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ABSTRACT 

STRUCTURAL AND AEROELASTIC FLUTTER ANALYSIS OF WING 

STORE SYSTEMS AND STRUCTURAL MODIFICATION APPROACH 

IN AEROELASTICITY 

Akpınar, Aytaç 

Master of Science, Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Orkun Özşahin 

September 2021, 133 pages 

The preliminary aeroelastic design process of the wings with stores is one of the most 

significant design activities to be considered in the aerospace industry. The focus of 

this thesis is mainly based on the dynamic aeroelasticity of the wing store systems 

including the discipline of mechanical vibrations. In the present study, the Finite 

Element Method (FEM) and structural modification approach are primarily 

implemented in the wing store aeroelastic systems. Aero-structural modeling and 

aeroelastic flutter analysis of the wing store systems are performed for 1-D beam-

like and 2-D delta wings. A lumped mass store model is introduced to beam-like 

wings while a 1-DOF pitching elastic store model is introduced for delta wings. The 

structural model for the wing store systems is defined through the Finite Element 

Method (FEM) and store attachment is considered as local structural modifications. 

The structural and aeroelastic flutter characteristics of beam-like wings and delta 

wings with stores are investigated including different types of flutter solution 

methods, namely, K-Method, P-K Method, and Non-Iterative P-K Method. The 

traditional redesign process of the aeroelastic model is redefined by introducing the 

Dual Modal Structural Modification (DMSM) method as aeroelastic systems are 

concerned. The design optimization study for the store parameters is carried out 
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considering the worst-case flutter criteria. This thesis includes different types of 

solution methods that are developed in-house and by utilizing commercial software. 

Keywords: Wing Store Flutter, Structural Modification, Store Design Optimization 
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ÖZ 

KANAT YÜK SİSTEMLERİNİN YAPISAL VE AEROELASTİK 
ÇIRPINTI ANALİZİ VE AEROELASTİSİTEDE YAPISAL DEĞİŞİKLİK 

YAKLAŞIMI 

Akpınar, Aytaç 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Dr.Öğr.Üyesi Orkun Özşahin 

Eylül 2021, 133 sayfa 

Kanat yük sistemleri için yapılan ön aeroelastik tasarım çalışmaları havacılık 

endüstrisinde icra edilen en önemli tasarım çalışmalarından biridir. Bu tez temelde 

mekanik titreşim disiplinin dahil olduğu dinamik aeroelastisite ile ilgilidir. 

Çalışmada geliştirilen kanat yük aeroelastik sistemlerinde ağırlıklı olarak Sonlu 

Elemanlar Yöntemi ve yapısal modifikasyon yaklaşımı uygulanmıştır. Kanat yük 

sistemlerinin yapısal ve aerodinamik modellenmesi tek boyutlu kiriş benzeri ve iki 

boyutlu delta kanat yapıları kullanılarak icra edilmiştir. Kiriş benzeri kanat yapıları 

için yük modeli olarak toplu kütle kullanılırken, yunuslama salınımı bir serbestlik 

dereceli elastik yük ise delta kanat modeli için tanımlanmıştır. Sonlu Elemanlar 

Yöntemi kullanılarak yapısal model geliştirilmiş ve yükün kanada bağlantısı 

bölgesel yapısal modifikasyon olarak tanımlanmıştır. Kiriş benzeri ve delta kanat 

altında yük ile yapısal ve aeroelastik çırpıntı karakteristiği, K-Metodu, P-K Metodu 

ve Yinelemesiz P-K Metodu çırpıntı çözüm yöntemleri uygulanarak incelenmiştir. 

Aeroelastik sistemler düşünülerek, yapının geleneksel tasarım süreci İkili Modal 

Yapısal Modifikasyon yönteminin sürece dahil edilmesi ile süreç yeniden 

tanımlanmıştır. Yük tasarım parametreleri için en kötü çırpıntı ölçütü düşünülerek 
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tasarım eniyileme çalışması icra edilmiştir. Bu tez özgün olarak geliştirilmiş ve ticari 

yazılım kullanılarak geliştirilmiş farklı çözüm yöntemlerini içermektedir. 

Anahtar Kelimeler: Kanat Yük Çırpıntısı, Yapısal Modifikasyon, Yük Tasarımı 

Eniyilemesi 



 

 

ix 

 

To my mom,



 

 

x 

 

ACKNOWLEDGMENTS 

 

I would like to express my gratitude to Asst. Prof. Dr. Orkun Özşahin for his 

guidance, advice, encouragement, constructive criticism, and professional 

understanding throughout the research. 

I am also grateful to İbrahim Murat Karbancıoğlu, Kemal Uçan, and Emre Dede for 

their encouragement and support throughout the study. 

I would like to express my deepest gratitude to my dear wife, Büşra Akpınar for her 

constant love and endless support through my life. 

Last and foremost, I would like to give my thanks to my lovely sister, Bahar Akpınar, 

and my father Atilla Akpınar for all their lifelong support, encouragement and 

always being there for me. I am so blessed to have you in my life. 

 



 

 

xi 

 

TABLE OF CONTENTS 

 

ABSTRACT ............................................................................................................... v 

ÖZ ........................................................................................................................... vii 

ACKNOWLEDGMENTS ......................................................................................... x 

TABLE OF CONTENTS ......................................................................................... xi 

LIST OF TABLES ................................................................................................. xiv 

LIST OF FIGURES ............................................................................................... xvi 

LIST OF ABBREVIATIONS ................................................................................ xix 

LIST OF SYMBOLS ............................................................................................... xx 

CHAPTERS 

1 INTRODUCTION ............................................................................................. 1 

1.1 Theoretical Background ............................................................................. 1 

1.2 Literature Review ....................................................................................... 4 

1.3 Research Objectives ................................................................................... 7 

1.4 Scope and Contents of the Study ................................................................ 8 

2 STRUCTURAL AND AERODYNAMIC MODELING FOR 

AEROELASTIC ANALYSIS ................................................................................. 11 

2.1 Aeroelastic Systems ................................................................................. 11 

2.2 Evaluation of the Aeroelastic Equation of Motion ................................... 14 

2.3 Structural Models ..................................................................................... 17 

2.3.1 Modeling of Continuous Systems ..................................................... 17 

2.3.1.1 Rayleigh-Ritz “Assumed Shapes” Method ................................ 18 

2.3.1.2 Finite Element Method (FEM) .................................................. 21 



 

 

xii 

 

2.4 Aerodynamic Models ................................................................................ 25 

2.4.1 Evaluation of GAFs by Theodorsen Aerodynamics .......................... 25 

2.4.2 Evaluation of GAFs by Doublet Lattice Method (DLM) .................. 30 

2.5 Flutter Calculation Procedures .................................................................. 33 

2.5.1 The K-Method ................................................................................... 34 

2.5.2 The P-K Method ................................................................................ 35 

2.5.3 Non-Iterative P-K (NIPK) Method .................................................... 36 

3 CLEAN WING CASE STUDIES ................................................................... 41 

3.1 High Altitude Long Endurance (HALE) Wing ......................................... 42 

3.1.1 Structural Analysis ............................................................................ 46 

3.1.2 Aeroelastic Analysis .......................................................................... 47 

3.2 Goland Wing ............................................................................................. 51 

3.2.1 Structural Analysis ............................................................................ 54 

3.2.2 Aeroelastic Analysis .......................................................................... 57 

3.3 AGARD 445.6 Wing ................................................................................ 62 

3.3.1 Structural Analysis ............................................................................ 64 

3.3.2 Aeroelastic Analysis .......................................................................... 66 

4 AEROELASTICITY OF THE WINGS WITH EXTERNAL STORES ......... 73 

4.1 Beam-Like Wing with Concentrated Mass Model ................................... 73 

4.1.1 Rigid Body Motion of the Concentrated Mass .................................. 74 

4.1.2 Evaluation of Concentrated Mass Matrix for Wing Store Systems .. 76 

4.1.3 Structural Equations of Motion ......................................................... 77 

4.2 Flat-Plate Delta Wing with Flexible External Store Model ...................... 78 

4.2.1 Finite Element Model ........................................................................ 81 



 

 

xiii 

 

4.3 Wing Store Flutter Case Studies .............................................................. 83 

4.3.1 Beam-Like Wing with Concentrated Mass Case Study .................... 83 

4.3.1.1 Structural Analysis..................................................................... 84 

4.3.1.2 Aeroelastic Analysis .................................................................. 86 

4.4 Flat-Plate Delta Wing with Flexible External Store Case Study ............. 88 

4.4.1.1 Structural Analysis..................................................................... 89 

4.4.1.2 Aeroelastic Analysis .................................................................. 92 

5 STRUCTURAL MODIFICATIONS IN AEROELASTICITY ....................... 97 

5.1 Dual Modal Space Modification ............................................................ 101 

5.2 Evaluation of Generalized Aerodynamic Force (GAF) Matrix by 

Structural Modification ..................................................................................... 103 

5.3 Case Study – Local Mass Modification on Cantilevered Plate Wing .... 103 

5.3.1 Aeroelastic Analysis of Clean Wing ............................................... 105 

5.3.2 Aeroelastic Analysis of Clean Wing with Lumped Mass ............... 107 

5.3.3 Comparison of Computational Time .............................................. 109 

6 DESIGN OPTIMIZATION OF WING-STORE SYSTEMS  BASED ON THE 

FLUTTER CRITERIA ........................................................................................... 113 

6.1 Wing Store Aeroelastic Model Definition ............................................. 113 

6.2 Flutter Critical Multi-Store Design Parameters ..................................... 115 

6.3 Multi-Store Attachment Locations at Worst-Case Flutter Condition .... 120 

7 CONCLUSION .............................................................................................. 123 

7.1 General Conclusions .............................................................................. 123 

7.2 Recommendations for Future Work ....................................................... 126 

REFERENCES ...................................................................................................... 127 



 

 

xiv 

 

LIST OF TABLES 

TABLES 

Table 2.1 – Cantilever Beam Boundary Condition Parameters .............................. 20 

Table 2.2 Flutter Solution Algorithm for Non-Iterative P-K (NIPK) Method in 

Pseudo Code Form .................................................................................................. 38 

Table 3.1 Case Studies Analysis Summary ............................................................. 42 

Table 3.2 HALE Wing Properties[34] ..................................................................... 43 

Table 3.3 HALE Wing Equivalent Beam Structural Properties .............................. 45 

Table 3.4 Comparison of HALE Wing Natural Frequency Results ........................ 46 

Table 3.5 Analysis Conditions ................................................................................ 48 

Table 3.6 Comparison of HALE Wing Flutter Results ........................................... 49 

Table 3.7 Goland Wing Properties[39] ................................................................... 52 

Table 3.8 Goland Wing Equivalent Model Structural Properties ............................ 54 

Table 3.9 Comparison of Goland Wing Natural Frequency Results ....................... 55 

Table 3.10 Analysis Conditions .............................................................................. 57 

Table 3.11 Goland Wing Flutter Non-Iterative P-K Method Analysis Domain ..... 59 

Table 3.12 Comparison of Goland Wing Flutter Results ........................................ 60 

Table 3.13 Material Properties for Weakened AGARD 445.6 Wing ...................... 63 

Table 3.14 Comparison of Natural Frequencies ...................................................... 66 

Table 3.15 Aeroelastic Analysis Conditions for AGARD 445.6 Wing .................. 67 

Table 3.16 AGARD 445.6 Wing Flutter Speed Index Results ................................ 71 

Table 4.1 Beam-Like Wing with Concentrated Mass Properties [5] ...................... 83 

Table 4.2 Comparison of Wing/store Flutter Speeds and Frequencies by Present 

FEM Methodology .................................................................................................. 87 

Table 4.3 Comparison of Clean Wing Natural Frequencies .................................... 89 

Table 5.1 Comparison of First Five Natural Frequencies of the Clean Wing ....... 104 

Table 5.2 Comparison of Flutter Speed of the Clean Wing .................................. 106 

Table 5.3 Comparison of Mass Attached Wing Flutter Results ............................ 108 

Table 5.4 Comparison of Computational Time ..................................................... 110 



 

 

xv 

 

Table 6.1 Store Design Constraints ...................................................................... 116 

Table 6.2 Optimization Case-1 Results ................................................................ 118 

Table 6.3 Optimization Case-2 Results ................................................................ 118 

Table 6.4 Optimization Case-3 Results ................................................................ 118 

Table 6.5 Set of Stores Selected in Virtual Inventory........................................... 120 



 

 

xvi 

 

LIST OF FIGURES 

FIGURES  

Figure 1.1 Collar’s Triangle ...................................................................................... 1 

Figure 1.2 Typical Flutter Analysis Flow Chart ........................................................ 3 

Figure 1.3 Aerodynamic Models in Aeroelasticity[2] ............................................... 4 

Figure 1.4 Structural Models in Aeroelasticity[2] ..................................................... 4 

Figure 2.1 Typical Cantilevered Wing Model [17] ................................................. 12 

Figure 2.2 Geometry of the Wing Section[18] ........................................................ 13 

Figure 2.3 Coupled Bending-Torsion Element ....................................................... 21 

Figure 2.4 Real and Imaginary Parts of C(k) .......................................................... 28 

Figure 2.5 Panels on Wing ...................................................................................... 31 

Figure 2.6 The Classical V-g and V-f Curves ......................................................... 34 

Figure 3.1 Sample HALE UAV [32] ....................................................................... 42 

Figure 3.2 HALE Wing Analysis Workflow ........................................................... 44 

Figure 3.3  HALE Wing Equivalent Beam Geometry ............................................ 45 

Figure 3.4  HALE Wing Natural Frequencies and Mode Shapes ........................... 47 

Figure 3.5 Analysis Case-3 V-f and V-g Graphs .................................................... 50 

Figure 3.6 Analysis Case-5 V-f and V-g Graphs .................................................... 50 

Figure 3.7 Analysis Case-7 V-f and V-g Graphs .................................................... 51 

Figure 3.8 Goland Wing Analysis Workflow .......................................................... 53 

Figure 3.9 Goland Wing Equivalent Beam Geometry ............................................ 54 

Figure 3.10 Mode-1 (7.626 Hz) ............................................................................... 56 

Figure 3.11 Mode-2 (15.231 Hz) ............................................................................. 56 

Figure 3.12 Mode-3 (38.449 Hz) ............................................................................. 56 

Figure 3.13 Mode-4 (54.188 Hz) ............................................................................. 57 

Figure 3.14 Mode-5 (69.142 Hz) ............................................................................. 57 

Figure 3.15 Analysis Case-2 V-f and V-g Graphs .................................................. 61 

Figure 3.16 Analysis Case-6 V-f and V-g Graphs .................................................. 61 

Figure 3.17 Analysis Case-8 V-f and V-g Graphs .................................................. 61 



 

 

xvii 

 

Figure 3.18 AGARD 445.6 Wing Planform ........................................................... 62 

Figure 3.19 AGARD 445.6 Wing Analysis Workflow ........................................... 63 

Figure 3.20 AGARD 445.6 Wing Finite Element Model ....................................... 64 

Figure 3.21 Comparison of Mode Shapes ............................................................... 65 

Figure 3.22 Comparison of GAF Entries for Mach Number, M = 0.954 ............... 69 

Figure 3.23 Comparison of AGARD 445.6 Wing Flutter Speed Index .................. 70 

Figure 3.24 Comparison of AGARD 445.6 Wing Flutter Frequency Ratio ........... 70 

Figure 4.1 Rigidly Attached Wing Store Configuration ......................................... 74 

Figure 4.2 A 3-D Structure on the Supports[48] ..................................................... 75 

Figure 4.3 Wing Store Section ................................................................................ 76 

Figure 4.4 Attachment Locations Between the Wing and Store [9] ....................... 79 

Figure 4.5 Section of Delta Wing Model with an External Store[9] ...................... 80 

Figure 4.6 Illustration of the Stiction Force [49] .................................................... 81 

Figure 4.7 Illustration of the Elements of the FE Model ........................................ 82 

Figure 4.8 Beam-Like Wing FEM with Concentrated Mass at Wingtip ................ 84 

Figure 4.9 Wing Store Natural Frequencies vs Nondimensional Spanwise Location 

of Concentrated Mass for the First Four Modes ..................................................... 85 

Figure 4.10 Wing/store Flutter Speed at Different Store Attachment Locations.... 87 

Figure 4.11 A Snapshot of the Wind Tunnel Model[52] ........................................ 89 

Figure 4.12 The First Four Natural Frequencies of Wing Store Against Different 

Store Span Locations .............................................................................................. 90 

Figure 4.13 Mode-1 [3.78 Hz], y/c = 0.548 ............................................................ 91 

Figure 4.14 Mode-2 [9.78 Hz], y/c = 0.548 ............................................................ 91 

Figure 4.15 Mode-3 [16.11 Hz], y/c = 0.548 .......................................................... 91 

Figure 4.16 Mode-4 [20.53 Hz], y/c = 0.548 .......................................................... 92 

Figure 4.17 Aerodynamic Mesh and Aspect Ratio of the Boxes ............................ 93 

Figure 4.18 Flutter Speed at Different Store Attachment Locations ...................... 94 

Figure 4.19 Flutter Frequency at Different Store Attachment Locations ............... 94 

Figure 5.1 Modern Fighter Aircraft and Its External Store Inventory [55] ............ 98 

Figure 5.2 Traditional Redesign Process of Structural Model ................................ 99 



 

 

xviii 

 

Figure 5.3 New Redesign Process of Structural Model ........................................ 101 

Figure 5.4 Wing Geometry (in meters)[60] ........................................................... 104 

Figure 5.5 Mass Attachment Locations and Labels on the Structure .................... 105 

Figure 5.6  Nastran DMAP NIPK-Method V-g and V-f Graphs .......................... 106 

