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Name, Surname: Şevki Onur HENDEN

Signature :

iv



ABSTRACT

IDENTIFYING ISOFORM SWITCHES IN BREAST CANCER

HENDEN, Şevki Onur

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Tolga CAN

Sep 2021, 44 pages

Characterizing the human genome’s molecular functions and their variations across

people is vital for understanding the cellular processes behind human genetic charac-

teristics and diseases. With the advent of single-cell RNA sequencing (scRNA-seq),

it is now possible to investigate gene expression in individual cells. Although a num-

ber of scRNA-seq bioinformatics tools are now available, many of them focus on

overall gene expression levels and, as a result, often ignore heterogeneity caused by

individual transcript expression. Differences in the relative abundance of expressed

isoforms, such as those that occur between normal and diseased states, may have dra-

matic effects on phenotype or prognosis. This variation in expression may aid in the

discovery of novel therapies as well as the better management of patients in certain

situations. We propose a computational workflow for scRNA-seq data that identi-

fies differential transcript usage from transcript abundances produced by widely used

alignment tools such as Salmon. This approach enabled us to detect alterations in

gene expression that were previously overlooked, in patients with breast cancer.

Keywords: breast cancer, isoform switch, manova, data analysis
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ÖZ

MEME KANSERİNDE İZOFORM DEĞİŞİKLİKLERİNİN
TANIMLANMASI

HENDEN, Şevki Onur

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga CAN

2021 , 44 sayfa

İnsan genomunun moleküler işlevlerini ve varyasyonlarını karakterize etmek, insan

genetik özelliklerinin ve hastalıklarının arkasındaki hücresel süreçleri anlamak için

hayati önem taşır. Tek hücreli RNA dizilemesinin ortaya çıkmasıyla birlikte, gen

ekspresyonunu hücreler özelinde araştırmak mümkün hale gelmiştir. Şu anda birçok

scRNA-seq biyoenformatik analiz metodu mevcut olmasına rağmen, bunların çoğu

genel gen ekspresyon seviyelerine odaklanır ve sonuç olarak, bireysel transkript eksp-

resyonunun neden olduğu heterojenliği göz ardı ederler. Normal ve hastalıklı durum-

lar arasında görece farklı sayılarda eksprese edilen izoformlar, fenotip veya prognoz

üzerinde dramatik etkilere sahip olabilir. İzoformlardaki bu çeşitliliğin bulunması,

yeni tedavilerin keşfedilmesine ve belirli durumlarda hastaların daha iyi yönetilme-

sine yardımcı olabilir. Salmon gibi hizalama araçları tarafından, scRNA-seq verileri

için üretilen transkript ekspresyonundan, diferansiyel transkript kullanımını belirle-

yen bir analiz yöntemi öneriyoruz. Bu yaklaşım, meme kanserli hastalarda daha önce

gözden kaçan gen ekspresyonundaki değişiklikleri tespit etmemize olanak sağladı.

Anahtar Kelimeler: meme kanseri, izoform değişikliği, manova, veri analizi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Due to alternative splicing, a gene may generate various mRNA sequences that code

for functionally distinct protein isoforms. These changes may have a significant func-

tional impact on organisms which may be both unicellular and multicellular. Single-

cell sequencing methods have enabled researchers to individually characterize all cell

types in a complicated population, such as a tumor or growing organ. Studies aided

in the discovery of novel types of cells, thus improving our knowledge of both normal

and disease-related biological processes and paving the way for the development of

innovative therapeutic methods. Although many methods for performing scRNA-seq

analysis are now available, many of them only assess overall gene expression lev-

els and therefore do not include heterogeneity in transcript expression, especially for

genes that exhibit multiple isoforms. Unbiased transcriptome analysis of control and

treatment groups can help identify markers that alter functional modules and helps

researchers understand the disease mechanisms.

Here is the outline for gene CLK1 in human shown in Figure 1.1 Each line represents

a transcript and rectangles represents coding parts of the gene and between rectan-

gles not coding parts. Most of the current research focuses on gene level differential

expression where read counts created by aggregating the transcript level expressions.

Also, extended this analogy to transcript level reads, Having one transcript to be sig-

nificantly expressed , in other words , transcript level differential expression is not

the focus of this thesis. Our focus to find behaviour change in pairs of isoforms in

different conditions settings. This kind of information cannot be retrieved using con-
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Figure 1.1: ENSEMBL entry for CLK1 gene

ventional differential expression methods. Significant expression of a transcript does

not mean isoform switch or differential transcript usage. It takes two transcript to be

in behavior change to be accepted as isoform switch. This kind of solution, will help

scientists to uncover in certain conditions( tumor or disease) which parts of the gene

is selectively transcribed and which parts are not.

