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ABSTRACT 

 

ANALYSIS OF RELATIONS BETWEEN SOLAR ACTIVITY, COSMIC 
RAYS AND THE EARTH CLIMATE USING MACHINE LEARNING 

TECHNIQUES 
 
 

Belen, Bükem 
Master of Science, Earth System Science 

Supervisor: Assoc. Prof. Dr. Uğur Murat Leloğlu 
Co-Supervisor: Prof. Dr. M. Bilge Demirköz 

 
 

September 2021, 112 pages 

 

The Earth's climate is part of a complicated system that can be affected by many 

different parameters, both internal and external. Important external forces on the 

climate are galactic cosmic rays (GCR) and the Sun. Some research has already been 

conducted to investigate the relationship between the climate and external forcers 

such as the GCR and solar activity. However, the relations are quite complicated and 

buried into almost chaotic meteorological measurements. This thesis looks deeper 

into the interactions between them. The parameters used in the correlation analysis 

are GCR flux, Sunspot number (SSN), total solar irradiance (TSI), UV irradiance 

(UVI), and the Oceanic Niño Index (ONI) as the predictor variables; total cloud 

amount (TCA), low cloud amount (LCA), global mean temperature anomaly 

(GMTA), aerosol optical depth (AOD) and precipitation as the response variables. 

The analysis begins with standard statistical techniques and continues with multiple 

regression and machine learning methods for non-linear regression, such as random 

forests. Both geographical and temporal patterns have been investigated. This study 

shows that some parameters have a weak linear correlation, while a statistically 

significant non-linear relationship occurs between them. It can be concluded that the 
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GCR-climate connection does exist, and these non-linear relations should be 

investigated further, specifically in certain regions of the World. 

Keywords: Cosmic Rays, Solar Activity, Climate, Multiple Regression, Random 

Forests 
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ÖZ 

 

MAKİNE ÖĞRENMESİ TEKNİKLERİ KULLANARAK GÜNEŞ 
AKTİVİTESİ, KOZMİK IŞINLAR VE DÜNYA İKLİMİ ARASINDAKİ 

İLİŞKİLERİN ANALİZİ 
 
 
 

Belen, Bükem 
Yüksek Lisans, Yer Sistem Bilimleri 

Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 
Ortak Tez Yöneticisi: Prof. Dr. M. Bilge Demirköz 

 

 

Eylül 2021, 112 sayfa 

 

Dünya iklimi hem iç hem de dış birçok farklı parametreden etkilenebilen karmaşık 

bir sistemin parçasıdır. İklim üzerindeki önemli dış kuvvetler galaktik kozmik ışınlar 

(GCR) ve Güneş'tir. Şimdiye kadar iklim ile GCR ve güneş aktivitesi gibi dış 

etkenler arasındaki ilişkiyi araştıran bazı araştırmalar yapılmıştır. Ancak ilişkiler 

oldukça karmaşıktır ve neredeyse kaotik meteorolojik ölçümlerin içine gömülüdür. 

Bu tez, bunların arasındaki ilişkilere daha derinden bakacaktır. Korelasyon 

analizinde kullanılan parametreler tahmin değişkenleri olarak kozmik ışın akısı 

(GCR), güneş lekesi sayısı (SSN), toplam güneş ışınımı (TSI), UV ışınımı (UVI) ve 

okyanus Ninyo indeksi (ONI); yanıt değişkenleri olarak da toplam bulut miktarı 

(TCA), düşük bulut miktarı (LCA), küresel ortalama sıcaklık anomalisi (GMTA), 

aerosol optik derinliği (AOD) ve yağış miktarıdır. Standart istatistiksel tekniklerle 

başlayan analiz, rastgele ormanlar gibi doğrusal olmayan regresyon için çoklu 

regresyon ve makine öğrenmesi yöntemleriyle devam etmiştir. Hem coğrafi hem de 

zamansal örüntüler araştırılmıştır. Bu çalışmanın sonuçları, bazı parametrelerin zayıf 

bir doğrusal korelasyona sahip olduğunu göstermiştir ve aralarında istatistiksel 
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olarak anlamlı doğrusal olmayan bir ilişki olduğunu göstermektedir. GCR-iklim 

bağlantısının var olduğu ve bu doğrusal olmayan ilişkilerin özellikle Dünya’nın 

belirli bölgelerinde daha fazla araştırılması gerektiği sonucuna varılabilir. 

Anahtar Kelimeler: Kozmik Işınlar, Güneş Aktivitesi, İklim, Çoklu Regresyon, 

Rastgele Ormanlar 
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CHAPTER 1  

1 INTRODUCTION  

The Earth is part of a system that can be separated into several sub-systems, which 

are in continuous interaction with each other by means of chemical, physical, and 

biological activities (Kump, Kasting, & Crane, 2004). These sub-systems are the 

Hydrosphere, the Cryosphere, the Lithosphere, the Biosphere, the Atmosphere, and 

the Near-Earth Space (NES), as shown in Figure 1.1. 

 

Figure 1.1. The Earth System (Image: ESA) 

The hydrosphere contains water in liquid and gaseous forms, while the cryosphere 

contains water in the solid state, mainly ice. Oceans make a major part of the water 

content, while polar ice caps and glaciers are also important. Additionally, water also 
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exists in its gas, liquid, and solid (ice) forms in the atmosphere (Stott & Huddart, 

2010). 

The lithosphere constitutes the solid part of the Earth. Effects on the lithosphere and 

its erosion shapes the land, such as mountains, plains, deserts, and valleys that 

provide diverse habitats for the biosphere. The biosphere includes plants, animals, 

humans, and other organisms that all demand nutrients from the lithosphere, water 

from the hydrosphere, and gas from the atmosphere for their existence and survival 

(Stott & Huddart, 2010). 

The anthroposphere is the sub-system that humans and human activity make up. 

Since our economic life, industrial and technological developments have become 

major drivers of the environment, the anthroposphere is an essential part of the Earth 

System. The change in global climate thus is not only a result of the natural processes 

acting on the planet for millions of years but also a result of human activity, 

especially in the most recent years (Stott & Huddart, 2010). 

The Earth is surrounded by the atmosphere, a gaseous layer receiving the solar 

energy coming from the Sun. The atmosphere contains essential elements to sustain 

life on Earth and redistributes heat and moisture from the Earth’s surface (Stott & 

Huddart, 2010). 

The NES is the region of space surrounding the atmosphere. It consists of the upper 

layers of the atmosphere and the Earth’s magnetosphere. It is an important part of 

the Earth System because high energy particles constantly bombard it, and it shields 

the Earth from their harmful effects (Eddy, 2009). 

The stability of the Earth system is maintained by its components, which are linked 

by feedback loops that can be either be positive or negative. Positive feedback loops 

amplify perturbations or forcings, while negative feedback loops reduce their effects 

(Stott & Huddart, 2010). 
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1.1 Description of the problem 

The climate of the Earth can be an example of a feedback loop. The global mean 

temperature is maintained by various mechanisms of energy flow, including 

important negative feedbacks in the global climate system. The earth-atmosphere 

system is kept in balance by regulating the incoming and outgoing energy flows. If 

this stability is vaguely disturbed, the global climate will be subject to many 

complicated alterations (Stott & Huddart, 2010).  

Earth’s climate can be affected by many different parameters, both internal and 

external. Some of the internal forces are ocean currents, albedo, volcanic explosions, 

and anthropogenic activity. Humans have realized how crucial it is to keep the 

climate system in balance for a sustainable future in recent decades. To achieve this, 

external parameters and their interactions with the Earth also must be well 

understood, apart from the anthropogenic causes. In relatively shorter timescales, 

important external forces affecting the climate are galactic cosmic rays (GCR) and 

the Sun. It is crucial to study the external forces to understand the stages that the 

Earth's climate has been through since its formation and to model and predict 

changes in the climate. 

1.2 The Approach of this thesis 

It is aimed to study the interaction of galactic cosmic rays with solar activity and its 

effect directly or indirectly on the Earth's climate and to define the relationship 

pattern between them as a function of location by using machine learning. 

Accordingly, the goals are as follows: 

1. To define the effect the galactic cosmic rays and the solar activity have on 

Earth's climate. 
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2. To reveal the temporal and geographic relationship patterns between the 

external forcers and climate parameters by examining the existing complex data 

using machine learning methods. 

1.3 Contributions of this thesis 

This thesis uses machine learning for the first time to look at the solar influence on 

climate. Many of the previous studies have used standard statistical methods such as 

linear correlation analysis on similar datasets with each other. In this thesis, different 

data sources of climate parameters such as the total cloud amount (TCA), low cloud 

amount (LCA), global mean temperature anomaly (GMTA), aerosol optical depth 

(AOD), and precipitation are used. The cloud data is obtained from two different 

sources, namely the ISCCP and MERRA2 projects. The period of the datasets is 

extended up to 2017, and multiple regression models are used as the primary 

investigation methods. 

1.4 Organization of this thesis 

This thesis is organized as follows:  

Chapter 2 provides the theoretical background that is necessary to understand the 

physical processes in this study. Solar activity, cosmic rays, and the properties of 

clouds are introduced, and an introduction to machine learning methods is given. 

Chapter 3 is a review of the previous research about the solar-climate connection, 

summarizing the papers that are for and against the hypothesis. Chapter 4 explains 

how the data used in the analysis were chosen and the sources of each dataset. Also, 

the methodology of the study is given and is detailed. The results are shown in 

Chapter 5 and are discussed thoroughly. Finally, the thesis is summarized and 

concluded in Chapter 6. 
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CHAPTER 2  

2 BACKGROUND INFORMATION 

2.1 Solar Activity 

To explain the nature and extent of solar magnetic fields, a common term called solar 

activity is used. The most generally known index by which it has been specified is 

the number of sunspots visible in the Sun's disk at any given time. Sunspots are 

observed as the dark spots seen on the surface of the Sun, and they can last between 

days to weeks (Gray, et al., 2010). Astronomers across the globe have used a 

collectively described index, named the Wolf sunspot number, or more generally the 

sunspot number (SSN) since 1848. This relies on the effort to correct foreseeable 

changes in solar telescopes, observation conditions, and human observers. Solar 

cycles have a normal period of around eleven years. The duration of the minimum 

and maximum sunspot counts are referred to as solar minimum and solar maximum, 

respectively (Eddy, 2009). 

 
Figure 2.1. The solar activity cycles from 1700 to the present (source: SILSO 

data/image, Royal Observatory of Belgium, Brussels). 
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Figure 2.1 shows the yearly mean SSN values on a temporal scale starting from the 

year 1700. Up to 1749, the SSN values are annual mean values and from 1749 on 

(the blue part), the SSN values are 13-month smoothed values. From this figure, the 

periodicity of the full solar cycle of ~22 years, which can be measured from one peak 

to the next peak, is seen. 

There are also other parameters to measure solar activity, and the two that will be 

used as solar proxies in this thesis are the total solar irradiance (TSI) and the 

ultraviolet irradiance (UVI). The Sun brings in all wavelengths to Earth’s upper 

atmosphere. W/m2 is the unit of total solar irradiance. At a standard range of an 

Astronomical Unit from the Sun, the wavelength-dependent energy response to the 

top of the Earth’s atmosphere is called solar spectral irradiance. W/m2-nm is the unit 

of solar spectral irradiance (Eddy, 2009). 

The dynamics of the atmosphere and the movement in the troposphere can similarly 

be affected by stratospheric ozone. To explain relations between climate and solar 

activity, a possible mechanism could be the process that connects the stratospheric 

ozone to UV radiation. Another possible mechanism could be through the variations 

in total solar radiation leading to direct solar heating. With feedback mechanisms in 

the Earth system, each can be strengthened or reduced via the other (Benestad, 2006). 

2.1.1 Global Energy Balance  

Earth’s temperature is increased by absorbing the radiation from the Sun and is 

decreased by emitting infrared radiation back to space. Most of the infrared radiation 

emitted by the Earth's surface is absorbed and reemitted by atmospheric gases, 

resulting in a natural greenhouse effect that warms the surface. The greenhouse effect 

is significantly impacted by atmospheric gases, particularly H20 and CO2, which 

absorb infrared radiation. Clouds likewise contribute to the greenhouse effect as low, 

thick clouds reflect sunlight and tend to cool the surface of Earth, while high, thin 
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clouds tend to warm it (Kump, Kasting, & Crane, 2004). Earth’s radiation balance is 

shown in the diagram in Figure 2.2. 

 

Figure 2.2. Earth’s Radiation Balance 

The temperature of the Earth’s surface is built upon three aspects. The first one is 

Earth’s reflectivity, while the second one is related to the amount of warming 

produced by the atmosphere, such as in the example of the greenhouse effect. The 

third and most important aspect is the solar flux available at the Earth’s orbit. Solar 

flux is described as the amount of solar energy reaching the top of the Earth’s 

atmosphere. Around a third of the incident energy is mainly reflected by clouds back 

to space; hence the whole energy is not absorbed (Kump, Kasting, & Crane, 2004).  

Reflected incident sunlight by clouds causes the Earth to cool throughout the 

daytime. There is a direct relation between clouds and albedo, which is defined as 

the reflection of solar radiation, and it takes a value from zero to unity. A large 

fraction of current planetary albedo, which is around 0.3, is led by clouds. (Kump, 

Kasting, & Crane, 2004). 
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2.2 Cosmic Rays 

Cosmic rays are very high-energy charged particles, which mainly originate from 

outside the Solar System; that is why they are mostly referred to as galactic cosmic 

rays (GCR). About 90% of all cosmic rays are protons, and the rest are electrons and 

the charged nuclei of heavier elements. They enter the Earth’s atmosphere from 

every direction and collide with atoms and molecules in the air. The Earth’s 

atmosphere shields the surface from the most energetic cosmic rays. The cosmic rays 

that make it to the surface are limited to the weaker, secondary particles (Eddy, 

2009). 

The GCR collided atoms generate other subatomic particles that are less energetic 

and considered the second generation. Neutrons and protons are highly energetic and 

heaviest among the debris. The produced electrons are called muons and pions. 

However, these electrons are considered short-lived particles since they cannot 

maintain their existence more than some microseconds (Eddy, 2009). 

The so-called secondary cosmic ray particles lengthen the chain of collisions to the 

middle atmosphere; eventually, a few make it to the ground. In the continuation of 

this journey down, a third generation of subatomic particles is produced by the 

additional collisions of neutrons and protons with the other atoms of air. (Eddy, 

2009). 

A cascade of cosmic ray shower, shown in Figure 2.3, occurs with this activity of 

energy reduction by recurrent divisions and collisions. It continues until the number 

of subatomic particles which are generated reaches a maximum. With repeated 

cascades going further down into the denser and deeper layers of the atmosphere, it 

begins to decrease (Eddy, 2009). 

 



 
 
9 

 

Figure 2.3. Cosmic ray cascade (Redrawn from (Eddy, 2009)) 

The intensity of GCRs is not uniformly spread across the globe. The intensity at the 

poles is nearly a factor of four higher than the equator (Kirkby & Carslaw, 2006).  

