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ABSTRACT

STRUCTURAL AND AEROELASTIC FLUTTER ANALYSIS OF WING
STORE SYSTEMS AND STRUCTURAL MODIFICATION APPROACH
IN AEROELASTICITY

Akpinar, Aytag
Master of Science, Mechanical Engineering
Supervisor: Asst. Prof. Dr. Orkun Ozsahin

September 2021, 133 pages

The preliminary aeroelastic design process of the wings with stores is one of the most
significant design activities to be considered in the aerospace industry. The focus of
this thesis is mainly based on the dynamic aeroelasticity of the wing store systems
including the discipline of mechanical vibrations. In the present study, the Finite
Element Method (FEM) and structural modification approach are primarily
implemented in the wing store aeroelastic systems. Aero-structural modeling and
aeroelastic flutter analysis of the wing store systems are performed for 1-D beam-
like and 2-D delta wings. A lumped mass store model is introduced to beam-like
wings while a 1-DOF pitching elastic store model is introduced for delta wings. The
structural model for the wing store systems is defined through the Finite Element
Method (FEM) and store attachment is considered as local structural modifications.
The structural and aeroelastic flutter characteristics of beam-like wings and delta
wings with stores are investigated including different types of flutter solution
methods, namely, K-Method, P-K Method, and Non-Iterative P-K Method. The
traditional redesign process of the aeroelastic model is redefined by introducing the
Dual Modal Structural Modification (DMSM) method as aeroelastic systems are

concerned. The design optimization study for the store parameters is carried out



considering the worst-case flutter criteria. This thesis includes different types of

solution methods that are developed in-house and by utilizing commercial software.

Keywords: Wing Store Flutter, Structural Modification, Store Design Optimization
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0z

KANAT YﬁK stTEMLERiNiN YAPISAL VE AEROELA§11}< .
CIRPINTI ANALIZi VE AEROELASTISITEDE YAPISAL DEGISIKLIK
YAKLASIMI

Akpinar, Aytag
Yiiksek Lisans, Makina Miihendisligi
Tez Yéneticisi: Dr.Ogr.Uyesi Orkun Ozsahin

Eylil 2021, 133 sayfa

Kanat yiik sistemleri i¢in yapilan 6n aeroelastik tasarim caligmalari havacilik
endiistrisinde icra edilen en onemli tasarim ¢alismalarindan biridir. Bu tez temelde
mekanik titresim disiplinin dahil oldugu dinamik aeroelastisite ile ilgilidir.
Calismada gelistirilen kanat yiik aeroelastik sistemlerinde agirlikli olarak Sonlu
Elemanlar Yontemi ve yapisal modifikasyon yaklasimi uygulanmistir. Kanat yiik
sistemlerinin yapisal ve aerodinamik modellenmesi tek boyutlu kiris benzeri ve iki
boyutlu delta kanat yapilar1 kullanilarak icra edilmistir. Kirig benzeri kanat yapilari
icin yiik modeli olarak toplu kiitle kullanilirken, yunuslama salinim1 bir serbestlik
dereceli elastik yiik ise delta kanat modeli i¢in tanimlanmistir. Sonlu Elemanlar
Yontemi kullanilarak yapisal model gelistirilmis ve yiikiin kanada baglantisi
bolgesel yapisal modifikasyon olarak tanimlanmistir. Kiris benzeri ve delta kanat
altinda ytik ile yapisal ve aeroelastik ¢irpint1 karakteristigi, K-Metodu, P-K Metodu
ve Yinelemesiz P-K Metodu cirpintt ¢ziim yontemleri uygulanarak incelenmistir.
Aeroelastik sistemler diisiiniilerek, yapinin geleneksel tasarim siireci ikili Modal
Yapisal Modifikasyon yoOnteminin siirece dahil edilmesi ile siire¢ yeniden

tanimlanmistir. Yiik tasarim parametreleri i¢in en kotii ¢irpinti 6l¢iitii diistintilerek

vii



tasarim eniyileme c¢aligsmasi icra edilmistir. Bu tez 6zgiin olarak gelistirilmis ve ticari

yazilim kullanilarak gelistirilmis farkli ¢6ziim yontemlerini igermektedir.

Anahtar Kelimeler: Kanat Yiik Cirpintisi, Yapisal Modifikasyon, Yiik Tasarimi

Eniyilemesi
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CHAPTER 1

INTRODUCTION

1.1  Theoretical Background

Aeroelasticity considers the effects of the interacting inertia, aerodynamic and elastic
forces on the aerospace structures, such as an aircraft. Collar [1] defines the
aeroelasticity with a famous triangle, which is shown in Figure 1.1. The discipline

of mechanical vibrations directly concerns such forces.

Dynamics
Inertial Forces

Aceroelasticity
Flutter

Structural Mechanics

Fluid Mechanics .
) Divergence = Elastic Forces

Aerodynamic Forces

Figure 1.1 Collar’s Triangle

The most critical design problems in the aerospace industry can be experienced as
aeroelastic problems. They arise because of aerospace structures’ flexible
characteristics which means that the structure is not completely rigid. The common
characteristic is generally observed whereas the aeroelastic problems are considered.
Aerodynamic forces produce structural deformations and resulting deformations

alter the aerodynamic forces. Respectively, the resulting aerodynamic forces



reproduce structural deformations, and this process continues successively until a
state of equilibrium is reached. Generally, the equilibrium point is a failure of the

structure.

Aeroelasticity can be classified into two categories, namely, static aeroelasticity and
dynamic aeroelasticity. The design of an aircraft is generally formed by considering
these two. Divergence is a phenomenon such that gradual change in the wing twist
deflection leads to a rise of aerodynamic forces, thus, the rising of wing twist
continues until structural failure takes place. Consequently, divergence is
investigated in static aeroelasticity. On the other hand, the flutter phenomenon is
investigated in dynamic aeroelasticity, which includes mechanical vibrations. Flutter
IS encountered as a consequence of elastic deflections of lifting surfaces like wings
and fluid-structure interaction is observed in an oscillatory manner. Such interaction
produces aerodynamic loads, and it gives rise to structural deflection with each
oscillation. This situation leads to divergent oscillations, i.e., structural failure.
Flutter generally occurs due to the bending-torsion coupling for the first modes of

the aircraft bare wing, i.e., clean wing.

In addition, military aircraft are demanded to carry a large variety of wing-attached
stores to maintain their operational requirements. External stores can be defined as
any equipment such as general-purpose bombs, pods, missiles, guns, and fuel tanks
that are mounted to the wing structure. When rigid mounting of the external store
attachment is considered, the coupling of the above-mentioned modes of the
structure occurs earlier than the clean wing case. This phenomenon is defined as a
typical wing store flutter. In general, aeroelastic coupling of structural vibration
modes involves non-linear stiffness and aerodynamics. This situation leads to
sustained, non-divergent, non-destructive vibration of the flexible air vehicle, which
is called Limit Cycle Oscillations (LCO). LCO is typically seen at high-performance
aircraft with stores. The oscillation amplitude of the structure is occasionally limited
through non-linear stiffness and aerodynamics. The existence of LCO may cause
undesired vibration of the airframe and it may reduce the handling of aircraft and

may result in a significant decrement in the cycle fatigue life of the structure.



Since air vehicles are prone to aerodynamic and structural effects due to having
flexible bodies, they are designed to avoid aeroelastic flutter due to their destructive
nature. The typical flutter analysis flow chart is given in Figure 1.2. Firstly, a
structural model is developed, commonly through the Finite Element Method
(FEM). Then, Ground Vibration Test (GVT) is performed with a physical prototype
of the structure and the analytical modal model is updated as a result of GVT. Lastly,
flutter analysis is conducted with an aeroelastic model, which is constructed by
combining aerodynamics and a refined or updated structural model.

ructural Analytica pdated
Modal Model
hvsica ound Vibration Aerodynamics
Prototype Tests (GVT)

Figure 1.2 Typical Flutter Analysis Flow Chart

—

The accuracy of the flutter analysis depends on the fidelity levels of the aerodynamic
and structural models. High-fidelity flutter calculations are mainly not preferred for
multidisciplinary design optimizations due to the associated computational cost. On
the contrary, Reduced Order Models (ROMSs) with fewer degrees of freedom are
widely used for that purpose. The aerodynamic models, which are employed in
aeroelasticity, are presented in Figure 1.3, whereas structural models are shown in
Figure 1.4.
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Figure 1.3 Aerodynamic Models in Aeroelasticity[2]
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Figure 1.4 Structural Models in Aeroelasticity[2]

Structural models can be divided into two main groups, namely, continuous, and
discrete models. Likewise, aerodynamic models can be grouped into two groups,

which include 2-D and 3-D aerodynamic effects.

1.2 Literature Review

In the earlier work for the wing store systems, the studies were initially focused on
the influence of the store mass and its spanwise location on the flutter speed. One of

the first studies mentioning particularly the effects of external stores on flutter was



developed by Goland & Luke [3]. In the developed work, differential EOM of the
wing through the extended Galerkin’s Method was used. On the other hand, the first
experimental study on the wing store flutter was conducted by Runyan & Sewall [4].
Then, these experimental results were compared with analysis of differential
equations by Runyan and Watkins [5]. These studies have shown that the effect of

the store mass and its spanwise location has a significant effect on the flutter.

These studies are followed by works that consider the influence of the structural
characteristics of the attachment elements, i.e., pylons on flutter speed. Reed et al.[6]
investigated the effects of the store attachment elements on flutter speed employing
passive spring-damper elements in the wing store system. The study shows that
introducing these types of elements increases the system flutter speed and reduces
the dependency of the flutter on the inertia and center of gravity of the store. Yang
and Zhao [7] investigated the flutter speed of the wing store system with the pylon
stiffness by dividing it into three different groups, in which the wing is modeled as a
2-D airfoil.  Although the linear studies are not limited to these, nonlinear
aeroelasticity was attracted and studied by many researchers. Desmarais and Reed
[8] analyzed the effects of the mounting characteristics with nonlinear pylon by using
describing function method. Tang et al. [9] experimentally and theoretically studied
the flutter and LCO characteristics of the wing store model where von Karman plate
theory was used to model the wing structure. Kim and Strganac [10] studied the
store-induced nonlinearities for the wing store system employing a nonlinear
equation of motion. Likewise, Beran et al. [11] investigated the non-linear aeroelastic
responses of a wing store structure, and transonic disturbance methodologies were

adopted to model aerodynamic loads.

When the attachment of the store to the wing is considered as a structural
modification, the dynamic characteristics of a modified structure such as a wing store
system can be obtained by using the original system dynamic properties, for instance,
a clean wing. Canbaloglu and Ozgiiven [12] developed an effective structural
modification method when an additional degree of freedom is introduced into the
modification. In the study, the modification is in the form of beams mounted under



the wing model that acts as stiffeners providing flexural rigidity. The performance
of the method is analyzed by conducting an experiment with the GARTEUR SM-
AG19 model. Therefore, a good correlation was observed between the analytical and
experimental results. Then, the linear structural modifications were extended to
systems with nonlinear modifications by Kalaycioglu and Ozgiiven [13]. Nonlinear
modification with additional DOFs at attachment locations and nonlinear coupling
with nonlinear elements were investigated analytically. The satisfactory results were
obtained when analytical results are compared to the experiments.

In the optimization process of developing wing store systems, the change in the
structural model is a necessity depending on the objective function of the problem.
Modal characteristics of the structures, namely, frequencies, damping, and mode
shapes, are generally determined from a normal mode analysis, i.e., by solving the
eigenvalue problem. Many optimization cycles should be performed successively
which mostly involves a computationally expensive process for large-scale systems.
To overcome such high computational costs, Winter et al.[14] developed two novel
Reduced Order Models (ROMs) that are based on CFD, and it is robust to change in
the structural mode shapes owing to the additional lumped mass. Chen et al.[15]
developed an efficient ROM in the existence of global structural modifications. In
the developed work, the extended Kirsch combined method, which uses mainly the
second-order eigenvector terms, was applied in the case of global structural
modifications. In the above-mentioned studies, aeroelastic ROM was remodeled due
to structural modifications. Consequently, they involve both reevaluations of the
structural model and relevant reduced-order aerodynamic model. Apart from
structural modifications, Karpel et al. [16] presented a new modal coupling technique
for flutter analysis of the aircraft with multiple external store configurations. The
study showed that flutter characteristics of numerous external store configurations
for a typical fighter aircraft can be investigated efficiently without needing

successive GVT and aeroelastic analysis.



1.3

Research Objectives

The main objective of this thesis is to develop a simple and effective aeroelastic

model to conduct flutter analysis for the wing store systems that can be used during

the preliminary design stage of an air vehicle. Numerous design candidates can be

introduced for such systems to satisfy flutter requirements during this stage. This

situation leads to an inevitable redesign process of the structure. If the aerodynamic

configuration is fixed, the aerodynamic model can be used repeatedly while the

structural model is being modified for the successive flutter analyses. The developed

methodology has been mainly constructed based on this knowledge. This study aims

at contributing to the following improvements for the wing store systems’ structural

and aeroelastic modeling and analyses:

Although working with the ROMs (1-D framework) can reduce the
computation time for the aeroelastic analyses, an additional improvement has
been implemented to diminish overall modeling and analysis effort for the
wing store systems. In the present approach, the attachment of the store is
considered rigid, and it is defined as a local structural modification. By this
approach, the structural model is defined simply to be coupled with an
aerodynamic model to conduct flutter analysis.

Further development has been introduced to form aeroelastic EOM by
dealing with complex (Generalized Aerodynamic Force) GAF database of
the 3-D aerodynamic model. Since GAF database is obtained through
Aerodynamic Influence Coefficient (AIC) and lower order modal matrix of
the structure, a structural modification method, namely, Dual Modal Space
Method (DMSM) is implemented to approximate the modal matrix as
keeping the AIC constant. Consequently, GAF database can be formed
efficiently when successive structural modifications are present in the
redesign process.

Because classical flutter solution methods like K-Method and P-K Method

have certain drawbacks due to utilizing an interpolation of aerodynamic



matrices, a novel Non-Iterative P-K Method (NIPK Method) is implemented
in the flutter solution sequence. NIPK Method provides a fast and accurate

flutter solution when comparing with the classical methods.

1.4 Scope and Contents of the Study

Structural and aerodynamic models are developed and analyzed for several clean
wings and wing store systems. Store attachment is accomplished through a local
structural modification in the present analysis. Besides, Dual Modal Structural
Modification (DMSM) method is included in the traditional redesign process of the
structural model as concerning aeroelastic analysis. Design optimization of the wing

store system is performed based on a worst-case flutter criterion.

In Chapter 2, the structural and aerodynamic modeling of the cantilevered clean wing
structure is presented. The beam-like 1-D structural model is developed including
two distinct approaches, namely, Rayleigh-Ritz method and Finite Element Method
(FEM), which are based on the Euler-Bernoulli beam theory. On the other hand,
Theodorsen’s aerodynamics is introduced to be coupled with beam-like 1-D wing
structural models. Besides, 3-D lifting surface theory is introduced to use with 2-D
shell wing structures. Generalized Aerodynamic Force (GAF) matrix definition and
its evaluation are presented for the presented models. Lastly, an aeroelastic
instability phenomenon solution, i.e., flutter solution is introduced.

Chapter 3 involves the flutter analysis of the clean wings. The validation of the
analysis model is carried out through three well-known wing models, namely High-
Altitude Long Endurance (HALE) wing, Goland wing, and AGARD wing 445.6
(weakened). Both structural models and aeroelastic models are investigated and

analyses results are compared along with the reference studies.

In Chapter 4, wing store systems are investigated through two different models. The
first model is based on the beam-like wing with the store. The store is assumed as

lumped mass and rigidly attached to the wing. The equation of motion for the clean



is rewritten through FEM and structural modification approach when rigid store
attachment is considered. The second model is based on the delta wing with flexible
store attachment. The model is also developed by use of FEM. Two case studies are
presented and investigated for the models. The present results are compared to

reference studies.

Chapter 5 includes the structural modifications in the aeroelastic systems. The
attachment of a lumped mass is considered as a local structural modification and a
new method is presented for flutter analysis in the presence of local structural
modifications. The evaluation of the Generalized Aerodynamic Force (GAF) matrix
utilizing Dual Modal Structural Modification (DMSM) is presented. The current
method is implemented in a case study. The present results are compared along with

the reference experimental and analytical results.

In Chapter 6, a design optimization problem is defined based on the flutter criterion.
For the given loading configurations, each with three external stores, the multi-store
design parameters are optimized simultaneously depending on the worst-case flutter
criterion. Lastly, for a given aircraft wing and a set of stores, a particular loading
configuration is determined which causes the worst flutter condition.
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CHAPTER 2

STRUCTURAL AND AERODYNAMIC MODELING FOR
AEROELASTIC ANALYSIS

This chapter includes the structural and aerodynamic modeling of the cantilevered
wing structure. The wing structure is modeled through the Finite Element Method
(FEM) and Rayleigh-Ritz method based on classical 1-D Euler-Bernoulli beam
formulation while aerodynamic loads are derived by Theodersen’s unsteady
aerodynamic theory. An unsteady 3-D lifting surface Doublet Lattice Method (DLM)
is introduced to model complex aeroelastic aircraft wings. Besides, the aeroelastic
equation of motion and its solution methods for the flutter phenomena are presented

in the chapter.

2.1  Aeroelastic Systems

The aeroelastic systems consist of two main aspects, namely structural and
aerodynamic models. The structural models presented in this chapter are coupled
with Theodorsen’s unsteady aecrodynamic model that is developed for a harmonically
pitching-plunging airfoil. To investigate the aeroelastic behavior and to state model
parameters of such a linear aeroelastic system, a 2 DOF pitching-plunging system is
defined due to its physical simplicity. This model could correspond to a typical
airfoil section through a wing structure. Since the aeroelastic analysis presented in
this study mostly involve cantilevered beam-like wing sections, fundamental axes on

the wing structure can be expressed through a sample beam-like wing model.

The wing model is based on the three axes definitions, which are namely the
aerodynamic axis, elastic or flexural axis, and inertia or mass axis. While the wing

moves through a fluid, the pressure distribution over the airfoil contributes to the
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total force on the structure. The chordwise location of the resultant force is called the
center of pressure. The spanwise line passing through the center of pressure is
referred to as the aerodynamic axis. The chordwise location of the aerodynamic axis
varies according to the flow regime. For instance, aerodynamic axis locations can be
different at each subsonic and supersonic flow regime. The elastic axis of the wing
is the longitudinal that transverse bending forces must pass through it while the
bending of the wing shall not be coupled with the torsion. In other words, bending
and torsion motions are uncoupled along the elastic axis. The inertia axis is defined
as the longitudinal line passing through the average locations of the weight of the
wing model. Figure 2.1 represents a typical aircraft, its cantilevered wing, and

relevant axis locations.

Figure 2.1 Typical Cantilevered Wing Model [17]
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It is challenging that to deal with the aeroelastic behavior of the coupled bending
torsion motion of the wing and its combined interactions with the aerodynamic loads.
The distance between the inertia and elastic axes has a significant effect on the
aeroelastic behavior of the wing. This distance is referred to as the static unbalance
that is a condition where the inertia and elastic axes do not coincide with each other,

and it causes structural coupling of bending and torsion modes of the wing.

After stating the basic aeroelastic system characteristics, the aforementioned typical
section model is defined by Hodges et al. [18], which demonstrates the sinusoidal
oscillatory motion of a 2 DOF pitching and plunging airfoil. Figure 2.2 defines the
section of the wing.

