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ABSTRACT

STUDIES ON IMPLEMENTATION OF SOME MRD CODES

Özkerı̇m, Rıdvan

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2021, 56 pages

With the development of quantum computers that can process much faster than classical com-
puters, the classical cryptosystems used today began to be strengthened or replaced with other
cryptosystems. Parallel to this aim, studies for faster and more effective use of cryptosystems
using coding theory have also increased. In this thesis, coding and decoding of maximum
rank distance codes was implemented using programming.

Keywords: cryptography, coding theory, post-quantum, gabidulin, mrd, pari-gp
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ÖZ

MAKSİMUM RANK UZAKLIKLI BAZI KODLARIN UYGULANMASI ÜZERİNE
ÇALIŞMALAR

Özkerı̇m, Rıdvan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2021, 56 sayfa

Klasik bilgisayarlara göre çok daha hızlı işlem yapabilen kuantum bilgisyarların geliştirilmesi
ile birlikte günümüzde kullanılan klasik kriptosistemler güçlendirilmeye veya başka kriptosis-
temler ile değiştirilmeye başlandı. Bu amaca paralel olarak kodlama teorisini kullanan krip-
tosistemlerin daha hızlı ve etkili kullanımı için yapılan çalışmalar da arttı. Bu tez kapsamında
maksimum rank uzaklıklı kodların kodlanması ve kod çözümlemesi programlama kullanıla-
rak uygulandı.

Anahtar Kelimeler: kriptografi, kodlama teorisi, kuantum sonrası, gabidulin, mrd, pari-gp
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CHAPTER 1

INTRODUCTION

Cryptography has been used for basic needs such as communication, information security,
locking the gates throughout the ages, and today in countless fields for these and similar needs.
In order to respond to different needs, cryptography is also divided into different branches.
The most basic distinction starts with whether the key to be used in encryption and decryption
is the same or different. Systems in which the key used in encryption and decryption are the
same are called symmetric cryptosystems, while systems in which they are different are called
asymmetric cryptosystems. Since there is only one key in symmetric systems, this key must
be securely shared and kept secret among the parties who want to decrypt it. On the other
hand, in asymmetric systems, usually two keys are generated and one is kept secret while
the other is shared openly. Although both public and private keys are used, these systems are
called Public-Key Cryptosystem (briefly PKC). The concept of Public-Key Cryptosystem was
first introduced in 1976 by Diffie and Hellman, with starting sentence "We stand today on the
brink of a revolution in cryptography” of the article “New Directions in Cryptography”. [11]

Coding Theory, which will cross paths with Public-Key Cryptosystem in the future, is based
on an older past. Claude Shannon, who works on communication on Noisy channels, exam-
ined the error correcting capacities of encoding and decoding processes in different situations
in his article titled “A Mathematical Theory of Communication” in 1948.[25] In 1949, Marcel
Golay extended Shannon’s work on blocks of seven symbols and applied it to blocks of 2n−1

binary symbols.[7] In 1950, Richard Wesley Hamming published "Error Detecting and Error
Correcting Codes", the second work in this field after Golay.[9] In 1960, Irving Stoy Reed
and Gustave Solomon published their work, which will be named after themselves, as "Poly-
nomial Codes over Certain Finite Fields".[22] In 1970, Valery Denisovich Goppa published
his work, later known as “Binary Goppa Codes”, in his article titled “A new class of linear
correcting codes”.[8] In 1978, Robert J. McEliece created a new Public-Key Cryptosystem
using Goppa codes.[16] Thus, the first Public-Key Cryptosystem based on algebraic coding
theory was formed.

In 1985, Ernst M. Gabidulin developed the rank metric instead of the Hamming metric used
in most studies in the field.[3] In 1991, Ernst M. Gabidulin, A.V. Paramonov and O.V. Tret-
jakov presented rank metric instead of Hamming metric in McEliece Public-Key Cryptosys-
tem in their article titled “Ideals over a Non-Commutative Ring and their Application in
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Cryptology”.[4] They used Maximum Rank Distance code instead of Goppa code. This ap-
plication was later called GPT cryptosystem in the literature.

Cryptosystems applied in fields such as telegraph, telephone, radio, and computers faced the
danger of collapse when the integer factorization algorithm, which was developed theoreti-
cally by Peter Shor in 1994[27], was run on a 7-qubit quantum computer by Isaac Chuang
and Neil Gershenfeld in 2001. Thereupon, algorithms and cryptosystems in many fields were
tried to be re-evaluated and strengthened by considering the existence of quantum computers
and their potential computational power. Studies in this new world can be evaluated under the
title of “Post-Quantum Cryptography”. Due to technological developments and increasing
need, studies in this field have accelerated.

In 2005, Alexander Kshevetskiy and Gabidilun presented the Generalized Gabidilun code in
their article titled “The new construction of rank codes”.[11] In 2013, Nina Pilipchuk, together
with Ernst M. Gabidulin, published the article “GPT Cryptosystem for information network
security”.[5] In 2015, John Sheekey obtained Twisted Gabidilun Codes in his article titled
“A new family of linear maximum rank distance codes”.[26] In 2017, Kamil Otal and Ferruh
Özbudak presented additive generalized twisted Gabidulin codes (or briefly AGTG codes)
in their article “Additive rank metric codes”.[19] In 2019, Chunlei Li and Wrya K. Kadir
presented a new interpolation decoding algorithm approach to improve the decoding of MRD
codes in their study titled “On decoding additive generalized twisted Gabidulin codes”.[12]
Within the scope of this thesis, the application of the decoding algorithm presented by Chunlei
Li and Wrya K. Kadir will be implemented with the Pari/GP programming language and
examined.
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CHAPTER 2

PRELIMINARY

In this section we will give some definitions and theorems as a background of this thesis
work.

2.1 Metrics

Metrics are used for measure some properties of mathematichal elements.

2.1.1 Hamming Distance

Hamming defines a distance D(x, y) between two points as a metric. The definition of the
metric is there exists d different cooridinates between two points. This distance function
satisfies the usual three conditions for a metric, namely, [9]

D(x, y) = 0 if and only if x 6= y

D(x, y) = D(y, x) > 0 if x 6= y

D(x, y) +D(y, z) ≥ D(x, z) triangle inequality

as an example,

x = (0, 1, 1, 0)

y = (0, 1, 0, 0)

d = D(x, y) = 1 because there is only one different coordinate

2.1.2 Rank Metric

Gabidulin defines rank as count of independent coordinates in a vector.

3



Let α = (α1, α2, ..., αn) be a vector with coordinates in the extension field FN
q .

Rk(α|Fq) denotes the Rank norm of α which means the maximal number of αi, which are
linearly independent over the base field Fq .

α−β : d(α, β) = Rkcol(α−β|Fq) denotes the Rank distance between α and β over the base
field Fq .

Similarly for a matrix M ∈ FN
q , the column rank is defined as the maximal number of

columns, which are linearly independent over the field Fq , and is denoted Rkcol(M |Fq)

Any linear (n, k, d) code C ⊂ Fn
qN

fulfils the Singleton-style bound for the rank distance:

Nk ≤ Nn− (d− 1)max {N,n}

A code C reaching that bound is called a MRD (Maximal Rank Distance) code.

Gabidulin gives the theory of optimal MRD codes in 1985 [3] .

The notation g[i] := gq
imodN

means the i-th Frobenius power of g. It allows to consider both
positive and negative Frobenius powers i.

For n ≤ N , a generator matrix Gk of a (n, k, d) MRD code is defined by a matrix of the
following form:

Gk =



g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

g
[2]
1 g

[2]
2 . . . g

[2]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n


where g1, g2, . . . , gn are a set of elements of the extension field FN

q which are linearly inde-
pendent over the base field Fq. A code with the generator matrix Gk is referred to as (n, k, d)
code, where n is code length, k is the number of information symbols, d is code distance. For
MRD codes, d = n − k + l. Let m = (m1,m2, . . . ,mk) be an information vector over the
extension field FN

q of dimension k. The corresponding code vector is the n-vector

g(m) = mGk

If y = g(m) + e and Rk(e) = s ≤ t = d−1
2 , then the information vector m can be recovered

uniquely from y by some decoding algorithm. There exist fast decoding algorithms for MRD
codes (for instance, [[3], [4]]).
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The rank of a vector v = (v0, v1, . . . , vn−1)overFqn is defined as the dimension of
spanFq〈v0, v1, . . . , vn−1〉 which is the vector space spanned by vi’s over Fq. [10]

[21] [5]

2.2 Error Detecting and Error Correcting Codes

Error detecting codes may be a single code or a sequence of code to check if original codeword
changed on the noisy channel.

Error correcting codes are used for correcting errorenous codeword.

Hamming codes, Reed & Solomon codes, Goppa codes are most popular former examples.

Cryptographic hash functions are widely used for error detecting.

Gabidulin codes was introduced by Gabudilin.