Comparing solar activity with the GCR flux, one can see that they periodically act 

oppositely to one another, as when one is down, the other moves up. The 

anticorrelation between the two parameters can be seen in the time series comparison 

shown in Figure 2.4. Around 20% of the secondary GCR neutrons entering the Earth 

reduce when the Sun is more spotted and active. However, while the Sun is less 

active, much more GCRs can be seen. A twenty-two-year pattern acting together 

with the solar magnetic cycle is evident in the Earth's change in receiving GCRs 

(Eddy, 2009).  
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Figure 2.4. Yearly averages of SSN (Data source: WDC-SILSO, Royal Observatory 

of Belgium, Brussels) vs GCR flux (Data source: Oulu Cosmic Ray Monitor) 

The weak energy input from cosmic rays accounts for about one billionth of the solar 

irradiance, but it is the most critical source of ionization in the atmosphere. The 

ionization in the atmosphere below 35 km is produced by cosmic rays. They interact 

with air molecules to form light radioisotopes (such as 14C, 10Be) (Carslaw, Harrison, 

& Kirkby, 2002). In addition, cosmic rays have two important effects on the global 

atmospheric electric cycle: 

1. Cosmic rays are the main source of ions formed in the depths of the atmosphere 

far from the Earth's surface. 

2. Cosmic rays have a direct effect on the electrical cycle of the atmosphere (affecting 

conductivity due to ionization). 

While the lower levels of the atmosphere are bombarded with the ionization created 

by cosmic rays, it is perfectly natural to expect a relationship between cosmic rays 
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and clouds (Carslaw, Harrison, & Kirkby, 2002). Today, when the important effect 

of ions on aerosols and cloud processes is well known, it becomes necessary to 

determine the relationship between cosmic rays and clouds. 

2.3 Clouds 

The effect of the change in the amount of cloudiness on the climate is significant 

because clouds play an active role in the control of the radiative balance of the world. 

The radiative effect of a cloud depends on the height of the cloud from the surface 

and the optical depth of the cloud. The effect of clouds on the radiative properties of 

the atmosphere occurs in two ways (Hartmann, 1993). These are: 

1. Cooling, as a result of the reflection of short-wave infrared radiation entering 

the atmosphere, 

2. Warming, as a result of blocking long-wave infrared radiation emitted from 

the ground. 

Therefore, it is essential to examine and determine the relationship between 

cloudiness and cosmic rays because the net radiative power of global cloudiness is 

crucial to the Earth’s radiation budget. A global yearly average of about 65% of the 

Earth’s surface is covered by clouds, and in total, they apply a net cooling effect of 

28 Wm-2 (Kirkby, 2007). Thus, small changes in the global cloud cover can have a 

significant effect on climate. Low-level clouds usually have high optical thickness 

and they act as reflectors of the sunlight, making a negative contribution to the 

Earth's radiation budget by cooling the surface temperature (Hartmann, 1993). 

 

The optical depth of clouds depends on factors influencing cloud droplet size and 

distribution and on cloud thickness, which is affected by the atmospheric vertical 

temperature profile. The dimensional distribution of particles in clouds containing 

liquid water particles (low-level clouds) depends on the atmospheric aerosol density, 

acting as cloud condensation nuclei (CCN). The amount of CCN is related to the 

number of aerosols present in the atmosphere (Hobbs, 1993). 
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In cloud research, the primary focus is on the effect of pollution on clouds. The 

connection between cosmic rays and clouds is provided by the effect of ions on cloud 

microphysics. Cloud particles begin to grow by collecting small aerosol particles. 

These aerosol particles are formed because of natural events and pollution and enter 

the cloud with air movements. The number of cloud droplets growing depends on 

the number and properties of the aerosols (Hobbs, 1993). 

2.4 Relationship Between Clouds and Cosmic Rays 

Cloud formations can be predicted by many meteorological parameters (such as 

temperature, humidity, and atmospheric processes). In contrast, cloud properties like 

lifetime and reflectivity are affected by fine but significant phenomena. These 

phenomena taking place at the aerosol and cloud condensation particle level are 

commonly referred to as "microphysical properties". The connection between 

cosmic rays and clouds is provided by the effect of ions on cloud microphysics 

(Carslaw, Harrison, & Kirkby, 2002). 

Two mechanisms describe the effect of cosmic rays on CCN concentration, namely, 

the "Ion-Aerosol Clear-Air" mechanism and the "Ion-Aerosol Near-Cloud" 

mechanism. 

2.4.1 "Ion-Aerosol-Clear Air" Mechanism 

This mechanism can be defined as the cosmic ray-created ions combining with 

aerosols in the atmosphere, causing the growth of CCNs. CCN are aerosols with a 

diameter of about 100 nm, and they act as nuclei in cloud droplet formation. The 

diagram in Figure 2.5. shows the growth process of cloud droplets. The main source 

of newly formed aerosol particles is their decomposition into ultrafine condensation 

nuclei (UCN) composed of condensable vapors such as sulfuric acid (H2SO4) 

(Carslaw, Harrison, & Kirkby, 2002). 
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Figure 2.5. Growth of cloud droplets. (Redrawn from (Carslaw, Harrison, & Kirkby, 

2002). 

Model studies showed that the presence of an electrical charge made nucleation 

faster by reducing the nucleation threshold. This indicates that nucleation can occur 

at much lower ambient vapor concentrations than in the non-ionized atmosphere. 

The results of these models displayed that the nucleation rate of newly formed 

aerosols in the clear-air regions of the atmosphere is limited by the cosmic ray 

ionizing rate (Carslaw, Harrison, & Kirkby, 2002). 

It is stated that there are two possible ways in which the ionization of cosmic rays 

can enhance nucleation (Kirkby, 2007). They first induce the formation of particles 

by stabilizing H2SO4 and H2O molecule clusters through Coulomb attraction; 

second, they mediate the process of formation by affecting the condensation rates of 

molecules.  

The effect that the changes in cosmic ray intensity have on clouds is similar to the 

indirect effect of aerosols on clouds. The concentration of aerosols increases with 

human-induced activities and causes the number of cloud droplets to increase in the 

same environment. As a result, while the number of droplets in the cloud will 
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increase, their size will decrease. The increase in droplet concentrations results in an 

increase in cloud reflectivity and repression of precipitation and an increase in cloud 

lifetime. This is a simple explanation of the indirect aerosol effect on clouds 

(Carslaw, Harrison, & Kirkby, 2002). The two effects are compared in Table 2.1. 

 

Table 2.1. Comparison of the indirect effect of aerosols and the cosmic rays on 

clouds (Carslaw, Harrison, & Kirkby, 2002). 

 Aerosol Indirect Effect Cosmic Ray-Cloud Effect 

Cause Changes in total aerosol loading. 
Changes in microphysical 

processes by ions. 

Effect on 

Clouds 

Increase in cloud cover, cloud 

lifetime, cloud reflectivity. 

Decrease in rainfall. 

Similar, but some mechanisms 

are unknown. 

Extent of 

Effect 

Effect in spatially limited, 

polluted atmosphere regions. 

Most possibly global effects, but 

with a clean atmosphere. 

Implications 
Global radiative cooling that is 

comparable to global warming. 

Potentially sizable modification 

of the global energy balance on 

longer time scales. 

 

The cosmic ray effect on clouds and the (indirect) effect of aerosols on clouds are 

both related to the variation in the number of aerosols. Nevertheless, they are 

different from each other in three significant ways:  

1. The indirect effect of aerosols on clouds is related to the change in the 

concentration of the total condensable vapors (mainly SO2). In contrast, the 

influence of cosmic rays is associated with changes in the rates of 

microphysical processes. 

2. The effect of cosmic rays on clouds can make small changes in the global 

aerosol numbers. In contrast, aerosol concentration increase due to pollution 

is restricted to only certain regions of the globe. 
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3. Pollution effects are stronger in high population areas; thus, the indirect 

aerosol mechanism is more effective in populated regions. Conversely, 

cosmic ray effects are stronger in regions with low aerosol concentrations, 

i.e., with low population (such as clear air above the oceans). 

 

The “ion-aerosol-clear air” mechanism is summarized in Figure 2.6. 

Figure 2.6. The “Ion-Aerosol Clear-Air” mechanism. (Redrawn from (Čalogović & 

Laken, 2015)) 

In summary, galactic cosmic rays, modulated by the solar activity, generate particle 

cascades in the atmosphere and lead to ionization. Under the right atmospheric 

circumstances, this ionization causes an increase in the nucleation of aerosols and 

leads to the growth of CCN, which has an influence on cloud properties (Čalogović 

& Laken, 2015). 
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2.4.2 "Ion-Aerosol Near-Cloud" Mechanism 

This mechanism is based on the differences in aerosol electrical charge near clouds 

compared to the electrical charge in clear air. Changes in the clear-air electric field 

cause the thin clouds to be much more positively charged than the clear air above it, 

and these electric fields are modulated by cosmic rays (Carslaw, Harrison, & Kirkby, 

2002). 

It has been suggested by theoretical and experimental studies that the efficiency of 

aerosols is enhanced with this electrification, which is modulated by cosmic rays, yet 

the exact mechanism is not that well understood. It is thought that a decrease in GCR 

flux will lead to a decrease in electrically enhanced ice-particle formation, which in 

turn will decrease the amount of ice clouds and rainfall (Carslaw, Harrison, & 

Kirkby, 2002).  

Of the two mechanisms mentioned, this thesis will be focusing on the “ion-aerosol-

open air” mechanism of cosmic rays affecting cloud formation. 

2.5 Cosmic Rays, Aerosols, Clouds and Climate 

Aerosols play an essential role in the global climate balance and, therefore, are an 

important phenomenon in climate change. Changes in aerosol concentration from 

natural events (such as large volcanic eruptions) affect the Earth's radiation balance 

and thus cause global temperature changes. The impact of aerosols on climate occurs 

in two ways (Carslaw, Harrison, & Kirkby, 2002): 

1. The direct radiative effect: with the absorption and scattering of incoming 

solar radiation and the radiation emitted from the ground, 

2. The indirect radiative effect: with effect on cloud microphysics properties. 

Thus, the theory for the effects of aerosols on clouds is that as the aerosol 

concentration increases, the size of the droplets forming the cloud decreases, and the 
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cloud consisting of small droplets reaches a higher albedo. As a result, cooling 

occurs. 

To conclude this section, the solar activity-cosmic ray-climate relationship can be 

summarized in the diagram in Figure 2.7.  

 

Figure 2.7. The solar-climate relationship (redrawn from (Easterbrook, 2016)) 

The period of weak solar activity, observed from the fewer sunspots on the Sun, leads 

to more cosmic radiation reaching the Earth. This cosmic radiation creates an 

increase in the low-level cloud formation and cloudiness, which leads to more 

sunlight being reflected and less being absorbed. Hence, the atmosphere cools down, 

and the Earth becomes colder.  

2.6 Machine Learning 

2.6.1 Overview of Machine Learning 

Machine learning (ML) forms the basis of the data analysis in this thesis; therefore, 

it is essential to introduce and explain some parts of ML. ML may be used in data 

science to predict future data from existing data. Such predictions are made using 

models, which are the mathematical frameworks for ML (Paluszek & Thomas, 

2016). The input data in models are used to predict the value of the outputs; this is 

why the input data are also called the predictor variables, and the output data is called 
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the response variable or the predictand. In statistics, the former is also called 

independent variables and the latter as dependent variables (Friedman, Hastie, & 

Tibshirani, 2001). 

The learning process in ML can be separated into two main categories, namely, 

supervised and unsupervised. One very basic difference is that in supervised 

learning, training and test data sets, which will be explained in more detail in the 

following section, are used in the ML models. Meanwhile, unsupervised ML does 

not use training sets, and it is mainly used to find hidden patterns with no “correct” 

answer inside the data. Thus, there is no specific output variable in unsupervised ML, 

as the main goal of the model is to understand the data structure. On the other hand, 

in supervised ML, the output variable is the main learning task of models, and the 

differences in the type of output lead to different tasks of prediction. When 

quantitative output variables are predicted, the models are called regression models, 

and when qualitative models are predicted, they are called classification models 

(Friedman, Hastie, & Tibshirani, 2001). 

An overview of the machine learning processes is summarized in the diagram in 

Figure 2.8. 

 

Figure 2.8. Diagram of the machine learning processes (Mathworks, 2021) 
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2.6.2 Supervised Machine Learning and Regression Models 

Supervised ML is the learning process used in this thesis because one of the thesis 

goals is to analyze the effect of external forces on climate to see how they affect 

meteorological parameters. This can be achieved by creating a model with multiple 

input parameters to predict such outputs using regression (Paluszek & Thomas, 

2016).  

There are also two parameter types commonly referred to in ML; model parameters 

and hyperparameters. Model parameters are the parameters used when creating the 

models. Such parameters can be set before training a model, or they can be learned 

during the training process by the algorithm. Hyperparameters, on the other hand, 

are not learned by the ML algorithm in training. They are determined by the user 

with hyperparameter optimization (Paluszek & Thomas, 2016). 

 

Figure 2.9. Diagram of the train-test processes (Mathworks, 2021) 

Training the model is the essential part of supervised ML, and it is followed by 

testing the model to validate results. The complete data can be divided into two parts: 

training data and test data. Training data is used to construct the ML model, while 

the test data helps to evaluate the performance of the final model. (Paluszek & 

Thomas, 2016). This process is summarized as a diagram in Figure 2.9.  
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As mentioned above, the method used in this thesis to fit data into a model is 

regression. The simplest form of regression is the linear model (LM), which predicts 

the response variable by multiplying the predictor variables with coefficients. More 

complex regression models are discussed in Section 2.6.5. 

The linear model can be formulized as in Equation 1;  

𝑦 = 	𝛽! +	𝛽"𝑥" +	𝛽#𝑥# +	…	+ 𝛽$𝑥$																																																																											(1) 

where y is the response variable, xi are the predictors, 𝛽% are the regression 

coefficients and 𝛽! is the intercept (bias) term (Friedman, Hastie, & Tibshirani, 

2001).  

2.6.3 Metrics Used in Regression Models: 

Here the most important metrics used for understanding regression models are listed. 

Firstly, residuals (𝑟%) are the errors for every data point in the model (Paluszek & 

Thomas, 2016). 

𝑟% =	𝑦% − 𝑦-%                                                                                                            (2) 

Here 𝑦% stands for the actual response and 𝑦-% is the predicted response.  

 

Figure 2.10. shows the residual definition graphically for one predictor variable that 

is displayed on the x-axis and one response variable displayed on the y-axis. The red 

line is the regression line that best fits the data, and the residuals are the difference 

between the observed and predicted values. 
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Figure 2.10. Graphical representation of the residuals (Mathworks, 2021) 

The average of the squared residuals of a model is called the Mean Square Error 

(MSE). 

𝑀𝑆𝐸 = 	
1
𝑛	3(𝑦% − 𝑦-%)#

$

%&"

																																																																																																			(3) 

Most regression models aim to minimize this term during training (Friedman, Hastie, 

& Tibshirani, 2001).  

Root Mean Square Error (RMSE)  

𝑅𝑀𝑆𝐸 = 	6
1
𝑛	3(𝑦% − 𝑦-%)#

$

%&"

	,																																																																																											(4) 

is the square root of MSE, and it is a useful term in detecting outliers and errors 

(Friedman, Hastie, & Tibshirani, 2001). The Sum of Squared Errors (SSE, Eq. 5) 

and the Sum of Squares Total (SST, Eq. 6) are both error metrics used in calculating 

R2  (Friedman, Hastie, & Tibshirani, 2001).  

𝑆𝑆𝐸 = 	3(𝑦% − 𝑦-%)#
$

%&"

																																																																																																									(5) 
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𝑆𝑆𝑇 = 	3(𝑦% − 𝑦;)#
$

%&"

																																																																																																									(6) 

where 𝑦; is the mean response variable.  