/
”+(1)/) f

(I+e)p \7

zero-lift line

Figure 2.2 Geometry of the Wing Section[18]

The airfoil semi-chord is defined as b and airfoil is subject to a constant free stream
velocity, U. The point P is defined as the reference point where plunge displacement
where w is measured and it is referred to as the elastic axis. The points C,Q, and T
are the center of mass that is referred to as the inertia axis, the pressure center that is
referred to as the aerodynamic axis, and the three-quarter-chord, respectively. The
dimensionless parameters e and a represent the locations of the points C and P. The
static unbalance parameter is a dimensionless parameter representing the distance
between the inertia axis and elastic axis and it is denoted by the relation x4 = e — a.
Linear springs in the system are defined as spring constants, k,, for plunging and kg

for pitching motions.
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2.2 Evaluation of the Aeroelastic Equation of Motion

The collective interaction of the inertial and elastic structural forces, aerodynamic
forces, and external disturbance forces leads to an aeroelastic response of the wing
structure. Considering the equilibrium conditions of these forces, the equation of

motion of the aeroelastic system can be given as follows:[19]
[M]%(t) + [K]x(t) = F(t) (2.1)

where x(t) is the physical deformation of the structure, [M] and [K] are the mass
and stiffness matrices obtained by one of the convenient methods, for instance, the
Finite Element Method (FEM). The structural damping term is omitted in the
expression for simplicity. Besides, F(t) is the aerodynamic forces that are applied to
the structure, which can be divided into two sections: the aerodynamic forces arising
from the structural deformation, F,(x) and the external forces, F,(x). Hence, F(t)

can be written as below:
F(t) = F,(x) + F.(t) (2.2)

The external forces, F,(t) usually indicates the piston ejection forces for store
separation or control surface aerodynamic forces. Since these types of forces are not
considered in the present study, by taking F,(t) = 0 Eq. (2.1) is expressed as in the
following equation:

[M]%(t) + [K]x(t) — Fa(x) = 0 (2.3)

Since the system given in Eq. (2.3) is self-excited, the stability condition of the
system needs to be examined, which is known as flutter. The stability condition of
the structure can be investigated by implementing a time marching procedure with
an initial condition of x(0) and x(0) specified at t = 0. Time-domain solutions for
such systems are not computationally time efficient since it needs a nonlinear time-
domain unsteady aerodynamic method, i.e., Computational Fluid Dynamics (CFD).
When the infinitesimal oscillations are considered on the structure, the aerodynamic

forces exhibit linear characteristics regarding the structural deformations. Thus, the
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system defined in Eq. (2.3) turns into an eigenvalue problem by utilizing a amplitude
linearization technique, which states a transfer function between F, (x) and x(t) in

the following equation:

Fa() = Jy a.H (5 (t = ) x(D)de (24)

where H is the aerodynamic transfer function, q, = 1/2pU? is the dynamic
pressure, p is the air density, U is the free stream velocity and b is the half chord

length. The Laplace domain counterpart of Eq.(2.4) is given as follows:

Fa(s) = 4.1 (7) x(s) (25)

where H is the Laplace domain counterpart of the aerodynamic transfer function.
The matrix form of this function in the frequency domain is defined as the
Aerodynamic Influence Coefficient (AIC) matrix. To obtain the general form of the
aeroelastic equation of motion, Eq. (2.3) firstly transformed into the Laplace domain
with the assumption of simple harmonic motion, then converted into the reduced

frequency domain, k, which is defined as follows:

k=22 (2.6)

The explanation of the reduced frequency, k is comprehensively expressed in section
2.4.1. Consequently, Eq. (2.3) can be transferred into the following equation by

replacing AIC (%) with AIC (ik) and s by iw, and it results in an eigenvalue problem

(EVP) in terms of w.
[—w?[M] + [K] — q. . AIC(ik)]{x} = 0 (2.7

Since the FE model of the aircraft structure involves a large amount of DOF, the size
of mass and stiffness matrices are excessively large, moreover, solving EVP of Eqg.
(2.7) needs significant computational effort. Thus, a modal technique can be

introduced to the problem which can be given as below:

x} = [¢]{n} (2.8)
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where [¢] is the modal matrix, whose columns have a truncated set of natural modes
and {n} is the vector of modal displacements. Substituting Eq. (2.8) into Eq.(2.7) and
pre-multiplying Eq.(2.7) with [¢]7 results in the general form of the aeroelastic

equation of motion for the flutter.

[—w?[M] + [K] — q..GAF (ik)]{n} = 0 (2.9)

where [M] is the generalized mass matrix, [K] is the generalized stiffness matrix,
and GAF (ik) is the Generalized Aerodynamic Force (GAF) matrix, which are

expressed as follows:

[M] = [¢]" [M][¢] (2.10)
[K] = [¢]"[K][¢] (2.11)
[GAF] = [¢]"[AIC][¢] (2.12)

where [GAF] is expressed as [Q.,] through the present work.

The above discussion illustrates that the existence of the aerodynamic transfer
function provides to avoid solving the time-dependent EOM, whose form is usually
nonlinear. On the other hand, forming an aerodynamic transfer function by use of
unsteady aerodynamics results in the AIC matrix and it is a very comprehensive
process. Hence, the theory of unsteady aerodynamics is implemented in the
frequency domain by assuming simple harmonic motion. As a result, two distinct
types of unsteady aerodynamic theory are presented for the aerodynamic modeling
in this thesis, namely, Theodorsen’s aerodynamics and Doublet Lattice Method

(DLM).

The last discussion is based on the application of the modal approach, i.e., the use of
a truncated set of structural modes. The critical flutter modes mostly occur due to the
coupling of lower-order structural modes. Because of that reason, a maximum of ten
numbers of the lowest natural modes are chosen for the flutter analysis of the wing
structure, and fifty natural modes are adequate for the entire aircraft structure [19].

Once the lower set of modes are obtained for the analysis, the recalculation of these
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modes is inevitable when structural modifications are present in the structure.
Moreover, it requires a high computational cost when successive structural
modifications in large DOF systems are considered. To direct approximation of the
modified system’s truncated set of modes can be possible by using the original
structure’s modal data in the aeroelastic systems. Further discussion related to this

subject is stated in Chapter 5.

2.3 Structural Models

The structural modeling of the aircraft structures is comprehensive design activity in
the aerospace industry. The structural models are used in both structural and
aeroelastic analysis. The wing structural models can be developed by utilizing 1-D
beam formulations, 2-D shells, and 3-D solid elements. Since the 1-D beam
formulations require less computational effort, 1-D beam formulation will be taken

into consideration within the context of this chapter.

2.3.1 Modeling of Continuous Systems

The systems encountered in aircraft aeroelasticity are mostly continuous. Therefore,
an aircraft wing, fuselage, or external store can be considered as elastic continuum
members which can bend and twist and have their mass and stiffness properties
distributed spatially over the system. There are multiple approaches for modeling

continuous systems, namely [20]

a) the analytical method by exactly solving the governing partial differential

equations

b) an approximate approach using a series of assumed shapes to represent the

deformation (i.e. Rayleigh-Ritz Method).

C) an approximate approach using spatial discretization (i.e. Finite Element
Method - FEM)
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The analytical approach is satisfactory for simple systems; however, it is not useful
when complicated aircraft systems are considered such as aircraft wings and external
stores. The assumed mode method is still being used in the aeroelastic analysis. On
the other hand, it has weaknesses when handling complex geometry. Because it
works for relatively simple geometries (e.g. uniform cantilever wings). On the
contrary, FEM is highly satisfactory for representing the structural vibrational
characteristics of complicated aeroelastic systems such as wing store systems. Thus,
the current study mostly covers the application of FEM for modeling aeroelastic

systems.

2.3.1.1 Rayleigh-Ritz “Assumed Shapes” Method

The wing can be represented as a continuous cantilever 1-D beam. Rayleigh-Ritz
method allows reducing the infinite number of DOF systems into a finite number.
The structural dynamics of the wing structure can be modeled through the method in
this manner. The energy equations refer to the classical Euler-Bernoulli beam theory
for both bending and torsion including inertial coupling. Consider an unswept wing
and its strain energy is defined as below:

Uu==:J; [EI :W ) +6) (5 ]dy (2.13)

Similarly, kinetic energy for the beam is of the form

= 1l m (%) - wao | p2 2 (39
K—zfo[m(at 2bgatat+mbr(at)]dy (2.14)

where EI is the bending rigidity and GJ is the torsional rigidity for the uniformly
distributed beam. The span of the wing and mass per unit length is denoted by ¢ and
m respectively. r is the mass radius of gyration about the point P, which is the
reference point where plunge displacement, w is measured in Figure 2.2. The mass

radius of gyration, r is defined as below:
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r= |2 (2.15)

mb?2

The relation between the moment of inertia per unit length about P, I, and the

moment of inertia per unit length about C, I, is given as follows:
Ip = Ic + mb?x} (2.16)

Note that the solution is approximated by a linear combination of shape functions
and the generalized coordinates in the Rayleigh-Ritz method. Hence, assumed modes
are given as uncoupled free-vibration modes of the wing for bending and torsion,
such that:

w,t) = T2 4O ()

0(y,0) = X2, 8:(£)6; (¥) (2.17)
where D, Dg, A; and &; are the number of modes representing bending, the number
of modes representing torsion, generalized coordinates related with bending, and

generalized coordinates related with torsion, respectively. The shape functions for

the bending and torsion are given by ¥; and 0, respectively.

These shape functions should satisfy the boundary conditions depending on the type
of the problem. Since the wing is considered cantilevered, fixed-free beam boundary
conditions have to be considered. The bending and torsion shape functions are given

as follows [18]:

0; =V2sin(y;y) (2.18)
L
where y; = #

W, = cosh(ay) - cos(ay) - Bilsinh(a;y) - sin(a;y)] (2.19)

Cantilever beam boundary condition parameters a;¢, (2i — 1)m/2 and g; for i =
1,....,5is defined by Hodges et al. [18] in Table 2.1.
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Table 2.1 — Cantilever Beam Boundary Condition Parameters

a;f i—1)m/2 Bi
1.87510 1.57080 0.734096
4.69409 4.71239 1.01847
7.85476 7.85398 0.999224
10.9955 10.9956 1.00003
14,1372 14.1372 0.999999

QDR WIN ||~

The next step is to discretize the strain and kinetic energy expressions in the
utilization of the Rayleigh-Ritz method. The strain and kinetic energy can be

simplified due to the orthogonality of assumed modes:
1 (EI W G
U= (B30 (@0t + 950 00767 @.20)

K= (50 12 +b2r2 508 82 — 2bxg X202 Aydidy)  (221)

where A = 1 [J0;%dy  (i=1,2,..,Dp; j=1,2,.., D).

Inertial coupling between bending and torsion modes is stored by the term A;;. Thus,

system matrices can be written in final form as given in Eq. (2.22).

=B8] [0]

ot oot 1} o) ir

N _
—bxg[a] b2 116 ]{6}—{0} (2.22)

where [I] and [0] are the identity matrix and matrix of zeros, respectively. The

elements of [B] and [T ]matrices are given as follows:

B = (a;0)*
Ty = (vif)? (2.23)

20



23.1.2 Finite Element Method (FEM)

The structural model of a bending-torsion coupled wing and Finite Element formula
derivation are defined in this section. Coupled Euler-Bernoulli beam formulation is
used for necessary mathematical derivation. The uniform beam element of the span

length, £, is shown in Figure 2.3.

Figure 2.3 Coupled Bending-Torsion Element

2.3.1.2.1 Element Shape Functions

The cubic element accounted for the translation motion has 2 nodes at each end and

2 DOF per node element. The transverse displacement, w, and the slope, w,, = aa—‘;’

for bending of the beam can be expressed as follows:
]
wy) =co+ 1y + 2y% + 33 wy(y) = % =c; +2¢c,y + 3c3y%  (2.24)

Transverse displacement and slope at both nodes are defined according to boundary

conditions as follows:
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wy = w(0); wy; = w,,(0); wy = w(le); wy, = wy (L) Where £, is the length of
the beam element. The beam element for torsion has 1 DOF per node and linear

function is defined below for torsion of the beam as follows:

0(y) =c4 +cs5y (2.25)

The boundary conditions in the element are defined as 8, = 6(0); 6, = 8(¢,). The
nodal displacements are defined for both bending and torsionat y = 0 and y = ¢,.

To obtain shape functions, displacements are defined in matrix form as given below:

r W1 1 0 0 0 07 (CO\

Wyq 01 0 0 0 0ffc
0, 00 0 0 1 0f]c

Ywa (T € &2 e 0 0fjc (2.26)
Wy 0 1 26 3% 0 0]]c

\6,) lo o 0 0 1 ¢ cs)

Displacement field, {x} can be expressed in terms of the nodal displacements, {x¢}

as follows:
{x} = [N]{x*} (2.27)
w N,
where {x} = {Wy}; {N} = { Nw, ¢ is a row vector of the so-called “shape functions”
0 Ne

and {x¢} ={w1 wy; 01 wy wy, 0,}7

Solve the system Eqg. (2.26) to obtain coefficients and resultant shape functions are

given as follows:

w(y) = [Ny () ]{x¢} (2.28)

where [N, ()] =[Nw1 Nyz 0 Nyz N,y 0] and the term N,,;(y) is the
Hermitian shape functions of the beam. Shape functions in explicit form can be given

as follows:

2

3 2
yZ + y3
te” L

3

+

2y* y?
le  €,°

Nw1:1_ , Nw2:y_
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2 3

4 y
Nw3 = - , Nw4 = ¢ + -2
e e

S

Eq. (2.26) can be solved to obtain the torsion shape functions as follows:

6(y) = [No(»)]{x°} (2.29)

where [Ng(y)] =[0 0 Ng; 0 0 Ng,], the term Ny;(y) is the linear shape

functions of torsion. The explicit form of the shape functions is given below:

— Yy _ v
N91 =1 — Ngz = o
e e

2.3.1.2.2 Potential Energy

Potential energy terms are the same as used in Eq. (2.13), but with the revised

displacement description as follows:

u=2[*m(Z2) sa(Z)]
-2, 02y2 ] dy y

1 [e " NT ’ !
=2 [ |E1GTNG) N2 + GIGT NG (NG )| dy (2.30)
where the shorthand notation ' = % and " = aa_yzz is used. The potential energy of

the system can be written as:
U= 3 (" IKN) (2:31)

(K] = Jy | a1 g + [N 6n[Ng] | dy (2.32)

Introducing the relevant shape function polynomials into Eq. (2.32) and performing
the matrix multiplications and integrations it may be shown that, for a uniform beam

element [K,]:
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Y 0]
3 2 0,0 1,2
6EI 4E] 6EI 2E1
2 - 2 - 0
le le le le
G G
0 o < 0 0o -Z
—_ e e
[Ke] - 12E1 6EI 0 12E1 6EI 0 (233)
L3 L2 L3 £.°
6EI 2EI 6EI 4E1
ofL 2 o Xy
lo le le le
G G
0 o =< o o
Lo le

2.3.1.2.3 Kinetic Energy

Kinetic energy terms are the same as used in Eq. (2.14), but with the revised

displacement description as follows:

1 (le ow\? aw 96 262
where inertial coupling term is given as a, = —bxg. The Kinetic energy of the entire

system can be written as:
K= 3 ()7 [M°)) (2.35)

[Ny 1" (m)[Ny] + [Ng]" (Ip)[Ne]

+[Ny 1" (may)[Ng] + [Ng]" (may) [NW]] dy (2.36)

M,] = [

Introducing the relevant shape function polynomials and performing the matrix
multiplications and integrations it can be shown that, for a uniform beam element
[Me]:

- 156 220, 147a, 54  —13¢,  63a,
220,  46,%  21L.a, 130,  —3L(,7%  14(.a,
om|147ay 21la, = 63a, —14la, TE
Ml =551 54 13c,  63a, 156  —22¢, 147, | &30
—13¢, -—3¢,% —14l,a, —22¢, 4%  —21f.a,
| 630, 14lea, “F  147a, -21la, —

24



2.4 Aerodynamic Models

Since the solution of Eq. (2.9) requires unsteady aerodynamic theory in the frequency
domain, two distinct unsteady aerodynamic models are presented to obtain GAF
matrices. The first aerodynamic model is based on Theodorsen’s aerodynamic
formulation. Theodorsen [21] developed a procedure to obtain aerodynamic forces,
which is calculated as a function of reduced frequency, k. Besides, Theodorsen
applied 2-D unsteady aerodynamics involving pitching and plunging motion in
incompressible for the derivation of these aerodynamic forces. The aerodynamic
modeling and evaluation of GAF matrices by Theodorsen’s aerodynamics are
mathematically developed in the present study. Theodorsen’s aerodynamics can
provide an accurate mathematical analysis of flutter, nevertheless, it is not practical
when complex wing structures such as flat plat delta wings are considered. For this
reason, the 3-D aerodynamic modeling method namely, Doublet Lattice Method
(DLM) is presented and implemented in the present study. DLM was presented by
Albano and Hodden [22] considering a 3-D unsteady aerodynamic theory. The
aerodynamic forces are defined as a function of Mach Number, M and reduced
frequency, k. The aerodynamic modeling and evaluation of GAF matrices through
DLM are carried out by use of commercial software, namely, MSC®FlightLoads and
MSC®Nastran.

24.1 Evaluation of GAFs by Theodorsen Aerodynamics

The first-generation aircraft was suffering from structural failure and stability loss
due to a lack of theory of wing oscillations. The issue was achieved by employing
high Reynolds number flows and low angle of attack during the flight. An unsteady
aerodynamics model for a harmonically pitching-plunging airfoil was developed by
Theodore Theodorsen [21] dealing with potential flow theory. Besides, unsteady
aerodynamics theory for a thin airfoil having small oscillations in incompressible

flow was derived in that study. In this developed approach, structural dynamics
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equations are coupled with unsteady aerodynamics to obtain flutter speeds, i.e.,

flutter boundaries.

The typical section of the lifting surface is presented in Figure 2.2 for fundamental
definitions of the simple aeroelastic system, which is exposed to translational and
rotational motions. The motion is simple harmonic; relatively w and 6 are defined

as follows:
w = we't ; w is the amplitude of heaving harmonic motion.
6 = fe't ; 4 is the amplitude of pitching harmonic motion.

where w is the circular frequency of the motion. As seen from Figure 2.1, resultant
lift, L, and the pitching moment, M about P can be defined based on linear
aerodynamic theory. The lift involves both circulatory and non-circulatory terms, on
the other hand, the pitching moment about the quarter-chord is entirely non-
circulatory. The classical solution for the lift about the elastic axis, which is

expressed per unit span, is defined by Fung [23] and Theodorsen [21] as follows:
L = mpb? [y + U — baf] + 2mpUbC (k) | + UO + b(; — a)8|  (2.38)

The moment about the point P, presented in Figure 2.2, which is referred to as the

elastic axis is defined as below:
1
M=M:+b(=+a)lL 2.39
1+b(5+a) (239

where M, ,, is the moment about the pressure center, @ and can be obtained as

follows:
M= —mpb® |2 + U6 +b (5 5) 4] (2.40)

Then, the resultant moment about the elastic axis can be defined explicitly as follows:

1 . 1
M=npb2[baW—Ub(E—a)H—b2(§+a2)9] +
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2mpUb?(a +)C(k) | + U6 + b — )| (2.41)

Theodorsen’s function, C (k) is a complex-valued function of the reduced frequency
k, given as follows:

C(k) = G

= W = F(k) - lG(k) (242)

where H,(lz)(k) are Hankel Functions of the second kind and it can be expressed in

terms of Bessel functions of the first and second kind as:
HP (k) = Jn (k) — iY (k) (2.43)

Hankel Functions are not particularly significant in this study. In the equation (2.42)
, F(k) is the real, G(k) is the imaginary component of Theodorsen’s function. An
approximation of Theodorsen’s function is given by Fung [23] in the frequency

domain as follows:

0.165 0.335
Ck)=1- 1_00455, — 1703, (2.44)
k k

Reduced frequency, k is the measure of unsteadiness of a flow. Greater k value
means that the significance of unsteady effects becomes crucial in the flow. Figure
2.4 shows the real and imaginary parts of Theodorsen’s function at different reduced
frequencies. Note that for steady motion, C (k) is real and equal to unity (k = 0). As

k approaches to infinity real part of C (k) approaches to 1/2.
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Figure 2.4 Real and Imaginary Parts of C(k)

The detailed derivation of Generalized Aerodynamic Force (GAF) matrices for
Theodorsen’s aerodynamics is based on the study of Banarjee [24]. Hence, the
review of the derivation is expressed in this section. The GAF is formed by
employing the principle of work. Unsteady lift and moment are defined by the
aerodynamic strip theory based on Theodorsen’s expressions. The displacements are
transverse deflection (bending) w(y) and pitching rotation (torsion) 6(y) at a

spanwise distance y and they are given below:

w(y) = Xiza wi()n; (8)
6(y) = i1 6:()n: (8) (2.45)
where w;(y) and 6;(y) displacements components of the i mode ¢;, respectively,

and n;(t) (i = 1,2,....n) is the generalized coordinates. Eq. (2.45) can be written in

matrix form as follows:

[W(y)]: [wl(y) w2 () - Wn(y)] [’h] (2.46)
N2

0(y) 0.(y) 6:(y) .. 6y
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The virtual work done (W) by the aerodynamic forces are given below:

oW = X, an; L (LW () + M) ()] dy (2.47)

where n, M(y) and L(y) are the number of normal modes interested, unsteady lift,

and unsteady moment, respectively. Eq. (2.47) can be written in matrix form as

follows:
_%_
—2 tlwy, 6,|[L(Y)
o | = | % [M o (2.48)
awy Wa On
LOny, 4

The unsteady lift L(y) and unsteady moment M (y) in 2-D flow are given in Eq.
(2.38) and EQ.(2.41) can be written as below:

ool =loa eaelloey 019

where the terms of the matrix [QA] are given below:

QA = —mpU?[—k? + 2C(k)ik]

QAy, = mpU?b [(ak? + ik) + 2C(k)[1 + ik(0.5 — a)]]

QA,; = —mpU?b [2C(k)ik(0.5 + a) — k?a]

QA,, = mpU?b?[2(0.5+ a)C(k)(1 + ik(0.5 — a)) + 0.125k? + k?a? + (a — 0.5)ik]

Substituting the Eq. (2.49) into Eq. (2.48), Generalized Aerodynamic Force (GAF)

matrix can be obtained as follows:

_%_

g;’; w; 6 N1

—2 tlwy 6, [QA; QA12] Wiy Wz ot Wyl |2

an, | = ; . . 2.
?2 fo : i [lQAz1 QA2 [91 0, - en] ;|4 (250)
Wn Wn On T

_6nn_
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ééro e ég%o _
=( : : | where [Qgero] is the GAF matrix with

ni . nn
aero aero

L ¢
[chljero] = fo [QA11Win + QA12Wi9j + QA21Wj9i + QAzzeiej] dy (2.51)

Note that, GAF matrix, [Qgero] is usually complex having real and imaginary parts.

