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submitted by YILMAZ BARIŞ ERKAN in partial fulfillment of the requirements for
the degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Prof. Dr. Zafer Dursunkaya
Supervisor, Mechanical Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Merve Erdal Erdoğmuş
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ABSTRACT

NUMERICAL SIMULATION OF COALESCENCE OF
MICRON-SUBMICRON SIZED DROPLETS AND THIN FILMS

Erkan, Yılmaz Barış

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Zafer Dursunkaya

September 2021, 106 pages

Dynamics of droplet merging emerges with an utmost significance in many scientific

areas and its effects ranges vastly from agriculture to engineering. Understanding

the underlying physics of coalescence of droplets is, therefore, crucial to have con-

trol over its effects in complex systems which they are included. In this study, time

dependent coalescence dynamics of fully wetting cylindrical droplets is investigated

extensively. Droplets are created utilizing the Young-Laplace equation, and the dy-

namics of the temporal development and the merger of two liquid droplets is studied

through the solution of the governing unsteady Reynolds equation, obtained with lu-

brication assumption. The governing Reynolds equation is a 4th order non-linear par-

tial differential equation for film thickness and it is solved using a time step marching

algorithm in conjunction with an implicit formulation of the spatial domain solved

iteratively to account for the non-linear terms.

Keywords: Thin films, droplet coalescence, numerical simulation, micron-submicron

sized droplets
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ÖZ

MİKRON-MİKRON ALTI BOYUTLU DAMLACIKLARIN VE İNCE
FİLMLERİN BİRLEŞİMİNİN SAYISAL SİMÜLASYONU

Erkan, Yılmaz Barış

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Zafer Dursunkaya

Eylül 2021 , 106 sayfa

Damlacıkların birleşme dinamiği, birçok bilimsel alanda ortaya çıkmakta ve etki-

leri tarımdan mühendisliğe kadar çok geniş bir yelpazeyi kapsamaktadır. Bu nedenle

damlacıkların birleşmesinin altında yatan fiziği anlamak bulundukları karmaşık sis-

temler üzerindeki etkilerini kontrol etmek için çok önemlidir. Bu çalışmada, tamamen

ıslatan silindirik damlacıklar Young-Laplace denklemi ile oluşturulup birleşme sıra-

sında sıvı kalınlıklarının zamana bağlı gelişiminin dinamiği, yağlama varsayımı ile

elde edilen kararsız Reynolds denklemi çözülerek incelenmiştir. Bu problemde Rey-

nolds denklemi, film kalınlığı için 4. dereceden doğrusal olmayan bir kısmi diferan-

siyel denklemdir ve doğrusal olmayan terimlerin etkisini hesaba katmak için yüzey

koordinatı yönünde yinelemeli olarak çözülen örtük bir formülasyon ile zaman içinde

adımlı ilerleme algoritması kullanan bir benzetimleme uygulanmıştır.

Anahtar Kelimeler: İnce filmler, damlacık birleşmesi, sayısal simulasyon, mikron-

mikron altı boyutlu damlacıklar
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CHAPTER 1

INTRODUCTION

General considerations regarding the formation and coalescence of droplets or thin

films have been in the focal point of many research areas for more than a century;

relevant research even dates back to Osborne Reynolds’ phenomenal study about the

drops floating on the surface of water [1]. Understanding the underlying physics of

coalescence of droplets is crucial for a wide range of applications in microfluidic sys-

tems such as industrial coatings, ink jet applications, spraying pesticides and in phase

change heat exchangers in which dropwise condensation occur [2, 3]. Heat transfer

performance of heat pipes is also affected by the droplet or thin film coalescence on

top of the fins; and therefore, one cannot simply disregard this natural process. In the

first part of this chapter, a general introduction regarding droplets and various other

related phenomena will be addressed. After that, a detailed literature review will be

included.

1.1 Droplets

A droplet is typically a small ellipsoid shape containing liquid inside. Depending on

the various environmental and physical parameters, raindrops are practically expected

to be smaller than 1 − 3 mm in diameters [4]. It is observed that bigger droplets are

bound to break up eventually short after reaching these limits [5]. Drops may be

completely surrounded with free surfaces such as in the case of freely falling rain-

drops, or they can rest on a solid surface if certain requirements are satisfied. They

can either be created via an equipment with a small nozzle such as a Pasteur pipette

or by condensation of liquid vapor. There are various physical parameters that affect

1



droplet formation or coalescence such as surfactants, surface tension, capillarity, vis-

cosity, gravity and so on. In the absence of external effects, a droplet would take the

shape of a sphere as it has the tendency to have minimal surface area. This is assured

by the surface tension to compensate the excess energy accumulated on the surface.

Gravitational effects on a statically stable drop may be neglected if the radius of the

drop is much less than the capillary length scale. More on surface tension and capil-

larity will be discussed in Chapter 2. Another parameter that plays an important role

on the droplet formation is the contact angle formed with the solid surface. Initial

geometrical shape of the drop and the coalescence procedure heavily relies on the

contact angle. There are two types of contact angle: dynamic and static contact an-

gles. According to Mittal [6], dynamic contact angle can be assumed as constant for

coalescence velocities less than a few millimeters per second. Therefore, the contact

angle is accepted as constant in all the coalescence simulations throughout this thesis

study, as Mittal’s assumption is satisfied.

Wettability is another important characteristics of liquid-solid interactions. Droplet

laying on a surface behaves distinctly depending on the liquid and the surface mate-

rial. For example, on a hydrophobic substrate water drop will have a higher contact

angle than on a hydrophilic substrate, as shown in Fig. 1.1:

Figure 1.1: Different wettability characteristics are shown. Contact angle α for non-

wetting case is α ≥ 180◦, for low partially wetting case is 90◦ ≤ α < 180◦ and for

high partially wetting setup is 0◦ < α < 90◦.

Although there are various wettability options for the droplets, only low and high

partially wetting droplets are investigated in this thesis. Therefore, the contact angle

that individual droplets have is limited within an interval 0◦ < α < 90◦. There are

several wetting models achieved by altering the surface texture either physically or
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chemically grafting the surface. Changing the surface texture enables one to control

the contact angle of the drop. Surfaces in these models are also known as non-ideal

surfaces, however, these are not in the scope of this study. Instead, droplets will

be merged upon ideal surfaces in this study, which will be briefly mentioned in the

upcoming section.

1.2 Ideal and Non-Ideal Surfaces

Even though non-ideal surfaces are not studied, a brief information regarding both

ideal and non-ideal surfaces is given in this section. Non-ideal surfaces can either be

homogeneous or heterogeneous. Surfaces that are considered in the latter category are

actually composites, i.e. it consists of two or more materials with different properties

[7] while non-ideal homogeneous surfaces are rough surfaces made from only one

material. These different non-ideal surface types are modelled by Cassie-Baxter and

Wenzel’s model, respectively, and they are illustrated in Fig. 1.2:

(a) (b)

Figure 1.2: (a) Rough homogeneous surface Wenzel’s model and (b) heterogeneous

surface as an example to (b) Cassie-Baxter model.

On the other hand, ideal surfaces are considered to be flat, smooth and homogeneous

where stabilized contact angle can be achieved under idealized circumstances, i.e.

not having external disturbances and being physically, chemically and thermodynam-

ically stable [8]. Furthermore, there is no contact angle hysteresis with ideal surfaces,

implying that there are no more than one contact angle. However with certain pertur-

bations, a drop may have more than one unique contact angle as shown in Fig. 1.3.

Difference between these angles is termed as contact angle hysteresis.
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Figure 1.3: Droplet motion on an inclined surface

1.3 Literature Review

Droplet and thin film coalescence have been modelled and experimented in numer-

ous studies in the literature. Although these studies intensified over the last cou-

ple decades, fundamental research dates back even 1960’s. Study presented by Or-

chard [9] in 1963 is one of the pioneering studies in the literature. Orchard discussed

surface levelling in viscous liquids and had a detailed linear and nonlinear analysis for

thin film flows. Driving forces in the surface levelling are mainly the surface tension

and the gravity, which are opposed by the viscous forces. Navier-Stokes equations

are utilized together with the conservation of mass and simplified with the fact that

viscous forces dominate the inertial forces. These flows in which Reynolds number is

very small are termed as creeping flow or Stoke’s flow. Orchard then further reduced

the problem with the two dimensional restriction of the flow. Different boundary con-

ditions are also applied to the problem, namely free and fixed boundary conditions.

After this comprehensive analysis, author defined the motion of the liquid film in

terms of the viscosity µ and the surface tension σ. Orchard also argued time scales

for very thin and very thick layers of liquids as well as the effect of gravity to the

liquid motion [9]. He claimed that for the scales less than about 1 cm, the effect of

gravity is so small that it can be safely neglected. For nonlinear thin film levelling,

a nonlinear 4th- order partial differential equation is presented, which can also be

derived from basic principles. Orchard’s results show that error due to linear flow

assumption is not important if the initial amplitude of the thin film does not exceed
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the 80% of the mean film thickness [9].

In 1976, Atherton and Homsy [10] conducted their study regarding the fluid-fluid in-

terfaces that exhibit wavelike motions. They presented mathematical derivation for

the evolution of wavelike motion. These nonlinear partial differential equations are

defined and studied on both planar and cylindrical coordinates. Atherton and Homsy

made similar reasonings with Orchard’s study, yet they mostly disregarded the effect

of surface tension which could be substantially significant when it comes to engi-

neering applications. Mathematical analysis of hydrodynamics results with moving

boundary-value problems; however, Atherton and Homsy proposed an asymptotic

method which solves the problem as a function of the surface location [10].

There has been various studies in the literature conducted by Hopper [11–14] regard-

ing the coalescence phenomena. Among these studies, he first investigated and anal-

ysed incompressible creeping flow under viscous effects in a finite region bounded

by a closed curve which is solely driven by the surface tension. Hopper used rather a

different method for the shape evolution of the curve; he described the evolution with

a time dependent mapping function [11]. He noted that the problem is highly nonlin-

ear as the geometrical curve evolves through time constantly and large changes occur

in the shape. Hopper gave solutions for regions bounded by a regular epitrochoid, a

half-plane bounded by a trochoid, and the two-lobbed rosettes. Latter shape gives the

exact solution of the coalescence of equal 2D cylinders as shown in Fig. 1.4:.

Figure 1.4: Coalescence of two cylinders at different times [11]
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Even though Hopper gave an exact analytical relation for the coalescence of two

2D cylinders on a simple plane, he accepted inviscid surroundings when coalescing

these 2D cylinders. Therefore, the motion is solely driven by surface tension in [11].

Presented methods provide the exact solution for the problem defined by Hopper;

however, he also pointed out that his problem involves a considerable amount of ap-

proximations. In an article published in 1992, Hopper obtained an exact solution of

the time evolution of the coalescence of a circular cylinder with half-space [12]. In

this work, he was able to derive interrelated parametric relations for the height of the

coalesced circular cylinder with a half-space in Cartesian coordinates. He also ad-

dressed the expected exponential time decay for long times of coalescence problem

he described in [12]. Hopper then published an article series that described the coa-

lescence of two circular cylinders driven by surface tension. In the first part [13] he

delved into the theoretical background of the coalescence, and in the second part [14]

he mostly addresses the shape evolution. He disregarded inertial and gravitational

effects in building his theory. Hopper also acknowledged that at very long times

gravitational effects may dominate the flow once capillary effects start wearing off.

In the close proximity of two liquid surfaces, molecular attractions become relatively

important as the free energy residing on surfaces depends on the surface tension [13].

