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ABSTRACT

COMPARISON OF METHYLATION PATTERNS IN ANCIENT
HUNTER-GATHERERS AND FARMERS

Çokoğlu, Sevim Seda

M.S., Department of Biology

Supervisor: Prof. Dr. Mehmet Somel

September 2021, 59 pages

As the Neolithic transition dramatically changed human lifestyle and diet, one may

expect epigenetic differences between pre-Neolithic Hunter-Gatherers (HGs) and Ne-

olithic farmers (NFs).[1] In this study, we investigate methylation profile differences

between the Pre-Neolithic and Neolithic individuals. It is today possible to infer

methylation patterns of ancient DNA samples using programs such as epiPALE-

OMIX, which calculates a methylation score (MS) per CpG position from aDNA

data.[2] This approach uses deamination patterns to assign a MS per CpG position in

ancient DNA libraries treated by uracil-DNA glycosylase (UDG). Here we compiled

published HG and NF genomes produced using UDG, either by shotgun sequencing

or by 1240K SNP capture, from bone or tooth remains. After estimating MS values

per genome, we applied statistical analyses to find methylation pattern differences

between the subsistence types, HGs and NFs. We found 1147 genes showing sig-

nificantly different MS values between prehistoric HGs and NFs. The subsistence

type effect influenced more genes than sex or tissue. Intriguingly, we also observed

a significant correlation between HG vs. NF methylation differences we identified in

our ancient sample, and modern-day hunter-gatherer (MHG) vs. modern-day farmer
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(MF) genome-wide methylation differences identified in African populations. This

result raises the possibility of the existence of universal methylation patterns that

may have accompanied the Neolithic transition.

Keywords: neolithic, paleolithic, methylation profile, methylation score, CpG posi-

tions, epiPaleomix, shotgun sequencing, 1240K SNP capture

vi



ÖZ

ANTİK DÖNEM AVCI-TOPLAYICI VE ÇİFTÇİLERDE METİLASYON
YOLAKLARININ KARŞILAŞTIRILMASI

Çokoğlu, Sevim Seda

Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Somel

Eylül 2021 , 59 sayfa

Neolitik geçişin insalığın yaşam tarzını ve diyetini önemli ölçüde değiştirmesiyle ne-

olitik öncesi ve sonrası toplumlar arasında epigenetik değişikliklerin olması beklenebilir.[1]

Bu çalışmada Neolitik öncesi ve Neolitik bireyler arasındaki metilasyon profili fark-

lılıklarını bulmaya çalışmaktayız. aDNA verilerinden CpG pozisyonu başına bir me-

tilasyon skoru (MS) hesaplayan epiPALEOMIX gibi programları kullanarak aDNA

örneklerinin metilasyon modellerini çıkarmak günümüzde mümkün hale gelmiştir.[2]

Bu yaklaşım, urasil-DNA glikosilaz (UDG) uygulanan antik DNA kütüphanelerinde

CpG başına bir MS atamak için deaminasyon yolaklarını kullanır. Burada, UDG kul-

lanılarak, shotgun dizilimi veya 1240K SNP yakalama yoluyla, kemik ya da diş kalın-

tılarından üretilen yayınlanmış avcı-toplayıcı ve neolitik çiftçi genomlarını derledik.

Genom başına MS değerlerini tahmin ettikten sonra, geçim türleri, avcı-toplayıcılar

ve neolitik çiftçiler arasındaki metilasyon modeli farklılıklarını bulmak için istatis-

tiksel analizler uyguladık. Tarih öncesi avcı-toplayıcılar ve neolitik çiftçiler arasında

önemli ölçüde farklı MS değerleri gösteren 1147 gen bulduk. Geçim türü etkisinin,

cinsiyet veya dokudan daha fazla geni etkilediğini gördük. Şaşırtıcı bir şekilde, antik
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örneğimizde tanımladığımız avcı-toplayıcı ve neolitik çiftçi metilasyon farklılıkları

ile Afrika popülasyonlarında tanımlanan günümüz avcı-toplayıcı ve günümüz çiftçi-

lerinin genom çapında metilasyon farklılıkları arasında önemli bir korelasyon göz-

lemledik. Bu sonuç, Neolitik geçişe eşlik etmiş olabilecek evrensel metilasyon yolak-

larının mevcudiyeti olasılığını ortaya çıkarmaktadır.

Anahtar Kelimeler: neolitik, paleolitik, metilasyon profili, metilasyon skoru, CpG po-

zisyonları, epiPaleomix, shotgun dizileme, 1240K TNP yakalama
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CHAPTER 1

INTRODUCTION

The Neolithic transition changed the lifestyle and diet of ancient humans tremendously.[1]

Before the Neolithic transition, modern humans were hunting and gathering. Grad-

ually, people started building settlements, farming and eventually herding animals in

Southwest Asia approximately 12,000 years ago.[3] It is predicted that Neolithization

arose independently around the world in different time periods. Sedentary lifestyle

and transition to agriculture was caused by the variable climate conditions due to

instability of the climate in early Holocene.[4] Consequently, domesticated animals

replaced hunted wild animals in the diet and plant products such as bread from wheat

became the base of the diet in the Near East.[4] There is archaeological evidence of

grinding and processing the cultivated grains which appear as tools in archaeological

remains. Another evidence comes from the bones of the individuals excavated. Signs

of extra strains on the bones of the upper vertebrae were observed which imply car-

rying load, possibly grains and other agricultural products.[5] Also, Neolithic women

had changes in the limb bones which were associated with cereal grinding.[5] Another

piece of evidence comes from the dental data. According to a study, comparisons be-

tween the prehistoric HG and Neolithic human teeth reveal some distinct characteris-

tics. Prehistoric HGs mostly have healthy teeth whereas Neolithic samples have more

caries and fractures on their teeth due to the consumption of the carbohydrate-based

products more than prehistoric HG humans.[6] Fractures are most probably caused

by the consumption of cereals that are not perfectly grinded.[4] Meanwhile, there are

other studies which claim a decrease in the dental caries of the individuals in different

Neolithic settlements in Southwest Asia and Southeast Europe. [7, 8] Thus, while the

topic of dental caries may remain controversial, it is expected that the transition to a

Neolithic lifestyle did have various effects on the human body.
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The Neolithic transition can also be studied using evidence of diet. In addition to

archaeobotanical and zooarchaeological studies, human remains also reveal dietary

shifts. For example, evidence for consuming dairy products has been reported ap-

proximately 8000 years ago in Çatalhöyük, Turkey.[9] Milk protein was found in

both ceramics and the dental calculus of the excavated individuals. Another evi-

dence for consuming dairy was found to be approximately 6000 years ago in Ne-

olithic Britain.[10] Researchers used dental calculus to do proteomics analysis and

discovered milk protein on the teeth of these Neolithic individuals.

An open question is whether and how this major transition in the diet and lifestyle

may have affected gene expression in ancient humans. Because soft tissue and RNA

are generally not preserved, the main source of epigenetic information about ancient

organisms is DNA methylation, which can be inferred using the uracil-DNA glyco-

sylase (UDG) enzyme. UDG application is a popular method in aDNA sequencing.

This is an enzyme that removes uracil nucleotides which are the result of post-mortem

deamination in ancient DNA.[11] Fortunately, we can estimate a methylation score

per CpG directly from the sequence data coming from UDG-treated libraries thanks to

its working principle. The post-mortem deamination rates are high at both termini of

aDNA resulting in C→ T and G→A transitions.[12] Deamination converts unmethy-

lated cytosines into uracil and methylated cytosines into thymine nucleotides.[13]

The software epiPALEOMIX uses this knowledge in order to estimate methylated

and unmethylated residues in ancient genomes.[2] This is an open-source pipeline

that uses post-mortem damage signals to estimate the ancient methylation patterns by

using shotgun and/or capture data. One needs to input data having over 2x coverage

to obtain confident results and it works efficiently on UDG-treated ancient samples.

epiPALEOMIX has several modules but the MethylMap module which outputs the

number of deaminated reads was used in our analyses.

Here, I present my work on methylation patterns of prehistoric HGs and NFs esti-

mated using computational tools on published aDNA data.

In Chapter 2, a literature review on the topic is presented. Description of the related

topics are given. I describe a compilation of past studies and share inferences from

the literature.
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In Chapter 3, materials and methods of the study are described. The dataset is defined

in detail and processes that the data went through are narrated. Statistical methods

executed on the data are reported in detail.