2.3 Cryptosystems

2.3.1 McEliece Cyptosystem

McEliece cryptosystem introduced by Robert J. McEliece in 1978. The cryptosystem is based
on difficulty of finding the nearest codeword for a linear binary code [30] . It ensures efficient
encryption and decryption procedures and a good practical and theoretical security. However
it has a public key of large size and its ciphertext is larger than plaintext [24] .

Parameters:

k : length of binary form of plaintext

t : error threshold. maximum count of erroneous bits on codeword

n : parameter, k ≤ n− tlog2n

Γ: a family of binary irreducable t-error correcting Goppa codes of length n and dimension
k.

Key Generation:

C : a randomly and uniformly chosen code in the family Γ

G0 : generator matrix of C

S : a random kxk non-singular binary matrix

5



P : a random nxn permutation matrix

G = SG0P is the public key

Encryption:

x : the plaintext, where x ∈ F k
2

e : randomly chosen error matrix with a Hamming weight t, where e ∈ Fn
2 .

c = xG+ e,∈ Fn
2 : is the ciphertext

Decryption:

D : decoding algorithm

c = xG+ e

c = x(SG0P ) + e

cP−1 = (xS)G0 + eP−1 , eP−1 has weight t

c′ = D(cP−1) = xS

x = c′S−1

2.3.2 GPT Cyptosystem

GPT cryptosystem is proposed [4] as another version of McEliece’s PKC based on rank error
correcting codes. The GPT cryptosystem has smaller key size and more strength againist
decoding attacks [5].

Parameters:

k : length of binary form of plaintext

t : error threshold. maximum count of erroneous bits on codeword

n : parameter, k ≤ n− tlog2n

Γ: a family of binary irreducable t-error correcting Goppa codes of length n and dimension
k.

Key Generation:

α : a non-zero k-tuple over GF (qn)

eg : a non-zero k-tuple over GF (qn)

6



G0 : a chosen kxn generator matrix of a MRD code for Γ

S : a random kxk non-singular binary matrix

P : a random nxn permutation matrix

G = SG0 + αT eg is the public key

Encryption:

x : the plaintext, where x ∈ F k
2

ee : randomly chosen pattern of te = t− tg

c = xG+ ee,∈ Fn
2 : is the ciphertext

Decryption:

D : Decoding algorithm

c = xG+ e

c′ = D(c) = xS

x = c′S−1

2.4 Primitive Polynomial

If a polynomial g ∈ Fn
q and g is the minimal polynomial over Fq, then g is called a primitive

element over Fn
q .

Therefore, a primitive polynomial over Fn
q can be described as a monic polynomial that is

irreducable over Fq and has a root r ∈ Fn
q that generates the multiplicative group of Fn

q . [13]

2.5 Linearized Polynomials

Linearized polynomials were firstly studied by Ore [18] A polynomial of the form

L(x) = Σk−1
i=0 αix

qioverFqn

is known as a q-polynomial. [31]

7



2.6 Moore Matrix

Moore matrix is a matrix form where Eliakim Hastings Moore used for studies on generaliza-
tion of Fermat’s theorem [17]. Let M be an m x n matrix.

Mi,j = αqj−1

i where 0 < i ≤ n and 0 < j ≤ m

Let M be an n x n square matrix.

Mi,j = αqj−1

i where 0 < i,j ≤ n

Mnxn =


α1 αq

1 . . . αqn−1

1

α2 αq
2 . . . αqn−1

2
...

...
. . .

...

αn αq
n . . . αqn−1

n



2.7 Dickson Matrix

Dn(Fn
q ) is an algebra formed by all n x n matrices over Fn

q of the form

Di,j = [αqj

i-j(modn)]nxn where 0 < i,j ≤ n

D =


α0 αq

n−1 . . . αqn−1

1

α1 αq
0 . . . αqn−1

2
...

...
. . .

...

αn−1 αq
n−2 . . . αqn−1

0


which are called Dickson matrices. [31]

Let (.x) ∈ Fqn be a linearized polynomial, where Rk(d) = t and D be the associated Dickson
matrix for (.x). Then we have the following properties:

• Rk(D) = Rk(d) = t

8



• Any r successive columnsDi, . . . , Di+t are linearly independent and the other columns
can be generated by using linear combinations of them.

• All txt submatrices D(i mod n),(j mod n) are invertible.

2.8 Twisted Gabidulin Codes

Sheekey [26] made a breakthrough in the construction of new linear MRD codes using lin-
earized polynomials.

Let n, k, h ∈ Z+ and k < n. Let η be in Fqn such that Nqn/q(η) 6= (−1)nk, where
Nqn/q(η) = η1+q+···+qn−1

. Then the set

Hk(η, h) = {a0x+ a1x
q + · · ·+ ak−1x

qk−1
+ ηaq

h

0 x
qk : a0, a1, . . . , ak−1 ∈ Fqn}

is an Fq-linear MRD code of size qnk, which is called a twisted Gabidulin code [14].

2.9 Generalized Twisted Gabidulin Codes

Let n, k, s, h ∈ Z+ satisfying gcd(n, s) = 1 and k < n. Let η be in Fqn such that
Nqsn/qs(η) 6= (−1)nk. Then the set

Hk,s(η, h) = {a0x+ a1x
qs + · · ·+ ak−1x

qs(k−1)
+ ηaq

h

0 x
qsk : a0, a1, . . . , ak−1 ∈ Fqn}

is an Fq-linear MRD code of size qnk, and we call them generalized twisted Gabidulin code
[14].

2.10 Additive Generalized Twisted Gabidulin Codes

Let n, k, s, u, h ∈ Z+ satisfying gcd(n, s) = 1, q = qu0 and k < n. Let η be in Fqn such that
Nqsn/qs0

(η) 6= (−1)nku. Then the set

Ak,s,q0(η, h) = {a0x+ a1x
qs + · · ·+ ak−1x

qs(k−1)
+ ηa

qh0
0 x

qsk : a0, a1, . . . , ak−1 ∈ Fqn}

is an Fq-linear (but does not have to be linear) MRD code of size qnk and distance n− k+ 1.

9



We call the obtained this family as additive generalized twisted Gabidulin codes, or briefly
AGTG codes.

The conditions about the parameters can be summarized as follows:

• When u divides h, an AGTG code is a GTG code.

• When u divides h and s = 1, an AGTG code is a TG code.

• When u divides h and η = 0, an AGTG code is a GG code.

• When u divides h, s = 1 and η = 0, an AGTG code is a Gabidulin code.

[19]
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CHAPTER 3

ENCODING AND DECODING OF AGTG CODES

In this chapter we will give a brief way of encoding and decoding of AGTG Codes as ex-
plained in [10].

3.1 Encoding

To construct AGTG codes and system variables, we will use the definition and the same
variable names from 2.10. We will work over GF (qn), encode message with length k, by
using error matrix with rank t. We will use linearly independent evaluation points and choose
a message.

Example 3.1. Let the parameters with values be n = 7, k = 3, t = 2, q0 = 1, s = 1, h = 1,
u = 1

t ≤ bn−k2 c and gcd(n, s) = 1,

then we can say our parameters are valid.

Calculate q = qu0 = 31 = 3

Then choose a primitive polynomial over GF (qn) = GF (37) as a generator

w7 + w2 + 2w + 1

and choose a message over GF (37) with k elements.

[(1012200)3, (2010201)3, (1110120)3]→ f = [f0, f1, f2] = [w6 +w4 + 2w3 + 2w2, 2w6 +

w4 + 2w2 + 1, w6 + w5 + w4 + w2 + 2w]

Let η be w, where N qn

q0

(η) 6= (−1)nku

(η)
qn−1
q0−1 = (w)

37−1
3−1 = 2 6= (−1)nku = −1

αi’s denoted the linearly independent evaluation points over Fq, where 0 ≤ i < n.

11



Let,

α0 = 2w6 + 2w4 + w3 + 2w2 + 2w + 1

α1 = w6 + w4 + 2w3 + w2 + w + 1

α2 = 2w6 + 2w5 + 2w4 + 2w2 + w + 1

α3 = 2w5 + w4 + w3 + w2 + w + 1

α4 = w4 + 2w2 + w + 2

α5 = w5 + 2w3 + 2w2 + w + 1

α6 = 2w6 + w2 + w + 1

3.1.1 Evaluation of the linearized polynomial

Let message be f = (f0, . . . , fk−1) over GF (qn).

α1, . . . , αn in GF (qn), are linearly independent evaluation points over GF (q).

Encoding of AGTG codes {f → c} can be expressed by directly evaluation of the associated
linearized polynomial to f

f(αi) = ηf
qh0
0 αqks

k + Σk−1
j=0(fjα

qjs

i ) = ηf
qh0
0 α

[k]
k + Σk−1

j=0(fjα
[j]
i )

c = (f(α1), f(α2), . . . , f(αn))

It can be reprsented as production of vector f and associated matrix of α .

c = (f0, f1, . . . , fk−1, ηf
qh0
0 )


α

[0]
0 α

[0]
1 . . . α

[0]
n−1

α
[1]
0 α

[1]
1 . . . α

[1]
n−1

...
...

. . .
...