Figure 5.7  V-g and V-f Plots for the MF5 Mass Attachment Case ...................... 109 

Figure 6.1 – External Store Definitions ................................................................. 114 

Figure 6.2 Optimization Cases for Store Design Parameters ................................ 117 

Figure 6.3 Worst-Case Flutter Loading Configuration ......................................... 121 

 



 

 

xix 

LIST OF ABBREVIATIONS 

ABBREVIATIONS 

 

AGARD Advisory Group for Aerospace Research and Development 

AIC Aerodynamic Influence Coefficient 

CFD Computational Fluid Dynamics 

DLM Doublet Lattice Method 

DMAP Direct Matrix Abstraction Program 

DMSM Dual Modal Structural Modification 

DOF Degrees of Freedom 

EOM Equation of Motion 

EVP Eigenvalue Problem 

FEM Finite Element Method 

GAF Generalized Aerodynamic Force 

GVT Ground Vibration Test 

HALE High-Altitude Long Endurance 

IRS Improved Reduced System 

LCO Limit Cycle Oscillation 

NIPK Non-Iterative PK 

ROM Reduced Order Model 

SEREP System Equivalent Reduction Expansion Process 

UAV Unmanned Aerial Vehicle 

VLM Vortex Lattice Method 



 

 

xx 

LIST OF SYMBOLS 

SYMBOLS 

𝑘𝑤 Spring constant for plunging motion 

𝑘𝜃 Spring constant for pitching motion 

𝑞∞ Dynamic pressure 

𝜌 Air density 

ℓ Wingspan, distance from the root chord to the tip of a wing 

ℓ𝑒 Uniform beam element of the span length 

{𝜂} Vector of modal displacements 

{𝑥} Vector of nodal displacements 

{𝑥𝑒} Vector of elemental nodal displacements 

𝜔 Circular frequency, 2 f  

𝑀 Mach number 

[𝜙] Mode shape matrix 

[𝑄̄𝑎𝑒𝑟𝑜] Generalized Aerodynamic Force (GAF) Matrix 

[𝑀] Mass matrix 

[𝑀𝑒] Elemental mass matrix 

[𝐾] Stiffness matrix 

[𝐾𝑒] Elemental stiffness matrix 

[𝑀𝑜] Rigid body mass matrix 

𝑚 Mass per unit length 

𝑚𝑒 Lumped mass  

𝐼𝑒 Lumped inertia 

𝐼𝑃 Inertia per unit length about the elastic axis 

𝐼𝐶 Inertia per unit length about the center of mass 

𝑥𝜃 
A dimensionless parameter representing the distance between the 

mass axis and elastic axis 

𝑎𝑥 Distance between elastic and inertia axes 

 



 

 

xxi 

 

𝐹(𝑡) Aerodynamic forces 

𝑤 Transverse deflection (bending) 

𝑤𝑦 Angle due to transverse displacement 

𝜃 Pitching rotation (torsion) 

𝐷𝑤 Number of modes in bending 

𝐷𝜃 Number of modes in torsion 

𝜆𝑖 Generalized coordinates related to bending 

𝛿𝑖 Generalized coordinates related to torsion 

𝛹𝑖 Shape functions for bending 

𝛩𝑖 Shape functions for torsion 

[𝐼] Identity Matrix 

[0] Matrix of Zeros 

{𝑁} Row vector of shape functions 

𝛾 Transient decay rate coefficient 

𝑝 Eigenvalue defined in P-K Method 

𝑤𝑗 Normal velocity 

{𝑝𝑘} Resultant force in k-set 

{𝑢𝑘} Displacement in k-set 

[𝐴𝑗𝑗] Aerodynamic Influence Coefficient (AIC) Matrix in j-set 

[𝐷𝑗𝑘] Substantial differentiation matrix 

[𝑆𝑘𝑗] Integration matrix 

[𝑄𝑘𝑘] Aerodynamic Influence Coefficient (AIC) Matrix in k-set 

[𝑄𝑑𝑑] Aerodynamic Influence Coefficient (AIC) Matrix in d-set 

[𝐺𝑘𝑑] Interpolation Matrix 

𝑈𝑓 Flutter Speed 

𝜔𝑓 Flutter Frequency 

𝜌𝑓 Free-stream density at flutter 

𝑤𝑏 Equivalent beam width 



 

 

xxii 

 

ℎ𝑏 Equivalent beam height 

𝜌𝑤𝑖𝑛𝑔 Wing material density 

𝜇 Mass ratio 

𝜔𝑎 Angular frequency of the first torsion mode 

𝑚𝑤 Wing panel mass 

𝑚𝑐 Concentrated mass 

𝑉𝑐 Volume of the truncated cone 

𝑦𝑠𝑝𝑎𝑛 Concentrated mass location along the span 

𝑞̈ Linear acceleration 

𝑞̈𝜃 Rotational acceleration 

𝑀𝑠 Store mass (Concentrated mass) 

𝑀1 Mass of the flexible external store 

𝑀2 Mass of the aft connection point 

𝑒1 Distance between the store tip and the fore attachment point 

𝑒2 Distance between the aft and fore attachment point 

𝑒3 
Mass center location of the external store from fore attachment 

point 

𝛽 Store pitch angle 

𝑘𝑠 Store pitch stiffness 

𝜔𝑠 Store pitch frequency 

𝐴0 Store excitation amplitude 

𝜉𝑠 Store modal damping rate 

𝐽𝛽 Store pitch moment 

𝜎 Store pitch stiction gap angle 

𝑃1,𝑃2 Fore and aft attachment points 

𝑥𝑠,𝑦𝑠𝑧𝑠 Distances of concentrated mass CoG about flexural axis 

𝛼𝑖, 𝛽𝑖 Cantilever Beam Boundary Condition Parameters 

𝑍1, 𝑍2 Vertical displacements of the fore and aft attachment points  



 

 

xxiii 

 

 

𝐴𝑖𝑗, 𝐵𝑖𝑖, 𝑇𝑖𝑖 Rayleigh-Ritz method system matrices elements 

a Dimensionless parameter for the elastic axis 

b Half-chord length 

C(k) Theodorsen’s function 

e Dimensionless parameter for the center of mass 

E Elastic modulus 

EI Bending rigidity 

g Damping term 

G Shear modulus 

GJ Torsional Rigidity 

H Aerodynamic transfer function 

k Reduced frequency 

r Mass radius of gyration 

s Laplace variable 

T Torsional constant 

U Free stream velocity 





 

 

1 

CHAPTER 1  

1 INTRODUCTION  

1.1 Theoretical Background 

Aeroelasticity considers the effects of the interacting inertia, aerodynamic and elastic 

forces on the aerospace structures, such as an aircraft. Collar [1] defines the 

aeroelasticity with a famous triangle, which is shown in Figure 1.1. The discipline 

of mechanical vibrations directly concerns such forces. 

 

Figure 1.1 Collar’s Triangle 

The most critical design problems in the aerospace industry can be experienced as 

aeroelastic problems. They arise because of aerospace structures’ flexible 

characteristics which means that the structure is not completely rigid. The common 

characteristic is generally observed whereas the aeroelastic problems are considered. 

Aerodynamic forces produce structural deformations and resulting deformations 

alter the aerodynamic forces. Respectively, the resulting aerodynamic forces 
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reproduce structural deformations, and this process continues successively until a 

state of equilibrium is reached. Generally, the equilibrium point is a failure of the 

structure.  

Aeroelasticity can be classified into two categories, namely, static aeroelasticity and 

dynamic aeroelasticity. The design of an aircraft is generally formed by considering 

these two. Divergence is a phenomenon such that gradual change in the wing twist 

deflection leads to a rise of aerodynamic forces, thus, the rising of wing twist 

continues until structural failure takes place. Consequently, divergence is 

investigated in static aeroelasticity. On the other hand, the flutter phenomenon is 

investigated in dynamic aeroelasticity, which includes mechanical vibrations. Flutter 

is encountered as a consequence of elastic deflections of lifting surfaces like wings 

and fluid-structure interaction is observed in an oscillatory manner. Such interaction 

produces aerodynamic loads, and it gives rise to structural deflection with each 

oscillation. This situation leads to divergent oscillations, i.e., structural failure. 

Flutter generally occurs due to the bending-torsion coupling for the first modes of 

the aircraft bare wing, i.e., clean wing.  

In addition, military aircraft are demanded to carry a large variety of wing-attached 

stores to maintain their operational requirements. External stores can be defined as 

any equipment such as general-purpose bombs, pods, missiles, guns, and fuel tanks 

that are mounted to the wing structure. When rigid mounting of the external store 

attachment is considered, the coupling of the above-mentioned modes of the 

structure occurs earlier than the clean wing case. This phenomenon is defined as a 

typical wing store flutter. In general, aeroelastic coupling of structural vibration 

modes involves non-linear stiffness and aerodynamics. This situation leads to 

sustained, non-divergent, non-destructive vibration of the flexible air vehicle, which 

is called Limit Cycle Oscillations (LCO). LCO is typically seen at high-performance 

aircraft with stores. The oscillation amplitude of the structure is occasionally limited 

through non-linear stiffness and aerodynamics. The existence of LCO may cause 

undesired vibration of the airframe and it may reduce the handling of aircraft and 

may result in a significant decrement in the cycle fatigue life of the structure. 
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Since air vehicles are prone to aerodynamic and structural effects due to having 

flexible bodies, they are designed to avoid aeroelastic flutter due to their destructive 

nature. The typical flutter analysis flow chart is given in Figure 1.2. Firstly, a 

structural model is developed, commonly through the Finite Element Method 

(FEM). Then, Ground Vibration Test (GVT) is performed with a physical prototype 

of the structure and the analytical modal model is updated as a result of GVT.  Lastly, 

flutter analysis is conducted with an aeroelastic model, which is constructed by 

combining aerodynamics and a refined or updated structural model. 

 

Figure 1.2 Typical Flutter Analysis Flow Chart 

The accuracy of the flutter analysis depends on the fidelity levels of the aerodynamic 

and structural models. High-fidelity flutter calculations are mainly not preferred for 

multidisciplinary design optimizations due to the associated computational cost. On 

the contrary, Reduced Order Models (ROMs) with fewer degrees of freedom are 

widely used for that purpose. The aerodynamic models, which are employed in 

aeroelasticity, are presented in Figure 1.3, whereas structural models are shown in 

Figure 1.4. 
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Figure 1.3 Aerodynamic Models in Aeroelasticity[2] 

 

Figure 1.4 Structural Models in Aeroelasticity[2] 

Structural models can be divided into two main groups, namely, continuous, and 

discrete models. Likewise, aerodynamic models can be grouped into two groups, 

which include 2-D and 3-D aerodynamic effects. 

1.2 Literature Review 

In the earlier work for the wing store systems, the studies were initially focused on 

the influence of the store mass and its spanwise location on the flutter speed. One of 

the first studies mentioning particularly the effects of external stores on flutter was 
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developed by Goland & Luke [3]. In the developed work, differential EOM of the 

wing through the extended Galerkin’s Method was used. On the other hand, the first 

experimental study on the wing store flutter was conducted by Runyan & Sewall [4]. 

Then, these experimental results were compared with analysis of differential 

equations by Runyan and Watkins [5]. These studies have shown that the effect of 

the store mass and its spanwise location has a significant effect on the flutter.  

These studies are followed by works that consider the influence of the structural 

characteristics of the attachment elements, i.e., pylons on flutter speed. Reed et al.[6] 

investigated the effects of the store attachment elements on flutter speed employing 

passive spring-damper elements in the wing store system. The study shows that 

introducing these types of elements increases the system flutter speed and reduces 

the dependency of the flutter on the inertia and center of gravity of the store. Yang 

and Zhao [7] investigated the flutter speed of the wing store system with the pylon 

stiffness by dividing it into three different groups, in which the wing is modeled as a 

2-D airfoil.  Although the linear studies are not limited to these, nonlinear 

aeroelasticity was attracted and studied by many researchers. Desmarais and Reed 

[8] analyzed the effects of the mounting characteristics with nonlinear pylon by using 

describing function method.  Tang et al. [9] experimentally and theoretically studied 

the flutter and LCO characteristics of the wing store model where von Karman plate 

theory was used to model the wing structure. Kim and Strganac [10] studied the 

store-induced nonlinearities for the wing store system employing a nonlinear 

equation of motion. Likewise, Beran et al. [11] investigated the non-linear aeroelastic 

responses of a wing store structure, and transonic disturbance methodologies were 

adopted to model aerodynamic loads.  

When the attachment of the store to the wing is considered as a structural 

modification, the dynamic characteristics of a modified structure such as a wing store 

system can be obtained by using the original system dynamic properties, for instance, 

a clean wing. Canbaloğlu and Özgüven [12] developed an effective structural 

modification method when an additional degree of freedom is introduced into the 

modification. In the study, the modification is in the form of beams mounted under 
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the wing model that acts as stiffeners providing flexural rigidity. The performance 

of the method is analyzed by conducting an experiment with the GARTEUR SM-

AG19 model. Therefore, a good correlation was observed between the analytical and 

experimental results. Then, the linear structural modifications were extended to 

systems with nonlinear modifications by Kalaycıoğlu and Özgüven [13]. Nonlinear 

modification with additional DOFs at attachment locations and nonlinear coupling 

with nonlinear elements were investigated analytically. The satisfactory results were 

obtained when analytical results are compared to the experiments. 

In the optimization process of developing wing store systems, the change in the 

structural model is a necessity depending on the objective function of the problem. 

Modal characteristics of the structures, namely, frequencies, damping, and mode 

shapes, are generally determined from a normal mode analysis, i.e., by solving the 

eigenvalue problem. Many optimization cycles should be performed successively 

which mostly involves a computationally expensive process for large-scale systems. 

To overcome such high computational costs, Winter et al.[14] developed two novel 

Reduced Order Models (ROMs) that are based on CFD, and it is robust to change in 

the structural mode shapes owing to the additional lumped mass. Chen et al.[15] 

developed an efficient ROM in the existence of global structural modifications. In 

the developed work, the extended Kirsch combined method, which uses mainly the 

second-order eigenvector terms, was applied in the case of global structural 

modifications. In the above-mentioned studies, aeroelastic ROM was remodeled due 

to structural modifications. Consequently, they involve both reevaluations of the 

structural model and relevant reduced-order aerodynamic model.  Apart from 

structural modifications, Karpel et al. [16] presented a new modal coupling technique 

for flutter analysis of the aircraft with multiple external store configurations. The 

study showed that flutter characteristics of numerous external store configurations 

for a typical fighter aircraft can be investigated efficiently without needing 

successive GVT and aeroelastic analysis. 
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1.3 Research Objectives 

The main objective of this thesis is to develop a simple and effective aeroelastic 

model to conduct flutter analysis for the wing store systems that can be used during 

the preliminary design stage of an air vehicle. Numerous design candidates can be 

introduced for such systems to satisfy flutter requirements during this stage. This 

situation leads to an inevitable redesign process of the structure. If the aerodynamic 

configuration is fixed, the aerodynamic model can be used repeatedly while the 

structural model is being modified for the successive flutter analyses. The developed 

methodology has been mainly constructed based on this knowledge. This study aims 

at contributing to the following improvements for the wing store systems’ structural 

and aeroelastic modeling and analyses: 

• Although working with the ROMs (1-D framework) can reduce the 

computation time for the aeroelastic analyses, an additional improvement has 

been implemented to diminish overall modeling and analysis effort for the 

wing store systems. In the present approach, the attachment of the store is 

considered rigid, and it is defined as a local structural modification. By this 

approach, the structural model is defined simply to be coupled with an 

aerodynamic model to conduct flutter analysis.  

• Further development has been introduced to form aeroelastic EOM by 

dealing with complex (Generalized Aerodynamic Force) GAF database of 

the 3-D aerodynamic model. Since GAF database is obtained through 

Aerodynamic Influence Coefficient (AIC) and lower order modal matrix of 

the structure, a structural modification method, namely, Dual Modal Space 

Method (DMSM) is implemented to approximate the modal matrix as 

keeping the AIC constant. Consequently, GAF database can be formed 

efficiently when successive structural modifications are present in the 

redesign process.  

• Because classical flutter solution methods like K-Method and P-K Method 

have certain drawbacks due to utilizing an interpolation of aerodynamic 
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matrices, a novel Non-Iterative P-K Method (NIPK Method) is implemented 

in the flutter solution sequence. NIPK Method provides a fast and accurate 

flutter solution when comparing with the classical methods. 

1.4 Scope and Contents of the Study 

Structural and aerodynamic models are developed and analyzed for several clean 

wings and wing store systems. Store attachment is accomplished through a local 

structural modification in the present analysis. Besides, Dual Modal Structural 

Modification (DMSM) method is included in the traditional redesign process of the 

structural model as concerning aeroelastic analysis. Design optimization of the wing 

store system is performed based on a worst-case flutter criterion. 

In Chapter 2, the structural and aerodynamic modeling of the cantilevered clean wing 

structure is presented. The beam-like 1-D structural model is developed including 

two distinct approaches, namely, Rayleigh-Ritz method and Finite Element Method 

(FEM), which are based on the Euler-Bernoulli beam theory. On the other hand, 

Theodorsen’s aerodynamics is introduced to be coupled with beam-like 1-D wing 

structural models. Besides, 3-D lifting surface theory is introduced to use with 2-D 

shell wing structures. Generalized Aerodynamic Force (GAF) matrix definition and 

its evaluation are presented for the presented models. Lastly, an aeroelastic 

instability phenomenon solution, i.e., flutter solution is introduced. 

Chapter 3 involves the flutter analysis of the clean wings. The validation of the 

analysis model is carried out through three well-known wing models, namely High-

Altitude Long Endurance (HALE) wing, Goland wing, and AGARD wing 445.6 

(weakened). Both structural models and aeroelastic models are investigated and 

analyses results are compared along with the reference studies. 