In Chapter 4, the results related to the research on methylation pattern differences in

ancient DNA are presented. First, our dataset is introduced generally including some

statistical metrics. Then, the results of the statistical methods are reported. Subse-

quently, comparisons between the datasets are given and all the results are discussed

thoroughly.

In Chapter 5, I discuss the overall study and my results. The difficulties and the

limits of the area are highlighted. Some points of the study are questioned and pos-

sible hypotheses are put forward. Recommendations on future applications are also

provided.
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CHAPTER 2

LITERATURE REVIEW

2.1 Gene Expression and Epigenetic Marks

Epigenetic changes occur continuously throughout life and they are associated with

gene expression. Epigenetic marks change gene expression by switching the gene sta-

tus to inactive from active and vice versa. The mechanisms work differently at differ-

ent stages of life. In humans, it starts when the zygote is created and all the epigenetic

marks belonging to the parents are removed from the DNA. Then, related mechanisms

are activated in order for the zygote to become a fully grown human. For example,

X chromosome inactivation occurs around the time of gastrulation in females, and

other major epigenetic shifts occur as organs are formed during embryonesis. Epi-

genetic patterns are specific to tissues, developmental stage, sex and other factors

affecting both the mother and the individual, including the environment. There are

several mechanisms affecting gene expression including DNA methylation, histone

modifications, and non-coding RNA regulations. The most widely studied epigenetic

mark among them is DNA methylation.[14] The mentioned epigenetic mechanisms

affecting gene expression are described in the following.

2.1.1 DNA Methylation

DNA methylation involves the addition of methyl groups on a cytosine preceding

in 5’-3’ direction a guanine (CpG). This context-dependent cytosine methylation is

known to alter gene expression by usually repressing the gene in concern, but also,

more rarely, activating transcription, with the effect depending on the location of the

CpG within the gene.[15, 16] Bisulfite genomic sequencing is a popular method in-
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troduced in 1992 to identify methylation patterns in modern genomes. It is based on

the treatment of sodium bisulfite. The outcome of sodium bisulfite - DNA reaction

differs when there is a methylated cytosine or an unmethylated cytosine.[17] Accord-

ing to the reactions the methylated cytosines remain as cytosines and unmethylated

cytosines become uracils and are read as thymines following PCR. [18] This way, we

can distinguish methylated cytosines from unmethylated ones.

2.1.2 Histone Modifications

Histones are proteins which structurally support the genome and they also play roles

in epigenetic changes. Modifications on histones activate or deactivate genes.[19]

Histone acetylation, phosphorylation and methylation are the categories of histone

modifications and they act on the amino acid residues of histones.

2.1.3 Non-coding RNA Activity

Non-coding RNAs are not translated into proteins but influence gene expression, and

thus are a major epigenetic mechanism. Two categories represent non-coding RNAs:

short non-coding RNAs and long non-coding RNAs (lncRNAs). Examples of short

non-coding RNAs are siRNAs, miRNAs and piRNAs. Studies on siRNAs and miR-

NAs showed that it has a role in gene silencing.[20, 21] piRNAs, on the other hand,

binds to Piwi proteins.[22] Piwi proteins with bound piRNAs are shown to repress

homeobox gene and this characteristic make piRNAs an epigenetic regulatory com-

ponent. [23]

2.2 Environmental Factors Affecting Gene Expression

It was well known that both DNA methylation and gene expression patterns can be

affected by environmental factors in a predictable as well as stochastic ways. Diet,

physical activity, exposure to toxins, psychological trauma and other factors can in-

fluence DNA methylation patterns.[24] For instance, it has been shown that consum-

ing broccoli can protect against several cancer types, as organosulfur compounds
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which are found in broccoli regulate DNA methylation levels and activate pathways

that suppress tumor growth.[24] Monozygotic twin studies are important in this area

as they are genetically identical but experience life differently. Methylation stud-

ies on adult monozygotic twins show significant differences on the phenotype of the

individuals.[25]

In the context of our topic, it was recently shown that there exist differentially methy-

lated regions in the genomes of modern-day rainforest hunter-gatherers (MHGs) and

modern-day farmers (MFs) from Central Africa.[26] Fagny et al. used bisulfite con-

version of DNA from blood samples from these groups and obtained reliable methyla-

tion patterns using Illumina arrays. They defined two types of categorical methylation

differences; "historical" differences and "recent" differences.

The "recent" differentially methylated site (DMS) category was defined by comparing

two groups of populations that had the same historical subsistence type and genetic

background but different recent habitat. Both populations were agriculturalists in the

past; however, while one population still lived in rural, deforested areas (which the

authors called w-AGR, abbreviation for Western Central African agriculturalists liv-

ing in rural areas), the other population, which was genetically closely related, had

recently (within the last millennia) moved to the forest and started to practice regu-

lar hunting (which the authors called f-AGR, abbreviation for forest agriculturalists).

Thus, w-AGR and f-AGR were genetically closely related and shared an agricultur-

alist past, but recently, the f-AGR had moved to the forest. Thus, any DMS between

w-AGR and f-AGR would indicate the effects of this recent environmental change.

The "historical" category, in turn, was defined by comparing two populations to-

day living in the same habitat but had different genetic background and historical

lifestyles. Both populations were living in the forest. One was f-AGR, described

earlier, and represented agriculturalists who had recently turned forest hunters. The

other population was composed of traditional hunter-gatherers, who had probably

never become full-scale agriculturalists (which the authors called w-RHG, abbrevia-

tion for Western Central African rainforest hunter-gatherers).

Comparing these two pairs of groups, Fagny et al. reported thousands of DMS in both

cases. Moreover, historical methylation differences usually involved developmental
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genes, while recent differences included immune system-related genes. Age, sex, and

tissue (blood cell type) composition differences were also taken into account in the

study as they may affect the methylation patterns as well.

The study also included a set of independent populations who lived in Eastern Cen-

tral Africa (e-AGR: Eastern agriculturalists and e-RHG: Eastern rainforest hunter-

gatherers) as a control group and compared them with Western Central African pop-

ulations in terms of methylation profile differences. They found similar methylation

differences in Eastern and Western population subsistence type comparisons. Us-

ing these findings, they also found that the historical DMS category was enriched in

methylation quantitative trait loci (meQTLs), with 30% overlap with higher associa-

tion. However, the overlap for the recent category was 9%. This suggests that methy-

lation differences between agriculturalist and hunter-gatherer groups are affected by

the genetic background.

This interesting study shows that DNA methylation and other epigenetic mechanisms

may be affected by subsistence type significantly.

2.3 Ancient Genome Analyses

Because aDNA is highly fragmented and in low amounts, and it is not easy to obtain

and sequence in large amounts. However, the development of sequencing technolo-

gies and new laboratory protocols has allowed the study of ancient genomes. Today

about 5000 ancient human genomes have been published. One important develop-

ment here has been the so-called 1240K SNP capture protocol, which uses probes

to target DNA fragments that contain about 1 million common human SNPs.[27]

The alternative is genome-wide shotgun sequencing in which the reads are sequenced

randomly and then mapped to the desired reference genome.[28] Although shotgun

sequencing produces more information, it is more expensive and therefore many

genomes have been produced using 1240K capture.

aDNA scientists analyse data coming from sequencing devices in order to reveal pop-

ulation history, such as demographic changes, migration patterns, genetic kinship

between individuals, etc. Since aDNA is highly degraded, there are metrics to decide

8



if the sequencing was successful or not. Coverage is one the metrics and it is also

used in modern genomes as well. If the sample is of good quality, then the coverage

should be high too. The average coverage levels of ancient genomes usually are not

as high as modern genomes but if it is sufficient to do statistical analyses for a sample,

it is included in studies. Other metrics are also crucial to check, including estimates

of modern human contamination. There are tools to estimate these and scientists use

them to decide whether the sample is usable or not.