Therefore, it is stated by the author that the neck profile may not satisfy the model at

the very early states of the coalescence. Hopper also suggested extending his theory

to include time-depending parameters such as density of liquid density ρ, dynamic

viscosity µ, and surface tension σ, while keeping these parameters independent of

their position. Their time dependency is mostly governed by the temperature of the

medium. He ignores further complicated dependencies [13]. In part II of his article

series, Hopper continued his theory by giving normalized shape evolution results for

initial diameter ratios 1, 2, 5, 20,∞ and their respective evolution graphs.
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Figure 1.5: Time evolution for different initial diameter ratios (D = 1, 2,∞) is given

consecutively. t is dimensionless time and it is 0.15, 0.5 and 1.2 respectively. [14]

Hopper defined rendered versions of width, length and perimeter and suggested that

normalization by smaller diameter is much more efficient than the normalization with

larger diameter. He stated that since width of the coalesced matter behaves asymp-

totically, a power law could be obtained within a good range of convergence. Yet

he also pointed out that there is no power law that satisfies the mentioned approxi-

mation at the early times of coalescence except from Frenkel’s [15] finding. He also

critiqued Frenkel’s power law claiming that it is physically incorrect and it does not

bear the nature of the coalescence. Hopper claimed Frenkel’s finding to be com-

pletely misleading since he assumed that the dissipation is uniform throughout the

merging process [14]. Except for the movement in the neck region, Hopper’s results

have shown that at early times of coalescence 2D cylinders only make a translational

motion towards each other. Yet this argument does not mean a rigid motion occurs

between cylinders. Shear is mostly accumulated in the neck region in the early phases

of merging [14]. Although Hopper’s contribution to the coalescence phenomena is in-

valuable, his language in his work may be considered as dated by today’s researchers.
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Figure 1.6: Hopper’s results. In (a) Reduced length versus logarithmic time for initial

diameter ratios 1, 2, 5, 20,∞. In (b) Minimum width versus time for initial diameter

ratios 1, 2, 5, 20,∞. [14]

In their study published in 1999, Eggers et al. [16] broadened the scope of Hopper

in [12–14] by making detailed numerical and analytical analysis. They considered

different setups in which the exterior of the droplet is inviscid or viscous medium.

They assumed a tiny bridge between droplets prior to coalescence, to ease the calcu-

lations and avoid the singularity. Their prediction for the evolution of bridge radius

were rm ∼ tσ/µ, however, after their analysis for switching from three dimensions

to two dimensions, it is observed that latter scaling requires a logarithmic adjusting

such as rm ∼ [(1 − ξ)/2π]t ln t. Here, ξ is a parameter originating from viscosity

ratio of the interior and exterior media. For viscosity ratios 1 and∞, given scale is

convenient for a dimensionless bridge radii smaller than 0.03. Analysis of Eggers et

al. [16] for inviscid and viscous exteriors results with different velocity scales which

are investigated further. They pointed out that at the early stages of coalescence,

creeping flow assumption can be implemented up until the point where the Reynolds

number becomes of order 1. They claim that after this point, it is convenient to work

with Euler equations which results in a coupling between velocity and pressure fields.

Following their study, Andrieu et al. [17] experimentally and theoretically studied the

dynamics of coalescence of partially wetting drops. In their experimental work, nitro-

gen drops saturated with water are first condensed on a substrate before coalescence

event. Their main focus is to observe the relaxation process after the coalescence
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of droplets having intermediate contact angles. Experimental results of Andrieu et

al. indicate surprisingly long relaxation times. However, contact angle dependencies

are not investigated in detail. In their theoretical discussion, they gave three different

time scales; first one is the inviscid inertial scale, second one is the viscous inertial

scale and the last one is viscous relaxation scale. Another similar study is conducted

by Aarts [18] in 2005 considering different Reynolds number values. They were able

to observe the coalescence in complete viscous regime and it was noted by the author

that bridge growth between drops linearly depended on time t. This linear dependency

can be achieved by either increasing the viscosity or decreasing the surface tension

of the liquid by 5 orders of magnitude [18]. It was emphasized that the coalescence

mechanics were driven by the relationship between viscous and inertial effects. Au-

thor roughly claims that for settings Re< 1 flow can be assumed as viscous, and for

Re> 1 it can be assumed inertial. That being said, Aarts et al. emphasized that the

coalescence of water droplets would always be in the inertial regime [18].

The study of Gaskell et al. [2] in 2004 is another important study in terms of droplet

motion even though they mainly focused on the spreading of a droplet on an inclined

surface. They have developed an efficient and time adaptive multi-grid simulation

method for droplet spreading, primarily using the arguments presented in [9]. Even

though Gaskell et al. [2] studied droplet spreading, the motion of the droplet was

again modelled with a coupled non-linear long wave or lubrication equations along

with a fully implicit time-adaptive numerical scheme. The effect of disjoining pres-

sure was also considered at the point of contact, i.e. wetting lines. Multigrid method

that was implemented introduced a simple iterative technique to the problem to reduce

the error in approximations. This method was then integrated with Heun’s 2nd- order

predictor-corrector method to achieve an efficient time-adaptive scheme. Since the

dynamic problem at hand was very sensitive to both initial parameters and the time

step, ∆t, Gaskell et al. tried to control the time step [2]. For the droplet spreading, it

was stated that the lubrication assumption was only valid when the active surface was

rather smooth. Authors also noted that the accuracy of the aforementioned assump-

tion could waver by the steep slopes, which they considered in this study. However,

Gaskell et al. stated that recent studies and experiments show that lubrication theory

is extremely sturdy with the steep topographies, providing that Reynolds and Capil-
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lary numbers are not too large. This inference creates the basis of droplet spreading

with elevated topographies [2].

Ristenpart and his colleagues [19] studied the coalescence of spreading droplets both

theoretically and experimentally. Acknowledging that the prior work of others fo-

cuses on the slow settling of the merged droplet [17, 20], Ristenpart et al. [19] stated

that it is critical to investigate the early-time dynamics of the coalescence. They

showed that width of the meniscus bridge between the droplets is correlated with scal-

ing law, dm ∼ (σh3ot/µR
2
o)

1/2. Here dm is the time-dependent width of the bridge,

ho and Ro are the initial height and radii of the droplet respectively. As a result of

careful examination of dimensionless parameters, Ristenpart et al. concluded that the

initial geometry of the droplets had substantial impact on the coalescence dynamics,

therefore, it is suggested that these initial states has to be determined carefully. This

outcome was also provided by other authors [2, 13]. According to results of Ris-

tenpart et al., thin droplets on substrates coalesce much more slowly since they are

strongly governed by a power-law depending on their geometry [19]. Ristenpart also

suggested a comparison between their scaling for thin films and the work of Eggers

et al. [16] who shared a similar argument but worked with freely suspended liquid

droplets. He mentioned that in Eggers’ study, meniscus bridge between merging

droplets grew linearly with time.

In their work published in 2012, Yarin et al. [21] conducted experiments regarding

coalescence of droplets with various contact angles on partially wetting surfaces.

They analysed coalescence both in top and side views. Later on, their experimental

results were compared with various scaling laws and numerical results of the two-

dimensional settings. Yarin et al. [21] argued that the coalescence of two freely sus-

pended drops dramatically differed from two droplets merging on a substrate. Main

focus of their study was the early-time evolution of the bridge height, Ry(t). They

examined the coalescence of diethylene glycol droplets with diameters ranging from

100 µm to 240 µm. Because of the similarities between the droplet coalescence and

thin film flow, they utilized the lubrication approximation in their theoretical mod-

elling part. Their theoretical modelling resembles the setting that is used in the cur-

rent thesis study except authors used a different solution approach with Kutta-Merson

method. Moreover, they found it practical to create the initial droplet shape with two
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tangent parabolas which consisted of a bridge at the symmetry axis. Linearization

and non dimensionalization of the main equation was followed by a special stretching

method in spatial coordinate [21]. Eventually they were able to find a characteristic

time scale for the early-time coalescence, τchar = (3µRo/4σ)(1/ tan4(αo)), where

Ro is initial radius of the droplet and αo is the initial contact angle. Finally, they pre-

sented a power law, Ry/Ro = c(t/τchar)
d, which roughly represented the evolution

of the bridge height. Here c and d are constants that they provided. Moreover, they

noted that only at 10◦ obtained results overlapped with the latter power law; other

settings conducted at angles 24◦, 27◦, 56◦ resulted with deviation from this power law

at prolonged times. Last but not least, their theoretical results under the lubrication

approximation showed that the complete coalescence process followed a similar trend

for the bridge height with the experimental results.

Modelling of coalescence of sessile droplets were studied by Sellier and Trelluyer

[22] in 2009. They considered a simple coalescence scenario in which the bridge

between droplets depending on a power-law growth. The growth of the bridge be-

tween droplets relied heavily on the size of droplets and wetting parameters [20].

Their study also included the effect of disjoining pressure in coalescence process as

Gaskell et al. did in [2]. They formulated the problem with lubrication approxima-

tion and solved it using the commercial finite element software COMSOL since it

has been proved quite efficient on modelling thin film applications [23]. To validate

their solution, Sellier and Trelluer first analytically solved a set of equations which

were similar to the governing dynamic equation and disjoining pressure relation. It

should be noted that the validation case they followed was is not physical, yet it bears

a self similar analytical solution [24]. Analytical and numerical results for maximum

film thickness coincided throughout the study. In Fig. 1.7, the numerical solution of

coalescence of droplets in top view is given [22].
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Figure 1.7: Top view of the droplet merging results at various times [22]

Coalescence of two identical droplets was again studied by Sprittles [25] in terms of

two different mathematical procedures where their results were compared with the

experimental findings in the literature. The first method was the work of [16] and

it was addressed as “conventional” by Sprittles [25]. The second method, however,

is proposed by Sprittles and it is termed as the interface formation/disappearance

method. Sprittles pointed out that the first method used in [16] assumed that a single

body of droplet was already formed, in other words, a tiny bridge between droplets

was already created. On the contrary, the interface formation/disappearance method

also considered the process prior to the bridge formation between droplets. In this

method, the free surface between droplets was trapped and it gradually vanished.

Consequently, a single body achieved after which the conventional method of [16]

started to take over. By using the interface formation/disappearance method, Sprit-

tles [25] argued that singularities were avoided and more accurate results could be

obtained since all the necessary physics were accounted prior to the bridge forma-

tion. It should also be noted that they rendered 3D droplets into 2D droplets with the

utilization of symmetry axis. They also used a zero Bond number in their simulations.
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Figure 1.8: Schematic of interface formation/disappearance method [25]

Diverging from previous methods, Zhang et al. [26] investigated the dynamics of a

3D droplet impacting on a solid surface with phase-field method. Phase-field mod-

elling were considered as an efficient way for solving interfacial problems and Zhang

et al. [26] were able to simulate the nucleation and dispersion of new droplets by

using this method. They utilized a phase-field model consisting of Cahn-Hillard and

Navier-Stokes equations. Zhang et al. also studied the effect of dimensionless param-

eters such as Reynolds number, Weber number, density ratio and viscosity ratio by

conducting a detailed non-dimensional analysis [26]. In the end, they observed var-

ious impact dynamics by changing aforementioned dimensionless parameters, and

compared these results with the experimental findings. In all their simulations, they

also included energy dissipation due to impacting.

Another recent study on the coalescence behavior of sessile drops in a thin smectic-

A film was conducted by Klopp [27]. They revealed that the scaling laws showed

different characteristics in fluids compared to the scaling laws of droplets merging on

a solid substrate. Additionally, Klopp [27] studied the 3D droplet coalescence case

by utilizing the lubrication approximation. However, they rendered the problem from

three dimensions to two dimensions by taking an average of the flow profile across

the film thickness and neglecting inertial terms. Moreover, the pressure term used

in the equations consisted of the approximated Laplace pressure and the disjoining

pressure.