 

Figure 2.11. Graphical representation of the difference between the SST and SSE 

(Mathworks, 2021) 

The Coefficient of Determination (R2),  

𝑅# =	
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇 ,																																																																																																														(7) 

is the difference in total error, calculated from the fitted model, and it theoretically 

has a value between 0 and 1. The value is closer to 0 when the error is large, and the 

model does not fit the data well, while the value is closer to 1 when the error of the 

model is small (Friedman, Hastie, & Tibshirani, 2001). However, a model worse 

than the simplest model, which is simply the mean of the predictand values, can lead 

to negative R2 values. The more predictors are added to the regression equation, the 

more opportunities there are for random events to reduce SSE and thus result in a 

better R2 value. As a result of this, in computer models, an adjusted R2 value is more 

often reported, and it scales the R2 by the number of predictors used (James, Witten, 

Hastie, & Tibshirani, 2013). 
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These metrics are used to evaluate regression models and to quantify their 

performance. When comparing models with each other, the error metrics MSE and 

RMSE are helpful, while the R2 value is a good measure of the model fit (Paluszek 

& Thomas, 2016).  

2.6.4 Validation of Machine Learning Models 

Validation is a crucial part of ML methods, and to understand it, two terms, namely 

bias, and variance must be introduced. The inability of a ML method to capture the 

true relationship of a model is called bias, while how much the ML method can adjust 

the model to the differences in data is called variance (James, Witten, Hastie, & 

Tibshirani, 2013). 

The change seen in training and test errors as the complexity of a model changes is 

plotted in Figure 2.12. When the complexity of a model increases, the fit of data is 

higher, and the error of the training set decreases. In contrast, the error of the test 

data increases because the model only fits the training set well and cannot generalize. 

Thus, when the model has high complexity, it will overfit, and the model predictions 

will have low bias and high variance. In contrast, it will underfit when the model has 

low complexity and the predictions have a high bias with low variance (Friedman, 

Hastie, & Tibshirani, 2001).  

Hence, in ML, the ideal algorithm would have a low bias to model the true 

relationship between predictors and the response accurately, and it would have low 

variability by producing consistent predictions across different datasets (James, 

Witten, Hastie, & Tibshirani, 2013).  
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Figure 2.12. Bias- variance tradeoff (Redrawn from (Friedman, Hastie, & Tibshirani, 

2001)) 

The bias-variance tradeoff is the tradeoff in the complexity of the model, and a good 

balance between the bias and variance of a model should be found, in which there 

should be no overfitting or underfitting (Friedman, Hastie, & Tibshirani, 2001).  

Validation is what helps to prevent overfitting. With the initial raw data, the 

algorithm first needs to be trained to estimate parameters for the ML methods and 

then tested to evaluate how well the ML method works. Re-using the exact data for 

both training and testing would result in overfitting because the performance on data 

the model was not trained on should be tested (James, Witten, Hastie, & Tibshirani, 

2013).  

The two most used validation methods in ML are hold-out validation and k-fold 

cross-validation. The hold-out validation method is performed by holding out a 

certain percentage of the original data set and using it as the test dataset while using 

the remaining part as the train data. This method is the process shown in the diagram 

in Figure 2.9. It is a simple method; however, it has two disadvantages. Firstly, the 

validation of the test set is highly variable as it depends on which observations are 

divided into the train set and which go into the test set. Second, the error on the test 
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set might be overestimated due to not all the observations going into the train set, 

and the model is trained with fewer data points (James, Witten, Hastie, & Tibshirani, 

2013) 

On the other hand, k-fold cross validation equally divides the original dataset 

randomly into k number of groups, takes one group, and validates the remaining data. 

This is done using each group one by one, k times, and then the results are averaged. 

(James, Witten, Hastie, & Tibshirani, 2013). The methods that can be used to validate 

data are summarized and compared in Table 2.2. 

 

Table 2.2. Validation Methods (Paluszek & Thomas, 2016) 

Holdout Validation K-Fold Cross-Validation 

Validates the data once 
Splits the data into k subsets 

and validates the data k times 

Better for large data sets Better for small data sets 

Faster method Slower method 

 

This thesis will use hold-out validation in the ML part of the analysis because the 

datasets are large. 

2.6.5 Multiple Regression Models 

Four types of multiple regression models will be used in this analysis: the three linear 

models are the linear regression model, generalized linear regression model, 

stepwise linear regression model, and the non-linear multiple regression model used 

is the random forest model. 
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2.6.5.1 Multiple Linear Regression 

Simple linear regression is used when a response parameter is predicted using only 

one predictor (James, Witten, Hastie, & Tibshirani, 2013). However, when there is 

more than one predictor involved, it is called multiple linear regression, and it is 

formulized in Eq. 1.  

When the predictors are dependent on each other, additional terms called 

“interaction” terms can be added to the model, and Eq. 1 becomes, 

𝑦 = 	𝛽! +	𝛽"𝑥" +	𝛽#𝑥# +	…	+ 𝛽$𝑥$ 	+ 		𝛽"#𝑥"𝑥# +		𝛽"'𝑥"𝑥' +	…+ 	𝛽"$𝑥"𝑥$
+⋯	+	𝛽$(",$𝑥$("𝑥$																																																																													(8) 

where the cross-product terms quantify the interaction among predictors. With these 

additional terms, the non-linearities between predictors are also approximated. 

Generalized linear regression and stepwise linear regression are extensions of the 

linear model. The main difference between the linear model (LM) and generalized 

linear model (GLM) is that in the LM, the response variable assumes a normal 

distribution for each set of the predictor values, while in the GLM, the response 

variable can have a distribution that can be, for example, binomial or Poisson as well 

as being normal (Ciaburro, 2017).  

The stepwise model again creates a linear model starting from the entire dataset of 

predictors, and it adds or removes predictors at each step of the regression to 

determine a final model. The terms to add or remove are searched based on criteria 

determined by the user, such as to increase the value of R2 (Ciaburro, 2017). 

Hence, the above-mentioned three different models have been used to investigate the 

linear relationships in the multiple regression models of this thesis. 
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2.6.5.2 Random Forests 

The random forest regression model is based on the decision tree method, a 

continuous process that splits the dataset into “branches” and expands these branches 

in each step. These branches go from the observation dataset to the response, and the 

model shape takes a final form similar to a tree, hence the name “decision tree”. 

Decision trees are a simple ML method to use, yet they have two significant 

drawbacks. The first is that they are mostly computationally expensive, and second 

the predictions might get deviated if the underlying data changes. Thus, instead of 

using one single decision tree, combining many trees will improve the prediction 

accuracy (James, Witten, Hastie, & Tibshirani, 2013).   

Random forests construct multiple decision trees at once during the training time, 

and they combine the result of each prediction of each tree to determine a final 

output. Each decision tree selects a random sample from the original dataset, and this 

randomness greatly prevents overfitting (James, Witten, Hastie, & Tibshirani, 2013).  

The advantages of using random forests are as follows: firstly, they are run efficiently 

on large datasets; and secondly, they are an effective method for estimating missing 

data, and they can maintain the accuracy even when a large part of the data is 

missing. A major disadvantage is that overfitting may be observed for datasets with 

noisy data (James, Witten, Hastie, & Tibshirani, 2013).  

Random forests are used in this thesis because they work well with large datasets 

and are suitable for detecting non-linear relationships in regression.  
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CHAPTER 3  

3 LITERATURE SURVEY 

There have been many studies searching for a link between solar activity and the 

Earth’s climate. Possible relationships were sought through investigating TSI and 

UVI variations. The variation in TSI causes an input of heat in the lower atmosphere; 

however, this heat by itself is not sufficient to affect the global climate. The variation 

in UVI is hypothesized to affect the absorption in the lower atmosphere (Carslaw, 

Harrison, & Kirkby, 2002). However, these studies lacked a direct explanation of the 

climate mechanisms, and more research was needed.  

One possible explanation for this problem came from Svensmark and Friis-

Christensen (Svensmark & Friis-Christensen, 1997) where they suggested a link 

between cosmic rays and global cloud cover. Correlation analysis was made between 

ISCCP globally averaged total cloud cover and GCR flux for the period July 1983-

December 1991. The cloud data was smoothed with a 12-month moving mean filter 

to remove seasonal effects. It was concluded that the variation of 3–4% of the global 

cloud cover was positively correlated with the GCR flux. They stated that the 

calculated correlation coefficient increases from 0.95 to 0.97 if a 12-month moving 

mean filter is applied to the GCR data. In 2000, Marsh and Svensmark revised the 

analysis (Marsh & Svensmark, 2000) from Svensmark 1997, this time extending the 

correlation analysis period to 1994, and looked at the cloud cover at different 

altitudes: high, middle, and low. They claimed that the GCR correlation was 

restricted only to low clouds. In both studies, the global cloud cover was used with 

excluding the tropics region (25°S - 25°N). This was explained in 2000 by 

Svensmark (Svensmark, 2000)  in two reasons. The first was that the flux of GCRs 

reduces towards the equator, and the second was that the cloud processes were 

different in the tropical regions compared to the regions at higher latitudes.  
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Pallé Bago and Butler (Pallé Bagó & Butler, 2000) also investigated the relations 

between the GCR and monthly ISCCP cloud levels for the years 1983-1994. They 

used regression to extend the study to the past century. They stated that, in general, 

the CR effect is expected with high cloud covers and not with low cloud cover. 

However, most studies unexpectedly detected a high correlation with low clouds. 

They continue to say that one reason for this discrepancy could be explained by how 

the data acquired from neutron monitors, which are located on the ground level, 

represent mainly the lower regions of the atmosphere. This is an important 

methodological limitation. They concluded their study by saying that the warming 

in the 20th century could be mathematically explained by solar activity effects 

without considering the most recent years.  

Correlations were found between the cloud cover and GCRs, yet the physical 

mechanism behind these correlations was uncertain. In 2002, Carslaw et al. 

(Carslaw, Harrison, & Kirkby, 2002) talked about the different physical processes 

that could act as a link between climate and cosmic rays. These mechanisms are 

explained in detail in Section 2.4. Another important result of model studies 

mentioned in their paper was that the formation of aerosol concentrations was 

greatest in the lower atmosphere. They stated that the ionization rate in this region 

was a constraining factor for new aerosol particle formation; and that at the upper 

levels of the atmosphere, where the cosmic ray density is higher, the ionization rate 

had no such function. This explained why the relationship between cosmic rays and 

cloud cover could be more evident in low-level clouds.  

The “ion-aerosol clear-air” mechanism, was also explored by Yu in 2002 (Yu, 2002). 

He found that with an increase in GCR rates, there is also an increase in CNs in the 

lower part of the troposphere. The troposphere is the lowest layer of the atmosphere, 

where all the weather events occur, including cloud formation. On the other hand, in 

the upper part of the troposphere, a decrease in CN production was found, with 

increasing GCR flux. They stated that these results showed that the “ion-aerosol 

clear-air” mechanism could explain the altitude dependency of the correlations 
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reported earlier between global cloud cover and GCRs. Hence, this paper supported 

the GCR-climate relationship with further evidence.  

In 2003, Marsh and Svensmark (Marsh & Svensmark, 2003) published another 

study, in which they suggested that the low cloud cover was statistically correlated 

to the El-Niño-Southern Oscillation (ENSO) process. They stated that there was a 

gap in the ISCCP data from September 1994 to January 1995 due to a satellite 

calibration problem, and for this reason, two periods were used for the analysis to 

compare the differences. The first period was from July 1983 to August 1994, and 

the second period was from July 1983 to September 2001. The ENSO index, which 

is the average sea surface temperature anomaly, used in their study covered the 

region between latitudes 5°N-5°S and longitudes (150°-90°) W. This region is in the 

Eastern Pacific Ocean and is known as the NINO3 area. The ENSO index was 

included in their study because they highlighted that it was known to have a strong 

effect on high cover cloud properties, and they wanted to see the relations with low 

cloud properties. They stated that the link between low cloud cover and GCRs 

throughout 1983 to 1994 was approved by the ENSO signal, yet the relation 

weakened when the whole period up to 2001 was considered. It was explained that 

this weakening was either due to the calibration problems of the satellites or due to 

changes in the physical processes of the ENSO events. 

However, Laut (Laut, 2003) opposed the GCR-climate correlations in 2003 by 

revising the previous work conducted by Marsh and Svensmark (Marsh & 

Svensmark, 2000). He extended the datasets of the previous study up to 2000 and 

plotted the time series. He stated that the agreement between GCRs and low cloud 

cover was questionable starting from 1990, and after 1994, there was no agreement 

seen at all. He also stated that the change in cloud cover was delayed about six 

months compared to the GCR flux. That should not be the case because according to 

the “ion-aerosol clear-air” mechanism, the formation of clouds should occur within 

a few days at maximum, which should seem instantaneous when the plotted datasets 

are yearly averaged. He finally stated that the physical interpretation of the ISCCP 
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low clouds was difficult because they depended on the IR measurements, which 

could cause problems when being detected behind high clouds. 

Supporting the correlations between GCR-climate, a different approach was used in 

a Master’s Thesis by Akcan (Akcan, 2004) at İstanbul Technical University. The 

relationship between Earth’s cloudiness and the cosmic ray intensity during one solar 

cycle was investigated, and a prediction study was held using a neural network-based 

model. The study period was from 1983 to 2001, and an area between latitudes 

21.25° - 58.75°N and longitudes 8.75°W -  48.75°E was chosen to be studied. It was 

stated that during a solar cycle of 11 years, the changes in cloud cover and the GCR 

flux were periodic and parallel to each other, and there was a phase difference of ~ 

two months between the monthly cloud cover and GCR flux. After conducting the 

study on the local scale, it was pointed out that the obtained results were not reliable 

because local effects were difficult to remove. It was suggested that future studies 

should be held in larger regions. The results of the model used were close to the 

observed values, and it was concluded that a statistically significant relationship was 

found. It was further suggested that in future studies, other atmospheric parameters 

that affect the amount of cloudiness should be included in the analysis to determine 

the order of importance of the factors. 

In 2004, two important independent studies looked at the relationship between GCR 

ionization and the ISCCP low cloud amount and supported the hypothesis. The first, 

by Pallé et al. (Pallé Bagó, Butler, & O’Brien, 2004) studied the pixelwise statistical 

relations for the years 1983-2001 and found that there was a stronger correlation in 

the mid-latitude region. They detected a decrease in low cloud cover for the last 

century and concluded that this finding could be the explanation for a substantial part 

of the ongoing global warming.  

In the following study, Usoskin et al. (Usoskin, Marsh, Kovaltsov, Mursula, & 

Gladysheva, 2004) investigated the GCR-cloud relationship by using latitudinal 

region averages for the first time, instead of the previously used global averaged 

cloud data. The three different regions that they used in their analysis were; the 
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global average excluding the poles (60°S - 70°N), the tropics (25°S - 25°N), and the 

mid-latitudes ([60° - 25°]S and [25° - 70°]N). It is stated that they excluded the polar 

regions from the study due to the detection of the clouds over ice regions being 

problematic. They also mentioned the decreasing trend observed in the ISCCP data 

and that this trend was not uniformly distributed around the globe. Thus, they 

compared the correlations calculated from raw ISCCP data with the detrended 

ISCCP data; and found that detrending the ISCCP low could data greatly improved 

the correlation. They concluded that the GCRs are mostly correlated with the low 

cloud amount over the mid-latitude region for the years 1984 – 2000, and their results 

support the hypothesis of GCRs modulating the low cloud amount for the studied 

years. It is also stated that detrending the ISCCP low could data greatly improved 

the correlation.  