2.4 Ancient Epigenomics

Besides population genetics on ancient genomes, another study area includes epige-

netic analyses which mainly include DNA methylation studies. Detecting methyla-

tion in aDNA is based on the deamination patterns. Post-mortem damage/deamina-

tion (PMD) is an advantage in terms of ancient methylation studies even though it

may be a disadvantage for other areas. Biochemistry of methylated and unmethylated

cytosine bases with time after death provides a clue on methylated CpGs. After the

death of the individual, deamination of cytosines and other chemical processes occur

on DNA. Thanks to deamination, we can recognize which cytosines are methylated

using an enzyme which removes uracils (deaminated cytosines) on the DNA, uracil

DNA glycosylase (UDG), before library preparation.[11] We know that methylated

cytosines turn into thymines and unmethylated cytosines are converted to uracils.

[11] After removing uracils, preparing a library and sequencing, if a read contains

a TpG where we would have expected a CpG, this suggests that the CpG on that

DNA molecule was originally methylated, and then got deaminated. This would not

happen at an unmethylated CpG, which would be converted to UpG and then be re-

moved from the DNA fragment by UDG. Methylation patterns are attained counting

the number of TpG reads for CpGs in concern. The schema of the above explanation

is shown in Figure 2.1.

In the last decade, there have been a number of studies on aDNA methylation. The

first study included the retrieval of the methylation profile of 6 ancient bisons from

fossilized remains using bisulphite allelic sequencing and found similar methylation

patterns with modern bisons.[29] The first ancient human to be analysed epigeneti-
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Figure 2.1: Illustration of deamination process in nucleotide conversion on methy-

lated and unmethylated CpGs. Methylated CpGs deaminates and become TpGs.

Unmethylated CpGs deaminates and converted to UpGs. UDG treatment removes

unmethylated cytosines from the DNA.

cally was a Paleo-Eskimo individual related to Saqqaq culture.[13] The individual’s

genome had over 20x coverage and had been UDG treated. Pedersen et al. used

DNA methylation patterns estimated from this genome using the above-described

method, and further predicted the age-of-death of the individual to be between 44-

69 years. They also predicted gene expression patterns using epigenetic analyses

and generated a nucleosome map.[13] Another study investigated the differentially

methylated regions between high coverage Neanderthal, Denisovan individuals, and

modern humans.[15] Gokhman et al. reported that only 1% of CpG show methyla-

tion differences between archaic hominins and present-day humans. Their method

included dividing the number of C to T substitutions by the total number of reads per

CpG (read depth). It may be notable that this study used only one genome each per

species and therefore had low power to detect differences.

A number of groups had also developed computer programs for detecting ancient

methylation patterns. One of these, called epiPALEOMIX[2], utilizes the method

introduced by Pedersen et al. to calculate the methylation score (MS) per CpG din-

ucleotide. The authors suggest to apply it on genomes with a a coverage greater

than 2x. The input files consist of a BAM file belonging to the individual, reference

genome of the organism and a BED file containing the regions of interest. The output
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gives the total number of the deaminated reads per CpG and the total number of reads

per CpG. One can use this information to calculate a ratio and carry out statistical

analyses. The illustration of the above calculations are shown in Figure 2.2. The first

5’ to 3’ line shown in the figure is the reference sequence. The following lines are the

reads for the region of interest. The last line is the reverse complement. Both the num-

ber of TpGs at read starts and the CpA’s at read ends are considered while deciding on

the methylation state of a CpG. The authors showed that epiPALEOMIX methylation

estimates accurately captured known variation in CpG methylation across genomic

regions, such as CpG islands, promoters, splice sites, and mtDNA.

Figure 2.2: An example sample to calculate methylation score. The algortihm decides

the state of each CpG (green). The top line indicates the reference sequence, rest are

the reads from an ancient DNA data. Counting the number of Ts and Cs, methylation

score is attained. The starting TpGs are shown in blue and end TpGs are shown in

red, as well as their complement CpAs. The figure is adopted from Hanghøj et al

2016.

A more recently published software is DamMet, which uses maximum likelihood

estimation to predict methylation patterns in aDNA.[30] This new method was unfor-

tunately incompatible with our data although it has some advantages over epiPALE-

OMIX, such as optimizing error rates caused by overlooking some technical issues

including true sequence variants in CpGs, errors while mapping and sequencing, un-

balanced PMD rates on aDNA. [30] The authors report that it yields accurate results

at 20x coverage.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Presenting the Dataset

In this study we used shotgun sequencing data of 18 ancient individuals. This contains

11 HG individuals in the context of diet from across Eurasia, and 7 NF individuals

from Europe only. Sample related information is given in Table 3.1. At the same

time, we used 1240K data from a total of 32 individuals including 14 HGs and 18

NFs, excavated from Eurasia.

BAM files were mapped by my colleague Kıvılcım Başak Vural on Homo sapiens

genome assembly hs37d5. The genomic coverage range for shotgun samples was

0.86x-57.80x and the median is 4.4x. For 1240K samples coverage was 0.14x-1.53x

and the median was 0.22x (note that this is genome-wide coverage, not coverage per

1240K SNP). Information related to 1240K SNP capture samples are shown in Table

3.2.

Table 3.1: Shotgun libraries used in the study. Name of the individual, the subsistence

type/group it belongs to, genomic coverage related to the individual, estimated time

period, region it is excavated and data source are described. * Individual removed

from the analyses.

Individual Subsistence

Type

Coverage Time BP Region Source

Ust-Ishim HG 26.39 45,020 Russia [31]

Motala12 HG 1.93 7,624 Sweden [32]

Loschbour HG 15.53 8,050 Luxemburg [32]
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Table 3.1 (continued)

K14 HG 0.86 37,470 Russia [33]

Sf12 HG 57.80 8,895 Scandinavia [34]

R15 HG 2.54 9,124 Italy [35]

R7 HG 2.67 10,681 Italy [35]

irk025 HG 8.79 4,362 Siberia [36]

irk034* HG 14.5 5,533 Siberia [36]

irk061 HG 8.54 4,336 Siberia [36]

kra001 HG 13.62 4,185 Siberia [36]

cta016 HG 4.74 8,266 Siberia [36]

Primrose2 NF 4.30 5,675 Ireland [37]

Primrose16 NF 4.50 5,560 Ireland [37]

Primrose13 NF 1.34 5,450 Ireland [37]

Primrose9 NF 4.94 5,380 Ireland [37]

LBK* NF 14.27 7100 Germany [32]

R2 NF 3.33 7,984 Italy [35]

R3 NF 3.70 7,729 Italy [35]

R9 NF 3.45 7,496 Italy [35]

Table 3.2: 1240K SNP capture libraries used in the study. Subsistence type of the in-

dividuals, N, the number of the individuals in the subsistence type, genomic coverage

range, minimum and maximum time period spanning the subsistence type, median

coverage and data source are described.

Subsistence

Type

N Coverage

Range

Median

Coverage

Time

Period BP

Source

Hunter-

Gatherer

14 0.14x-

1.53x

0.19x 37,470-

7,376

[38, 39,

40]

Neolithic

Farmer

18 0.18x-

1.49x

0.43x 8,300-5,173 [39, 40,

41]
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3.1.1 Data Selection

epiPALEOMIX requires genomes (i) that have been UDG-treated, (ii) that have at

least 2x genomic coverage. Its input data are (i) the library type, single-stranded or

double-stranded, of the sample, (ii) the path of the BAM file related to individual in

concern, (iii) the path of the reference fasta file of the organism and (iv) the path of

the reference BED file for CpG positions.

Although we had chosen genomes reported to be UDG-treated in their relevant publi-

cations, we still decided to check their PMD profiles before further analyses, in order

to verify that UDG treatment was indeed effective on the samples. The transition of

C→ T at 5’ termini and G→ A at the 3’ termini should be close to 0 if UDG treat-

ment was successful. We calculated the PMD profiles using pmdtools on our shotgun

samples, which are provided in Figure C.1 and Figure C.2 in Appendix C. [42] All

the samples used meet the criteria defined above.

The CpG reference BED file (hg19) was retrieved by my colleague Dilek Koptekin

from the UCSC Genome Browser using the R Bioconductor package BSgenome, and

it contains a total of 13,270,411 autosomal CpG positions.

3.1.2 Data Processing for ANOVA

After running epiPALEOMIX, we filtered the output files for having at least 5 reads

per CpG position (collecting rows with >= 5 on the total read column in the epiPA-

LEOMIX output). This coverage filtering was done to increase the reliability of the

methylation estimates. We converted epiPALEOMIX output to a binary vector, with

0’s representing non-methylated reads and 1’s representing methylated reads, along

with the CpG position information.