In Chapter 4, wing store systems are investigated through two different models. The 

first model is based on the beam-like wing with the store. The store is assumed as 

lumped mass and rigidly attached to the wing. The equation of motion for the clean 
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is rewritten through FEM and structural modification approach when rigid store 

attachment is considered. The second model is based on the delta wing with flexible 

store attachment. The model is also developed by use of FEM. Two case studies are 

presented and investigated for the models. The present results are compared to 

reference studies. 

Chapter 5 includes the structural modifications in the aeroelastic systems. The 

attachment of a lumped mass is considered as a local structural modification and a 

new method is presented for flutter analysis in the presence of local structural 

modifications. The evaluation of the Generalized Aerodynamic Force (GAF) matrix 

utilizing Dual Modal Structural Modification (DMSM) is presented. The current 

method is implemented in a case study. The present results are compared along with 

the reference experimental and analytical results. 

In Chapter 6, a design optimization problem is defined based on the flutter criterion. 

For the given loading configurations, each with three external stores, the multi-store 

design parameters are optimized simultaneously depending on the worst-case flutter 

criterion. Lastly, for a given aircraft wing and a set of stores, a particular loading 

configuration is determined which causes the worst flutter condition.  
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CHAPTER 2  

2 STRUCTURAL AND AERODYNAMIC MODELING FOR 

AEROELASTIC ANALYSIS 

This chapter includes the structural and aerodynamic modeling of the cantilevered 

wing structure. The wing structure is modeled through the Finite Element Method 

(FEM) and Rayleigh-Ritz method based on classical 1-D Euler-Bernoulli beam 

formulation while aerodynamic loads are derived by Theodersen’s unsteady 

aerodynamic theory. An unsteady 3-D lifting surface Doublet Lattice Method (DLM) 

is introduced to model complex aeroelastic aircraft wings. Besides, the aeroelastic 

equation of motion and its solution methods for the flutter phenomena are presented 

in the chapter. 

2.1 Aeroelastic Systems 

The aeroelastic systems consist of two main aspects, namely structural and 

aerodynamic models. The structural models presented in this chapter are coupled 

with Theodorsen’s unsteady aerodynamic model that is developed for a harmonically 

pitching-plunging airfoil. To investigate the aeroelastic behavior and to state model 

parameters of such a linear aeroelastic system, a 2 DOF pitching-plunging system is 

defined due to its physical simplicity.  This model could correspond to a typical 

airfoil section through a wing structure. Since the aeroelastic analysis presented in 

this study mostly involve cantilevered beam-like wing sections, fundamental axes on 

the wing structure can be expressed through a sample beam-like wing model. 

The wing model is based on the three axes definitions, which are namely the 

aerodynamic axis, elastic or flexural axis, and inertia or mass axis. While the wing 

moves through a fluid, the pressure distribution over the airfoil contributes to the 
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total force on the structure. The chordwise location of the resultant force is called the 

center of pressure. The spanwise line passing through the center of pressure is 

referred to as the aerodynamic axis. The chordwise location of the aerodynamic axis 

varies according to the flow regime. For instance, aerodynamic axis locations can be 

different at each subsonic and supersonic flow regime.  The elastic axis of the wing 

is the longitudinal that transverse bending forces must pass through it while the 

bending of the wing shall not be coupled with the torsion. In other words, bending 

and torsion motions are uncoupled along the elastic axis. The inertia axis is defined 

as the longitudinal line passing through the average locations of the weight of the 

wing model. Figure 2.1 represents a typical aircraft, its cantilevered wing, and 

relevant axis locations. 

 

Figure 2.1 Typical Cantilevered Wing Model [17] 
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It is challenging that to deal with the aeroelastic behavior of the coupled bending 

torsion motion of the wing and its combined interactions with the aerodynamic loads. 

The distance between the inertia and elastic axes has a significant effect on the 

aeroelastic behavior of the wing. This distance is referred to as the static unbalance 

that is a condition where the inertia and elastic axes do not coincide with each other, 

and it causes structural coupling of bending and torsion modes of the wing. 

After stating the basic aeroelastic system characteristics, the aforementioned typical 

section model is defined by Hodges et al. [18], which demonstrates the sinusoidal 

oscillatory motion of a 2 DOF pitching and plunging airfoil. Figure 2.2 defines the 

section of the wing. 

 

Figure 2.2 Geometry of the Wing Section[18] 

The airfoil semi-chord is defined as 𝑏 and airfoil is subject to a constant free stream 

velocity, 𝑈. The point 𝑃 is defined as the reference point where plunge displacement 

where 𝑤 is measured and it is referred to as the elastic axis. The points 𝐶, 𝑄, and  𝑇 

are the center of mass that is referred to as the inertia axis, the pressure center that is 

referred to as the aerodynamic axis, and the three-quarter-chord, respectively. The 

dimensionless parameters 𝑒 and 𝑎 represent the locations of the points 𝐶 and 𝑃. The 

static unbalance parameter is a dimensionless parameter representing the distance 

between the inertia axis and elastic axis and it is denoted by the relation 𝑥𝜃 = 𝑒 − 𝑎. 

Linear springs in the system are defined as spring constants, 𝑘𝑤 for plunging and 𝑘𝜃 

for pitching motions. 
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2.2 Evaluation of the Aeroelastic Equation of Motion  

The collective interaction of the inertial and elastic structural forces, aerodynamic 

forces, and external disturbance forces leads to an aeroelastic response of the wing 

structure. Considering the equilibrium conditions of these forces, the equation of 

motion of the aeroelastic system can be given as follows:[19] 

 [𝑀]𝑥̈(𝑡) + [𝐾]𝑥(𝑡) = 𝐹(𝑡) (2.1) 

where 𝑥(𝑡) is the physical deformation of the structure, [𝑀] and [𝐾] are the mass 

and stiffness matrices obtained by one of the convenient methods, for instance, the 

Finite Element Method (FEM). The structural damping term is omitted in the 

expression for simplicity. Besides, 𝐹(𝑡) is the aerodynamic forces that are applied to 

the structure, which can be divided into two sections: the aerodynamic forces arising 

from the structural deformation, 𝐹𝑎(𝑥) and the external forces, 𝐹𝑒(𝑥). Hence, 𝐹(𝑡) 

can be written as below: 

 𝐹(𝑡) = 𝐹𝑎(𝑥) + 𝐹𝑒(𝑡) (2.2) 

The external forces, 𝐹𝑒(𝑡) usually indicates the piston ejection forces for store 

separation or control surface aerodynamic forces. Since these types of forces are not 

considered in the present study, by taking 𝐹𝑒(𝑡) = 0 Eq. (2.1) is expressed as in the 

following equation: 

 [𝑀]𝑥̈(𝑡) + [𝐾]𝑥(𝑡) − 𝐹𝑎(𝑥) = 0 (2.3) 

Since the system given in Eq. (2.3) is self-excited, the stability condition of the 

system needs to be examined, which is known as flutter. The stability condition of 

the structure can be investigated by implementing a time marching procedure with 

an initial condition of 𝑥(0) and 𝑥̇(0) specified at 𝑡 = 0. Time-domain solutions for 

such systems are not computationally time efficient since it needs a nonlinear time-

domain unsteady aerodynamic method, i.e., Computational Fluid Dynamics (CFD). 

When the infinitesimal oscillations are considered on the structure, the aerodynamic 

forces exhibit linear characteristics regarding the structural deformations. Thus, the 
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system defined in Eq. (2.3) turns into an eigenvalue problem by utilizing a amplitude 

linearization technique, which states a transfer function between 𝐹𝑎(𝑥) and 𝑥(𝑡) in 

the following equation: 

 𝐹𝑎(𝑥) = ∫ 𝑞∞𝐻 (
𝑈

𝑏
(𝑡 − 𝜏)) 𝑥(𝜏)𝑑𝜏

𝑡

0
 (2.4) 

where 𝐻 is the aerodynamic transfer function, 𝑞∞ = 1/2𝜌𝑈2 is the dynamic 

pressure, 𝜌 is the air density, 𝑈 is the free stream velocity and b is the half chord 

length. The Laplace domain counterpart of Eq.(2.4) is given as follows: 

 𝐹𝑎(𝑠) = 𝑞∞𝐻̄ (
𝑠𝑏

𝑈
) 𝑥(𝑠) (2.5) 

where 𝐻̄ is the Laplace domain counterpart of the aerodynamic transfer function. 

The matrix form of this function in the frequency domain is defined as the 

Aerodynamic Influence Coefficient (AIC) matrix. To obtain the general form of the 

aeroelastic equation of motion,  Eq. (2.3) firstly transformed into the Laplace domain 

with the assumption of simple harmonic motion, then converted into the reduced 

frequency domain, 𝑘, which is defined as follows: 

 𝑘 =
𝜔𝑏

𝑈
 (2.6) 

The explanation of the reduced frequency, k is comprehensively expressed in section 

2.4.1. Consequently, Eq. (2.3) can be transferred into the following equation by 

replacing  𝐴𝐼𝐶 (
𝑠𝑏

𝑈
) with 𝐴𝐼𝐶(𝑖𝑘) and s by 𝑖𝜔, and it results in an eigenvalue problem 

(EVP) in terms of 𝜔. 

 [−𝜔2[𝑀] + [𝐾] − 𝑞∞𝐴𝐼𝐶(𝑖𝑘)]{𝑥} = 0 (2.7) 

Since the FE model of the aircraft structure involves a large amount of DOF, the size 

of mass and stiffness matrices are excessively large, moreover, solving EVP of Eq. 

(2.7) needs significant computational effort. Thus, a modal technique can be 

introduced to the problem which can be given as below: 

 {𝑥} = [𝜙]{𝜂} (2.8) 
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where [𝜙] is the modal matrix, whose columns have a truncated set of natural modes 

and {𝜂} is the vector of modal displacements. Substituting Eq. (2.8) into Eq.(2.7) and 

pre-multiplying Eq.(2.7) with [𝜙]𝑇 results in the general form of the aeroelastic 

equation of motion for the flutter. 

 [−𝜔2[𝑀̄] + [𝐾̄] − 𝑞∞𝐺𝐴𝐹(𝑖𝑘)]{𝜂} = 0 (2.9) 

where [𝑀̄] is the generalized mass matrix, [𝐾̄] is the generalized stiffness matrix, 

and 𝐺𝐴𝐹(𝑖𝑘) is the Generalized Aerodynamic Force (GAF) matrix, which are 

expressed as follows: 

 [𝑀̄] = [𝜙]𝑇[𝑀][𝜙] (2.10) 

 [𝐾̄] = [𝜙]𝑇[𝐾][𝜙] (2.11) 

 [𝐺𝐴𝐹] = [𝜙]𝑇[𝐴𝐼𝐶][𝜙] (2.12) 

where [𝐺𝐴𝐹] is expressed as [𝑄̄𝑎𝑒𝑟𝑜] through the present work. 

The above discussion illustrates that the existence of the aerodynamic transfer 

function provides to avoid solving the time-dependent EOM, whose form is usually 

nonlinear. On the other hand, forming an aerodynamic transfer function by use of 

unsteady aerodynamics results in the AIC matrix and it is a very comprehensive 

process. Hence, the theory of unsteady aerodynamics is implemented in the 

frequency domain by assuming simple harmonic motion. As a result, two distinct 

types of unsteady aerodynamic theory are presented for the aerodynamic modeling 

in this thesis, namely, Theodorsen’s aerodynamics and Doublet Lattice Method 

(DLM). 

The last discussion is based on the application of the modal approach, i.e., the use of 

a truncated set of structural modes. The critical flutter modes mostly occur due to the 

coupling of lower-order structural modes. Because of that reason, a maximum of ten 

numbers of the lowest natural modes are chosen for the flutter analysis of the wing 

structure, and fifty natural modes are adequate for the entire aircraft structure [19]. 

Once the lower set of modes are obtained for the analysis, the recalculation of these 
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modes is inevitable when structural modifications are present in the structure. 

Moreover, it requires a high computational cost when successive structural 

modifications in large DOF systems are considered. To direct approximation of the 

modified system’s truncated set of modes can be possible by using the original 

structure’s modal data in the aeroelastic systems. Further discussion related to this 

subject is stated in Chapter 5. 

2.3 Structural Models 

The structural modeling of the aircraft structures is comprehensive design activity in 

the aerospace industry. The structural models are used in both structural and 

aeroelastic analysis. The wing structural models can be developed by utilizing 1-D 

beam formulations, 2-D shells, and 3-D solid elements. Since the 1-D beam 

formulations require less computational effort, 1-D beam formulation will be taken 

into consideration within the context of this chapter. 

2.3.1 Modeling of Continuous Systems 

The systems encountered in aircraft aeroelasticity are mostly continuous. Therefore, 

an aircraft wing, fuselage, or external store can be considered as elastic continuum 

members which can bend and twist and have their mass and stiffness properties 

distributed spatially over the system. There are multiple approaches for modeling 

continuous systems, namely [20] 

a) the analytical method by exactly solving the governing partial differential 

equations 

b) an approximate approach using a series of assumed shapes to represent the 

deformation (i.e. Rayleigh-Ritz Method). 

c) an approximate approach using spatial discretization (i.e. Finite Element 

Method - FEM) 
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The analytical approach is satisfactory for simple systems; however, it is not useful 

when complicated aircraft systems are considered such as aircraft wings and external 

stores. The assumed mode method is still being used in the aeroelastic analysis. On 

the other hand, it has weaknesses when handling complex geometry. Because it 

works for relatively simple geometries (e.g. uniform cantilever wings). On the 

contrary, FEM is highly satisfactory for representing the structural vibrational 

characteristics of complicated aeroelastic systems such as wing store systems. Thus, 

the current study mostly covers the application of FEM for modeling aeroelastic 

systems. 

2.3.1.1 Rayleigh-Ritz “Assumed Shapes” Method 

The wing can be represented as a continuous cantilever 1-D beam. Rayleigh-Ritz 

method allows reducing the infinite number of DOF systems into a finite number. 

The structural dynamics of the wing structure can be modeled through the method in 

this manner. The energy equations refer to the classical Euler-Bernoulli beam theory 

for both bending and torsion including inertial coupling. Consider an unswept wing 

and its strain energy is defined as below: 

 U = 
1

2
∫ [EI (

𝜕2𝑤

𝜕2𝑦2
)
2

+GJ (
𝜕𝜃

𝜕𝑦
)
2

]
ℓ

0
 dy (2.13) 

Similarly, kinetic energy for the beam is of the form  

 K = 
1

2
∫ [𝑚 (

𝜕𝑤

𝜕𝑡
)
2

− 2𝑚𝑏𝑥𝜃
𝜕𝑤

𝜕𝑡

𝜕𝜃

𝜕𝑡
+𝑚𝑏2𝑟2 (

𝜕𝜃

𝜕𝑡
)
2

]
ℓ

0
 𝑑𝑦 (2.14) 

where 𝐸𝐼 is the bending rigidity and 𝐺𝐽 is the torsional rigidity for the uniformly 

distributed beam. The span of the wing and mass per unit length is denoted by ℓ and 

𝑚 respectively. 𝑟 is the mass radius of gyration about the point P, which is the 

reference point where plunge displacement, 𝑤 is measured in Figure 2.2. The mass 

radius of gyration, 𝑟 is defined as below: 



 

 

19 

 𝑟 = √
𝐼𝑃

𝑚𝑏2
 (2.15) 

The relation between the moment of inertia per unit length about P, 𝐼𝑃 and the 

moment of inertia per unit length about C, 𝐼𝐶 is given as follows: 

 𝐼𝑃 = 𝐼𝐶 +𝑚𝑏
2𝑥𝜃

2 (2.16) 

Note that the solution is approximated by a linear combination of shape functions 

and the generalized coordinates in the Rayleigh-Ritz method. Hence, assumed modes 

are given as uncoupled free-vibration modes of the wing for bending and torsion, 

such that: 

𝑤(𝑦, 𝑡) =  ∑ 𝜆𝑖(𝑡)𝛹𝑖
𝐷𝑤
𝑖=1 (𝑦) 

𝜃(𝑦, 𝑡) =  ∑ 𝛿𝑖(𝑡)𝛩𝑖
𝐷𝜃
𝑖=1 (𝑦) (2.17) 

where 𝐷𝑤, 𝐷𝜃, 𝜆𝑖 and 𝛿𝑖 are the number of modes representing bending, the number 

of modes representing torsion, generalized coordinates related with bending, and 

generalized coordinates related with torsion, respectively. The shape functions for 

the bending and torsion are given by 𝛹𝑖 and 𝛩𝑖, respectively.  

