 32.7

HDR with Gamma 2e-3 56.1 33.3

HDR 8e-3 55.2 32.9

Experiment 1: Overall Performance. Table 3.1 shows the scores calculated over all

classes. Overall, we observe that HDR with gamma correction performs slightly bet-

ter than its closest counterparts, yet we do not observe a strong benefit of using HDR

content either in the form of HDR or tone-mapped LDR when compared against the

Std. LDR. Additionally, applying gamma correction seems to improve the perfor-

mance of the HDR images.
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Experiment 2: Performance under different illumination categories. This exper-

iment is designed to reveal possible advantages of HDR content, which is absent in

Table 3.1: However, we do not observe such advantage in favor of HDR in our exper-

iments. We analyse the performance of different methods on different illumination

catefories as defined in Section 3.2.2

• dynamic range. Figure 3.2 compares methods under four intervals of dynamic

range. However, we do not observe an interval where HDR is advantageous.

Nonetheless, some methods including HDR with Gamma and Standard LDR

seem to perform slightly better than the rest in high dynamic range areas.

• luminance. Figure 3.3 compares methods under four intervals of average lumi-

nance. Similarly, we do not observe an interval where HDR is advantageous.

Additionally, Standard LDR significantly stands out in low luminance areas.

• entropy. Figure 3.4 compares methods under four intervals of average lumi-

nance. Similarly, we do not observe an interval where HDR is advantageous,

and all methods perform similary wihtout any significant visible gap that is

observed in low luminance areas.

Experiment 3: Performance with respect to object size. Object size can be an im-

portant factor on the performance of detectors under different illumination conditions

because it might be that, e.g., objects closer to the camera appear bigger and they may

have higher dynamic range. For this analysis, we extend the original object size in-

tervals in COCO-style mAP calculation [53] from three categories to nine categories.

The mAP scores in Figure 3.5 suggest an increase in performance with larger object

sizes as expected. However, we do not observe a notable difference between tone-

mapped LDR images and HDR images. This observation is supported by Figure 3.6

which plots the distribution of objects with respect to their sizes and dynamic ranges.

Experiment 4: Does HDR need more data? 16-bit HDR naturally spans a larger

space of intensity values and therefore, we hypothesize that the HDR-trained detec-

tors might require more data to obtain the same level of performance as LDR images.

To test this hypothesis, we consider training LDR and HDR networks with different
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Figure 3.2: Overall performance (mAP scores) under different dynamic range inter-

vals for the methods described in Section 3.1.1. All models are evaluated on the

validation set.

Figure 3.3: Overall performance (mAP scores) under different luminance intervals for

the methods described in Section 3.1.1. All models are evaluated on the validation

set.

amounts of data. In Figure 3.7, we see that, indeed, an HDR network provides a

comparable level of performance with an LDR network with approx. 10% more data.
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Figure 3.4: Overall performance (mAP scores) under different entropy intervals for

the methods described in Section 3.1.1. All models are evaluated on the validation

set.
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Figure 3.5: Overall performance (mAP scores) for different object size intervals for

the methods described in Section 3.1.1.

Qualitative Results. We provide visual detection results in Figure 3.8 from a chal-

lenging scene from the CityScapes dataset. In this example scene, we see that HDR

content helps detecting the cars further away in the road in an over-exposed region,

otherwise undetectable in the LDR content. However, apart from the ones in Figure
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Figure 3.6: The distribution of object bounding box size (log. area) and dynamic

range for all object classes.

Figure 3.7: Providing less data for Std. LDR and HDR. X-axis Percentages (X%)

indicate the ratio of the training set used in the experiment. Y-axis indicate the detec-

tions score (mAP).
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3.8, we were not able find similar scenes where HDR images became advantageous

to use. Thus, given the dataset, we can not confidently conclude that HDR should be

used instead of LDR for certain scenarios.

(a) Std. LDR (Optim. Exp.) (b) Gamma Correction (c) Logarithmic Compression

(d) Fattal (e) Durand (f) Mantiuk

(g) Reinhard (Global) (h) Reinhard (Local) (i) 16-bit HDR

Figure 3.8: Detection results. Missed objects are shown in red.

3.3 Discussion

Based on our experiments, we make the following observations:
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1. Overall, HDR images provide worse performance than LDR images.

The overall analysis in Experiment 1 (Table 3.1) suggests that the improvement

obtained by tone-mapped LDR or HDR images is rather minimal.

2. Illumination conditions of the objects in a scene does not seem to make a dif-

ference between HDR images and LDR images

Contrary to our expectation that HDR content can help significantly with chal-

lenging high dynamic range regions inside a given image, we observe that HDR

image performs similarly to the Std. LDR or tone-mapped LDR images when

analyzed within different dynamic range intervals for regions containing ob-

jects. We attribute this to the lack of challening cases in the dataset. Addi-

tionally, applying gamma correction brings improvement over the using HDR

images directly.