α
[k]
0 α

[k]
1 . . . α

[k]
n−1


(k+1)xn

If we add n− k − 1 times zero at the end of the message f , and if we add unused powers of
alpha values at the end of the matrix, then we get an nxn square matrix, which is full Moore
matrix transposition of vector α .

12



c = (f0, f1, . . . , fk−1, ηf
qh0
0 ,0, . . . , 0︸ ︷︷ ︸

n−k times

)



α
[0]
0 α

[0]
1 . . . α

[0]
n−1

α
[1]
0 α

[1]
1 . . . α

[1]
n−1

...
...

. . .
...

α
[k]
0 α

[k]
1 . . . α

[k]
n−1

α
[k+1]
0 α

[k+1]
1 . . . α

[k+1]
n−1

...
...

. . .
...

α
[n−1]
0 α

[n−1]
1 . . . α

[n−1]
n−1


(nxn)

If we define f̃ as concatation of coefficients of f(x) and n − k − 1 times zeros, then we can
write:

M = [αjs
i+1]nxnis the Moore matrix.

c = f̃MT

Example 3.2. Let us continue with values from [Example 3.1].

fk = ηf
qh0
0 = w(w6 + w4 + 2w3 + 2w2)3 = 2w5 + w4 + 2w3 + 2w2

Let Moore matrix be M = [M0M1M2M3 . . . ] where Mi’s are column matrices.

M0 =



2w6 + 2w4 + w3 + 2w2 + 2w + 1

w6 + w4 + 2w3 + w2 + w + 1

2w6 + 2w5 + 2w4 + 2w2 + w + 1

2w5 + w4 + w3 + w2 + w + 1

.

.

.


M1 =



w6 + w4 + w3 + w2 + w + 1

2w6 + 2w4 + 2w3 + 2w2 + 2w + 1

w6 + 2w5 + w4 + 2w3 + w2 + 1

2w6 + w5 + w4 + 2w3 + 2w2 + w + 2

.

.

.



M2 =



2w6 + w3 + 2w + 1

w6 + 2w3 + w + 1

2w6 + 2w5 + w4 + w3 + w2 + w + 1

2w5 + w4 + w3 + 1

.

.

.


M3 =



2w5 + w4 + w3 + 2w2 + 2

w5 + 2w4 + 2w3 + w2

2w6 + 2w2 + w

w6 + w5 + w4 + w3 + 2w2 + w + 2

.

.

.



Its transpositon matrix is MT = [MT
0 M

T
1 M

T
2 M

T
3 . . . ] where MT

i ’s are column matrices.

M
T
0 =



2w6 + 2w4 + w3 + 2w2 + 2w + 1

w6 + w4 + w3 + w2 + w + 1

2w6 + w3 + 2w + 1

2w5 + w4 + w3 + 2w2 + 2

.

.

.


M

T
1 =



w6 + w4 + 2w3 + w2 + w + 1

2w6 + 2w4 + 2w3 + 2w2 + 2w + 1

w6 + 2w3 + w + 1

w5 + 2w4 + 2w3 + w2

.

.

.



M
T
2 =



2w6 + 2w5 + 2w4 + 2w2 + w + 1

w6 + 2w5 + w4 + 2w3 + w2 + 1

2w6 + 2w5 + w4 + w3 + w2 + w + 1

2w6 + 2w2 + w

.

.

.


M

T
3 =



2w5 + w4 + w3 + w2 + w + 1

2w6 + w5 + w4 + 2w3 + 2w2 + w + 2

2w5 + w4 + w3 + 1

w6 + w5 + w4 + w3 + 2w2 + w + 2

.

.

.



and c is a row matrix with length n. It is shown as transposed because of printing issues.
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cT = (f̃MT )T =



w6 + 2w5 + 2w3 + 2w2 + 2w + 2

2w6 + 2w5 + w4 + 2w2 + 2w

2w5 + w4 + 2w3 + 2w2 + 1

w5 + w3 + 2w + 1

w6 + 2w5 + 2w3 + 2w2 + w

2w6 + w5 + 2w4 + 2w3 + w2 + 2w + 1

w5 + 2w3 + w2 + 2



3.2 Transmission

In the real world, original data sent by sender can be corrupted during transmission. The
receiver should can be recover the original codeword from the received word with acceptable
amount of error. That is one of the main motivations of coding theory.

While defining sytem parameters we set a t value. We are able to recover corrupted codewords
up to rank t, which is the threshold value.

This stage is the stage where the c codeword we obtained during the encoding stage is cor-
rupted.

3.2.1 Construction of the error vector

The error vector e with rank t is constructed randomly. That means the rank distance between
the vector c and the new vector c+ e is less than or equal to t.

Example 3.3. Let us continue with values from [Example 3.2]. Let e = (0, α1, α2, 0, 0, 0, 0)

is the error vector with rank t = 2.

e = (0, w6 + w4 + 2w3 + w2 + w + 1, 2w6 + 2w5 + 2w4 + 2w2 + w + 1, 0, 0, 0, 0)

3.2.2 Adding Error Vector to Encoded Message

We have found encoding of AGTG codes c in 3.1.1 and generated a random error vector e in
??. We can complete the encoding operation by adding error to encoded message.

r = c+ e

14



Example 3.4. From [Example 3.1] and [Example 3.3].

rT = (c+ e)T =



w6 + 2w5 + 2w3 + 2w2 + 2w + 2

2w5 + 2w4 + 2w3 + 1

2w6 + w5 + 2w3 + w2 + w + 2

w5 + w3 + 2w + 1

w6 + 2w5 + 2w3 + 2w2 + w

2w6 + w5 + 2w4 + 2w3 + w2 + 2w + 1

w5 + 2w3 + w2 + 2



is the result of encoding operation. This value will be used for decoding as "received word".

3.3 Decoding

In 1968 Berlekamp introduced an efficient technique to decode Reed-Solomon codes [2].
In 1969 Massey interpreted this algorithm as a problem of synthesising the shortest linear
feedback shift-register capable of generating a prescribed finite sequence of digits [15]. In
2004 Richter and Plass applied Berlekamp-Massey algorithm to rank codes [23].

In 2017 Randrianarisoa modified the Richter-Plass algorithm and used it to decode Gabidulin
codes [20]. In 2019, Li and Kadir re-modified Randrianarisoa’s modified Berlekamp-Massey
algorithm and used to decode Additive Generalized Twisted Gabidulin codes [12]. Li and
Kadir propose an interpolation based decoding algorithm to decode AGTG codes. In this
section we will describe how it works.

3.3.1 Reducing the decoding problem

We know from transmission section [ 3.2.2],

r = c+ e

and from encoding [ 3.1.1]

c = f̃MT

Then we can write,
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r = f̃MT + e

BecauseMT is invertible, so we can assume that there is a vector g = (g0, g1, . . . , gn−1) ∈
Fn
qn which generates the vector e by product withMT .

e = gMT

r = f̃MT + gMT

Due to the linearity we can say that,

r = (f̃ + g)MT

where values of f̃ and g are unknown.

Suppose there is a vector γ = (γ0, γ1, . . . , γn−1) that generates vector r. We can calculate,

γ = r(MT )−1

Then we can say that,

γ = f̃ + g

where value of γ is known but values of f̃ and g are unknown. So we can reduce decoding
problem to finding vector g. If we find g, then we can calculate f̃ and hence the original
message vector f .

3.3.2 Advantage of the Dickson Matrix Property

We know the last (n− k− 1) elements of f̃ are equal to zero by definition. So we can say the
last (n− k − 1) elements of g are equal to the last (n− k − 1) elements of γ

f0, . . . , fk−1, ηf
qh0
0 , 0, . . . , 0

+ g0, . . . , gk−1, gk, gk+1, . . . , gn−1

γ = (f0 + g0), . . . , (fk−1 + gk−1), (ηf
qh0
0 + gk), (gk+1), . . . , (gn−1)
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We will use the Dickson matrix and its features to decoding the received codeword r. When
we generate dickson matrix of the vector g, we get a matrix G

Gi,j = [gq
j

i-j(modn)]nxn =


g

[0]
0 g

[1]
n−1 . . . g

[n−1]
1

g
[0]
1 g

[1]
0 . . . g

[n−1]
2

...
...

. . .
...

g
[0]
n−1 g

[1]
n−2 . . . g

[n−1]
0


We know that the maximum rank of the error vector e and the associated vector g is t. We
know or can easily calculate all the elements of the (n−k−2)x(t+1) submatrix in the lower
left corner of the matrix G.

G =



g
[0]
0 g

[1]
n−1 . . . g

[t]
n−t . . . g

[n−1]
1

g
[0]
1 g

[1]
0 . . . g

[t]
n−t+1 . . . g

[n−1]
2

...
...

. . .
...

. . .
...

g
[0]
k+t g

[1]
k−1+t . . . g

[t]
k . . . g

[n−1]
k+1+t

g
[0]
k+1+t g

[1]
k+t . . . g

[t]
k+1 . . . g

[n−1]
k+2+t

...
...

. . .
...