These shape functions should satisfy the boundary conditions depending on the type 

of the problem. Since the wing is considered cantilevered, fixed-free beam boundary 

conditions have to be considered. The bending and torsion shape functions are given 

as follows [18]: 

 𝛩𝑖 = √2 𝑠𝑖𝑛( 𝛾𝑖𝑦) (2.18) 

where 𝛾𝑖 =
𝜋(𝑖−

1

2
)

ℓ
 

 𝛹𝑖 =  cosh(𝛼𝑖𝑦) - cos(𝛼𝑖𝑦) - 𝛽𝑖[sinh(𝛼𝑖𝑦) - sin(𝛼𝑖𝑦)] (2.19) 

Cantilever beam boundary condition parameters 𝛼𝑖ℓ,  (2𝑖 − 1)𝜋/2 and 𝛽𝑖 for 𝑖 =

1, . . . . ,5 is defined by Hodges et al. [18] in Table 2.1. 
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Table 2.1 – Cantilever Beam Boundary Condition Parameters 

𝒊 𝜶𝒊𝓵 (𝟐𝒊 − 𝟏)𝝅/𝟐 𝜷𝒊 

1 1.87510 1.57080 0.734096 

2 4.69409 4.71239 1.01847 

3 7.85476 7.85398 0.999224 

4 10.9955 10.9956 1.00003 

5 14.1372 14.1372 0.999999 

 

The next step is to discretize the strain and kinetic energy expressions in the 

utilization of the Rayleigh-Ritz method. The strain and kinetic energy can be 

simplified due to the orthogonality of assumed modes: 

 U = 
1

2
(
EI

ℓ3
∑ (𝛼𝑖ℓ)

4𝜆𝑖
2𝐷𝑤

𝑖=1 +
GJ

ℓ
∑ (𝛾𝑖ℓ)

2𝛿𝑖
2𝐷𝜃

𝑖=1 ) (2.20) 

 K = 
𝑚ℓ

2
(∑ 𝜆̇𝑖

2𝐷𝑤
𝑖=1 +b2𝑟2∑ 𝛿̇𝑖

2 − 2𝑏𝑥𝜃 ∑ ∑ 𝐴𝑖𝑗𝛿̇𝑖𝜆̇𝑗
𝐷𝑤
𝑗=1

𝐷𝜃
𝑖=1

𝐷𝜃
𝑖=1 ) (2.21) 

where 𝐴𝑖𝑗 =  
1

ℓ
∫ 𝛩𝑖𝛹𝑗𝑑𝑦         (i=1, 2, ..., 𝐷𝜃
ℓ

0
;   j=1, 2, ..., 𝐷𝑤). 

Inertial coupling between bending and torsion modes is stored by the term 𝐴𝑖𝑗. Thus, 

system matrices can be written in final form as given in Eq. (2.22). 

 𝑚ℓ [
[𝐼] −𝑏𝑥𝜃[𝐴]

𝑇

−𝑏𝑥𝜃[𝐴] 𝑏2𝑟2[𝐼]
] {𝜆̈
𝛿̈
} + [

𝐸𝐼

ℓ3
[𝐵] [0]

[0]
𝐺𝐽

ℓ
[𝑇]
] {
𝜆
𝛿
} = {0} (2.22) 

where [𝐼] and [0] are the identity matrix and matrix of zeros, respectively. The 

elements of [𝐵] and [𝑇]matrices are given as follows: 

 

𝐵𝑖𝑖 = (𝛼𝑖ℓ)
4 

𝑇𝑖𝑖 = (𝛾𝑖ℓ)
2                                                (2.23) 
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2.3.1.2 Finite Element Method (FEM) 

The structural model of a bending-torsion coupled wing and Finite Element formula 

derivation are defined in this section. Coupled Euler-Bernoulli beam formulation is 

used for necessary mathematical derivation. The uniform beam element of the span 

length, ℓ𝑒 is shown in Figure 2.3. 

 

Figure 2.3 Coupled Bending-Torsion Element 

2.3.1.2.1 Element Shape Functions 

The cubic element accounted for the translation motion has 2 nodes at each end and 

2 DOF per node element. The transverse displacement, 𝑤, and the slope, 𝑤𝑦 =  
𝜕𝑤

𝜕𝑦
 

for bending of the beam can be expressed as follows: 

       𝑤(𝑦) = 𝑐0 + 𝑐1𝑦 + 𝑐2𝑦
2 + 𝑐3𝑦

3 ;  𝑤𝑦(𝑦) = 
𝜕𝑤

𝜕𝑦
= 𝑐1 + 2𝑐2𝑦 + 3𝑐3𝑦

2 (2.24) 

Transverse displacement and slope at both nodes are defined according to boundary 

conditions as follows: 
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𝑤1 = 𝑤(0); 𝑤𝑦1 = 𝑤𝑦(0); 𝑤2 = 𝑤(ℓ𝑒); 𝑤𝑦2 = 𝑤𝑦(ℓ𝑒) where ℓ𝑒 is the length of 

the beam element. The beam element for torsion has 1 DOF per node and linear 

function is defined below for torsion of the beam as follows: 

 𝜃(𝑦) = 𝑐4 + 𝑐5𝑦 (2.25) 

The boundary conditions in the element are defined as 𝜃1 = 𝜃(0); 𝜃2 = 𝜃(ℓ𝑒). The 

nodal displacements are defined for both bending and torsion at 𝑦 = 0 and 𝑦 = ℓ𝑒. 

To obtain shape functions, displacements are defined in matrix form as given below: 

 

{
 
 

 
 
𝑤1
𝑤𝑦1
𝜃1
𝑤2
𝑤𝑦2
𝜃2 }
 
 

 
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 ℓ𝑒 ℓ𝑒

2
ℓ𝑒
3 0 0

0 1 2ℓ𝑒 3ℓ𝑒
2 0 0

0 0 0 0 1 ℓ𝑒]
 
 
 
 
 

{
 
 

 
 
𝑐0
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5}
 
 

 
 

 (2.26) 

Displacement field, {𝑥} can be expressed in terms of the nodal displacements, {𝑥𝑒} 

as follows: 

 {𝑥} = [𝑁]{𝑥𝑒} (2.27) 

where {𝑥} = {

𝑤
𝑤𝑦
𝜃
}; {𝑁} = {

𝑁𝑤
𝑁𝑤𝑦
𝑁𝜃

} is a row vector of the so-called “shape functions” 

and {𝑥𝑒} = {𝑤1 𝑤𝑦1 𝜃1 𝑤2 𝑤𝑦2 𝜃2}𝑇.  

Solve the system Eq. (2.26) to obtain coefficients and resultant shape functions are 

given as follows: 

 𝑤(𝑦) = [𝑁𝑤(𝑦)]{𝑥
𝑒} (2.28) 

where [𝑁𝑤(𝑦)] = [𝑁𝑤1 𝑁𝑤2 0 𝑁𝑤3 𝑁𝑤4 0] and the term 𝑁𝑤𝑖(𝑦) is the 

Hermitian shape functions of the beam. Shape functions in explicit form can be given 

as follows: 

𝑁𝑤1 = 1 −
3𝑦2

ℓ𝑒
2 +

2𝑦3

ℓ𝑒
3 , 𝑁𝑤2 =  𝑦 −

2𝑦2

ℓ𝑒
+
𝑦3

ℓ𝑒
2  
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𝑁𝑤3 =  
3𝑦2

ℓ𝑒
2 −

2𝑦3

ℓ𝑒
3 , 𝑁𝑤4 =  

−𝑦2

ℓ𝑒
+
𝑦3

ℓ𝑒
2 

Eq. (2.26) can be solved to obtain the torsion shape functions as follows: 

 𝜃(𝑦) = [𝑁𝜃(𝑦)]{𝑥
𝑒} (2.29) 

where [𝑁𝜃(𝑦)] = [0 0 𝑁𝜃1 0 0 𝑁𝜃2], the term 𝑁𝜃𝑖(𝑦) is the linear shape 

functions of torsion. The explicit form of the shape functions is given below: 

𝑁𝜃1 =  1 −
𝑦

ℓ𝑒
, 𝑁𝜃2 =  

𝑦

ℓ𝑒
. 

2.3.1.2.2 Potential Energy 

Potential energy terms are the same as used in Eq. (2.13), but with the revised 

displacement description as follows: 

U = 
1

2
∫ [EI (

𝜕2𝑤

𝜕2𝑦2
)

2

+GJ (
𝜕𝜃

𝜕𝑦
)
2

]
ℓ𝑒

0

 dy   

=
1

2
 ∫ [𝐸𝐼(𝑥𝑇𝑁𝑤

″ )(𝑁𝑤
″ 𝑇𝑥) + GJ(𝑥𝑇𝑁𝜃

′ )(𝑁𝜃
′𝑇𝑥)] 

ℓ𝑒

0
𝑑𝑦  (2.30) 

where the shorthand notation ′ =  
𝜕

𝜕𝑦
 and " =

𝜕2

𝜕𝑦2
 is used. The potential energy of 

the system can be written as: 

 U = 
1

2
 {𝑥}𝑇[𝐾𝑒]{𝑥} (2.31) 

 [𝐾𝑒] = ∫ [[𝑁𝑤
″ ]𝑇(𝐸𝐼)[𝑁𝑤

″ ] + [𝑁𝜃
′ ]
𝑇
(𝐺𝐽)[𝑁𝜃

′ ]] 𝑑𝑦
ℓ𝑒

0
 (2.32) 

Introducing the relevant shape function polynomials into Eq. (2.32) and performing 

the matrix multiplications and integrations it may be shown that, for a uniform beam 

element [𝐾𝑒]: 
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 [𝐾𝑒] =

[
 
 
 
 
 
 
 
 
 
 
12𝐸𝐼

ℓ𝑒
3

6𝐸𝐼

ℓ𝑒
2 0 −

12𝐸𝐼

ℓ𝑒
3

6𝐸𝐼

ℓ𝑒
2 0

6𝐸𝐼

ℓ𝑒
2

4𝐸𝐼

ℓ𝑒
0 −

6𝐸𝐼

ℓ𝑒
2

2𝐸𝐼

ℓ𝑒
0

0 0
𝐺𝐽

ℓ𝑒
0 0 −

𝐺𝐽

ℓ𝑒

−
12𝐸𝐼

ℓ𝑒
3 −

6𝐸𝐼

ℓ𝑒
2 0

12𝐸𝐼

ℓ𝑒
3 −

6𝐸𝐼

ℓ𝑒
2 0

6𝐸𝐼

ℓ𝑒
2

2𝐸𝐼

ℓ𝑒
0 −

6𝐸𝐼

ℓ𝑒
2

4𝐸𝐼

ℓ𝑒
0

0 0 −
𝐺𝐽

ℓ𝑒
0 0

𝐺𝐽

ℓ𝑒 ]
 
 
 
 
 
 
 
 
 
 

 (2.33) 

2.3.1.2.3 Kinetic Energy 

Kinetic energy terms are the same as used in Eq. (2.14), but with the revised 

displacement description as follows: 

 K = 
1

2
∫ [𝑚 (

𝜕𝑤

𝜕𝑡
)
2

+ 2𝑚𝑎𝑥
𝜕𝑤

𝜕𝑡

𝜕𝜃

𝜕𝑡
+ 𝐼𝑃 (

𝜕𝜃

𝜕𝑡
)
2

]
ℓ𝑒

0
 𝑑𝑦 (2.34) 

where inertial coupling term is given as 𝑎𝑥 = −𝑏𝑥𝜃. The kinetic energy of the entire 

system can be written as: 

 K = 
1

2
 {𝑥̇}𝑇[𝑀𝑒]{𝑥̇} (2.35) 

 [𝑀𝑒] = ∫ [
[𝑁𝑤]

𝑇(𝑚)[𝑁𝑤] + [𝑁𝜃]
𝑇(𝐼𝑃)[𝑁𝜃]

+[𝑁𝑤]
𝑇(𝑚𝑎𝑥)[𝑁𝜃] + [𝑁𝜃]

𝑇(𝑚𝑎𝑥)[𝑁𝑤]
] 𝑑𝑦

ℓ𝑒

0
 (2.36) 

Introducing the relevant shape function polynomials and performing the matrix 

multiplications and integrations it can be shown that, for a uniform beam element 

[𝑀𝑒]: 

[𝑀𝑒] =
ℓ𝑒𝑚

420

[
 
 
 
 
 
 
 
156 22ℓ𝑒 147𝑎𝑥 54 −13ℓ𝑒 63𝑎𝑥
22ℓ𝑒 4ℓ𝑒

2 21ℓ𝑒𝑎𝑥 13ℓ𝑒 −3ℓ𝑒
2 14ℓ𝑒𝑎𝑥

147𝑎𝑥 21ℓ𝑒𝑎𝑥
140𝐼𝑃

𝑚
63𝑎𝑥 −14ℓ𝑒𝑎𝑥

70𝐼𝑃

𝑚

54 13ℓ𝑒 63𝑎𝑥 156 −22ℓ𝑒 147𝑎𝑥
−13ℓ𝑒 −3ℓ𝑒

2 −14ℓ𝑒𝑎𝑥 −22ℓ𝑒 4ℓ𝑒
2 −21ℓ𝑒𝑎𝑥

63𝑎𝑥 14ℓ𝑒𝑎𝑥
70𝐼𝑃

𝑚
147𝑎𝑥 −21ℓ𝑒𝑎𝑥

140𝐼𝑃

𝑚 ]
 
 
 
 
 
 
 

 (2.37) 
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2.4 Aerodynamic Models 

Since the solution of Eq. (2.9) requires unsteady aerodynamic theory in the frequency 

domain, two distinct unsteady aerodynamic models are presented to obtain GAF 

matrices. The first aerodynamic model is based on Theodorsen’s aerodynamic 

formulation. Theodorsen [21] developed a procedure to obtain aerodynamic forces, 

which is calculated as a function of reduced frequency, 𝑘. Besides, Theodorsen 

applied 2-D unsteady aerodynamics involving pitching and plunging motion in 

incompressible for the derivation of these aerodynamic forces. The aerodynamic 

modeling and evaluation of GAF matrices by Theodorsen’s aerodynamics are 

mathematically developed in the present study. Theodorsen’s aerodynamics can 

provide an accurate mathematical analysis of flutter, nevertheless, it is not practical 

when complex wing structures such as flat plat delta wings are considered. For this 

reason, the 3-D aerodynamic modeling method namely, Doublet Lattice Method 

(DLM) is presented and implemented in the present study. DLM was presented by 

Albano and Hodden [22] considering a 3-D unsteady aerodynamic theory. The 

aerodynamic forces are defined as a function of Mach Number, 𝑀 and reduced 

frequency, 𝑘. The aerodynamic modeling and evaluation of GAF matrices through 

DLM are carried out by use of commercial software, namely, MSC®FlightLoads and 

MSC®Nastran. 

2.4.1 Evaluation of GAFs by Theodorsen Aerodynamics 

The first-generation aircraft was suffering from structural failure and stability loss 

due to a lack of theory of wing oscillations. The issue was achieved by employing 

high Reynolds number flows and low angle of attack during the flight. An unsteady 

aerodynamics model for a harmonically pitching-plunging airfoil was developed by 

Theodore Theodorsen [21] dealing with potential flow theory. Besides, unsteady 

aerodynamics theory for a thin airfoil having small oscillations in incompressible 

flow was derived in that study. In this developed approach, structural dynamics 
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equations are coupled with unsteady aerodynamics to obtain flutter speeds, i.e., 

flutter boundaries. 

The typical section of the lifting surface is presented in Figure 2.2 for fundamental 

definitions of the simple aeroelastic system, which is exposed to translational and 

rotational motions. The motion is simple harmonic; relatively 𝑤 and 𝜃 are defined 

as follows: 

𝑤 = 𝑤̄𝑒𝑖𝜔𝑡 ; 𝑤̄ is the amplitude of heaving harmonic motion. 

𝜃 = 𝜃̄𝑒𝑖𝜔𝑡 ; 𝜃̄ is the amplitude of pitching harmonic motion. 

where 𝜔 is the circular frequency of the motion. As seen from Figure 2.1, resultant 

lift, L, and the pitching moment, M about P can be defined based on linear 

aerodynamic theory. The lift involves both circulatory and non-circulatory terms, on 

the other hand, the pitching moment about the quarter-chord is entirely non-

circulatory. The classical solution for the lift about the elastic axis, which is 

expressed per unit span, is defined by Fung [23] and Theodorsen [21] as follows: 

 𝐿 = 𝜋𝜌𝑏2[𝑤̈ + 𝑈𝜃̇ − 𝑏𝑎𝜃̈] + 2𝜋𝜌𝑈𝑏𝐶(𝑘) [𝑤̇ + 𝑈𝜃 + 𝑏(
1

2
− 𝑎)𝜃̇] (2.38) 

The moment about the point P, presented in Figure 2.2, which is referred to as the 

elastic axis is defined as below: 

 𝑀 = 𝑀1

4

+ 𝑏 (
1

2
+ 𝑎) 𝐿 (2.39) 

where  𝑀1/4 is the moment about the pressure center, 𝑄 and can be obtained as 

follows: 

 𝑀1

4

= −𝜋𝜌𝑏3 [
1

2
𝑤̈ + 𝑈𝜃̇ + 𝑏 (

1

8
−
𝑎

2
) 𝜃̈] (2.40) 

Then, the resultant moment about the elastic axis can be defined explicitly as follows: 

𝑀 = 𝜋𝜌𝑏2 [𝑏𝑎𝑤̈ − 𝑈𝑏 (
1

2
− 𝑎) 𝜃̇ − 𝑏2 (

1

8
+ 𝑎2) 𝜃̈]  + 
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 2𝜋𝜌𝑈𝑏2(𝑎 +
1

2
)𝐶(𝑘) [𝑤̇ + 𝑈𝜃 + 𝑏(

1

2
− 𝑎)𝜃̇] (2.41) 

Theodorsen’s function, 𝐶(𝑘) is a complex-valued function of the reduced frequency 

𝑘, given as follows: 

 𝐶(𝑘) =
𝐻1
(2)
(𝑘)

𝐻1
(2)
(𝑘)+𝑖𝐻0

(2)
(𝑘)
= 𝐹(𝑘) − 𝑖𝐺(𝑘) (2.42) 

where 𝐻𝑛
(2)
(𝑘) are Hankel Functions of the second kind and it can be expressed in 

terms of Bessel functions of the first and second kind as: 

 𝐻𝑛
(2)
(𝑘) = 𝐽𝑛(𝑘) − 𝑖𝑌𝑛(𝑘) (2.43) 

Hankel Functions are not particularly significant in this study. In the equation (2.42)

, 𝐹(𝑘) is the real, 𝐺(𝑘) is the imaginary component of Theodorsen’s function. An 

approximation of Theodorsen’s function is given by Fung [23] in the frequency 

domain as follows: 