2.4.2 Evaluation of GAFs by Doublet Lattice Method (DLM)

DLM is based on the linearized compressible aerodynamic potential theory for
subsonic flow, and it is an unsteady 3-D lifting surface theory that was presented by
Albano and Rodden [22]. The undisturbed flow is uniform and is either steady or
varying harmonically. Moreover, the lifting surfaces are assumed as flat and lie

parallel to the incoming flow.

DLM provides aerodynamic forcing harmonically for the considered lifting surface
like Theodorsen’s aerodynamics. The aerodynamic surface is divided into small
trapezoidal lifting elements (called boxes). These boxes are aligned to the free stream
direction. DLM defines an acceleration potential doublet of uniform, but unknown
strength is placed at 1/4 chord of each box. A control point is placed at the 3/4 chord.
The normal velocity, w; that is induced by the inclination of the surface to the
airstream is calculated at this point. The assembly of control points is referred to j-
set. An aerodynamic grid point (k-set) is located at the center of the lifting element
where the resultant force {p, } and displacement {u, } are calculated. The illustration
of the panels on the typical 2-D wing is defined by Giilgat [25] as shown in Figure
2.5.
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Figure 2.5 Panels on Wing

Substantial differentiation matrix (Djlk-real part and Djzk-imaginary part) is

responsible for the relation between the downwash at the j-th point and the

displacement of the k-th point. The relation is defined as follows:
{w;} = [Dji + ikDA ]} (2.52)

On the other hand, the downwash can be also written as follows:
- fi
{wi} = 4;] {q} (2.53)

where {%} is the pressure on the j-th point and [4;;] is the Aerodynamic Influence
Coefficient (AIC) matrix is defined in j-set. The computing methodology for the
aerodynamic influence coefficients is presented by Giesing, Kalman, and Rodden
[26]. The forces at the k-th point are computed by integrating the pressure of each

lifting element, which is given below:

{pi} = [Si;]{73) (2.54)

where [Sy ;] is the integration matrix. The equations (2.52), (2.53) and (2.54) can be

combined to give AIC matrix in k-set, [Qyx] as follows:

[Quic] = [Si;][4;] " [Dji + kD3] (2.55)
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Since the aerodynamic and structural grids are not necessarily the same, in other
words, they are created independently, the transfer of displacements and forces from
the structural model to the aerodynamic model must be accomplished. This transfer
function can be obtained by interpolation, so-called splining. There are several
methods for splining, for instance, linear and surface splines. The splining methods
provide an interpolation matrix [G.], which relates the structural grid points (d-set)
to the aerodynamic grid points (k-set). The derivation of the interpolation matrix
[Gra] is based on the selection of the interpolation type, which is force and
displacement interpolation [27]. The force interpolation is defined mathematically

as follows:

{fd} = [de]T{fk} (2.56)

where {f}} is the force at the aerodynamic grid points and {f;} is the structurally

equivalent value. The displacement interpolation is defined as below:

{up} = [de]{ug} (2.57)

where {u,} is the displacement at aerodynamic grid points and {u,} is the

displacement at structural grid points.

Evaluation of GAF matrices is performed employing MSC®Nastran whenever
Doublet Lattice Method (DLM) is considered in the present study. All aerodynamic
methods present in MSC®Nastran can compute the [S;] , [D}i] and [D7] matrices
at user-supplied Mach numbers and reduced frequencies. MSC®Nastran can
compute the matrix [4;;] based on DLM theory and its computing code is based on
the work of Giesing, Kalman, and Rodden [26]. To define the aerodynamic property
of the model, matrix decomposition and forward and backward substitution are used
in the computation of the Aerodynamic Influence Coefficient (AIC) matrix, [Qxx]-
The last step before defining in the modal domain of the AIC matrix is to transform

the AIC matrix, [Qx] from k-set to the d-set as follows:

[Qaal = [de]T[Qkk][de] (2.58)
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The last step is to transform [Q4,] to the modal domain as follows:

[Qaero] = [¢]T[Qdd] [#] (2.59)

Note that the mode shape matrix of the structural model, [¢] is used for
transformation and the Generalized Aerodynamic Force (GAF) matriX, [Qgero] iS

formed accordingly.

25 Flutter Calculation Procedures

The aeroelastic flutter involves rapid self-feeding dynamics and is excited by
aerodynamic forces. Since the flutter is potentially destructive due to these dynamic
characteristics, analyzing the aeroelastic flutter is crucial for aerospace structures.
The flutter equation has found a zero right-hand side and homogeneous form, and it
IS not possible to obtain absolute values of the modal response. Therefore, the
stability of the system is required to be analyzed. The root locus approach can be
implemented to calculate the stability of the system. The root locus methods based
on aeroelastic stability analysis are presented by Hajela [28] and Rheinfurth et
al.[29].

Since the time-domain solution of nonlinear Eq. (2.3) is tedious and computationally
costly, Eq. (2.3) is recasted into a set of linear systems in Eq. (2.7) which leads to
an eigenvalue solution approach. However, a direct eigenvalue solution of the flutter
problem is not possible since the [Q,.,,] is a function of reduced frequency for 2-D
unsteady aerodynamics. In other words, the eigensolution has to be performed at a
particular flight condition i.e. airspeed, V, and altitude to determine eigenvalues.
Note that the notation for the airspeed, U is replaced here by the term V to present
V-g and V-g curves. The eigenvalues are obtained for each airspeed, V, and the
results are given in the form of classical V-g and V-f curves as shown in Figure 2.6.
The structural damping, g of each mode as a function of airspeed, V is shown by the
V-g plot, while the V-f curve illustrates the frequency, f of each mode as a function

of airspeed, V. The critical speed or flutter is determined by the V-g curve as the
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lowest airspeed at which g curve crosses g=0 axis. Negative structural damping

shows a stable region while positive shows an unstable region.

Critical Frequency

80 == A \Vj

T - \ A/
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.
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V-g Curve V-f Curve

Figure 2.6 The Classical V-g and V-f Curves

The frequency-domain flutter calculation algorithms have been developed and they
have been widely using in the aerospace industry. There are two commonly used
algorithms, namely “K-Method” and “P-K Method” and these methods are available

in MSC® Nastran aeroelastic solver.

Both methods involve repeated interpolations of the unsteady aerodynamic forces.
A novel method performing a P-K analysis that does not require iterations, namely
“Non-Iterative P-K Method” can also be employed as a flutter search algorithm. This
method is not present in MSC® Nastran aeroelastic solver. The aforementioned K-
Method, P-K Method, and NIPK-Method are mathematically developed and

employed in the present flutter analysis.

251 The K-Method

The basic equation of motion for flutter analysis is employed by the K-method and

it is defined as follows:

[~w?[M] + (1 +ig)[K] = qu[Qqeroll{n} = 0 (2.60)
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Note that general form of flutter Eq. (2.9) is modified such that artificial damping
term, g is introduced to the system as a stability measure and [Qg.,,] is a function
of reduced frequency, k and Mach number, M. K-Method assumes the sinusoidal
motion for the aeroelastic system, and it solves the EOM as eigenvalue problem for
a series of parameters M, k and p. Moreover, [Qq.ro] is interpolated for a series of
k values and the eigenvalue problem is solved for each interpolated GAF matrix.
Dividing each term of Eq. (2.60) by (1 + ig) and substituting g,, = 1/2pU? into
Eq.(2.60) gives the following equation:

(071 = {011 + ((262) /7 ) [Gaerol} (z2) |} =0 (261)

wZ

(1+ig)

where the complex eigenvalue is and it can be interpreted as real values of w

and g. The airspeed, U can be obtained considering the relation U = %b.

Although the K-Method algorithm provides the solution quickly, multiple frequency
and damping can be obtained at certain speed regions. Since the structural damping,
g is artificially introduced to the system, in other words, g is not physical damping,
the solution is valid only when g = 0. Frequency and damping do not accurately
represent the system behavior when damping except g = 0. Estimating realistic
damping is important in the aerospace industry. Especially, it can be vital when flight
flutter tests are considered. Thus, the implementation of the K-Method for the flutter

calculations can be chosen carefully by taking into consideration these drawbacks.

25.2 The P-K Method

The P-K Method is presented by Hassig [30] to solve the flutter equation, whose
solution involves approximation such that aerodynamic forcing has constant

amplitude concerning sinusoidal motion. The EOM can be written as follows:

|[M1p? + (1 + ig)[K] = @[ Qaero] [t} = 0 (262)
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where p is eigenvalue and is defined as p = w(y + i) and y is transient decay rate
coefficient, y = g/2. The EOM for P-K Method is written slightly different than Eq.
(2.60). The difference is the eigenvalue term definition and both methods generally
provide the same flutter speed for g = 0 condition. The eigenvalue, p is expressed
as sinusoidal motion, eP¢, and the motion is damped. On the other hand, [Qgero] iS
expressed as, e'®t and note that motion is undamped. This produces mathematically
inconsistent formulation because of the mismatch between the assumed motion of

aerodynamic forces and structural forces.
An iterative approach is developed by Hassig [30] to solve the Eq. (2.62). Circular

frequency and the reduced frequency are not independent since w = %U, which is

obtained by the eigenvalue solution. Briefly, the eigenvalue problem is solved
iteratively considering the relation mentioned above in the P-K Method. The iteration

process is explained clearly by Wright J and Cooper J [20].

When an aeroelastic problem includes a significant number of structural modes and
free stream velocities, the solution of the problem becomes very time-consuming

owing to employing an iteration process.

P-K Method provides more realistic subcritical damping and frequency than the K-
Method. Moreover, P-K Method eliminates the looping problem encountered in the

K-Method. Both flutter solution methods generally yield the same flutter speed, U

and flutter frequency, wy for g = 0.

2.5.3 Non-Iterative P-K (NIPK) Method

Pitt [31] proposed a method that solves the P-K equation (2.62) in a non-iterative
manner. Determination of the free stream velocity set is the first step in the Non-

Iterative P-K Method like in the classical P-K Method. [Q4.,0] is a function of
Waero = %U for each k in the determined reduced frequency set. The equation (2.62)

is solved for each k value without employing interpolation of [Qgero] term. The
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solution results in a series of w,yor aNd ¥yp0r TOr €aCh Wger, Value of the [Qgerol
term. The interpolation of both w,,,: and y,,.: terms is employed based on the
matched line at the end of each solution sequence. The interpolation procedure is
repeated at each freestream velocity. The rationale of the method is interpolation
process is not applied to the aerodynamic term. Hence, this process is much faster
than the traditional P-K method, which requires the interpolation of large [Qgero]

values.

Since the solution of the eigenvalue problem results in unsorted roots or eigenvalues
at each velocity, Non-Iterative P-K Method requires root tracking as a function of
velocity. Root tracking is crucial when considered Non-Iterative P-K Method. The

flutter solution algorithm for the method is given in Table 2.2.
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Table 2.2 Flutter Solution Algorithm for Non-lterative P-K (NIPK) Method in

Pseudo Code Form

1: foriinU do
2: for jin k do

3: Define o,,,* =kPU® /b

4: cal QY

5. Solve EVP for U® and k©

6: Save o, 0., and y,,,*

7 end

8: for each mode j do

9 Interpolate o, and y,,,,* satisfying the condition @,,., = @,
10: Save interpolation results and track modes | @ (U®), #?(U")]
11: end

12: end

13: for each mode j do

14: Find mode j =n,,,., satisfying /) =0

15: If Njyer EXISES

16: Interpolate frequencies and velocities for the flutter mode
17: Save U e s @pyger

18: end

19: end
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In conclusion, for the 1-D beam-like cases, structural models are developed
mathematically. The first model for the beam-like wings is based on the Rayleigh-
Ritz assumed shapes method where the wing is represented as a continuous
cantilevered beam. The second structural model is based on the principle of FEM
and Euler-Bernoulli beam theory is used for discretization of the wing structure.
Besides, a 2-D aerodynamic model is defined regarding Theodorsen’s aerodynamics,
and it is coupled with 1-D beam-like wing structural models. The evaluation of the
Generalized Aerodynamic Force (GAF) matrices by Theodorsen’s aecrodynamics is
expressed in particular to form the aeroelastic equation of motion. The 3-D Doublet
Lattice Method (DLM) is introduced, and evaluation of Generalized Aerodynamic
Force (GAF) matrices is given for the 2-D wing structures through DLM. The flutter
EOM is defined, and particular flutter calculation procedures are given to solve the
EOM, namely, K-Method, P-K Method, and Non-Iterative P-K (NIPK) Method.
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CHAPTER 3

CLEAN WING CASE STUDIES

This chapter involves the case studies to validate the aeroelastic analysis model for
clean wing configurations, which means that wing pylon and external store are not
present under the wing. The validation of the model is carried out through three well-
known wing models, namely High-Altitude Long Endurance (HALE) wing, Goland
wing, and AGARD wing 445.6 (weakened). The case studies are initially carried out
for modal analysis, in general, must be completed before performing flutter analysis.
Vibrational analyses are performed to determine natural frequencies and mode of
vibrations (mode shapes). After that, aeroelastic analysis is performed to define
dynamic aeroelastic phenomena including flutter speed and frequency.

The structural model is obtained using three different methods which are FEM with
Euler Bernoulli beam formulation, Rayleigh-Ritz method by assumed mode shapes,
and 1-D beam modeling in MSC®Patran. In the first approach, the structural model
is obtained by FEM using Euler-Bernoulli beam formulation. The second approach
is based on Rayleigh-Ritz method using a series of assumed shapes that involve pre-
defined bending and torsion modes in the analysis. The last structural model is
obtained with the help of MSC®Patran using FEM. Since the system matrices are
required to conduct flutter analysis, both [M] and [K] matrices are exported from

MSC®Nastran using Direct Matrix Abstraction Program (DMAP) language.

Two distinct unsteady aerodynamic models are utilized to obtain GAF matrices,
namely, Theodorsen’s 2-D unsteady aerodynamics and Doublet Lattice Method
(DLM). The flutter solution is obtained through K-Method, P-K Method, and Non-
Iterative P-K Method (NIPK-Method) flutter calculation algorithms. The classical
V-g and V-f plots are presented for the specific analysis cases. Finally, results are
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compared with the numerous reference studies for verification. The analysis

summary table for the case studies is presented in Table 3.1.

Table 3.1 Case Studies Analysis Summary

Flutter
Structural Model Aerodynamic Model Solution
Method
FEM- ; MSC® NASTRAN
Euler- Rayleigh- FEM Theodorsen
_ Ritz DLM _ PK |NIPK
Bernoulli Method 1-D 7.D Aerodynamics
Beam Beam | Shell
HALE Wing v v v v v
Goland Wing v v 4 v v | v
AGARD Wing v v v
445.6

3.1  High Altitude Long Endurance (HALE) Wing

Since HALE Unmanned Aerial Vehicles (UAVs) are being widely employed in both

the defense and civilian industry, the HALE wing is a reasonable study case for the

implementation of the given linear aeroelastic model. The sample HALE UAYV is

presented in Figure 3.1.

G

Figure 3.1 Sample HALE UAV [32]
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The long aspect ratio wings of HALE UAVs are exposed to large structural
deflections due to interaction with the airflow and this situation results in geometric
nonlinearities in the wing structure. Linear flutter analysis is ineffective when
predicting flutter boundaries for such cases. Geometric nonlinearities can vanish
because of minimal deflection cases and this situation can be seen at cruise
conditions. Since the present study covers linear cases, current analysis can
accurately predict HALE wing flutter boundary at cruise conditions [33]. HALE
wing model specifications are given in Table 3.2.

Table 3.2 HALE Wing Properties[34]

Parameter Value Unit
Half span, 16 m
Chord, 2b 1 m
Mass per unit length, m 0.75 kg /m
Moment of inertia (50% chord), I 0.1 kg m
Spanwise elastic axis (from LE), a 50% chord | -
Center of gravity (from LE), e 50% chord | -
Spanwise bending rigidity, ET, 2x10% N m?
Torsional rigidity, GJ 1x10* N m?2
Chordwise bending rigidity, EL, 4x10° N m?2

To implement the theoretical development of the aforementioned approximate
approaches, namely FEM Euler-Bernoulli beam formulation and Rayleigh-Ritz
method, an in-house Matlab® computer code is developed. Therefore, the structural
model would not be developed by relying only on external commercial software,
MSC®Patran. It is adopted for the validation of the mathematically developed
models. To define the vibrational and flutter analysis approach for the HALE wing,
Figure 3.2 is given to illustrate the analysis workflow. Figure 3.2(a) shows the
analysis workflow through MSC®Patran and MSC®Nastran while Figure 3.2(b)
illustrates the implementation of FEM with Euler-Bernoulli beam formulation and
Rayleigh-Ritz method. Both workflows utilize the same aerodynamic model which

is developed through 2-D Theodorsen’s aerodynamics.
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Figure 3.2 HALE Wing Analysis Workflow

In the HALE wing structural model, the equivalent beam flexural axis coincides with
the wing flexural axis. It is assumed that the rigidity of the wing is concentrated
throughout the entire beam. The structural nodes are strictly at the midpoints of the
spanwise sections. The structural node at the wing root physically represents the
intersection of the wing with the fuselage. The main assumption in the analysis is
that the wing is perfectly fixed at the fuselage imposing no translational and

rotational motion.

The first model is obtained by use of FEM with Euler-Bernoulli beam formulation
and two distinct models are created with a total of 5 and 20 finite elements,
respectively. The purpose of employing different mesh sizes is to investigate the
effect of the mesh size on the flutter speed and frequency. The second model is
obtained based on the Rayleigh-Ritz method as selecting 4 number of modes in
bending and 4 number of modes in torsion. The evaluation of the last structural
model is performed with FEM using MSC®Patran. In the model, 1-D CBEAM
elements with 6 DOFs per node are used and the node at the wing root is fixed.
Additional FEM nodes are used to visualize the deformation of the beam, and these

nodes are connected to the beam nodes with the rigid elements RBE2. The structural
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nodes except fixed root are constrained in translational (Y and Z axes) and rotation
(X-axis) degree of freedoms. In other words, relevant deformations and rotations are
omitted to obtain the Euler-Bernoulli beam model for the modal and flutter analysis.
Therefore, the HALE wing equivalent beam geometry adopted in MSC®Patran and

is presented in Figure 3.3.