Finally, scaling laws of 3D droplet coalescence was studied thoroughly by Khodabo-

cus et al. [28]. They divided their study into two parts as theoretical and numeri-

cal. In the prior, they observed and discussed different scaling laws describing the

bridge growth with ordinary differential equations, while in the latter, they validated

their findings using the commercial software COMSOL Multiphysics. Khodabocus et
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al. [28] investigated three distinct regimes, namely, viscous, visco-inertia and inertial

coalescence regimes as these were introduced in [29]. Khodabocus et al. also illus-

trated 3D coalescence results of the numerical study which was in good agreement

with their theoretical findings.

To summarize these arguments, theoretical and experimental studies on droplet and

thin film coalescence have been ongoing since early 1960’s. Two dimensional stud-

ies are first led by some theoretical and analytical discussions of Orchard [9] and

Hopper [11–14]. Their findings are followed by many other researcher up to this

day. However, these studies mostly investigated the coalescence cases where the flow

across the film thickness is accepted as average and three dimensional settings are

rendered into two dimensional settings.

1.4 Motivation and Objectives of the Thesis

As it can be deduced from the literature review that there has been ongoing research

regarding the coalescence of 2D cylindrical and 3D spherical shapes. Comprehension

of underlying physics of droplet or thin film coalescence is crucial in order to make

certain configurations towards number of applications where droplet merging plays a

significant role, therefore, it is our main motivation.

The main objective of this thesis study is to numerically model and simulate the dy-

namic coalescence of droplets (or thin films), where the droplets are in the micron

to sub-micron scales. In order to initiate the simulation, the profile of the droplet at

hand is required, thus as the first step, droplets are modelled using the capillary and

gravitational effects.

Figure 1.9: Droplets with various sizes residing on a surface
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After gaining the ability to create a droplet, coalescence two drops with same dimen-

sions and properties are studied. In this step, utilization of the symmetry axis renders

the problem into observing the coalescence dynamics of a single droplet. By elim-

inating the symmetry axis, however, coalescence of both identical droplets can be

numerically simulated and observed for the entire process. Similar to the prior coa-

lescence simulations, coalescence of different sized droplets are also studied. Conse-

quently, both dynamics during the coalescence, and the shape of the coalesced liquid

is compared with others work in the literature.

Coalescence analyses that are conducted in this work included the whole spectrum

of contact angles between the close proximity of 0◦ and 90◦, while in the literature,

only a certain number of contact angles are often studied. It is also observed that

many authors did not include the effects of gravity in their simulations. Even though

it might seem trivial to include the effect of gravity, it plays an important role on

larger droplets. Additionally, the denominator term included in the pressure relation

was mostly disregarded in the literature, however, for relatively higher contact angle

values its effect cannot be overruled. Therefore, it is included in this study. Moreover,

to the best knowledge of the author, the coalescence of different sized droplets are not

studied in the literature and it will be addressed in this current thesis study.
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CHAPTER 2

PHYSICAL CONCEPTS AND PROBLEM DEFINITION

2.1 Surface Tension

Surface tension is a thermophysical phenomenon that is present at the interface of

any two or more immiscible fluids or between fluid-solid interfaces. Molecules of

the liquid substance residing at the surface have one missing molecular bond and

this in return adds extra energy to the molecules at the surface, as shown in Fig. 2.1.

As result, the interface is retracted by inner molecules and a net pressure is gener-

ated within. In order to balance the excess pressure inside, the liquid tends to have

minimum surface area. Due to this reason smaller liquid-gas systems contain more

pressure within. In the Table 2.1 surface tension values of some liquid-air systems at

20◦C is given:

Table 2.1: Typical working fluids in contact with air and their surface tension values

at 20◦C

Liquid Surface Tension, N/m

Water 0.0728

Ammonia 0.0210

Methanol 0.0220

Sodium 0.1910

In Section 1.1 droplets with different contact angles were presented. In liquid-solid

interfaces, surface tension dictates the balance between adhesive and cohesive forces

17



that effectively determines the wettability of the liquid on solid surface. Capillary

action is also responsible for the liquid movement in the tiny wicks, and it is created

via the surface tension.

Figure 2.1: Surface tension representation [30]

2.2 Capillary Pressure

Surface tension creates a curvature at the liquid-vapour interface, and this results

with a pressure difference. This pressure difference is called the capillary pressure. In

three-dimensional settings there are two curvature radii created by the surface tension.

Capillary pressure is represented by the Young-Laplace equation:

Pc = σ

(
1

R1

+
1

R2

)
(2.1)

One simplification can be made by considering the gravitational forces and the sur-

face forces. Bond number (or Eötvös number) is a dimensionless number which

determines the ratio of the gravitational forces to the surface tension forces. If Bond

number is relatively small —which is often the case in micro scales— then one of the

radii in Eq. (2.1) can be eliminated. As a result, the simplified version of the capillary
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pressure becomes:

Pc =
σ

R
(2.2)

where, R is defined as the radius of curvature.

2.3 Problem Definition

Dynamic coalescence of fully wetting droplets and evolution of thin films are stud-

ied in this thesis. All simulations are conducted for cylindrical shapes, i.e. for 2D

droplets. In addition, droplet profile is analyzed in the front view instead of top view

at all times.

Figure 2.2: Schematic of the expected scenario

Prior to any coalescence simulations, droplets has to be created and readied for the

merging by touching each other. In the first simulation, symmetry axis property is in-

voked, thus, merging process for only one of the droplets is observed. Following this

simulation, two exactly same droplets are coalesced by switching to proper bound-

ary conditions. After accomplishing this setting, different sized droplets are merged.

Once droplets are close enough to each other, molecular interactions start and a sin-

gularly fast movement occurs for a very short amount of time. To avoid the compli-

cations brought by this singular movement, it is intrinsically assumed that droplets
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barely touch each other so that a tiny bridge is just formed between them. This bridge

is presented in the Fig. 2.2 and it will usually be one order of magnitude smaller than

the maximum thickness of the initial droplet. All the arguments presented in this sec-

tion will be elaborated in Chapter 3 along with the proper methodology and solution

procedure.
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CHAPTER 3

MODELLING AND SOLUTION METHODOLOGY

3.1 Driving Forces: Capillarity and Gravity

Capillarity and gravity are the two phenomena together with the surface tension that

effect the morphology of the droplets or thin films. Capillary pressure is defined as

the pressure difference between two non-miscible liquids and it is caused by the sur-

face tension. Capillary pressure can be expressed with the renowned Young-Laplace

equation by substituting the radius of curvature term into Eq. (2.2):

∆P =
σδ′′

[1 + (δ′)2]
3
2

(3.1)

where the pressure jump at the interface is defined as,

∆P = (Pv − Pl) (3.2)

where Pv is the vapor pressure and Pl is the liquid pressure. Even though it was stated

in Section 1.3 that gravity can be neglected for droplets with size less than∼ 2.7 mm,

addition of gravity does not increase the complexity of the equation drastically. Thus,

it is decided to add gravity term when modelling the droplet so that both capillary and

gravitational effects contribute to the pressure inside the droplet. It contributes this

pressure jump with,

Pg = ρgδ (3.3)
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which will be combined with Eq. (3.1). Moreover, for the generic droplets, the sign

of the second derivative is negative, thus, a negative sign is also added in front of the

surface tension term in Eq. (3.1). Therefore, the pressure jump between the innards

and the exterior of the droplet becomes,

∆P =
−σδ′′

[1 + (δ′)2]
3
2

+ ρgδ (3.4)

In many studies, Eq. (3.4) is further simplified by neglecting the effect of the denomi-

nator term. In this thesis, the effect of this denominator term will be included whether

it may be small or substantial.

3.2 Derivation of the Reynolds Equation with Lubrication Assumption

As Orchard also mentions in his study, thin film evolution or droplet dynamics can be

derived from basic principles [9]. In this section, the detailed derivation of this result-

ing dynamic partial differential equation will be presented. In the settings where thin

films or micro regions are included, viscosity effects become effectively important

in the calculations. In such flows, Reynolds number becomes so small that we can

employ creeping flow or lubrication assumptions. For lubrication assumption to be

applicable, the ratio of the diffusion time scale to convection time scale as a function

the local film thickness, δlocal, extend of flow, Lflow, kinematic viscosity ν and the

local average velocity ulocal needs to be defined [31]:

tdiff

tconv

∼ O
(

δ2local/ν

Lflow/ulocal

)
∼ O

(
δlocal
Lflow

Relocal

)
� 1 (3.5)

Therefore, either local Reynolds number or the amplitude of the thin film/droplet

needs to be small enough to apply the lubrication assumption. In the light of these

assumptions, our x-momentum equation is greatly rendered into:

∂2u

∂y2
=

1

µ

∂P

∂x
(3.6)

22



Figure 3.1: Coordinate system for the dynamic equation

There is no-slip condition at the surface droplet lies, and at the free surface of the

droplet there is zero tangential stress. Therefore, considering the coordinate system

shown in Fig. 3.1, boundary conditions for this problem are:

y = 0; u = 0

y = δ;
∂u

∂y
= 0

(3.7)

Integration of Eq. (3.6) twice with above boundary conditions, velocity profile is

found to be,

u(y) =
1

2µ

∂P

∂x
(y2 − 2δy) (3.8)

Additionally, volume flow rate per unit depth in the x-direction is:

q̇′x =

∫ δ

0

udy (3.9)

Inserting previously found velocity profile in Eq. (3.9) and integrating it, volume flow
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rate per unit depth in x-direction is found to be:

q̇′x =
−δ3

3µ

∂P

∂x
(3.10)

Furthermore, the conservation of mass also needs to be satisfied. To do so, an in-

finitesimal control volume (CV) over the flow has to be designated as in Fig. 3.2. It

can be seen from the figure that not only there is incoming and outgoing mass flow

rates, but also a substantial amount of liquid mass transverses through the top bound-

ary of CV. Therefore, mass balance is written as:

ṁ′out − ṁ′in + ṁ′top = 0 (3.11)

Figure 3.2: Mass balance of an evolving droplet

Notice also that the single quotation mark again represents per unit depth. While

ṁ′top is equal to the rate of change of droplet thickness in x-direction, the difference

between incoming and outgoing mass rates are easily calculated from Taylor Series

expansion. Then, mass balance per unit depth over the infinitesimal length ∆x be-

comes:

ṁ′
out︷ ︸︸ ︷

ṁ′in +
dṁ′in
dx

∆x− ṁ′in +

ṁ′
top︷︸︸︷

ρ
∂δ

∂t
∆x = 0 (3.12)
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where incoming mass flow rate is,

ṁ′in = ρ

∫ δ

0

udy (3.13)

Notice that integral term in Eq. (3.13) is nothing but the volume flow rate per unit

depth in Eq. (3.10). Using these two relations with Eq. (3.12) we finally have:

ρ
∂δ

∂t
+

∂

∂x

(
ρ
−δ3

3µ

∂P

∂x

)
= 0 (3.14)

or rather,

∂δ

∂t
=

1

3µ

∂

∂x

(
δ3
∂P

∂x

)
(3.15)

Eq. (3.15) is a 4th- order nonlinear partial differential equation that represents the

time evolution of the droplet thickness during the coalescence. Eq. (3.15) can also be

reached via taking integral of conservation of mass equation over the domain and im-

plementing Leibniz integral rule to each term, however, it is somewhat cumbersome

and the wedge effect appearing due to lubrication assumption has to be dealt with.