. . .
...

g
[0]
n−1 g

[1]
n−2 . . . g

[t]
n−1−t . . . g

[n−1]
0



If we take t+ 1 consequtive columns, then we can write the first column as a linear combina-
tion of the other columns because of Dickson matrix property from [Section 2.7].

G =
[

G0 G1 . . . Gt . . . Gn−1

]

Λ0G0 = Λ1G1 + · · ·+ ΛtGt, where Λ0 , 1

We take, Λ0 , 1 by definition. So we need to find other Λi values. We have t unknown Λi

values and (n− k − 1) equations.

gk+1+t = Λ1g
[1]
k+t + · · ·+ Λtg

[t]
k+1

gk+2+t = Λ1g
[1]
k+1+t + · · ·+ Λtg

[t]
k+2

...

gn−1 = Λ1g
[1]
n−2 + · · ·+ Λtg

[t]
n−1−t︸ ︷︷ ︸

t unkown Λ values


n-k-t-1 equations
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t ≤ bn−k2 c by definition. So (2t+ k) ≤ n. There are two cases in this situation.

Case 1: (2t+ k) < n The first case is inequality.

n− k − t− 1 ≥ t

In this case we have more equations than unknown variables count. It means that we have
a unique solution for Λi values and we can found Λi values by using modified Berlekamp
Massey algorithm as usual.

Case 2: (2t+ k) = n

n− k − t− 1 = t− 1 < t

In the second case, more equations are required to find a unique solution for Λi values. We can
take two more equations (above and below rows of the previous submatrix), but the values of
g0 and gk are unknown yet. However we know a relation between them from the last element
of f(x). We will use it later.

G =



g
[0]
0 g

[1]
n−1 . . . g

[t]
n−t . . . g

[n−1]
1

g
[0]
1 g

[1]
0 . . . g

[t]
n−t+1 . . . g

[n−1]
2

...
...

. . .
...

. . .
...

g
[0]
k+t g

[1]
k−1+t . . . g

[t]
k . . . g

[n−1]
k+1+t

g
[0]
k+1+t g

[1]
k+t . . . g

[t]
k+1 . . . g

[n−1]
k+2+t

...
...

. . .
...

. . .
...

g
[0]
n−1 g

[1]
n−2 . . . g

[t]
n−1−t . . . g

[n−1]
0



3.3.3 Applying the modified Berlekamp-Massey Algorithm

For the second case, we replace,

Λi = (λi + yλ′i)

Then we have,
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Figure 3.1: Visual representation of BM algorithm

Figure 3.2: Flowchart for BM algorithm
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G0 = (λ1 + yλ′1)G1 + · · ·+ (λt + yλ′t)Gt

To find the λ and λ
′
vectors, we need to consider one more iteration in the modified Berlekamp-

Massey algorithm.

We can derive λi and λ′i’s from the output of the modified BM algorithm, but still we dont
know value of y. Now, we will use the other two equations in the Dickson matrix of vector g
and the relationship between g0 and gk.

g0 = (λ1 + yλ′1)g
[1]
n−1 + · · ·+ (λt + yλ′t)g

[t]
n−t

gk+t = (λ1 + yλ′1)g
[1]
k+t−1 + · · ·+ (λt + yλ′t)g

[t]
k

And we have from the previous steps:

γk = gk + fk

fk = ηf
qh0
0

f0 = γ0 − g0

γk = gk + η(γ0 − g0)q
h
0

γk = gk + η(γ0)q
h
0 − η(g0)q

h
0

gk = γk − η(γ0)q
h
0 + η(g0)q

h
0

The values of γk and γ0 are already known. Using these three equations we get a polynomial
to solve. By solving this polynomial we may find value of y and hence the Λi values.

The algorithm may found zero, one or more than one candidate value for y. If any candidate
y value and the calculated Λi values by using the value of y can derive all the elements of
vector g with the period n, then the original message can be recovered successfully. If all the
elements of vector g could not bet derived with any y value, with period the algorithm outputs
decoding failed.
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3.3.4 Recovering the original message

If we found a unique solution with all elements of vector g, then we can easily compute f̃
then hence f .

gk+1, . . . , gn−1 are already known.

g0, . . . , gk can be calculated.

f̃ = γ − g
f = {fi = f̄i,∀i ∈ [0, k)}
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CHAPTER 4

THE IMPLEMENTATION

As is mentioned before, a decoding algorithm for AGTG codes offered by Li & Kadir. We
implemented this algorithm for both encoding and decoding by using GP programming lan-
guage and Git version control system. GP is a part of PARI/GP computer algebra system
designed for fast computations. [1]

4.1 PARI/GP Computer Algebra System

Pari/GP was developed by Prof. Dr. Henri Cohen at the University Bordeaux. Now, it is free
and open source. Many volunteer contributors help to development of PARI/GP. [1]

GP is a scripting programming language. It has own shell with same name. GP commands
can run from script files or directly from shell or mixed.

Pari is a huge mathematical library for C and C++ programming languages. It can be directly
used from C files. GP scripts can also be converted to C language by using gp2c compiler.
Pari Group claims that gp2c-compiled scrpits 3 or 4 times faster than GP scripts.[1]

In this implementation, we used source distribution of PARI-2.13.0 stable version. We fo-
cused readability and maintainabilty rather than performance. So, optimizing the source code
may be a work for after this work. Default configuration was used while running the imple-
mentation. GMP kernel is used instead of PARI’s native kernel with advice of Pari Group.

4.2 License

The GP implementation of both encoding and decoding algorithm is licensed under GNU
GPL v3.0. GPL is published by FSF (Free Software Foundation) and it allows to modifiying
or redistributing this code under GNU GPL v3.0 or later version.
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4.3 Directory Structure

While developing this implementation we used git version control system [29]. So we have a
.gitignore [6] file on the root folder to exclude some IDE specific files and generated output
files.

EditorConfig is a tool which helps maintain consistent coding styles for multiple developers
working on the same project across various editors and IDEs [32]. The root folder contains
an .editorconfig configuration file.

The root folder also includes src folder for source code, a license file and a readme file.
root

src

constants

constants.gp

decoding_sample_1_constants.gp

encoding_sample_1_constants.gp

decoding

functions

berlekamp_massey.gp

find_omega_candidates.gp

decoding.gp

encoding

functions

calculate_eta.gp

calculate_f_bar.gp

evaluate_codeword.gp

generate_error_vector.gp

encoding.gp

utils

check_parameters.gp

composite_function.gp

dickson.gp

die.gp

fliep.gp

generate_finite_field.gp

list_to_vector.gp

modular_index_for_vector.gp

moore.gp

polynomial_utils.gp

print_vector.gp

transpose.gp

decode.sh
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root

src

encode.sh

.editorconfig

.gitignore

LICENSE.txt

The src folder contains two shell script files which are includes related gp commands for
encoding and decoding.

This is the gp command in encode.sh file.

3 gp --fast --quiet encoding/encoding.gp

The gp command takes two option and a parameter in this command. The option fast means
fast start: do not read .gprc file[28]. Pari/GP allows to specify general preferences in a
configuration file named .gprc, but we do not need to use it for current work. The option quiet
means quiet mode: do not print banner and history numbers[28]. By default, gp prints this
information at the beginning of the session. And the parameter is the filepath of main gp file.
gp shell can include source files and it can be halted from any of these files instead of waiting
to type quit command manually on shell.

There are four main folders in src folder. constants folder includes parameter files with pre-
defined values. constants.gp file specifies which file will be used and constants_n_k_t.gp files
have various preferenced values inside.

1 /**
2 * This file reads global system parameters and inputs

3 * Both encoding and decoding constants files should include

4 * global system parameters:

5 * @param n degree of finite field

6 * @param k length of codeword

7 * @param t maximum rank of the error vector

8 * @param q_0 base prime number

9 * @param h twisting power

10 * @param s generalization power

11 * @param u additive power

12 * Encoding constants file should include:

13 * input:

14 * @param ff_generator a primitive polynomial over F_q^n

15 * to generate a finite field.

16 * Decoding constants file should include:

17 * input:

18 * @param ff_generator a primitive polynomial over F_q^n

19 * For more information
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20 * @see https://ieeexplore.ieee.org/document/7723881

21 */

22

23 \r constants/decoding_sample_1_constants.gp

24

25 allocatemem(1000*2^20);

\r stands for read and the command is used for importing another gp file.

utils folder includes common mathematical functions, such as transpose a matix, can be used
for both encoding and decoding.

encoding and decoding folders include a main file for related operation with same name en-
coding.gp and decoding.gp. Both has functions folder which are include gp files for operation
specific mathematical functions, such as calculate f̃ .

4.4 Constants

constants.gp file imports a file with prefered parameter as mentioned above. A parame-
ter file should define following parameters: n, k, t, s, h, u, q0, q, ff_generator, f , where:
n, k, s, h, u, q0, q described in the section ( 2.10), ff_generator is the primitive function
which generates the finite field, f is the hardcoded input message as a list of finite field el-
ements will be encoded. To decode any encoded message, same parameter file should be
used.