Flexural and Mass Axes

CBEAM Element

Figure 3.3 HALE Wing Equivalent Beam Geometry

In the structural model, 20 CBEAM elements with 0.8 m sectional length are used to
discretize the entire wing. The beam material and geometric properties are given in
Table 3.3.

Table 3.3 HALE Wing Equivalent Beam Structural Properties

Parameter Value Unit
Equivalent beam width, wy, 1.26176 m
Equivalent beam height, h,, 0.08922 m

Elastic modulus, E 267.823 MPa

Shear modulus, G 35.039 MPa
Torsional constant, J 2.854E-04 m*

Material density, pying 6.6623 kg/m?®
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3.1.1 Structural Analysis

The free vibrational analysis of the HALE wing is carried out regarding the Eq. (2.7)
.Thus, mode shapes and natural frequencies are obtained for all structural models.
Likewise, modal analysis is carried out externally by the Lanczos algorithm [27] in
MSC®Nastran. As a consequence of free vibration analysis, the first five natural
frequencies of the HALE wing are calculated by implementing the above-mentioned
methods, and obtained results are given in Table 3.4 along with the results obtained

by Patil [35] for the verification purpose.

Table 3.4 Comparison of HALE Wing Natural Frequency Results

Mode-1 | Mode-2 | Mode-3 | Mode-4 | Mode-5
[Hz] [Hz] [Hz] [Hz] [Hz]

Method

FEM-
Euler-Bernoulli Beam 0.357 2.238 4.961 6.286 12.418
(5 Elements)
FEM-
Euler-Bernoulli Beam 0.357 2.237 4.942 6.264 12.275
(20 Elements)
Rayleigh-Ritz Method
(4 Modes in Bending 0.357 2.237 4.941 6.264 12.274
& Torsion)
1-D Beam Nastran
(20 Elements)
1-D Beam Nastran
DMAP 0.357 2.227 4,946 6.217 12.142
(20 Elements)

Rayleigh-Ritz Method
Patil [35]

0.357 2.227 4.946 6.217 12.142

0.357 2.237 4.941 6.264 N/A

As seen from Table 3.4, the present analysis results are very similar to each other
and show a good correlation with the reference values presented by Patil [35]. In
particular, direct MSC®Nastran results have a perfect match with the case where
natural frequencies are calculated by MSC®Nastran exported (DMAP) mass and
stiffness matrices. Besides, obtained natural frequencies and corresponding elastic

modes are presented in Figure 3.4.
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15t*Mode (0.3565 Hz) 2"YMode (2.2273 Hz)

3"Mode (4.9460 Hz)

5t Mode (12.1419 Hz)

Figure 3.4 HALE Wing Natural Frequencies and Mode Shapes

3.1.2 Aeroelastic Analysis

The aeroelastic analysis combines both structural and aerodynamic analysis and the
main objective of performing aeroelastic analysis is to determine the wing’s flutter
speed. To accomplish flutter speed, the aeroelastic equation of motion (2.9) is
required to be formed. The control points (pressure center, P in Figure 2.2) on the
wing must be coupled to beam structural nodes because the 1-D beam is the only
deformable body on the structure. In this approach, aerodynamic and structural
discretization along the spanwise direction is equivalent. Besides, each aerodynamic
lifting surface corresponds to a box strip. Thus, individual control points on the box
strips are uniquely connected to a structural node located on the elastic axis on the

same wing strip. The connection element can be assumed as an infinite stiff beam
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element. As a result, the generalized aerodynamic forces (GAFs) can be obtained by
integrating lift and moment along the span. After forming an aeroelastic equation of
motion, it can be solved by implementing suitable flutter calculation methods. Since
flutter analysis of the HALE wing study case is aimed to compare K-Method with
P-K Method, NIPK Method is not applied in the analysis.

For the HALE wing study case, the flutter speed and frequency are computed by
eigenvalue analysis by implementing both K-Method and P-K Method with
Theodorsen 2-D unsteady aerodynamics. Flutter boundary is searched within the pre-
defined range of flight speeds. Linear flutter analysis is performed at flight

conditions, which are given in Table 3.5.

Table 3.5 Analysis Conditions

Parameter Value Unit
Altitude 20000 m
Air density 0.0889 kg/m?

The first four natural frequencies are tracked in the search of the flutter solution.
Present analyses cover a total of seven different cases. The results are compared with

the reference studies as presented in Table 3.6.

48



Table 3.6 Comparison of HALE Wing Flutter Results

Flutter Flutter Flutter
Structural Unsteady 2
Model Aerodynamics Solution Speed | Frequency
Method [m/s] [Hz]
Analysis FEM - _Euler 2-D
Case-1 Bernoulli Beam Theodorse_n K-Method 32.52 3.58
(5 Elems.) Aerodynamics
Analysis FEM - _Euler 2-D
Case-2 Bernoulli Beam Theodorse_n K-Method 32.40 3.57
(20 Elems.) Aerodynamics
. . . 2-D
Fralysls | RYBIONRIZ | Theodorsen | K-Method | 3242 | 357
Aerodynamics
Analysis FEM - Euler 2-D
Case-4 Bernoulli Beam Theodorse_n PK Method 32.48 3.57
(5 Elems.) Aerodynamics
Analysis FEM - Euler 2-D
Case-5 Bernoulli Beam Theodorse_n PK Method 32.36 3.56
(20 Elems.) Aerodynamics
. . . 2-D
Analysis | RayleldhRIZ | Theodorsen | PK-Method | 3238 | 356
Aerodynamics
Analysis 1-D Beam 2-D
Case-7 Nastran DMAP Theodorse_n PK Method 32.40 3.57
(20 Elems.) Aerodynamics
Nonlinear
Patil [33] | Intrinsic Beam 2'Daf‘[*§e7r]s € | K-Method | 32.21 3.60
Theory [36]
. 3-D Nonplanar
. N_on_llnear (Doublet
Patil [33] Intrinsic Beam K-Method 31.75 3.76
Theory [36] +Vortex)
Grid: 128 x 8
Rayleigh-Ritz 2-D Modified
Pepe [38] M Theodorsen PK- Method 32.21 3.61
ethod X
Aerodynamics [38]

A total of seven HALE wing analysis cases have been performed and results are
presented along with reference studies. Analysis cases 1 & 2 and analysis cases 4 &
5 show that applying of different size of finite elements do not produce much
difference in the flutter results. Furthermore, analysis cases 3 & 6 show that K and
P-K Methods yield almost the same flutter speeds, which is expected. Lastly,
analysis case 7 exhibits that the development of the HALE wing aeroelastic model,
which is combined through MSC®Nastran exported structural model and in-house 2-

D aerodynamics, is performed successfully. In conclusion, the implementation of
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present methods and calculation of the flutter speeds show satisfactory results with

the published studies.

In addition to these numerical results, the aeroelastic stability condition of the

structure can be determined by inspecting the variation in the aerodynamic damping

at different flight speeds. It can be concluded from the velocity versus aerodynamic

damping (V-g) graph. The corresponding vibration frequencies for the modes of

interest can be seen from the velocity versus frequency (V-f) graphs. The diagrams

are presented for selected cases of 3, 5, and 7 in Figure 3.5, Figure 3.6, and Figure

3.7, respectively.
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Figure 3.7 Analysis Case-7 V-f and V-g Graphs

The tendency of all four modes for the given cases is like each other. Mode-1 turns
downward to stable condition up to airspeed 30 m/s. The vibration frequency of
mode-3 decreases with an increase in speed and damping has gone to zero at the
airspeed of 32.40 m/s, where is the onset condition for flutter. The frequency of
modes-2 and mode-4 remains stable. Besides, mode-2 and mode-3 of the structure
are coupled by the fluid-structure interaction. As a result, the present results for the
seven different analysis cases are very similar to each other, and they show a good

agreement with the reference values.

3.2  Goland Wing

The Goland wing is a stiff and low-aspect-ratio metallic wing. Because of possessing
coupled bending-torsional dynamic characteristics, it has been widely used as a
benchmark model by many researchers for both structural and aeroelastic validation
purposes. The wing has a uniform and rectangular shape, and its geometric and

structural properties are given in Table 3.7.
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Table 3.7 Goland Wing Properties[39]

Parameter Value Unit
Half span, 6.096 m
Chord, 2b 1.8288 m
Mass per unit length, m 35.71 kg /m
Moment of inertia (50% chord), I 8.64 kg m
Spanwise elastic axis (from LE), a 33% chord | -
Center of gravity (from LE), e 43% chord | -
Spanwise bending rigidity, E1, 9.77x10% | Nm?
Torsional rigidity, GJ 0.987x10° | N m?

Likewise in the HALE wing, FEM with Euler-Bernoulli beam formulation and
Rayleigh-Ritz method are employed to develop the structural model in Matlab®.
Besides, MSC®Patran is adopted to establish the FE model for validation of the
mathematically developed models. To define the vibrational and flutter analysis
approach for the Goland wing, Figure 3.8 is given to illustrate the analysis workflow.
Figure 3.8(a) defines the analysis workflow through commercial software while
Figure 3.8(b) illustrates the implementation of FEM with Euler-Bernoulli beam
formulation and Rayleigh-Ritz method for the structural models. Both workflows

utilize the same aerodynamic model which is developed through 2-D Theodorsen’s

aerodynamics.
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Nastran 1-D Beam FEM
Theodorsen's Aerodynamics

Figure 3.8 Goland Wing Analysis Workflow

There is a total of three structural models which are developed for the Goland wing.
The first main model is obtained by use of FEM with Euler-Bernoulli beam
formulation with different element sizes. The number of finite elements is 5 and 10
for two different cases, respectively. The second model is obtained based on the
Rayleigh-Ritz method by selecting 6 modes in bending and 6 modes in torsion. The
evaluation of the last structural model is carried out with FEM using MSC®Patran.
The wing is modeled with 1-D CBEAM elements with 6 DOFs per node and lumped
masses. 10 massless CBEAM elements are used to model flexible characteristics of
the wing. Lumped masses with inertia are connected to the structural nodes with the
rigid elements RBE2. Shear deformation is neglected to have the Euler—Bernoulli
equivalent beam model. Additional nodes are used to visualize the deformation of
the beam, and these nodes are connected to the beam nodes with the rigid elements

RBE2. Goland wing equivalent beam geometry is presented in Figure 3.9.
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Flexural Axis

Mass Axis

Figure 3.9 Goland Wing Equivalent Beam Geometry

10 CBEAM elements with 0.6096 m sectional length are used to discretize the entire
wing in MSC®Patran. Relevant structural properties of the lumped element and beam
are given in Table 3.8.

Table 3.8 Goland Wing Equivalent Model Structural Properties

Parameter Value Unit
Static Unbalance Distance, a, -0.183 m
Equivalent beam width, w,, 1.5811 m
Equivalent beam height, h,, 0.05 m
Lumped Mass, m, 21.769 kg
Lumped Inertia, I, 4.5395 kgm?
Elastic modulus, E 5.9325x10° MPa
Shear modulus, G 1.5288x10* MPa
Torsional constant, | 6.4562x107° m*

3.2.1 Structural Analysis

The mode shapes and natural frequencies are obtained for all structural models via
in-house Matlab code. Likewise, external modal analysis is also carried out by the

Lanczos algorithm [27] in MSC®Nastran. As a result of modal analyses, the first five
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natural frequencies of the Goland wing are presented with the aid of previously
mentioned methods. Table 3.9 compares the natural frequencies of the Goland wing

with two reference results.

Table 3.9 Comparison of Goland Wing Natural Frequency Results

Mode-1 Mode-2 Mode-3 Mode-4 Mode-5

Method [HZ] [HZ] [HZ] [HZ] [HZ]

FEM-
Euler Bernoulli Beam 7.666 15.289 39.825 56.311 77.090
(5 Elements)
FEM-
Euler Bernoulli Beam 7.664 15.245 39.053 55.583 72.276
(10 Elements)
Rayleigh-Ritz Method
(6 Modes in Bending & 7.664 15.231 38.791 55.326 70.684
Torsion)
1-D Beam Nastran
(10 Elements)
1-D Beam Nastran
DMAP 7.626 15.231 38.449 54.188 69.142
(10 Elements)
Analytical
[40]
FEM-Euler Bernoulli
Beam 7.896 15.444 39.621 56.605 71.915
[41]

7.626 15.231 38.449 54.188 69.142

7.894 15.438 39.614 56.595 71.858

In conclusion, Euler-Bernoulli beam formulation is applied for 5 and 10 finite
elements for the Goland wing. Besides, 6 modes in bending and 6 modes in torsion
are used for the Rayleigh-Ritz method. The results of the present three methods show
good agreement in the first 4 modes. The effect of the number of elements in Euler-
Bernoulli beam formulation can be seen at mode 5, where 5 element case shows the
difference compared to present results and reference studies. Here again, present
results show good agreement with the reference studies for the wind-off frequencies,
i.e., natural frequencies. In addition to numerical results, the first five natural
frequencies and belonging elastic modes are presented from Figure 3.10 to Figure
3.14.
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Figure 3.12 Mode-3 (38.449 Hz)
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Figure 3.14 Mode-5 (69.142 Hz)

3.2.2 Aeroelastic Analysis

The flutter speed and frequency of the Goland wing are calculated with the 2-D
Theodorsen’s aerodynamics. Flutter boundary is searched within the pre-defined

range of flight speeds and corresponding flight conditions are given in Table 3.10.

Table 3.10 Analysis Conditions

Parameter Value Unit
Altitude Sea Level -
Air density | 1.225 kg/m3
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The flutter speed and frequency are predicted by eigenvalue analysis of the
aerodynamic equation of motion by implementing both P-K Method and Non-
Iterative P-K Method (NIPK Method). The first three natural frequencies are tracked
in the analyses. The flutter results of the Goland wing are achieved by seven different
analysis cases as presented in Table 3.12. 2-D Theodorsen aerodynamic formulation
is applied in the aerodynamic model, which is combined with a particular structural

model.

As considering the flutter analysis, the reduced frequency is calculated from the
knowledge of Unin, Umaxs ©@min = 27 finin @0 Opmax = 27 frnax- The relation is

defined in the following equations:

b2 fmin

ki == % (3.1)
b2 fmax

kmax = ;Tmin (3.2)

where b is the semi-chord length, U,,;, is the minimum value of speed range of
interest, U,y 4 IS the maximum value of speed range of interest, w,y;, IS the minimum
value of the frequency range of interest, and w,,4, IS the maximum value of the
frequency range of interest. U,,,;,, is generally taken as the stall speed while U, 1S
the dive speed of the wing structure. w,,;, and w,,,, should be determined
depending on the natural frequencies of the structure. w,y;, should be smaller than
the first bending mode frequency, on the other hand, w,,,, should be greater than
the first torsion mode frequency since flutter generally occurs between these modes.
For the analyses cases in which the NIPK-Method flutter solution method is
employed, the parameter set in Table 3.11 is selected for GAF matrix generation.
The same U,,;, and U,,,4, range is used for the P-K Method solution. Since the GAF
database is essentially formed by k,,in, kmax @nd Ny, the selection of these values
can affect the accuracy of the analysis results. As an example, the insufficient

number of k points, or ill-selected k values can reduce the accuracy of the results.
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Table 3.11 Goland Wing Flutter Non-Iterative P-K Method Analysis Domain

Parameter Value Unit
Unin 120 m/s
Unmax 150 m/s
Wmin 7.6638 Hz
Wmax 38.8561 Hz
kmin 0.2935 -
Komax 1.8603 -

Number of k, N, 50 -

Table 3.12 compares the flutter speed obtained through the exact differentiation of
the equations of motion by Goland & Luke [3]. Patil and Hodges [39] and Qin and
Librescu [42] have used the Goland wing to compare their results. Goland & Luke
calculated the flutter parameters according to the Rayleigh method and exact
differentiation of the equations of motion. Patil and Hodges implemented nonlinear
intrinsic beam theory for the structural modeling and 2-D strip theory for the
aerodynamics. Qin and Librescu used a thin-walled beam model for the wing

structure, 2-D strip theory for the aerodynamics, and K-Method for flutter solution.
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Table 3.12 Comparison of Goland Wing Flutter Results

Flutter | Flutter Flutter
Structural Unsteady Soluti Speed. | E
Model Aerodynamics olution | Speed, | Frequency
Method | [m/s] [HZ]
. FEM - Euler
ACr‘:;é’_sl's Bernoulli Beam ZAZrZQe‘;gm;” MZE;) 4| 13720 | 1118
(5 Elems.) y
. FEM - Euler
ACr‘:;é’_SZ'S Bernoulli Beam ZAZrZQe‘;gm;” MZE;) 4 | 13683 | 1115
(10 Elems.) y
Analysis Rayleigh-Ritz 2-D Theodorsen PK-
Case-3 Method Aerodynamics Method 136.78 1114
. FEM - Euler
Analysis | gornoulli Beam | 2D Theodorsen | NIPK- 10050 1 1118
Case-4 Aerodynamics Method
(5 Elements)
. FEM - Euler
Analysis | gornoulli Beam | 2D Theodorsen | NIPK- 1}y o6 00 | 1115
Case-5 Aerodynamics Method
(10 Elems.)
Analysis Rayleigh-Ritz 2-D Theodorsen | NIPK-
Case-6 Method Aerodynamics Method 136.88 11.15
. 1-D Beam
Analysis 2-D Theodorsen PK -
Case-7 Nastran DMAP Aerodynamics Method 137.65 11.11
(10 Elems.)
. 1-D Beam
Analysis |\ siran DMAP | 2D Theodorsen | NIPK- 1y 05 20 | 94 49
Case-8 Aerodynamics Method
(10 Elems.)
Goland &
Luke [3] Analytical - - 137.5 11.20
(Exact Sol.)
Patil and Intrinsic beam 2-D strip theory
Hodges[39] Patil [39] Peters et al.[43] i 135.6 11.17
Qin and Thin-walled beam | 2-D strip theory K
Librescu[42] | model[42] [42] Method | 370 | 1115

Results presented in Table 3.12 show a reasonably good correlation with the

reference flutter speed and frequency values. The results obtained here considering

the eight different analysis cases validate the developed flutter computation codes.

In addition to flutter speeds and frequency values, V-g and V-f graphs are presented

for selected cases of 2, 6, and 8 in Figure 3.15, Figure 3.16, and Figure 3.17,

respectively.
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V-f Graph PK Method - Flutter Mode: 2

V-g Graph PK Method - Flutter Mode: 2
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Figure 3.15 Analysis Case-2 V-f and V-g Graphs
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Figure 3.16 Analysis Case-6 V-f and V-g Graphs
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Figure 3.17 Analysis Case-8 V-f and V-g Graphs

61



The tendencies of all four modes for the given analysis cases are similar to each
other. Mode-1 turns downward to stable condition while mode-3 remains stable in
both damping and frequency. The frequency of the mode-2 slightly decreases with
an increase in speed and damping has gone to zero around the airspeed
approximately 137 m/s, where is the onset condition for flutter. It means that the
aerodynamic instability condition is seen in the second mode. Here again, the present
results for the eight different analysis cases are very similar to each other, and they
show a good agreement with the reference values.

3.3  AGARD 445.6 Wing

In this case study, the well-known AGARD (Advisory Group for Aerospace
Research and Development) 445.6 wing is chosen to conduct free vibrational and
flutter analyses by MSC®FlightLoads and MSC®Nastran. The wing was initially
tested by Yates Jr [44]. The geometrical properties of the wing are shown in Figure
3.18. The wing has a root chord of 0.559 m and tip chord of 0.368 m, a semi-span of
0.762 m, a taper ratio of 0.66, and an aspect ratio of 1.65. The wing has a quarter-
chord sweep angle of 45° and NACA 65A004 profile with no twist or curvature
along the length.