3. A detector using HDR images generally requires more data.

The reason is that HDR images span a wider range of intensity values and

therefore, as the input space is wider, a detector trained on HDR images requires

more samples. We provide an experimental evidence for this hypothesis in

Figure 3.7 where we compare a HDR-trained detector with an LDR-trained

detector using different amount of training data.
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CHAPTER 4

JOINT OPTIMIZATION OF TONE MAPPING AND OBJECT DETECTION

ALGORITHMS

Due to the advances in deep generative modeling, multiple studies have used GANs

to design TMOs, as discussed in Chapter 2. These methods use a discriminator to

differentiate between LDR images obtained by a classical TMO and the LDR images

obtained by a generator. Although such approaches have produced remarkable tone-

mapping results, they rely on the classical tone-mapped LDR images while training

the generator, leading to a TMO that combines the aspects of the different classical

TMOs depending on the image.

Classical TMOs, designed by hand, do not consider the performance in downstream

vision problems, such as object detection or image classification. One natural ques-

tion arising from this situation is whether one can train this framework with additional

objectives that can improve the performance in different downstream vision tasks, in-

stead of only focusing on the making the images look as similar to the classically

tone-mapped images as possible. Hence, in this chapter, we propose to jointly opti-

mize GAN-based TMOs and Deep Object Detection Networks.

4.1 Methodology

4.1.1 Overview

An overview of our approach is depicted in Figure 4.1. As illustrated in the figure,

we essentially have a GAN-based tone-mapping method that is augmented by the

supervision signal of a detector. This is achieved by making the generator to generate

29



Generator

Detector

HDR

Fake
LDR

Real
LDR

HDR

Real
LDR

Fake
LDR

HDR

Fake
LDR

Detected 
Objects

Discriminator Fake/Real

Classical 
TMO

Generated 
Image Pipeline

Real Image 
Pipeline

TMO(x)

G(x)

F(G(x))

D(TMO(x)|x) 

D(G(x)|x)

Figure 4.1: Overall architecture diagram for the proposed method that combines ob-

ject detection and tone-mapping objectives.

images such that not only a visual similarity to a classical TMO result is enforced, but

the object detection performance on the generated images are also taken into account.

4.1.2 Details of the Proposed Method

In order to jointly optimize the object detection network and deep learning-based

TMOs, we modify the objective in the conditional least squares GAN-based TMO

framework as follows:

G∗ ← arg min
G,F

min
D
LD + αdetLDet + αnon-det(LG + βLGPL + γLFM), (4.1)

where D, G and F represent discriminator, generator and object detection networks,

respectively; and αdet, β and γ are the weights for the detection loss (classification and

localization combined), gradient profile loss and feature matching loss, respectively.

αnon-det controls the weight for all the losses that are not related to detection directly.

The individual loss terms are defined as follows:

LDet = Ex∼pdata [Lcls(F (G(x)) + λLloc(F (G(x)))], (4.2)

LG =
1

2
Ex∼pdata [(1−D(G(x)|x))2], (4.3)
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LD =
1

2
Ex∼pdata [(D(TMO(x)|x)− 1)2] +

1

2
Ex∼pdata [D(G(x)|x)2], (4.4)

where x and TMO(x) represent the HDR and ground-truth tone-mapped LDR images;

the overall block diagram can be examined in Figure 4.1.

Note on αdet and αnon-det. In order to decouple the effect of detection loss on the

generator and the detector, we apply the αdet in the backward pass in between the

detector and the generator, by scaling the gradients flowing from the detector to the

generator. In this way, we manage not to cause the detector get unnecessarily large

(or small) updates while also providing stronger (or weaker, in case it is needed)

influence on the generator from detection objective. This becomes necessary for αdet

as we update the generator and the detector on the same input simultaneously, whereas

it is not necessary for αnon-det due to alternating updates between the generator and the

discriminator.

4.1.2.1 Architecture Details

HDR LDR

Attention ModuleConvolutional Block Max-Pooling Layer

Multiple Kernel Block Upsampling Block

Figure 4.2: Overall diagram for the proposed generator architecture.
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Generator (G). The proposed generator is a UNet-based [72] generator where up-

sampling convolutions are replaced by bilinear upsampling as suggested by Panetta

et al. [50]. We use leaky ReLU as the activation function and Instance Normalization

[73] for normalizing the activation values. Additionally, we augment the skip con-

nections in the UNet architecture with attention [74]. Each feature map in a single

level of the network is carried across by a separate attention module, where attention

queries Q(i) for layer i are calculated from original image while keys K(i) and values

V (i) are calculated from intermediate feature maps as follows (following the attention

notation from [74]):

Q(i) = AiQ(I
(i)),

K(i) = AiK(G
(i)(I)),

V (i) = AiV (G
(i)(I)),

(4.5)

where i represents layer index for G. AiQ, AiK , AiV are single layer convolutional

networks, and I(i) is the original image downsampled to the spatial size of the feature

map in G(i). The resulting feature maps are calculated as follows [74]:

Attention(Q(i), K(i), V (i)) = softmax

(
Q(i)K(i)>

√
dk

)
V (i), (4.6)

where dk is the normalization constant which corresponds to the dimensionality of

the Q(i) and K(i) [74].