4.5 Encoding

encoding.gp file contains main method of encoding and transmission processes. To keep the
code simple encoding and transmission stages are kept together. This method reads con-
stants.gp file to take global parameters. Reads the input message from same file. Defined
global variables are checked. The main method generates codeword from the input message,
and adds an error vector to codeword. Outputs linearly independent evaluation points vector
α, received word r and the value of η.

4.6 Decoding

decoding.gp file contains main method of decoding process. This method reads constants.gp
file to take global parameters.

Reads the linearly independent evaluation points vector α, received word r and the value of η
from same file. Defined global variables are checked.
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The main method finds known elements of the vector g, applies the modified Berlekamp-
Massey algorithm to the known elements. If the solution could not be found, the algorithm
continues to one more iterate with known relation between g0, gk and gk+t. If the algorithm
find possible solutions, then iterates them to find exact solution, outputs the founded original
message f , or prints "Decoding failure!".
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CHAPTER 5

CONCLUSION

We implemented the interpolation based decoding algorithm by proposing Li and Kadir for
Additive Generalized Twisted Gabidulin Codes. In general we have a decoding algorithm
with complexity O(n2)

We did not do implementation performance-oriented. So we did not put the execution time
results for the examples into this thesis. If AGTG codes will be used in practise to encode
some messages, then optimized version of this algorithm can be used.

Converting the GP scripts to C language by using gp2c and making it work with the GMP/MPIR
library can be considered for optimization.
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APPENDIX A

DIRECTORY TREE OF THE CODES

root

src

constants

constants.gp

decoding_sample_1_constants.gp

encoding_sample_1_constants.gp

decoding

functions

berlekamp_massey.gp

find_omega_candidates.gp

decoding.gp

encoding

functions

calculate_eta.gp

calculate_f_bar.gp

evaluate_codeword.gp

generate_error_vector.gp

encoding.gp

utils

check_parameters.gp

composite_function.gp

dickson.gp

die.gp

fliep.gp

generate_finite_field.gp

list_to_vector.gp

modular_index_for_vector.gp

moore.gp

polynomial_utils.gp

print_vector.gp

transpose.gp

decode.sh
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root

src

encode.sh

.editorconfig

.gitignore

LICENSE.txt
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APPENDIX B

SOURCE CODE

1 # top-most EditorConfig file

2 root = true

3

4 # Unix-style newlines with a newline ending every file

5 [*]

6 charset = utf-8

7 trim_trailing_whitespace = true

8 end_of_line = lf

9 insert_final_newline = true

10

11 # Tab indentation (no size specified)

12 [Makefile]

13 indent_style = tab

14

15 [*.gp]

16 indent_style = space

17 indent_size = 2

Listing B.1: .editorconfig

1 .idea/

Listing B.2: .gitignore

1 Copyright (C) 2021 Rıdvan Özkerim

2

3 This program is free software: you can redistribute it and/or modify

4 it under the terms of the GNU General Public License as published by

5 the Free Software Foundation, either version 3 of the License, or

6 (at your option) any later version.

7

8 This program is distributed in the hope that it will be useful,

9 but WITHOUT ANY WARRANTY; without even the implied warranty of

10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

11 GNU General Public License for more details.

12

13 You should have received a copy of the GNU General Public License
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14 along with this program.

15 If not, see <https://www.gnu.org/licenses/>.

Listing B.3: LICENSE.txt

1 #!/usr/bin/env bash

2

3 gp --fast --quiet encoding/encoding.gp

Listing B.4: src/encode.sh

1 #!/usr/bin/env bash

2

3 gp --fast --quiet decoding/decoding.gp

Listing B.5: src/decode.sh

1 /**
2 * This file reads global system parameters and inputs

3 * Both encoding and decoding constants files should include

4 * global system parameters:

5 * @param n degree of finite field

6 * @param k length of codeword

7 * @param t maximum rank of the error vector

8 * @param q_0 base prime number

9 * @param h twisting power

10 * @param s generalization power

11 * @param u additive power

12 * Encoding constants file should include:

13 * input:

14 * @param ff_generator a primitive polynomial over F_q^n

15 * to generate a finite field.

16 * Decoding constants file should include:

17 * input:

18 * @param ff_generator a primitive polynomial over F_q^n

19 * For more information

20 * @see https://ieeexplore.ieee.org/document/7723881

21 */

22

23 \r constants/decoding_sample_1_constants.gp

24

25 allocatemem(1000*2^20);

Listing B.6: src/constants/constants.gp [ A]

1 {

2 s=2;

3 h=3;

4 u=2;
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5

6 n=7;

7 k=3;

8 t=2;

9

10 q_0 = 2;

11 q = q_0^u;

12

13 ff_generator = w^7 + w^1 + Mod(1,2);

14

15 f = [ w^6 + w^4 + w^3 + w^2 + 1,

16 w^4 + w^2 + 1,

17 w^6 + w^5 + w^4 + w^3 + w^2 + w + 1

18 ];

19 }

Listing B.7: src/constants/encoding_sample_1_constants.gp

1 {

2 s=2;

3 h=2;

4 u=2;

5

6 n=7;

7 k=3;

8 t=2;

9

10 q_0 =2;

11 q = q_0^u;

12

13 ff_generator = w^7 + w^1 + Mod(1,2);

14

15 \\ ita is a chosen value from encoding process.

16 \\ "eta" is a predefined function in Pari-GP

17 \\ for Dedekind's eta function.

18 \\ so we will use "ita" as a parameter name to define "eta".

19 ita = 0;

20

21 \\ alpha is the linear independent evaluation points

22 \\ over the finite field GF(q^n)

23 alpha = [ w^5 + w^3 + w^2 + 1,

24 w^6 + w^5 + w^2,

25 w^5 + w^4 + w^3 + w + 1,

26 w^5 + w,

27 w^6 + w^5 + w^3 + w^2,

28 w^6 + w^4 + w + 1,

29 w^6 + w + 1

30 ];

31

32 \\ r is the received word from encoding process
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33 r = [ w^6 + w^5 + w^4 + w^3 + w + 1,

34 w^5 + w^4 + w + 1,

35 w^5 + w^2 + w + 1,

36 w^6 + w^5 + w^3 + w^2 + w + 1,

37 w^6 + w^5 + w^4 + 1,

38 w^6 + w^5 + w^3 + w^2 + 1,

39 w^6 + w^4 + w^3

40 ];

41 }

Listing B.8: src/constants/decoding_sample_1_constants.gp

1 \r constants/constants.gp

2 \r utils/check_parameters.gp

3 \r utils/dickson.gp

4 \r utils/die.gp

5 \r utils/fliep.gp

6 \r utils/generate_finite_field.gp

7 \r utils/modular_index_for_vector.gp

8 \r utils/moore.gp

9 \r utils/polynomial_utils.gp

10 \r utils/print_vector.gp

11 \r utils/transpose.gp

12 \r decoding/functions/berlekamp_massey.gp

13 \r decoding/functions/randrianarisoa.gp

14 \r decoding/functions/sidorenko.gp

15 \r decoding/functions/find_omega_candidates.gp

16

17 /**
18 * Main function of whole decoding operation

19 * for additive generalized twisted gabidulin codes.

20 * This method reads constants.gp file to take global parameters,

21 * linearly independent evaluation points alpha,

22 * eta value and the received word r,

23 * checks are parameters valid,

24 * tries to decode given word r to get original message f

25 */

26 decoding() = {

27 check_parameters(n, k, t, q_0, h, s, u);

28

29 if(length(r) != n,

30 die("The length of the received word r must be n!"));

31

32 if(length(alpha) != n,

33 die("The length of the evaluation vector alpha must be n!"));

34

35 w = generate_finite_field(ff_generator);

36

37 if(polisirreducible(w.mod) == 0,

38 die("The generator polynomial must be irreducible!"));
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39

40 for(i=1,n,alpha[i]=eval(alpha[i]); r[i]=eval(r[i]));

41

42 \\ "eta" is a predefined function in Pari-GP

43 \\ for Dedekind's eta function.

44 \\ so we will use "ita" as a parameter name to define "eta".