Partial derivative term on the left hand side of Eq. (3.15) assumes constant film thick-

ness along the x-direction. Therefore, one must also needs to consider these spatial

effects. Rewriting partial derivative ∂δ/∂t as total derivative:

∂δ

∂t
=
dδ

dt
− ∂δ

∂x

dx

dt
(3.16)

and our finalized equation becomes,

dδ

dt
− ∂δ

∂x

dx

dt
=

1

3µ

∂

∂x

(
δ3
∂P

∂x

)
(3.17)
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3.3 Droplet Modelling

In Section 3.1, a pressure relation consisting of capillary term and gravitational term

is reached. Rearranging this relation, we have:

δ′′ = −∆P

σ

[
1 + (δ′)

2
] 3

2
+
ρg

σ

[
1 + (δ′)

2
] 3

2
δ (3.18)

Above relation is an nonlinear second order ordinary differential equation (ODE) and

it can be solved with reduction of order. Letting δ′ = v and δ′′ = v′ we have the set:

δ′ = v ≡ g(x, δ, v)

v′ = −∆P

σ

[
1 + v2

] 3
2 +

ρg

σ

[
1 + v2

] 3
2 δ ≡ f(x, δ, v)

(3.19)

Problem is now converted to two first-order coupled ordinary differential equations.

This system can be solved with various numerical methods, however, solution with

Runge-Kutta 4 (RK4) method is preferred since with O(h4) admits enough accuracy

up to a relative error value of 10−12 in the film thickness at the right boundary. RK4

method for both relations are given as:

δi+1 = δi +
dx

6
(K1 + 2K2 + 2K3 +K4)

vi+1 = vi +
dx

6
(L1 + 2L2 + 2L3 + L4)

(3.20)

where the coefficients K1, K2, K3, K4 and L1, L2, L3, L4 are respectively:

K1 ≡ g (xi, δi, vi) = vi

K2 ≡ g

(
xi +

dx

2
, δi +

dx

2
K1, vi +

dx

2
L1

)
= vi +

dx

2
L1

K3 ≡ g

(
xi +

dx

2
, δi +

dx

2
K2, vi +

dx

2
L2

)
= vi +

dx

2
L2

K4 ≡ g (xi + dx, δi + dxK3, vi + dxL3) = vi + dxL3

(3.21)
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and,

L1 ≡ f(xi, δi, vi) = −∆P

σ

[
1 + v2

] 3
2 +

ρg

σ

[
1 + v2

] 3
2 δi

L2 ≡ f

(
xi +

dx

2
, δi +

dx

2
K1, vi +

dx

2
L1

)
=

− ∆P

σ

[
1 +

(
vi +

dx

2
L1

)2
] 3

2

+
ρg

σ

[
1 +

(
vi +

dx

2
L1

)2
] 3

2 (
δi +

dx

2
K1

)

L3 ≡ f

(
xi +

dx

2
, δi +

dx

2
K2, vi +

dx

2
L2

)
=

− ∆P

σ

[
1 +

(
vi +

dx

2
L2

)2
] 3

2

+
ρg

σ

[
1 +

(
vi +

dx

2
L2

)2
] 3

2 (
δi +

dx

2
K2

)

L4 ≡ f(xi + dx, δi + dxK3, vi + dxL2) =

− ∆P

σ

[
1 + (vi + dxL3)

2
] 3

2 +
ρg

σ

[
1 + (vi + dxL3)

2
] 3

2 (δi + dxK3)

(3.22)

Finally, boundary conditions for a basic droplet model on a flat surface are δ(0) = 0

and ∂δ(0)/∂x = tan(α), where the former one simply states that the film thickness

starts from zero, and the latter boundary condition points out the contact angle. In

terms of changed variables, boundary conditions for the problem become:

δ(0) = 0

v(0) = tan(α)
(3.23)

Providing the desired cross sectional area (A) or the horizontal length (L) of the

droplet, Eqs. (3.20) to (3.22) are solved together with boundary conditions at (3.23).

RK4 method will continue to solve our set of equations until we meet a specific cri-

teria. For droplet modelling, the computation stops as soon as the film thickness is

equal to or below zero. Additionally, pressure term in the relations is unknown and
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must be guessed initially. After the first guess and first iteration of the solution, A or

L must be checked for convergence with the desired value. If they do not converge,

another guess with a fresh solution must be introduced. Consequently, using these

two different ∆P values and the different A’s or L’s with Newton’s Linear Interpo-

lation method, a better ∆P value is achieved. Interpolation method used is given in

Eq. (3.24) together with Table 3.1:

Table 3.1: Example for Newton’s Linear Interpolation

L ∆P

L1 ∆P1

L2 ∆P2

Ldesired ∆Pnext

∆Pnext =
(Ldesired − L1)(∆P2 −∆P1)

L2 − L1

+ ∆P1 (3.24)

Our droplet is modelled once the cross sectional area or the horizontal length for the

droplet with predetermined contact angle is converged. Depending on the adequate-

ness of the initial guess for ∆P , converging to desired horizontal length may require

more than one iteration. As horizontal length criterion is reached, the total number of

nodes that we determined in the first place must also be met, such as 100, 200, 400 or

1000 etc. nodes. For computational time concerns, it is always better working with

smaller total number of nodes, however, for the contact angles at close proximity to

90◦, droplet may only be modelled with a finer mesh and with a good initial pressure

guess.

3.4 Dynamic Modelling of Coalescence of Droplets

Droplet coalescence (or thin film evolution) is governed by 4th- order nonlinear par-

tial differential equation found in Section 3.2. Pressure term inside Eq. (3.17) is
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substituted with relation 3.4:

dδ

dt
− ∂δ

∂x

dx

dt
=

1

3µ

∂

∂x

[
δ3
∂

∂x

(
−σδ′′

[1 + (δ′)2]
3
2

+ ρgδ

)]
(3.25)

At this point, it is beneficial to define a function ζ to improve the readability of equa-

tions:

ζ =
1

[1 + (δ′)2]3/2
(3.26)

Rewriting Eq. (3.25),

dδ

dt
− ∂δ

∂x

dx

dt
=
−σ
3µ

∂

∂x

{
δ3
∂

∂x

[(
ζ
∂2δ

∂x2

)
+ ρgδ

]}
(3.27)

Further manipulating above relation,

dδ

dt
− ∂δ

∂x

dx

dt
=
−σ
3µ

[
3δ2
(
∂δ

∂x

)
∂

∂x

(
ζ
∂2δ

∂x2

)
+ δ3

∂2

∂x2

(
ζ
∂2δ

∂x2

)]

+
ρg

3µ

[
3δ2
(
∂δ

∂x

)2

+ δ3
∂2δ

∂x2

]
(3.28)

Finite difference methods are employed throughout this thesis. In Eq. (3.28) back-

ward difference scheme of order O(h) is applied for the time derivative, and central

difference schemes of order O(h2) is used for space derivatives:
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δki − δk−1i

∆t
−
(
δki+1 − δki−1

2∆x

)(
xki − xk−1i

∆t

)
=
−σ
3µ

{
3δki

2︸︷︷︸
nonlinear

(
δki+1 − δki−1

2∆x

)
(
ζki+1δ

k′′
i+1 − ζki−1δk

′′
i−1

2∆x

)
︸ ︷︷ ︸

nonlinear

+ δki
3︸︷︷︸

nonlinear


nonlinear︷︸︸︷
ζki+1 δ

k′′
i+1 −

nonlinear︷︸︸︷
2ζki δk

′′
i +

nonlinear︷︸︸︷
ζki−1 δ

k′′
i−1

∆x2


}

+

ρg

3µ

{
3δki

2︸︷︷︸
nonlinear

(
δki+1 − δki−1

2∆x

)
︸ ︷︷ ︸

nonlinear

(
δki+1 − δki−1

2∆x

)
+ δki

3︸︷︷︸
nonlinear

(
δk

′′
i+1 − δk

′′
i + δk

′′
i−1

∆x2

)}

(3.29)

In above relation subscript i represents space and superscript k represents time. There

are multiple nonlinear terms present in Eq. (3.29). To be able to proceed with finite

difference methods, these nonlinearities has to be dealt with a proper linearization

method, which adds an iterative technique to the problem at hand. Therefore, we

proceed with linearization of Eq. (3.29):

l+1δ
k
i − δk−1i − λ3

(
l+1δ

k
i+1 − l+1δ

k
i−1
)

=

λ1

−σ∆t

3µ∆x4

{
3

4

(
lδ
k
i

)2 [
lζ
k
i+1

(
lδ
k
i+2 − l2δ

k
i+1 + lδ

k
i

)
− lζ

k
i−1
(
lδ
k
i − 2 lδ

k
i−1 + lδ

k
i−2
) ] (

l+1δ
k
i+1 − l+1δ

k
i−1
)

+(
lδ
k
i

)3
lζ
k
i+1

(
l+1δ

k
i+2 − l+12δ

k
i+1 + l+1δ

k
i

)
− 2

(
lδ
k
i

)3
lζ
k
i

(
l+1δ

k
i+1 − l+12δ

k
i + l+1δ

k
i−1
)

+
(
lδ
k
i

)3
lζ
k
i−1
(
l+1δ

k
i − l+12δ

k
i−1 + l+1δ

k
i−2
)}

+

ρg∆t

3µ∆x2

λ2

{
3

4

(
lδ
k
i

)2 (
lδ
k
i+1 − lδ

k
i−1
) (

l+1δ
k
i+1 − l+1δ

k
i−1
)

+
(
lδ
k
i

)3
(
l+1δ

k
i+1 − 2 l+1δ

k
i + l+1δ

k
i−1
)}

(3.30)

Due to linearization process, third subscript now appears in Eq. (3.30) as l. Lineariza-

tion reasonings and solution procedure will be presented after reaching the general
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finite difference relation. Again for the sake of simplicity, λ1, λ2 and λ3 values are

defined as following:

λ1 =
−σ∆t

3µ∆x4
, λ2 =

ρg∆t

3µ∆x2
and λ3 =

xki − xk−1i

2∆x

Finally, collecting the similar terms, we reach our general expression as:

{
− λ1

(
lδ
k
i

)3
lζ
k
i−1

}
l+1δ

k
i−2+{

3λ1
4

(
lδ
k
i

)2 [
lζ
k
i+1

(
lδ
k
i+2 − 2 lδ

k
i+1 + lδ

k
i

)
− lζ

k
i−1
(
lδ
k
i − 2 lδ

k
i−1 + lδ

k
i−2
) ]

+

2λ1
(
lδ
k
i

)3
lζ
k
i +2λ1

(
lδ
k
i

)3
lζ
k
i−1−λ2

(
lδ
k
i

)3
+

3λ2
4

(
lδ
k
i

)2 (
lδ
k
i+1 − lδ

k
i−1
)
+λ3

}
l+1δ

k
i−1+{

1− λ1
(
lδ
k
i

)3
lζ
k
i+1 − 4λ1

(
lδ
k
i

)3
lζ
k
i − λ1

(
lδ
k
i

)3
lζ
k
i−1 + 2λ2

(
lδ
k
i

)3}
l+1δ

k
i +{

−3λ1
4

(
lδ
k
i

)2 [
lζ
k
i+1

(
lδ
k
i+2 − 2 lδ

k
i+1 + lδ

k
i

)
− lζ

k
i−1
(
lδ
k
i − 2 lδ

k
i−1 + lδ

k
i−2
) ]

+

2λ1
(
lδ
k
i

)3
lζ
k
i+1+2λ1

(
lδ
k
i

)3
lζ
k
i−λ2

(
lδ
k
i

)3−3λ2
4

(
lδ
k
i

)2 (
lδ
k
i+1 − lδ

k
i−1
)
−λ3

}
l+1δ

k
i+1+{

− λ1
(
lδ
k
i

)3
lζ
k
i+1

}
l+1δ

k
i+2 = δk−1

i (3.31)

where the black terms in the relation represent known values of droplet thickness

from previous iteration, the red terms are unknown values of droplet thickness from

current iteration and lastly, the blue term at the end of the equation is known values

of droplet thickness from previous time step, as shown in the Fig. 3.3:

Figure 3.3: Representation of sub and superscripts.
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After applying proper finite differences, Eq. (3.31) becomes the resulting implicit fi-

nite difference relation for the 4th- order partial differential equation. As mentioned

before, an iterative process between consecutive time steps is initiated with lineariza-

tion of Eq. (3.25). At all time steps, droplet profile has to be guessed in order to start

the iteration procedure. The most suitable guess for these black terms in Eq. (3.31) is

the exact profile of the droplet from the previous time step. However, for the iteration

of the first time step, there is no previous time, therefore, initial profile of the droplet

is simply selected as the very first guess. At any time step, result of the current itera-

tion and the previous iteration is compared with a relative convergence check, which

will be named as "nonlinearity check" from now on. If the difference between them

is sufficiently small, then current iteration is accepted as result. Rewriting Eq. (3.31)

in a more compact way:

Al+1δ
k
i−2 + Bl+1δ

k
i−1 + Cl+1δ

k
i + Dl+1δ

k
i+1 + El+1δ

k
i+2 = δk−1

i (3.32)

Notice that in Eq. (3.31), there are 5 unknown nodes and one node is known from pre-

vious time step. These coefficients of five unknown nodes are denoted asA,B,C,D,E

and they constitute the pentadiagonal matrix in our linear system:



C D E 0 . . . . . . . . . . . . 0

B C D E
. . . ...