Gene annotation was carried out using the Ensembl GRCh37 assembly including only

promoters and exons to determine which genes each position belonged to. We pre-

ferred to use both promoters and exons because promoters-only analyses did not yield

any result due to insufficient number of CpGs in the ancient genomes available (data

not shown).
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The input file for ANOVA testing also contains subsistence type, tissue and genetic

sex information of every individual. Subsistence type and the word "group" will be

used interchangeably hereafter. Table 3.3 describes the information related to the

individuals in terms of their library type (single-stranded or double-stranded), tissue,

genetic sex and total CpG positions observed. As seen in Table 3.3, after filtering for

having at least 5 reads per CpG, the total number of CpG sites decreases significantly

in the majority of samples.

Table 3.3: Description of the categories related to shotgun sequenced individuals.

Library type, tissue DNA extracted from, genetic sex of the individual, total CpG

positions observed in raw data, and total CpG positions observed after filtering for

having at least 5 reads per CpG.

Individual Library

Type

Tissue Genetic

Sex

Total CpG

Position

Total CpG

after

Filtering

Ust-Ishim Single-

Stranded

Bone XY 12,164,144 10,546,989

Motala12 Double-

Stranded

Tooth XY 4,033,101 998

Loschbour Double-

Stranded

Tooth XY 11,902,498 6,407,030

K14 Double-

Stranded

Bone XY 2,849,025 2,338

Sf12 Double-

Stranded

Bone XX 12,427,015 11,395,394

R15 Double-

Stranded

Bone XY 6,174,910 16,959

R7 Double-

Stranded

Bone XY 6,397,309 21,662

irk025 Double-

Stranded

Tooth XY 8,678,201 173,646
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Table 3.3 (continued)

irk061 Double-

Stranded

Tooth XY 7,727,457 60,500

kra001 Double-

Stranded

Tooth XY 8,682,548 146,718

cta016 Double-

Stranded

Tooth XX 6,676,778 29,889

Primrose2 Single-

Stranded

Tooth XX 9,797,247 470,696

Primrose16 Double-

Stranded

Tooth XY 7,928,254 86,933

Primrose13 Single-

Stranded

Tooth XY 10,074,830 1,425,413

Primrose9 Single-

Stranded

Tooth XY 9,899,233 626,647

R2 Double-

Stranded

Bone XX 7,229,731 49,501

R3 Double-

Stranded

Bone XX 7,649,881 70,779

R9 Double-

Stranded

Bone XY 7,528,483 67,474

3.1.3 Data Processing for other statistical tests

Besides ANOVA, we employed several different statistical analyses to test our hy-

pothesis. Here we used the epiPALEOMIX output, from which we calculated the pro-

portion deaminated reads, which we term methylation score (MS), number of deaminated reads per CpG
total number of reads per CpG .

The individual epiPALEOMIX output files were generated and joined per CpG posi-

tion. The generated file included chromosome, CpG start, CpG end, and MS of the

individuals in matrix format.
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We applied a minimum 5 read coverage criterion for the MS data. If any of the

individuals had a missing value at a particular CpG, the MS value was labelled as NA

for that individual.

We used the same process for calculating MS scores from the 1240K SNP capture

data.

3.2 Statistical Tests

We employed a number of statistical tests in order to address the question whether

there existed a difference in the average methylation patterns between the subsistence

types (HG and NF), and the direction of the difference under investigation. We used

tests from the R "stats" package as well as random permutations. All tests conducted

were two-sided unless otherwise indicated.

3.2.1 Analysis of Variance Tests

The outputs of epiPALEOMIX filtered to have at least 5 reads per CpG for every indi-

vidual were used for ANOVA testing to increase the reliability of the results. ANOVA

was preferred because we wanted to test fixed and random factors affecting the out-

come. All the positions are annotated using Ensembl GRCh37 assembly including

only promoters and exons. An example snippet of the ANOVA input file is given in

Figure 3.1. All the lines indicate reads; one CpG per individual is represented by at

least 5 reads; and categorical information is also shown. The P-values were calculated

per gene.

The R stats package aov() function was employed using the following linear model:

deamination ∼ subsistence+ tissue+ genetic_sex+ Error(Individual).

(3.1)

Here subsistence, tissue and genetic_sex are binary fixed factors, while Individual is

a random factor, because the individuals selected are random representatives of their
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Figure 3.1: A snippet of ANOVA input file. It contains chromosome, CpG start, CpG

end, deamination status of the read (0 for unmethylated CpG reads, 1 for methylated

CpG reads), tissue type, individual, genetic sex of the individual and gene the CpG

overlaps.

populations and multiple CpG positions per gene represent an individual, with absent

data recorded as NA.

Applying this analysis we could obtain non-NA P-values for subsistence, tissue, ge-

netic sex, for a total of 9450 genes. The resulting P-values were corrected for mul-

tiple testing using the Benjamini-Hochberg method. These P-values for subsistence,

tissue, genetic sex calculated for the mentioned 9450 genes were plotted using the

heatmap() function offered by R the programming language.

3.2.2 Wilcoxon Rank-Sum Tests

To test for MS differences between the two subsistence types, HGs and NFs, at each

CpG position, we used Wilcoxon rank-sum tests via the wilcox.test() function offered

by the R "stats" package. The same procedure was applied on the 1240K dataset.

3.2.3 Permutation Tests

Permutation tests are carried out for our shotgun samples in order to see whether

there is a difference between the subsistence types in terms of their mean methyla-

tion scores. Custom scripts are implemented in Python3 for calculating the observed
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values and expected values. First, the mean methylation scores per subsistence type

group for every single position are calculated and their difference is written to a file.

Then, the file is given as input to the program again and the mean differences be-

longing to subsistence types for 5000 bp non-overlapping windows are computed.

This procedure is applied to get observed values for the permutation tests. The ex-

perimental part includes the same main steps but instead the individuals are random-

ized between the subsistence types (with sample sizes fixed) so that we can decide

whether the difference seen in the observed data is randomly possible or not. Five

thousand repetitions are produced and the output was compared to observed values.

The outcome of the comparisons results in empirical P-values for every single win-

dow. Benjamini-Hochberg correction is applied as a last step. The illustration of the

workflow is shown in Figure 3.2.

Figure 3.2: Illustration of the permutation process. The input file is taken, the ran-

domized subsistence means per CpG is calculated, subsistence differences and 5 kb

window means are computed. The results are compared with the observed values and

a P-value is calculated based on 5000 randomizations. As a final step, multiple testing

correction is applied. HG: Hunter-Gatherer, FA: Farmer
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3.2.4 Gene Ontology Enrichment Analysis

Gene Ontology (GO) is a project that provides classification among the genes, gene

products and sequences in terms of functional characteristics.[43] GO enrichment

analysis is a technique that involves identifying the processes that are over-represented

or under-represented in a set of genes by making use of Gene Ontology.[44] The

corrected P-values from the ANOVA output were further analysed using the topGO

package in the R programming environment. GOSlim GOA database was retrieved

for our analysis. It contains 163 Gene Ontology terms. Adjusted P < 0.05 was cho-

sen as significance threshold. Significant genes were labelled as 1 and non-significant

genes as 0. The Fisher’s exact test and the "elim" algorithm were chosen for running

the analysis. When analysing gene sets, we chose only those passing the significance

threshold a single factor (subsistence, tissue and genetic sex), but not for other fac-

tors. For example, when analysing genes showing differential methylation due to

subsistence type, we selected genes showing a significant subsistence type effect, but

removed those genes which also showed significance effects for tissue or genetic sex

from this list. The same filters were carried out for other factors as well. We also

carried out GO enrichment analysis using g:GOSt provided by g:Profiler with our

adjusted significant gene sets for subsistence type, tissue type and genetic sex. The

background gene set was chosen to be default.