1.2 Proposed Methods and Models

As a consequence of technological noise and dropouts, read counts for single cell

RNA sequencing are often zero or near-zero. This is due to the restricted amount of

RNA per cell, which limits the effectiveness of collecting and processing transcripts

prior to sequencing. Also, capture efficacy varies across cells, making direct compar-

isons difficult. So we used a filter to exclude transcripts with low read counts. This

phase guarantees substantial counts, quality checks, and improved performance. Our

2



proposed method requires a matrix of transcript expression counts, which may be pro-

duced using alignment tools like Salmon. Each transcript for a particular gene repre-

sents a feature for that gene, and each sample represents observations. We transform

read expression data to log scale to show underlying biological processes because

natural fold change does not match to the normal distribution, but log2 converted

fold change does. Our selected method MANOVA assumes data have a normal dis-

tribution, we use the Interquartile Range Rule to remove outliers from control and

treatment groups and replace them with the group median. We used the T principle

component to predict differentially expressed genes and provide MANOVA p values

for the gene’s differential expression. The next step is to see whether there is an iso-

form switch between transcripts of the gene. The median read counts for a group are

computed for a transcript. Then the ratios are computed. The median read ratios of

paired transcripts were compared. An isoform switch occurs when one transcript of

a gene is elevated while another transcript of the same gene is downregulated. We

include the kinds of switches (exonic, intronic, 3’ UTR, 5’ UTR), the fold change

difference, and the p value associated with each gene.

1.3 Contributions and Novelties

We propose a method to analyze differential usage of isoforms between control and

treatment groups. Our proposed method enables user to identify differentially ex-

pressed transcripts that have been overlooked by gene level differential expression

analysis. Our contributions are as follows:

• Our proposed method uses raw transcript read counts where other tools uses

isoform fraction where each isoform read counts are normalized by total iso-

form read counts. This method enables user to differentiate switches even there

are no change in isoform fraction.

• Our proposed method compares all possible isoform pairs and reports if there is

a switch between with log fold change difference and p values and end results

are left to end-user to interpret.

• Our proposed method uses median read counts instead of mean read counts.

3



This step with log transformation prevents outliers from affecting general be-

haviour and offers robust results. Other tools avaliable generally uses mean

read counts where results get easily affected by outliers.

• Our proposed method only considers genes having isoform switch by calculat-

ing median read counts before applying MANOVA. This prefiltering mecha-

nism speeds up our process by almost 10 fold.

• Our proposed method offers transcript type information to aid alternative splic-

ing analysis.

1.4 The Outline of the Thesis

The thesis is arranged as follows: Chapter 2 contains all of the terminology and back-

ground information. In Chapter 3, the data collection and the proposed framework

are discussed in detail. Experiment configuration and experimental findings are re-

ported in Chapter 4 as well as discussion of shortcomings and future improvements.

Concluding remarks are included in Chapter 5.

4



CHAPTER 2

BACKGROUND

In this chapter, we explain general concepts required to understand the how a single

gene makes impact for an organism. We start with translation and transcript dynam-

ics, and moving on to alternative splicing and alternative polyadenylation mechanisms

in the context of differentially expressed genes and differential transcript usage. We

then explain the type of the data we are dealing with and which methods we used

to quantify that data. We briefly explain methods to answer similar problem we are

dealing with. Then we describe the methods and tools we employed to get.

2.1 Translation - Transcription dynamics

Genes code for proteins, and proteins are responsible for the function of the cell. As

a result, the hundreds of genes that are expressed in a certain cell define what that

cell is capable of. It is believed that the flow of information from DNA to RNA

to protein offers the cell a possible control point for self-regulating its activities by

changing the quantity and types of proteins produced by the cell. The quantity of a

specific protein present in a cell at any given moment indicates the balance between

the protein’s synthesis and degradative biochemical pathways at that point in time. To

understand the synthetic side of this equation, consider that protein synthesis begins

with transcription (DNA to RNA) and continues with translation (RNA to protein).

The quantities and kinds of mRNA molecules found in a cell are indicative of the

cell’s overall activity. When it comes to gene expression, the most important control

point is typically found at the very beginning of the protein synthesis process – at the

time of transcription. Because a single mRNA molecule may result in the production

5



of multiple copies of the same protein, RNA transcription is an effective control point

[29]. In certain genes, just a portion of the DNA sequence is used in the production

of protein. When an RNA transcript (or the DNA that encodes it) has noncoding

portions, those sections are called introns, and they are spliced away before the RNA

molecule is translated into protein. Exons are the portions of DNA (or RNA) that

contain the genetic information for proteins. New, immature strands of messenger

RNA, known as pre-mRNA, are produced after transcription and may include both

introns and exons. Splicing is a process in which the pre-mRNA molecule undergoes

alteration in the nucleus, during which the noncoding introns are removed and only

the coding exons are retained. The process of splicing results in the production of

a mature messenger RNA molecule, which is subsequently translated into a protein

[18].
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Figure 2.1: Transcription dynamics
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The mRNA is made up of a protein-coding region as well as untranslated sections

at the 5’ and 3’ ends (UTRs). The 5’ untranslated region (UTR) of an mRNA is

the part of the mRNA that extends from the 5’ end to the location of the first codon

utilized in translation. The segment of an mRNA that extends from the 3’ end of

an mRNA to the location of the final codon utilized in translation is known as the

3’ UTR. The 3’ untranslated region (UTR) is variable in both sequence and length;

it covers the region between the stop codon and the poly(A) tail. Importantly, the

3’ UTR sequence contains numerous regulatory motifs that regulate mRNA turnover,

stability, and localization, and, as a result, it is involved in the control of many aspects

of post transcriptional gene expression and transcription [35]. In addition, the 5’ UTR

also contains a large number of binding sites for proteins that either inhibit or enhance

translation in response to chemical signals that are relayed. The impairment of any

of these characteristics in mRNAs may cause translational regulation to be disrupted,

resulting in a variety of illnesses or increased disease vulnerability [7].