A B C D E
. . . ...

0 A B C D E
. . . ...

... . . . . . . . . . . . . . . . . . . . . . ...

... . . . A B C D E 0

... . . . A B C D E

... . . . A B C D

0 . . . . . . . . . . . . 0 A B C


︸ ︷︷ ︸

Coefficient matrix consisting of known
film thickness values

from previous time step



l+1δ
k
0

l+1δ
k
1

l+1δ
k
2

...

...

...

l+1δ
k
end−2

l+1δ
k
end−1

l+1δ
k
end


︸ ︷︷ ︸

Unknown linear terms
from current iteration

=



δk0

δk1

δk2
...
...
...

δkend−2

δkend−1

δkend


︸ ︷︷ ︸

Known terms from
previous time step

(3.33)
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Introduced linear system is the result of our implicit finite difference scheme cast on

to Eq. (3.15). Therefore, given system in Eq. (3.33) completely solves our 4th order

nonlinear partial differential equation for the droplet profile at each time step. Notic-

ing that our coefficient matrix is also a sparse matrix consisting of zero terms except

from main diagonals, it has to be treated with a special algorithm for effective compu-

tational time. Thomas algorithm can only be used with tridiagonal systems, however,

it can be modified and its purpose can be extended for pentadiagonal systems as well.

The solution of Eq. (3.33) will give us the droplet profile result of the current iteration.

This result is then compared with the result of the previous iteration with a nonlin-

earity check. If this check cannot be satisfied, iterative process continues. As soon as

the nonlinearity check is satisfied, the droplet profile reached by the current iteration

is accepted and admitted to upcoming convergence check. Total mass, i.e. cross sec-

tional area for 2D droplets, must be preserved throughout each time step. Therefore,

after passing the nonlinearity check, the area under the profile is calculated and com-

pared against the area that must be conserved. If this relative area check is satisfied,

then the droplet profile is finally found for that time step. However, if the area is not

converged as expected, then a similar procedure is followed as in Section 3.3. Again

Newton’s Linear Interpolation method is utilized here for the step size in space. ∆x,

consequently the horizontal length of the droplet is slightly perturbed. Thus, conser-

vation of area (i.e. mass) is satisfied, by shrinking or stretching the droplet length in

horizontal axis. Although the solution procedure is narrated in brief, the implemented

algorithm is presented with flowchart in Fig. B.2, and reader’s review is strictly rec-

ommended. Moreover, different settings for droplet coalescence is covered in the

following subsections.

3.4.1 Modelling the Coalescence of a Single Droplet with Symmetry Axis

Dynamic coalescence of droplets can be modelled in multiple ways. In this thesis

study, we first decided to model the coalescence of a single droplet since it is relatively

easier to work with. In this part, symmetry axis at x = 0 is used as an advantage in

simulating droplet merging. It should also be reminded that a precursor film thickness

is present at the symmetry axis, which is accepted to be equal to the thickness of the
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point next to it. Initial setting and the symmetry axis property is show in Fig. 3.4:

Figure 3.4: Representation of symmetry axis with initial droplet profile.

Initial condition is simply acquired from the droplet modelling part, Section 3.3:

t = 0 ; δ(x) = δo(x) (3.34)

Boundary conditions are also somewhat straight forward for this setting:

1) x = 0 ;
∂δ

∂x
= 0

2) x = 0 ;
∂δ3

∂x3
= 0

3) x = L(t) ; δ = 0

4) x = L(t) ;
∂δ

∂x
= tanα

(3.35)

Where L(t) is time dependent horizontal length of the droplet. Since MATLAB is

used as the programming language throughout this thesis and it does not accept zero

or negative index, our domain is started from node 1 and ended at node N , where

N is the total number of nodes in our computational domain. Also, first and sec-

ond boundary conditions are symmetry boundary conditions, therefore, central finite

difference of order O(h2) is applied. For the fourth boundary condition, however,

backward finite difference of order O(h2) is used. Then, rewriting boundary condi-
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tions in Eq. (3.35):

1) i = 1 ;
∂δ

∂x
= 0 → δ0 = δ2

2) i = 1 ;
∂δ3

∂x3
= 0 → δ−1 = δ3

3) i = N ; δ = 0 → δN = 0

4) i = N ;
∂δ

∂x
= tan(π − α) → δN−1 =

δN−2
4
− ∆x tan(π − α)

2

(3.36)

Notice that while the first boundary condition in Eq. (3.36) represents the symmetry

between two merging droplets, the second boundary condition follows from the mass

conservation during the coalescence process. Third and fourth boundary conditions

represent the film thickness at end of the domain and the static contact angle, respec-

tively. Additionally, last two boundary conditions imply that we have the information

of last two nodes, N −1 and N at all times. Our general relation Eq. (3.31) is utilized

together with the boundary conditions given above to determine the coefficients of

first and last two rows of our coefficient matrix. In order not to disturb the flow of the

text, these relations will be presented in detail in the Appendix A.1.

In Appendix A.1, the black terms given with A.1 and A.2 create first two rows of our

coefficient matrix. Although the coefficients of first and last two rows of pentadiago-

nal matrix is different, there will not be any alteration regarding the inner rows; they

are still represented by Eq. (3.31).

Figure 3.5: Nodes N − 1 and N are known from boundary conditions at all times.
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For the equations presented in Appendix A.1, lζ
k
0, lζ

k
1, lζ

k
N−2 and lζ

k
N−1 differ from

the usual relation lζ
k
i , such as:

lζ
k
i =

1[
1 +

(
lδ
k
i+1 − lδ

k
i−1

2∆x

)2
]3/2 (3.37)

lζ
k
0 =

1[
1 +

(
lδ
k
1 − lδ

k
−1

2∆x

)2
]3/2 =

1[
1 +

(
lδ
k
1 − lδ

k
3

2∆x

)2
]3/2 (3.38)

lζ
k
1 =

1[
1 +

(
lδ
k
2 − lδ

k
0

2∆x

)2
]3/2 = 1 (3.39)

lζ
k
N−2 =

1[
1 +

(
lδ
k
N−1 − lδ

k
N−3

2∆x

)2
]3/2 (3.40)

lζ
k
N−1 =

1[
1 +

(
lδ
k
N − lδ

k
N−2

2∆x

)2
]3/2 =

1[
1 +

(
−lδkN−2

2∆x

)2
]3/2 (3.41)

Eqs. (3.36) to (3.41) and (A.1) to (A.4) fully define the coefficient matrix needed to

solve the dynamic equation of coalescence simulation of a single droplet with sym-

metry axis. A similar procedure will be presented in the next section. Corresponding

results will be presented in the next chapter.

3.4.2 Modelling the Coalescence of Two Identical Droplets

In this subsection, two identical droplets are first created by following the procedure

argued in Section 3.3, and then they merged into one bigger drop. Schematic of the

setting is given in Fig. 3.6:
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Figure 3.6: Schematic of the initial profile of two exact droplets, ready for coales-

cence.

Both droplets have same initial length of Lo/2, same contact angle of α and same

initial maximum height of δo. Recall also that droplets are already and barely in

contact with each other (exaggerated in the Fig. 3.6) to avoid the singular movement

occurring at the center line between drops. The initial bridge height is equal to the film

thickness values of prior and subsequent nodes, which corresponds to one order of

magnitude smaller value than the maximum thickness of the droplet. Due to the nature

of the implemented finite difference method, different set of boundary conditions are

applied, while the initial condition is same as before:

t = 0 ; δ(x) = δo(x) (3.42)

and,

1) x = −L(t) ; δ = 0

2) x = −L(t) ;
∂δ

∂x
= tanα

3) x = L(t) ; δ = 0

4) x = L(t) ;
∂δ

∂x
= tan(π − α)

(3.43)

where L(t) is the time dependent droplet length. Right at the middle slight necking is

already started. Since nodes 1 and 2 as well as nodes N − 1 and N are known at each

time step, they are not included in the solution matrix, therefore, solution domain
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only includes nodes from 3 to N −2. At this point, another complication is faced, the

coefficient matrix simply cannot start from the third node in MATLAB. Following

relations will cover the domain starting from node 3 to node N − 2, however, in

order to overcome aforementioned problem, the whole solution domain is shifted

towards left in MATLAB programming. This means that in MATLAB codes, domain

is forcibly started from node 1 and ended at node N − 4, which in physical equations

these nodes correspond to node 3 and N − 2 respectively.

Also, for the first boundary condition forward finite difference scheme of orderO(h2)

and for the fourth boundary condition backward finite difference of order O(h2) is

used. Then, rewriting boundary conditions in Eq. (3.35):

1) i = 1 ; δ = 0 → δ1 = 0

2) i = 1 ;
∂δ

∂x
= tan(α) → δ2 =

δ3
4

+
∆x tan(α)

2

3) i = N ; δ = 0 → δN = 0

4) i = N ;
∂δ

∂x
= tan(π − α) → δN−1 =

δN−2
4
− ∆x tan(π − α)

2

(3.44)

In this setting, first and second boundary conditions are changed since the boundary

is moved from the symmetry axis to the left side of the first droplet. Thus, first and

second boundary conditions represent the film thickness at the end of the domain and

the contact angle respectively just like third and fourth boundary conditions. First

two and last two boundary conditions again also imply that we have the information

of these nodes, 1, 2, N − 1 and N at all times. Considering the small neck created

between drops prior to coalescence, if we have 1001 total nodes, 4 of them are al-

ways known, therefore, our linear system is solved for 997 unknowns in each loop.

Our general relation Eq. (3.31) is once again utilized together with the boundary con-

ditions given above, and the coefficients of first and last two rows of our coefficient

matrix is determined. In order not to disturb the flow of the text, these relations will

be presented in detail in the Appendix A.2.

The black terms in relations A.5 and A.6 create first two rows of our coefficient ma-

trix. Although the coefficients of first and last two rows of pentadiagonal matrix is
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different, there will not be any alteration regarding the inner rows; they are still rep-

resented by Eq. (3.31).

Figure 3.7: Nodes 1, 2, N − 1 and N are known from boundary conditions at all

times.