Usoskin et al. (Usoskin, Voiculescu, Kovaltsov, & Mursula, 2006) reanalyzed the 

previous work in 2006 to see if the observed ISCCP instrument effects, also 

mentioned in Lauts’s study (Laut, 2003), were a fact or an artifact. They showed that 

in some geographical regions, such as the South Pacific and North Eurasia, the 

correlation between GCRs and low cloud cover could be affected by the high cloud 

cover. However, they found that for larger geographical regions, such as Europe, the 

South Atlantic, Northwest Pacific, and the West Indian regions, the low cloud cover 

was not affected by the high or middle cloud cover. Thus, it was stated that it was 

safe to study these regions using the ISCCP data. They concluded that the results of 

earlier studies looking at the relationships between certain cloud types and any solar 

proxies could be distorted because of using global and latitudinally averaged 

datasets. Hence, they stated that future studies should be limited to the regions 

specified above that were not affected by higher-level clouds. 

In the same year, Voiculescu et al. (Voiculescu, Usoskin, & Mursula, 2006) studied 

the correlations between UVI, GCR, and the pixelwise annual cloud amount data for 

the high, middle, and low-level clouds. They tried to distinguish between the UVI 

and GCR effects on clouds. They found that the low cloud amount was essentially 
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driven by UVI in all the ocean regions but the Atlantic. They also stated that the 

observed high correlations seen in Europe and North America could be a result of 

the high aerosol concentrations generated in these critical industrial regions. They 

found that in most of the pixels, GCRs are correlated positively with low cloud 

amount and negatively with high cloud amount. They remarked that the solar effect 

on cloud cover is not only dependent on one solar parameter and that the climatic 

conditions in every pixel are also crucial. They also stated that the low cloud amount 

is mainly driven by UVI over oceans and dry lands, while it is driven by GCRs over 

moist land areas that have higher concentrations of aerosol. 

In 2007, a study by Voiculescu et al. (Voiculescu, Usoskin, & Mursula, 2007), that 

looked at the correlation between clouds, solar proxies, internal ENSO effects, and 

volcanic eruptions showed that removing ENSO years from the analysis did not 

change the Sun–cloud relation statistical results. It is further stated that the 

correlation even improved between the different cloud covers, GCR flux, and UVI. 

This result is used to support the idea that clouds are directly influenced by solar 

activity. An important finding in the study is about an area in the eastern Pacific, 

where the relationship between GCR and clouds was found to be the opposite of the 

remaining part of the globe. In that specific region, the high-level cloud cover was 

positively correlated with the GCR flux while the low-level cloud cover was 

negatively correlated with GCR, while for the rest of the world, the low-level cloud 

cover was positively correlated with GCR, and the high-level cloud was negatively 

correlated. It was stated that removing the ENSO years made the unexpected 

correlation in the specified region disappear, and it was put forward that in the 

particular region of the Pacific Ocean, the ENSO effect prevailed over solar effects. 

It was concluded that even though the removal of the ENSO effect in the analysis 

does not change global correlation patterns, for some areas that are subject to being 

affected by internal climate processes (such as the mentioned Eastern Pacific region), 

the correlation results must be interpreted carefully. 
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Based on the studies mentioned above, the term called ‘cosmoclimatology’ was put 

forward by Svensmark in 2007 (Svensmark, 2007), by reviewing the evidence for 

the cosmic effect on climate. It was concluded that the Earth's climate was solar-

driven, and the humans’ contribution to recent climate change was trivial. In 2008, 

Usoskin et al. (Usoskin & Kovaltsov, 2008) also reviewed the experiments and 

theory of the possible connection between GCRs and climate. They concluded that 

the link between the cosmic rays and climate seemed to be a possible climate driver; 

however, they stated that there were still questions on the physical mechanisms of 

the relationship. 

In 2008, Kristjansson et al. (Kristjánsson, et al., 2008) approached the 

“cosmoclimatology” problem from a different perspective, mentioning that there 

were important inhomogeneities observed in the datasets of ISCCP. They instead 

used the Moderate-resolution Imaging Spectro-radiometer (MODIS) data to study 

the connections. Many different cloud and aerosol properties were used as the 

meteorological parameters in the correlation investigation. Their results showed that 

only the eastern Atlantic Ocean region showed a statistically significant correlation, 

and most of the other regions showed only a weak correlation. 

Pierce and Adam (Pierce & Adams, 2009) tested the “ion-aerosol clear-air” 

mechanism using a general atmospheric circulation model to understand how the 

changes in GCR flux affect the formation of CCN, and they found that the 

concentration of CCNs is not very sensitive to the changes in the GCR flux. They 

concluded that their results showed that the “ion-aerosol clear-air” mechanism was 

too poor in explaining the correlations between solar activity and climate. Carslaw 

(Carslaw, 2009) reviewed their work and stated that even though the results of Pierce 

and Adam were against the cosmoclimatology theory, this would not stop the 

investigation of a link between cosmic rays and clouds. He said that this was first 

because scientists continue to be interested in the correlations between climate 

variables and solar proxies. Secondly, this relationship would stay a controversial 

subject in which all of the possible mechanisms should be explored. 
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Erlykin et al. (Erlykin, Gyalai, Kudela, Sloan, & Wolfendale, 2009) further analyzed 

the cloud-cosmic ray correlations previously stated by Svensmark and Friis-

Christensen (1997) and Palle Bago and Butler (2000). The different altitude levels 

of global cloud cover were analyzed in latitude regions of 20-degree bands, using 

ISCCP data up to the year 2005. They mentioned that the middle-level cloud cover 

was strongly anti-correlated with the low cloud cover. Their analysis was concluded 

by stating that there is no “causal connection” between GCRs and the low cloud 

cover and that the two are only correlated due to their common dependence on the 

TSI at the Earth. Erlykin et al. (Erlykin, Sloan, & Wolfendale, 2009) also 

investigated the relationship between cosmic rays, solar activity, and the global mean 

temperature. They noted that global temperature fluctuation was in phase with the 

solar cycle (measured by SSN and TSI) and in antiphase with the GCR cycle. The 

delay of the GCR cycle by two to four years meant that the solar activity, rather than 

GCRs, was the most likely causative factor for the fluctuation. This study also 

concluded that the correlation of GCR intensity and low cloud cover could be due to 

their causal relationship with the TSI at the Earth. 

Laken and Calogovic (Laken & Čalogović, 2011) investigated the GCR-cloud link 

using daily timescales. For this purpose, they investigated high amplitude short-term 

reductions in the flux GCRs, named Forbush Decrease (FD) events. They also went 

over the previous work looking at FD events and stated that most of the results 

conflicted with each other. A couple of possibilities for this conflict were stated: first 

that there could be no relationship between climate and solar activity; second, that a 

connection does exist yet it is hidden by the atmospheric conditions of each study; 

third that even reducing the timescale to daily datasets was not enough to detect 

subtle relations; and fourth that when dealing with daily timescales the sample size 

is too little, which could be limiting the detection of any significant signals. Laken 

and Calogovic addressed the third possible problem in their study by carefully 

choosing their samples to isolate specific period ranges. They used TSI, UVI, and 

GCR data and correlated them to ISCCP cloud amount at different altitudes for low 
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and high latitude regions. They concluded that TSI or UVI variations during the GCR 

flux reductions do not illuminate the solar-cloud response at any altitudes. 

Erlykin et al. (Erlykin & Wolfendale, 2011) wrote a paper which was a survey on 

the evidence for and against the GCR-cloud relationship. It was concluded that while 

for high latitudes, there is an observed effect, for specific regions, the GCRs do not 

affect the atmosphere at all. They stated that the average effect over the globe was 

small and insignificant. 

In 2012, Voiculescu and Usoskin (Voiculescu & Usoskin, 2012) studied the 

correlation of GCR-induced ionization and UVI with the pixelwise global cloud 

cover between the years 1984 - 2009. They generated correlation maps globally for 

low, medium, and high cloud covers. All datasets were averaged annually to remove 

seasonal effects. A high positive correlation between low cloud and GCR was found 

in most regions, while a negative correlation was seen in the west of South America 

and the Indian Ocean. Meanwhile, the UVI was strongly anti-correlated over similar 

regions. Overall, the strongest correlations were observed for the low cloud amount 

compared to the other two types of clouds. They concluded that there were no solar 

effects on cloud cover at the global level, and the correlations existed mainly for 

certain climate-defining areas.  

Following Krisjansson’s work in 2008 (Kristjánsson, et al., 2008), Laken et al. 

(Laken, Pallé Bagó, & Miyahara, 2012) compared the MODIS data with the ISCCP 

data and looked at the relationship of GCR, TSI, and the ENSO index (MEI) with 

ISCCP and MODIS cloud over a more extended period. Comparing the two satellite 

datasets, they first mention that MODIS has a higher spectral resolution, which is 

better to study cloud properties. They also state that MODIS uses a more sensitive 

method in identifying cloud-top pressures, compared to ISCCP, which uses 

emissivity. An important difference between the two is that the MODIS cloud 

product is the daily mean cloud of the observed pixels at daytime, while the ISCCP 

cloud product adjusts nighttime IR cloud retrievals using the daytime visible and IR 

retrievals together. This results in a difference between the observed cloud amount 



 
 

38 

in the MODIS and ISCCP data, especially for the daytime cloud data over land areas. 

They questioned the reliability of ISCCP data. It is suggested that the trend observed 

in the ISCCP cloud cover data itself could be mainly artificial and may be due to 

satellite viewing problems. They concluded that no globally significant correlation 

between GCR/TSI/MEI and cloud was found; and that the solar variability was not 

a contributor to MODIS cloud.  

Again, using the MODIS data, Laken et al. (Laken B. A., Pallé Bagó, Čalogović, & 

Dunne, 2012) analyzed the solar-cosmic ray-cloud relations. Original research by 

Svensmark and Friis-Christensen (1997) using the ISCCP data was reanalyzed, 

without smoothing the datasets, it was shown that the resulting correlations were not 

statistically significant. Also, it was suggested that the ISCCP low cloud cover data 

itself could be mainly artificial. The ISCCP data over the 1983-2010 period was 

shown as a map, and the mentioned artificial trend can be observed as jumps in the 

dataset. They concluded their study by stating that there is no evidence for a solar-

cloud link. 

In 2013, Ahluwalia (Ahluwalia, 2013) searched for a correlation between GCRs and 

global surface temperature using the most extended robust datasets for the years 1900 

- 2013. He stated that the correlation coefficient between the two parameters was not 

sustained throughout the entire period and exhibited both positive and negative 

values varying between 5 to 20 years. He concluded that there was no direct linear 

correlation between climate and GCRs, yet there might be non-linear effects in 

operation.  

Erlykin et al. (Erlykin, Sloan, & Wolfendale, 2013) reviewed the recent results of 

the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at CERN. CLOUD is 

a laboratory experiment set up to study the effect of the GCRs on clouds and aerosols 

and to understand the growth of CCN particles. The most relevant results are 

summarized in this paper. The results confirm that ions present in the atmosphere do 

increase the aerosol nucleation rates. It is concluded that even though there could be 

a correlation between the GCRs and climate through the nucleation of aerosols, it is 
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expected to be very small; and further, the expected result would be a slight cooling, 

not warming because the intensity of incoming GCRs have increased.  

Ahluwalia (Ahluwalia, 2014) looked at correlations between GCRs, TSI, SSN, and 

the surface air temperature on the Earth. It is stated that there is no sustained 

correlation between the global temperature and the GCR, TSI, SSN datasets. Also, 

Marsh and Svensmark’s (2000) results were criticized, as the report of a strong 

correlation between low clouds and GCR was based on a limited dataset for July 

1983-August 1994, and extending data further would make the results trivial. It is 

concluded that global temperatures are not affected by changes in the GCR, TSI, or 

SSN. 

In 2015, Kilifarska et al. (Kilifarska, Bakhmutov, & Mel’nik, 2015) sought statistical 

relations between GCR intensity, SSN, surface air temperature, total ozone content, 

and the atmospheric CO2 concentration. They stated the following chain of 

interaction for explaining the cosmoclimatologic theory: the GCR intensity and 

depth of penetration in the atmosphere are regulated by the geomagnetic field. GCR 

activity alters the ozone density in the tropopause that subsequently changes its 

temperature, which leads to the adjustment of the extratropical upper tropospheric 

stability and humidity. Ultimately the surface air temperature is altered due to the 

greenhouse effect of water vapor. 

Tsonis et al. (Tsonis, et al., 2015) investigated the link between GCR flux and the 

year-to-year changes in global temperature. A coupling between the two parameters 

was found. However, they strongly indicated that this finding did not imply that 

GCRs could explain the current global warming. Instead, they stated that their results 

showed that GCRs could not explain the current increase in global temperature and 

that anthropogenic forcing had to be involved.  

Calogovic and Laken (Čalogović & Laken, 2015) reviewed the work on 

cosmoclimatology up to 2015 and outlined the observational results. They talked 

about the difficulties and limitations in the analysis of climate parameters. They first 

mentioned that because solar parameters such as SSN and GCR are co-varying, 
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disambiguating the forcings is almost impossible. Hence, they say that the previously 

observed effect of GCRs on climate could just be a result of GCRs being a proxy for 

solar activity rather than it being a separate mechanism. The second significant 

problem is with the internal climate forcings, such as volcanic activity or the El Nino 

Southern Oscillation, which can have similar periods of variation as solar activity. 

Hence, they can make it difficult to distinguish between the internal and external 

forcings on climate. Finally, they touched upon the subject of the most commonly 

used ISCCP cloud data itself having important quality problems, with the observed 

trends and errors in the dataset. It is mentioned that in long-term analyses, the ISCCP 

cloud data is not that reliable because problems arise from changes in the satellite 

calibration and the instrumentation degrading over time. They then talked about a 

way to solve the limitations with studies that are long-term, which is instead to work 

with short-term times scales, such as hourly or daily. However, they stated that the 

short-term studies are compromised as well due to the data being auto-correlated 

with each other, and the statistical analysis is complicated. It is concluded that these 

limitations are the reason for the different results in the cosmoclimatology studies, 

and they state that there is no “compelling evidence” to prove the cosmic ray and 

cloud relationship.  

On the other hand, in 2017, Ogurtsov and Veretenenko (Ogurtsov & Veretenenko, 

2017) stated that radiative properties of low clouds may be sufficient to explain the 

global warming effect for the last 30 years without requiring any human cause. They 

studied the relationship between GCRs and cloud using the ISCCP data for the years 

1983 to 2010. The data was investigated in two different periods: 1983 – 2003 and 

2004 – 2010. They stated that the two parameters are significantly positively 

correlated between the years 1983 to 2003. However, the sign of the correlation 

coefficient reverses in 2003, and the correlation weakens. The correlation coefficient 

between the global detrended monthly ISCCP low level cloud and the GCR flux is 

0.62 for 1983 – 2003, while it is -0.38 for 2004 – 2010. It is suggested that the 

correlation coefficient sign reversal effect may be due to the changes in atmospheric 
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circulation, mainly the transition of the circumpolar vortex from a strong state to a 

weak state. 

Bhaskar et al. (Bhaskar, Ramesh, Vichare, Koganti, & Gurubaran, 2017) performed 

an extensive study to identify the possible drivers of global warming. The used 

parameters in the analysis were: greenhouse gases such as CO2, CH4, N2O, aerosols, 

UVI, TSI, GCR flux, the ENSO index, and GMTA for 1984 – 2005. Instead of 

looking at the correlations between parameters, a different approach, implementing 

a non-parametric information technique, was used. It was found that aerosols on their 

own contributed to the global temperatures by about 23% and were a major driver of 

climate. The other parameters were found to contribute to global temperatures in the 

percentages of CO2 by 24%, CH4 by 19%, ENSO by 12%, UVI by 9%, GCR by 5%, 

N2O by 5%, and TSI by 3%. They conclude that this analysis was done for globally 

averaged values, and the results could be different at regional levels.  