3.2.5 Subsistence Type-Related Methylation Differences in Ancient Eurasian

vs Modern African Datasets

A study published in recent years has compared the methylation profiles of the West-

ern and Eastern African Rainforest MHGs and MFs using blood samples taken from

the individuals.[26] DNA methylation was measured using a bisulphite protocol and

the Infinium HumanMethylation450 BeadChip. Fagny et al. had some comparable

results with our results although being performed on modern DNA. We downloaded

the results of the study as a file which included adjusted P-values and difference log-

arithm of fold change (logFC) of 365,401 CpG positions, which overlap with 19,672

genes. Difference logFC values of the modern data are the fold change differences

between the MF subsistence type and MHG subsistence type. This information was
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used to calculate correlation between our ancient results and the results of the orig-

inal study. The Fisher’s exact test was used to test whether there is a nonrandom

association between the categories: ancient significant, ancient non-significant; mod-

ern significant, modern non-significant. When analysing the modern data, we decided

to include genes with at least one CpG being adjusted significant per gene, meaning

that the adjusted P-value of at least one CpG per gene should be less than 0.05. The

R utility function fisher.test() was used for testing enrichment.

Further, the co-directionality of farmer vs. HG methylation differences between the

two datasets were tested. For this, we annotated our processed MS data and subtracted

the mean value per CpG position of HGs from the mean values of the NFs. After

that, the mean of the differences were calculated per gene for both datasets. We

had significant P-values per gene for subsistence type from our ANOVA tests and by

using the information provided from ANOVA results, we joined the common genes

between our ancient results and the results of the original study with our processed

MS data by making use of the bash utility called join. We used the Spearman’s rank

correlation using the R function cor.test() to the common genes between the modern

data and our ancient data. Scatter plots with regression lines were plotted using R.

In further analysis, we performed the same correlation on filtered versions of the

modern data, to test the reliability of the correlations we observed. For this, we

calculated a proportion on modern data representing the percentage of CpGs observed

to be significant. This was calculated as Number of Significant CpGs
Total Number of CpGs per gene. The ratio

generated for modern data per gene was filtered for having at least 30% and 50% of

the CpGs being significant and correlation analyses were also carried out on the new

versions.

3.2.6 Methylation Differences in Shotgun vs 1240K Capture Datasets

We performed the same type of Fisher’s exact test-based enrichment analysis de-

scribed in the previous section to compare genes identified as significantly differen-

tially methylated in the shotgun vs in the 1240K SNP capture data. Both shotgun

and 1240K processed data had the same format. Therefore, mean difference values

per gene were calculated for both data type as described above. Then, significant
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common genes were selected in both data types. The significance information were

retrieved from the ANOVA results. Fisher’s exact test was carried out to attain the

association between our shotgun and 1240K categories.
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CHAPTER 4

RESULTS

Our shotgun sequenced sample set had 11 HGs from West Eurasia and Siberia be-

longing to a period spanning 45kya-4kya, and 7 NF from West Eurasia belonging to

a period spanning 8kya-5kya (coverage range: 0.86x-57.80x, median coverage: 4.4x;

for more information see Table 3.1). The HG subsistence type/group also contains

Siberian Bronze Age HG individuals who apparently were not farming and their diet

was similar to HGs and included fish products.[36] The geographical distribution of

the samples are shown in Figure 4.1. We want to note that we included all available

published genomes in this study that fulfilled our criteria. A few years ago, only a few

genomes that had been treated with UDG were published and it was not possible to

do population analyses. In more recent years, the number of UDG-treated genomes

increased, although modestly, allowing this study to be performed.

We also compiled a sample set using 1240K SNP capture data and our sample set

had total of 32 individuals including 14 HGs belonging to a period spanning 38kya-

7kya and 18 NFs belonging to a period spanning 9kya-5kya, excavated from Eurasia.

For 1240K samples coverage was 0.14x-1.53x and the median was 0.22x (note that

this is not coverage per 1240K SNP, it is genome-wide coverage). The same criteria

to generate a sample set which applied to shotgun samples were applied to 1240K

samples as well.

Total CpG positions identified in each genome, both before filtering (raw) and after

filtering, are reported in Table 3.2. The mean number of CpGs before filtering was

8,212,258 across the 18 genomes, and after filtering this was 1,755,531, out of more

than 13 million CpG positions across the genome. It is important to report the number

of CpG positions per genome as it implies how much a genome contributes to the
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Figure 4.1: The geographical distribution of the shotgun sequenced ancient individu-

als. All individuals included in this study are from Eurasia.

analyses.

We estimated deaminated (potentially methylated) and non-deaminated reads cover-

ing each CpG, as well as methylation scores (MS) per genome using epiPALEOMIX

software. We note that we chose to use epiPALEOMIX over DamMet, an alterna-

tive ancient methylome mapping software, as the latter requires at least 20x coverage

to produce confident results.[30] Thus, we decided to use epiPALEOMIX due to the

fact that our sample set includes less than 20x coverage genomes. We then studied the

distribution of MSs (i.e. rates) per CpG per individual and plotted the distributions.

Violin plots summarizing the filtered MS data per shotgun individual are shown in

Figure 4.2. Some of the genomes had very low count of CpG positions and some

were good quality genomes and had much more CpGs than the others. At first, we

had 20 genomes in the shotgun sequenced sample set instead of 18 individuals. How-

ever, some genomes show unexpected behavior in terms of their methylation patterns.

The LBK genome was an outlier in terms of mean MSs (Mean MS=0.05) and irk034

(Mean MS=0.006) had very low total CpG count (raw: 1,245,323, filtered: 59) even

though it has sufficient coverage (14.6x). For instance, Loschbour genome had a sim-

ilar coverage to irk034 and it had around 12 million for raw and around 6.5 million

CpG positions for filtered category. We decided to remove LBK and irk034 genomes
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from our analyses due to the fact that they act as outliers and we do not have any

explanation why these genomes show such patterns.

To confirm that the genome-wide MS patterns identified are biologically meaningful

we checked their distributions across CpG islands and across non-CpG island areas

(e.g. "open sea") of the human genome. Non-CpG Island areas include "shelves" (4

kb from islands), "shores" (2 kb from islands), and "open sea" regions (more than

4 kb from islands). Barplots of mean methylation score on CpG islands and across

non-CpG island regions per shotgun sequenced individual are shown in Figure D.1.

As expected, CpG islands showed substantially lower MS than "open sea" regions in

ancient shotgun genomes.

4.1 ANOVA Tests Reveal Significant Methylation Differences on Particular Genes

We next ran ANOVA on our ancient genome data in order to compare the categories

in concern; subsistence type, tissue and genetic sex. These categories were chosen as

gene expression depends also on tissue type and sex/gender. These information were

readily available for every individual included in this study as they were collected

from the literature. Processed files per shotgun sequenced individual were merged

and given as input to ANOVA tests. Individual was included in the models as random

factor in the ANOVA models.

A total of 9450 genes had sufficient information to perform ANOVA and to calculate

P-values for subsistence type, tissue and genetic sex. The number of genes that were

only significant for subsistence type, at BH-corrected P<0.05, was 1147 (12% of

tested genes), while 232 genes (3%) were significant for only tissue, and 382 genes

(4%) for only genetic sex, after BH correction. All combinations of subsistence type,

tissue and genetic sex significance levels are reported as a heat map in Figure 4.3 and

the numbers for each combination are reported in Table 4.1. We observe that there

were genes that had significant differences in each category and common genes exist

in terms of being significant for subsistence type, tissue and genetic sex.

The same analysis was also carried out on 1240K SNP capture dataset, which in-

cluded a total of only 3730 genes. The significance patterns identified using ANOVA
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on this dataset are also given in Table 4.1. From the table, we can see that the number

of significant genes identified is much lower than those identified using the shotgun

dataset. For subsistence type, only 126 genes (3%) were identified.

Table 4.1: Table describing the combinations of the category significance patterns

and corresponding number of genes. The categories are Subsistence Type, Tissue,

and Genetic Sex. The second column represents the number of genes for shotgun se-

quenced libraries, the third column defines the number of genes for 1240K sequenced

individuals. Significant genes were defined as having BH corrected P<0.05

Significance Pattern Number of

Genes (Shotgun)

Number of

Genes (1240K)

Subsistence type Non-Significant &

Tissue Non-Significant & Genetic Sex

Non-Significant

6492 3502

Subsistence type Non-Significant &

Tissue Non-Significant & Genetic Sex

Significant

382 8

Subsistence type Non-Significant &

Tissue Significant & Genetic Sex

Non-Significant

232 14

Subsistence type Non-Significant &

Tissue Significant & Genetic Sex

Significant

54 0

Subsistence type Significant & Tissue

Non-Significant & Genetic Sex

Non-Significant

1147 126

Subsistence type Significant & Tissue

Non-Significant & Genetic Sex

Significant

543 12

Subsistence type Significant & Tissue

Significant & Genetic Sex

Non-Significant

338 21
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Table 4.1 (continued)

Subsistence type Significant & Tissue

Significant & Genetic Sex Significant

262 47

Since we identified genes showing statistically significant differential methylation

patterns, we thought it would be useful as a next step to perform GO Enrichment

Analysis and to investigate the functional roles of the genes we found significant.