45 ita = eval(ita) + w - w;

46 if(type(ita) != "t_FFELT",

47 die("eta must be defined!"));

48

49 \\ transpose of the moore matrix

50 mt = transpose(moore(alpha, q, s));

51

52 \\ calculate gama, which is equal to (f_bar + g)

53 gama = eval(r * (mt^(-1)));

54 print_vector(gama, "gama");

55

56 bm = berlekamp_massey(gama, n, k, t, q, s);

57

58 L = bm[1];

59

60 print("Result of BM Algorithm:");

61 print(bm);

62

63 /* case 2 */

64 if(L == (n-k) / 2,

65 my(delta_r = 'y

66 + sum(i = 1, L, bm[2][i+1]

67 * gama[n-i+1]^(q^(s*i))));

68 print("delta_r");

69 print(delta_r);

70

71 my(delta_r_f = (x) -> delta_r * x^(q^s));

72 my(lamda_r(x)=get_linearized_polynomial_of_coefficients(bm[2],

73 q^s)(x) + composite(delta_r_f,

74 get_linearized_polynomial_of_coefficients(bm[3], q^s))(x));

75 cfs = get_coefficients_of_linearized_polynomial(lamda_r, q^s);

76

77 print("cfs");

78 print(cfs);

79

80 lamdas = vector(L, i,

81 bm[2][i+1] - (delta_r * (bm[3][i]^(q^s))));

82 lamda_overs = vector(L, i,

83 -1 * bm[3][i]^(q^s));

84

85 print("lamdas");

86 print(lamdas);

87 print("lamda_overs");

88 print(lamda_overs);
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89

90 omegas = find_omega_candidates(gama, lamdas, lamda_overs, cfs,

91 ita, q_0, q, n, k, t, s, h, u)

92 ;

93

94 is_f_found = 0;

95 for(i=1, length(omegas),

96

97 \\ inital g

98 \\ we only know last n-k elements, which are same with gama

99 g = vector(n, i, if(i<k+2, 0, gama[i]));

100 g_init = g; \\ clone for testing

101 print_vector(g, "g_init");

102

103 y = omegas[i];

104 put_found_y_for_g(y, gama, lamdas, lamda_overs, cfs,

105 ita, q_0, q, n, k, t, s, h, u);

106 forstep(i=1, n, 1,

107 g[modix(i, n)] = sum(j=1, t,

108 (g[modix(i-j, n)]^(q^(s*j)))*(eval(lamdas[j]) )));

109 \\ + y*lamda_overs[j])));

110

111 print_vector(gama, "gama");

112 print_vector(g, "g in iteration");

113

114 g_counter = 0;

115 for(j=k+1, n, g_counter = g_counter + (g[j] == g_init[j]));

116 if(g_counter == (n-k-1),

117 f_bar = gama - g;

118 print_vector(f_bar, "f_bar found");

119 is_f_found = 1;

120 break();

121 );

122

123 );

124

125 if(is_f_found == 0,

126 print("Decoding Failure!"));

127

128 );

129

130 }

131

132 decoding();

133 quit();

Listing B.9: src/decoding/decoding.gp

1 /**
2 * Identity function
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3 *
4 * @param x any value

5 * @return x

6 */

7 identity_function (x) = {

8 x

9 };

10

11 /**
12 * A modified Berlekamp-Massey algorithm by Li & Kadir

13 *
14 * The general working logic of the algorithm is as follows.

15 * It produces an LFSR from scratch.

16 * It iteratively processes known elements of the vector.

17 * At each iteration, it calculates the difference between the value

18 * produced by our LFSR and the value it should actually be.

19 * According to this difference,

20 * it updates the conversion functions in LFSR.

21 * If necessary, it extends the length of the LFSR

22 * and shifts the lambda values.

23 * It gets closer to the true lambda values with each iteration.

24 * It produces a second LFSR in its modified version.

25 * B denotes the second LFSR.

26 *
27 * @param g vector which is partially known

28 * @param n degree of finite field

29 * @param k length of codeword

30 * @param t maximum rank of the error vector

31 * @param q power of base prime number

32 * @param s generalization power

33 *
34 * @return list of L, Lambda vector and B vector

35 */

36 berlekamp_massey (g: t_VEC, \

37 n: t_INT, \

38 k: t_INT, \

39 t: t_INT, \

40 q: t_INT, \

41 s: t_INT) = {

42 result = List();

43

44 \\ the linearized polynomials

45 lamda = List();

46

47 \\ the auxiliary linearized polynomial which is used to store the

48 \\ value of BS(i)(x) with the largest degree Li such that Li < L.

49 B = List();

50

51 \\ L is the linear complexity of

52 L = 0;
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53 listinsert(~lamda, identity_function, 1);

54 listinsert(~B, identity_function, 1);

55

56 for(r = 1, n-k-1,

57 printf("r = %d\n", r-1);

58 my(lamdas = get_coefficients_of_linearized_polynomial(lamda[r],

59 q^s));

60

61 my(delta_r = g[k+1+r]

62 + sum(i = 1, L, lamdas[i+1]

63 * g[k+1+r-i]^(q^(s*i))));

64 printf("dr = %s\n", delta_r);

65

66 if(delta_r == 0,

67 print("if");

68 listinsert(~lamda, (x) -> lamda[r](x), r+1);

69 listinsert(~B, composite((x) -> x^(q^s), B[r]), r+1);

70 printf(" lamda[%d]: %s\n", r,

71 get_coefficients_of_linearized_polynomial(lamda[r+1], q^s));

72 printf(" B[%d]: %s\n", r,

73 get_coefficients_of_linearized_polynomial(B[r+1], q^s));

74 ,

75 print("else");

76 my(dr = (x) -> delta_r * x^(q^s));

77

78 listinsert(~lamda,

79 (x) -> lamda[r](x) - composite(dr, B[r])(x),

80 r+1);

81 printf(" lamda[%d]: %s\n", r,

82 get_coefficients_of_linearized_polynomial(lamda[r+1], q^s));

83

84 if(2*L > r-1,

85 print(" if");

86 listinsert(~B, composite((x) -> x^(q^s), B[r]), r+1);

87 printf(" B[%d]: %s\n", r,

88 get_coefficients_of_linearized_polynomial(B[r+1], q^s));

89 ,

90 print(" else");

91 listinsert(~B, (x) -> delta_r^(-1) * lamda[r](x), r+1);

92 printf(" B[%d]: %s\n", r,

93 get_coefficients_of_linearized_polynomial(B[r+1], q^s));

94 L = r - L;

95 printf(" L = %d\n", L);

96 )

97 )

98 );

99

100 listput(result, L, 1);

101

102 listput(result,
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103 get_coefficients_of_linearized_polynomial(lamda[n-k], q^s),

104 2);

105

106 listput(result,

107 get_coefficients_of_linearized_polynomial(B[n-k], q^s),

108 3);

109

110 result

111 };

Listing B.10: src/decoding/functions/berlekamp_massey.gp

1 find_omega_candidates (gama: t_VEC, \

2 lamdas: t_VEC, \

3 lamda_overs: t_VEC, \

4 cfs: t_VEC, \

5 ita: t_FFELT, \

6 q_0: t_INT, \

7 q: t_INT, \

8 n: t_INT, \

9 k: t_INT, \

10 t: t_INT, \

11 s: t_INT, \

12 h: t_INT, \

13 u: t_INT \

14 ) = {

15 my(g_0 = sum(i=1, t,

16 (cfs[i+1]*gama[n+1-i]^(q^(s*i)))));

17 \\ (lamdas[i] + 'y * lamda_overs[i]) * gama[n-i]^(q_0^(u*s*i))));

18

19 my(g_k = gama[k+1]

20 - (ita * (gama[1]^(q_0^h)))

21 + (ita * (g_0^(q_0^h))));

22

23 my(g_k_plus_t = sum(i=1, t-1,

24 (cfs[i+1]*gama[k+t+i-1]^(q^(s*i)))));

25 \\ (lamdas[i] + 'y * lamda_overs[i]) * gama[k+t+1-i]^(q_0^(u*s*i))))

26 \\ ;

27 g_k_plus_t = g_k_plus_t +

28 \\ (lamdas[t] + 'y * lamda_overs[t]) * g_k^(q_0^(u*s*t));

29 cfs[t+1]*g_k^(q^(s*t));

30

31 my(polynomial_to_solve = eval(g_k_plus_t - gama[k+t+1]));

32 print("polynomial to solve");

33 print(polynomial_to_solve);

34

35 my(omegas = polynomial_solve(polynomial_to_solve));

36 print_vector(omegas, "omegas");

37 omegas

38 };
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39

40 put_found_y_for_g(y: t_FFELT, \

41 gama: t_VEC, \

42 lamdas: t_VEC, \

43 lamda_overs: t_VEC, \

44 cfs: t_VEC, \

45 ita: t_FFELT, \

46 q_0: t_INT, \

47 q: t_INT, \

48 n: t_INT, \

49 k: t_INT, \

50 t: t_INT, \

51 s: t_INT, \

52 h: t_INT, \

53 u: t_INT \

54 ) = {

55 my(g_0 = sum(i=1, t,

56 (cfs[i+1]*gama[n+1-i]^(q^(s*i)))));

57 g_0 = eval(g_0);

58 printf("g_0: %s\n", g_0);

59

60 my(g_k = gama[k+1]

61 - (ita * (gama[1]^(q_0^h)))

62 + (ita * (g_0^(q_0^h))));

63 g_k = eval(g_k);

64 printf("g_k: %s\n", g_k);

65

66 my(g_k_plus_t = sum(i=1, t-1,

67 (cfs[i+1]*gama[k+t+i-1]^(q^(s*i))))

68 + cfs[t+1]*g_k^(q^(s*t)));

69 g_k_plus_t = eval(g_k_plus_t);

70 printf("g_k_plus_t: %s\n", g_k_plus_t);

71 }

Listing B.11: src/decoding/functions/find_omega_candidates.gp

1 \r constants/constants.gp

2 \r utils/check_parameters.gp

3 \r utils/dickson.gp

4 \r utils/die.gp

5 \r utils/fliep.gp

6 \r utils/generate_finite_field.gp

7 \r utils/list_to_vector.gp

8 \r utils/modular_index_for_vector.gp

9 \r utils/moore.gp

10 \r utils/print_vector.gp

11 \r utils/transpose.gp

12 \r encoding/functions/calculate_eta.gp

13 \r encoding/functions/calculate_f_bar.gp

14 \r encoding/functions/generate_error_vector.gp
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15 \r encoding/functions/evaluate_codeword.gp

16

17 /**
18 * Main function of whole encoding and transmission operation

19 * for additive generalized twisted gabidulin codes.