NACA 65A004

0,762 m

Figure 3.18 AGARD 445.6 Wing Planform

The wing material properties in each direction are presented in Table 3.13, where E

is elasticity modulus, G is shear modulus, and p,,,4 is the density.
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Table 3.13 Material Properties for Weakened AGARD 445.6 Wing

MEEEL Value Unit
Property
Eiq 3.1511 GPa
E,, 0.41621 GPa
Es4 0.41621 GPa
Vi 0.31 -
Vi3 0.31 -
Va3 0.31 -
Gy, 0.4392 GPa
Gy 0.4392 GPa
Gy 0.4392 GPa
Pwing 397 kg/m?®

In the analysis, MSC®Patran is adopted to establish the FE model. On the other hand,
the aerodynamic model is created on MSC®FlightLoads. The wing’s structural and
AIC matrices are exported to Matlab® environment by use of MSC®Nastran DMAP
language. Aeroelastic analyses codes are developed by utilizing Matlab® using the
NIPK Method. To express the vibrational and flutter analyses for the AGARD 445.6
wing, Figure 3.19 is given to illustrate the analysis workflow.

AGARD 445.6 Wing
Nastran 2-D Shell FEM
Doublet Lattice Method

Modal Analysis
— SOL 103
(MSC Nastran)

Structural Model
(MSC Patran)

iDMAP [M] and [K]
.pch file

Modal Analysis Natural Frequencies
(Matlab Script) Mode Shapes

Y DMAP [Qy] and [Gkd] l
Aerodynamic Model FORTRAN .21 file Aeroelastic Model
(MSC FlightLoads) (Matlab Script)

Flutter Analysis
(Matlab Script)

V-g and V-f Plots

Figure 3.19 AGARD 445.6 Wing Analysis Workflow
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The finite element model for the AGARD 445.6 weakened wing is created in
MSC®Patran. The FEM has 200 quadrilateral shell elements (CQUADA4) and 231
structural nodes. The nodes at the wing root are fixed in all directions. The structural
nodes except root are constrained in translational (X and Y axes) and rotation (Z-
axis) degree of freedoms. The finite element model of the wing is presented in Figure
3.20.

Shell Element

Figure 3.20 AGARD 445.6 Wing Finite Element Model

3.3.1 Structural Analysis

The free vibrational analysis of the AGARD 445.6 weakened wing is carried out
with both the SOL103 normal modes sequence and Matlab® code. The first five
elastic modes are presented and compared with experiment results by Yates [44] in
Figure 3.21.
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Experiment, Yates [44] FEM, Nastran [Present]

Mode 2, ,=38.1650 Hz Mode 2, w,=39.7073 Hz

Mode 3, @, =48.3482 Hz Mode 3, w,=49.5100 Hz

Mode 4, @, =91.5448 Hz Mode 4, @,=95.1342 Hz

Mode 5, @, = 118.1132 Hz Mode 5, @, = 121.6460Hz

Figure 3.21 Comparison of Mode Shapes
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Table 3.14 compares the first five natural frequencies of the present study with the

experimental results [44], Kolonay [45], and Lee and Batina [46].

Table 3.14 Comparison of Natural Frequencies

Mode-1 | Mode-2 | Mode-3 | Mode-4 | Mode-5
[Hz] [Hz] [Hz] [Hz] [Hz]
2-D Shell Nastran 9.46 39.71 4951 95.13 121.65

2-D Shell Nastran
DMAP 9.46 39.71 4951 95.13 121.65
Experiment [44] 9.60 38.17 48.35 91.55 118.11
Kolonay [45] 9.63 37.12 50.50 89.94 -

- ar[]fe?atma 9.60 | 3817 | 4835 | 9154 -

The first five natural frequencies of the MSC®Nastran SOL103 normal modes
sequence and in-house free vibration analysis with Matlab® using [M], mass matrix
and [K], stiffness matrix, which are exported through MSC®Nastran DMAP
language, are identical to each other. Present mode-4 natural frequencies slightly
differ from the reference values and that difference is not critical for the flutter
analysis. Consequently, the present results show a good agreement with the
experimental results for natural frequencies and mode shapes. Besides, because of
having a good agreement with the other reference studies, the flutter analysis can be

performed by using constructed structural model.

3.3.2 Aeroelastic Analysis

Since previously investigated HALE and Goland wing structures are essentially
based on 1-D beam theory, 2-D sectional lift and moment theories such as
Theodorsen’s aerodynamics are well suited for these structures. The reason is that
unsteady approximations for the lift and moment around the elastic axis are
calculated based on infinitesimal strips of the wing and integrated over the whole
span of the wing, which results in overestimating the lift. Hence, the theory is
suitable for surfaces with very high aspect ratios, such as the HALE wing. On the

contrary, the DLM is a lifting element method based on 3-D lifting surface theory.
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Since Theodorsen’s aerodynamics are not preferred to use with low aspect ratio
wings, such as AGARD wing, and being a 2-D shell structure, the present flutter
analyses are carried out employing the DLM.
The aerodynamic model is obtained by dividing the surface into 800 aero boxes that
involve spanwise 40 and chordwise 20 elements. Aero-structural coupling is
achieved by using Infinite Plate Spline (IPS). The reference air density is taken as
1.225 kg/m? for the analyses. Mach-Reduced Frequency (M-k) sets are defined
before the flutter solution. The aeroelastic analyses are performed for the following
cases: Mach Numbers of 0.449, 0.678, 0.901, and 0.954. The frequencies are taken
asS f min = 1 Hzand f . = 100 Hz for the analyses.
Table 3.15 shows the flutter analysis conditions defined as Mach number, air density,
density ratio, and minimum and maximum free stream airspeeds.

Table 3.15 Aeroelastic Analysis Conditions for AGARD 445.6 Wing

Mach Number Density[kg/m?] Density Ratio Unmin [M/s] Umax [M/s]
0.449 0.42770 0.34886 100 200
0.678 0.20818 0.16980 100 300
0.901 0.09945 0.08112 150 350
0.954 0.06338 0.05170 200 400

MSC®Nastran is used to derive AGARD 445.6 wing’s both structural and
aerodynamic matrices. Flutter solution is provided by in-house Matlab® code
implementing the Non-Iterative P-K Method (NIPK) method, which is not present
in MSC®Nastran. To compare the flutter results against reference studies, the Flutter
Speed Index (FSI) is calculated and plotted. FSI for the AGARD 445.6 wing case is

defined as follows:
Uy

FSI = YT

(3.3)

where w, is the angular frequency of the first torsion mode in rad/s and p is the mass
ratio. The root semi-chord, by = 0.2794 m and w, = (2m) x39.7073 rad/s. The
mass ratio, u is defined as FSI = m,,/(pfV,) where m,, = 1.862 kg is the wing
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panel mass, py is the free-stream density at flutter, I, = 0.130 m? is the volume of
the truncated cone. The second flutter parameter for comparison purposes is Flutter
Frequency Ratio, w/w,.

The efficient calculation of unsteady aerodynamic forces and moments results from
structural deformation is challenging when especially the transonic flow regime is
considered. Doublet Lattice Method (DLM) provides satisfactory results and low
computational cost for the calculation of flutter boundary in subsonic flow regime.
Nevertheless, transonic flows possess nonlinear characteristics and linear panel
methods like DLM are not able to model combined subsonic-supersonic flows. The
DLM mostly fails in predicting shock positions and intensity for such flow regimes.
Therefore, an improvement of the DLM results can be particularly made in the
transonic flow regime due to its nonlinear characteristics. The improvement is based
on increasing the accuracy of the DLM results, which is defined as so-called
corrections. For such corrections, reliable reference data such as Computational
Fluid Dynamics (CFD) or wind tunnel data can be used to improve the results of the
DLM.

Katzenmeier et al. [47] presented a method to correct model DLM results with small
disturbance CFD results. The correction aims to improve the quality of the DLM
results including limited transonic effects. Figure 3.22 compares the GAF entries for
the first two elastic modes of the AGARD 445.6 wing obtained through
MSC®Nastran DLM results along with the reference study results of Katzenmeier et
al. [47] given as DLM, CFD, and corrected DLM. The GAF entries presented as real
and imaginary parts for the Mach number of 0.954.
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Figure 3.22 Comparison of GAF Entries for Mach Number, M = 0.954

A good agreement can be seen between the present MSC® Nastran DLM and DLM
results given in the reference study. Deviations are present between CFD and DLM
results because of mentioned transonic flow effects. The corrected DLM results
converge the CFD results as expected.

Figure 3.23 and Figure 3.24 show a comparison of the flutter boundary and
frequency of the AGARD 445.6 wing against the experimental data by Yates [44]
and results calculated by CFD, DLM, and corrected DLM methods by Katzenmeier
et al.[47]. The reference flutter solution is obtained by P-K Method.
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Table 3.16 shows FSI of the present study implementing 2-D FEM theory for the
structural model and Doublet Lattice Method (DLM) for the unsteady aerodynamics.

Table 3.16 AGARD 445.6 Wing Flutter Speed Index Results

Mach Number FSI
0.449 0.4464
0.678 0.4281
0.901 0.3799
0.954 0.3436

It can be concluded that the present analyses results are in good agreement with the
experimental results and the results obtained through CFD, DLM, and corrected
DLM methods by Katzenmeier et al.[47].

In conclusion, case studies for the clean wing structures are performed to validate
the developed aeroelastic analysis models. The validation of the models is carried
out through three well-known wing models, namely High-Altitude Long Endurance
(HALE) wing, Goland wing, and AGARD wing 445.6 (weakened). In the first stage,
free vibrational analyses are performed to obtain modal matrices. Following this
vibrational analysis, GAF matrices are obtained and the aeroelastic equation of
motion is formed. In the last step, aeroelastic analysis is performed to obtain flutter
speed and frequency. For the HALE wing, natural frequencies and mode shapes are
initially obtained, then 2-D Theordorsen’s aecrodynamics is coupled with structural
models, and finally, flutter solution is achieved. A total of seven analyses cases have
been investigated and validated along with the reference studies. The famous Goland
wing is investigated in the second case study. The structural model is developed
based on the principle of a Rayleigh-Ritz method and FEM with coupled Euler-
Bernoulli beam theory. Moreover, MSC®Patran is utilized to develop a 1-D beam
model for the wing. All structural models have been validated by comparing their
first five natural frequencies along with the reference studies. The flutter solution is

obtained by Theordorsen’s aerodynamics, P-K, and NIPK flutter solution
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algorithms. A total of eight analyses cases have been performed and results are
compared along with the reference studies. The results validate the developed
aeroelastic model for the Goland wing, which involves bending-torsion structural
modes. The last case study is conducted through a well-known AGARD 445.6 wing
(weakened). The structural model is based on the FEM by discretizing the entire
wing into shell elements in MSC®Patran. The aerodynamic model is constructed in
MSC®FlightLoads and Dynamics and aero-structural coupling is achieved by using
Infinite Plate Spline (IPS). The first five natural frequencies of the wing are obtained
and compared along with the reference studies. The aerodynamic analyses have been
performed at different Mach numbers to investigate the accuracy of the DLM. The
first four GAF entries are obtained utilizing the MSC®Nastran DMAP language and
compared along with the reference study. The results show that the agreement
between the obtained results and reference work is satisfactory. Lastly, Flutter Speed
Index (FSI) and flutter frequency ratio are obtained for the AGARD 445.6 wing, and
a comparison has been made through a work of Katzenmeier et al.[47] and an
experimental study. The results of all three case studies have been shown that the

developed aeroelastic models are successfully validated.
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CHAPTER 4

AEROELASTICITY OF THE WINGS WITH EXTERNAL STORES

Aircraft wings are the critical aeroelastic structures concerning aeroelastic analysis,
especially aeroelastic instability situation, i.e., flutter. Integrating the external stores
into aircraft wings considerably affects the aeroelastic characteristics of the wing
structure. It naturally changes the free vibration and dynamic responses of the aircraft
wing. The large variety of wing store configurations drastically affects both the static
and dynamic behavior of the aircraft wings. Moreover, the attachment element
between wing and store, i.e. pylon structural characteristics significantly influence
the flutter boundary. Because of being one of the most critical aeroelastic
phenomena, wing store flutter shall be considered carefully in the aircraft aeroelastic

design stage.

This chapter consists of two parts. The first part is the theory for the two common
types of wing store systems while the second part is the case studies of them. The
first model is the beam-like wing with concentrated mass. The store is attached to
the wing rigidly with no additional DOFs. The structural model is developed by
utilizing MSC®Patran and FEM with Euler-Bernoulli beam formulation. On the
other hand, the aerodynamic theory is based on the 2-D Theodorsen formulation. The
structural and aeroelastic analyses are conducted with in-house Matlab® code. The
second one is the flat-plate delta wing with a flexible external store. The development
of the model and pertinent analyses are conducted by utilizing MSC® FlightLoads
and MSC®Nastran, respectively.

4.1 Beam-Like Wing with Concentrated Mass Model

Because of depending on large computational costs, high-fidelity methods can be

reduced to numerical methods in the 1-D framework. FEM with Euler-Bernoulli
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beam theory has been validated to model bending-torsion clean wing structures in
the previous chapter. The clean wing FEM can be modified by rigidly attaching an

external store represented by concentrated mass at the selected structural node on the

wing. Figure 4.1 represents the rigidly attached wing store configuration with Yy,

denotes the concentrated mass location along the span. The attachment node is

denoted by i'" node.

1st Node

—_——

» Structural Node

Figure 4.1 Rigidly Attached Wing Store Configuration

4.1.1 Rigid Body Motion of the Concentrated Mass

Consider the concentrated mass as a 3-D structure with a total mass of m¢ and it is
attached to stiff springs. Then, O(X,y,z) is a general coordinate system concerning
the concentrated mass center of gravity. A 3-D structure with a total mass of m¢ on

the supports is illustrated in Figure 4.2.
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Figure 4.2 A 3-D Structure on the Supports[48]

The rigid body motion of the concentrated mass structure can be defined in 6

independent DOFs. The equations of motion of the concentrated mass under free-

free condition is expressed below in the linear form [48]:

[ m 0 0 0
0 me 0 —zm,
0 0 me ym,
0 —zZmg ymg Loxx
zm, 0 —xme  —loxy
| —ym, xme 0 _onz

—Yymc]
xmg
0
_onz

_onz

IZZO -

(Gx )
dy
Gz
do,
de,

\Go,

> (3.4)

SRR Nl

where X, y, and z are the distances of the center of mass about point O(x,y,z), | is the

moment of inertia, ¢ is the linear acceleration, and ¢, is the rotational acceleration

of the concentrated mass. In addition to these, F and M are the external forces exerted

on the structure. Eq. (3.4) can be defined in a simple form as follows:

[M0]6x6{q}6x1 = {F}6x1

(3.5)

where [M, ]is the rigid body mass matrix whose elements are the mass properties of

the structure about the point O(X,y,z). Note that the rigid body mass matrix, [M,]

includes inertia properties of the structure.
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4.1.2 Evaluation of Concentrated Mass Matrix for Wing Store Systems

Since the store is considered as concentrated mass and it is attached to the wing
rigidly, the rigid body mass matrix, [M,] can be reconsidered, but this time for the
wing store systems. The typical wing store section is given in Figure 4.3 with a, is
the chordwise distance between the wing flexural axis and center of gravity. The
chordwise distance between the wing flexural axis and store center of gravity is
denoted by x,. The vertical distance from the wing chord line and store center of
gravity is denoted by z,. The aerodynamic loads cause the deformation such that the
flexural axis of the wing moved along the z-axis, and it rotates about the flexural
axis. It is assumed that the wing chord line is always parallel to the store chord line

under deformation.

Z
a, |
U —
0 . Aerodynamic  Flexural :
— Wlng Center Axis E
% X
- ] Wing CG
H z
Store ’
. ! Store CG
—>

Px

5

Figure 4.3 Wing Store Section

Because all the mass properties of the store are calculated about the wing flexural
axis, the point O(x,y,z) given in Figure 4.2 can be interpreted as the wing flexural
axis for the wing store system cases. In this manner, mass properties of store can be
obtained by making use of the similarity between rigid body motion of the
concentrated mass and rigidly attached wing store systems. For the wing store case,
M; is the store mass, I is the store inertia term, Xxs, and zs the distances from store
center of gravity to wing flexural axis. The spanwise distance between the wing

structural node at a distance of yspan and the store center of gravity is denoted by the
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term ys. As considering the above, rigid body mass matrix, [M,] can be defined here

as a mass matrix of the store, [Ms;.-.] Which can be expressed as follows:

M 0 0 0 ZsMg —ysMg
0 M, 0 —zM, 0 xsM;
0 0 M, yeM —x M 0
(Mstore] = I 0 —zZ;Ms  ysMs Ly + (3’52 + Zsz)Ms _(Ixy + x5ysMs) —(Iyy + x52:My) I
| ZsMs 0 _sts _(Ixy + stsMs) Iyy + (xs2 + ZSZ)MS _(Iyz + ysZsMs) |
l_ysMs sts 0 _(Ixz + xsZsMs) _(Iyz + ySZSMS) Izz + (xsz + ysz)MsJ
(3.6)

Note that the store mass matrix, [M,,.] includes the inertia terms in the explicit
form because the parallel axis contribution of the M, is explicitly shown. Since the
shear deformations are neglected in the Euler-Bernoulli beam model, the store mass

matrix can be reduced the form as follows, where the distance, y; is taken as y; = 0.

Mg 0 —xsM;
[Mstore] = 0 Ixx + ZSZMS _Ixy (3-7)
—x M, —Iyy Ly + (x5 + z:*) M

4.1.3 Structural Equations of Motion

The global form of system matrices provides the clean wing dynamic characteristics
according to the discrete coordinates of the system. The structural part of the
aeroelastic equation of motion for the clean wing can be reconsidered here. The

equation can be modified for the wing store system as follows:
[Mwing+store]{5é} + [K]{x} = {0} (38)

where {x} is nodal displacements, [Mwing+swre] and [K] are the global mass and
stiffness matrices, respectively. Since the attachment is rigid without additional
DOF, the mass matrix of the wing store structure, [Mwmg+swre] can be defined as

below:

[Mwing+store] = [[Mwing] + [AM]] (39)
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where [AM] defines local structural mass modification on the wing structure and its
size n x n is equal to the size of [Mwmg]. Modification matrix, [AM] can be formed
according to [My,y] that is defined previously. The spanwise location, Y4, Of the
concentrated mass and the corresponding structural node can be defined for each
attachment. In the case of multiple concentrated mass attachments, this method
allows modeling multiple store attachments for wing store systems. It should be
noted that if a specific spanwise attachment location is defined, one is required to
define a structural node at the desired attachment location. The generalized form of

mass [Mwingmore] and stiffness [K] matrices can be obtained as below:

[Mwing+store] = [¢]T [[Mwing] + [AM]] [¢] (3-10)

[K] = [¢]"[K][$] (3.11)

where [¢] is the modal matrix which is formed by the selected normal mode shapes
and each column of [¢] represents a normal mode shape, ¢;. Furthermore, the natural
frequencies w; and the normal mode shapes ¢; can be obtained by solving the
eigenvalue problem of the wing store structure, where i is the order of the natural

frequency or normal mode.

4.2  Flat-Plate Delta Wing with Flexible External Store Model

A delta wing is a low aspect ratio wing and is named for its similarity to a triangle.
Although it is efficient in all flow regimes, it is generally used in supersonic aircraft.
One of the main advantages of the delta wing is that it possesses structurally strong
characteristics, which leads to carrying a large number of external stores

simultaneously.

A delta wing store experimental model has been developed by Demand Tang, Peter
Attar, and Earl H. Dowell [9] to investigate the flutter and Limit Cycle Oscillation
(LCO) characteristics of the wing store system. The effect of the external store pitch
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stiffness (attachment stiffness) and the spanwise location of the external store on the

flutter speed and limit cycle oscillations (LCO) are discussed in the study.