Jiang et al. [75] also use a similar approach, however they use the constant brightness

map of the image as attention weights at all levels, whereas our module learns the at-

tention weights. At the innermost layer of the generator, we also convolve the feature

maps with multiple kernels with different sizes (Multiple Kernel Block); namely 3, 5,

7 and 9, and concatenate the resulting feature maps. To speed up the attention mech-

anism we also make use of the efficient attention mechanism proposed by Shen et al.

[76], which reduces the complexity of the calculation to linear-time and linear-space.

The overall architecture can be seen in Figure 4.2.

Discriminator (D). The discriminator is a standard patch discriminator which has

a 70 × 70 receptive field in the final layer [22]. Similar to the generator, we use

leaky ReLU as the activation function and Instance Normalization for normalizing

the activation values.
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Detector (F ). As the one-stage detector, we use RetinaNet [6], since it is a prominent

model for one stage detectors providing a reasonable starting point among detectors.

We follow the general architecture with backbone Resnet-50 [26] and feature pyramid

networks [7]. As the two stage detector, we use Faster R-CNN [23], similarly using

Resnet-50 [26] and feature pyramid networks [7] for feature extraction.

4.2 Experimental Settings and Details

4.2.1 Tone-mapping Operators and the Compared Approaches

In this chapter, we have selected the following approaches for comparison:

(i) Detection with LDR images:

• LDR: We extract the the middle exposure from each HDR image to obtain LDR

images similar to Mukherjee et al. [57].

• Std. LDR: Additionally, we take the optimal exposure LDR images as input

to the object detection network. We use the method of optimal exposure com-

pression proposed by [64] to achieve the best exposed LDR image from the

HDR one, as if the scene is captured by a virtual LDR camera with an optimal

exposure set-up.

(ii) Detection with HDR images:

• HDR: We directly provide the HDR images.

• HDR with Gamma: Before feeding the images to the network; firstly, we ap-

ply min-max normalization to each image by subtracting its minimum value

and dividing by its pixel range, secondly we apply gamma encoding (correc-

tion), and finally we scale it to the range of pixel values of an LDR image

(which is [0, 255]).

(iii) Detection with LDR images obtained by the classical tone-mapping opera-

tors:
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• Ashikhmin: The tone mapping method by Ashikhmin et al. [77].

• Reinhard: The tone mapping method by Reinhard et al. [41] in local mode.

• Durand: The tone mapping method by Durand et al. [4]. Target contrast is

set to 4. For the rest of the parameters, default values in the PFSTools [65] are

used.

• Mantiuk: The tone mapping method by Mantiuk et al. [43]. Scaling factor

is set to 0.7 and saturation correction is set to 1.0, as used in the OpenCV

implementation [66].

• Fattal: The tone mapping method by Fattal et al. [42]. All parameters are

default parameters provided by PFSTools [65].

• Best TMQI per picture: For this method, we choose the best performing tone-

mapping operator in TMQI metric for each picture in the dataset.

(iv) Detection with learning-based tone-mapping:

• TMO-GAN: Our proposed architecture, without jointly training with an object

detector.

• TMO-GAN + Detector: Proposed architecture with the detector, which is

jointly trained with TMO-GAN. This method has two versions in terms of ini-

tialization of the each component:

(i) COCO version. Detector is pre-trained on MS COCO dataset and TMO-

GAN is randomly initialized,

(ii) OOD version. TMO-GAN is pre-trained on OOD (out-of-distribution)

dataset without the detector, and the detector is pre-trained disjointly on the

outputs of the trained and frozen TMO-GAN on top of the MS COCO pre-

training.

Additionally, in terms of the detector training, we train the detector either (i)

only on the generated images or (ii) on real ground-truth images together with

generated ones, to ensure the stability of the detector.
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4.2.2 Dataset

For all the experiments in this section, we use the OOD dataset [55] which consists of

HDR images with annotated labels for 20 classes from the Pascal VOC [54] dataset.

We filter and divide the dataset such that we have 1491 training and 380 test images.

Additionally we downsize the dataset into 1024 × 576 resolution before performing

the experiments. We form our ground truth LDR images by selecting the best classical

TMO among the given ones in Section 4.2.1 for each picture based on the TMQI

(Tone-mapping Quality Index) metric [2].