In 2018, Veretenenko and Ogurtsov (Veretenenko & Ogurtsov, 2018) continued 

studying the possible reasons for the correlation coefficient sign reversing. The area 

of research was the mid-latitudes between the years 1983 - 2010. They mentioned 

that the ISCCP cloud data was in good agreement with other satellite data at these 

latitudes, such as MODIS. They concluded again that the stratospheric polar vortex 

was an important factor in the long-term cosmic ray effect on cloud cover. Strong 

vortex was present from 1980 to 2000, but a striking alteration occurred in the early 

2000s on the state of the vortex in both hemispheres, which changed the nature of 

the effect of GCRs on the evolution of cyclones, which in return affected the cloud 

formation processes. 

In the meantime, another study opposing the cosmoclimatology theory came from 

Ormes (Ormes, 2018), in which the studies up to 2017 were thoroughly reviewed. 

He concluded the review by stating that there is a lack of reliable and consistent 

correlation between any specific cloud type and location; and that the discussed 

GCR-climate processes are not strong enough to contribute to the recent global 

warming. 
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In 2019, Biktash (Biktash, 2019) studied the relations between SSN, TSI, GCR, and 

global air temperature from 1983 – 2017. It was stated that cyclical changes in global 

temperature were associated with solar activity through the effect of TSI on the 

Earth’s atmosphere and GCRs, supporting the cosmoclimatologic theory. However, 

it was concluded that the slow increase of the Earth temperature during the recent 

solar cycles was attributed to the anthropogenic factor alone.  

Another critical study in the same year came from Chapanov and Gorshkov 

(Chapanov & Gorshkov, 2019), where they studied the solar influence on climate, 

specifically in one region: Europe. The reason behind the selection of this region was 

that Europe has the longest and highest quality of meteorological parameter time 

series. Using such series, the connections between TSI, GCR, precipitation, and 

temperature variations for 1766 to 2000 were investigated. The chosen area was 

further divided into three latitude regions; (50° – 55°)N, (55° – 60°)N, (60° – 65°)N, 

to study latitudinal effects in detail. Oscillations of each time series were analyzed., 

and the sign reversal of the correlation coefficient between GCRs and climate 

parameters was shown for a more extended period. It was concluded that the effect 

of GCRs on climate is more significant in higher latitudes, particularly on 

precipitation over the (55° - 65°) N region.  

Singh and Bhargawa (Singh & Bhargawa, 2020) also examined the relationships 

between TSI, GCR, cloud amount, and global surface temperature from 1983 to 

2018. They found that the variation in cloud cover depended on TSI, GCR, and 

global surface temperature altogether, but the most contribution came from the 

global surface temperature. Also, for the GMTA, it was found that both the global 

cloud cover and TSI have an essential role. They also touched upon the decreasing 

trend in the ISCCP datasets and suggested that it is due to regular changes in the 

satellite’s view angle.  

One final study to mention is El-Borie et al. (El-Borie, Thabet, El-Mallah, Abd El-

Zaher, & Bishara, 2020), in which the relationships between GCRs, TSI, low-level 

clouds, and the global surface temperature is investigated. They supported the 
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cosmoclimatology theory by showing that in the last past century, there was a 19% 

decrease in the GCR flux; and stated that this caused a decrease in the global cloud 

cover, hence explaining global warming. They also reported a strong negative 

correlation between the low cloud cover and global surface temperature. It was 

concluded that between GCRs and the temperature anomaly variation, there existed 

a relationship cycle with a period of about 20 years.  

Reviewing the mentioned studies, it can be said that there is no definite statement 

that can be hypothesized regarding the cosmic rays – clouds – climate relationship; 

and that further research is required on this controversial relationship.  
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CHAPTER 4  

4 DATA AND METHODS 

This chapter talks about the datasets used, and the methodology for the data analysis 

is explained.  

4.1 Data Used 

Data for the cosmic ray flux has been taken from the Oulu Cosmic Ray Station 

(ONM), operated by the Sodankyla Geophysical Observatory (Usoskin, Cosmic Ray 

Station of the University of Oulu, 2021). The ONM is a ground-based neutron 

monitor, which measures the number of high-energy charged particles reaching the 

Earth. It is located in Finland at latitude 65° N. The ONM has been in operation for 

more than 50 years, with its data being publicly available (Usoskin, Mursula, 

Kangas, & Gvozdevsky, 2001). It is a particularly useful source of data on cosmic 

flux because it is one of the most stable neutron monitors with a long record of 

measurements. 

As previously mentioned in Section 2.1, three different parameters have been used 

as solar activity proxies. The SSN data has been taken from the World Data Center 

SILSO, Royal Observatory of Belgium, Brussels (SILSO, 1984-2017). The TSI and 

UVI data have been taken from the NOAA Climate Data Record (CDR) created with 

the Naval Research Laboratory model for solar spectral (Coddington, et al., NOAA 

Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2, 

2021) and total solar irradiance (Coddington, et al., NOAA Climate Data Record 

(CDR) of Total Solar Irradiance (TSI), NRLTSI Version 2, 2021). The UVI data 

used has a wavelength of 249.5 nm, corresponding to the midpoint of the UV region 

(100 - 400 nm). 
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There are a couple of different indices that can be used for the ENSO events; the 

Oceanic Niño Index (ONI) has been used in this analysis (NOAA, Historical El Nino 

/ La Nina Episodes, 2021). ONI is defined as the sea surface temperature anomaly 

index for the region between the coordinates 5°N to 5°S, 170°W to 120°W, which is 

also called the Niño 3.4. Monthly averages between the years 1984 to 2017 have 

been used.  

Three different sources for cloud datasets have been used in the analysis. The first is 

data from the International Satellite Cloud Climatology Project (ISCCP), H-Series 

(Young, Knapp, Inamdar, Hankins, & Rossow, 2018). The ISCCP data used in the 

analysis covers the years 1984-2017. Total cloud amount and IR cloud layers (low 

cloud amount) have been used as variables from this project. The cloud data has a 

spatial resolution of 1 by 1 degree. 

The second dataset is taken from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (LAADS DAAC, 2021). MODIS is an imaging sensor 

on board both NASA research satellites, Aqua and Terra. The combined Aqua and 

Terra MODIS Cloud Properties product is used, covering the years 2003-2017. The 

variables from this dataset used in the analysis are cloud mask fraction and cloud 

mask fraction low, and the spatial resolution of the products is 1 by 1 degree. 

The final dataset for clouds is taken from the Modern-Era Retrospective analysis for 

Research and Applications version 2 (MERRA-2)  (NASA GMAO, 2015). The 

MERRA-2 project is a NASA atmospheric reanalysis for the satellite era that uses 

the Goddard Earth Observing System Model, Version 5 (GEOS-5) with its 

Atmospheric Data Assimilation System (ADAS), version 5.12.4. This reanalysis 

data uses advances made in the assimilation system, replacing the original MERRA 

dataset. It is an enhanced dataset compared to the former two cloud datasets. The 

variables used are total cloud area fraction and cloud area fraction for low clouds, 

while the data covers 1984-2017. The spatial resolution of the data is 0.5 by 0.625 

degrees. 
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GMTA data is retrieved from the Global Historical Climatology Network-Monthly 

(GHCN-M) dataset and International Comprehensive Ocean-Atmosphere Data Set 

(ICOADS). These are combined into a single product that shows the global land and 

ocean temperature anomalies together (NOAA, Global Mean Temperature Anomaly 

Timeseries, 2021). The anomalies are calculated with respect to the 20th-century 

average. 

The AOD data is from the NOAA Climate Data Record (CDR) of AVHRR Daily 

and Monthly Aerosol Optical Thickness (AOT) over Global Oceans, Version 3.0 

(Zhao, 2017). The product is the depth at 0.63 microns, retrieved from NOAA 

PATMOS-x level-2B orbital radiance products. The spatial resolution of the product 

is 0.1 by 0.1 degrees.  

Finally, the Global Precipitation Climatology Project (GPCP) Climate Data Record 

(CDR), Version 2.3, has been used for the precipitation data (Adler, et al., 2016). 

The provided data is on an equal degree grid of spatial resolution 2.5 by 2.5.  

All of the data mentioned above have been used as monthly averages in this thesis, 

and they are summarized in Table 4.1. 
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Table 4.1. Summary of the data used in this thesis 

Data Variable Used Temporal Resolution Spatial Resolution 

GCR 
Neutron monitor 

count rate 

Monthly averaged 

(Jan 1984 - Dec 2016) 
Globally averaged 

SSN Sunspot number 
Monthly averaged 

(Jan 1984 - Dec 2016) 
Globally averaged 

TSI Total solar irradiance 
Monthly averaged 

(Jan 1984 - Dec 2016) 
Globally averaged 

UVI 
UV irradiance 

(λ = 249.5	nm) 

Monthly averaged 

(Jan 1984 - Dec 2016) 
Globally averaged 

ONI Oceanic Niño Index 
Monthly averaged 

(Jan 1984 - Dec 2016) 
Regionally averaged 

ISCCP 

Cloud 

Total cloud amount 

Low cloud amount 

Monthly averaged 

(Jan 1984 - Dec 2016) 
1°	x	1° 

MODIS 

Cloud 

Cloud mask fraction 

(total and low) 

Monthly averaged 

(Jan 2003 - Dec 2016) 
1°	x	1° 

MERRA2 

Cloud 

Cloud area fraction 

(total and low) 

Monthly averaged 

(Jan 1984 - Dec 2016) 
0.5°	x	0.625° 

GMTA 
Global land and ocean 

temperature anomaly 

Monthly averaged 

(Jan 1984 - Dec 2016) 
Globally averaged 

AOD 
Aerosol optical depth 

at 0.63 microns 

Monthly averaged 

(Jan 1984 - Dec 2016) 
0.1°	x	0.1° 

PRECIP Global precipitation 
Monthly averaged 

(Jan 1984 - Dec 2016) 
2.5°	x	2.5° 
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4.2 Methodology 

The parameters used in this analysis are separated as predictors and predictands. The 

predictors are independent variables used to predict the outcomes; the GCR flux, 

SSN, TSI, UVI, and ONI are used as predictors. On the other hand, the total cloud 

(TC), low-level cloud (LLC), GMTA, AOD, and PRECIP are the predictands, hence 

outcomes. 

First, the obtained raw data mentioned in Section 4.1 is explored, and all datasets are 

pre-processed using a 12-month moving average to remove seasonal effects. The 

different cloud datasets are compared on temporal and spatial scales. Additionally, 

the ISCCP cloud data is detrended because there is a clear decreasing trend seen in 

the dataset, and this trend is claimed to be artificial (Usoskin et al. 2004, Laken et al. 

2012, Singh et al. 2020). This difference between the detrended and raw data is 

shown in more detail in Section 5.1. Hence the detrended ISCCP time series is used 

in the analysis.  

The analysis started by trying to obtain the same results as previous studies 

investigating the linear correlation between GCRs and clouds (Svensmark et al. 

1997, Usoskin et al. 2004) and then extending those studies to the present. So, the 

reanalysis has been conducted for three different periods; 1984-1994 (which was the 

analysis period of Marsh and Svensmark 2000), 1984-2000 (which was the analysis 

period of Usoskin et al. 2004), and 1984-2017, which is the whole period of the 

analysis in this thesis. Next, the linear correlation coefficients between all the 

variables were calculated for the full analysis period of 1984-2017.  

The analysis continued with regression analysis using multiple linear regression 

models consisting of all the predictors and predictands. In the last step, machine 

learning methods were introduced to identify the non-linear relationships. Random 

forests were used for multiple non-linear regression. R-squared values were 

calculated, and cross-validation methods were used to evaluate the performance of 

all models. 
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Figure 4.1. Methodology Flowchart 

An overview of the methodology can be seen in the flowchart in Figure 4.1. XVal 

stands for the cross-validation that is used in the regression models. Validation 

methods are explained in detail in Section 2.6.4. The analysis in this thesis has used 

hold-out validation of 25%, meaning that 25% of the data has been used to test the 

ML models while 75% of the data has been used to train them. Holding out a certain 

percentage of the data can be done in two ways; first, data points can be randomly 

selected and held out from the dataset. Second, the data can be held out as a 

continuous block of data points. Such methods are investigated and compared in 

Section 5.4.1. 

Also, both in the linear correlation and multiple regression steps, the predictand 

datasets are either used as global/regional averages or as pixelwise global data. The 
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pixelwise analysis creates a different regression model for each pixel, and the results 

are shown as global maps. Meanwhile, there are four different latitude zones used as 

global or regional averages in the analysis, and they can be seen in Figure 4.2 and 

Table 4.1:  

 

 

Figure 4.2. Latitudinal regions used in the analysis, graphically shown. 

 

Table 4.2. Latitudinal regions used in the analysis 

 Latitude Interval 

Global 90°N - 90°S 

Region I 70°N - 60°S 

Region II 25°N - 25°S 

Region III (70° - 25°)N  &  (25° - 60°)S 

 

The regions used in this thesis are similar to previous regional analyses ( (Usoskin, 

Marsh, Kovaltsov, Mursula, & Gladysheva, 2004) and (Voiculescu, Usoskin, & 

Mursula, 2006)) and why they are used is explained in more detail in Chapter 3.  
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All steps of the data analysis have been conducted using the MATLAB® 

programming language, version R2020a. The add-on toolboxes “Statistics and 

Machine Leaning Toolbox” and the “Mapping Toolbox” have been used. The 

function fitlm was used to fit a linear regression model, fitglm was used to fit a 

generalized linear regression model, and stepwiseglm was used to fit a stepwise 

generalized linear model to the predictors and predictands. Additional “interaction” 

terms, which are the products of distinct predictors, were added to the LM and GLM 

regression models. Gaussian distribution was used in the GLM. The function 

TreeBagger was used to fit a random forest, non-linear model to the predictors and 

predictands.  

Additionally, for the visualization of the linear correlation matrix between all of the 

parameters seen in Section 5.3.2, the programming language R has been used.  
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CHAPTER 5  

5 RESULTS AND DISCUSSION 

5.1 Preprocessing the Data 

As mentioned previously, the first step of the analysis was to explore and preprocess 

the raw data. This was done by generating time series plots for each dataset and 

mapping the datasets available as globally gridded products.   

First of all, the MODIS cloud data was compared to both the ISCCP and MERRA2 

cloud products. Previous studies (Kristjánsson, et al., 2008) (Laken, Pallé Bagó, & 

Miyahara, 2012) have stated that the MODIS datasets are more accurate than the 

ISCCP products, but the MODIS data does not cover the entire time period of this 

analysis. So, this comparison was made to see how much the other cloud products 

are related to each other. The linear correlation coefficient (R) between the cloud 

products for January 2003 – December 2016 can be seen in Table 5.1.  

Table 5.1. Linear correlation coefficients and p-values between MODIS cloud and 

the ISCCP- MERRA2 cloud products from 2003 to 2017 

2003 - 2017 Global Region I Region II Region III 

MODIS vs ISCCP 

TC 

0.63 

p=0.0000 

0.68 

p=0.0000 

0.72 

p=0.0000 

0.83 

p=0.0000 

MODIS vs ISCCP 

LLC 

0.09 

p=0.2223 

-0.20 

p=0.0109 

-0.03 

p=0.7279 

-0.14 

p=0.0688 

MODIS vs MERRA2 

TC 

0.52 

p=0.0000 

0.68 

p=0.0000 

0.64 

p=0.0000 

0.60 

p=0.0000 

MODIS vs MERRA2 

LLC 

0.30 

p=0.0001 

0.56 

p=0.0000 

0.31 

p=0.0000 

0.60 

p=0.0000 
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It can be seen from this table that, in all the defined regions, the MODIS dataset is 

much more correlated with the total cloud data for both cloud products. The p-value 

shows the statistical significance of the correlation coefficient value, R. If the p-value 

is less than 0.05, it means that the resulting R is statistically significant, while a p-

value that is greater than 0.05 means it is not statistically significant. The results from 

Table 5.1 thus show that the correlation between MODIS and ISCCP LLC datasets 

is not statistically significant for all regions except Region I. Figure 5.1. shows the 

time series of all three cloud datasets plotted together to compare the changes in the 

temporal dimension. 