The background gene pool included 9450 genes tested in ANOVA. GOSlim GOA

database was used for this purpose. The analysis was tested over 1147 (subsistence

type), 232 (tissue), and 382 (genetic sex) BH-corrected significant genes. No sig-

nificantly enriched GO term was found for genes showing tissue and genetic sex

effects, after multiple testing correction on Fisher’s exact test P-values. There were

two GO terms that passed 0.05 FDR for genes showing only subsistence type ef-

fects, and these were "biological process" and "circulatory system process" (adjusted

P<0.02; see Appendix A for first 5 terms for all categories); "cell-cell signalling"

was marginally significant at adjusted P=0.051. Because these GO terms were too

general, we considered that they might not carry much biological meaning. We also

tried GO enrichment analysis using g:GOSt provided by g:Profiler on our adjusted

significant genes for subsistence type including 1147 genes, tissue type including 232

genes and genetic sex including 382 genes. We found results similar to those found

in our previous GO enrichment analysis approach.

4.2 Significant Correlation is Observed between Ancient and Modern Methy-

lation Data Comparisons

We next asked whether the putative subsistence-related methylation differences iden-

tified in ancient genomes could at least partly overlap with similar methylation differ-

ences identified in modern-day populations. For this we took advantage of a study that

published blood methylation patterns in MHGs and MFs, that is, the two subsistence

types that we are interested in Africa.[26]. The samples were collected from East-

ern Central Africa and Western Central Africa, and each contained MHGs and MFs
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(with sample sizes ranging from 29 to 68 per group); these datasets will be named as

Eastern African Dataset (EAD) and Western African Dataset (WAD) hereafter. The

authors used a linear model to estimate differential methylation.

We first compared the genes showing subsistence type effect in ANOVA in our ancient

dataset, and the genes showing the same effect in the modern dataset. Specifically,

we tested whether genes being significantly different between subsistence types in

both datasets occur more than randomly expected. For this, we created a contingency

matrix based on the subsistence type significance (tissue and genetic sex, being non-

significant) of BH-corrected ANOVA results for shotgun sequenced ancient genomes,

and the significant genes reported from the modern dataset. We filtered the modern

data genes by having at least 1 significant CpG position per gene. The matrices are

shown in Table 4.2. The number of common significantly differentially methylated

genes between our ancient dataset and those in the EAD was 612. The same number

for WAD was 745. To evaluate these overlaps we applied Fisher’s Exact Test. This

suggested a nonrandom overlap in both cases (Fisher’s exact test for EAD compari-

son, odds ratio: 1.33, P<10−4; for WAD, odds ratio: 1.51, P<10−6).

This result was interesting but also surprising, as we did not expect such strong as-

sociation. The reason we were sceptical was due to the fact that aDNA is highly

fragmented and the estimation of methylation in ancient datasets is highly noisy, de-

pending on PMD occurrance, and also only observable at DNA molecule ends (i.e.

ends of the reads) but not in the middle nucleotides.

We next reasoned that, if the overlap signal is indeed real, we should expect the

directions of the methylation differences (i.e. differences between farmers vs. hunter-

gatherers in different settings) to be correlated as well. Therefore, as the next step, it

would be appropriate to calculate a correlation between our ancient mean difference

MS data and mean difference logFC values per gene provided by the modern data.

We calculated the correlation on processed MS data filtered by the subsistence type

significant genes from ANOVA results and genes which have at least one adjusted

significant CpG in modern data. Spearman’s rank correlation between our results and

the results of the original study yields significant positive correlation (EAD compar-

ison: ρ: 0.22, P<10−7, n = 612 genes; WAD comparison: ρ: 0.14, P<10−4, n = 745
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genes). We also fitted the data to a linear model in order to visualize the relationship,

which is shown in Figure 4.4. These results suggest a positive correlation between

the ancient and modern data in terms of subsistence type methylation differences per

common gene.

Table 4.2: The count matrix of common genes for each significance level. Rows

indicate ancient categories, and columns indicate modern categories. First 2 columns

are related to EAD and the last 2 columns are related to WAD.

Number of

Genes

Modern

Significant

(EAD)

Modern

Non-Significant

(EAD)

Modern

Significant

(WAD)

Modern

Non-Significant

(WAD)

Subsistence

type

Significant

612 366 745 233

Subsistence

type Non-

Significant

2989 2381 3645 1725

We were still suspicious about the results. Hence, we examined the correlation plots

and decided to remove the left hand side (MS difference < -0.035) as the majority of

the correlation might be resulting from these genes. Leftmost 14 genes from the EAD

and 10 genes from the WAD comparison were removed from the analysis. The corre-

lation is decreased but it does not have a major effect (Spearman’s rank correlation for

EAD comparison: ρ=0.19, P<10−5; for WAD comparison: ρ=0.12, P<0.01). It turned

out that the leftmost genes did not make up most of the correlation we observed.

As previous analyses were on modern data having at least one CpG significantly

differentially methylated per gene, and one CpG might not have an impact on gene

expression, we filtered the modern data to have greater than 30% of the corresponding

CpGs of a gene to be significant between the MF subsistence type and the MHG

subsistence type. A total of 89 and 107 genes were overlapping with our ancient data

for EAD and WAD comparisons, respectively. We observed a stronger correlation

in WAD comparison, the correlation remained the same for EAD and the outcome
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was significant for both (Spearman’s rank correlation for EAD comparison: ρ=0.22,

P=0.04; for WAD comparison: ρ=0.25, P=0.01).

We further filtered the modern data in the same way described above, but this time the

threshold was 50%. A total of 25 genes were common between EAD and our results

and 29 genes were overlapping with WAD. We observed stronger correlation with

EAD and the correlation turned out to be significant (Spearman’s rank correlation

ρ=0.5, P=0.01). However, the same result was not achieved with WAD comparison

(Spearman’s rank correlation ρ=0.19, P=0.37). The correlation graphs are shown

in Figure 4.5 for both filters. Although we could not achieve a significant P-value

for WAD filtered for having 50% significant CpGs per gene, we observed that the

correlations generally increase with filtering.

The sign, positivity or negativity, of the difference values of our results were odd as

ancient results shown in x-axis in the correlation graphs had mostly negative differ-

ence values. We considered this situation and had an hypothesis. The differences are

calculated by subtracting the mean MS of HG subsistence type from NF subsistence

type. Our hypothesis was that the HG subsistence type (mean coverage=13.03x) had

greater mean coverage than the NF subsistence type (mean coverage=3.65x) in our

ancient dataset. We tested this assessment with all of the individuals and found that

there is no systematic difference between the coverages of the subsistence types in

our ancient data (Mann-Whitney U test, P=0.14).

We also conducted GO enrichment analysis using GOSlim GOA database on sig-

nificant common genes between the modern data and our ancient data. We found

significant GO categories. The significant GO categories for both EAD and WAD

comparisons are given in Tables 4.3 and 4.4. We compared the GO categories and

found common GO terms with those published in the original study. The common

categories with those published in the original study are shown in bold.

Table 4.3: GO terms from the analysis of genes found common with those published

in the original study (EAD). Adjusted P<0.05.

* Category including recent differentially methylated genes.
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Table 4.3 (continued)

GO ID Term Significant Expected Adjusted

P-value

GO:0007267 cell-cell signaling 104 60.64 1.61×10−6

GO:0003013 circulatory system

process

50 22.03 2.5×10−8

GO:0007165 signal transduction 241 201.94 0.013583

GO:0006810 transport 204 167.48 0.014263

GO:0030198 extracellular matrix

organization

27 13.73 0.016572

GO:0000902 cell morphogenesis 56 36.26 0.016572

GO:0006464 cellular protein

modification process*

176 143.52 0.019094

GO:0030154 cell differentiation 173 142.16 0.00135

GO:0034330 cell junction organization 40 24.6 0.025537

GO:0048646 anatomical structure

formation involved in

morphogenesis

54 36.9 0.040306

GO:0040007 growth 49 32.82 0.040306

GO:0040011 locomotion 83 62.57 0.0490254

GO:0008283 cell proliferation 85 64.5 0.0490254

Table 4.4: Signifcant GO terms from the analysis of common genes found in both our

data and WAD. Adjusted P<0.05.