20 * This method reads constants.gp file to take global parameters

21 * and the message f,

22 * checks are parameters valid,

23 * encodes given message f,

24 * adds an error to f to simulate transmission stage,

25 * prints corrupted codeword r,

26 * prints linear independent evaluation points vector "alpha"

27 * prints finite field element eta used

28 */

29 encoding() = {

30 check_parameters(n, k, t, q_0, h, s, u);

31

32 if(length(f) != k,

33 die("The length of the message f must be k!"));

34

35 w = generate_finite_field(ff_generator);

36

37 if(polisirreducible(w.mod) == 0,

38 die("The generator polynomial must be irreducible!"));

39

40 for(i=1,k,f[i]=eval(f[i]));

41

42 \\ "eta" is a predefined function in Pari-GP

43 \\ for Dedekind's eta function.

44 \\ so we will use "ita" as a parameter name to define "eta".

45 ita = calculate_eta(q_0, n, k, u, w);

46 printf("eta = %s\n", ita);

47

48 \\ alpha is the linear independent evaluation points vector

49 \\ over the finite field GF(q^n)

50 alpha = fliep(n, q, w);

51 print_vector(alpha, "alpha");

52

53 \\ REGION WAY 1: to calculate the codeword c

54

55 \\ calculate the vector f_bar of length n as defined

56 f_bar = calculate_f_bar(f, k, n, q_0, h, ita, w);

57

58 \\ evaluate f(x) over linear independent evaluation points alpha

59 \\ then we get the codeword

60 c = evaluate_codeword(alpha, n, f, q_0, q, s, h, k, ita);

61

62 \\ END REGION WAY 1

63

64 \\ REGION WAY 2: to calculate the codeword c
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65

66 \\ transpose of the moore matrix of alpha

67 m = moore(alpha, q, s);

68 mt = transpose(m);

69

70 \\ find the codeword c with an alternative way

71 c2 = eval(f_bar * mt);

72

73 \\ END REGION WAY 2

74

75 /*
76 \\ see both codeword is identically same

77 printf("c and c2 are identically %s\n",

78 if(c == c2, "same", "different"));

79 */

80

81 \\ generate a random error vector

82 e = generate_error_vector(q, t, w);

83

84 \\ add error vector to codeword

85 \\ "received word" by decoder or "sent word" by encoder

86 r = eval(c + e);

87 print_vector(r, "r");

88 };

89

90 encoding();

91 \\ quit();

Listing B.12: src/encoding/encoding.gp

1 /**
2 * Calculates an eta value

3 * to generate f_k value

4 *
5 * @param q_0 base prime number

6 * @param n degree of finite field

7 * @param k length of codeword

8 * @param u additive power

9 * @param w base element of finite field

10 *
11 * @return calculated eta value

12 */

13 calculate_eta(q_0: t_INT, \

14 n: t_INT, \

15 k: t_INT, \

16 u: t_INT, \

17 w: t_FFELT) = {

18 q = q_0 ^ u;

19

20 a = (w^0)*((-1)^(n*k*u));
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21 b = (((q^n)-1)/(q-1));

22 c = (w^b);

23 d = ((w^2)^b);

24

25 \\ "eta" is a predefined function in Pari-GP

26 \\ for Dedekind's eta function.

27 \\ so we will use "ita" as a parameter name to define "eta".

28 if(a != c, ita = w,

29 a != d, ita = (w^2),

30 ita = random(w);

31 until(a != ita^b, ita = random(w));

32 );

33

34 ita

35 };

Listing B.13: src/encoding/functions/calculate_eta.gp

1 /**
2 * Calculates an eta value

3 * to generate f_k value

4 *
5 * @param f vector of the chosen message

6 * @param k length of codeword

7 * @param n degree of finite field

8 * @param q_0 base prime number

9 * @param h twisting power

10 * @param ita calculated eta value

11 * @param w base element of finite field

12 *
13 * @return correlated f_bar vector of f

14 */

15 calculate_f_bar(f: t_VEC, \

16 k: t_INT, \

17 n: t_INT, \

18 q_0: t_INT, \

19 h: t_INT, \

20 ita: t_FFELT, \

21 w: t_FFELT) = {

22 f_bar = f;

23 f_bar = concat(f_bar, [ita * f[1]^(q_0^h)]);

24 f_bar = concat(f_bar, vector(n-k-1, i, w-w));

25 f_bar

26 };

Listing B.14: src/encoding/functions/calculate_f_bar.gp

1 /**
2 * Correlated f(x) function of the linearized polynomial f

3 *
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4 * @param x variable for f(x) function

5 * @param f array of the chosen message

6 * @param q_0 base prime number

7 * @param q power of base prime number

8 * @param s generalization power

9 * @param h twisting power

10 * @param k length of codeword

11 * @param ita calculated eta value

12 *
13 * @return value of f(x)

14 */

15 fx(x: t_FFELT, \

16 f: t_VEC, \

17 q_0: t_INT, \

18 q: t_INT, \

19 s: t_INT, \

20 h: t_INT, \

21 k: t_INT, \

22 ita: t_FFELT) = {

23 su = sum(i=1, k, f[i]*(x^(q^(s*(i-1)))));

24 f_bar_k = ita * f[1]^(q_0 ^ h) * x^(q^(s*k));

25 su = su + f_bar_k;

26 su

27 };

28

29 /**
30 * Evaluates codeword f

31 * on linearly independent points alpha

32 *
33 * @param alpha vector of linearly independent points on GF(q^n)

34 * @param n degree of finite field

35 * @param f array of the chosen message

36 * @param q_0 base prime number

37 * @param q power of base prime number

38 * @param s generalization power

39 * @param h twisting power

40 * @param k length of codeword

41 * @param ita calculated eta value

42 *
43 * @return vector of the codeword c

44 */

45 evaluate_codeword(alpha, n, f, q_0, q, s, h, k, ita) = {

46 vector(n, i, fx(alpha[i], f, q_0, q, s, h, k, ita))

47 };

Listing B.15: src/encoding/functions/evaluate_codeword.gp

1 /**
2 * Generates an error vector

3 * to simulate corruption during transmission
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4 *
5 * @param q power of base prime number

6 * @param t maximum rank of the error vector

7 * @param w base element of finite field

8 *
9 * @return a random error vector

10 */

11 generate_error_vector(q, t, w) = {

12 e_raw = fliep(t, q, w);

13 e_raw = concat(e_raw, vector(n-t, i, w-w));

14 print_vector(e_raw, "e_raw_raw");

15 u = matrix(n, n, i, j, random(w));

16 print_vector(u);

17 e_raw * u

18 };

Listing B.16: src/encoding/functions/generate_error_vector.gp

1 /**
2 * Checks the given parameters are suitable for the system.

3 * If parameters are not suitable,

4 * prints error message then halt the program.

5 *
6 * @param n degree of finite field

7 * @param k length of codeword

8 * @param t maximum rank of the error vector

9 * @param q_0 base prime number

10 * @param h twisting power

11 * @param s generalization power

12 * @param u additive power

13 */

14 check_parameters(n: t_INT, \

15 k: t_INT, \

16 t: t_INT, \

17 q_0: t_INT, \

18 h: t_INT, \

19 s: t_INT, \

20 u: t_INT) = {

21 if(n<1 || k<1 || s<1 || u<1 || h<1,

22 die("AGTG parameters should be positive integers!"));

23

24 if(k >= n,

25 die("AGTG parameter k should be less than n!"));

26

27 if(isprime(q_0) == 0,

28 die("AGTG parameter q_0 must be a prime number!"));

29

30 if(gcd(s, n) != 1,

31 die("AGTG parameters s and n should not have common divisor!"));

32
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33 my(max_t = floor((n-k)/2));

34 if(t > max_t,

35 die("t is bigger than the maximum value!"));

36 };

Listing B.17: src/utils/check_parameters.gp

1 /**
2 * Symbolic product of two polynomials

3 * Parameter order is important.