In the present study, the wing is modeled as a simple plate with constant thickness.
The external store is modeled as a slender rigid body that is attached to the wing
through two support points. The vertical distance of the external store is arranged by
these support points. The aft support is attached to the wing with a linear spring, on
the other hand, the fore support has a joint that enables to store having pitch motion.
The external store is assumed to have one degree of freedom (pitch) concerning the
wing. In other words, the external store is a single degree of freedom system while
considering wing store dynamics. Figure 4.4 presents the delta wing model with an
external store and its two support points.

partial root
clamp

delta wing ol

Figure 4.4 Attachment Locations Between the Wing and Store [9]

In addition, Figure 4.5 presents the section of the delta wing model with an external
store. In the wing store dynamic model, M, is the mass of the external store and M,
is the mass of the aft mounting point, which can be interpreted as pylon mass. P; and
P, denote the fore and aft mounting points of the external store to the wing,
respectively. Z;and Z, are the vertical displacements of the fore and aft mounting
points of the store, respectively. e, is the distance between the aft and fore mounting
point and e; is the mass center location of the external store from the fore mounting
point, P;. The distance between the tip of the store and the fore mounting point, P,

is denoted by the distance e, .
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Air flow

Figure 4.5 Section of Delta Wing Model with an External Store[9]

In the wing store model, the store pitch angle is 8 and kg is the store pitch stiffness,
i.e., store attachment stiffness. An equation of motion for the store pitch angle, 8

based on the test model can be given by Tang et al.[49] as below:

B + 2&wsf + ws?f = —wM; ez sin(wt/]p) (3.12)

where wis the store pitch frequency, which is defined by wg = /ksezz/]ﬁ; Jp is the

pitch moment of the store, &, is the modal damping rate, A, and w are the excitation

amplitude and frequency.

Structural nonlinearity can be included at the mounting points between the wing and
the store. The structural nonlinearity can be a form of the free-play gap or stiction in
the aft mounting location. In the case of stiction nonlinearity, store attachment
stiffness, k is defined by Tang et al. [49] as follows.

{ksl if [180°8/n| < o
kg =

k., otherwise (3.13)

where o is the store pitch stiction gap angle, o = 180°d/me,. The stick region in
the wing store system is denoted by d. The illustration of the stiction force at the aft

spring position is presented in Figure 4.6.
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Figure 4.6 Illustration of the Stiction Force [49]

Since the present study covers the linear attachment elements between the wing and
the store, nonlinear attachment parameters o, kg, and k, can be takenas ¢ = 0° and

ks, = ks, for the linear case.

421 Finite Element Model

Attar et al. [50] modeled the wing store structure by implementing a high-fidelity
nonlinear structural model by using the commercial FE software ANSYS. In the
present study, the MSC®Patran is used to model the wing store structure linearly and
MSC®Nastran commercial FE code is used as the linear structural solver. The wing
store system is defined through different types of finite elements. Since the flexible
delta wing is assumed to have isotropic thin plate characteristics, PSHELL entry and
three-node CTRIAS3 elements are used to model the structure. CTRIA3 element has
six degrees of freedom, three translational, and three rotations. Mass of the external
store, M; and the mass of the aft connection point, M, are modeled by using the
CONMZ2 element that includes inertia terms. The elastic part of the external store is
defined by equivalent beam theory using store pitch stiffness, k. The flexible section
of the external store is modeled by using CBAR elements.
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On the other hand, the rigid section of the store is modeled by using multi-point
constraint MPC elements. The type of the MPC is selected as RBE2. Figure 4.7

represents the elements used in the FE model of the delta wing store system.

4

Flexible Plate Structure (PSHELL )
P1

P2

Explict type of MPC, all /
translations and rotations to be

same between P2 and P4 and > pq /)

Explict type of MPC, translation
and x and z rotation to be same

CONM?2 element located at
center of mass of the rigid

P2 and P5
at Pl and P3 \ structure connecting P2 and P5
A @ @
/ \ P3 \ / Ps
CONM2 element RBE?2 elements, rigid CBAR ?lements to model
located at center of part of the store the flexible part of the store

mass of the external
store

Figure 4.7 Illustration of the Elements of the FE Model

The mounting location, P1 to the joint is modeled by using the explicit type of MPC
element. An explicit type of MPC allows defining one node for dependent terms and
unlimited nodes for the independent terms. P3 is selected as a dependent term while
P1 is selected as an independent term. The DOFs are defined as UX, UY, UZ
(translational DOFs), and RX, RZ (rotational DOFs) which means the rotation about
the y-axis is not constrained as the store rotates about P3. Similarly, all translations

and rotations are constrained between the point P2 and P4 and P2 and P5.
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4.3  Wing Store Flutter Case Studies

4.3.1 Beam-Like Wing with Concentrated Mass Case Study

The wing store system consists of a uniform cantilever wing and mass attachment as
described in Runyan et al. [4]. The mass is assumed as concentrated at different
spanwise locations; however, it is about 0.41 chord forward of the flexural axis of
the cantilevered wing. The model specifications are described for the analyses in
Table 4.1.

Table 4.1 Beam-Like Wing with Concentrated Mass Properties [5]

Parameter Value Unit
Half span, 1.2192 m
Chord, 2b 0.2032 m
Mass per unit length, m 1.2942 kg/m
Moment of inertia, I 0.0036 kgm
Spanwise elastic axis (from LE), a 43.7 % chord -
Center of gravity (from LE), e 45.4 % chord -
Spanwise bending rigidity, EI, 403.76 N m?
Torsional rigidity, GJ 198.58 N m?
Store Mass, M, 1.443 kg
Store Moment of Inertia, I,,,, 0.0185 kg m?

Two structural models are developed for this case study. For the first model, FEM
Euler-Bernoulli beam theory is initially applied to develop the clean wing structure.
Then, clean wing mass matrix is modified by means of a store mass matrix to
construct wing store structure. 48 beam elements are used in Euler-Bernoulli beam
formulation. The necessary analytical work for developing the clean wing structural
model, structural modifications, and free vibration analysis are performed by

utilizing Matlab® code. For the second structural model, MSC®Patran is utilized to
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model the wing store structure. Similarly, 48 CBEAM elements with 6 DOFs per
node are used for the entire wing. The node at the wing root is fixed. Elemental
lumped masses are connected rigidly to the nodes located on the flexural axis with
rigid elements RBE2. The structural nodes except fixed root are constrained in
translational (Y and Z axes) and rotation (X-axis) degree of freedoms. The store is
modeled by using the CONMZ2 element and it is attached to the beam nodes at desired
wing spanwise location by RBE2 elements. Figure 4.8 shows the FEM of the beam-

like wing with the store is attached to the wingtip.

Concentrated Mass (CONM2 Element)

CBEAM Element

Figure 4.8 Beam-Like Wing FEM with Concentrated Mass at Wingtip

An aerodynamic model is developed by implementing 2-D Theodorsen
aerodynamics. Both structural models are coupled with the same aerodynamic model
to form aeroelastic models. The store aerodynamic properties are neglected in the

present analysis.

4.3.1.1  Structural Analysis

The first four natural frequencies are obtained by use of both MSC®Nastran SOL103
sequence and in-house analysis workflow. Since MSC®Patran provides the [M]

identical to [Mwingme] for the entire wing store structure, modification of the
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clean wing mass matrix is not performed for the MSC®Nastran case. On the other

hand, [My;,,] is initially obtained by utilizing FEM with Euler-Bernoulli beam
theory. Then, [MwingJ,store] is formed by use of store mass modification matrix,

[4M] and clean wing mass matrix, [Mying |-

Calculation of the normal modes has been performed for the clean wing (store at
wing root) and the wing with mass at six different spanwise positions. The mass is
attached to the 0.2794 m, 0.4318 m, 0.762 m, 1.143 m, 1.1684 m, and 1.2192 m
spanwise locations from the wing root, where the variation of the first four normal

modes against mass nondimensional spanwise location can be seen in Figure 4.9.

120 T T T T T T T T T

N — © —FEM-Euler Bernoulli Beam(Structural Modification)
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Nondimensional Spanwise Position of Mass

Figure 4.9 Wing Store Natural Frequencies vs Nondimensional Spanwise Location

of Concentrated Mass for the First Four Modes
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The first four normal modes of the wing mass structure are in good correlation when
FEM with Euler-Bernoulli beam formulation and MSC®Nastran FEM results are
considered. These results show that the development of the wing store structural
model by structural modification approach has been successfully implemented for
the beam-like wing with concentrated mass. Hence, the modified wing store structure
is validated along with the free vibration analysis results of MSC®Nastran, whose

solution is not included the structural modification approach.

4.3.1.2  Aeroelastic Analysis

The flutter speed and frequency of the beam-like wing store structure are calculated
with the 2-D Theodorsen aerodynamics. The flutter analyses are carried out at sea

level conditions taking air density as 1.225 kg/m?.

Runyan and Seawall [4] experimentally investigated a wing store system that
consists of a uniform cantilever wing and concentrated mass. Then, Runyan and
Watkins [5] analyzed the flutter of the same wing store system and made a
comparison between the analytical and the experimental results. In this developed
approach, the differential equations were used to govern the motion of a uniform
wing and an exact solution was applied. Besides, the two-dimensional aerodynamic
forces were derived by applying Theodorsen’s aerodynamics. Since physical or
mathematical simplifications are not involved in the exact solutions, Wilts [51]
implemented a solution of the problem by use of finite-difference approximations to

partial differential equations.

The flutter results of the FE method by use of MSC®Nastran and Euler-Bernoulli
beam formulation and the reference studies are compared in Figure 4.10. The flutter
speed ratio (U/Uo) is plotted against the span position of the concentrated mass. The
spanwise position is normalized with wing half span, £. U/Uq is the ratio of the flutter
speeds for the wing with a mass to the flutter speed of the clean wing. Besides, Table

4.2 shows the numerical results of the present methods.
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Figure 4.10 Wing/store Flutter Speed at Different Store Attachment Locations

Table 4.2 Comparison of Wing/store Flutter Speeds and Frequencies by Present
FEM Methodology

Spanwise Location FEM-1D Beam FEM-Euler Bernoulli
of the Mass (m) Nastran Beam Theory
Ur [m/s] wy [Hz] Ur [m/s] wy [Hz]
0 98.91 23.92 97.75 24.75
0.2794 95.94 19.03 95.54 19.33
0.4318 119.12 27.89 115.99 28.30
0.762 184.84 31.84 181.81 32.23
1.143 120.33 26.06 119.3 26.64
1.1684 111.27 25.38 110.33 25.52
1.2192 96.42 24.19 97.77 25.12

The present methods show that the shape of the reference curve follows the present
curve very closely in the regions where especially nondimensional span location is

below 0.6. Since the divergence was reported experimentally beyond the store
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nondimensional spanwise location of 0.3542, there are no experimental results up to
nondimensional spanwise store location of 0.9375. Nevertheless, it is possible to
calculate the flutter speed theoretically in these regions. The slight differences can
be seen between the present results and the reference studies beyond the
nondimensional store span location 0.6. Consequently, it is not possible to compare
the theoretical results in that region with the experiment due to a lack of experimental
data. Besides the comparison of the present results with the reference studies, flutter
speed and frequency of both MSC®Nastran and Euler-Bernoulli beam formulation
with structural modification are in good correlation. Therefore, the developed
structural modification method has been validated for the beam-like wing with

concentrated mass.

4.4  Flat-Plate Delta Wing with Flexible External Store Case Study

The theoretical flat-plate wing store data is taken from the experimental and
theoretical study of Tang et al. [9] and a photograph of the wind tunnel model can
be seen in Figure 4.11. Five span locations of the store are considered in the
experiment: y/c = 0.161, 0.291, 0.419, 0.548, and 0.677 where y/c is the

nondimensional store location, i.e. span location, y is normalized by the chord, c.

The clean wing model is a delta wing with a sweep angle of 45 deg and it is built
through a thickness of 0.147 cm Lucite® material. The wing root is partially
cantilevered. The cantilevered length is 22.86 cm and the total length of the wing
chord is 38.1 cm. As presented in Figure 4.5, the wing store parameters are given as
follows; e, =12.7cm, e, =9.84cm, e; = —0.23 cm, M; = 0.037 kg, M, =
0.004 kg, ks = 36 N/m and Jz = 0.3686E-4 Nms?. The FE model of the wing
store structure is developed by utilizing MSC®Patran. The flexible plate structure
has 3571 TRIA3 elements in the FE model. The aerodynamic model is developed in
MSC®FlightLoads and Dynamics via the utilization of DLM. The free vibrational
and flutter analyses are conducted by means of MSC®Nastran, which involves

SOL103 and SOL145 solution sequences, respectively.
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Figure 4.11 A Snapshot of the Wind Tunnel Model[52]
44.1.1  Structural Analysis

The wind-off frequencies of the delta wing plate without store are calculated by use
of the MSC®Nastran Lanczos method in the SOL103 sequence. Experimental and
analytical FEM reference results are presented for comparison purposes. Table 4.3
compares the first five natural frequencies of present results with the reference

studies.
Table 4.3 Comparison of Clean Wing Natural Frequencies

FEM-ANSYS Experiment NF;!Etl:'/Iz;n
Tang et al. [9] Tang and Dowell [53] [Present]

Mode-1 [Hz] 4.39 4.5 4.53

Mode-2 [Hz] 17.84 17.2 17.98

Mode-3 [Hz] 20.62 20.54 20.58

Mode-4 [Hz] 42.21 44.4 42.49

Mode-5 [Hz] 51.87 54.4 51.14

As shown in Table 4.3, the agreement between the computational models by use of
FEM and experiment is satisfactory when the wind-off frequencies of the clean wing

are considered. Nevertheless, experimental results slightly differ from both reference
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and present FEM results. It can be concluded that the developed flat plate FE Model

is validated by computational and experimental references.

Five span attachment location of the flexible store is considered in the reference
computational model and experiment. Figure 4.12 shows the comparison of the first
four natural frequencies of the wing store model at different span locations of the
store. The reference results are presented for von Karman plate theory, FEM by use
of ANSYS and experiment. All reference data are taken from the study of Tang et
al.[50].
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Figure 4.12 The First Four Natural Frequencies of Wing Store Against Different
Store Span Locations

The present FE model has been applied to conduct free vibration analysis of the wing
store at different attachment locations of the store. Experimental results slightly
differ from the theoretical ones especially in mode-2, mode-3, and mode-4. The
present method shows a perfect agreement with the reference FE Model for all modes
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and span locations of the store. Therefore, the developed wing store FE Model is
validated by computational and experimental references. Figure 4.13 - Figure 4.16
are given to show the first four natural frequencies and mode shapes of the wing store

model for a store span location of y/c = 0.548.
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Figure 4.13 Mode-1 [3.78 Hz], y/c = 0.548
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Figure 4.14 Mode-2 [9.78 Hz], y/c = 0.548
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Figure 4.15 Mode-3 [16.11 Hz], y/c = 0.548
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Figure 4.16 Mode-4 [20.53 Hz], y/c = 0.548

The mode-1 is the first wing store bending mode while the mode-2 is the first wing
store torsion mode. The mode-3 is dominated by the store pitch motion. The reason
is that the calculated store pitch frequency that is 15.5 Hz is in the vicinity of wing

store mode-3 frequency, 16.11 Hz. Lastly, mode-4 is the second wing bending mode.

44.1.2  Aeroelastic Analysis

The aerodynamic model is obtained by utilizing three individual lifting surfaces and
a total of 201 lifting surface boxes. The boxes should maintain a maximum aspect
ratio of 3 in the Doublet-Lattice formulation [54]. Figure 4.17 shows the
aerodynamic mesh and it verifies the aspect ratio of the lifting surface boxes is

smaller than 3.
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Figure 4.17 Aerodynamic Mesh and Aspect Ratio of the Boxes

Aero-structural coupling is achieved by using Infinite Plate Spline (IPS). The flutter
analyses are carried out at sea level conditions with an air density of 1.225 kg/m?®.
The flutter solution is achieved by P-K Method since the MSC®Nastran DMAP
language is not utilized in the present analysis. Besides, store aerodynamics are
neglected. The reference results include von Karman plate theory with linear spring
attachment [53], von Karman plate theory with nonlinear spring attachment [50],
high-fidelity nonlinear structural model [50], and experiment estimated [50]. The
comparison of the flutter speeds of the wing store model at different store span
locations is presented in Figure 4.18. On the other hand, the flutter frequency

comparison plot is presented in Figure 4.19.
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Figure 4.18 Flutter Speed at Different Store Attachment Locations
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Figure 4.19 Flutter Frequency at Different Store Attachment Locations
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Figure 4.18 and Figure 4.19 summarizes the flutter behavior of the wing with a
flexible store system at different attachment locations through implementing linear
FEM. The important thing to note in analyzing the results is that the tendency of the
present curves is similar to the reference curves. Figure 4.18 indicates that flutter
speed diverges after the nondimensional span location y/c=0.3. The reason could be
that the nonlinear effects become dominant after the span location y/c=0.3.
Nevertheless, the agreement of the present results with the reference study is
satisfactory when linear attachment cases are considered. Thus, both structural and
aeroelastic models have been validated by comparing the results of the reference

studies.

To sum up, the aeroelasticity of the wing structures with external stores has been
investigated throughout the present chapter. The two different types of wing store
systems are introduced. The first model depends on the beam-like wing structure
with concentrated mass. The FEM is employed to develop the structural model. The
wing is discretized into finite beam elements and corresponding structural nodes are
used to attachment of the concentrated mass. The attachment between the wing and
concentrated mass is considered rigid. The connection is introduced as a local
structural modification on the wing structure. The modification matrix is formed by
amass matrix of the attached body, which is evaluated through the rigid body motion
of the lumped mass element. A case study has been conducted based on the
developed analytical model and FEM by MSC®Patran. The effect of the attachment
location on both structural and aeroelastic characteristics is investigated. It is found
that the flutter behavior is significantly sensitive to the attachment location of the
lumped mass. The results of the present work are compared with the results in the
literature. Consequently, a good correlation is observed between the present
analytical model and reference experimental and analytical studies. The second wing
store system is based on the flat-plate delta wing with an elastic attachment between
the wing and the external store. The wing store FE model is developed in
MSC®Patran. The FE elements used in the model are explicitly defined involving

two attachment locations, attachment stiffness, store mass and inertia, and the pylon
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mass. The aerodynamic model is developed in MSC®FlightLoads and Dynamics via
the utilization of DLM. The store aerodynamics are not included in the analyses. The
present results are compared to published works and a good agreement is observed
between the results. Hence, a comprehensive FE model for the wing with a flexible
store system has been validated. The important thing in the implementation of the
FEM for wing store systems is that the store attachment is not limited to the
attachment of the one store. The present method can also be utilized for multi-store

attachments.
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CHAPTER 5

STRUCTURAL MODIFICATIONS IN AEROELASTICITY

Flutter analyses are carried out with discrete sets of modal data, which includes
natural frequencies, mode shapes, and generalized modal masses of the pertinent
aerospace structure. These may be obtained directly from Ground Vibration Tests
(GVT) or analytically. Since the ground vibration tests are costly and very time-
consuming activities, these tests are not practical in the aerospace industry. Besides,
one of the drawbacks of performing ground tests is that it requires a physical
prototype of the structure, which is usually not possible to be provided at an early
design stage of the structure. If a design change arises as a result of ground vibration
tests, a redesign process should be considered, and tests need to be repeated.

A redesign process is inevitable if the design does not satisfy the flutter requirements,
or a large number of design candidates are present. It is generally not possible to
perform ground vibration tests when a redesign process is necessary. The analytical
models can easily be utilized for such cases to predict flutter behavior and they are
cost-effective than conducting ground tests. For instance, a fighter aircraft is
equipped with a large number of external stores and these lead to many fighter store
loading configurations. The modern fighter and its external store inventory can be

seen in Figure 5.1.