In above equations, lζ
k
2, lζ

k
3, lζ

k
N−2 and lζ

k
N−1 will differ from the usual relation lζ

k
i ,

such as:

lζ
k
i =

1[
1 +

(
lδ
k
i+1 − lδ

k
i−1

2∆x

)2
]3/2 (3.45)

lζ
k
2 =

1[
1 +

(
lδ
k
3 − lδ

k
1

2∆x

)2
]3/2 =

1[
1 +

(
lδ
k
3

2∆x

)2
]3/2 (3.46)

lζ
k
3 =

1[
1 +

(
lδ
k
4 − lδ

k
2

2∆x

)2
]3/2 (3.47)

lζ
k
N−2 =

1[
1 +

(
lδ
k
N−1 − lδ

k
N−3

2∆x

)2
]3/2 (3.48)

lζ
k
N−1 =

1[
1 +

(
lδ
k
N − lδ

k
N−2

2∆x

)2
]3/2 =

1[
1 +

(
−lδkN−2

2∆x

)2
]3/2 (3.49)
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Eqs. (3.44) to (3.49) and (A.5) to (A.8) completely define the coefficient matrix

needed to solve the dynamic equation of coalescence simulation of two identical

droplets. At the end of each iteration, first and last two nodes are added to the found

profile, in order to calculate the corresponding cross sectional area. Whether the fol-

lowing area check is passed or failed, these four nodes are again eliminated from the

profile. Results and thorough discussion will be made in the following chapter.

3.4.3 Modelling the Coalescence of Two Different Radii Droplets

Arguments that are going to be presented in this section will not be much differ-

ent than to those presented in Section 3.4.2. Instead of two same droplets, different

radii droplets were first created, then coalesced within the viscous regime. Full equa-

tions for first two, intermediate and last two rows of our coefficient matrix will not

be presented here as they were covered in previous subsections, because these will

be identical to what was presented in Section 3.4.2. Thus once again, Eqs. (3.44)

to (3.49) and (A.5) to (A.8) define the coefficient matrix for the coalescence simula-

tion of two different radii droplets. Only difference between the coalescence of same

droplets and coalescence of different radii droplets is the creation of the initial droplet

profiles. In Section 3.3, it is mentioned that the initial droplet profile is either created

via converging to a predetermined area or to a predetermined horizontal length. When

dealing with different radii droplets, one must work with the same spatial resolution,

∆x, through out the domain of interest. Predetermined area or the predetermined

horizontal length of the second droplet is determined proportionately with the first

droplet. Selecting area as convergence criterion is not practical, since the total num-

ber of nodes of second droplet cannot be controlled. Instead, selecting horizontal

length as convergence criterion is somewhat flexible, e.g. if we have 1 : 3 proportion

for the horizontal length of two different droplets, then this proportion also reflected

upon the total node number of each droplet.
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Figure 3.8: Sample schematic of the initial profile of two different (with proportion

of 1 : 3 horizontal length) droplets, ready to coalesce.

3.4.4 Non-dimensionalization of Governing Equations

In sections 3.2 to 3.4, all the terms in relations for the droplet modelling and the dy-

namic coalescence are presented in accordance with dimensional parameters. How-

ever, in order make proper physical interpretations and to observe dependencies of

simulations, performing a non-dimensional analysis is crucial. There are different

options to non-dimensionalize the governing equations, yet certain scales and respec-

tive non-dimensional groups are selected. Consider the following non-dimensional

parameters:

x∗ =
x

Lo
(3.50)

and,

δ∗ =
δ

δo
(3.51)

where Lo is the characteristic length scale of our droplet or thin film, and δo is the

characteristic droplet height. Since we are utilizing the lubrication assumption (or

thin film assumption), droplet thickness scale is sufficiently smaller than the length
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scale presented in above relations, thus, one may state their ratio as:

ε =
δo
Lo
� 1 (3.52)

3.4.4.1 Non-dimensionalization of Young-Laplace Equation

Modelling of the droplet is achieved by solving the differential equation regarding the

pressure difference given in Eq. (3.18). Pressure term can be non-dimensionalized by

P ∗ =
P

Po
(3.53)

Considering that the first derivative of the film thickness, δ′, is already dimensionless,

and using non-dimensional parameters introduced in Eqs. (3.50), (3.51) and (3.53)

together with the Eq. (3.18)

δo
L2
o

∂2δ∗

∂x∗2
=
Po∆P

∗

σ

[
1 +

∂δ∗

∂x∗

]3/2
+
ρgδo
σ

[
1 +

∂δ∗

∂x∗

]3/2
δ∗ (3.54)

then further manipulation leads to

∂2δ∗

∂x∗2
=
PoL

2
o∆P

∗

σδo

[
1 +

∂δ∗

∂x∗

]3/2
+
ρgL2

o

σ

[
1 +

∂δ∗

∂x∗

]3/2
δ∗ (3.55)

where from the first non-dimensional group on the right hand side, the pressure scale

is found as

Po =
σδo
L2
o

(3.56)

consequently, non-dimensional modelling of a droplet can be reached with

∂2δ∗

∂x∗2
= ∆P ∗

[
1 +

∂δ∗

∂x∗

]3/2
+Bo

[
1 +

∂δ∗

∂x∗

]3/2
δ∗ (3.57)

In Eq. (3.57), Bond number (Bo) represents a dimensionless number which is the indi-

cator of the importance of the ratio of gravitational forces to the surface tension forces.
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This finding is rather important, because this is the first parameter that dynamic co-

alescence simulations depend on. In Chapter 4, droplet models with different Bond

numbers will take place, and its effects will be discussed extensively.

3.4.4.2 Non-dimensionalization of Reynolds Equation

Although parametric equations regarding the coalescence represent real life cases,

simulating non-dimensional settings offers more intuitive approach towards depen-

dencies. Since coalescence of droplets is an unsteady process, time also needs to be

non-dimensionalized, yet the time scale to is unknown a priori,

t∗ =
t

to
(3.58)

where to will be found through the non-dimensionalization process. Consider again

the same non-dimensional parameters given in Eqs. (3.50), (3.51) and (3.53) together

with the Reynolds Eqn. (3.27). Non-dimensional representation becomes:

δo
to

dδ∗

dt∗
− δo
to

∂δ∗

∂x∗
dx∗

dt∗
=

σ

3µLo

∂

∂x∗

{
δ3o
Lo
δ∗3

∂

∂x∗

[
δo
L2
o

ζ
∂2δ∗

∂x∗2
+ ρgδoδ

∗

]}
(3.59)

where the term f only includes the first derivative of the film thickness, and it was

readily stated that it is non-dimensional. Moreover, minus sign in front of the surface

tension, σ, bears no significance in non-dimensional analysis, therefore, it is ignored.

Further rearranging the above relation and equating the first non-dimensional group

on the right hand side to unity, the following non-dimensional scale for the time is

reached:

σδ4oto
3µL4

oδo
= 1 −→ to =

3µL4
o

σδ3o
(3.60)
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and the non-dimensional unsteady Reynolds equation becomes,

dδ∗

dt∗
− ∂δ∗

∂x∗
dx∗

dt∗
=

∂

∂x∗

{
δ∗3

∂

∂x∗

[
ζ
∂2δ∗

∂x∗2
+Boδ∗

]}
(3.61)

Eq. (3.61) is the main non-dimensional equation that governs the coalescence of

droplets and it is used extensively in this thesis study. Bond number once again ap-

pears in the equations, therefore, coalescence simulations also depend on this value.

Notice also that unlike most of the studies in the literature gravity is not disregarded;

this is the reason Bond number appears in our non-dimensional equations.

Boundary conditions also needs to be non-dimensional. Examining all the boundary

conditions in Sections 3.4.1 to 3.4.3, only dependency is for the contact angle of the

droplet, α. Hence, it is concluded that droplet coalescence should only be a function

of the Bond number, Bo, and the contact angle, α. In the following chapter, these

dependencies will be investigated further.
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CHAPTER 4

NUMERICAL RESULTS FOR MERGING SIMULATIONS AND

DISCUSSIONS

Two dimensional droplet modelling and various droplet coalescence scenarios were

numerically analysed in Chapter 3. Both dimensional and non-dimensional results of

these analyses will be presented and investigated in detail within this chapter. Since

this thesis study focuses only on fully wetting 2D cylindrical droplets, contact angle

that the droplet makes with the surface has to be in the interval 0 < α < π/2.

4.1 Coalescence Simulations and Validation within the Literature

Various dimensional merging simulations are conducted to meet real life instances,

and the results are presented under this section. Although the possibilities of fluid-

substrate pairs are countless, only a number of them are investigated in this section.

In accordance with these information, coalescence of water, R-134a and methanol

on different materials are analyzed. Properties of the investigated fluids with the

corresponding substrate are given in the below table:

Table 4.1: Fluid – Substrate pairs used in dimensional simulations.

Fluid – Substrate T (◦C) ρ (kg/m3) µ (Pa·s) σ (N/m) α (◦)

Water – Copper 25 1000 8.89e-4 0.07275 72

R-134a – Aluminium 20 1225.5 2.12e-4 0.00892 8.1

where density, dynamic viscosity and surface tension are properties of the fluid and
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the contact angle is the angle formed at the triple line on gas, fluid, and solid sub-

strate. Note that while air is the gas medium for water–copper setting, R-134a liquid

surrounded by R-134a vapor on an aluminum substrate. The contact angle value at

first row of fluid-substrate pairs is taken from [32] and the data on second row is ob-

tained from [33]. It is experimentally practiced in [32–36] that the apparent contact

angle of fluids given in Table 4.1 highly depend on number of parameters. While

increasing the temperature or including surfactants reduce the contact angle of the

fluid, polishing the surface tends to increase the contact angle. Therefore, contact

angle values given with Table 4.1 are nothing but experimental estimations, and they

are subject to change with the minute differences in the experimental setting. Further-

more, since the simulations are covered thoroughly under the Section 4.2, analysing

the pairs given in Table 4.1 would suffice in terms of demonstration. For two different

initial length values, fluid-substrate pairs in Table 4.1 are simulated, and results are

shared below.

(a)

(b)
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(c)

(d)

Figure 4.1: Coalescence results for water-copper pair. Initial drop has Lo = 10−3 m.

Plots for (a) time evolution of the droplet, (b) bridge height and merged droplet size

variation in time, (c) radius of curvature and (d) second derivative at the steady state.

(a)
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(b)

(c)

(d)

Figure 4.2: Coalescence results for water-copper pair. Initial drop has Lo = 10−6 m.

Plots for (a) time evolution of the droplet, (b) bridge height and merged droplet size

variation in time, (c) radius of curvature and (d) second derivative at the steady state.

By examining the figures presented above, it is easily observed that there is a scale
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between the initial horizontal length of the droplet and the time to reach steady state.

As the initial length is reduced, time to reach the steady state is also decreased. An-

other immediate observation in Fig. 4.2 is that the radius of curvature values at each

spatial location at the steady state barely changes throughout the droplet profile, thus,

it is depicted as a constant line. In Fig. 4.2-(c), the difference between each node are

at the order of 10−16. On the other hand, radius of curvature values considerably vary

in Fig. 4.1-(c). This comparison indicates that the effect of gravity is decreased on

smaller droplets. Same results are achieved with the coalescence simulations of two

identical droplets.

(a)

(b)
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(c)

(d)

Figure 4.3: Coalescence results for water-copper pair. Each drop has Lo = 10−3 m.

Plots for (a) time evolution of the droplet, (b) bridge height and merged droplet size

variation in time, (c) radius of curvature and (d) second derivative at the steady state.

(a)
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(b)

(c)

(d)

Figure 4.4: Coalescence results for water-copper pair. Each drop has Lo = 10−6 m.

Plots for (a) time evolution of the droplet, (b) bridge height and merged droplet size

variation in time, (c) radius of curvature and (d) second derivative at the steady state.
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In all the simulations, the bridge height and the length of the merged droplet reaches

steady state at the same time as expected. It should also be pointed out that the droplet

evolution happens rather quickly at the early stages of coalescence comparing to the

later stages. Following water–copper results, R-134a droplets on aluminum surface

are examined below. Since the contact angle between the R-134a droplet and the

aluminum surface is very small, coalescence results given with Figs. 4.5 to 4.8 could

not be presented with the same scale on both axes, as it would make it impossible to

read the figures.