 𝐶(𝑘) = 1 −
0.165

1−
0.0455

𝑘
𝑖
−

0.335

1−
0.3

𝑘
𝑖
 (2.44) 

Reduced frequency, 𝑘 is the measure of unsteadiness of a flow. Greater 𝑘 value 

means that the significance of unsteady effects becomes crucial in the flow. Figure 

2.4 shows the real and imaginary parts of Theodorsen’s function at different reduced 

frequencies. Note that for steady motion, 𝐶(𝑘)  is real and equal to unity (𝑘 = 0). As 

𝑘 approaches to infinity real part of 𝐶(𝑘)  approaches to 1/2. 
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Figure 2.4 Real and Imaginary Parts of C(k) 

The detailed derivation of Generalized Aerodynamic Force (GAF) matrices for 

Theodorsen’s aerodynamics is based on the study of Banarjee [24]. Hence, the 

review of the derivation is expressed in this section. The GAF is formed by 

employing the principle of work. Unsteady lift and moment are defined by the 

aerodynamic strip theory based on Theodorsen’s expressions. The displacements are 

transverse deflection (bending) 𝑤(𝑦) and pitching rotation (torsion) 𝜃(𝑦) at a 

spanwise distance y and they are given below: 

𝑤(𝑦) =  ∑ 𝑤𝑖(𝑦)𝜂𝑖
𝑛
𝑖=1 (𝑡) 

𝜃(𝑦) =  ∑ 𝜃𝑖(𝑦)𝜂𝑖
𝑛
𝑖=1 (𝑡) (2.45) 

where 𝜔𝑖(𝑦) and 𝜃𝑖(𝑦) displacements components of the ith mode 𝜙𝑖, respectively, 

and 𝜂𝑖(𝑡) (𝑖 = 1,2, . . . . 𝑛) is the generalized coordinates. Eq. (2.45) can be written in 

matrix form as follows: 

 [
𝑤(𝑦)
𝜃(𝑦)

] = [
𝑤1(𝑦) 𝑤2(𝑦) … 𝑤𝑛(𝑦)
𝜃1(𝑦) 𝜃2(𝑦) … 𝜃𝑛(𝑦)

] [
𝜂1
𝜂2
] (2.46) 
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The virtual work done (𝜕𝑊) by the aerodynamic forces are given below: 

 𝜕𝑊 = ∑ 𝜕𝜂𝑖 ∫ [𝐿(𝑦)𝑤𝑖(𝑦) + 𝑀(𝑦)𝜃𝑖(𝑦)] 
ℓ

0
𝑛
𝑖=1 𝑑𝑦 (2.47) 

where 𝑛, 𝑀(𝑦) and 𝐿(𝑦) are the number of normal modes interested, unsteady lift, 

and unsteady moment, respectively. Eq. (2.47) can be written in matrix form as 

follows: 

 

[
 
 
 
 
 
𝜕𝑊1

𝜕𝜂1
𝜕𝑊2

𝜕𝜂2

⋮
𝜕𝑊𝑛

𝜕𝜂𝑛 ]
 
 
 
 
 

= ∫ [

𝑤1 𝜃1
𝑤2 𝜃2
⋮ ⋮
𝑤𝑛 𝜃𝑛

] [
𝐿(𝑦)

𝑀(𝑦)
]

ℓ

0
 (2.48) 

The unsteady lift 𝐿(𝑦) and unsteady moment 𝑀(𝑦) in 2-D flow are given in Eq. 

(2.38) and Eq.(2.41) can be written as below: 

 [
𝐿(𝑦)
𝑀(𝑦)

] = [
𝑄𝐴11 𝑄𝐴12
𝑄𝐴21 𝑄𝐴22

] [
𝑤(𝑦)
𝜃(𝑦)

] (2.49) 

where the terms of the matrix [𝑄𝐴] are given below: 

𝑄𝐴11 = −𝜋𝜌𝑈
2[−𝑘2 + 2𝐶(𝑘)𝑖𝑘] 

𝑄𝐴12 = 𝜋𝜌𝑈
2𝑏 [(𝑎𝑘2 + 𝑖𝑘) + 2𝐶(𝑘)[1 + 𝑖𝑘(0.5 − 𝑎)]] 

𝑄𝐴21 = −𝜋𝜌𝑈
2𝑏 [2𝐶(𝑘)𝑖𝑘(0.5 + 𝑎) − 𝑘2𝑎] 

𝑄𝐴22 = 𝜋𝜌𝑈
2𝑏2[2(0.5 + 𝑎)𝐶(𝑘)(1 + 𝑖𝑘(0.5 − 𝑎)) + 0.125𝑘2 + 𝑘2𝑎2 + (𝑎 − 0.5)𝑖𝑘] 

Substituting the Eq. (2.49) into Eq. (2.48), Generalized Aerodynamic Force (GAF) 

matrix can be obtained as follows: 

 

[
 
 
 
 
 
𝜕𝑊1

𝜕𝜂1
𝜕𝑊2

𝜕𝜂2

⋮
𝜕𝑊𝑛

𝜕𝜂𝑛 ]
 
 
 
 
 

= ∫ [

𝑤1 𝜃1
𝑤2 𝜃2
⋮ ⋮
𝑤𝑛 𝜃𝑛

] [
𝑄𝐴11 𝑄𝐴12
𝑄𝐴21 𝑄𝐴22

]
ℓ

0
[
𝑤1 𝑤2 ⋯ 𝑤𝑛
𝜃1 𝜃2 ⋯ 𝜃𝑛

] [

𝜂1
𝜂2
⋮
𝜂𝑛

] 𝑑𝑦 (2.50) 
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= (
𝑄𝑎𝑒𝑟𝑜
11 … 𝑄𝑎𝑒𝑟𝑜

1𝑛

⋮ ⋱ ⋮
𝑄𝑎𝑒𝑟𝑜
𝑛1 ⋯ 𝑄𝑎𝑒𝑟𝑜

𝑛𝑛
) where [𝑄̄𝑎𝑒𝑟𝑜] is the GAF matrix with 

 [𝑄̄𝑎𝑒𝑟𝑜
𝑖𝑗

] = ∫ [𝑄𝐴11𝑤𝑖𝑤𝑗 + 𝑄𝐴12𝑤𝑖𝜃𝑗 + 𝑄𝐴21𝑤𝑗𝜃𝑖 + 𝑄𝐴22𝜃𝑖𝜃𝑗] 
ℓ

0
𝑑𝑦 (2.51) 

Note that, GAF matrix, [𝑄̄𝑎𝑒𝑟𝑜] is usually complex having real and imaginary parts. 

2.4.2 Evaluation of GAFs by Doublet Lattice Method (DLM) 

DLM is based on the linearized compressible aerodynamic potential theory for 

subsonic flow, and it is an unsteady 3-D lifting surface theory that was presented by 

Albano and Rodden [22]. The undisturbed flow is uniform and is either steady or 

varying harmonically. Moreover, the lifting surfaces are assumed as flat and lie 

parallel to the incoming flow. 

DLM provides aerodynamic forcing harmonically for the considered lifting surface 

like Theodorsen’s aerodynamics. The aerodynamic surface is divided into small 

trapezoidal lifting elements (called boxes). These boxes are aligned to the free stream 

direction. DLM defines an acceleration potential doublet of uniform, but unknown 

strength is placed at 1/4 chord of each box. A control point is placed at the 3/4 chord. 

The normal velocity, 𝑤𝑗 that is induced by the inclination of the surface to the 

airstream is calculated at this point. The assembly of control points is referred to j-

set. An aerodynamic grid point (k-set) is located at the center of the lifting element 

where the resultant force {𝑝𝑘} and displacement {𝑢𝑘} are calculated. The illustration 

of the panels on the typical 2-D wing is defined by Gülçat [25] as shown in Figure 

2.5. 
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Figure 2.5 Panels on Wing  

Substantial differentiation matrix (𝐷𝑗𝑘
1 -real part and 𝐷𝑗𝑘

2 -imaginary part) is 

responsible for the relation between the downwash at the j-th point and the 

displacement of the k-th point. The relation is defined as follows: 

 {𝑤𝑗} = [𝐷𝑗𝑘
1 + 𝑖𝑘𝐷𝑗𝑘

2 ]{𝑢𝑘} (2.52) 

On the other hand, the downwash can be also written as follows: 

 {𝑤𝑗} = [𝐴𝑗𝑗] {
𝑓𝑗

𝑞̄
} (2.53) 

where {
𝑓𝑗

𝑞̄
} is the pressure on the j-th point and [𝐴𝑗𝑗] is the Aerodynamic Influence 

Coefficient (AIC) matrix is defined in j-set. The computing methodology for the 

aerodynamic influence coefficients is presented by Giesing, Kalman, and Rodden 

[26]. The forces at the k-th point are computed by integrating the pressure of each 

lifting element, which is given below: 

 {𝑝𝑘} = [𝑆𝑘𝑗]{𝑓𝑗} (2.54) 

where [𝑆𝑘𝑗] is the integration matrix. The equations (2.52), (2.53) and (2.54) can be 

combined to give AIC matrix in k-set, [𝑄𝑘𝑘] as follows: 

 [𝑄𝑘𝑘] = [𝑆𝑘𝑗][𝐴𝑗𝑗]
−1
[𝐷𝑗𝑘

1 + 𝑖𝑘𝐷𝑗𝑘
2 ] (2.55) 
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Since the aerodynamic and structural grids are not necessarily the same, in other 

words, they are created independently, the transfer of displacements and forces from 

the structural model to the aerodynamic model must be accomplished. This transfer 

function can be obtained by interpolation, so-called splining. There are several 

methods for splining, for instance, linear and surface splines. The splining methods 

provide an interpolation matrix [𝐺𝑘𝑑], which relates the structural grid points (d-set) 

to the aerodynamic grid points (k-set). The derivation of the interpolation matrix 

[𝐺𝑘𝑑] is based on the selection of the interpolation type, which is force and 

displacement interpolation [27]. The force interpolation is defined mathematically 

as follows: 

 {𝑓𝑑} = [𝐺𝑘𝑑]
𝑇{𝑓𝑘} (2.56) 

where {𝑓𝑘} is the force at the aerodynamic grid points and {𝑓𝑑} is the structurally 

equivalent value. The displacement interpolation is defined as below: 

 {𝑢𝑘} = [𝐺𝑘𝑑]{𝑢𝑔} (2.57) 

where {𝑢𝑘} is the displacement at aerodynamic grid points and {𝑢𝑑} is the 

displacement at structural grid points. 

Evaluation of GAF matrices is performed employing MSC®Nastran whenever 

Doublet Lattice Method (DLM) is considered in the present study. All aerodynamic 

methods present in MSC®Nastran can compute the [𝑆𝑘𝑗] , [𝐷𝑗𝑘
1 ] and [𝐷𝑗𝑘

2 ] matrices 

at user-supplied Mach numbers and reduced frequencies. MSC®Nastran can 

compute the matrix [𝐴𝑗𝑗] based on DLM theory and its computing code is based on 

the work of Giesing, Kalman, and Rodden [26]. To define the aerodynamic property 

of the model, matrix decomposition and forward and backward substitution are used 

in the computation of the Aerodynamic Influence Coefficient (AIC) matrix, [𝑄𝑘𝑘]. 

The last step before defining in the modal domain of the AIC matrix is to transform 

the AIC matrix, [𝑄𝑘𝑘] from k-set to the d-set as follows: 

 [𝑄𝑑𝑑] = [𝐺𝑘𝑑]
𝑇[𝑄𝑘𝑘][𝐺𝑘𝑑] (2.58) 
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The last step is to transform [𝑄𝑑𝑑] to the modal domain as follows: 

 [𝑄̄𝑎𝑒𝑟𝑜] = [𝜙]
𝑇[𝑄𝑑𝑑][𝜙] (2.59) 

Note that the mode shape matrix of the structural model, [𝜙] is used for 

transformation and the Generalized Aerodynamic Force (GAF) matrix, [𝑄̄𝑎𝑒𝑟𝑜] is 

formed accordingly. 

2.5 Flutter Calculation Procedures 

The aeroelastic flutter involves rapid self-feeding dynamics and is excited by 

aerodynamic forces. Since the flutter is potentially destructive due to these dynamic 

characteristics, analyzing the aeroelastic flutter is crucial for aerospace structures. 

The flutter equation has found a zero right-hand side and homogeneous form, and it 

is not possible to obtain absolute values of the modal response. Therefore, the 

stability of the system is required to be analyzed. The root locus approach can be 

implemented to calculate the stability of the system. The root locus methods based 

on aeroelastic stability analysis are presented by Hajela [28] and Rheinfurth et 

al.[29]. 

Since the time-domain solution of nonlinear Eq. (2.3) is tedious and computationally 

costly,  Eq. (2.3) is recasted into a set of linear systems in Eq. (2.7) which leads to 

an eigenvalue solution approach. However, a direct eigenvalue solution of the flutter 

problem is not possible since the [𝑄̄𝑎𝑒𝑟𝑜] is a function of reduced frequency for 2-D 

unsteady aerodynamics. In other words, the eigensolution has to be performed at a 

particular flight condition i.e. airspeed, V, and altitude to determine eigenvalues. 

Note that the notation for the airspeed, U is replaced here by the term V to present 

V-g and V-g curves. The eigenvalues are obtained for each airspeed, V, and the 

results are given in the form of classical V-g and V-f curves as shown in Figure 2.6. 

The structural damping, g of each mode as a function of airspeed, V is shown by the 

V-g plot, while the V-f curve illustrates the frequency, f of each mode as a function 

of airspeed, V. The critical speed or flutter is determined by the V-g curve as the 
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lowest airspeed at which g curve crosses g=0 axis. Negative structural damping 

shows a stable region while positive shows an unstable region. 

 

 

Figure 2.6 The Classical V-g and V-f Curves 

The frequency-domain flutter calculation algorithms have been developed and they 

have been widely using in the aerospace industry. There are two commonly used 

algorithms, namely “K-Method” and “P-K Method” and these methods are available 

in MSC® Nastran aeroelastic solver.   

Both methods involve repeated interpolations of the unsteady aerodynamic forces. 

A novel method performing a P-K analysis that does not require iterations, namely 

“Non-Iterative P-K Method” can also be employed as a flutter search algorithm. This 

method is not present in MSC® Nastran aeroelastic solver. The aforementioned K-

Method, P-K Method, and NIPK-Method are mathematically developed and 

employed in the present flutter analysis. 

2.5.1 The K-Method  

The basic equation of motion for flutter analysis is employed by the K-method and 

it is defined as follows: 

 [−𝜔2[𝑀̄] + (1 + 𝑖𝑔)[𝐾̄] − 𝑞∞[𝑄̄𝑎𝑒𝑟𝑜]]{𝜂} = 0 (2.60) 
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Note that general form of flutter Eq. (2.9) is modified such that artificial damping 

term, 𝑔 is introduced to the system as a stability measure and [𝑄̄𝑎𝑒𝑟𝑜] is a function 

of reduced frequency, 𝑘 and Mach number, 𝑀. K-Method assumes the sinusoidal 

motion for the aeroelastic system, and it solves the EOM as eigenvalue problem for 

a series of parameters 𝑀, 𝑘 and 𝜌. Moreover, [𝑄̄𝑎𝑒𝑟𝑜] is interpolated for a series of 

𝑘 values and the eigenvalue problem is solved for each interpolated GAF matrix. 

Dividing each term of Eq. (2.60) by (1 + 𝑖𝑔) and substituting 𝑞∞ = 1/2𝜌𝑈
2 into 

Eq.(2.60) gives the following equation: 

 [[𝐾̄] − {[𝑀̄] + ((
1

2
𝜌𝑏2) /𝑘2) [𝑄̄𝑎𝑒𝑟𝑜]} (

𝜔2

(1+𝑖𝑔)
)] {𝜂} = 0 (2.61) 

where the complex eigenvalue is 
𝜔2

(1+𝑖𝑔)
 and it can be interpreted as real values of 𝜔 

and 𝑔. The airspeed, 𝑈 can be obtained considering the relation 𝑈 =
𝜔𝑏

𝑘
.  

Although the K-Method algorithm provides the solution quickly, multiple frequency 

and damping can be obtained at certain speed regions. Since the structural damping, 

𝑔 is artificially introduced to the system, in other words, 𝑔 is not physical damping, 

the solution is valid only when 𝑔 = 0. Frequency and damping do not accurately 

represent the system behavior when damping except 𝑔 = 0. Estimating realistic 

damping is important in the aerospace industry. Especially, it can be vital when flight 

flutter tests are considered. Thus, the implementation of the K-Method for the flutter 

calculations can be chosen carefully by taking into consideration these drawbacks.  

2.5.2 The P-K Method  

The P-K Method is presented by Hassig [30] to solve the flutter equation, whose 

solution involves approximation such that aerodynamic forcing has constant 

amplitude concerning sinusoidal motion. The EOM can be written as follows: 

 [[𝑀̄]𝑝2 + (1 + 𝑖𝑔)[𝐾̄] − 𝑞∞[𝑄̄𝑎𝑒𝑟𝑜]]{𝜂} = 0 (2.62) 
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where 𝑝 is eigenvalue and is defined as 𝑝 = 𝜔(𝛾 + 𝑖) and 𝛾 is transient decay rate 

coefficient, 𝛾 = 𝑔/2. The EOM for P-K Method is written slightly different than Eq. 

(2.60). The difference is the eigenvalue term definition and both methods generally 

provide the same flutter speed for 𝑔 = 0 condition. The eigenvalue, 𝑝 is expressed 

as sinusoidal motion, 𝑒𝑝𝑡, and the motion is damped. On the other hand,  [𝑄̄𝑎𝑒𝑟𝑜] is 

expressed as, 𝑒𝑖𝜔𝑡 and note that motion is undamped. This produces mathematically 

inconsistent formulation because of the mismatch between the assumed motion of 

aerodynamic forces and structural forces. 