 
Figure 5.1. Time series of the globally and regionally averaged MODIS, ISCCP and 

MERRA2 cloud products for the years 2003 to 2017.  

The light blue line is the MODIS cloud, the dark blue line is the MERRA2 cloud, 

and the red line is the ISCCP cloud. All datasets are 12-month moving averaged and 

normalized; the ISCCP dataset is also detrended. The detrending of ISCCP is 

explained further in the following paragraphs. In Figure 5.1, it can be seen that the 
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total cloud cover for the MODIS, MERRA2, and ISCCP averaged over both global 

scale and regional scales are closely parallel with one another. Meanwhile, for the 

low cloud cover, the datasets largely differ from one another. However, comparing 

the three, MERRA2 and MODIS seem more correlated than the ISCCP LLC for low 

clouds.  

Since the MODIS satellite data begins from 2003, it is also essential to check the 

previous years by comparing the MERRA2 and ISCCP datasets for the entire 

analysis period of 1984 to 2017. Table 5.2 shows the linear correlation coefficient 

between the globally and regionally averaged MERRA2 and ISCCP cloud datasets. 

Table 5.2. Linear correlation coefficients and their p-values between MERRA2 

cloud products and the ISCCP cloud products from 1984 to 2017 

1984 – 2017 Global Region I Region II Region III 

MERRA2 vs ISCCP 

TC 

0.13 

p=0.0077 

0.24 

p=0.0000 

0.45 

p=0.0000 

0.07 

p=0.1932 

MERRA2 vs ISCCP 

LLC 

0.06 

p=0.2341 

0.12 

p=0.0161 

-0.11 

p=0.0368 

0.15 

p=0.0021 

 

It is seen that the MERRA2 and ISCCP cloud datasets are not strongly correlated in 

any of the regions. The total cloud cover has a relatively higher correlation 

coefficient than the low cloud cover; meanwhile, the two total cloud datasets are 

more correlated in Region II, the tropics. On the other hand, the low cloud cover has 

a negative correlation coefficient in Region II and a minimal positive correlation in 

the remaining regions. The weak relationship between the two cloud products may 

also be due to the low accuracy of the cloud data. The comparisons can be seen better 

in the temporal dimension in Figure 5.2. 
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Figure 5.2. Time series of the globally and regionally averaged ISCCP and MERRA2 

cloud products for the years 1984 to 2017.  

From the temporal plots in Figure 5.2, it is seen that starting from around ~2003 up 

to 2017, trends in total cloud cover are similar between ISCCP and MERRA2 

datasets, as also observed in Figure 5.1. However, there are considerable differences 

between 1984 to 2003; the two datasets act almost opposite to each other. As for the 

low cloud cover, ISCCP and MERRA2 datasets do not seem to have the same trends 

throughout the entire 33 years. This shows that a long time period is vital for such 

analyses, and using a short time frame may cause a spurious correlation. 

The differences between the datasets could be due to the MERRA2 dataset being 

reanalysis data. Other possibilities could be because of the difference in the 

instrumentation used in the satellites for low cloud determination, and also due to 

the calibration problems of ISCCP, which is mentioned in some previous studies 

such as Laken et al. (Laken, Pallé Bagó, & Miyahara, 2012) in more detail in Chapter 

3. Nevertheless, these differences are not enough of a reason to eliminate one of the 
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two cloud products from the analysis. Hence the analysis will continue with both the 

ISCCP and MERRA2 TC and LLC products. 

The time series for each of the raw datasets were plotted together with their smoothed 

versions. The time series plots for globally averaged data can be seen in Figure 5.3. 

A 12-month moving average is used to filter the data to remove the seasonal effects. 

The thin blue line is the raw monthly data, and the thicker red line is the 12-month 

moving averaged data. 

Figure 5.3. Globally averaged time series of the datasets for the years 1984 to 2017. 

Looking at the figures, the decreasing trend in the ISCCP total cloud data can be seen 

more clearly. This trend has previously been discussed in some research ( 

(Kristjánsson, et al., 2008), (Laken, Pallé Bagó, & Miyahara, 2012)) and is thought 

to be an artificial effect. That is why the ISCCP data has been detrended on top of 

the smoothing filter. The differences in the time series of the raw, moving averaged, 

and detrended ISCCP data in temporal scale can be seen better in Figure 5.4.  
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Figure 5.4. Comparison of the globally averaged raw, smoothed and detrended 

ISCCP time series for the years 1984 to 2017. 

In the figure, the thin, light blue line is the raw ISCCP data, the dark blue line is the 

12-month moving averaged (only smoothed) data, and the red line is the detrended 

data. The upper plot is the ISCCP total cloud cover, and the lower plot is the ISCCP 

low cloud cover. There is not much difference between the smoothed and detrended 

ISCCP low level cloud cover. However, detrending the ISCCP total cloud cover 

creates a significant difference. Hence, when re-analyzing the previous and for the 

remaining parts of the analysis, the detrended ISCCP total cloud and low cloud data 

have been used.  

5.2 Reanalysis of Previous Studies 

In this section, the linear correlation coefficient between GCR flux and cloud amount 

was calculated for three different periods; 1984-1994 (which was the analysis period 

of Marsh and Svensmark 2000), 1984-2000 (which was the analysis period of 

Usoskin et al. 2004), and 1984-2017, which is the entire period of the analysis in this 

thesis. The cloud data was averaged as in the mentioned regions in Section 4.2. 



 
 

59 

Tables 5.3 and 5.4 show the correlation coefficients and the p-values between GCR 

flux and ISCCP cloud cover for each period. 

Table 5.3. Correlation coefficients and p-values between the smoothed GCR flux and 

detrended ISCCP total cloud amount 

GCR-TC Global Region I Region II Region III 

1984 - 1994 
0.33 

p=0.0002 

0.52 

p=0.0000 

0.17 

p=0.0604 

0.73 

p=0.0000 

1984 - 2000 
-0.04 

p=0.5497 

0.10 

p=0.1505 

-0.18 

p=0.0068 

0.42 

p=0.0000 

1984 - 2017 
0.04 

p=0.3486 

0.08 

p=0.0689 

0.01 

p=0.8718 

0.20 

p=0.0000 

 

Table 5.4. Correlation coefficients and their p-values between the smoothed GCR 

flux and detrended ISCCP low cloud amount 

GCR-LLC Global Region I Region II Region III 

1984 - 1994 
0.84 

p=0.0000 

0.84 

p=0.0000 

0.82 

p=0.0000 

0.84 

p=0.0000 

1984 - 2000 
0.61 

p=0.0000 

0.60 

p=0.0000 

0.34 

p=0.0000 

0.65 

p=0.0000 

1984 - 2017 
0.27 

p=0.0000 

0.23 

p=0.0000 

0.09 

p=0.1087 

0.27 

p=0.0000 

 

It is seen that just like Marsh and Svensmark suggested in 2000, the low cloud 

amount is highly correlated with GCRs from 1984 to 1994. Both globally and for the 

average cloud amounts in all regions, the correlation coefficient R is greater than 0.8, 

which is a significantly large value. The total cloud amount does not have the same 

high correlations for all regions in the same period. Only region IV is highly 

correlated. 
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However, when we expand the analysis time period even by six years, there is a 

significant drop in the correlation. Low cloud amount is still significantly correlated 

in most regions, just as Usoskin et al. (Usoskin, Marsh, Kovaltsov, Mursula, & 

Gladysheva, 2004) stated in 2004, but the total cloud amount is not.  

When the time period is expanded even further until 2017, it is seen that there is a 

huge drop in the R values for all regions and that the p-value greatly increases for all 

regions of the ISCCP TC and Region II of the ISCCP LC. Plotting the full period of 

cloud data against the GCR flux shows the temporal differences clearly in Figure 

5.5. The blue line is the ISCCP cloud amount, and the red dashed line is the GCR 

flux. From 1984 to almost 1994, the GCR flux and the low cloud cover are highly 

correlated in all regions. For the total cloud cover, there is a correlation in most 

regions from 1984 to around 1990. However, the correlation is lost entirely after 

~1990.  

 
Figure 5.5. Time series of the globally and regionally averaged ISCCP cloud 

products compared to the smoothed GCR flux for the years 1984 to 2017.  
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These results show how important it is to conduct such studies on longer time scales 

before concluding with significant results. Even though the GCR flux and ISCCP 

low cloud amount appear highly correlated from 1983 to 1994, this correlation 

weakens after 1994 and almost completely disappears when the more recent years 

are included in the analysis. 

Tables 5.5 and 5.6 show the correlation for the same periods between GCR flux and 

MERRA2 cloud datasets instead. 

Table 5.5. Correlation coefficients and their p-values between the smoothed GCR 

flux and smoothed MERRA2 total cloud amount 

GCR-TC Global Region I Region II Region III 

1984 - 1994 
0.21 

p=0.0185 

0.26 

p=0.0049 

0.22 

p=0.0148 

0.10 

p=0.2596 

1984 - 2000 
0.49 

p=0.0000 

0.46 

p=0.0000 

0.15 

p=0.0338 

0.45 

p=0.0000 

1984 - 2017 
0.31 

p=0.0000 

0.35 

p=0.0000 

0.31 

p=0.0000 

0.31 

p=0.0000 

 

Table 5.6. Correlation coefficients and their p-values between the smoothed GCR 

flux and smoothed MERRA2 low cloud amount 

GCR-LLC Global Region I Region II Region III 

1984 - 1994 
-0.10 

p=0.2587 

-0.18 

p=0.0492 

-0.27 

p=0.0025 

-0.15 

p=0.0967 

1984 - 2000 
0.46 

p=0.0000 

0.37 

p=0.0000 

0.18 

p=0.0122 

0.39 

p=0.0000 

1984 - 2017 
0.26 

p=0.0000 

0.30 

p=0.0000 

-0.01 

p=0.5759 

0.33 

p=0.0000 
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This time, the almost opposite can be observed with the MERRA2 data. The total 

cloud cover is comparably more correlated with GCR flux than the low cloud cover 

for all regions. Another opposite feature is that the correlation between clouds and 

GCRs increases as the time span is expanded. Looking at the entire analysis period 

between 1984 to 2017, region II is the less correlated region with less statistical 

significance, while region I and region III are very close in the correlation coefficient 

value. The relationships can be observed better in the temporal dimension in Figure 

5.6. 

 
Figure 5.6. Time series of the globally and regionally averaged MERRA2 cloud 

products compared to the smoothed GCR flux for the years 1984 to 2017.  

The globally averaged MERRA2 total cloud cover follows similar trends as GCR, 

both increase and decrease at almost the same time. However, the globally averaged 

low cloud cover and GCR flux act oppositely. As for Region III, which is expected 

to be the most correlated from previous literature, the low cloud cover and GCR 



 
 

63 

seem parallel. Overall, MERRA2 TC and LLC are more correlated to the GCR flux 

compared to the ISCCP TC and LLC for the full period of 1984-2017.  

The seemingly high correlations observed between certain variables for specific time 

periods and regions that cannot be observed for others can be interpreted differently. 

Firstly, they can be totally accidental. Secondly, there might be other parameters that 

change over time and space, and when they are not considered, we can observe the 

correlations only during certain times or at certain places. It is also possible that the 

relations are not linear, and we can only observe them when they are more or less 

linear under certain conditions. The noise might not be independent either. 

These results show that it is tough to interpret the cosmic ray-cloud relationship 

based on regionally or globally averaged datasets, and it would be better to analyze 

the globe pixel by pixel to explore subtler correlations and to reveal location-

dependent correlations that may disappear when averaged out over the globe or 

regions. The following section shows this pixelwise analysis in global maps.  

5.3 Linear Correlation  

This section shows and discusses the linear correlation with all predictors and the 

predictands on a regional and global scale. The globally averaged predictors are 

investigated with the ISCCP TC, ISCCP LLC, MERRA2 TC, and MERRA2 LLC 

for each pixel. The predictands GMTA, AOD, and PRECIP are investigated in 

regional averages. 

5.3.1 Pixelwise Correlation Results 

The results of the pixelwise analysis of the linear correlation between each cloud 

data set and the predictors are presented here in Figures 5.7 – 5.30. For each pixel, 

an independent Pearson correlation coefficient is calculated between the time 

signals. 
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5.3.1.1 GCR vs. cloud cover 

Figures 5.7 – 5.10 show the global maps of the linear correlation coefficient between 

the globally averaged GCR flux and the pixelwise ISCCP and MERRA2 TC and 

LLC cloud products for each pixel. 

 
Figure 5.7. Map of the linear correlation coefficient between the 12-month moving 

averaged cosmic ray flux and detrended ISCCP total cloud cover for the years 1984-

2017. 

 
Figure 5.8. Map of the linear correlation coefficient between the 12-month moving 

averaged cosmic ray flux and detrended ISCCP low level cloud cover for the years 

1984-2017. 
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Figure 5.9. Map of the linear correlation coefficient between the 12-month moving 

averaged cosmic ray flux and MERRA2 total cloud cover for the years 1984-2017. 

 

 

 
Figure 5.10. Map of the linear correlation coefficient between the 12-month moving 

averaged cosmic ray flux and MERRA2 low cloud cover for the years 1984-2017. 

 



 
 

66 

First of all, the satellite footprints mentioned in Laken et al. (Laken B. A., Pallé Bagó, 

Čalogović, & Dunne, 2012), can be seen in the maps using ISCCP data, especially 

over the Indian Ocean and slightly over the Pacific Ocean. There is also missing data 

in the ISCCP LLC dataset, seen as the solid indigo blue color over Asia and 

Antarctica in Figure 5.8. 

The regions with a high positive correlation, such as the southern mid-latitudes over 

the Atlantic, Pacific, and Indian Oceans, can be seen in the ISCCP TC and ISCCP 

LLC maps. Similarly, the regions with negative correlations are parallel in both 

maps.  

Comparing ISCCP maps with MERRA2 maps, it is seen that the correlated regions 

again are parallel for both TC and LLC; however, there are more pixels and areas in 

the MERRA2 data that have a high correlation. The region with a high correlation in 

the southern mid-latitudes extends over all longitudes for the MERRA2 TC and LLC 

data. Also, new areas with high correlation can be seen in the tropics and northern 

mid-latitude regions.  

From these maps, it is observed that the linear correlation between GCR and both 

cloud products varies from each other in different regions. Even in the same latitude 

zones, there are both highly positive and negative correlation coefficients. Hence, 

taking global or regional averages lead to low R values.  

5.3.1.2 SSN vs. cloud cover 

Figures 5.11 – 5.14 show the global maps of the linear correlation coefficient 

between the globally averaged SSN and the pixelwise ISCCP and MERRA2 TC and 

LLC cloud products for each pixel. 
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Figure 5.11. Map of the linear correlation coefficient between the 12-month moving 

averaged sunspot number and detrended ISCCP total cloud cover for the years 1984-

2017. 

 

 
Figure 5.12. Map of the linear correlation coefficient between the 12-month moving 

averaged sunspot number and detrended ISCCP low cloud cover for the years 1984-

2017. 
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Figure 5.13. Map of the linear correlation coefficient between the 12-month moving 

averaged sunspot number and MERRA2 total cloud cover for the years 1984-2017. 