2.2 Alternative Splicing

Alternative splicing emerges as a fundamental factor in gene regulation by produc-

ing functionally diverse proteomes that interfere with nearly every biological function

studied, owing to its widespread use and molecular flexibility [20]. Previous research

has revealed that about 92–94 percent of all human genes are affected by alterna-

tive splicing, enabling them to express a diverse variety of transcripts from the same

genomic region [44]. Such differences result in changes in transcription factors, local-

ization of proteins, enzymatic properties, binding to other proteins, channel proteins

and overall changes in cellular proteins [20]. Identification of such transcriptional

differences between normal and pathological states may result in the identification

of markers of progression or prognosis, as well as the identification of molecules that

may be treated with pharmaceuticals or a better understanding of the molecular events

that occurred. In most instances, inferring expression changes is a critical but early

step of the discovery process, with the findings typically passed into interpretative

analysis later [38].
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Figure 2.2: basic types of alternative RNA splicing events

2.3 Alternative Polyadenylation

As with alternative splicing, alternative polyadenylation (APA) adds complexity to the

human cell transcriptome by generating mRNAs with varied 3’ untranslated regions

(3’UTRs) and/or encoding variable protein isoforms [13]. Polyadenylation and 3’

end formation are essential for gene expression because incorrectly processed mes-

senger RNAs are not transferred from the nucleus to the cytoplasm for translation.

Similarly, inefficiently processed mRNAs may be transported out of the nucleus at a

8



lesser rate than effectively processed mRNAs [25]. By utilizing proximal APA sites

and shorter 3’-UTRs, proliferating cells escape miRNA-mediated regulation. These

APA and 3’-UTR shortening processes may explain certain proto-oncogene activation

in cancer cells [1]. Thus, polyadenylation of 3’UTRs may have a variety of effects

on mRNA metabolism, including mRNA stability [46] and translation regulation [5]

consequently impacting a cell’s development, growth, and viability [25]. Studies have

shown that disease-related instances reflecting changes in APA induced by aberrant

poly(A) signals exist through loss-of-function mutation or a gain-of-function muta-

tion [10] [17].

2.4 Differentially Expressed Genes

Transcriptome analysis is a valuable technique for identifying and understanding the

molecular basis of phenotype diversity in biology, including diseases. The search

for differentially expressed (DE) genes is arguably the most prominent use of tran-

scriptome profiling [37]. In order to be classed as differentially expressed, a gene

must show a statistically significant difference or change in read counts or expres-

sion levels/indexes between two experimental circumstances (e.g., between a control

condition and an experimental condition). Gene expression analysis may be accom-

plished via the use of a number of statistical techniques. Statistical distributions are

used to infer the pattern of differential gene expression in order to estimate it. It

is common practice to select differentially expressed genes using a combination of

an expression change threshold and a score cutoff, which are usually determined via

statistical modeling [4].

2.5 Differential Transcript Usage (DTU)

DTU is defined as variations in the expression proportions of a gene’s isoforms, as

opposed to changes in the amounts of individual transcripts, as previously mentioned.

DTU takes part in development and cell differentiation, mRNA repression or stabi-

lization, and in disease mechanisms [45]. For example, cancer cell lines frequently

produce significant quantities of mRNA isoforms with shorter 3’ untranslated regions

9



(UTRs) as compared to similarly growing non-transformed cell types [26] which are

also related to promotion of tumor growth [30].

Control ControlTreatment Treatment

Differential Transcript Usage Differential Transcript Expression

Ex
pr

es
si

on

Ex
pr

es
si

on

Isoform B

Isoform A

Figure 2.3: For a gene with two isoforms, a schematic representation of differential

transcript expression (DTE) and differential transcript usage (DTU) between condi-

tions [38].

2.6 Single Cell RNA-Seq

Individual cell variations can have substantial functional effects on both unicellu-

lar and multicellular organisms. The single-cell mRNA sequencing method enables

the investigation of individual cells’ transcriptomes in an unbiased, high-throughput,

and high-resolution manner. Single-cell RNA-sequencing techniques have already

revealed new biology in terms of tissue composition, transcription kinetics, and gene

regulatory connections [21]. Single-cell data allows us to investigate the regulatory

circuitry that regulates cells at a level that was previously impossible to achieve with

data gathered from bulk cell populations.

2.7 Salmon

For measuring the amount of transcripts present in cells, next-generation sequencing

technology (RNA-seq) has emerged as the standard method. Because of the fragmen-

tation of sequencing material, the measurement and interpretation of RNA-seq data is

more complicated [48]. Salmon is a method for predicting transcript abundance from

10



RNA-seq data that is both fast and reliable to use. When used in conjunction with

RNA-sequencing data, Salmon’s comprehensive model takes into account sample-

specific factors and biases that are common in the data (such as coverage positional

errors, sequence-specific biases at the 5’ and 3’ ends of sequenced fragments), which

increases the accuracy of abundance estimations as well as the confidence in subse-

quent differential expression analyses (e.g., strand-specific procedures and fragment

length distribution) [34].