* Category including recent differentially methylated genes

GO ID Term Significant Expected Adjusted

P-value

GO:0003013 circulatory system

process

53 26.67 7.2×10−7

GO:0007267 cell-cell signaling 108 73.44 0.001141
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Table 4.4 (continued)

GO:0040007 growth 64 39.75 0.003858

GO:0030154 cell differentiation 209 172.16 0.019968

GO:0006810 transport 238 202.81 0.043684

GO:0006464 cellular protein

modification process*

206 173.8 0.0489

GO:0030198 extracellular matrix

organization

29 16.63 0.0489

Approximately half of the categories we found are common in both studies. Ac-

cording to the Fagny et al. study, there are genes which are differentially methylated

historically or recently. The historically differentially methylated gene set is asso-

ciated with the historical lifestyle differences between pairs of populations, and the

recent differentially methylated gene set is related to the lifestyle changes occurred

recently on the timeline of the populations.[26] We found only one term associated

with recently differentially methylated GO terms. The rest (38%) are in the histori-

cal category, including cell-cell signaling, anatomical structure formation involved in

morphogenesis.

4.3 Wilcoxon Rank-Sum and Permutation Tests Show No Significant Outcome

As an alternative to gene-based ANOVA, we also carried out Wilcoxon rank-sum

test on each position to find out whether we could identify differentially methylated

singular CpG positions using this sample. The tests on each CpG position for HG and

NF subsistence types were carried out on a total of 336,149 CpG positions on filtered

shotgun MS data. We found 47 positions that had P<0.05. No CpG position with

P<0.05 were left after BH correction. The distribution of P-values are given in Figure

4.6. Since we could not find any significantly different position using Wilcoxon rank-

sum tests, it might indicate that the differences may not be detectable at the single

CpG level with our current sample size.

We further carried out custom random permutation tests for 5kb non-overlapping win-
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Figure 4.5: The correlation diagrams after filtering for the ratio of significant CpGs.

First row diagrams show the correlation after (the number of significant CpGs over

total number of CpGs per gene) filtering for ratio greater than 0.3, second ones show

filtering for ratio greater than 0.5. The left column is for EAD, the right one is for

WAD comparison. Gene names are labelled in the plots.
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Figure 4.6: Histogram of P-values. The dashed line shows P less than 0.05. The

P-value distribution is not continuous because of our limited sample size and the test

being rank-based.
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dows across the genome (n=525,112) to identify any loci showing differential methy-

lation signals between HGs and NFs, using our shotgun ancient genome dataset. As

in the previous analysis, there remained no significant 5kb window after BH correc-

tion. The reason we do not detect any significant windows in the permutation test,

although we do detect significant gene loci in ANOVA, could be related to various

reasons, including the sensitivity of the tests, the loci being studied (genome-wide vs.

gene-focused), the total number of tests performed and the multiple testing correction

effect, etc.

4.4 Comparison between the Shotgun and 1240K SNP Capture Data Shows No

Significant Association

As it was mentioned, we estimated methylation levels using n=NNN 1240K SNP

capture genomes, and conducted most of the analyses carried out on shotgun se-

quenced data with 1240K data as well. See Appendix B for more information on

1240K SNP capture dataset. We compared our shotgun data with 1240K data in the

same way we compared modern data with our shotgun data. ANOVA results of both

shotgun sequenced and 1240K sequenced data were compared. We observed total

of 3716 common genes between the shotgun sequenced and 1240K sequenced data.

Together with the previous analyses, we thought that it would be beneficial to calcu-

late the association between the numbers of common genes per significance pattern

per category between the 1240K SNP capture and shotgun sequenced results. We

found a non-significant association for subsistence type significant, other categories

non-significant combination (Fisher’s exact test, odds ratio=0.83, P=0.32). Besides

subsistence type differences, we also tested tissue and genetic sex differences. It also

did not support any association between the two in those categories as well. This

result was probably due to the total number of examined CpGs being much lower

in 1240K sequenced data and insufficient information provided per gene. As 1240K

data targets specific positions in the genome, we can only have information about the

CpGs around the SNPs. This also means that their genomic coverages are generally

lower than shotgun sequenced ones (Overall mean genomic coverage for 1240K data

is 0.42x). Therefore, filtering for having at least 5 reads per CpG results in few CpG
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positions. See Appendix B for full genomic coverage table of 1240K SNP capture

data.
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CHAPTER 5

DISCUSSION

Studying epigenetics has several problems even in modern genomes. Distinguish-

ing true positive results from false positives due to sampling error and experimental

artifacts is a problem in the field. DNA extraction and working principles of the

chemicals used in the processes can create problems while obtaining the informa-

tion needed.[45] These are general problems for most of the assays and epigenetics

is one of the fields affected. Epigenetics is a complicated area of study as it includes

dynamism, tissue-specificity and involves many mechanisms.[46] Furthermore, there

is not a threshold in the mechanisms of epigenetics. For example, a gene can be

downregulated with only 2 CpGs being methylated or all of the CpGs in the promoter

region of a gene methylated. This results in a difficulty interpreting the findings in

the studies. Moreover, ethical principles limit the area as it affects many other areas

involving tissue collection. For instance, aging is one of the study topic in epigenet-

ics and studying it with elderly people can involve ethical problems. If natural causes

results in the death of the participants after the sample collection, the study will most

likely to be blamed by the relatives of the participants.

Ancient DNA studies have their own difficulties. Generally, low quantity of DNA is

extracted due to fragmentation over time.[47] Human and microbe contamination is a

major problem in aDNA studies. Therefore, the facilities for aDNA extraction should

be suitable to prevent contamination. Furthermore, post-mortem damage causes an-

other difficulty as it may cause nucleotide conversion. This, in turn, provides infor-

mation (about the genotype) that is not valid in actuality. Last but not least, efficient

sequencing technologies are expensive and this limits ancient genome studies.[48]

Studying epigenetics on aDNA is further complicated due to the fact that aDNA is
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degraded and the only epigenetic marker that can efficiently be studied is methyla-

tion. Both the difficulties of epigenetics and aDNA studies together make it a hard

task to study epigenetics on aDNA.

Although bisulfite conversion is the main method for studying DNA methylation in

modern-day material, it cannot be used on aDNA as it requires active methyl groups

on cytosines, which is not the case for aDNA due to deamination and fragmentation.

We can only obtain MSs of CpGs at the molecular ends of the reads on aDNA be-

cause CpGs in the middle of the reads are rarely deaminated. As it was mentioned,

deamination of the cytosines in CpGs are required in order UDG to remove unmethy-

lated cytosines (uracils). For this reason, MS data usually have noise which makes it

difficult to do statistical analyses and obtain reliable results.

Here we attempted to determine possible epigenetic differences between ancient hunter-

gatherer and farmer genomes that could be attributable to subsistence type changes

associated with the Neolithic transition. Although we could not find any relation us-

ing Wilcoxon rank-sum tests and permutation tests on single CpGs, we could find

various significantly different genes between the HGs and NFs using ANOVA. The

reason why we could not find significant results in the former tests might be due to

the fact that we used more information (tissue, genetic sex etc.) while conducting

ANOVA per gene. However, we should also treat the ANOVA results with caution as

we conducted ANOVA on data which violates certain assumptions of ANOVA. First

of all, our ANOVA input data was discrete and this violates the assumption of normal

distribution of the response. Secondly, the variances between the subsistence types

were not equal, which violates the assumption of equal variances. Thirdly, we did not

use equal sample size, as the HG subsistence type included 11 individuals and NF

subsistence type included 7 individuals. Lastly, some individuals were sequenced in

the same laboratory, this might violate the assumption of independent samples.