4.2.3 Implementation and training details

Initializations. We initialize all RetinaNet architectures at least from COCO pre-

trained versions. For joint training with TMO-GAN, we employ different initializa-

tion for the detector and TMO-GAN as mentioned in Section 4.2.1.

Data Augmentation. We perform the same data augmentation techniques for all

experiments. We apply random cropping with minimum of 0.3 scaling factor, so

that the crop contains at least 1 ground truth object bounding box with minimum of

0.3 Intersection-over-Union with the original box. Furthermore, we apply random

horizontal flipping with a probability of 0.5.

4.2.3.1 Dataset Tone-mapped by Classical TMOs + Detector (disjoint training)

For the detectors we use Stochastic Gradient Descent (SGD) with a learning rate of

0.001, which is decreased by a factor of 10 at epoch 7. We also employ linear warm-

up with ratio 0.1 at the beginning for 500 iterations. The networks are trained for 14

epochs on a single GPU with a batch size of 8. We also reduce the size of the images

to 1024× 576.

35



4.2.3.2 Dataset Tone-mapped by TMO-GAN + Detector (disjoint training)

We use Adam [78] with a learning rate of 0.0002 for generator and discriminator. The

networks are trained for 20 epochs on a single GPU with a batch size of 8. After 20

epochs, the learning rate is decayed to 0 linearly until 50th epoch. We also reduce the

size of the images to 1024 width and 576 height. β is set to 0.8 and γ is set to 10. The

detector is trained in an identical way to Section 4.2.3.1.

4.2.3.3 Dataset Tone-mapped by TMO-GAN + Detector (joint training)

• COCO version. We use Adam [78] with a learning rate of 0.0002 for the

generator and the discriminator. They are trained for 20 epochs on a single

GPU with a batch size of 8. After 20 epochs, the learning rate is decayed to

0 linearly until 50th epoch. Simultaneously, using SGD, the learning rate for

detector starts as 0 and linearly increases to 0.001 for 5 epochs. Then, it is

trained for 25 epochs. Finally the learning rate is decayed by a factor of 10 and

trained for another 5 epochs.

• OOD version. We finetune the pre-trained networks using Adam [78] with a

learning rate of 0.00001 for the generator, the discriminator and the detector.

They are trained for 20 epochs on a single GPU with a batch size of 8.

During experiment, β is set to 0.8 whereas γ is set to 10, for both versions. Similarly,

we reduced the size of the images to 1024× 576, for both versions. αdet and αnon−det

are set to 1 for all of the experiments except for the one where we provide different

weights for different objectives using αdet and αnon−det, and analyse the results.

4.2.4 Evaluation measures

We use the same evaluation measures, namely mAP, as the previous chapter (Section

3.2.2). For evaluation of tone-mapping quality, we use the Tone-mapping Quality

Index (TMQI) as our measure [2], which outputs three different scores: (i) TMQI-Q

giving the overall quality score, (ii) TMQI-N giving the naturalness score of the tone-
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mapped image, and (iii) TMQI-S giving the structural fidelity with respect to the

original HDR image. For additional quality metrics, we use the probability of con-

trast loss and contrast amplification outputs of the contrast invariant visual difference

predictor (CIVDM) [3]. However, as the output probabilities are given for each pixel

in the image, we take the pixel with the maximum probability to reduce the score to

a scalar value, which is also performed by Mantiuk et al. [79] for probability maps.

We denote the maximum probability of visible contrast loss as CLmax and maximum

probability of visible contrast amplification as CAmax.

4.3 Experiments and Results

4.3.1 Experiment 1: TMO-GAN - TMO Quality

In this experiment, we provide an ablation study and comparative analysis for the

TMO-GAN. We train the TMO-GAN without the detector using the following op-

tional additions:

• TMO-GAN: The proposed architecture without attention modules.

• TMO-GAN + hard-tanh: Hard-tanh function is applied to the output of the

generator to confine its range to [0, 1]:

hard-tanh(x) =


x, if − 1 ≤ x ≤ 1,

1, if x > 1,

−1, if x < −1,

• TMO-GAN + attention: Attention module described in Figure 4.2 is added to

the generator.

• TMO-GAN + skip-image: A scaled version of the input image (0.8 is used in

the experiments) is added to the output of the generator.

In Table 4.1, we observe that, when all additions (hard-tanh, attention, and skip-

image) are integrated to the generator, TMO-GAN outperforms all other single TMOs

in terms of overall quality (TMQI-Q), while it gets very close to the the dataset formed
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Table 4.1: Tone-mapping quality results for multiple TMOs, comparing hand-crafted

TMOs with ours and other deep-learning based approach proposed by Rana et al. [1].