2.8 Related work

When it comes to differential gene expression, there are many tutorials and workflows

available. However, the tools available for conducting differential transcript usage

(DTU) analysis are scarce. Some of the currently available packages and functions

that may be utilized for statistical analysis of DTU are listed below. DEXSeq [2],

which was initially developed for differential exon usage identification, makes use of

generalized linear models and provides reliable control of false discoveries by tak-

ing biological variance into consideration. Differential exon usage may be used as

an indication of differential transcript usage, however it is not always possible to de-

termine which isoforms are differentially controlled from one another. Furthermore,

it is up to the user to determine whether transcripts are being utilized in a different

way. When a single exon of a gene with multiple exons is referred to as differentially

utilized, the interpretation of the findings of the technique is simple and clear. When

a large number of exons within a gene are affected, the interpretation becomes more

difficult. Using the Dirichlet-multinomial distribution as the basis, DRIMSeq [28]

offers a statistical framework that may be used to detect variations in isoform usage

between circumstances. The Dirichlet-multinomial model naturally accommodates

for differential gene expression without sacrificing information about overall gene

abundance, and it has the capacity to account for their linked nature by modeling iso-

form expression along with the other isoform expression models. Sierra [33] uses the

differential exon usage technique DEXSeq, but applies it to peak coordinates instead

of exons. DTU is detected if there is a substantial shift in the relative utilization of

peaks. StageR [11] proposed two-stage testing as a generic paradigm for evaluating
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high-throughput studies containing many hypotheses that may be aggregated. When

aggregating transcript-level p values to the gene level, the two-stage approach bene-

fits from the impressive performance of FDR control, which is particularly useful for

DTU and DTE studies. IsoformSwitchAnalyzeR [42] performs enrichment tests us-

ing basic R’s prop test, and enrichments are compared using the Fisher test to identify

isoform changes across data. In this thesis, we provide end to end analysis starting

from transcript level abudances and providing results and illustrations for isoform

switches complemented with bio type and transcript type information which may be

used to examine a biological phenomenon known as alternative splicing.

2.9 Multivariate Analysis of Variance (MANOVA)

When there are two or more levels in a group, multivariate analysis of variance is

used to determine differences between composite means for a collection of depen-

dent variables [41]. In other terms, multivariate analysis of variance (MANOVA)

is a variant of analysis of variance (ANOVA) that includes several dependent vari-

ables. For example, ANOVA examines the difference in means between two or

more groups, whereas MANOVA examines the difference in vectors of meaning be-

tween two groups. MANOVA makes several validity assumptions, including mul-

tivariate normality, homogeneity of the covariance matrices, and observation inde-

pendence [16]. The assumption that data follows a multivariate normal distribution

is especially implausible for the majority of ecological data sets. This is because the

distributions of particular species’ abundances are frequently extremely aggregated or

skewed. Additionally, abundances are discontinuous rather than continuous, species

with tiny means frequently have asymmetric distributions due to being forced to ter-

minate at zero, and uncommon species add a large number of zeros to the data set.

MANOVA test statistics are relatively insensitive to deviations from multivariate nor-

mality. Finally, many of these test statistics are mathematically difficult to compute

when the number of variables exceeds the number of sample units, as is frequently the

case in ecological applications [3]. In this context, we use MANOVA to assess sta-

tistical significance between read counts of multiple isoforms of a gene from samples

with different phenotype.
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2.10 Multivariate Independent Comparison of Observations (micompr)

R’s package micompr is a method for determining if two or more multivariate sam-

ples were taken from the same distribution. The technique converts multivariate data

to a collection of linearly uncorrelated statistical measures, which are then compared

using a variety of statistical methods. This method is insensitive to the distributional

characteristics of the samples and automatically chooses the features that best ac-

count for their differences. The method is suitable for comparing samples of time

series, pictures, spectrometric measurements, or comparable multivariate data with

a high dimension. The method works as follows: do a MANOVA test on the sam-

ples, assuming that each observation contains q-dimensions matching to the first q

principle components (dimensions), and that these dimensions adequately explain a

user-defined minimum percentage of variance. Second, use univariate tests to exam-

ine observations inside individual PCs. The t-test and the Mann-Whitney U test are

two possible tests for comparing two samples, whereas the ANOVA and Kruskal-

Wallis tests are the parametric and non-parametric variants for comparing more than

two samples, respectively [14].
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data acquisition

scRNA-sequencing dataset for primary breast cancer retrieved with GEO Accession

number GSE75688. The dataset includes 515 samples from a total of 11 patients

having distinct subtypes of breast cancer [9]. Phenotype details can be seen from 3.1.

Please refer to the original paper for further library preparation specific information.

Cell Count

Patient ID Subtype Primary or Metastatic Bcell Myeloid Stromal Tcell Tumor Unknown

BC01 ER+ primary 2 20 4

BC02 ER+ primary 53 3

BC03 ER+ and HER2+ primary 9 9 15 4

BC03LN ER+ and HER2+ metastatic 38 5 10 2

BC04 HER2+ primary 3 1 4 47 4

BC05 HER2+ primary 1 75 1

BC06 HER2+ primary 8 2 8 7

BC07 TNBC primary 3 10 4 7 26 1

BC07LN TNBC metastatic 23 1 2 26 1

BC08 TNBC primary 1 6 15 1

BC09 TNBC primary 1 16 2 7 3

BC09_Re TNBC primary 1 6 2 20 2

BC10 TNBC primary 2 2 11 1

BC11 TNBC primary 11

Table 3.1: Cell counts of respective phenotypes

The expression levels of GENCODE v27 genes was estimated using Salmon (ver-

sion 1.2.0) [34]. Salmon handles alignment to genome, sorting the alignments and

quantification of expression levels.
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3.2 Proposed method

Here is the general workflow for single cell RNA sequencing analysis and our pro-

posed method visualized in Figure 3.1. After conventional steps like library prepara-

tion, alignment to genome , sorting the alignment and expression level quantification,

our method takes over and filters lowly expressed transcripts, performs differential ex-

pression analysis and identifies genes with isoform switch. After all, isoform switches

are reported and data is ready for functional enrichment analysis. We give the details

of each individual steps of the proposed method in the following subsections.