 

 

 
Figure 5.14. Map of the linear correlation coefficient between the 12-month moving 

averaged sunspot number and MERRA2 low cloud cover for the years 1984-2017. 
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From the ISCCP TC and LLC correlation maps with SSN, it is seen that the regions 

with negative correlation coefficients are the same as the positively correlated 

regions in the ISCCP correlation maps with GCR. Similarly, the MERRA2 maps 

with the correlation between GCR and SSN oppose one another for both TC and 

LLC. These results for both cloud products once again confirm the anti-correlation 

between GCR and SSN. 

The TC maps for both cloud products appear to have slightly more pixels with a 

positive correlation compared to the LLC maps. The inverse is valid for the 

correlation maps between GCR and the cloud products. This could mean that SSN is 

less correlated with LLC while GCR is more correlated with LLC, supporting the 

cosmic ray – low cloud cover relationship.  

5.3.1.3 TSI vs. cloud cover 

Figures 5.15 – 5.18 show the global maps of the linear correlation coefficient 

between the globally averaged TSI and the pixelwise ISCCP and MERRA2 TC and 

LLC cloud products for each pixel. 
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Figure 5.15. Map of the linear correlation coefficient between the 12-month moving 

averaged total solar irradiance and detrended ISCCP total cloud cover for the years 

1984-2017. 

 
Figure 5.16. Map of the linear correlation coefficient between the 12-month moving 

averaged total solar irradiance and detrended ISCCP low cloud cover for the years 

1984-2017.

 

Figure 5.17. Map of the linear correlation coefficient between the 12-month moving 

averaged total solar irradiance and MERRA2 total cloud cover for the years 1984-

2017. 
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Figure 5.18. Map of the linear correlation coefficient between the 12-month moving 

averaged total solar irradiance and MERRA2 low cloud cover for the years 1984-

2017. 

Comparing the correlation maps of the cloud products with SSN and TSI, the maps 

appear almost the same. However, when the maps are further investigated, it can be 

seen that the maps with TSI for both cloud products have more pixels with higher 

positive correlation, in other words, more yellow pixels in more expansive areas, 

especially in the Indian Ocean and the Pacific Ocean. 

5.3.1.4 UVI vs. cloud cover 

Figures 5.19 – 5.22 show the global maps of the linear correlation coefficient 

between the globally averaged SSN and the pixelwise ISCCP and MERRA2 TC and 

LLC cloud products for each pixel. 
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Figure 5.19. Map of the linear correlation coefficient between the 12-month moving 

averaged UV irradiance and detrended ISCCP total cloud cover for the years 1984-

2017. 

 

Figure 5.20. Map of the linear correlation coefficient between the 12-month moving 

averaged UV irradiance and detrended ISCCP low cloud cover for the years 1984-

2017. 
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Figure 5.21. Map of the linear correlation coefficient between the 12-month moving 

averaged UV irradiance and MERRA2 total cloud cover for the years 1984-2017. 

 
Figure 5.22. Map of the linear correlation coefficient between the 12-month moving 

averaged UV irradiance and MERRA2 low cloud cover for the years 1984-2017. 

UVI is part of the SSI spectrum, which is the TSI measured as a function of 

wavelength, as mentioned in Section 2.1. Thus, the maps with UVI are expected to 

be significantly similar to the maps with TSI, and as assumed, the differences 

between maps of the two parameters are two subtle to detect by comparing maps.  
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5.3.1.5 ONI vs. cloud cover 

Figures 5.23 – 5.26 show maps of the correlation coefficient between the globally 

averaged ONI and ISCCP and MERRA2 TC and LLC cloud products for each pixel. 

 
Figure 5.23. Map of the linear correlation coefficient between the 12-month moving 

averaged Oceanic Niño Index and the detrended ISCCP total cloud cover for the 

years 1984-2017. 

 

Figure 5.24. Map of the linear correlation coefficient between the 12-month moving 

averaged Oceanic Niño Index and the detrended ISCCP low cloud cover for the years 

1984-2017. 
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Figure 5.25. Map of the linear correlation coefficient between the 12-month moving 

averaged Oceanic Niño Index and the MERRA2 total cloud cover for the years 1984-

2017.

 

Figure 5.26. Map of the linear correlation coefficient between the 12-month moving 

averaged Oceanic Niño Index and the MERRA2 low cloud cover for the years 1984-

2017. 

The ONI maps seen in Figures 5.23 – 5.26 significantly diverge from the previous 

maps (Figures 5.7 - 5.22), which were produced either with proxies of solar activity 

(such as SSN, TSI, and UVI) or regulated by solar activity (such as GCR flux), which 
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is an external forcer on climate. On the other hand, ONI is an index of ENSO, which 

is an internal event, and thus it is expected to have some different correlation pattern. 

The maps using the MERRA2 cloud product and ISCCP cloud are very similar to 

each other. The positive correlation regions are parallel, yet the MERRA2 TC and 

LLC maps have more pixels with higher values of correlation coefficients. These 

higher correlation coefficient regions are seen in the tropics and mid-latitudes of the 

Pacific and Indian Oceans.  

The TC and LLC maps have differences in the correlated regions for both cloud 

products. These differences are most evident in the equatorial region over the Pacific 

Ocean. TC maps show a strong positive correlation, while the LLC maps show a 

strong negative correlation over the equator in the Pacific. This could be because of 

the calibration problems of satellites, discussed in Marsh and Svensmark’s 2003 

paper (Marsh & Svensmark, 2003). However, it is peculiar that a similar pattern of 

negative correlation appears both in the ISCCP LLC map and the MERRA2 LLC.  

This region is also the same region mentioned in Voiculescu et al. (Voiculescu, 

Usoskin, & Mursula, 2007), where it was also stated that there were odd correlations 

in the Pacific region, acting in opposite nature of the rest of the globe. They 

highlighted that the ENSO effect predominated over the solar effect in the equatorial 

Pacific and altered the results. Hence, it can be said that further study is required in 

this particular Pacific region. 
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5.3.2 Globally and Regionally Averaged Correlation Results 

To emphasize how averaging regions once again can affect the results, here in Table 

5.7, the pixels are averaged for each map in the above figures. 

 

Table 5.7. Correlation coefficients and their p-values between the smoothed 

predictors and smoothed global averages of different cloud cover datasets for the 

years 1984-2017 

 GCR SSN TSI UVI ONI 

ISCCP  
TC  

0.03  
p=0.4950 

-0.11 
p=0.0320 

-0.13 
p=0.0088 

-0.10 
p=0.0462 

0.36 
p=0.0000 

ISCCP  
LLC  

0.25 
p=0.0000 

-0.22 
p=0.0000 

-0.11 
p=0.0283 

-0.18 
p=0.0003 

0.30 
p=0.0000 

MERRA2 
TC 

0.31 
p=0.0000 

-0.22 
p=0.0000 

-0.03 
p=0.4487 

-0.15 
p=0.0023 

0.24 
p=0.0000 

MERRA2 
LLC 

0.27 
p=0.0000 

-0.05 
p=0.3629 

0.14 
p=0.0046 

0.03 
p=0.5446 

-0.04 
p=0.4031 

 

The first thing that could be inferred from Table 5.7 is that globally averaged 

MERRA2 LLC is the cloud product with the lowest statistical significance in linear 

correlation, with the predictors SSN, UVI, and ONI. This means that using the 

globally averaged MERRA2 LLC is not very reliable in linear analysis with SSN, 

UVI, and ONI. The same could be said about the relationship between ISCCP TC 

and GCR; and MERRA2 TC and TSI. Another important relation to mention is the 

predictor ONI. It has the high correlation coefficient values with all globally 

averaged cloud products, except MERRA2 LLC, which is not a statistically 

significant result. 

This table shows that averaging the pixels into one mean value can mislead into 

thinking that the parameters are not correlated at all when there are highly positive 
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and negative pixels in certain regions. However, even if the R values are not 

quantitatively close, they are not wrong in qualitatively showing positive or negative 

correlations between parameters.  

Thus, as a next step, the linear correlation between all the parameters for each 

geographical region was calculated as a correlation matrix. Figure 5.27 shows the 

correlation matrix for the parameters globally averaged and Figure 5.28 for the 

parameters averaged over Region III (the mid-latitudes) because that was the region 

with the highest overall statistically significant correlation coefficient, in Section 5.2. 

 
Figure 5.27. Linear correlation coefficients between the globally averaged and 

smoothed variables. 
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Figure 5.28. Linear correlation coefficients between the smoothed variables 

averaged over Region III. 

The predictors and predictands in Figure 5.27. and 5.28. are 12-month moving 

averaged, ISCCP data is also detrended. All of the inter-relationships between 

parameters can be seen in these correlation matrices. GCR is strongly negatively 

correlated with SSN, TSI, and UVI, while SSN, TSI, and UVI are strongly 

correlated. We also explore in further sections whether or not all predictands have 

novelty. Other notable correlations are the negative correlation between ISCCP TC 

and SSN, TSI, UVI; the negative correlation between precipitation and ISCCP TC; 

and the positive correlation between GMTA and MERRA TC and MERRA LLC. 
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From the regional analysis, it can be deduced that even though averaging the 

parameters can lead to missing certain smaller areas with significant correlations, 

they can still provide information regarding which variables are positively or 

negatively correlated and whether or not the correlation is high. 

5.4 Multiple Regression Models 

The previous sections have investigated the linear correlations between only two 

variables at a time. However, studying the variables together in a model is crucial to 

investigate the common predictive value of all the predictors and the interactions 

between them. This section will show the results of the multiple regression models, 

compare the validation methods used for the models, and discuss the importance of 

parameter selection.  

5.4.1 Comparison of Validation Methods for Regression Models 

As previously mentioned in Section 2.6.4, validating a ML model is a crucial part of 

the analysis to prevent overfitting and obtain more accurate results. Holdout 

validation of 25% is used in this analysis, yet there are different ways of 

implementing it to the dataset. Hence, three different validation methods were tested 

and compared. The first method was to hold out a randomly selected 25% inside the 

full dataset and test that 25%; the second method was to hold out the first 25% of the 

dataset, train the remaining 75%, then test the first 25% of the data points; and the 

third method was to hold out the final 75% of the dataset, train the model with the 

first 75% data points and then test the last 25% part. The last method measures how 

well the model can predict the future with the model trained from the past to a certain 

point in time; hence it is a good measure of the performance. The second model does 

the same backward. Although it ignores the principle of causality, it is 

mathematically equivalent to the last one as the whole data is already recorded. 
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Instead of testing validation methods for each predictand separately one by one, the 

best performing predictand when using global averages, which is the MERRA2 total 

cloud cover, was used to compare the different validation methods. The performance 

of each predictand will be explained in more detail in the following sections, namely, 

Sections 5.4.2 and 5.4.3. The comparison was first done using the smoothed and 

globally averaged MERRA2 TC data and the smoothed predictors GCR, SSN, TSI, 

UVI, and ONI for each regression model. The resulting R2 of the models can be seen 

in Table 5.8. 

Table 5.8. Comparison of the R2 values for the regression models with different 

validation methods. GCR, SSN, TSI, UVI and ONI are used as the predictors; and 

globally averaged MERRA2 TC is used as the predictand 

 LM GLM Stepwise 
Model 

Random 
Forest 

Random %25 Held 
Out and Tested 0.57 0.57 0.58 0.77 

First 25% of Data 
Held Out and Tested -3.34 -3.34 -3.43 -0.50 

Final 25% of Data 
Held Out and Tested -6.17 -6.17 -4.28 -5.85 

 

It is seen that the random hold-out method works well for all the models, yet the 

results are suspicious. When the data is randomly selected from the entire dataset, 

and all data has been smoothed, it might not be that hard for the machine to predict 

where one data point would fit among other close data points. In other words, two 

successive points, which are almost identical due to the large auto-correlation 

functions of the predictors, may end up in the test and training sets. This is not very 

different from having the same points in both sets. This can be seen better in Figure 

5.29, where the response data is plotted for the linear model as an example. 
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Figure 5.29. Response plot of the globally averaged MERRA2 TC, predicted by the 

linear model. 

The blue data points in the figure are the 75% of the data used in training the model, 

while the yellow data points are the randomly selected 25% of the data used in testing 

the model. Because the data is periodic throughout the 34 years, it is not that difficult 

to predict the trends in the held-out data points. Thus, it is crucial to hold out 

continuous parts of the dataset to test and check the model's performance then.  

It is seen from previous sections that it would be wrong to consider global averages 

without checking pixelwise results. Figures 5.30 – 5.32 show the pixelwise maps 

with different validation of the random forest model, using GCR, SSN, TSI, UVI, 

and ONI as the predictors, and globally averaged MERRA2 TC as the predictand.  
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Figure 5.30. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise MERRA2 total cloud amount. Random 25% holdout validation is 

used. 

 

 
Figure 5.31. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise MERRA2 total cloud amount. The first 25% of the dataset is held 

out and tested.  
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Figure 5.32. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise MERRA2 total cloud amount. The final 25% of the dataset is held 

out and tested. 

Negative pixels are shown as zero in these maps in order to see the positive pixels 

better. Such negative pixels are the pixels where the random forest model is a poor 

fit. Comparing the maps with each other, it is seen that even though there are pixels 

that do not fit the models, similar regions have high R2 values in the maps for all 

three validation methods. However, the random hold-out model creates artificially 

high values. 

5.4.2 Globally and Regionally Averaged Model Results 

The R2 results of the models shown here are validated with random hold-out 

validation. Although the results are artificially high, still it can be used to assess the 

relative performance of methods.  
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Table 5.9. R2 for the multiple regression models with smoothed GCR, SSN, TSI, 

UVI and ONI as predictors. The predictands are globally averaged 

Globally 
Averaged 
Predictands 

LM GLM Stepwise 
Model 

Random 
Forest 

ISCCP TC 0.37 0.37 0.28 0.72 

ISCCP LLC 0.46 0.46 0.46 0.81 

MERRA2 TC 0.60 0.60 0.58 0.83 

MERRA2 LLC 0.62 0.62 0.62 0.80 

GMTA 0.71 0.71 0.68 0.76 

AOD 0.48 0.48 0.43 0.78 

PRECIP 0.49 0.49 0.39 0.65 

 

Table 5.10. R2 for the multiple regression models with smoothed GCR, SSN, TSI, 

UVI and ONI as predictors. The predictands are averaged over Region I  

Predictands 
Averaged over 
Region I 

LM GLM Stepwise 
Model 

Random 
Forest 

ISCCP TC 0.36 0.36 0.23 0.70 

ISCCP LLC 0.56 0.56 0.56 0.81 

MERRA2 TC 0.73 0.73 0.70 0.80 

MERRA2 LLC 0.64 0.64 0.63 0.81 

GMTA 0.64 0.64 0.59 0.81 

AOD 0.50 0.50 0.47 0.71 

PRECIP 0.29 0.29 0.15 0.59 
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Table 5.11. R2 for the multiple regression models with smoothed GCR, SSN, TSI, 

UVI and ONI as predictors. The predictands are averaged over Region II  

Predictands 
Averaged over 
Region II 

LM GLM Stepwise 
Model 

Random 
Forest 

ISCCP TC 0.41 0.41 0.42 0.72 

ISCCP LLC 0.46 0.46 0.28 0.79 

MERRA2 TC 0.64 0.64 0.62 0.86 

MERRA2 LLC 0.35 0.35 0.22 0.71 

GMTA 0.61 0.61 0.59 0.81 

AOD 0.68 0.68 0.60 0.72 

PRECIP 0.43 0.43 0.45 0.68 

 

Table 5.12. R2 for the multiple regression models with smoothed GCR, SSN, TSI, 

UVI and ONI as predictors. The predictands are averaged over Region III  

Predictands 
Averaged over 
Region III 

LM GLM Stepwise 
Model 

Random 
Forest 

ISCCP TC 0.49 0.49 0.43 0.79 

ISCCP LLC 0.43 0.43 0.42 0.81 

MERRA2 TC 0.59 0.59 0.63 0.80 

MERRA2 LLC 0.70 0.70 0.66 0.81 

GMTA 0.62 0.62 0.61 0.75 

AOD 0.52 0.52 0.52 0.72 

PRECIP 0.31 0.31 0.22 0.56 
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The first thing that can be said about these four tables is that the random forest model 

works best in all regions for all of the predictands. This shows that there indeed exists 

a non-linear relationship between the predictors and the predictands. Comparing the 

four regions, the RF results of the different region averages are very close to each 

other.  