TMQI-Q, TMQI-N and TMQI-S give the scores for overall quality, naturalness and

structural fidelity, respectively [2]. CLmax and CAmax columns indicate the prob-

abilities of contrast loss and contrast amplification, proposed by Aydin et al. [3].

hard-tanh column indicates whether hard-tanh is applied to the output of the genera-

tor. Attention column indicates whether attention mechanism defined in Figure 4.2 is

included. skip-image column indicates whether original image is added to the output

of the generated image. Best scores are given in bold font, second best scores are

underlined.

Method hard-tanh attention skip-image
TMQI ↑

CLmax ↓ CAmax ↓
Q N S

LDR - - - 76.1 79.8 4.4 0.99 0.54

Std. LDR - - - 89.7 90.9 53.1 0.88 0.51

Ashikhmin - - - 88.4 88.8 47.9 0.69 0.73

Durand - - - 89.0 92.2 45.5 0.66 0.63

Fattal - - - 88.8 92.2 45.4 0.85 0.72

Mantiuk - - - 86.5 91.6 34.2 0.46 0.60

Reinhard - - - 89.6 85.9 71.5 0.76 0.61

Best TMQI per pict. - - - 94.9 91.9 80.3 0.78 0.69

DeepTMO [1] - - - 93.4 89.8 74.0 0.80 0.83

TMO-GAN X X X 91.2 72.2 78.1 0.78 0.91

TMO-GAN X X X 94.2 90.5 78.3 0.85 0.80

TMO-GAN X X X 94.2 90.7 78.1 0.82 0.79

TMO-GAN X X X 94.4 90.8 78.8 0.81 0.84

TMO-GAN X X X 94.6 90.9 79.7 0.81 0.83

by best TMQI per-picture strategy. It should be noted that it is not possible to try all

TMO algorithms and determine the best algorithm for each image in any practical

scenario; hence this case is an oracle. Additionally, we see that TMO-GAN falls

behind for other TMO evaluation metrics CLmax and CAmax. Expectedly, it performs

similarly to Best TMQI per picture method as this method is the ground-truth for the

training.

We also provide qualitative results in Figure 4.3. Firstly, we can observe that vanilla

38



TMO-GAN in (a) produces artefacts without the hard-tanh. Adding the hard-tanh,

we observe that the output in (b) becomes quite similar to the ground-truth in (d).

Moreover, when we use activation, attention and skip-image all together, we see that

the generator improves over the ground truth making the very bright areas on the

table more visible. However, other TMOs such as Durand and Mantiuk are also able

to capture the details on the table, while providing darker images overall.

(a) TMO-GAN (b) TMO-GAN + hard-tanh (c) TMO-GAN + hard-tanh + attention

+ skip-image

(d) Best TMQI (Reinhard) (e) Durand (f) Mantiuk

(g) Std. LDR (optimal exposure) (h) Ashikhmin (i) Fattal

Figure 4.3: Qualitative tone-mapping results for different methods.

4.3.2 Experiment 2: TMO-GAN + Detector, Joint Training

In these experiments, we jointly train TMO-GAN with the detector. We perform the

same experiments with RetinaNet and Faster-RCNN. Tables 4.2 and 4.3 compares the

detection performance and TMO quality of the proposed architecture against classical

methods and disjoint training. Based on the result in Tables 4.2 and 4.3, we observe
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that,

• TMO-GAN + RetinaNet OOD achieves the best detection scores while being

able to preserve the high quality tone-mapping in terms of TMQI compared to

TMO-GAN (vanilla). However, the detection performance is not significantly

higher than the best classical method (Mantiuk).

• Training on real images on top of generated images simultaneously improves

the performance. We hypothesise that this make the training of the detector

more stable in the beginning as the generated images have worse quality in

the initial phase of the training. Additionally, using a pretrained TMO-GAN

together with the pre-trained detector can also further improve the detection

performance.

• Faster-RCNN performs worse compared to RetinaNet in the OOD dataset, for

both classical methods and proposed joint training. Additionally, unlike Reti-

naNet case, joint training does not improve over the classical methods and dis-

joint training.

We also compare our joint training methodolgy to other methods under three cate-

gories of illumination similar to Chapter 3 (see Section 3.2.2 for the definitions).

• dynamic range. Figures 4.4 and 4.7 shows the detection performance under

four intervals of dynamic range. We do not observe strong agreement between

RetinaNet nad Faster-RCNN in low dynamic range areas. However they agree

on high dynamic range areas. Our architectures (TMO-GAN + RetinaNet and

TMO-GAN + Faster-RCNN) performs similarly to other TMOs. Finally, unlike

other evaluation categories (entropy and luminance), dynamic-range brings out

the most difference in edge cases: in areas with lowest dynamic-range, the

methods seems to differ the most. Particularly, HDR without normalization and

gamma correction performs worse in low dynamic range areas in both figures.