Biological Samples/ Library Preparation

Alignment to Genome( GRCh37/hg19)

Sorting the aligment by sequence and position

Expression Level Quantification/Normalization

Filter Lowly Expressed Transcripts TPM<10.0

Identify Genes with Isoform Switch

Differential Expression Analysis

Functional Enrichment Analysis

PROPOSED 
METHOD

Figure 3.1: The general workflow and proposed method
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3.2.1 Filter lowly expressed transcripts

In single cell RNA sequencing, the read counts frequently contain significant amounts

of technical noise and a large number of dropouts, i.e., zero or near-zero results. This

is owing to the limited quantity of RNA present per cell, which reduces the efficiency

with which transcripts can be collected and processed prior to sequencing. Also, cap-

ture effectiveness varies from cell to cell, making direct comparisons between cells

impossible [24]. Therefore, we employed a filtering mechanism to filter out tran-

scripts that have insignificant read counts. Let ns be the sample size in the experiment

group. This phase requires that the transcripts have a minimum of 10 transcripts per

million in at least 10% of the ns samples. This type of TPM thresholding mechanism

is a common method employed in previous studies [12, 23, 33, 38]. This step ensures

transcript in consideration have significant counts, have passed quality checks and are

also shown to improve performance [38]. Figure 3.2 shows how the filtering threshold

rate affects the number of isoform counts analyzed.

3.2.2 Differential Expression Analysis

Our approach needs a matrix of expression counts at the transcript level, which may

be generated using alignment tools such as Salmon [34]. Let Rts represent the read

expression value for a particular transcript t = 1, ...T in a sample set s = 1, ..., n

from a control and treatment group, respectively. The outline of the data can also

be expressed like this: each transcript for a specific gene represents a feature for that

gene and each sample represents observations. To better highlight the underlying bio-

logical processes, read expression data is changed to log scale. Since log fold change

is significant in our study because natural fold change does not correspond to the nor-

mal distribution, while log2 converted fold change does. Since our selected statistical

method, MANOVA, assumes data to be in the form of a normal distribution, we prune

outliers in control and treatment groups using the Interquartile Range Rule [43] and

replace them with the group median. Then, we adopted the Micompr [15] cmpoutput

function to model differentially expressed genes with a T principle component. We

report MANOVA p values for the significance of differential expression of that gene.

Genes with p<0.05 are determined as statistically significant.
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Figure 3.2: Number of transcripts expressing minimum 10 TPMs in respect to thresh-

old rate of sample size

3.2.3 Identify Genes with Isoform Switch

After transcript reads from the gene are deemed to be statistically significant between

the control and treatment groups, next step is to find out whether there is an iso-

form switch between transcripts of the gene. First, transcript reads from samples are

grouped according to user-specified phenotypes and then the median read counts for

a group are calculated for a transcript. Then, ratio is calculated between groups.

Paired combinations of transcripts were matched against each other by comparing

their median read ratios. If for a specific transcript of a gene, the control group is up

regulated with respect to the treatment group, whereas for a different transcript of the

same gene, the control group is down regulated with respect to the treatment group, an
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isoform switch is found for the gene. We report pairs of transcripts that exhibit such

switches, their types (exonic, intronic, 3’ UTR, 5’ UTR), their fold change difference

and p value associated with that gene.

3.2.4 Transcript Type Assignment

Genomic annotations of human genes and transcripts were downloaded from the

GENCODE website(Release 27) [19]. The annotation file is parsed and we retrieved

gene related chromosome, start position (start), end position (end), gene name, strand,

coding sequence start position (cds_start), coding sequence end position (cds_end),

gene symbol, exon count, list of exon start positions, list of exon end positions infor-

mation and then created a hash table for fast access. For transcript information, the

annotation file is parsed and we retrieved transcript related chromosome, strand, tran-

script start position(start), transcript end position(end), gene id information and then,

we created an iterable list. Then, for each transcript’s transcription end point, with

respect to strand constraint, compared aganist starting and end points of exon(CDS),

intron , 3’UTR, and 5’UTR regions. The pseudo code to get type information also

shown in Algorithm 1. Resulting type knowledge joined with isoform switching re-

sults gives the user useful information for downstream alternative splicing and APA

analysis.
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Algorithm 1 Calculate Transcript Type
for each transcript tx from gene do