97



\ CBU- n

L BU-12
o Tank 330

MK-56

Walloye-1

AlM-7

MK 20
JDAM
MK-

62

Figure 5.1 Modern Fighter Aircraft and Its External Store Inventory [55]

The combination of possible store configurations must be examined analytically
before flight tests. At this point, a redesign process is required to calculate flutter
speeds for all external store configurations. The redesign process commonly involves
successive structural modifications in the model and recomputing the flutter solution.
Searching for the most suitable design candidate is the ultimate goal of the redesign
process. This can be accomplished by implementing various optimization
frameworks. In the traditional approach, the redesign or optimization process can be

given in Figure 5.2.
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Figure 5.2 Traditional Redesign Process of Structural Model

The process given in Figure 5.2 is applied and verified by calculating the flutter
speed and frequency of beam-like wings with concentrated mass in Chapter 3. The
original system consists of “n number of DOFs” that can be interpreted as a very
large number. The structural modification is applied to the original structure
assuming no additional DOFs in the structure where the modification is local. After
solving the eigenvalue problem (EVP), n number of mode shapes and natural
frequencies are obtained. In the aeroelastic analysis, “m number of DOFs” is
typically interested, which is a significantly smaller number when compared to full
system DOF. Then, m x m size of the generalized mass and stiffness matrices and n
x m size of mode shape matrix of the modified structure can be formed accordingly.
Finally, Generalized Aerodynamic Force (GAF) matrix can be formed utilizing the

n x m size of the mode shape matrix.
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The critical issue in the traditional methodology is that repeatedly solving the EVP
with full size of n x n system matrices. Execution time is very high in this process
depending on the size of the original system when a large number of successive

modifications are considered.

To generate reduced-order models (ROMs) that represent the dynamic
characteristics of the full order aeroelastic system in a low computational cost
manner, there exist several modal reduction methods in the literature. Static
condensation method by Guyan [56], Improved Reduced System (IRS) method by
O'Callahan [57] and System Equivalent Reduction Expansion Process (SEREP) by
Kammer [58] can be given as examples. Such methods can be applied to aerospace
structures when considering aeroelastic analysis. In this case, the equations of motion
are much smaller, but the Aerodynamic Influence Coefficient (AIC) matrix must be
recalculated since the aerodynamic model is constructed based on the reduced model.
Modal reduction methods are usually applied to form original structure mass and
stiffness matrices defined in Figure 5.2.

The traditional redesign process can be reconstructed by implementing Dual Modal
Space Modification (DMSM) given in Figure 5.3. The method has been originally
developed by Luk and Mitchell [59]. The mode shapes of the modified structure are
approximated by this technique. In other words, the n X m size mode shape matrix
of the modified structure can be obtained by using only the original structure and
modification information. Hence, the GAF matrix in each design iteration can be
computed by using these mode shapes, which can be calculated by the DMSM
method. The accuracy depends on the modal information stored in the original
structure. The main assumptions are that structural modification is local, the total
DOF of the structure does not change and the aerodynamic configuration is fixed.
Therefore, the AIC matrix of the original structure can be used repeatedly used in
the successive structural modifications. Since the GAF matrices are as a function of
reduced frequency, k and Mach number, M, the M-k set should be determined
properly such that the aeroelastic analyses domain could cover modified structure
dynamics. In other words, pre-defined Kmin, kmax - Mach number, M sets should cover
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all possible modification cases. The main advantage of the application of DMSM is
to avoid solving EVP with full n x n size of system matrices successively in each
design iteration. The new approach significantly reduces the computational cost.

FREE VIBRATION ANALYSIS

i

FLUTTER ANALYSIS

DESIGN OPTIMIZATION

ESENEErET
i

Figure 5.3 New Redesign Process of Structural Model

5.1  Dual Modal Space Modification

Since the theory is explained in detail in the work by Luk and Mitchell [59], this
section covers the review of the method for free vibration analyses. The dynamic
characteristics of the aeroelastic system are given in Chapter 2. The equation of
motion represents the dynamics of the system in physical space. Recalling the EOM
but this time transformation into modal space is defined by using the relation below:

Onxt = [Drlem b ma (4.1)
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where [@; ]nxm iS the modal matrix of the original system and {n,},,,1 Vvector of

principle coordinates in modal space I, results in the following relation:

Ui} + [wp]{n;} = {0} (4.2)

where w,, is the natural frequencies of the original system. The system of Eq. (4.2)
can be considered the result of an experiment or can be obtained before aeroelastic
analyses of the original structure, where “m” denotes the number of modes interested
in the aeroelastic analyses. The effects of the structural modification can be included
such that point mass changes, [AM] or stiffness changes between nodes, [AK].

Hence, the dynamics of the system is modified such that
[K'] = [K] + [4K] (4.3)
[M] = [M] + [aM] (4.4)

Then, the following relation can be formed by including the modifications to the
original system given in Eq. (2.7)

[M1{x} + [K 1{x} = {0} (4.5)

Make the same coordinate transformation in Eq.(4.5) by using the modal matrix of

the original system, [¢;],..m-The result of such an operation is written as follows:

[M]6i,} + [K1{n,} = {0} (4.6)

where
[M] = [[I] + [¢/]"[AM][¢/]] 4.7)
(K] = [\, | + (607 14K1 111 @8

Note that the system defined in Eq. (4.6), (4.7) and (4.8) is no longer diagonal. An
eigen analysis should be carried out to find natural frequencies and mode shapes of
the modified structure. The system of Eq. (4.6) can be transferred from modal space
| to modal space Il by the relation between principal coordinates {n;} and {n,,},

which is given as follows:

102



{nl}mxl = [¢11]mxm{7711}mx1 (4.9)

where [¢;] is the modal matrix of the modified structure defined in modal space 1.
The backward transform should be applied by using the relation given below, in
which Eqg. (4.1) and Eq. (4.9) are combined.

{nxr = [¢1]nxm[¢11]mxm{7]11}mx1 (4.10)

As a result, the mode shape of the modified structure can be approximated by the
product of the mode shape matrices of modal space | and modal space Il. This
technique clearly shows that the accuracy of the mode shapes of the modified system

relies on the modal information that exists in the original system.

5.2 Evaluation of Generalized Aerodynamic Force (GAF) Matrix by
Structural Modification

The derivation of the GAF matrix is expressed throughout Chapter 2. Recalling the
Eq. (2.50) and Eq. (2.59), the general form of the GAF can be defined as follows:
[GAF] = [¢]"[AIC][¢] (4.11)

where [¢] is the modal matrix of the structure size of n x m, where m << n. The Eq.

(4.11) can be rewritten according to the procedure defined in section 5.1.

[GAF] = [¢11]T[¢1]T[AIC] [¢1] [¢11] (4-12)

where [¢,] is the modal matrix of the original system in modal space | and [¢;] is
the modal matrix of the modified structure in modal space Il. Note that [¢,,] is

formed by using the only original structure and modification information.

5.3  Case Study — Local Mass Modification on Cantilevered Plate Wing

The experimental and computational FE wing model has been developed by Moradi,

Sadeghi, and Dowell [60] to investigate the variation of the flutter speed with mass
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balancing. The mass is assumed concentrated lumped mass and it is attached to the

wing at 15 different attachment locations. The wing is made of a thin plate of

aluminum 3105 with a thickness of 0.5 mm, 0.3 m span length, and 0.1 m reference

chord. The aspect ratio of the wing is 3, the lengths are 0.12 m at the wing root and

0.08 m at the wingtip. In addition, the wing has 29 deg sweptback angle. The wing

geometry is presented in Figure 5.4.

Airflow

0.30

Figure 5.4 Wing Geometry (in meters)[60]

The mechanical properties of aluminum 3105 are defined as the density 2700 kg/m?,

Poisson’s ratio 0.33, and elastic modulus 75 Gpa. The wing is modeled in MSC®

Patran using 90 QUADA4 shell elements in both reference and present study. Table

5.1 compares the first five natural frequencies of the clean wing with reference study.

Table 5.1 Comparison of First Five Natural Frequencies of the Clean Wing

Natural Frequency [Hz]
Mode-1 | Mode-2 | Mode-3 | Mode-4 | Mode-5

FEM Nastran [60] 4.66 25.67 35.15 68.93 97.40

Experiment [60] 4.57 24 .80 33.59 65.62 94.53

FEM Nastran 4.67 25.70 35.16 69.02 97.41
[Present]

FEM Nastran DMAP 4.67 25.70 35.16 69.02 97.41
[Present]
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The results show a perfect agreement between the present study and the
computational results of the reference study. On the other hand, there is no

significant difference between the experimental and the theoretical results.

The concentrated 10 g mass is attached to 15 different locations on the wing. The
labels are denoted for chord centerline M, for trailing edge MB and for leading edge
MF [60]. The mass is modeled by using the CONMZ2 element and there are a total of
112 nodes in the FE model of the structure. The mass attachment is defined as local
structural modification in the current analyses. For instance, attachment at node 16

corresponds to the MF5 in the reference study as given in Figure 5.5.

, [1117111
///// 7 MP2 /7177777
/4%[ MBI v /ng %' 7{4
Z___ X Z ’/ A2 Z BE »44

Figure 5.5 Mass Attachment Locations and Labels on the Structure
53.1 Aeroelastic Analysis of Clean Wing

The aerodynamic modeling of the structure is carried out by utilizing DLM in MSC®
FlightLoads. The aerodynamic model is obtained by dividing the surface into 968
aero boxes. The analyses are carried out at sea level conditions, taking air density
1.225 kg/m®. The present results are given in three different analyses cases. The first

analysis is carried out directly on MSC®Nastran implementing the P-K Method for
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the solution. For the second and third analyses, MSC®Nastran DMAP is used for the
clean wing to extract structural mass and stiffness matrices. Moreover, AIC matrices
are exported for the defined reduced frequency and Mach numbers. The modal and
flutter analyses are carried out with developed in-house Matlab® code. The second
analysis case involves P-K Method for the flutter solution while the third analysis
case has NIPK Method. Table 5.2 compares the obtained flutter speeds with the
reference study for the clean wing. The V-g and V-f graphs for the MSC®Nastran
DMAP Non-Iterative P-K Method solution can be seen in Figure 5.6.

Table 5.2 Comparison of Flutter Speed of the Clean Wing

Flutter Speed | Flutter Frequency
[m/s] [Hz]
Nastran
P-K Method [60] 22.3 -
Experiment [60] 21.5 i
Nastran
P-K Method [Present] 22.04 18.07
Nastran DMAP
P-K Method [Present] 22.05 18.02
Nastran DMAP
NIPK Method [Present] 22.06 17.97
V-f Graph Non-lterative PK Method i V-g Graph Non-lterative PK Method
i —&— Mode 1
601 [—o—Mode 1 osl +m°36§
ol [t o
—=&—Mode 4 o - L i
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Figure 5.6 Nastran DMAP NIPK-Method V-g and V-f Graphs

As shown in Figure 5.6, the first mode is damped whereas the second mode shows
positive damping as airspeed increases. The flutter occurs at the second mode in the

106



vicinity of airspeed 22.06 m/s. The vibration frequencies of the first mode and second

mode tend to close each other around 17.97 Hz.

Since the NIPK Method provides a non-iterative solution approach, the execution
time of the flutter solution by P-K Method is approximately 2.5 times slower than
the NIPK Method in the current in-house flutter calculation framework. There is no
significant difference in the flutter speeds among the present results. Likewise, a
good agreement can be seen between the obtained results and the reference study.
The results validate the FE and aerodynamic model of the structure. Besides, AIC

matrix export methodology to form GAF matrices is validated with the results.

5.3.2 Aeroelastic Analysis of Clean Wing with Lumped Mass

The aerodynamic model is fixed for the clean wing in the flutter analyses. The
present results are obtained by two distinct analyses cases. The first analysis case is
performed such that the flutter solution is directly calculated for the wing attached
mass structure. In other words, the traditional process is implemented as given in
Figure 5.2 and structural modification is not implemented. The solution involves the
abstraction of structural and aerodynamic matrices from MSC®Nastran to Matlab®
environment by using DMAP language and NIPK Method for the in-house flutter
calculation. The second analysis case is carried out such that flutter solution is
obtained by implementing structural modification technique. This process has been
described in Figure 5.3. The second solution involves the abstraction of structural
and aerodynamic matrices of the clean wing by MSC®Nastran DMAP. Hence, the
structure is modified for each 15 attachment cases by using the original structure
information with in-house Matlab® codes. The clean wing AIC and mode shape
matrices are used to evaluate the GAF matrices of the modified structure. The NIPK
Method is applied for the flutter solution. In the reference study, analytical results
belong to the direct output of the MSC®Nastran by providing the P-K Method. The
wing with mass structure is modeled employing MSC®Patran for 15 attachment

cases. Besides, experimental results are given in the reference study. The numerical
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results of the present study and comparison with the reference study are presented in
Table 5.3.

Table 5.3 Comparison of Mass Attached Wing Flutter Results

Flutter Speed [m/s]
Nastran Nastran DMAP
PK- - NEBUET “Structural

Experiment DMAP . ;

Method [60] NIPK-Method Modification”

[60] [Present] NIPK-Method

[Present]
CLEAN
WING 22.30 21.40 22.00 -

M1 22.30 21.50 22.00 21.97
M2 22.30 21.40 22.00 22.02
M3 23.20 22.20 22.90 22.91
M4 23.60 22.40 23.60 23.55
M5 23.20 22.40 23.60 23.69
MB1 22.30 21.50 21.90 21.93
MB2 21.00 21.50 17.90 17.90
MB3 19.40 20.00 18.00 18.06
MB4 18.80 19.50 18.40 18.39
MB5 18.80 19.40 19.10 19.12
MF1 22.10 21.40 21.70 21.69
MF2 21.00 20.70 20.30 20.32
MF3 23.40 23.10 22.90 22.89
MF4 28.00 25.00 27.80 27.71
MF5 14.00 16.70 13.85 13.90

It can be observed that both present solution cases agree with each other regarding
all attachment locations. The correlation between the present results and reference
results is satisfactory. The V-g and V-f plots for the MSC®Nastran DMAP NIPK

Method (MF5 mass attachment case) are presented as an example in Figure 5.7.
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Figure 5.7 V-g and V-f Plots for the MF5 Mass Attachment Case

N

As can be seen in Figure 5.7, mode-2 is damped, and mode-3 shows positive
damping as airspeed increases. The flutter onset can be seen in the mode-3 around
13.85 m/s airspeed. Mode-2 and mode-3 tend to close each other around vibration

frequency 23 Hz.

533 Comparison of Computational Time

Flutter analysis generally begins with the calculation of the modal matrices, namely,
mode shape matrix, generalized mass, and stiffness matrices. Then, GAF matrices
are formed by using the mode shape matrices. Lastly, these matrices are involved in
the flutter solution. To compare the computational efficiency of the structural
modification approach in the flutter analysis, three different grid sizes are employed
for the plate wing structure. The first model is developed by using a 6x15 grid size,
which is currently utilized in the above-mentioned analysis. The second model has a
30x75 grid size while the third model has a 30x150. A total of 15 local structural
modifications are introduced successively in the analysis, which has been shown in
Figure 5.5. In the traditional approach, modification is directly introduced to the
wing structure and eigen solution is performed with Matlab® built-in function “eigs”.
The first ten modes are selected by “smallestabs” option to calculate eigenvalues and
eigenvectors, i.e., mode shapes. On the other hand, the successive modifications are
introduced to the system by implementing Dual Modal Space Method (DMSM) as

shown in Figure 5.3. The comparison of the calculation time is given in Table 5.4
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for the three different structural models. Note that the aerodynamic model is fixed,
and the number of aero boxes is taken as 968 for all analyses. The calculations are
performed with a PC that has a 3.6 GHz 6-core processor and 32 GB RAM. The
results are the means of the CPU time of the total 15 successive modifications.

Hence, they correspond to each modification cycle time.

Table 5.4 Comparison of Computational Time

Modal GAF
Matrices Matrices Flutt_er Total_
; ; Solution Calculation
Calculation Calculation Time[sec] Time [sec]
Time [sec] Time [sec]
Structural Grid: 6x15 0.063 3.039 181.1 184.2
SHIVEAMEL SN0 BTl 0.013 3.026 154.6 157.6

(Structural Mod.)

Structural Grid: 30x75 32.26 3.468 185.6 221.3

Structural Grid: 30x75
(Structural Mod.)

Structural Grid: 30x150 161.93 4.248 212.23 378.4

Structural Grid: 30x150
(Structural Mod.)

0.274 3.445 177.8 181.5

0.987 3.934 192.72 197.6

Table 5.4 indicates that as structural grid size increases the calculation of the modal
matrices takes more time. For the first model, the total number of shell elements is
90, resulting in 540 DOFs in total. The computation of modal matrices takes 0.063
seconds. In the second model, 2250 elements are used with 13500 DOFs in the
structure while the computation takes 32.26 seconds. The last model has 4500
elements and 27000 DOFs in the structure. The computation of the modal matrices
takes 161.93 seconds, which is significantly larger than the previous models. On the
other hand, the computational times of the modal matrices are 0.013, 0.274, and
0.987 seconds when the structural modification method is introduced for the three
different grid sizes. A significant reduction in computation time is observed for the
structural modification cases because it uses only original generalized mass and
stiffness matrices and modification information. In other words, there is no need for

the full system matrices to calculate the modal matrices of the modified structure.
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Note that the execution times of both GAF matrices and flutter solution are close to
each other because the size of the modal output matrices is the same for both
approaches. Therefore, a substantial execution time reduction can be observed by
implementing the structural modification method in the aeroelastic flutter analysis.
The efficiency of the method appears when working with a large number of DOF
systems. Even though these results belong to one modification cycle, the
employment of the structural modification method considerably decreases the
computation time when a large number of successive modifications is present in the
analysis. Also note that NIPK Method is implemented in the solution, which provides

the outputs relatively faster than P-K Method.

In summary, structural modifications are introduced to the traditional flutter solution
procedure. In the traditional method, large-scale aeroelastic systems are generally
converted into ROMSs which reduces the computational complexity. Although ROMs
are computationally efficient, it is required to recalculate the structural and
aerodynamic models when structural modifications are present in the structure. This
situation usually involves comprehensive effort when introducing modifications into
the aeroelastic system. In particular, if there are successive modifications present in
the structure, continuously constructing the aerodynamic model and related GAF
matrices require tedious work. A new flutter calculation procedure is introduced
when structural modifications are present in the system. In this method, the main
assumptions are that modifications are local, and the aerodynamic configuration is
fixed at each modification cycle. Hence, the AIC database of the original structure
that is based on the M-k sets can be used for the modified structures. Since the Dual
Modal Space Modification (DMSM) can approximate the modified systems’ modal
information based on the original structure information, DMSM is introduced to the
flutter solution process. It can be implemented to both ROMs and large-scale
systems, however, its significance is mostly present in large-scale systems, i.e., when
working with a large number of DOFs. Furthermore, this method enables predicting
the flutter speed of the modified structure by using the original modal and

aerodynamic information. The validation of the new method has been carried out
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through an experimental model. The reference study aimed to investigate the effect
of mass balancing on flutter behavior. Consequently, a total of 15 mass attachment
locations are defined on the wing structure and 10 g mass is attached to these
attachment locations. For all cases, experiments were conducted, and flutter speeds
were recorded. On the other hand, a computational model was developed utilizing in
MSC®FlightLoads and Dynamics in the reference work. To validate the present
aeroelastic model, the wing aero-structural model has been developed in
MSC®FlightLoads and Dynamics. Clean wing structural and aerodynamic models
are exported to Matlab® via utilizing DMAP language. Firstly, modifications are
considered local and directly applied to the wing structure. The present results are
compared to reference work and a good agreement is observed between the present
and reference results. Then, a new flutter solution process has been implemented to
the problem. Modifications are implemented successively by using the DMSM
method and a total of 15 flutter speeds are obtained. The present results show a good
correlation with the previously obtained results and reference results. In addition to
that, the study is extended to analyze the new method’s computational efficiency.
Two additional structural models are developed which have finer mesh sizes, i.e., a
large number of DOFs. The first additional model has 13500 DOFs while the second
model has 27000. The new method is implemented to these structural models and
modal matrices, GAF matrices, and flutter solution execution times have been
recorded. The results are compared along with the results of the traditional method.
It is shown that when the systems become larger, the computation time of the modal
matrices drastically increases when the traditional method is considered. However,
when the DMSM method is applied in the flutter solution, the modal matrices
computation time is significantly decreased, especially working with a large number
of DOFs systems. The computational contributions to the total flutter calculation

time can be seen obviously when three distinct cases are considered.
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CHAPTER 6

DESIGN OPTIMIZATION OF WING-STORE SYSTEMS
BASED ON THE FLUTTER CRITERIA

The military aircraft are capable of externally carrying large varieties and
combinations of external stores, such as unguided bombs, guided bombs, missiles,
pods, fuel tanks, etc. The integration phase of these external stores into military
aircraft involves a specific certification process. There are generally two possible
situations for the certification process. In the first and most common situation, an
external store is particularly designed for the aircraft whose design has already been
completed. In the second situation, an aircraft is being designed but existing external
store inventory would be taken into account to maintain the operational capabilities.
The aeroelastic concerns, for example, flutter criteria, certainly shall be taken into
consideration for the above-mentioned situations. On the other hand, determination
of the worst-case flutter configuration for the existing inventory is essential because
the total number of external store loading configurations is close to a million. In the
present chapter, optimization of the wing store systems is investigated considering

the worst-case flutter.