(a)

(b)
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(c)

(d)

Figure 4.5: Coalescence results for R-134a–aluminium pair. Initial drop has Lo =

10−3 m. Plots for (a) time evolution of the droplet, (b) bridge height and merged

droplet size variation in time, (c) radius of curvature and (d) second derivative at the

steady state.

(a)
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(b)

(c)

(d)

Figure 4.6: Coalescence results for R-134a–aluminium pair. Initial drop has Lo =

10−6 m. Plots for (a) time evolution of the droplet, (b) bridge height and merged

droplet size variation in time, (c) radius of curvature and (d) second derivative at the

steady state.
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(a)

(b)

(c)
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(d)

Figure 4.7: Coalescence results for R-134a–aluminium pair. Each drop has Lo =

10−3 m. Plots for (a) time evolution of the droplet, (b) bridge height and merged

droplet size variation in time, (c) radius of curvature and (d) second derivative at the

steady state.

(a)

(b)
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(c)

(d)

Figure 4.8: Coalescence results for R-134a–aluminium pair. Each drop has Lo =

10−6 m. Plots for (a) time evolution of the droplet, (b) bridge height and merged

droplet size variation in time, (c) radius of curvature and (d) second derivative at the

steady state.

It is immediately observed upon comparison of the coalescence simulations of water–

copper and R-134a–aluminum settings that R-134a droplets merge much slower than

the water droplets. This is mainly due to the difference between the contact angles.

However, simulations are also heavily dependent on surface tension and viscosity as

expected.

In order to emphasize the effect of gravity on droplets and the coalescence processes,

the time evolution of relatively larger water droplets on a copper surface is investi-

gated with three different gravity values. Coalescence simulation of 5 mm droplets

under normal gravity are selected to be the reference case, and negative gravity and
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zero-gravity cases are solved accordingly. The initial and the final shapes are com-

pared in the following figures.

(a)

(b)

Figure 4.9: The effect of gravity on two identical water droplets on copper surface

where α = 72◦ a) Initial shapes, (b) shapes after coalescence.

In Fig. 4.9, the cross-sectional areas of the created droplets under the effect of nega-

tive, zero and positive gravity are equal. Thus, the influence of the gravity on the max-

imum film thickness and the axial length can be readily observed. In this first figure,

droplets are more compressed as the direction of gravity is altered from a droplet on a

flat surface, a positive gravity, to one where the droplet surface faces earth, a negative

gravity case. Similar to the differences occurring in the initial droplet shapes, same

effects are observed for the film thickness variations when the steady state is reached.

Moreover, the apparent retraction of the merged droplet length is greater with the
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negative gravity case since gravity also contributes the flattening of the droplet dome.

Time dependent bridge height and droplet size variation is also given in Fig. 4.10

Figure 4.10: Bridge height and merged droplet size variation in time for water-copper

pair with α = 72◦. Decreasing trends represent the droplet size, while increasing

lines are for the bridge height.

Notice that the red curves are for the case of negative gravity, blue curves for the zero-

gravity case and black/gray curves represent the positive gravity simulations. The

results presented in Fig. 4.10 also confirm that the effect of gravity larger droplets is

non-negligible, therefore, has to be taken into account in the governing equation.

4.1.1 Validation with the Literature

Even though the evolution of single droplet and two identical droplet results presented

in Section 4.1 strongly indicate that the methodology is consistent in itself, these find-

ings must also be compared verified with another study in the literature. The perfect

candidate for this purpose is the study of Yarin et al. [21]. They also investigated

lubrication equation in their theoretical model, however, they disregarded the denom-

inator in relation 3.26 while this term is included for all the applications in this thesis

study. Moreover, although they utilized the same boundary conditions, they applied

a different method for the implication of the initial profile. Instead of generating a

droplet profile by solving the Young-Laplace equation, they preferred to describe the

initial profile via two tangent parabolas, one is convex and the other is concave. This
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preference drastically change the behavior of the droplet evolution. Thus, exclusive

to the verification of this study, the initial profile is created by two tangent parabolas.

The liquid properties employed in [21] was as follows:

Table 4.2: Properties of the liquid used in [21].

Ro (µm) ρ (kg/m3) µ (mPa· s) σ (mN/m)

Diethylene Glycol 119 1118 38.5 43.16

Yarin et al. [21] preferred to use Diethylene Glycol (DEG) as working fluid, both in

their theoretical calculations and in the experimental setup. They denoted Ro as the

radius of the droplet, which corresponds to half length of the droplet for our case.

Early times of coalescence results are compared in the Fig. 4.11:

Figure 4.11: Comparison and validation of results, where black lines are presented

by [21] at different dimensional times (given with ms).

In Fig. 4.11, results of Eq. (3.25) as well as the results of the version where the de-

nominator term (earlier denoted as ζ in Eq. (3.26)) is neglected are analyzed for the

validation. Notice, that droplet profiles shown with blue colored lines do not include
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the effect of this denominator term, whereas red colored droplet profiles include this

effect. Yarin et al. did not share the data set for the figure in question, therefore,

a comparison between results can only be made via observing the figure in a digi-

tized manner. For the first two profiles, both our results for the bridge thicknesses

deviate slightly from the results of Yarin et al., around 2 percent on the relative ba-

sis. Additionally, there is almost no deviation at the bridge thickness observed when

comparing the results without the denominator effect against the results of Yarin et

al. On the other hand, the results where the denominator effect is included still has

a relative error around 1 percent. All in all, both our numerical results for the early

time coalescence are in fairly good alignment with the reference results.

4.2 Effect of Bond Number and Contact Angle in the Simulations

As it was deduced with the non-dimensional analysis conducted in Section 3.4.4,

our governing equations are only functions of the Bo and the contact angle. Effect

of the Bo and contact angle on the formation and the coalescence of droplets will be

presented and compared with over of 35 simulations; having 5 different contact angles

and 6 to 8 different Bond numbers. As before, paramount attention is required in all

these simulations that a tiny bridge is again employed manually between droplets to

avoid the singularly fast movement. In the Fig. 4.12 the effect of the Bond number on

droplets making different contact angles with the surface is shown.

(a) (b)
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(c) (d)

(e)

Figure 4.12: Effect of the Bond number on droplets formed with different contact

angles. Initial droplet profiles for (a) α = 5◦, (b) α = 25◦, (c) α = 45◦, (d) α = 65◦,

(e) α = 85◦

Increase in Bond number results with the domination of gravitational forces over the

surface tension forces. It is evident from the results shown in Fig. 4.12 that the Bond

number has a direct impact on the droplet shape; as it increases, shape of the drops

become more flattened from the top. Nevertheless, there is a limitation regarding the

maximum Bond number that can be attained by a sample drop. Beyond this point,

larger droplets cannot be created; instead droplet starts collapsing towards inside at

the bridge section, splitting into smaller droplets. This maximum Bond number is

dissimilar for drops with unique contact angles; the higher contact angle of the drop,

the less the maximum Bond number that a droplet can withstand. While the lower
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limit is simply zero, maximum limit of the Bond number for distinct contact angles

are given in the Table 4.3.

Table 4.3: Maximum Bond Number Values for Different Contact Angles

Contact Angle α = 5◦ α = 25◦ α = 45◦ α = 65◦ α = 85◦

Max. Bond Number ∼700 ∼600 ∼550 ∼500 ∼250

Notice that maximum Bond numbers given in the Table 4.3 are approximate. Since

the problem requires a well balance between the space interval dx and the time inter-

val dt as well as it includes several convergence criteria, determining the exact Bond

number value for a specific setting is rather toilsome. However, finding a better re-

sult is only practiced with a droplet having a contact angle of 65◦. Maximum Bond

number for this setting is observed around Bo = 537. Further Bond numbers can be

achieved by reducing the convergence criterion of RK4 method applied to Eq. (3.18),

yet it severely compromises the accuracy of results. Moreover, although it is possible

to increase the Bond number by reducing the convergence criterion (and consequently

reducing the accuracy), the contact angle of the composed droplet diverges from the

value that is defined at the first place. Therefore, it should be pointed out that Bond

number limitation is reached as the contact angle of the created droplet deviates from

the one that is provided as the boundary condition.

In order to be able to generate a proper droplet and run a smooth simulation, one must

increase the total number of nodes in the solution domain, i.e. decrease the spatial

interval dx. However, doing so not only immensely increases the computational cost,

but also it tightens the interval to achieve the delicate balance between the space

interval dx and the time interval dt. For the contact angles α = 5◦ − 65◦, droplets

can be created with a fair number of nodes, e.g. 100 − 200. However, at the close

proximity to 85◦ contact angle, the spatial resolution needs to be increased to be able

to create the droplet profile at the boundaries. Due to these limitations, 85◦ setting is

applied to a larger number of nodes, 1000 to be exact. Yet, even employing this much

nodes can have devastating effect on the computational time. While other settings

lasts on the order of half an hour, 85◦ contact angle case with 1000 nodes takes up to
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couple days. After successfully attaining their initial shapes, droplets are ready for

coalescence. Merging process for 25◦, 45◦, 65◦ and 85◦ contact angles are presented

in Figs. 4.13 to 4.17. It should also be noted that only a number of time steps of

coalescence simulations are depicted in Figs. 4.13 to 4.17 to increase the readability

of results.

(a)

(b)

(c)
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(d)

Figure 4.13: Coalescence results for 5◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 700

(a)

(b)
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(c)

(d)

Figure 4.14: Coalescence results for 25◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 600
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(a)

(b)

(c)

(d)

Figure 4.15: Coalescence results for 45◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 550
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(a)

(b)

(c)

(d)

Figure 4.16: Coalescence results for 65◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 500
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(a)

(b)

(c)

(d)

Figure 4.17: Coalescence results for 85◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 250
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Notice that some of the simulation results could not be presented with the same scale

on both axes, as it would make it impossible to read the figures. Instead, its y-axis

is given with more resolution. Moreover, as expected, in all the coalescence results

increase in the Bond number plays a dominant role on both the evolution of the bridge

height and the length of the droplets. When Bond number is increased, final bridge

height of the coalesced droplet is reduced. If the Bond number is low, then the final

length of the coalesced droplet is smaller.

As result of the coalescence simulations, number of dimensionless parameters are in-

vestigated. First of which is the time evolution of the bridge height between droplets.

For distinct Bond numbers, non-dimensional bridge height versus non-dimensional

time is plotted and they are shown in Fig. 4.18:

(a) (b)

(c) (d)
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(e)

Figure 4.18: Non-dimensional analysis on the effect of Bond number to the bridge

heights of droplets having different contact angles (a) α = 5◦, (b) α = 25◦, (c)

α = 45◦, (d) α = 65◦, (e) α = 85◦

When the bridge height difference between two consecutive time steps is sufficiently

small, steady state conditions within the coalescence process are attained. It is ob-

served from Fig. 4.18 the non-dimensional time for reaching the steady state is indif-

ferent for various settings as it was also indicated with our non-dimensional anal-

ysis in Section 3.4.4. Analogous to the bridge height analysis, non-dimensional

length with respect to non-dimensional time is investigated, and results are shared

in Fig. 4.19:

(a) (b)
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(c) (d)

(e)

Figure 4.19: Non-dimensional analysis on the effect of Bond number to the lengths

of droplets having different contact angles (a) α = 5◦, (b) α = 25◦, (c) α = 45◦, (d)

α = 65◦, (e) α = 85◦

It is deduced from these results that greater the contact angle is, the higher the bridge

height at steady state. However, increasing the Bond number again affects the max-

imum height achieved since gravitational forces somewhat compress the coalesced

droplet. Droplets can still be created and merged with Bond numbers beyond the

approximate limits given with Table 4.3, yet the outcome would be most likely mis-

leading and the results may be easily misinterpreted since numerical accuracy is dras-

tically decreased and a substantial error is attained regarding the contact angle. As the

merged droplet reaches to its steady state, radius of curvature and the second deriva-

tive values are checked at every node of the profile in Figs. 4.20 and 4.21 in order to

see the effect of Bond number and contact angle to these parameters:
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Non-dimensional analysis on the effect of Bond number to the radius of

curvature values of droplets having different contact angles (a) First set of results for

α = 5◦, (b) Second set of results for α = 5◦, (c) First set of results for α = 45◦, (d)

Second set of results for α = 45◦, (e) First set of results for α = 85◦, (f) Second set

of results for α = 85◦
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Radius of the curvature is an important indicator in terms of verifying the integrity of

the method employed. Once the coalescence dynamics are settled and merged droplet

attained its steady state, the radius of curvature needs to converge to a constant for the

zero Bond number cases. As Bond number increases, the obliquity in the radius of

curvature also increases. Since the trend in radius of curvature results follow similar

trend, results in Fig. 4.20 are only given for 5◦, 45◦ and 85◦ contact angles.