• luminance. Figures 4.5 and 4.7 compares methods under four intervals of av-

erage luminance. Contrary to our intuitions, HDR performs worse in under-

exposed low luminance areas. Nevertheless, applying normalization and gamma
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correction makes HDR images the best performer for low luminance regions.

Additionally, our architectures (TMO-GAN + RetinaNet and TMO-GAN +

Faster-RCNN) performs similarly to other TMOs.

• entropy. Figures 4.6 and 4.9 compares methods under four intervals of entropy

values. Similarly, we see an inferior performance with HDR images in low

entropy areas when no normalization or gamma correction is done. Our archi-

tectures (TMO-GAN + RetinaNet and TMO-GAN + Faster-RCNN) performs

similarly to other TMOs.

Table 4.2: Overall performance (mAP scores for detection, and TMQI and CIVDM

for TMO quality) for the methods described in Section 4.2.1, where the detector is

chosen as RetinaNet. The best are shown in bold. RT: RetinaNet.

TMO Joint Train. Train on Real mAP ↑ TMQI-Q ↑ CLmax ↓ CAmax ↓

HDR - - 26.3 - - -

HDR with Gamma - - 29.8 - - -

LDR - - 28.2 76.1 0.99 0.54

Std. LDR - - 31.0 88.9 0.88 0.51

Durand - - 30.6 89.0 0.66 0.63

Mantiuk - - 31.3 86.5 0.46 0.60

Reinhard - - 29.6 89.6 0.76 0.61

Fattal - - 29.8 88.8 0.85 0.72

Ashikhmin - - 30.1 88.4 0.69 0.73

Best TMO per Pict. - - 30.0 94.9 0.78 0.69

TMO-GAN X - 30.0 94.6 0.81 0.83

TMO-GAN+RT COCO X X 29.0 94.1 0.85 0.85

TMO-GAN+RT COCO X X 30.2 94.2 0.83 0.84

TMO-GAN+RT OOD X X 31.6 94.5 0.82 0.83

4.3.3 Experiment 3: The effect of αdet and αnon-det

In these experiments, we try a range of values for the weights applied on the two

different objectives. We chose RetinaNet for the detector component, and trained it

on synthetic and real images together. We also equipped TMO-GAN with all addi-

tional features: hard-tanh, attention and skip-image, and jointly trained the overall
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Table 4.3: Overall performance (mAP scores for detection, and TMQI and CIVDM

for TMO quality) for the methods described in Section 4.2.1, where the detector is

chosen as Faster R-CNN. The best are shown in bold. FCNN: Faster R-CNN.

TMO Joint Train. Train on Real mAP ↑ TMQI-Q ↑ CLmax ↓ CAmax ↓

HDR - - 23.5 - - -

HDR with Gamma - - 27.7 - - -

LDR - - 24.7 76.1 0.99 0.54

Std. LDR - - 28.3 88.9 0.88 0.51

Durand - - 28.8 89.0 0.66 0.63

Mantiuk - - 29.1 86.5 0.46 0.60

Reinhard - - 28.1 89.6 0.76 0.61

Fattal - - 29.5 88.8 0.85 0.72

Ashikhmin - - 28.9 88.4 0.69 0.73

Best TMO per Pict. - - 29.3 94.9 0.78 0.69

TMO-GAN X - 28.6 94.6 0.81 0.83

TMO-GAN+FCNN COCO X X 26.3 94.2 0.94 0.81

TMO-GAN+FCNN COCO X X 27.3 94.0 0.87 0.84

TMO-GAN+FCNN OOD X X 27.7 94.3 0.81 0.83

Figure 4.4: Overall performance (mAP scores) for RetinaNet under different dynamic

range intervals for the methods described in Section 4.2.1.
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Figure 4.5: Overall performance (mAP scores) for RetinaNet under different lumi-

nance intervals for the methods described in Section 4.2.1.

Figure 4.6: Overall performance (mAP scores) for RetinaNet under different dynamic

range intervals for the methods described in Section 4.2.1.

architecture similar to Experiment 2.

As it can be examined from Table 4.4, larger influence of the detector on the generator

does not improve the results, producing close score to the baseline. However, after
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Figure 4.7: Overall performance (mAP scores) for Faster-RCNN under different dy-

namic range intervals for the methods described in Section 4.2.1.

Figure 4.8: Overall performance (mAP scores) for Faster-RCNN under different lu-

minance intervals for the methods described in Section 4.2.1.

fine-tuning the contribution from the detector, we achieve a peak detection perfor-

mance when αdet ∼ 1.2. Furthermore, decreasing the influence of the discriminator

related objectives (Equation 4.1) via αnon-det deteriorates the detection performance

significantly.
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Figure 4.9: Overall performance (mAP scores) for Faster-RCNN under different en-

tropy intervals for the methods described in Section 4.2.1.