We adopted two approaches to confirm the ANOVA results and increase the reliabil-

ity. One approach is to conduct random permutation tests on the ANOVA results, but

I could not finish this permutation tests within the time frame of this thesis work. In

another approach, we compared our results (genes showing subsistence type effects)

with another methylation dataset involving the same subsistence types. Interestingly,
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we could find correlation between the modern and our ancient data. However, it was

not very obvious why and how farmers and hunter-gatherers living thousands years

ago in Eurasia would have similar methylation patterns to modern-day African farm-

ers and hunter-gatherers. Indeed, the genetic background, flora and fauna should

be different in Eurasia than Africa. Nevertheless, this result, if true, suggests that

some dietary similarities might explain this observed correlation. It is known that

Europeans arrived to Africa in the 15th century and they introduced many agricul-

tural products such as cereals, crops etc. and domesticated animals.[49] Alterna-

tively, common patterns between ancient Eurasian and modern-day African farmers

and hunter-gatherers in the consumption of proteins and carbohydrates (e.g. higher

carbohydrate amounts in farmers) might affect the outcome of these results, since

the digestion of the foods results in basic biochemical products after all. As another

hypothesis, the genes we found common between our results and the results of the

original study might be over-expressed worldwide in farmers or hunter-gatherers. If

this is the case, it might be the reason why we saw such positive correlation. Still,

these are just hypotheses, and the question may be resolved with more information

from anthropology, archaeobotany and other related sciences.

On the other hand, our ancient data included mostly negative difference values be-

tween HGs and NFs besides the correlation. Since the difference was taken as NFs-

HGs, we thought that the negativity might be due to HGs having individuals with ex-

cessively high coverages than NFs in our dataset, which may be translated into higher

MS values. It turned out that the coverages are not different between the groups.

Another reason might be due to differences in technical procedures used among the

laboratories producing the data, as our HG individuals were from various laboratories

and NF subsistence type were derived from only 2 laboratories. More research and

more data are required to address this question.

In this thesis work we also explored the possible utility of 1240K genomes, as there

are plenty of UDG-treated 1240K genomes published. However, despite the larger

sample size, we could not find a strong signal supporting our initial hypothesis about

farmer vs. hunter-gatherer differences, as we had using the shotgun ancient genomes.

The genomic coverages of the 1240K individuals are generally lower than 2x (because

the procedure concentrates on only a fraction of the genome); while >2x coverage is
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required for epiPALEOMIX to work properly. Possibly because of this restriction,

we could not obtain any significant results other than a few genes showing differ-

ences between the subsistence types, which were most probably false-positives, and

also these few genes did not overlap with the genes observed significantly different

between the subsistence types in our shotgun results. We therefore believe there is not

enough resolution to discover any such signal in the currently available 1240K ancient

genomes. With the current pace of re-sequencing studies, it might be expected that

some of these genomes will later be shotgun sequenced to reach much higher cover-

ages, which would allow us to repeat this study with DamMet in a couple of years.

In the future, we may perform differential methylation analyses on specific genes,

e.g. developmental genes or immune system related genes, that are known to be

differentially expressed between the modern subsistence types, instead of using all

autosomal CpGs. This would increase the stringency and reveal the true significance

of the genes eliminated by the multiple testing corrections. The study can be extended

more for differences in tissue-specific or genetic sex-specific genes if more UDG-

treated high coverage ancient genomes are published. Also, we may try to find the

genetic basis of methylation differences and compare them with adaptation signals as

it was carried out by Fagny et al.

In conclusion, we report -to our knowledge- the first indication of genes differentially

methylated between ancient hunter-gatherer and agriculturalist populations. These

differences do not seem to be strongly enriched in a specific functional category.

However, there is a relatively strong correlation between these methylation patterns

identified in ancient groups from Eurasia and those reported between modern-day

hunter-gatherer and agriculturalist groups from Africa, which raises the possibility

of a universal subsistence type effect on the bone and blood methylome. Still, more

research is needed to verify this in the future. The scarce number of shotgun genomes

treated with UDG limits the study area. We are excited about the future of the epige-

netic studies in aDNA and wish there will be more genomes treated with UDG in the

future so that researchers can find more interesting and solid results.
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APPENDIX A

GO ENRICHMENT ANALYSIS RESULTS

Table A.1: First 5 GO terms from the analysis of group differences for shotgun se-

quenced samples.

GO ID Term Significant Expected adjusted

P-value

GO:0008150 biological_process 1000 990.2 0.002771

GO:0003013 circulatory system

process

61 38.67 0.012225

GO:0007267 cell-cell signaling 136 106.47 0.051073

GO:0005975 carbohydrate metabolic

process

48 36.03 0.492124

GO:0008152 metabolic process 649 620.87 0.492124

Table A.2: First 5 GO terms from the analysis of tissue differences for shotgun se-

quenced samples.

GO ID Term Significant Expected adjusted

P-value

GO:0065007 biological regulation 93 80.97 0.64

GO:0051169 nuclear transport 8 4.1 0.64

GO:0006913 nucleocytoplasmic

transport

8 4.1 0.64

GO:0009987 cellular process 179 171.4 0.64
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Table A.2 (continued)

GO:0050794 regulation of cellular

process

82 71.55 0.64

Table A.3: First 5 GO terms from the analysis of genetic sex differences for shotgun

sequenced samples.

GO ID Term Significant Expected adjusted

P-value

GO:0008150 biological_process 315 311.6 0.796447

GO:0006091 generation of precursor

metabolites and energy

15 9.32 0.796447

GO:0003013 circulatory system

process

18 12.17 0.796447

GO:0043933 protein-containing

complex subunit

organization

39 31.01 0.796447

GO:0065003 protein-containing

complex assembly

39 31.01 0.796447
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APPENDIX B

1240K SNP CAPTURE DATA DESCRIPTION

Table B.1: 1240K libraries used in the study. Name of the individual, the group it

belongs to, genomic coverage related to the individual, total number of CpGs and

data source are described.

Individual Group Genomic Coverage Total CpG Source

I0061 Hunter-Gatherer 0.34 694,524 [39]

I0585 Hunter-Gatherer 1.02 2,024,105 [39]

I1507 Hunter-Gatherer 0.20 484,114 [39]

I4550 Hunter-Gatherer 0.18 538,597 [40]

I4551 Hunter-Gatherer 0.14 472,172 [40]

I4552 Hunter-Gatherer 0.16 460,983 [40]

I4595 Hunter-Gatherer 0.17 504,476 [40]

I4596 Hunter-Gatherer 0.19 535,831 [40]

I4873 Hunter-Gatherer 0.18 487,658 [40]

I4875 Hunter-Gatherer 0.20 523,943 [40]

I4877 Hunter-Gatherer 0.19 491,431 [40]

I4878 Hunter-Gatherer 0.20 550,262 [40]

I4880 Hunter-Gatherer 0.16 457,62 [40]

Kostenki14 Hunter-Gatherer 1.53 3,757,073 [38]

I0054 Farmer 0.98 1,476,557 [39]

I0100 Farmer 0.43 942,704 [41]

I0172 Farmer 1.49 2,260,473 [39]

I0406 Farmer 0.18 462,591 [39]

I0408 Farmer 0.67 1,575,371 [39]
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Table B.1 (continued)

I0412 Farmer 0.86 2,214,574 [39]

I0707 Farmer 0.49 1,023,088 [39]

I0708 Farmer 0.37 913,824 [39]

I0709 Farmer 0.50 1,067,211 [39]

I0745 Farmer 0.47 1,248,822 [39]

I0746 Farmer 0.48 1,119,047 [39]

I1495 Farmer 0.20 498,144 [39]

I1496 Farmer 0.21 541,709 [39]

I1583 Farmer 0.43 1,294,211 [39]

I5204 Farmer 0.20 443,446 [40]

I5205 Farmer 0.19 412,994 [40]

I5207 Farmer 0.23 590,713 [40]

I5208 Farmer 0.22 580,019 [40]
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APPENDIX C

PMD PLOTS OF SHOTGUN SEQUENCED SAMPLES

Figure C.1: PMD plots of Hunter-Gatherers. The plots show C to T and G to A

transitions.
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Figure C.2: PMD plots of Neolithic Farmers. The plots show C to T and G to A

transitions.
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APPENDIX D

MEAN METHYLATION SCORES ON CPG ISLANDS AND ACROSS

NON-CPG ISLAND AREAS

Figure D.1: Barplots of mean methylation scores on CpG islands and across non-

CpG island areas per shotgun sequenced individual. x-axis shows genomic regions

defined; shelf, shore, CpG island,and open sea. y-axis shows mean MS.
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