if gene[strand] is + then

if tx[end] > gene[start] and tx[end] < gene[cds_start] then

type← 5′UTR

end if

if tx[end] > gene[cds_end] and tx[end] < gene[end] then

type← 3′UTR

end if

for each exon e of gene do

if tx[end] ≥ e[i][start] and tx[end] ≤ e[i][end] then

type← Exon_i

end if

if tx[end] > e[i][end] and tx[end] < e[i+ 1][start] then

type← Intron_i

end if

end for

end if

if strand is − then

if tx[start] < gene[end] and tx[start] > gene[cds_end] then

type← 5′UTR

end if

if tx[start] < gene[cds_start] and tx[start] > gene[start] then

type← 3′UTR

end if

for each exon e of gene do

if tx[start] ≤ e[i][end] and tx[start] ≥ e[i][start] then

type← Exon_i

end if

if tx[start] < e[i][start] and txstart > e[i+ 1][end] then

type← Intron_i

end if

end for

end if
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experiment setup

We evaluated the performance of our proposed method on single-cell RNA-seq data

(GEO Accession number GSE75688) [9] containing 549 primary breast cancer cells

and lymph node metastases from 11 patients with distinct molecular subtypes (see

Figure 3.1) and matched bulk tumors (in our experiments, we did not use any bulk

samples and focused only on the single-cell samples). We analyzed differential tran-

script usage and isoform switches between primer and lymph node metastasis tumor

samples of patient BC07 (52 cells in total) because this patient’s samples were the

only samples that showed consistent transcript levels across samples within a group.

Violin plots are generated using the ggstatsplot package [32]

4.2 Filtering

The analysis begins with 199614 transcript read counts from 57876 genes for 52

samples, with 26 samples in each group. Filtering poorly expressed transcripts was

performed as stated in 3.2.1, and it resulted in the removal of 86% ( n=170956 ) of all

transcripts and 77% ( n = 44276) of all genes owing to low expression. The remaining

14% (n = 28658) transcripts relate to the remaining 23% (n= 13600) genes. More than

half of these genes (55%, or 7447 of them) express just one transcript and therefore

are ineligible to look for isoform switches.
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4.3 Isoform switches

The remaining percent 45% were examined for isoform switches, and 1724 transcripts

from 626 genes expressed switched read counts between conditions, indicating that

isoform switching occurred. After performing MANOVA on 626 genes, we discov-

ered that p values were significant for 414 genes. Among these 414 genes, Bartlett’s

Test showed that variance differences are negligible for 210 of them, resulting in iden-

tical variances for all samples. There were 928 transcript pairs identified for isoform

switching in 414 genes where the p values are significant in the context of isoform

switching, out of 1724 transcripts to be evaluated. Of these, 482 paired transcript

sequences originate from 210 genes, and Bartlett’s tests of significance were deter-

mined to be negligible. Table 4.1 shows the most significant isoform switches found

according to analysis.

Gene ID Transcript 1 Type Biotype Length Transcript 2 Type Biotype Length
Manova

P value

Fold Change

Difference

1 ENSG00000013441.15 ENST00000321356.8 Exon_12 protein_coding 484 ENST00000472679.1 3UTR retained_intron NA 3.21e-27 2.1955

2 ENSG00000013441.15 ENST00000432425.5 3UTR nonsense_mediated_decay NA ENST00000472679.1 3UTR retained_intron NA 3.21e-27 6.9730

3 ENSG00000013441.15 ENST00000472679.1 3UTR retained_intron NA ENST00000409769.6 3UTR protein_coding 307 3.21e-27 2.7481

4 ENSG00000092199.17 ENST00000336053.10 Exon_7 protein_coding 288 ENST00000553300.5 3UTR protein_coding 293 1.75e-19 3.7128

5 ENSG00000092199.17 ENST00000556142.5 3UTR protein_coding 231 ENST00000553300.5 3UTR protein_coding 293 1.75e-19 7.6719

6 ENSG00000092199.17 ENST00000554455.5 3UTR protein_coding 306 ENST00000553300.5 3UTR protein_coding 293 1.75e-19 3.9761

7 ENSG00000092199.17 ENST00000430246.6 3UTR protein_coding 293 ENST00000553300.5 3UTR protein_coding 293 1.75e-19 7.2001

8 ENSG00000092199.17 ENST00000553300.5 3UTR protein_coding 293 ENST00000420743.6 3UTR protein_coding 306 1.75e-19 8.7423

9 ENSG00000092199.17 ENST00000553300.5 3UTR protein_coding 293 ENST00000557033.1 5UTR retained_intron NA 1.75e-19 6.6742

10 ENSG00000166797.10 ENST00000300030.7 Exon_5 protein_coding 160 ENST00000558779.1 3UTR processed_transcript NA 1.05e-17 5.0363

11 ENSG00000166797.10 ENST00000300030.7 Exon_5 protein_coding 160 ENST00000380290.7 3UTR protein_coding 102 1.05e-17 5.5567

12 ENSG00000112514.15 ENST00000488034.5 3UTR protein_coding 179 ENST00000607266.5 3UTR protein_coding 156 1.11e-15 2.9124

13 ENSG00000153207.14 ENST00000470300.5 Exon_36 processed_transcript NA ENST00000326225.3 Exon_36 protein_coding 2275 1.77e-15 5.3760

14 ENSG00000041357.15 ENST00000560217.5 3UTR protein_coding 230 ENST00000413382.6 3UTR protein_coding 190 5.07e-13 2.8924

15 ENSG00000041357.15 ENST00000044462.11 Exon_9 protein_coding 261 ENST00000413382.6 3UTR protein_coding 190 5.07e-13 2.8428

16 ENSG00000041357.15 ENST00000559082.5 3UTR protein_coding 261 ENST00000413382.6 3UTR protein_coding 190 5.07e-13 2.6696