4.3.4 Experiment 4: Object-aware Patch Discriminator

In this step, we propose applying different weights for the discriminator feedback for

locations with objects and without objects. As our primary aim is to detect objects,

using this approach, we aim to penalize the generator to produce better images on the

locations containing objects. We produce binary masks which contain 1 if the pixel

belongs to any object, or 0 otherwise. Then, we resize this mask to the output of the

patch discriminator by using nearest neighbor interpolation. Finally we use the mask

to apply increased weights to the locations that contain objects as follows:

LG =
1

w × h
∑
i,j

[λobjMi,jD(I)i,j + (1−Mi,j)D(I)i,j] , (4.7)

where M is resized binary mask; and D is the discriminator; and I is the input image.

i and j are the coordinates of the discriminator output with widthw and height h. λobj ,

on the other hand, designates the weight applied to the locations that contain objects.

For the experiments, we use the same settings as in Experiment 2 that combines TMO-

GAN and RetinaNet.

As shown in Table 4.5, we find that setting λobj = 6 improves the detection scores

significantly, while all other values degrade the overall performance.
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Table 4.4: Overall performance (mAP scores for detection, and TMQI, CIVDM for

TMO quality) for different values of αdet and αnon-det, where the RetinaNet is chosen

as the detector. The best are shown in bold.

TMO αdet αnon-det mAP ↑ TMQI-Q ↑ CLmax ↓ CAmax ↓

HDR with Gamma - - 29.8 - - -

Mantiuk - - 31.3 86.5 0.46 0.60

Best TMO per Pict. - - 30.0 94.9 0.78 0.69

TMO-GAN - - 30.0 94.6 0.81 0.83

TMO-GAN + RetinaNet COCO 0.8 1.0 29.6 94.2 0.84 0.84

TMO-GAN + RetinaNet COCO 1.0 1.0 30.2 94.2 0.83 0.84

TMO-GAN + RetinaNet COCO 1.2 1.0 31.4 94.2 0.81 0.85

TMO-GAN + RetinaNet COCO 1.5 1.0 30.9 94.2 0.85 0.83

TMO-GAN + RetinaNet COCO 2.0 1.0 29.8 94.2 0.90 0.84

TMO-GAN + RetinaNet COCO 4.0 1.0 28.9 94.1 0.81 0.82

TMO-GAN + RetinaNet COCO 6.0 1.0 30.1 94.4 0.86 0.85

TMO-GAN + RetinaNet COCO 8.0 1.0 29.4 94.3 0.83 0.84

TMO-GAN + RetinaNet COCO 1.0 0.8 28.0 93.9 0.91 0.81

TMO-GAN + RetinaNet COCO 1.0 0.6 28.4 93.3 0.91 0.85

TMO-GAN + RetinaNet COCO 1.0 0.4 27.9 93.3 0.94 0.83

TMO-GAN + RetinaNet COCO 1.0 0.2 28.3 92.1 0.91 0.82

TMO-GAN + RetinaNet COCO 1.0 0.1 27.3 91.2 0.90 0.81

Table 4.5: Overall performance (mAP scores for detection, and TMQI, CIVDM for

TMO quality) for different values of λobj , where the RetinaNet is chosen as the de-

tector. The best are shown in bold.

TMO λobj mAP ↑ TMQI-Q ↑ CLmax ↓ CAmax ↓

HDR with Gamma - 29.8 - - -

Mantiuk - 31.3 86.5 0.46 0.60

Best TMO per Pict. - 30.0 94.9 0.78 0.69

TMO-GAN + RetinaNet COCO 1.0 30.2 94.2 0.83 0.84

TMO-GAN + RetinaNet COCO 2.0 29.2 94.1 0.79 0.85

TMO-GAN + RetinaNet COCO 4.0 28.8 94.1 0.89 0.84

TMO-GAN + RetinaNet COCO 6.0 31.6 94.2 0.83 0.84

TMO-GAN + RetinaNet COCO 8.0 28.8 93.9 0.88 0.83
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Table 4.6: Performance of the TMO-GAN with and without discriminator, reveal-

ing the improvement achieved with the joint objective for object detection over the

baseline of generator + detector.

TMO mAP ↑ TMQI-Q ↑ CLmax ↓ CAmax ↓

HDR with Gamma 29.8 - - -

Mantiuk 31.3 86.5 0.46 0.60

Best TMO per Pict. 30.0 94.9 0.78 0.69

TMO-GAN 30.0 94.6 0.81 0.83

TMO-GAN + RetinaNet OOD 31.6 94.2 0.83 0.84

TMO-GAN - Discriminator + RetinaNet COCO 28.2 87.3 0.80 0.87

4.3.5 Experiment 5: HDR vs. TMO-GAN without the Discriminator

With joint training, we effectively use a larger network (Generator + Detector) to de-

tect objects. Here, we design an experiment where we can see how much TMO-GAN

+ Detector (Joint Training) improves the detection performance on HDR images over

just using a larger network . In order to achieve this goal, we remove the discrimina-

tor from the architecture and use only the detection loss (equivalent to setting αnon-det

to zero). As we can see from Table 4.6, the baseline network without the discrim-

inator can improve over the HDR. However, it falls behind our joint method which

show the additional improvement provided by the joint training. This result is also

in accordance with the results in Experiments 3 where decreasing αnon-det hurts the

performance as well.