4 *
5 * @param f the first polynomial

6 * @param g the second polynomial

7 *
8 * @return composite function of two input functions

9 */

10 composite(f: t_FUNC, g: t_FUNC) = {

11 (x) -> f(g(x))

12 };

Listing B.18: src/utils/composite_function.gp

1 /**
2 * Converts a vector to its correlated Dickson matrix

3 *
4 * @param v base vector

5 * @param q power of base prime number

6 *
7 * @return Dickson matrix of the vector

8 */

9 dickson(v: t_VEC, q: t_INT) = {

10 len = length(v);

11 matrix(len, len, i, j, v[modix(i-j+1, len)]^(q^(j-1)))

12 };

Listing B.19: src/utils/dickson.gp

1 /**
2 * Prints the error message

3 * then halts the execution

4 *
5 * @param message the error message

6 */

7 die(message: t_STR) = {

8 printf("ERROR: %s\n", message);

9 quit();

10 };

Listing B.20: src/utils/die.gp
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1 fliep_get_span(pl, pq, pa, pksmall) = {

2 my(i = listcreate(pl));

3 for(j=1,pl,listput(i,1,j));

4 my(span = Set());

5 while(i[1] < pq+1,

6 my(t=0);

7 for(j=1, pl, t= t+pa[j]* pksmall[i[j]]);

8 span = setunion(span, Set(t));

9 listput(i, i[pl]+1, pl);

10 forstep(j=pl, 1, -1,

11 if(i[j]>pq,

12 if(j==1, break,

13 listput(i, 1, j);

14 listput(i, i[j-1]+1, j-1);

15 )

16 )

17 )

18 );

19 span;

20 };

21

22 /*
23 * Calculates the rank of the correlated

24 * Dickson matrix of the given vector v

25 *
26 * @param v base vector

27 * @param q power of base prime number

28 *
29 * @return rank of the vector

30 */

31 rank_of_vector(v: t_VEC, q: t_INT) = {

32 matrank(dickson(v, q))

33 };

34

35 /*
36 * Checks independency of linearized evaluation points

37 *
38 * @param v base vector

39 * @param n degree of finite field

40 * @param q power of base prime number

41 *
42 * @return boolean value of independency

43 */

44 check_liep(v: t_VEC, n: t_INT, q: t_INT) = {

45 rank_of_vector(v, q) == n

46 };

47

48 /*
49 * Finds linearly independent evaluation points
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50 * by choosing random elements of finite field

51 * and checking independency.

52 *
53 * @param n degree of finite field

54 * @param q power of base prime number

55 * @param w base element of finite field

56 *
57 * @return n linearly independent points in the finite field.

58 */

59 fliep(n: t_INT, q: t_INT, w: t_FFELT) = {

60 my(liep = vector(n, i, random(w)));

61 if(check_liep(liep, n, q), liep, fliep(n, q, w))

62 };

63

64 /**
65 * Finds linearly independent evaluation points

66 * @deprecated

67 *
68 * @param n degree of finite field

69 * @param q power of base prime number

70 * @param w base element of finite field

71 *
72 * @return n linearly independent points in the finite field.

73 */

74 fliep_by_spanning(n: t_INT, q: t_INT, w: t_FFELT) = {

75 my(karray = [w-w]);

76 my(karray = concat(karray, vector(q^n-2, i, w^i)));

77 my(kset = Set(karray));

78

79 wsmall = w^floor((q^n-1)/(q-1));

80 ksmall = [wsmall-wsmall];

81 ksmall = concat(ksmall, vector(q-1, i, wsmall^i));

82

83 my(a = listcreate(n));

84 listput(a, kset[random(length(kset)) + 1], 1);

85

86 for(i = 1, n-1,

87 my(latest_span = fliep_get_span(i, q, a, ksmall));

88 my(latest_set = setminus(kset, latest_span));

89 listput(a,

90 latest_set[random(length(latest_set)) + 1],

91 i+1);

92 );

93

94 liep = list_to_vector(a);

95

96 if(check_liep(liep, n, q), liep, fliep(n, q, w))

97 };

Listing B.21: src/utils/fliep.gp
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1 /**
2 * Generates the finite field GF(q^n) with given primitive function

3 *
4 * @param ff_generator a primitive polynomial over GF(q^n)

5 *
6 * @return the finite field generated by the input polynomial

7 */

8 generate_finite_field(ff_generator: t_POL) = {

9 ffgen(ff_generator)

10 };

Listing B.22: src/utils/generate_finite_field.gp

1 /**
2 * Converts given list to a vector with same elements and same order.

3 *
4 * @param list any list

5 *
6 * @return the generated vector with elements of the list.

7 */

8 list_to_vector(list: t_LIST) = {

9 vector(length(list), i, list[i])

10 };

Listing B.23: src/utils/list_to_vector.gp

1 /**
2 * Finds correct index value in modulo m

3 *
4 * For example, if we have a collection with m elements:

5 * modix(0, 5) will return 5

6 * modix(1, 5) will return 1

7 * modix(5, 5) will return 5

8 * modix(6, 5) will return 1

9 *
10 * It is not same with modulo operation in math,

11 * because in GP, arrays start with index 1 instead of 0.

12 *
13 * @param index given index value not has to be in modulo m

14 * @param m modulo value

15 *
16 * @return index value in modulo m

17 */

18 modix(index: t_INT, m: t_INT) = {

19 my(i = lift(Mod(index, m)));

20 if(i == 0, i+m, i)

21 };

Listing B.24: src/utils/modular_index_for_vector.gp
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1 /**
2 * Converts a vector to its correlated Moore matrix

3 *
4 * @param alpha vector of linearly independent points on GF(q^n)

5 * @param q power of base prime number

6 * @param s generalization power

7 *
8 * @return Moore matrix of the vector alpha

9 */

10 moore(a, q, s) = {

11 my(len = length(a));

12 matrix(len, len, i, j, a[i]^(q^(s*(j-1))))

13 };

Listing B.25: src/utils/moore.gp

1 get_coefficients_of_polynomial (f: t_CLOSURE) = {

2 vector(poldegree(f(x)) + 1, i, eval(polcoef(f(x), i - 1)))

3 };

4

5 get_coefficients_of_linearized_polynomial (f: t_CLOSURE, \

6 base: t_INT) = \

7 {

8 cs = get_coefficients_of_polynomial(f);

9 degree = logint(length(cs)-1, base);

10 vecextract(cs, sum(i = 0, degree, 2^(base^i)))

11 };

12

13 get_polynomial_of_coefficients (v: t_VEC) = {

14 x -> sum(i=1, length(v), v[i] * x^(i-1));

15 };

16

17 get_linearized_polynomial_of_coefficients (v: t_VEC, \

18 base: t_INT) = \

19 {

20 x -> sum(i=1, length(v), v[i] * x^(base^(i-1)));

21 };

22

23 composite(f: t_CLOSURE, g: t_CLOSURE) = {

24 fog = (x) -> f(g(x))

25 };

26

27 get_coefficients_of_polynomial_addition \

28 (f: t_CLOSURE, g: t_CLOSURE) = {

29 degree_of_f = poldegree(f(x));

30 degree_of_g = poldegree(g(x));

31 max_degree = if(degree_of_f >= degree_of_g, degree_of_f, \

32 degree_of_g);

33 coefficients = vector(max_degree + 1, i, \
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34 eval(polcoef(f(x), i - 1) + polcoef(g(x), i - 1)));

35 coefficients

36 };

37

38 get_coefficients_of_polynomial_subtraction \

39 (f: t_CLOSURE, g: t_CLOSURE) = {

40 degree_of_f = poldegree(f(x));

41 degree_of_g = poldegree(g(x));

42 max_degree = if(degree_of_f >= degree_of_g, degree_of_f, \

43 degree_of_g);

44 coefficients = vector(max_degree + 1, i, \

45 eval(polcoef(f(x), i - 1) - polcoef(g(x), i - 1)));

46 coefficients

47 };

48

49 polynomial_solve(p: t_POL) = {

50 liftall(polrootsmod(p))

51 };

Listing B.26: src/utils/polynomial_utils.gp

1 /**
2 * Prints the vector name and the vector.

3 * Prints each element of the vector on a new line.

4 *
5 * @param v any vector

6 * @param name name of the vector. its default value is "vector".

7 */

8 print_vector(v: t_VEC, \

9 name = "vector": t_STR) = {

10 printf("%s = [\n", name);

11 for(i=1, length(v), printf(" %d: %s\n", i, v[i]));

12 print("]");

13 };

14

15 /**
16 * Prints the matrix name and the matrix.

17 * Prints each element of the matrix on a new line

18 * with row and column numbers.

19 *
20 * @param m any matrix

21 * @param row_count row count of the matrix m

22 * @param column_count column count of the matrix m

23 * @param name name of the matrix. its default value is "matrix".

24 */

25 print_matrix(m: t_MAT, \

26 row_count: t_INT, \

27 column_count: t_INT, \

28 name = "matrix": t_STR \

29 ) = {
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30 printf("%s = [\n", name);

31 for(i=1, row_count,

32 printf(" r%d = [\n", i);

33 for(j=1, column_count,

34 printf(" c%d: %s\n", j, m[i, j]);

35 );

36 print(" ]");

37 );

38 print("]");

39 };

Listing B.27: src/utils/print_vector.gp

1 /**
2 * Encapsulation of matrix transposition

3 *
4 * @param m matrix to transpose

5 * @return transpose of m

6 */

7 transpose(m: t_MAT) = {

8 mattranspose(m)

9 };

Listing B.28: src/utils/transpose.gp
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