An iterative approach is developed by Hassig [30] to solve the Eq. (2.62). Circular 

frequency and the reduced frequency are not independent since 𝜔 =
𝑘𝑈

𝑏
, which is 

obtained by the eigenvalue solution. Briefly, the eigenvalue problem is solved 

iteratively considering the relation mentioned above in the P-K Method. The iteration 

process is explained clearly by Wright J and Cooper J [20]. 

When an aeroelastic problem includes a significant number of structural modes and 

free stream velocities, the solution of the problem becomes very time-consuming 

owing to employing an iteration process. 

P-K Method provides more realistic subcritical damping and frequency than the K-

Method. Moreover, P-K Method eliminates the looping problem encountered in the 

K-Method. Both flutter solution methods generally yield the same flutter speed, 𝑈𝑓 

and flutter frequency, 𝜔𝑓 for 𝑔 = 0. 

2.5.3 Non-Iterative P-K (NIPK) Method  

Pitt [31] proposed a method that solves the P-K equation (2.62)  in a non-iterative 

manner. Determination of the free stream velocity set is the first step in the Non-

Iterative P-K Method like in the classical P-K Method. [𝑄̄𝑎𝑒𝑟𝑜] is a function of 

𝜔𝑎𝑒𝑟𝑜 =
𝑘𝑈

𝑏
 for each 𝑘 in the determined reduced frequency set. The equation (2.62)  

is solved for each 𝑘 value without employing interpolation of [𝑄̄𝑎𝑒𝑟𝑜] term. The 
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solution results in a series of 𝜔𝑟𝑜𝑜𝑡 and 𝛾𝑟𝑜𝑜𝑡 for each 𝜔𝑎𝑒𝑟𝑜 value of the [𝑄̄𝑎𝑒𝑟𝑜] 

term. The interpolation of both 𝜔𝑟𝑜𝑜𝑡 and 𝛾𝑟𝑜𝑜𝑡 terms is employed based on the 

matched line at the end of each solution sequence. The interpolation procedure is 

repeated at each freestream velocity. The rationale of the method is interpolation 

process is not applied to the aerodynamic term. Hence, this process is much faster 

than the traditional P-K method, which requires the interpolation of large [𝑄̄𝑎𝑒𝑟𝑜] 

values. 

Since the solution of the eigenvalue problem results in unsorted roots or eigenvalues 

at each velocity, Non-Iterative P-K Method requires root tracking as a function of 

velocity. Root tracking is crucial when considered Non-Iterative P-K Method. The 

flutter solution algorithm for the method is given in Table 2.2. 
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Table 2.2 Flutter Solution Algorithm for Non-Iterative P-K (NIPK) Method in 

Pseudo Code Form 

1: for i  in U  do 

2:     for  j  in k  do 

3:         Define ( ) ( ) ( )k j i

aero k U b =  

4:        Call ( )j

aeroQ  

5:         Solve EVP for 
( )iU  and 

( )jk  

6:         Save ( )k

aero , ( )k

root  and ( )k

root                  

7:     end 

8:     for each mode j  do 

9:        Interpolate ( )k

root  and ( )k

root  satisfying the condition aero root =  

10:         Save interpolation results and track modes ( ) ( ) ( ) ( )

int int (U ),  (U )j i j i     

11:     end 

12: end 

13: for each mode j  do    

14: Find mode flutterj n=  satisfying ( )

int 0j =  

15: If fluttern  exists 

16: Interpolate frequencies and velocities for the flutter mode 

17: Save U flutter , flutter  

18: end 

19: end 
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In conclusion, for the 1-D beam-like cases, structural models are developed 

mathematically. The first model for the beam-like wings is based on the Rayleigh-

Ritz assumed shapes method where the wing is represented as a continuous 

cantilevered beam. The second structural model is based on the principle of FEM 

and Euler-Bernoulli beam theory is used for discretization of the wing structure. 

Besides, a 2-D aerodynamic model is defined regarding Theodorsen’s aerodynamics, 

and it is coupled with 1-D beam-like wing structural models. The evaluation of the 

Generalized Aerodynamic Force (GAF) matrices by Theodorsen’s aerodynamics is 

expressed in particular to form the aeroelastic equation of motion. The 3-D Doublet 

Lattice Method (DLM) is introduced, and evaluation of Generalized Aerodynamic 

Force (GAF) matrices is given for the 2-D wing structures through DLM. The flutter 

EOM is defined, and particular flutter calculation procedures are given to solve the 

EOM, namely, K-Method, P-K Method, and Non-Iterative P-K (NIPK) Method. 

  



 

 

40 

 

  



 

 

41 

CHAPTER 3  

3 CLEAN WING CASE STUDIES 

This chapter involves the case studies to validate the aeroelastic analysis model for 

clean wing configurations, which means that wing pylon and external store are not 

present under the wing. The validation of the model is carried out through three well-

known wing models, namely High-Altitude Long Endurance (HALE) wing, Goland 

wing, and AGARD wing 445.6 (weakened). The case studies are initially carried out 

for modal analysis, in general, must be completed before performing flutter analysis. 

Vibrational analyses are performed to determine natural frequencies and mode of 

vibrations (mode shapes). After that, aeroelastic analysis is performed to define 

dynamic aeroelastic phenomena including flutter speed and frequency.  

The structural model is obtained using three different methods which are FEM with 

Euler Bernoulli beam formulation, Rayleigh-Ritz method by assumed mode shapes, 

and 1-D beam modeling in MSC®Patran. In the first approach, the structural model 

is obtained by FEM using Euler-Bernoulli beam formulation. The second approach 

is based on Rayleigh-Ritz method using a series of assumed shapes that involve pre-

defined bending and torsion modes in the analysis. The last structural model is 

obtained with the help of MSC®Patran using FEM. Since the system matrices are 

required to conduct flutter analysis, both [M] and [K] matrices are exported from 

MSC®Nastran using Direct Matrix Abstraction Program (DMAP) language. 

Two distinct unsteady aerodynamic models are utilized to obtain GAF matrices, 

namely, Theodorsen’s 2-D unsteady aerodynamics and Doublet Lattice Method 

(DLM). The flutter solution is obtained through K-Method, P-K Method, and Non-

Iterative P-K Method (NIPK-Method) flutter calculation algorithms. The classical 

V-g and V-f plots are presented for the specific analysis cases. Finally, results are 



 

 

42 

compared with the numerous reference studies for verification. The analysis 

summary table for the case studies is presented in Table 3.1. 

Table 3.1 Case Studies Analysis Summary 

 

3.1 High Altitude Long Endurance (HALE) Wing  

Since HALE Unmanned Aerial Vehicles (UAVs) are being widely employed in both 

the defense and civilian industry, the HALE wing is a reasonable study case for the 

implementation of the given linear aeroelastic model. The sample HALE UAV is 

presented in Figure 3.1. 

 

Figure 3.1 Sample HALE UAV [32] 
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The long aspect ratio wings of HALE UAVs are exposed to large structural 

deflections due to interaction with the airflow and this situation results in geometric 

nonlinearities in the wing structure. Linear flutter analysis is ineffective when 

predicting flutter boundaries for such cases. Geometric nonlinearities can vanish 

because of minimal deflection cases and this situation can be seen at cruise 

conditions. Since the present study covers linear cases, current analysis can 

accurately predict HALE wing flutter boundary at cruise conditions [33]. HALE 

wing model specifications are given in Table 3.2. 

Table 3.2 HALE Wing Properties[34] 

Parameter Value Unit 

Half span,ℓ 16  m 

Chord, 2𝑏 1  m 

Mass per unit length, m  0.75  kg /m 

Moment of inertia (50% chord), 𝐼𝑃 0.1  kg m 

Spanwise elastic axis (from LE), 𝑎 50% chord - 

Center of gravity (from LE), 𝑒 50% chord - 

Spanwise bending rigidity, 𝐸𝐼𝑧 2x104  N m2 

Torsional rigidity, 𝐺𝐽 1x104  N m2 

Chordwise bending rigidity, 𝐸𝐼𝑥 4x106  N m2 

 

To implement the theoretical development of the aforementioned approximate 

approaches, namely FEM Euler-Bernoulli beam formulation and Rayleigh-Ritz 

method, an in-house Matlab® computer code is developed. Therefore, the structural 

model would not be developed by relying only on external commercial software, 

MSC®Patran. It is adopted for the validation of the mathematically developed 

models. To define the vibrational and flutter analysis approach for the HALE wing, 

Figure 3.2 is given to illustrate the analysis workflow. Figure 3.2(a) shows the 

analysis workflow through MSC®Patran and MSC®Nastran while Figure 3.2(b) 

illustrates the implementation of FEM with Euler-Bernoulli beam formulation and 

Rayleigh-Ritz method. Both workflows utilize the same aerodynamic model which 

is developed through 2-D Theodorsen’s aerodynamics. 
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Figure 3.2 HALE Wing Analysis Workflow 

In the HALE wing structural model, the equivalent beam flexural axis coincides with 

the wing flexural axis. It is assumed that the rigidity of the wing is concentrated 

throughout the entire beam. The structural nodes are strictly at the midpoints of the 

spanwise sections. The structural node at the wing root physically represents the 

intersection of the wing with the fuselage. The main assumption in the analysis is 

that the wing is perfectly fixed at the fuselage imposing no translational and 

rotational motion.  

The first model is obtained by use of FEM with Euler-Bernoulli beam formulation 

and two distinct models are created with a total of 5 and 20 finite elements, 

respectively. The purpose of employing different mesh sizes is to investigate the 

effect of the mesh size on the flutter speed and frequency. The second model is 

obtained based on the Rayleigh-Ritz method as selecting 4 number of modes in 

bending and 4 number of modes in torsion. The evaluation of the last structural 

model is performed with FEM using MSC®Patran. In the model, 1-D CBEAM 

elements with 6 DOFs per node are used and the node at the wing root is fixed. 

Additional FEM nodes are used to visualize the deformation of the beam, and these 

nodes are connected to the beam nodes with the rigid elements RBE2. The structural 
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nodes except fixed root are constrained in translational (Y and Z axes) and rotation 

(X-axis) degree of freedoms. In other words, relevant deformations and rotations are 

omitted to obtain the Euler-Bernoulli beam model for the modal and flutter analysis. 

Therefore, the HALE wing equivalent beam geometry adopted in MSC®Patran and 

is presented in Figure 3.3. 

 

Figure 3.3  HALE Wing Equivalent Beam Geometry 

In the structural model, 20 CBEAM elements with 0.8 m sectional length are used to 

discretize the entire wing. The beam material and geometric properties are given in 

Table 3.3. 

Table 3.3 HALE Wing Equivalent Beam Structural Properties 

Parameter Value Unit 

Equivalent beam width, 𝑤𝑏 1.26176 m 

Equivalent beam height, ℎ𝑏 0.08922 m 

Elastic modulus, 𝐸 267.823 MPa 

Shear modulus, 𝐺 35.039 MPa 

Torsional constant, 𝐽 2.854E-04 m4 

Material density, 𝜌𝑤𝑖𝑛𝑔 6.6623 kg/m3 
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3.1.1 Structural Analysis 

The free vibrational analysis of the HALE wing is carried out regarding the Eq. (2.7)

.Thus, mode shapes and natural frequencies are obtained for all structural models. 

Likewise, modal analysis is carried out externally by the Lanczos algorithm [27] in 

MSC®Nastran. As a consequence of free vibration analysis, the first five natural 

frequencies of the HALE wing are calculated by implementing the above-mentioned 

methods, and obtained results are given in Table 3.4 along with the results obtained 

by Patil [35] for the verification purpose. 

Table 3.4 Comparison of HALE Wing Natural Frequency Results 

Method 
Mode-1 

[Hz] 

Mode-2 

[Hz] 

Mode-3 

[Hz] 

Mode-4 

[Hz] 

Mode-5 

[Hz] 

FEM- 

Euler-Bernoulli Beam 

(5 Elements) 

0.357 2.238 4.961 6.286 12.418 

FEM- 

Euler-Bernoulli Beam 

(20 Elements) 

0.357 2.237 4.942 6.264 12.275 

Rayleigh-Ritz Method 

(4 Modes in Bending  

& Torsion) 

0.357 2.237 4.941 6.264 12.274 

1-D Beam Nastran 

(20 Elements) 
0.357 2.227 4.946 6.217 12.142 

1-D Beam Nastran 

DMAP 

(20 Elements) 

0.357 2.227 4.946 6.217 12.142 

Rayleigh-Ritz Method 

Patil [35] 
0.357 2.237 4.941 6.264 N/A 

 

As seen from Table 3.4, the present analysis results are very similar to each other 

and show a good correlation with the reference values presented by Patil [35]. In 

particular, direct MSC®Nastran results have a perfect match with the case where 

natural frequencies are calculated by MSC®Nastran exported (DMAP) mass and 

stiffness matrices. Besides, obtained natural frequencies and corresponding elastic 

modes are presented in Figure 3.4. 
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Figure 3.4  HALE Wing Natural Frequencies and Mode Shapes  

3.1.2 Aeroelastic Analysis 

The aeroelastic analysis combines both structural and aerodynamic analysis and the 

main objective of performing aeroelastic analysis is to determine the wing’s flutter 

speed. To accomplish flutter speed, the aeroelastic equation of motion (2.9) is 

required to be formed. The control points (pressure center, P in Figure 2.2) on the 

wing must be coupled to beam structural nodes because the 1-D beam is the only 

deformable body on the structure. In this approach, aerodynamic and structural 

discretization along the spanwise direction is equivalent. Besides, each aerodynamic 

lifting surface corresponds to a box strip. Thus, individual control points on the box 

strips are uniquely connected to a structural node located on the elastic axis on the 

same wing strip. The connection element can be assumed as an infinite stiff beam 
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element. As a result, the generalized aerodynamic forces (GAFs) can be obtained by 

integrating lift and moment along the span. After forming an aeroelastic equation of 

motion, it can be solved by implementing suitable flutter calculation methods. Since 

flutter analysis of the HALE wing study case is aimed to compare K-Method with 

P-K Method, NIPK Method is not applied in the analysis. 

For the HALE wing study case, the flutter speed and frequency are computed by 

eigenvalue analysis by implementing both K-Method and P-K Method with 

Theodorsen 2-D unsteady aerodynamics. Flutter boundary is searched within the pre-

defined range of flight speeds. Linear flutter analysis is performed at flight 

conditions, which are given in Table 3.5. 

Table 3.5 Analysis Conditions 

Parameter Value Unit 

Altitude 20000 m 

Air density 0.0889 kg/m3 

 

The first four natural frequencies are tracked in the search of the flutter solution. 

Present analyses cover a total of seven different cases. The results are compared with 

the reference studies as presented in Table 3.6. 
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Table 3.6 Comparison of HALE Wing Flutter Results 

 
Structural 

Model 

Unsteady 

Aerodynamics 

Flutter 

Solution 

Method 

Flutter 

Speed 

[m/s] 

Flutter 

Frequency 

[Hz] 

Analysis 

Case-1 

FEM - Euler 

Bernoulli Beam 

(5 Elems.) 

2-D 

Theodorsen 

Aerodynamics 

K-Method 32.52 3.58 

Analysis 

Case-2 

FEM - Euler 

Bernoulli Beam 

(20 Elems.) 

2-D 

Theodorsen 

Aerodynamics 

K-Method 32.40 3.57 

Analysis 

Case-3 

Rayleigh-Ritz 

Method 

2-D 

Theodorsen 

Aerodynamics 

K-Method 32.42 3.57 

Analysis 

Case-4 

FEM - Euler 

Bernoulli Beam 

(5 Elems.) 

2-D 

Theodorsen 

Aerodynamics 

PK Method 32.48 3.57 

Analysis 

Case-5 

FEM - Euler 

Bernoulli Beam 

(20 Elems.) 

2-D 

Theodorsen 

Aerodynamics 

PK Method 32.36 3.56 

Analysis 

Case-6 

Rayleigh-Ritz 

Method 

2-D 

Theodorsen 

Aerodynamics 

PK -Method 32.38 3.56 

Analysis 

Case-7 

1-D Beam 

Nastran DMAP 

(20 Elems.) 

2-D 

Theodorsen 

Aerodynamics 

PK Method 32.40 3.57 

Patil [33] 

Nonlinear 

Intrinsic Beam 

Theory [36] 

2-D Peters et. 

al [37] 
K-Method 32.21 3.60 

Patil [33] 

Nonlinear 

Intrinsic Beam 

Theory [36] 

3-D Nonplanar 

(Doublet 

+Vortex) 

Grid: 128 x 8 

K-Method 31.75 3.76 

Pepe [38] 
Rayleigh-Ritz 

Method 

2-D 

Theodorsen 

Aerodynamics 

Modified 

PK- Method 

[38] 

32.21 3.61 

 

A total of seven HALE wing analysis cases have been performed and results are 

presented along with reference studies. Analysis cases 1 & 2 and analysis cases 4 & 

5 show that applying of different size of finite elements do not produce much 

difference in the flutter results. Furthermore, analysis cases 3 & 6 show that K and 

P-K Methods yield almost the same flutter speeds, which is expected. Lastly, 

analysis case 7 exhibits that the development of the HALE wing aeroelastic model, 

which is combined through MSC®Nastran exported structural model and in-house 2-

D aerodynamics, is performed successfully. In conclusion, the implementation of 
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present methods and calculation of the flutter speeds show satisfactory results with 

the published studies. 