4.3.6 Experiment 6: Detection Performance vs. TMO Quality

In this experiment, we aim to examine the relation between the detection performance

(mAP) and TMO quality metrics (TMQI-Q, CLmax, CAmax). To that end, we plot the

mAP scores against the TMO quality metrics separately in the Figure 4.10, for differ-

ent methods used in this chapter. As can be seen in the figure, TMO quality metrics

show different trends for Classical TMOs and our architectures. Firstly, changes in

detection performance affect our architectures (TMO-GAN and TMO-GAN + Reti-

naNet) much less compared to classical TMOs. This may be due the fact that our
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Figure 4.10: Relation between detection performance (mAP) and TMO quality met-

rics (TMQI-Q, CLmax, CAmax).

architectures try to remain close to the ground truth (Best TMQI per picture dataset)

which keeps the variation between its different configurations less than that of be-

tween classical TMOs. Secondly, when we analyse the classical TMOs in isolation,

we observe that characterics of the correlation between detection performance and

each TMO quality measure differs from one another. This suggests that using a dif-

ferent metric instead of TMQI-Q as the ground-truth image selection when training

the TMO-GAN might yield different and possibly better detection results.
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CHAPTER 5

CONCLUSION

In this thesis, we investigated the use of high dynamic range content for object detec-

tion. For this end, we provided an extensive analysis of the different approaches and

proposed a novel method that jointly trains a tone-mapping operator and a detector.

Firstly, we consider training object detectors with tone-mapped HDR images. We sys-

tematically evaluated the performances of deep object detectors trained with (i) LDR

images, (ii) HDR images and (iii) tone-mapped HDR images for scenes with differ-

ent illuminations, different object categories, and objects of different sizes. Secondly,

we try to improve existing GAN-based tone-mapping operators by introducing a de-

tection network into the 2 player adversarial game and train generator and the object

detection network jointly, which we call TMO-GAN. We compare the performance

of this system against classical tone-mapping operators in terms of image quality and

detection performance.

5.1 Concluding Remarks

To be more specific, the following research problems were studied (problem state-

ments are copied from Chapter 1) and the following answers were obtained:

• Do deep object detectors perform better with LDR or HDR images?

Given the results in Chapter 3 where we compare HDR, LDR and tone-mapped

LDR images; we observe that LDR images perform slightly better than raw

HDR images. However, applying pre-processing (normalization and gamma

correction) before feeding HDR images to the network improves the detection

performance. As demonstrated in Chapter 3, HDR images obtain a detection
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performance that is on-par with best tone-mapped LDR images when they are

pre-processed and the detection network is trained from scratch. Addition-

ally, as demonstrated in Chapter 4, when the detection network is pre-trained

with LDR images prior to training with HDR, preprocessing still improves

the performance. However, HDR still falls behind the best performing tone-

mapped LDR images. Additionally, we do not observe significant difference

between LDR and HDR images under different illumination conditions such as

dynamic-range and luminance of the object to be detected.

• Which tone-mapping operators are more suitable for object detectors?

We do observe an agreement between Chapters 3 and 4 in terms of the rank-

ing of the TMOs for detection performance. Although the fact that we use a

different datasets and selected TMOs do not exactly match, gamma-corrected

HDR performs best on the Cityscapes dataset [68] (however the second best is

local version of Reinhard’s [41], and the difference is not significant), whereas

Mantiuk [43] performs better on the OOD dataset [55], which needs further

investigation.

• Can we perform tone mapping in such a way that the performance of an

object detector is maximized while simultaneously maintaining a percep-

tual quality for the tone-mapped images?

By jointly training the detection and tone-mapping objectives we are able to im-

prove detection performance (although the difference between the second best

is not very significant) while maintaining a quite good tone-mapping quality in

terms of the selected measure [2], which is significantly better than the classical

TMOs.

5.2 Limitations and Future Work

In this thesis we do not provide an analysis of the proposed joint architecture on the

Cityscapes dataset [68]. As an extension, all experiments conducted on the OOD

dataset [55] can be performed on the Cityscapes dataset as well. Additionally, a pos-

sibly more suitable TMO quality metric such as CIVDM can be used for ground truth
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LDR selection when training the TMO-GAN. Finally, the experiments in Chapter 3

and Chapter 4 can be performed with the same set of classical TMOs.
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