(a) (b)

(c) (d)
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(e)

Figure 4.21: Non-dimensional analysis on the effect of Bond number to the second

derivative values of droplets having different contact angles (a) α = 5◦, (b) α = 25◦,

(c) α = 45◦, (d) α = 65◦, (e) α = 85◦

In Fig. 4.21, the second derivative values of each node at the steady state are plotted.

It is easily observed that as the contact angle grows, the second derivative values

exponentially increase at the steady state. In a similar manner, the formation of two

identical droplets are also achieved for various Bond numbers and unique contact

angles. Their respective initial profiles are given in the Fig. 4.22:

(a) (b)
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(c) (d)

Figure 4.22: Effect of the Bond number on identical droplets formed with different

contact angles. Initial droplet profiles with contact angles (a) α = 5◦, (b) α = 25◦,

(c) α = 45◦, (d) α = 65◦

Once the initial profiles are created, the coalescence simulations are completed for

25◦, 45◦ and 65◦ contact angles. They are presented in Figs. 4.23 to 4.26.
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(a)

(b)

(c)

(d)

Figure 4.23: Coalescence results for 5◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 700
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(a)

(b)

(c)

(d)

Figure 4.24: Coalescence results for 25◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 600
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(a)

(b)

(c)

(d)

Figure 4.25: Coalescence results for 45◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 550
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(a)

(b)

(c)

(d)

Figure 4.26: Coalescence results for 65◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 15, (c) Bo = 100, (d) Bo = 500
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Notice that the coalescence results for 5◦ and 25◦ contact angle simulations as well

as merging result of 45◦ simulation with 550 Bond number and the merging result

of 65◦ simulation with 500 Bond number are not represented with same scales on

both axes. It can easily be observed that the coalescence results of single symmet-

rical droplet given with Figs. 4.13 to 4.16 and two identical droplets presented with

Figs. 4.23 to 4.26 are exactly the same. Thus, numerical equations, codes and their

implementation are consistent in itself.

Similar to the previous results, two important parameters, bridge height and length of

the coalescing droplet through time are investigated and presented in Fig. 4.27:

(a) (b)

(c) (d)
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(e)

Figure 4.27: Effect of the Bond number on identical droplets formed with different

contact angles. Top five lines are for the lengths that are decreasing, while bottom five

lines are for bridge heights which are increasing. The plots are given for, (a) Bridge

height with α = 5◦, (b) length with α = 5◦, (c) α = 25◦, (d) α = 45◦, (e) α = 65◦

It should be pointed out that for the α = 5◦ setting, the bridge height and length data

could not be presented in the same figure since there was a large scaling difference

between these two data, which eventually lead to an incoherent figure. For the other

contact angle values, fitting these data into a single figure is readable. It is easily

discerned that the time to reach steady state is equal for both length and bridge height

parameters. Radius of curvature and and second derivative values at each spatial node

is again analyzed, and presented below.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.28: Non-dimensional analysis on the effect of Bond number to the radius of

curvature values of droplets having different contact angles (a) First set of results for

α = 5◦, (b) Second set of results for α = 5◦, (c) First set of results for α = 45◦, (d)

Second set of results for α = 45◦, (e) First set of results for α = 65◦, (f) Second set

of results for α = 65◦
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(a) (b)

(c) (d)

Figure 4.29: Non-dimensional analysis on the effect of Bond number to the second

derivative values of droplets having different contact angles (a) α = 5◦, (b) α = 25◦,

(c) α = 45◦, (d) α = 65◦

Merging of two identical droplets with 85◦ contact angle is avoided. The merging

simulations for single symmetrical droplet of 85◦ contact angle takes up to couple

days to complete since at least 1000 nodes are required in the solution domain to

create a proper profile. For the merging simulations of two identical droplets, total

mesh number doubles up to 2000 nodes. With Intel Core i9-9900K CPU, the solution

of only one time step of this setting approximately takes 10 seconds, therefore, it is

estimated that the whole simulation inevitably takes around 10 days. Thus, it is not

feasible to analyse the coalescence of two identical droplets with 85◦ contact angle.

84



Table 4.4: Non-dimensional bridge height values at the steady state.

Contact

Angle

Bond

Number

Single Symmetrical

Droplet δ∗
Two Identical

Droplets δ∗

5◦

0 0.015436 0.015439

6 0.014695 0.014697

15 0.013697 0.013699

50 0.010824 0.010825

100 0.008436 0.008436

300 0.005045 0.005045

500 0.003919 0.003919

700 0.003318 0.003319

25◦

0 0.078379 0.078379

6 0.074341 0.074341

15 0.068992 0.068992

50 0.054028 0.054028

100 0.041945 0.041945

300 0.025060 0.025060

500 0.019476 0.019476

600 0.017801 0.017801

45◦

0 0.146448 0.146466

6 0.137547 0.137563

15 0.126247 0.126252

50 0.096784 0.096789

100 0.074510 0.074513

300 0.044444 0.044444

500 0.034593 0.034593

550 0.033016 0.033016

65◦

0 0.225258 0.225271

6 0.207464 0.207468

15 0.186643 0.186648

50 0.138378 0.138380

100 0.105289 0.105290

300 0.062634 0.062634

500 0.048808 0.048808
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Although the coalescence results for simulations of single symmetric droplet and two

identical droplets align perfectly, bridge heights at the steady state are compared in the

table given above. Aside from very slight differences due to numerical errors, results

are in perfect match again. These findings are plotted in Fig. 4.30 to have a visual

understanding towards the Bond number versus the contact angle dependency on the

maximum thickness of the droplet at the steady state. It is observed that the effect

of Bond number in 5◦ degrees contact angle is somewhat small compared to other

contact angle cases. On the other hand, as the contact angle of the droplet increases,

the effect of Bond number becomes more evident.

Figure 4.30: Maximum thickness values of droplets reached at the steady state is

illustrated. Individual lines represent different Bond numbers, while different contact

angles are given in the x-axis.

The last set of results regarding the droplet formation is gathered for different sized

droplets. Since previous results provide sufficient insight and different sized droplets

are again generated in a correlative way, limited number of modellings are executed

for illustrative purposes. Here, different sized droplets are proportioned with their

initial horizontal lengths. Since the simulations followed a similar pattern until now,

only the modelling results having 25◦ and 65◦ contact angles subjected to different

Bond numbers are investigated.
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(a) (b)

Figure 4.31: Effect of the Bond number on droplets having 1 : 3 initial length ratios.

Initial droplet profiles for (a) contact angle α = 25◦ and (b) contact angle α = 65◦.

It should be noted that the initial profiles given in Fig. 4.31 as well as figures pre-

sented below are again not scaled on both axes, as it would make it difficult to read

the figures. Also, the effect of Bond number is immediately recognized with larger

droplets, while it does not have a substantial impact on the droplets having relatively

smaller size.

(a)
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(b)

(c)

Figure 4.32: Coalescence results for 25◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 50, (c) Bo = 150

(a)
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(b)

(c)

Figure 4.33: Coalescence results for 65◦ contact angle case. Simulations with (a) Bo

= 0, (b) Bo = 50, (c) Bo = 150

The time evolution of the created settings are presented in Fig. 4.32 and Fig. 4.33.

As the coalescence commences, a portion of the larger droplet starts leaning towards

the smaller droplet immediately. At the steady state, the middle plane of the final

droplet resides between the initial shapes; closer to the initial middle point of the

larger droplet. Lastly, the compression of the droplet in the x-axis decreases with

increasing Bond number.
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(a) (b)

Figure 4.34: Non-dimensional analysis on the effect of Bond number to the radius of

curvature values at the steady state. Results for (a) contact angle α = 25◦, (b) contact

angle α = 65◦.

(a) (b)

Figure 4.35: Non-dimensional analysis on the effect of Bond number to the second

derivative values at the steady state. Results for (a) contact angle α = 25◦, (b) contact

angle α = 65◦.
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CHAPTER 5

CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

5.1 Conclusion

Droplet or thin film coalescence has been the topic of interest since early 1960’s. Var-

ious forces such as pressure, viscosity, surface tension and gravity effect the coales-

cence dynamics of droplets. 2D fully wetting droplets of micron and/or sub-micron

scales are first created with Young-Laplace equation and the temporal evolution of

coalescing droplets are thoroughly investigated. The governing equation is the un-

steady Reynolds equation and it is a 4th order nonlinear PDE. This equation is solved

using a time step marching algorithm in conjunction with an implicit formulation of

the spatial domain. Nonlinear nature of the equation is overcome by integrating an

iterative technique into the formulation of the problem. Coalescence of axially sym-

metric droplets, two identical droplets and different sized droplets are studied. Aside

from the dimensional studies, a non-dimensional analysis is also conducted to find a

proper time scale and find the dependencies of the governing equation. It is reached

from this analysis that Bond number and the contact angle are the only independent

parameters in coalescence dynamics. The approach is validated through the literature

and the corresponding verification is completed.

In the dimensional results, coalescence of water droplets on copper and coalescence

of R-134a droplets on aluminum is studied. It is observed that R-134a droplets merge

much slower compared to the water droplets. Although water has a higher viscosity

value than R-134a, it also has higher surface tension value. In return, water touches

the substrate with a higher contact angle which enables rapid coalescence. Addition-

ally, the effect of gravity on different sized water droplets are investigated, which is
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non-negligible for larger droplets. On the other hand, the effect of Bond number and

the contact angle on thin film evolution is examined with non-dimensional simula-

tions.

To the best knowledge of the author, there are not any studies in the literature for

the coalescence of different sized droplets, which were investigated in detail in the

current thesis study. Moreover, coalescence analyses that are conducted in this work

included the whole spectrum of contact angles between the close proximity of 0◦ and

90◦, while in the literature, only a certain number of contact angles are often studied.

Lastly, previous authors disregarded the denominator term defined in Eq. (3.26) in

their studies, however, for larger contact angle values its effect could not be overruled.

Therefore, this term was included in our equations as well.

5.2 Suggestions For Future Work

The current study investigates the coalescence of fully wetting 2D droplets. To ex-

pand the limits of the study, one can investigate the dynamic movement of fully wet-

ting 3D droplets. Additionally, the merging dynamics of droplets with different wet-

ting characteristics can be studied.

Finally, the dynamic coalescence of a droplet with a meniscus inside the groove of a

heat pipe could be studied both in cylindrical and spherical coordinates.
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APPENDIX A

FIRST AND LAST TWO ROWS OF COEFFICIENT MATRIX

A.1 Equations of Single Droplet with Symmetry Axis
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For i = N − 3:
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A.2 Equations of Two Identical Droplets
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For i = N − 3:
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For i = N − 2:
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APPENDIX B

FLOWCHARTS

B.1 Flowchart of Droplet Modelling

Figure B.1: Flowchart of numerical method of the droplet modelling
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B.2 Flowchart of Coalescence of Droplets

Figure B.2: Flowchart of numerical method of the droplet coalescence
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