In addition to these numerical results, the aeroelastic stability condition of the 

structure can be determined by inspecting the variation in the aerodynamic damping 

at different flight speeds. It can be concluded from the velocity versus aerodynamic 

damping (V-g) graph. The corresponding vibration frequencies for the modes of 

interest can be seen from the velocity versus frequency (V-f) graphs. The diagrams 

are presented for selected cases of 3, 5, and 7 in Figure 3.5, Figure 3.6, and Figure 

3.7, respectively. 

  

Figure 3.5 Analysis Case-3 V-f and V-g Graphs 

  

Figure 3.6 Analysis Case-5 V-f and V-g Graphs 
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Figure 3.7 Analysis Case-7 V-f and V-g Graphs 

The tendency of all four modes for the given cases is like each other. Mode-1 turns 

downward to stable condition up to airspeed 30 m/s. The vibration frequency of 

mode-3 decreases with an increase in speed and damping has gone to zero at the 

airspeed of 32.40 m/s, where is the onset condition for flutter. The frequency of 

modes-2 and mode-4 remains stable. Besides, mode-2 and mode-3 of the structure 

are coupled by the fluid-structure interaction. As a result, the present results for the 

seven different analysis cases are very similar to each other, and they show a good 

agreement with the reference values. 

3.2 Goland Wing 

The Goland wing is a stiff and low-aspect-ratio metallic wing. Because of possessing 

coupled bending-torsional dynamic characteristics, it has been widely used as a 

benchmark model by many researchers for both structural and aeroelastic validation 

purposes. The wing has a uniform and rectangular shape, and its geometric and 

structural properties are given in Table 3.7. 
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Table 3.7 Goland Wing Properties[39] 

Parameter Value Unit 

Half span,ℓ 6.096 m 

Chord, 2𝑏 1.8288 m 

Mass per unit length, 𝑚 35.71 kg /m 

Moment of inertia (50% chord), 𝐼𝑃 8.64 kg m 

Spanwise elastic axis (from LE), 𝑎 33% chord - 

Center of gravity (from LE), 𝑒 43% chord - 

Spanwise bending rigidity, 𝐸𝐼𝑧 9.77x106 N m2 

Torsional rigidity, 𝐺𝐽 0.987x106 N m2 

 

Likewise in the HALE wing, FEM with Euler-Bernoulli beam formulation and 

Rayleigh-Ritz method are employed to develop the structural model in Matlab®. 

Besides, MSC®Patran is adopted to establish the FE model for validation of the 

mathematically developed models. To define the vibrational and flutter analysis 

approach for the Goland wing, Figure 3.8 is given to illustrate the analysis workflow. 

Figure 3.8(a) defines the analysis workflow through commercial software while 

Figure 3.8(b) illustrates the implementation of FEM with Euler-Bernoulli beam 

formulation and Rayleigh-Ritz method for the structural models. Both workflows 

utilize the same aerodynamic model which is developed through 2-D Theodorsen’s 

aerodynamics. 
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Figure 3.8 Goland Wing Analysis Workflow 

There is a total of three structural models which are developed for the Goland wing. 

The first main model is obtained by use of FEM with Euler-Bernoulli beam 

formulation with different element sizes.  The number of finite elements is 5 and 10 

for two different cases, respectively. The second model is obtained based on the 

Rayleigh-Ritz method by selecting 6 modes in bending and 6 modes in torsion. The 

evaluation of the last structural model is carried out with FEM using MSC®Patran. 

The wing is modeled with 1-D CBEAM elements with 6 DOFs per node and lumped 

masses. 10 massless CBEAM elements are used to model flexible characteristics of 

the wing. Lumped masses with inertia are connected to the structural nodes with the 

rigid elements RBE2. Shear deformation is neglected to have the Euler–Bernoulli 

equivalent beam model. Additional nodes are used to visualize the deformation of 

the beam, and these nodes are connected to the beam nodes with the rigid elements 

RBE2. Goland wing equivalent beam geometry is presented in Figure 3.9. 
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Figure 3.9 Goland Wing Equivalent Beam Geometry 

10 CBEAM elements with 0.6096 m sectional length are used to discretize the entire 

wing in MSC®Patran. Relevant structural properties of the lumped element and beam 

are given in Table 3.8. 

Table 3.8 Goland Wing Equivalent Model Structural Properties 

Parameter Value Unit 

Static Unbalance Distance, 𝑎𝑥 -0.183 m 

Equivalent beam width, 𝑤𝑏 1.5811 m 

Equivalent beam height, ℎ𝑏 0.05 m 

Lumped Mass, 𝑚𝑒 21.769 kg 

Lumped Inertia, 𝐼𝑒 4.5395 kgm2 

Elastic modulus, 𝐸 5.9325x105 MPa 

Shear modulus, 𝐺 1.5288x104 MPa 

Torsional constant, 𝐽 6.4562x10-5 m4 

3.2.1 Structural Analysis 

The mode shapes and natural frequencies are obtained for all structural models via 

in-house Matlab code. Likewise, external modal analysis is also carried out by the 

Lanczos algorithm [27] in MSC®Nastran. As a result of modal analyses, the first five 
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natural frequencies of the Goland wing are presented with the aid of previously 

mentioned methods. Table 3.9 compares the natural frequencies of the Goland wing 

with two reference results.  

Table 3.9 Comparison of Goland Wing Natural Frequency Results 

Method 
Mode-1 

[Hz] 

Mode-2 

[Hz] 

Mode-3 

[Hz] 

Mode-4 

[Hz] 

Mode-5 

[Hz] 

FEM- 

Euler Bernoulli Beam 

(5 Elements) 

7.666 15.289 39.825 56.311 77.090 

FEM- 

Euler Bernoulli Beam 

(10 Elements) 

7.664 15.245 39.053 55.583 72.276 

Rayleigh-Ritz Method 

(6 Modes in Bending & 

Torsion) 

7.664 15.231 38.791 55.326 70.684 

1-D Beam Nastran 

(10 Elements) 
7.626 15.231 38.449 54.188 69.142 

1-D Beam Nastran 

DMAP 

(10 Elements) 

7.626 15.231 38.449 54.188 69.142 

Analytical 

[40] 
7.894 15.438 39.614 56.595 71.858 

FEM-Euler Bernoulli 

Beam 

[41] 

7.896 15.444 39.621 56.605 71.915 

 

In conclusion, Euler-Bernoulli beam formulation is applied for 5 and 10 finite 

elements for the Goland wing. Besides, 6 modes in bending and 6 modes in torsion 

are used for the Rayleigh-Ritz method. The results of the present three methods show 

good agreement in the first 4 modes. The effect of the number of elements in Euler-

Bernoulli beam formulation can be seen at mode 5, where 5 element case shows the 

difference compared to present results and reference studies. Here again, present 

results show good agreement with the reference studies for the wind-off frequencies, 

i.e., natural frequencies. In addition to numerical results, the first five natural 

frequencies and belonging elastic modes are presented from Figure 3.10 to Figure 

3.14. 
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Figure 3.10 Mode-1 (7.626 Hz) 

 

Figure 3.11 Mode-2 (15.231 Hz) 

 

Figure 3.12 Mode-3 (38.449 Hz) 
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Figure 3.13 Mode-4 (54.188 Hz) 

 

Figure 3.14 Mode-5 (69.142 Hz) 

3.2.2 Aeroelastic Analysis 

The flutter speed and frequency of the Goland wing are calculated with the 2-D 

Theodorsen’s aerodynamics. Flutter boundary is searched within the pre-defined 

range of flight speeds and corresponding flight conditions are given in Table 3.10. 

Table 3.10 Analysis Conditions 

Parameter Value Unit 

Altitude  Sea Level - 

Air density  1.225 kg/m3 
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The flutter speed and frequency are predicted by eigenvalue analysis of the 

aerodynamic equation of motion by implementing both P-K Method and Non-

Iterative P-K Method (NIPK Method). The first three natural frequencies are tracked 

in the analyses. The flutter results of the Goland wing are achieved by seven different 

analysis cases as presented in Table 3.12.  2-D Theodorsen aerodynamic formulation 

is applied in the aerodynamic model, which is combined with a particular structural 

model.  

As considering the flutter analysis, the reduced frequency is calculated from the 

knowledge of 𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛 = 2𝜋𝑓𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 = 2𝜋𝑓𝑚𝑎𝑥. The relation is 

defined in the following equations: 

 𝑘𝑚𝑖𝑛 =
𝑏2𝜋𝑓𝑚𝑖𝑛

𝑈𝑚𝑎𝑥
 (3.1) 

 𝑘𝑚𝑎𝑥 =
𝑏2𝜋𝑓𝑚𝑎𝑥

𝑈𝑚𝑖𝑛
 (3.2) 

where 𝑏 is the semi-chord length, 𝑈𝑚𝑖𝑛 is the minimum value of speed range of 

interest, 𝑈𝑚𝑎𝑥  is the maximum value of speed range of interest, 𝜔𝑚𝑖𝑛 is the minimum 

value of the frequency range of interest, and 𝜔𝑚𝑎𝑥 is the maximum value of the 

frequency range of interest. 𝑈𝑚𝑖𝑛 is generally taken as the stall speed while 𝑈𝑚𝑎𝑥 is 

the dive speed of the wing structure. 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 should be determined 

depending on the natural frequencies of the structure. 𝜔𝑚𝑖𝑛 should be smaller than 

the first bending mode frequency, on the other hand, 𝜔𝑚𝑎𝑥 should be greater than 

the first torsion mode frequency since flutter generally occurs between these modes. 

For the analyses cases in which the NIPK-Method flutter solution method is 

employed, the parameter set in Table 3.11 is selected for GAF matrix generation. 

The same 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 range is used for the P-K Method solution. Since the GAF 

database is essentially formed by 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥  and 𝑁𝑘, the selection of these values 

can affect the accuracy of the analysis results. As an example, the insufficient 

number of k points, or ill-selected 𝑘 values can reduce the accuracy of the results. 
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Table 3.11 Goland Wing Flutter Non-Iterative P-K Method Analysis Domain 

Parameter Value Unit 

𝑈𝑚𝑖𝑛 120 m/s 

𝑈𝑚𝑎𝑥 150 m/s 

𝜔𝑚𝑖𝑛 7.6638 Hz 

𝜔𝑚𝑎𝑥 38.8561 Hz 

𝑘𝑚𝑖𝑛 0.2935 - 

𝑘𝑚𝑎𝑥 1.8603 - 

Number of 𝑘, 𝑁𝑘 50 - 

 

Table 3.12 compares the flutter speed obtained through the exact differentiation of 

the equations of motion by Goland & Luke [3]. Patil and Hodges [39] and Qin and 

Librescu [42] have used the Goland wing to compare their results. Goland & Luke 

calculated the flutter parameters according to the Rayleigh method and exact 

differentiation of the equations of motion. Patil and Hodges implemented nonlinear 

intrinsic beam theory for the structural modeling and 2-D strip theory for the 

aerodynamics. Qin and Librescu used a thin-walled beam model for the wing 

structure, 2-D strip theory for the aerodynamics, and K-Method for flutter solution. 
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Table 3.12 Comparison of Goland Wing Flutter Results 

 
Structural 

Model 

Unsteady 

Aerodynamics 

Flutter 

Solution 

Method 

Flutter 

Speed, 

[m/s] 

Flutter 

Frequency 

[Hz] 

Analysis 

Case-1 

FEM - Euler 

Bernoulli Beam 

(5 Elems.) 

2-D Theodorsen 

Aerodynamics 

PK-

Method 
137.10 11.18 

Analysis 

Case-2 

FEM - Euler 

Bernoulli Beam 

(10 Elems.) 

2-D Theodorsen 

Aerodynamics 

PK-

Method 
136.83 11.15 

Analysis 

Case-3 

Rayleigh-Ritz 

Method 

2-D Theodorsen 

Aerodynamics 

PK-

Method 
136.78 11.14 

Analysis 

Case-4 

FEM - Euler 

Bernoulli Beam 

(5 Elements) 

2-D Theodorsen 

Aerodynamics 

NIPK-

Method 
137.24 11.18 

Analysis 

Case-5 

FEM - Euler 

Bernoulli Beam 

(10 Elems.) 

2-D Theodorsen 

Aerodynamics 

NIPK-

Method 
136.88 11.15 

Analysis 

Case-6 

Rayleigh-Ritz 

Method 

2-D Theodorsen 

Aerodynamics 

NIPK-

Method 
136.88 11.15 

Analysis 

Case-7 

1-D Beam 

Nastran DMAP 

(10 Elems.) 

2-D Theodorsen 

Aerodynamics 

PK -

Method 
137.65 11.11 

Analysis 

Case-8 

1-D Beam 

Nastran DMAP 

(10 Elems.) 

2-D Theodorsen 

Aerodynamics 

NIPK-

Method 
137.78 11.11 

Goland & 

Luke [3] 

(Exact Sol.) 

Analytical - - 137.5 11.20 

Patil and 

Hodges[39] 

Intrinsic beam 

Patil [39] 

2-D strip theory 

Peters et al.[43]  
- 135.6 11.17 

Qin and 

Librescu[42] 

Thin-walled beam 

model[42] 

2-D strip theory 

[42] 

K 

Method 
137.0 11.15 

 

Results presented in Table 3.12 show a reasonably good correlation with the 

reference flutter speed and frequency values. The results obtained here considering 

the eight different analysis cases validate the developed flutter computation codes. 

In addition to flutter speeds and frequency values, V-g and V-f graphs are presented 

for selected cases of 2, 6, and 8 in Figure 3.15, Figure 3.16, and Figure 3.17, 

respectively. 
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Figure 3.15 Analysis Case-2 V-f and V-g Graphs 

  

Figure 3.16 Analysis Case-6 V-f and V-g Graphs 

 
 

Figure 3.17 Analysis Case-8 V-f and V-g Graphs 
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The tendencies of all four modes for the given analysis cases are similar to each 

other. Mode-1 turns downward to stable condition while mode-3 remains stable in 

both damping and frequency. The frequency of the mode-2 slightly decreases with 

an increase in speed and damping has gone to zero around the airspeed 

approximately 137 m/s, where is the onset condition for flutter. It means that the 

aerodynamic instability condition is seen in the second mode. Here again, the present 

results for the eight different analysis cases are very similar to each other, and they 

show a good agreement with the reference values. 

3.3 AGARD 445.6 Wing 

In this case study, the well-known AGARD (Advisory Group for Aerospace 

Research and Development) 445.6 wing is chosen to conduct free vibrational and 

flutter analyses by MSC®FlightLoads and MSC®Nastran. The wing was initially 

tested by Yates Jr [44]. The geometrical properties of the wing are shown in Figure 

3.18. The wing has a root chord of 0.559 m and tip chord of 0.368 m, a semi-span of 

0.762 m, a taper ratio of 0.66, and an aspect ratio of 1.65. The wing has a quarter-

chord sweep angle of 45⁰ and NACA 65A004 profile with no twist or curvature 

along the length. 

 

Figure 3.18 AGARD 445.6 Wing Planform 

The wing material properties in each direction are presented in Table 3.13, where E 

is elasticity modulus, G is shear modulus, and 𝜌𝑤𝑖𝑛𝑔 is the density. 
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Table 3.13 Material Properties for Weakened AGARD 445.6 Wing 

Material 

Property 
Value Unit 

𝐸11 3.1511 GPa 

𝐸22 0.41621 GPa 

𝐸33 0.41621 GPa 

𝜈12 0.31 - 

𝜈13 0.31 - 

𝜈23 0.31 - 

𝐺12 0.4392 GPa 

𝐺23 0.4392 GPa 

𝐺13 0.4392 GPa 

𝜌𝑤𝑖𝑛𝑔 397 kg/m3 

 

In the analysis, MSC®Patran is adopted to establish the FE model. On the other hand, 

the aerodynamic model is created on MSC®FlightLoads. The wing’s structural and 

AIC matrices are exported to Matlab® environment by use of MSC®Nastran DMAP 

language. Aeroelastic analyses codes are developed by utilizing Matlab® using the 

NIPK Method. To express the vibrational and flutter analyses for the AGARD 445.6 

wing, Figure 3.19 is given to illustrate the analysis workflow. 

 

Figure 3.19 AGARD 445.6 Wing Analysis Workflow 
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The finite element model for the AGARD 445.6 weakened wing is created in 

MSC®Patran. The FEM has 200 quadrilateral shell elements (CQUAD4) and 231 

structural nodes. The nodes at the wing root are fixed in all directions. The structural 

nodes except root are constrained in translational (X and Y axes) and rotation (Z-

axis) degree of freedoms. The finite element model of the wing is presented in Figure 

3.20. 

 

Figure 3.20 AGARD 445.6 Wing Finite Element Model 

3.3.1 Structural Analysis 

The free vibrational analysis of the AGARD 445.6 weakened wing is carried out 

with both the SOL103 normal modes sequence and Matlab® code. The first five 

elastic modes are presented and compared with experiment results by Yates [44] in 

Figure 3.21.  
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Experiment, Yates [44] FEM, Nastran [Present] 

 

Mode 1, 1 = 9.5992 Hz 
 

Mode 1, 1 = 9.46 Hz 

 

Mode 2, 2 = 38.1650 Hz 

 

Mode 2, 2 = 39.7073 Hz 

 

Mode 3, 3 = 48.3482 Hz 

 

Mode 3, 3 = 49.5100 Hz 

 

Mode 4, 4 = 91.5448 Hz 

 

Mode 4, 4 = 95.1342 Hz 

 

 

Mode 5, 5 = 118.1132 Hz 

 

Mode 5, 5 = 121.6460Hz 

Figure 3.21 Comparison of Mode Shapes 
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Table 3.14 compares the first five natural frequencies of the present study with the 

experimental results [44], Kolonay [45], and Lee and Batina [46]. 