6.1  Wing Store Aeroelastic Model Definition

Since there is a growing demand and attraction for the tactical UAVs which are
capable of carrying external stores in the defense industry, a HALE wing is adopted
for the optimization case studies. When a lower bending rigidity is involved with the
stores, the natural frequencies of the wing store system tend the decrease and close
to each other. In this case, flutter occurs at very low airspeeds. Due to this reason,

the wing is taken the same as provided in section 3.1 but this time it is stiffened by
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taking spanwise bending rigidity, E1,, 1x10% Nm?. The structural model is achieved
utilizing FEM with Euler-Bernoulli beam theory. A total of 32 finite beam elements
and 33 structural nodes are used to discretize the entire wing. The wing is clamped
at the wing root. Each structural node (except the node at wing root) corresponds to
the external store attachment location. The optimization cases involve three different
types of external stores which are given in Figure 6.1. Store 1 is a representative
bomb which is labeled as B-1, while Store 2 is a representative missile which is
labeled as M-1. Lastly, Store 3 corresponds to another missile that is labeled as M-
2.

Store 1 Store 2 Store 3
@ X X
B-1 M-1 M-2

Figure 6.1 — External Store Definitions

Stores are structurally modeled as lumped masses having store pitch inertia. The
attachment of the stores into a wing is accomplished by local structural modification
with store mass and inertia. The attachment between the mass and store is rigid and
the chordwise location of the store center of gravity from the wing flexural axis is

ZEero.

Theodorsen’s aerodynamics is implemented for the acrodynamic modeling and store
aerodynamics are neglected in the analysis. The flutter analysis condition is achieved
by taking air density 0.0889 kg/m? that corresponds to 20000 m altitude. The flutter
solution is obtained via NIPK Method. Considering the above wing store aeroelastic
analysis conditions, the clean wing flutter speed is calculated as 68.03 m/s. Since the
attachment of the external stores tends to decrease the flutter speed of the wing,
Unnax 1S taken as 80 m/s while U,,;, is taken as 5 m/s and number of k, N, = 15 for
all analysis cases. Since w,,;, and w,,,, are determined depending on the natural
frequencies of the wing store structure, k,,;, and k., are calculated for the

particular wing store structure.
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6.2  Flutter Critical Multi-Store Design Parameters

Store mechanical properties are generally determined without considering the
possible effects on the vibrational characteristics of the wing store system when the
store is mounted to the wing structure. In particular cases, store design authorities
like to choose store mass or other properties larger to make use of its operational
capability as much as possible. Since the stores are carried with air vehicles, the
aeroelastic behavior of the particular wing store systems can degrade the
performance or operational requirements of the air vehicles. For instance, a flight
envelope of the fighter aircraft can be substantially limited when an external store is
mounted to the aircraft wing. While a store design activity is being performed for a
specific aircraft, the above-mentioned effects can be eliminated in advance by
introducing additional design constraints during the preliminary design stage of the
store if the store design authority permits. Investigating the worst-case flutter
condition for the wing store system can be a good choice to introduce such design

constraints for the store design activities.

Determination of the store design parameters based on worst-case flutter criteria,
specifically store mass and inertia, can produce additional store design constraints.
As a consequence of the mentioned necessity, three optimization cases have been
defined to investigate additional store design constraints. Each optimization case
involves three types of stores, and its mass and pitch moment of inertia are searched
within a pre-defined analysis range. Store parameters are considered as the design
variables. The design constraints are presented in Table 6.1. Upper bound of the store
pitch inertias is defined by introducing a specific store pitch moment/mass ratio
parameter, r. This parameter defines store pitch moment based on the store mass and
it can be taken as unique to a specific store type. The ratio parameter for the B-1 is
defined as r;, M-1 is defined as r, , and M-2 is defined as r3, which are taken as
1.69, 1.19, and 1.3, respectively.
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Table 6.1 Store Design Constraints

Store Store Mass, Store Pitch Moment of
Type M:s [ka] Inertia, Is [kgm”2]
Min. Max. Min. Max.
“ 0 150 0 Max(My) *1ry
e 0 80 0 Max (M) * 1y
>§< 0 40 0 Max(My) * 15

The multi-store attachment locations

configurations. For the first optimization case, B-1 is attached to the 7 structural
node, while M-1 is attached to the 10" structural node and M-2 is attached to the 13"
node. The corresponding spanwise distances from the wing root (1 structural node)
are 3 m, 4.5 m, and 6 m, respectively. For the second optimization case, B-1 is
attached to the 7" structural node, while M-1 is attached 15" and M-2 is attached to
the 17" structural node. The corresponding spanwise distances from the wing root
are 3m, 7 m, and 8 m, respectively. Likewise, 4", 7" and 17"" structural nodes are
defined as attachment locations for the last case, which corresponds to the 1.5 m, 3

m, and 8 m spanwise locations from the wing root. The illustration of the multi-store

are defined for the particular loading

attachment locations for each optimization case is given in Figure 6.2.
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d 2 3 4 H 6 4 8 9 40 41 42 43 44 45 A6 A7 48 J9 20 21 22 23 24 25 26 27 28 29 30 31 32 33

g L X
” OPTIMIZATION CASE -1

| |
’ N >< OPTIMIZATION CASE -2

“ ) : i OPTIMIZATION CASE -3

Figure 6.2 Optimization Cases for Store Design Parameters

The flutter speed is the objective or cost function used in the optimization process.
Since there are six search variables and worst-case flutter is the minimum flutter
speed, the “fminbnd” function in Matlab® is employed to find the minimum of a
constrained multivariable function. Since “fminbnd” function gives local minimum
solutions depending on the initial values, fminbnd is used with “GlobalSearch”
function in Matlab®. Hence, the solver attempts to locate a solution globally which
has the lowest objective function value in the defined boundary. Considering all the
above, multi-store design optimization calculations have been performed with a PC
that has a 3.6 GHz 6-core processor and 32 GB RAM. The parallel-run option is
enabled during the executions, hence, a total of 6 cores are simultaneously utilized
in the optimization process. The optimization results for Case-1, Case-2, and Case-

3 are given in Table 6.2, Table 6.3 and Table 6.4, respectively.
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Table 6.2 Optimization Case-1 Results

Store Mass,

Store Pitch Moment

Store Type Ms [Kg] of[Lr;rr]t/l\z;,] Is
“ 150.0 244.5
\Ef 80.0 14.7
x 40.0 29.8
Execution Time [Hours] 18.65
Flutter Speed [m/s] 8.40

Table 6.3 Optimization Case-2 Results

Store Mass,

Store Pitch Moment

Store Type of Inertia, Is
Ms [kg] [kgm’\2]
“ 111.73 251.5
X\
;{}i 80.0 15.4
x 40.0 37.8
Execution Time [Hours] 13.27
Flutter Speed [m/s] 5.76

Table 6.4 Optimization Case-3 Results

Store Tvpe Store Mass, | Store Pitch Moment
yp M:s [kg] of Inertia, Is [kgm”2]
“ 13.9 4.1
>< 72.2 95.2
x 40 28.5
Execution Time [Hours] 10.47
Flutter Speed [m/s] 7.62
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The results show that all flutter speeds are significantly lower than the flutter speed
of the clean wing, which is expected. Since the mass addition tends to reduce to first
bending and torsion natural frequencies resulting in the coupling of these modes in

lower airspeeds.

In optimization case-1, masses of all stores are maximized at the upper bound of the
mass constraint. However, it is not valid for the store pitch inertias. The B-1 store
pitch inertia tends to maximize the value as considering the closest store to the wing
root. On the contrary, optimization of the M-1 store inertia tends to decrease its value
as locating the between the B-1 and M-2 store. Lastly, M-2’s optimization results
show that a moderate level of pitch store inertia is found within the pre-defined range
as considering the most distant store from the wing root. Consequently, a unique
combination of the store parameters results in the lowest value of flutter speed, i.e.
worst-case flutter point. Similarly, in the second optimization case, M-1 and M-2
store mass close to their maximum value as seen in case-1. However, B-1’s store
mas is lower than case-1 despite having the same attachment location in case-1. This
can be due to moving the stores M-1 and M-2 away from the B-1 leads to a change
in the vibration characteristics of the wing store structure. Moreover, the store
parameters of M-1 and M-2 are close to each other whereas case-1 and case-2 are
compared. On the whole, the significant difference between case-1 and case-2 is seen

at the B-1’s store mass.

The last case differs from the first two cases as considering the B-1 and M-1 are close
to the wing root and M-2 is away from the wing root. In this particular loading
configuration, B-1 store parameters interestingly tend to be minimized. On the other
hand, M-1’s pitching inertia is close to its maximum value. No change is observed
in the store mass of the M-2 as considering all three optimization cases. This is
expected because heavier stores close to wingtip generally decrease the flutter speed.

All in all, three unique multi-store loading configurations have been defined and
store parameters are optimized based on the worst-case flutter criteria. The

optimization problem is not limited to the number of stores and accordingly

119



attachment locations. The optimization problem can be extended by introducing
more stores and defining constant store properties at the particular attachment
location. For instance, an engine or drop tank with constant parameters can be
introduced at a specific span location under the wing. As a result of store parameters
optimization based on the worst-case flutter criteria, an additional design constraint

can be introduced in the store development phase.

6.3 Multi-Store Attachment Locations at Worst-Case Flutter Condition

Since the total number of external store loading configurations is close to a million
considering the fighter aircraft, the determination of the most critical loading
configuration is crucial. In this case, the total number of possible stores is generally
defined in the inventory. The selected set of stores among the inventory is introduced
as the candidate external stores for the attachment with their store properties. The
ultimate aim is to determine store attachment locations for the given set of stores
which causes the worst-case flutter condition. In the present work, the representative
stores are defined in Table 6.5 to search their attachment locations. As considering
the stores are representative, the store B-1, M-1 and M-2 masses are given as 150 kg,
50 kg, and 25 kg, respectively. To define store pitch moment of inertias, the pre-
defined ratio parameters ry, , and r3, which are again taken as 1.69, 1.19, and 1.3,

respectively.

Table 6.5 Set of Stores Selected in Virtual Inventory

Store Mass, Store Pitch Moment
Ms [ka] of Inertia, Is [kgm”2]

“ 150 253.5

° 50 59.5

>< 25 325

Store Type
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The all-possible conditions are considered in the determination of the attachment
locations. Since a particular store can be located at 32 different attachment locations
(except wing root), there is a total of 32768 possible loading configurations for the
three stores. In this case, all three stores can be located at the same attachment
location. A simple flutter search procedure is developed in Matlab® by calculating
flutter speed for each case instead of utilizing a specific built-in search algorithm.
Then, the lowest flutter speed case is picked among the number of 32768 cases. The
worst-case flutter loading configuration is given in Figure 6.3.

d 2 3 4 b 6 7 8 10 41 42 43 44 45 46 A7 A48 49 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| | |
X o )
M-2 Bl M-1

Figure 6.3 Worst-Case Flutter Loading Configuration

M-2 is found at the 2" structural node and spanwise distance 0.5 m, B-1 is found at
the 9 structural node with a spanwise distance of 4 m. Lastly, M-1 is found at the
24" structural node with a spanwise distance of 11.5 m. The flutter speed is
calculated as 5.07 m/s at this multi-store loading configuration. Consequently, the
calculated attachment locations cause the worst-case flutter condition considering

the given number of stores and parameters.

In conclusion, two different types of study are presented in this chapter. The first
study involves three optimization cases that search for the store design parameters at
a given particular loading configuration. On the other hand, the second study
provides the determination of the worst-case flutter loading configuration for the
given set of stores. A design optimization problem for the wing store systems is
introduced based on the worst-case flutter criteria. The wing is chosen as the HALE
wing which is validated in chapter 3. However, the structural rigidity is increased to
perform the store attachments efficiently. Accordingly, three different store types are
defined in the model. Firstly, store design parameters are determined considering
the three different case studies, which correspond to three different wing store

loading configurations. The store mass and pitch inertias are calculated in multiple
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store attachment cases considering particular loading configurations. The minimum
flutter speed is searched within the pre-defined store parameters. As a result of this
study, it can be concluded that additional store design constraints can be introduced
in the store design activities based on the worst-case flutter condition. Additional
work has been conducted considering the three designed stores with masses and
inertias. The worst-case store loading configuration is searched involving all possible
loading conditions. The attachment locations for the separate stores are obtained.
The study of optimization can be extended by introducing a large number of stores
and attachment locations since the application of FEM by structural modification
easily encounters the attachment of the lumped mass elements. Besides, wing design
parameters can be optimized for a given set of particular external loading
configurations considering the maximum flutter speed condition. Furthermore, a full

aircraft structure with external loads can be optimized by this approach.
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CHAPTER 7

CONCLUSION

7.1 General Conclusions

Aeroelastic modeling and analysis of wing store systems have been investigated
through the study. Since aircraft structures are mainly on the subject of aeroelasticity,
the wings are utilized to investigate the aeroelastic instability problem, i.e., flutter.
In the present work, it is mainly focused on the flutter analysis of wing store systems.
The structural and aerodynamic models are initially developed for the clean wing
structures. FE method and unsteady aerodynamics are implemented for structural
and aerodynamic models, respectively. The evaluation of the aeroelastic equation of
motion is performed and flutter solution methods are implemented mathematically,
namely, K-Method and P-K Method. Besides, a novel approach for the flutter
solution is specifically implemented, which is called the Non-Iterative P-K Method
(NIPK Method). The fast and accurate solution approach of the NIPK Method is
provided to solve the aeroelastic EOM during the analysis. To calculate the flutter
solution, there is required to define a structural and aerodynamic model of the wing.
Hence, the wing structures are modeled through the FE considering 1-D beam and
2-D shell elements. Case studies for the clean wing structure are performed to
validate the developed aeroelastic analysis models. The validation of the models is
carried out through three well-known wing models, namely High-Altitude Long
Endurance (HALE) wing, Goland wing, and AGARD wing 445.6 (weakened).

Since the structural modeling of wing store systems are not a simple process and it
mostly requires comprehensive FE modeling by utilizing commercial software, a
simple and efficient analytical method is developed to model wing store systems in
the 1-D framework. In the developed method, the structural modification approach

is used to model wing store dynamics. The attachment of the store is defined as rigid
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with no additional DOF in the system. The similarity of rigid body motion of the
concentrated mass under free-free condition is taken advantage of deriving the rigid
body mass matrix of the store for the wing store structures. 2-D Theodorsen
aerodynamics are applied for the wing store systems in the 1-D framework whose
structural model is obtained through FEM and structural modification approach.
Hence, free vibration and flutter analyses of such systems are performed simply and
efficiently. The developed model is used to investigate the effect of the spanwise
attachment location of the store on the flutter behavior of the wing store systems. It
is found that the flutter speed of the system increases as moving the store toward the
wingtip. However, the flutter speed tends to decrease after a certain location of the
store. Multi-store attachment cases can be easily developed by introducing this
method since the structural model is developed by use of FEM and structural

modification considering the 1-D framework.

Having introduced that an aeroelastic model for a 1-D cantilevered beam-like wing
with lumped mass structures, a relatively comprehensive wing store system model is
provided to investigate its aeroelastic behavior. For such a system, 2-D shell FEM
and 3-D Doublet Lattice Method (DLM) are introduced for the structural and
aerodynamic model, respectively. The commercial software is utilized to develop
both structural and aerodynamic models. The store is considered flexible means that
a linear spring element is used for its attachment to the wing structure. Consequently,
the store has a 1-DOF pitching motion considering the one attachment location is
pivoted while the other has a linear spring mounting element. In addition to this, a
mass element is introduced between the store and wing structure. Hence, a realistic
aeroelastic model is defined to investigate the flutter behavior for wing store systems.
The varying flexible store mounting locations are considered in the analysis. A
similar flutter behavior to 1-D wing store systems is observed for the flexible store
case. Flutter speed tends to increase toward the wingtip but at a specific location, it
decreases gradually. The main idea behind the modeling flexible store wing system
by utilizing the FEM is to prove that altering the attachment location of the flexible

store can be easily introduced in an aeroelastic system. Hence, the structural
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characteristics of the flexible wing store system are not limited to the attachment
location. For instance, the sensitivity analysis cases considering the variation on
linear spring attachment element, point mass at the attachment, store mass properties,
etc. can be performed efficiently by introducing this approach.

When a large number of design candidates are present during the aeroelastic analysis
of the wing store systems, a significant computational effort is required to conduct
such analyses. Moreover, working with high-fidelity aeroelastic models can
substantially contribute to these computational efforts since it requires encountering
a large number of DOFs for the wing store structures. That kind of analysis addresses
the redesign or optimization activities. If the aerodynamic configuration is fixed in
the successive aeroelastic analysis, the same aerodynamic model can be used
repeatedly. This knowledge leads to the implementation of a structural modification
approach in case of having different structural design candidates while performing
aeroelastic analysis. In the present developed approach, the GAF database for the
modified wing structure is obtained by implementing Dual Modal Space
Modification (DMSM) method by using the original wing’s AIC database. Modal
matrices of the modified system are approximated by this approach to form the
modified system’s generalized mass, stiffness, and aerodynamic matrices. DMSM
method does not require solving full system EOM by eigenvalue analysis to obtain
modified system modal matrices. In other words, the DMSM method requires only
original structure and structural modification information to obtain modal matrices
of the modified structure. DMSM method is typically implemented to obtain modal
matrices for the lower set of modes of the structure likewise flutter analysis. Hence,
flutter analysis of the structurally modified structure is calculated based on the
original structure and structural modification information. Moreover, it is found that
it significantly reduces the calculation of the modal matrices of the modified
structure, especially the large DOF systems are considered. Note that the accuracy

of this method depends on the modal information that exists in the original system.

The store mass properties have been investigated considering the worst-case flutter

condition for the wing store systems. The flutter speed is minimized while
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optimizing the store mass and pitch moment of inertia parameters. It is found that
additional store design constraints can be introduced to the store design activities. If
such design constraints are considered during the preliminary design stage of the
store, the operational capability of the aircraft can be maintained before conducting
ground vibration and flutter flight tests. On the contrary, a ballast weight is desired
to be added to the wing structure to increase the flutter speed. That kind of
optimization problem can be easily obtained by implementing the same optimization
approach to search for the optimal solution for the ballast weight and its location on

the wing.

7.2 Recommendations for Future Work

This thesis involves the application of FEM into wing store structures to analyze its
vibrational and dynamic aeroelasticity characteristics. FEM approach enables
structural modifications when both forming and solving the aeroelastic equation of
motion of the structure. The present approach is not limited to obtain a flutter
solution but can be applied to any static aeroelastic problems like divergence.
Moreover, the study can be extended to obtain the dynamic and elastic response of
the aerospace structures in gust loads. Since the present study includes only linear
systems considering linear attachment elements to wing structures, the non-linear
attachment elements can be utilized in the present methodology. On the other hand,
modifications can be extended to aerodynamics. Store aerodynamics can be included
in the analyses. The study is not limited to wing store systems but can be
implemented in full-scale aerospace structures. The related design optimization
activities can be performed efficiently concerning FE modeling and structural
modification approach.
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