Only the model with PRECIP as the response variable has the highest R2 value in 

Region II (the tropics), while the remaining predictands do not significantly differ 

from region to region. This could be because the ENSO region itself is in the tropics 

latitude zone, and the El-Niño warming period is known to cause more rain, 

especially over the tropical regions (Kump, Kasting, & Crane, 2004). Thus, it can be 

an expected effect for the precipitation response variable to have the highest R2 value 

in Region II. 

A comparison of the linear regression models with each other shows that the LM and 

GLM give the exact same R2 values for all of the predictands averaged over all 

regions. Comparing the LM with stepwise GLM, it is seen that running the stepwise 

model does not change the R2 values significantly for the LM or GLM results. For 

some predictands, the stepwise GLM results are even worse than the LM results. 

Hence, only the LM and RF models will be shown for the remaining parts of the 

results. 



 
 

88 

 
Figure 5.33. Scatter plot of the predicted response data vs the actual data for the 

globally averaged MERRA2 total cloud cover. The plot on the left is of the linear 

model, and the plot on the right is of the random forest model. 

 

 
Figure 5.34. Scatter plot of the predicted response data vs the actual data for the 

globally averaged ISCCP total cloud cover. The plot on the left is of the linear model, 

and the plot on the right is of the random forest model. 
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Figures 5.33 and 5.34 compare the MERRA2 TC regression model results with the 

ISCCP TC results. This is to show how the different cloud product types respond to 

different models as scatter plots. MERRA2 TC has the highest values of R2 both for 

LM and for RF in the globally averaged data.  

The scatter plot on the left in Figure 5.33 is of the linear model, and it has a R2 of 

0.60, while the plot on the right is of the random forest model with a R2 of 0.83. 

Similarly, for the scatter plots in Figure 5.34, the left is of the LM with an R2 of 0.37, 

while the right is of RF with an R2 of 0.72.  

Comparing both figures of the predicted versus actual responses, it is seen that 

MERRA2 TC data is a better fit for both the LM and the RF. This result is parallel 

with the R and p-values in Table 5.7, once again showing that the total cloud cover 

of ISCCP data is a poor fit.  

 

 

5.4.3 Pixelwise Model Results 

The pixelwise maps in this section will be shown for the linear model and random 

forest model for all cloud datasets, using the third validation method (prediction of 

future) only.  
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5.4.3.1 Linear Model Maps 

This section shows maps using the linear model with the predictors and different 

cloud products in Figures 5.35 – 5.38.  

 
Figure 5.35. Global R2 map of the linear model with smoothed predictors and the 

pixelwise ISCCP total cloud amount. The final 25% of the dataset is held out and 

tested. 

 
Figure 5.36. Global R2 map of the linear model with smoothed predictors and the 

pixelwise ISCCP low cloud amount. The final 25% of the dataset is held out and 

tested. 
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Figure 5.37. Global R2 map of the linear model with smoothed predictors and the 

pixelwise MERRA2 total cloud amount. The final 25% of the dataset is held out and 

tested. 

 

 
Figure 5.38. Global R2 map of the linear model with smoothed predictors and the 

pixelwise MERRA2 low cloud amount. The final 25% of the dataset is held out and 

tested. 
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Firstly, the majority of pixels have a negative R2 value in all four figures (shown as 

zero), meaning that the performance of the linear models is very poor for these sets 

of predictors and predictands. However, there are similarities in the regions with 

strong positive pixels. These regions are mainly in the equatorial and tropics regions 

in the Pacific Ocean. Some narrower strong R2 areas can also be seen in the mid-

latitudes in both hemispheres. 

It is seen from Figures 5.35 to 5.38 that using TC as a predictand fits the linear model 

better for both cloud products. This could possibly be because of the ENSO index 

ONI being more correlated with the total cloud cover than the low cloud cover, as 

mentioned in Marsh and Svensmark (Marsh & Svensmark, 2003). Yet, this relation 

is considered to falsely affect the results (Voiculescu, Usoskin, & Mursula, 2007). 

5.4.3.2 Random Forest Model Maps 

This section shows maps using the random forest model with the predictors and 

different cloud products in Figures 5.39 – 5.42.  

 
Figure 5.39. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise ISCCP total cloud amount. The final 25% of the dataset is held out 

and tested. 
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Figure 5.40. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise ISCCP low cloud amount. The final 25% of the dataset is held out 

and tested. 

 

 
Figure 5.41. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise MERRA2 total cloud amount. The final 25% of the dataset is held 

out and tested (same figure as Figure 5.32). 
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Figure 5.42. Global R2 map of the random forest model with smoothed predictors 

and the pixelwise MERRA2 low cloud amount. The final 25% of the dataset is held 

out and tested. 

The random forest model works much better than the linear model for all cloud 

products. The pixels with high R2 values are more spread out over the globe, 

compared to the linear model, which had limited regions with positive R2 values. 

This shows that the random forest model is a better fit for these sets of predictors and 

predictands, meaning a non-linear relationship exists between the predictors and 

predictands. 

The regions with positive R2 values are parallel in both the ISCCP and MERRA2 

cloud data. However, just like in the linear model results, the TC cover of both cloud 

products has stronger R2 pixels in the random forest model maps. Again, this could 

be because of the reported (Voiculescu, Usoskin, & Mursula, 2007) false ENSO 

index – high cloud cover correlation, as the most visibly strong pixels, are in the 

tropical Pacific Ocean.  

Another reason for these visible areas along the equator could be due to sulfate (SO4) 

and sea-salt (NaCl) masses observed in the Equatorial Pacific regions. The global 

maps of these masses are given in Mann et al. (Mann, Carslaw, Ridley, Spracklen, 

& others, 2012), and the areas with high concentration are parallel to the high 
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positive R2 pixels in the regression model maps of this thesis. The study by Mann et 

al. evaluates a global aerosol microphysics module and generates maps using these 

molecules. Both the sulfate and the sea-salt maps display similar patterns in the 

Pacific. The shapes for sulfate masses are also shown in Hommel et al. (Hommel, 

Timmreck, & Graf, 2011); and for sea-salt masses, they are shown in the research by 

Wang et al. (Wang, et al., 2017). However, the stated relations are beyond the scope 

of this study and could be part of future research. 

 

5.4.4 The Effect of the ONI Parameter 

First, the global pixelwise R2 maps of the LM and random forest models are plotted 

using five predictors (GCR, SSN, TSI, UVI, ONI) and four predictors (GCR, SSN, 

TSI, UVI) to compare the parameter importance values with and without the ENSO 

index. This is to see if the observed patterns in the Pacific are related to the ONI 

parameter, as mentioned in Voiculescu et al. (Voiculescu, Usoskin, & Mursula, 

2007). The comparison is made both for the LM and the RF model, using both 

random holdout validation and holding out the final 25% of the dataset. MERRA2 

TC is used as the predictand in this section. 

Figures 5.43 and 5.44 are the linear model maps with different validation methods 

used, and Figures 5.45 and 5.46 are the random forest model maps with different 

validation methods used, respectively.  
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Figure 5.43. Global R2 map of the linear model with the pixelwise MERRA2 total 

cloud amount as the predictand. The predictors are a) GCR, SSN, TSI, UVI and ONI; 

b) GCR, SSN, TSI, UVI. Random 25% holdout validation is used. 

 

 
Figure 5.44. Global R2 map of the linear model with the pixelwise MERRA2 total 

cloud amount as the predictand. The predictors are a) GCR, SSN, TSI, UVI and ONI; 

b) GCR, SSN, TSI, UVI. The final 25% of the dataset is held out and tested. 

 

In the linear models using both validation methods, the high R2 patterns in the 

Equatorial Pacific almost entirely disappear when ONI is removed as a predictor. 

This suggests that ONI was an essential parameter in the model.  



 
 

97 

 
Figure 5.45. Global R2 map of the random forest model with the pixelwise MERRA2 

total cloud amount as the predictand. The predictors are a) GCR, SSN, TSI, UVI and 

ONI; b) GCR, SSN, TSI, UVI. Random 25% holdout validation is used. 

 

 
Figure 5.46. Global R2 map of the random forest model with the pixelwise MERRA2 

total cloud amount as the predictand. The predictors are a) GCR, SSN, TSI, UVI and 

ONI; b) GCR, SSN, TSI, UVI. The final 25% of the dataset is held out and tested. 

 

The same is true for the RF model maps. The pixels in the Equatorial Pacific 

disappear after removing the ONI as a predictor, implying the importance of the 

parameter in that specific region.  
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5.4.5 Parameter Importance 

The parameter importance of regression models is investigated to compare the 

relative effect on the model of each predictor parameter. Figures 5.47 and 5.48 show 

the out-of-bag (OOB) permuted predictor importance plots for the RF model maps 

in Figure 5.44 and Figure 5.46, with the ONI as a predictor and without the ONI 

parameter, respectively.  

The OOB estimates are measured in non-linear regression models such as random 

forests, and they show how much the predictors are effective at predicting the 

response in the models. Permuting the values of a predictor should be affecting the 

error of the model if the predictor is influential in the prediction. 

 

 
Figure 5.47. Out-of-Bag predictor importance plots of the random forest model with 

the pixelwise MERRA2 total cloud amount as the predictand. The predictors are a) 

GCR, SSN, TSI, UVI and ONI; b) GCR, SSN, TSI, UVI. Random 25% holdout 

validation is used. 
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Figure 5.48. Out-of-Bag predictor importance plots of the random forest model with 

the pixelwise MERRA2 total cloud amount as the predictand. The predictors are a) 

GCR, SSN, TSI, UVI and ONI; b) GCR, SSN, TSI, UVI. The final 25% of the dataset 

is held out and tested.  

 

Comparing the OOB estimate figures for both with and without the ONI index, it is 

seen that all of the predictors appear important. Nevertheless, since the predictor 

parameters are correlated between themselves, these results can be misleading.  

A process called Recursive Feature Elimination (RFE) is conducted to clarify this, 

and it is explained in the following section.  

5.4.5.1 Recursive Feature Elimination 

RFE is a method used to select features, and it simply removes the weakest predictors 

from the model to compare how the performance of the model changes. Here the 

method begins with all five predictors, and the results of the removal process can be 

seen in Table 5.13.  
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Table 5.13. R2 values of the recursive feature elimination for the models, using the 

globally averaged MERRA2 TC as the predictand. Random 25% holdout validation 

is used. 

Predictors Linear 
Model 

Stepwise 
Model 

Random 
Forest 

GCR, SSN, TSI, 
UVI, ONI 0.57 0.58 0.77 

GCR, SSN, TSI, 
UVI 0.42 0.41 0.70 

GCR, TSI, ONI 0.34 0.34 0.61 

GCR, TSI 0.25 0.25 0.53 

 

It is seen from this table that even though the predictor parameters are strongly 

correlated with each other, the R2 value decreases every time a predictor is removed 

from the model. This indicates that each predictor parameter in each model has an 

important novelty that differs from one another. 
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CHAPTER 6  

6 CONCLUSION 

6.1 Summary and Conclusions 

This thesis aimed to study the relationships between external forces on Earth’s 

climate and the meteorological parameters. Using machine learning techniques, 

inter-relationships among cosmic rays, solar activity, and the Earth’s climate in 

different geographical regions and temporal periods were investigated. The 

parameters used in the correlation analysis were galactic cosmic ray (GCR) flux, 

Sunspot number (SSN), total solar irradiance (TSI), UV irradiance (UVI), and the 

Oceanic Niño Index (ONI) as the predictor variables; total cloud (TC) amount, low-

level cloud (LLC) amount, global mean temperature anomaly (GMTA), aerosol 

optical depth (AOD) and precipitation (PRECIP) as the response variables. All 

monthly averaged datasets were preprocessed, smoothed, and analyzed for the years 

1984-2017. After standard statistical techniques were applied, multiple linear 

regression models and machine learning methods for non-linear regression were 

used. The findings are listed as follows: 

1. Previous studies reporting a strong linear correlation between low cloud 

cover and cosmic ray flux were reanalyzed, and their study period was 

expanded up to the year 2017. It was seen that the correlation coefficient 

values weakened as the study period extended, and the reported correlation 

disappeared completely after ~2003. The MERRA2 TC and LLC were found 

to be more correlated to the GCR flux compared to the ISCCP TC and LLC 

for the years 1984-2017. 
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2. Pixelwise correlation analysis was conducted for the full analysis period 

(1984-2017) between the predictors and cloud data. A strong positive 

correlation was observed between GCR-cloud in the mid-latitude oceans at 

both hemispheres, consistent with previous work. The anti-correlation 

between GCR and solar activity was confirmed once again with these maps.  

3. Different hold-out validation methods for the ML models were compared. It 

was seen that even though random hold-out validation worked well for all 

ML models, it was thought to create artificially high R2 values. A hold-out 

validation method that holds out the final parts of a dataset and tests them 

was thus used, which in a time-dependent dataset means that the model uses 

past data to predict future data. This validation method uses predictive power, 

which means that the values found are less likely to be coincidental.  

4. A significant non-linear relationship between the predictors and predictands 

has been found using random forest regression models, which has never been 

used before.  

5. Both cloud products showed overall higher R2 valued pixels for the TC 

amount data. Most of these pixels are in the Equatorial Pacific region and are 

suggested to be because of the reported effect of the ENSO event. The 

pixelwise maps were constructed without using ONI as a predictor parameter, 

and the high R2 valued pixels in the Pacific vanished. This showed that the 

effect observed there was due to the ONI parameter.  

6. The parameter importance of the predictors used in the RF models was 

investigated, and recursive feature elimination was conducted. The R2 value 

was observed to decrease each time a predictor was removed from the 

analysis, confirming that each predictor parameter used in the analysis had 

an essential addition to the model.    

It can be concluded that the GCR-climate connection does exist, and these non-linear 

relations should be investigated further, specifically in certain regions of the World. 
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6.2 Future Work and Suggestions 

This analysis was mainly conducted to search for relations between the parameters, 

and the reasons for the relationships have not been investigated. Finding where and 

how much connection there is can help enlighten the mechanisms behind the 

relations. Based on the results of this thesis, further research should focus on the 

regions found with high R2 values using the RF models in the Indian Ocean and 

Pacific Ocean mid-latitudes. The relationship of the predictors and predictands with 

the ENSO event should be investigated in-depth, specifically for the mentioned 

region in the Equatorial Pacific. The parameters sulfate and sea-salt masses could be 

added to the analysis to see how the relations change.  

Finally, using the predictors as gridded datasets instead of globally averaged data 

would help to understand relationships for each pixel further. Such changes could 

be, for example, to calculate and use cosmic ray-induced ionization in the 

atmosphere at certain altitudes, for each pixel, instead of the neutron monitor count 

rates as the GCR data.
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