17 ENSG00000041357.15 ENST00000413382.6 3UTR protein_coding 190 ENST00000559146.5 Exon_8 protein_coding NA 5.07e-13 1.5355

18 ENSG00000041357.15 ENST00000413382.6 3UTR protein_coding 190 ENST00000557929.5 Exon_8 processed_transcript NA 5.07e-13 2.3999

19 ENSG00000112701.17 ENST00000370010.6 3UTR protein_coding 1105 ENST00000503501.1 3UTR nonsense_mediated_decay NA 5.69e-12 6.6680

20 ENSG00000112701.17 ENST00000436928.7 Exon_9 processed_transcript NA ENST00000503501.1 3UTR nonsense_mediated_decay NA 5.69e-12 5.1935

Table 4.1: Top 20 isoform switches reported

Figure 4.1 shows that “protein coding - protein coding” that was the most often seen

Ensembl transcript biotype pair engaged in isoform switch events, followed by “re-

tained intron (transcripts containing intronic sequences) - protein coding” and "pro-

tein coding - processed transcript (transcripts not containing an ORF)".
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Figure 4.1: Isoform switched transcript pair’ biotype distribution

4.4 Biological Interpretation

4.4.1 Isoform switches found for CLK1 gene

The study found that the CLK1 protein regulates alternative RNA splicing through its

C-termini and modulates the cellular distribution and splicing activity of the SR fam-

ily splicing factor, a protein that is very important in pre-mRNA alternative splicing

and translation [47]. Increased CLK1 expression was shown to enhance the develop-

ment and metastasis of pancreatic cancer cells in both vitro and vivo, according to a

recently published research [8]. With the help of our analysis, researchers might put

light on the underlying transcripts involved in the process.

For gene CLK1 (ENSG00000013441), the following isoform switches were found

between:

• protein coding, exonic, ENST00000321356.8 transcript up-regulated in primer

tumor samples

• nonsense mediated decay, 3’UTR, ENST00000432425.5 transcript up-regulated
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in primer tumor samples, non-existent in metastasis samples

• protein coding, 3’UTR, ENST00000409769.6 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• retained intron, 3’UTR, ENST00000472679.1 transcript down regulated in primer

tumor samples, up-regulated in metastasis samples

P value reported for the gene is 3.21e−27 and log fold change difference values are

reported as following:

• 2.19 (between ENST00000321356 and ENST00000472679) (see Figure:4.2)

• 2.74 (between ENST00000472679 and ENST00000409769) (see Figure:4.3)

• 6.97 (between ENST00000432425 and ENST00000472679) (see Figure:4.4)

Results from the GTEX database also confirmed that transcripts of CLK1: ENST00000321356,

ENST00000432425, ENST00000472679, ENST00000409769 are expressed in

the breast tissue. Also to assess functional enrichment, we used the STRING database

[40]. The analysis of CLK1 showed clusters of enriched pathways related to mRNA

5-splice site recognition, mRNA cis splicing, via spliceosome, spliceosomal complex

assembly, regulation of RNA splicing, and regulation of mRNA splicing via spliceo-

some as the most significant functional enrichments.

In the switch between ENST00000432425 and ENST00000472679 (see Figure:4.4),

metastasis samples show no expression of nonsense mediated decay. Nonsense-

mediated RNA decay (NMD) was first identified as a cellular surveillance mecha-

nism in eukaryotic cells that protects the integrity of mRNA transcripts [6]. NMD

inhibits translation of mutant mRNAs with premature termination codons (PTCs) by

degrading them. Recent research, on the other hand, has shown that NMD plays a

considerably wider function in gene expression by controlling the stability of a wide

range of normal transcripts [27]. Given that, in metastasis samples, mRNA regula-

tion mechanisms may be affected due to lack of NMD. The up-regulation of retained

intron ENST00000472679 can be explained by this affected regulation mechanism.
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Figure 4.2: Violin plot for isoform switching case CLK1(ENSG00000013441)

between protein coding ENST00000321356(Exonic) and retained intron

ENST00000472679(3’UTR)
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Figure 4.3: Violin plot for isoform switching case CLK1(ENSG00000013441)

between protein coding ENST00000409769(3’UTR) and retained intron

ENST00000472679(3’UTR)
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Figure 4.4: Violin plot for isoform switching case CLK1(ENSG00000013441) be-

tween nonsense mediated decay ENST00000432425(3’UTR) and retained intron

ENST00000472679(3’UTR)
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4.4.2 Isoform switches found for HNRNPC gene

HNRNPC is related to 3’-UTR-mediated mRNA stabilization [36], mRNA splic-

ing [22] [39]. Recent research has shown that HNRNPC regulates the aggressive-

ness of tumor cells in the brain via regulating the expression of the protein PDCD4

(Programmed cell death 4). microRNA-21 levels were decreased as a result of hn-

RNPC silencing, which resulted in increased PDCD4 expression and a reduction in

migratory and invasive behaviors. This highlights the potential use of hnRNPC as a

predictive and therapeutic marker in the treatment of cancer [31].

For gene HNRNPC (ENSG00000092199), the following isoform switches were found

between:

• protein coding, exonic, ENST00000336053 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• protein coding, 3’UTR, ENST00000556142 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• protein coding, 3’UTR, ENST00000554455 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• protein coding, 3’UTR, ENST00000430246 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• protein coding, 3’UTR, ENST00000553300 transcript down-regulated in primer

tumor samples, up-regulated in metastasis samples

• protein coding, 3’UTR, ENST00000420743 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

• retained intron, 5’UTR, ENST00000557033 transcript up-regulated in primer

tumor samples, down-regulated in metastasis samples

P value reported for the gene is 1.75e−19 and log fold change difference values are

reported as following:

• 3.71 (between ENST00000336053 and ENST00000553300) (see Figure:4.5)
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• 7.67 (between ENST00000556142 and ENST00000553300) (see Figure:4.6)

• 3.97 (between ENST00000554455 and ENST00000553300) (see Figure:4.7)

• 7.20 (between ENST00000430246 and ENST00000553300) (see Figure:4.8)

• 8.74 (between ENST00000553300 and ENST00000420743) (see Figure:4.9)

• 6.67 (between ENST00000553300 and ENST00000557033) (see Figure:4.10)

Results from the GTEX database also confirmed that transcripts of HNRNPC: ENST00000336053,

ENST00000556142, ENST00000554455, ENST00000430246, ENST00000553300

and ENST00000557033 are expressed in the breast tissue. Isoform switches are

reported mostly between protein coding transcripts. These switches may result in

functional gain or loss of function depending on the individual protein traits. Down-

regulation of heterogeneous nuclear ribonucleoproteins C1/C2 coding ENST00000553300,

may lead to decreased regulation performance, resulting in up-regulated retained in-

tron transcripts like ENST00000420743. The functional enrichment analysis of HN-

RNPC showed clusters of enriched pathways related to negative regulation of mRNA

splicing, via spliceosome, 3-UTR-mediated mRNA stabilization, negative regulation

of telomere maintenance via telomerase, negative regulation of mRNA metabolic pro-

cess, and the fibroblast growth factor receptor signaling pathway as the most signifi-

cant functional enrichments.
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Figure 4.5: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000336053(Exonic) and protein coding

ENST00000553300(3’UTR)
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Figure 4.6: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000553300(3’UTR) and protein coding

ENST00000556142(3’UTR)
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Figure 4.7: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000553300(3’UTR) and protein coding

ENST00000554455(3’UTR)
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Figure 4.8: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000430246(3’UTR) and protein coding

ENST00000553300(3’UTR)
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Figure 4.9: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000420743(3’UTR) and protein coding

ENST00000553300(3’UTR)
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Figure 4.10: Violin plot for isoform switching case HNRNPC(ENSG00000092199)

between protein coding ENST00000553300(3’UTR) and protein coding

ENST00000557033(5’UTR)
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4.5 Discussion

Our method differs from other avaliable methods in following manners:

• Our proposed method uses raw transcript read counts where other tools uses

isoform fraction where each isoform read counts are normalized by total iso-

form read counts. Tools that uses isoform fraction generally requires change in

isoform fraction to be higher than predefined value and this value cannot be set

by user.

• Our proposed method compares all possible isoform pairs and reports if there is

a switch between with log fold change difference and p values and end results

are left to end-user to interpret.

• Our proposed method uses median read counts instead of mean read counts.

This step with log transformation prevents outliers from affecting general be-

haviour and offers robust results. Other tools avaliable generally uses mean

read counts where results get easily affected by outliers.

• Our proposed method only considers genes having isoform switch by calculat-

ing median read counts before applying MANOVA. This prefiltering mecha-

nism speeds up our process by 10 fold through reducing genes to look at from

6911 to 626.

• Our proposed method offers transcript type information to aid alternative splic-

ing analysis.

In all DTU techniques, there is a similar issue in that the ability to identify differ-

entially utilized transcripts is highly dependent on the quality of the corresponding

scRNA-seq dataset. This is due to the nature of the sequencing method, which results

in a much higher percentage of zero counts in the transcript-level count matrix than in

datasets generated by other sequencing methods. Our statistical method, MANOVA,

is also sensitive to the non-normality of the dataset as well as variations in sample

size. Another disadvantage of MANOVA is that it is unable to build a model when

the sample size is limited in comparison to the number of isoforms.
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CHAPTER 5

CONCLUSION

We have presented a complete tool that takes transcript read counts and user-specified

phenotype grouping as input and provides an extensive isoform switching report (in-

cluding statistical significance and types of isoform switches) with illustrations as out-

put. Our approach allows for the investigation of changes in genome-wide patterns of

alternative splicing and isoform switch alterations using multiple analysis of variance

(MANOVA). We have leveraged and identified heterogeneity of isoforms that would

have been missed by conventional differential gene expression analysis frameworks.

We have analyzed single cell breast cancer data and demonstrated the methods’ capa-

bility and identified and illustrated several particularly enriched switches. The anal-

ysis also includes bio type and transcript type information on top of switching in-

formation for each transcript. This metadata information can be used to investigate

a biological phenomenon known as alternative splicing, which is currently poorly

understood and whose investigation may yield many better treatment and prognosis

options. Also, data taken at different stages of disease might shed light on the relative

expression levels of transcripts, so the stage of disease can be identified. Transcript

based inhibition or promoting mechanisms might lead to novel treatment options. In

the future, alternative statistical methods, such as generalized linear models, might

be used to explain underlying biological processes or overcome the sparsity of single

cell RNA-Seq data. Different types of outlier identification algorithms, in addition to

the Interquartile Range Rule, may be offered as choices in the future.
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