Table 3.14 Comparison of Natural Frequencies 

 Mode-1 

[Hz] 

Mode-2 

[Hz] 

Mode-3 

[Hz] 

Mode-4 

[Hz] 

Mode-5 

[Hz] 

2-D Shell Nastran 9.46 39.71 49.51 95.13 121.65 

2-D Shell Nastran 

DMAP 
9.46 39.71 49.51 95.13 121.65 

Experiment [44] 9.60 38.17 48.35 91.55 118.11 

Kolonay [45] 9.63 37.12 50.50 89.94 - 

Lee and Batina 

[46] 
9.60 38.17 48.35 91.54 - 

 

The first five natural frequencies of the MSC®Nastran SOL103 normal modes 

sequence and in-house free vibration analysis with Matlab® using [𝑀], mass matrix 

and [𝐾], stiffness matrix, which are exported through MSC®Nastran DMAP 

language, are identical to each other. Present mode-4 natural frequencies slightly 

differ from the reference values and that difference is not critical for the flutter 

analysis. Consequently, the present results show a good agreement with the 

experimental results for natural frequencies and mode shapes. Besides, because of 

having a good agreement with the other reference studies, the flutter analysis can be 

performed by using constructed structural model. 

3.3.2 Aeroelastic Analysis 

Since previously investigated HALE and Goland wing structures are essentially 

based on 1-D beam theory, 2-D sectional lift and moment theories such as 

Theodorsen’s aerodynamics are well suited for these structures. The reason is that 

unsteady approximations for the lift and moment around the elastic axis are 

calculated based on infinitesimal strips of the wing and integrated over the whole 

span of the wing, which results in overestimating the lift. Hence, the theory is 

suitable for surfaces with very high aspect ratios, such as the HALE wing.  On the 

contrary, the DLM is a lifting element method based on 3-D lifting surface theory. 
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Since Theodorsen’s aerodynamics are not preferred to use with low aspect ratio 

wings, such as AGARD wing, and being a 2-D shell structure, the present flutter 

analyses are carried out employing the DLM.  

The aerodynamic model is obtained by dividing the surface into 800 aero boxes that 

involve spanwise 40 and chordwise 20 elements. Aero-structural coupling is 

achieved by using Infinite Plate Spline (IPS). The reference air density is taken as 

1.225 kg/m3 for the analyses. Mach-Reduced Frequency (M-k) sets are defined 

before the flutter solution. The aeroelastic analyses are performed for the following 

cases: Mach Numbers of 0.449, 0.678, 0.901, and 0.954. The frequencies are taken 

as 𝑓 𝑚𝑖𝑛 = 1 Hz and 𝑓 𝑚𝑎𝑥 = 100 Hz for the analyses.  

Table 3.15 shows the flutter analysis conditions defined as Mach number, air density, 

density ratio, and minimum and maximum free stream airspeeds.  

Table 3.15 Aeroelastic Analysis Conditions for AGARD 445.6 Wing 

Mach Number Density[kg/m3] Density Ratio Umin [m/s] Umax [m/s] 

0.449 0.42770 0.34886 100 200 

0.678 0.20818 0.16980 100 300 

0.901 0.09945 0.08112 150 350 

0.954 0.06338 0.05170 200 400 

 

MSC®Nastran is used to derive AGARD 445.6 wing’s both structural and 

aerodynamic matrices. Flutter solution is provided by in-house Matlab® code 

implementing the Non-Iterative P-K Method (NIPK) method, which is not present 

in MSC®Nastran. To compare the flutter results against reference studies, the Flutter 

Speed Index (FSI) is calculated and plotted. FSI for the AGARD 445.6 wing case is 

defined as follows: 

 𝐹𝑆𝐼 =
𝑈𝑓

𝑏𝜔𝑎√𝜇
 (3.3) 

where 𝜔𝑎 is the angular frequency of the first torsion mode in rad/s and 𝜇 is the mass 

ratio. The root semi-chord, 𝑏𝑠 =  0.2794 m and 𝜔𝑎 = (2𝜋) x 39.7073 rad/s. The 

mass ratio, 𝜇 is defined as 𝐹𝑆𝐼 = 𝑚𝑤 (𝜌𝑓𝑉𝑐)⁄  where 𝑚𝑤 = 1.862 kg is the wing 
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panel mass, 𝜌𝑓 is the free-stream density at flutter, 𝑉𝑐 = 0.130 m3 is the volume of 

the truncated cone. The second flutter parameter for comparison purposes is Flutter 

Frequency Ratio, 𝜔 𝜔𝑎⁄ .  

The efficient calculation of unsteady aerodynamic forces and moments results from 

structural deformation is challenging when especially the transonic flow regime is 

considered. Doublet Lattice Method (DLM) provides satisfactory results and low 

computational cost for the calculation of flutter boundary in subsonic flow regime. 

Nevertheless, transonic flows possess nonlinear characteristics and linear panel 

methods like DLM are not able to model combined subsonic-supersonic flows. The 

DLM mostly fails in predicting shock positions and intensity for such flow regimes. 

Therefore, an improvement of the DLM results can be particularly made in the 

transonic flow regime due to its nonlinear characteristics. The improvement is based 

on increasing the accuracy of the DLM results, which is defined as so-called 

corrections. For such corrections, reliable reference data such as Computational 

Fluid Dynamics (CFD) or wind tunnel data can be used to improve the results of the 

DLM. 

Katzenmeier et al. [47] presented a method to correct model DLM results with small 

disturbance CFD results. The correction aims to improve the quality of the DLM 

results including limited transonic effects. Figure 3.22 compares the GAF entries for 

the first two elastic modes of the AGARD 445.6 wing obtained through 

MSC®Nastran DLM results along with the reference study results of Katzenmeier et 

al. [47] given as DLM, CFD, and corrected DLM. The GAF entries presented as real 

and imaginary parts for the Mach number of 0.954. 
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Figure 3.22 Comparison of GAF Entries for Mach Number, M = 0.954 

A good agreement can be seen between the present MSC® Nastran DLM and DLM 

results given in the reference study. Deviations are present between CFD and DLM 

results because of mentioned transonic flow effects. The corrected DLM results 

converge the CFD results as expected. 

Figure 3.23 and Figure 3.24 show a comparison of the flutter boundary and 

frequency of the AGARD 445.6 wing against the experimental data by Yates [44] 

and results calculated by CFD, DLM, and corrected DLM methods by Katzenmeier 

et al.[47]. The reference flutter solution is obtained by P-K Method. 
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Figure 3.23 Comparison of AGARD 445.6 Wing Flutter Speed Index 

 

Figure 3.24 Comparison of AGARD 445.6 Wing Flutter Frequency Ratio 
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Table 3.16 shows FSI of the present study implementing 2-D FEM theory for the 

structural model and Doublet Lattice Method (DLM) for the unsteady aerodynamics. 

Table 3.16 AGARD 445.6 Wing Flutter Speed Index Results 

Mach Number FSI 

0.449 0.4464 

0.678 0.4281 

0.901 0.3799 

0.954 0.3436 

 

It can be concluded that the present analyses results are in good agreement with the 

experimental results and the results obtained through CFD, DLM, and corrected 

DLM methods by Katzenmeier et al.[47].   

In conclusion, case studies for the clean wing structures are performed to validate 

the developed aeroelastic analysis models. The validation of the models is carried 

out through three well-known wing models, namely High-Altitude Long Endurance 

(HALE) wing, Goland wing, and AGARD wing 445.6 (weakened). In the first stage, 

free vibrational analyses are performed to obtain modal matrices. Following this 

vibrational analysis, GAF matrices are obtained and the aeroelastic equation of 

motion is formed. In the last step, aeroelastic analysis is performed to obtain flutter 

speed and frequency. For the HALE wing, natural frequencies and mode shapes are 

initially obtained, then 2-D Theordorsen’s aerodynamics is coupled with structural 

models, and finally, flutter solution is achieved. A total of seven analyses cases have 

been investigated and validated along with the reference studies. The famous Goland 

wing is investigated in the second case study. The structural model is developed 

based on the principle of a Rayleigh-Ritz method and FEM with coupled Euler-

Bernoulli beam theory. Moreover, MSC®Patran is utilized to develop a 1-D beam 

model for the wing. All structural models have been validated by comparing their 

first five natural frequencies along with the reference studies. The flutter solution is 

obtained by Theordorsen’s aerodynamics, P-K, and NIPK flutter solution 
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algorithms. A total of eight analyses cases have been performed and results are 

compared along with the reference studies. The results validate the developed 

aeroelastic model for the Goland wing, which involves bending-torsion structural 

modes. The last case study is conducted through a well-known AGARD 445.6 wing 

(weakened). The structural model is based on the FEM by discretizing the entire 

wing into shell elements in MSC®Patran. The aerodynamic model is constructed in 

MSC®FlightLoads and Dynamics and aero-structural coupling is achieved by using 

Infinite Plate Spline (IPS). The first five natural frequencies of the wing are obtained 

and compared along with the reference studies. The aerodynamic analyses have been 

performed at different Mach numbers to investigate the accuracy of the DLM. The 

first four GAF entries are obtained utilizing the MSC®Nastran DMAP language and 

compared along with the reference study. The results show that the agreement 

between the obtained results and reference work is satisfactory. Lastly, Flutter Speed 

Index (FSI) and flutter frequency ratio are obtained for the AGARD 445.6 wing, and 

a comparison has been made through a work of Katzenmeier et al.[47] and an 

experimental study. The results of all three case studies have been shown that the 

developed aeroelastic models are successfully validated. 
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CHAPTER 4  

4 AEROELASTICITY OF THE WINGS WITH EXTERNAL STORES 

Aircraft wings are the critical aeroelastic structures concerning aeroelastic analysis, 

especially aeroelastic instability situation, i.e., flutter. Integrating the external stores 

into aircraft wings considerably affects the aeroelastic characteristics of the wing 

structure. It naturally changes the free vibration and dynamic responses of the aircraft 

wing. The large variety of wing store configurations drastically affects both the static 

and dynamic behavior of the aircraft wings. Moreover, the attachment element 

between wing and store, i.e. pylon structural characteristics significantly influence 

the flutter boundary. Because of being one of the most critical aeroelastic 

phenomena, wing store flutter shall be considered carefully in the aircraft aeroelastic 

design stage.  

This chapter consists of two parts. The first part is the theory for the two common 

types of wing store systems while the second part is the case studies of them. The 

first model is the beam-like wing with concentrated mass. The store is attached to 

the wing rigidly with no additional DOFs. The structural model is developed by 

utilizing MSC®Patran and FEM with Euler-Bernoulli beam formulation. On the 

other hand, the aerodynamic theory is based on the 2-D Theodorsen formulation. The 

structural and aeroelastic analyses are conducted with in-house Matlab® code. The 

second one is the flat-plate delta wing with a flexible external store. The development 

of the model and pertinent analyses are conducted by utilizing MSC® FlightLoads 

and MSC®Nastran, respectively.  

4.1 Beam-Like Wing with Concentrated Mass Model 

Because of depending on large computational costs, high-fidelity methods can be 

reduced to numerical methods in the 1-D framework. FEM with Euler-Bernoulli 
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beam theory has been validated to model bending-torsion clean wing structures in 

the previous chapter. The clean wing FEM can be modified by rigidly attaching an 

external store represented by concentrated mass at the selected structural node on the 

wing. Figure 4.1 represents the rigidly attached wing store configuration with spany

denotes the concentrated mass location along the span. The attachment node is 

denoted by ith node. 

 

Figure 4.1 Rigidly Attached Wing Store Configuration 

4.1.1 Rigid Body Motion of the Concentrated Mass 

Consider the concentrated mass as a 3-D structure with a total mass of mc and it is 

attached to stiff springs. Then, O(x,y,z) is a general coordinate system concerning 

the concentrated mass center of gravity. A 3-D structure with a total mass of mc on 

the supports is illustrated in Figure 4.2.  
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Figure 4.2 A 3-D Structure on the Supports[48] 

The rigid body motion of the concentrated mass structure can be defined in 6 

independent DOFs. The equations of motion of the concentrated mass under free-

free condition is expressed below in the linear form [48]: 

 

[
 
 
 
 
 
 
𝑚𝑐 0 0 0 𝑧𝑚𝑐 −𝑦𝑚𝑐

0 𝑚𝑐 0 −𝑧𝑚𝑐 0 𝑥𝑚𝑐

0 0 𝑚𝑐 𝑦𝑚𝑐 −𝑥𝑚𝑐 0
0 −𝑧𝑚𝑐 𝑦𝑚𝑐 𝐼𝑜𝑥𝑥 −𝐼𝑜𝑥𝑦 −𝐼𝑜𝑥𝑧
𝑧𝑚𝑐 0 −𝑥𝑚𝑐 −𝐼𝑜𝑥𝑦 𝐼𝑜𝑦𝑦 −𝐼𝑜𝑦𝑧
−𝑦𝑚𝑐 𝑥𝑚𝑐 0 −𝐼𝑜𝑥𝑧 −𝐼𝑜𝑦𝑧 𝐼𝑧𝑧𝑜 ]

 
 
 
 
 
 

{
  
 

  
 
𝑞̈𝑥
𝑞̈𝑦
𝑞̈𝑧
𝑞̈𝜃𝑥
𝑞̈𝜃𝑦
𝑞̈𝜃𝑧}

  
 

  
 

=
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𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧}
 
 

 
 

 (3.4) 

where x, y, and z are the distances of the center of mass about point O(x,y,z), I is the 

moment of inertia, 𝑞̈ is the linear acceleration, and 𝑞̈𝜃 is the rotational acceleration 

of the concentrated mass. In addition to these, 𝐹 and 𝑀 are the external forces exerted 

on the structure. Eq. (3.4) can be defined in a simple form as follows: 

 [𝑀𝑜]6𝑥6{𝑞̈}6𝑥1 = {𝐹}6𝑥1 (3.5) 

where [𝑀𝑜]is the rigid body mass matrix whose elements are the mass properties of 

the structure about the point O(x,y,z). Note that the rigid body mass matrix, [𝑀𝑜] 

includes inertia properties of the structure. 
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4.1.2 Evaluation of Concentrated Mass Matrix for Wing Store Systems 

Since the store is considered as concentrated mass and it is attached to the wing 

rigidly, the rigid body mass matrix, [𝑀𝑜] can be reconsidered, but this time for the 

wing store systems. The typical wing store section is given in Figure 4.3 with 𝑎𝑥 is 

the chordwise distance between the wing flexural axis and center of gravity. The 

chordwise distance between the wing flexural axis and store center of gravity is 

denoted by 𝑥𝑠. The vertical distance from the wing chord line and store center of 

gravity is denoted by 𝑧𝑠. The aerodynamic loads cause the deformation such that the 

flexural axis of the wing moved along the z-axis, and it rotates about the flexural 

axis. It is assumed that the wing chord line is always parallel to the store chord line 

under deformation. 

 

Figure 4.3 Wing Store Section 

Because all the mass properties of the store are calculated about the wing flexural 

axis, the point O(x,y,z) given in Figure 4.2 can be interpreted as the wing flexural 

axis for the wing store system cases. In this manner, mass properties of store can be 

obtained by making use of the similarity between rigid body motion of the 

concentrated mass and rigidly attached wing store systems. For the wing store case, 

𝑀𝑠 is the store mass, 𝐼 is the store inertia term, xs, and zs the distances from store 

center of gravity to wing flexural axis. The spanwise distance between the wing 

structural node at a distance of yspan and the store center of gravity is denoted by the 
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term ys. As considering the above, rigid body mass matrix, [𝑀𝑜] can be defined here 

as a mass matrix of the store, [𝑀𝑠𝑡𝑜𝑟𝑒] which can be expressed as follows: 

 [𝑀𝑠𝑡𝑜𝑟𝑒] =

[
 
 
 
 
 
 
𝑀𝑠 0 0 0 𝑧𝑠𝑀𝑠 −𝑦𝑠𝑀𝑠

0 𝑀𝑠 0 −𝑧𝑠𝑀𝑠 0 𝑥𝑠𝑀𝑠

0 0 𝑀𝑠 𝑦𝑠𝑀𝑠 −𝑥𝑠𝑀𝑠 0

0 −𝑧𝑠𝑀𝑠 𝑦𝑠𝑀𝑠 𝐼𝑥𝑥 + (𝑦𝑠
2 + 𝑧𝑠

2)𝑀𝑠 −(𝐼𝑥𝑦 + 𝑥𝑠𝑦𝑠𝑀𝑠) −(𝐼𝑥𝑧 + 𝑥𝑠𝑧𝑠𝑀𝑠)

𝑧𝑠𝑀𝑠 0 −𝑥𝑠𝑀𝑠 −(𝐼𝑥𝑦 + 𝑥𝑠𝑦𝑠𝑀𝑠) 𝐼𝑦𝑦 + (𝑥𝑠
2 + 𝑧𝑠

2)𝑀𝑠 −(𝐼𝑦𝑧 + 𝑦𝑠𝑧𝑠𝑀𝑠)

−𝑦𝑠𝑀𝑠 𝑥𝑠𝑀𝑠 0 −(𝐼𝑥𝑧 + 𝑥𝑠𝑧𝑠𝑀𝑠) −(𝐼𝑦𝑧 + 𝑦𝑠𝑧𝑠𝑀𝑠) 𝐼𝑧𝑧 + (𝑥𝑠
2 + 𝑦𝑠

2)𝑀𝑠]
 
 
 
 
 
 

 (3.6) 

Note that the store mass matrix, [𝑀𝑠𝑡𝑜𝑟𝑒] includes the inertia terms in the explicit 

form because the parallel axis contribution of the 𝑀𝑠 is explicitly shown. Since the 

shear deformations are neglected in the Euler-Bernoulli beam model, the store mass 

matrix can be reduced the form as follows, where the distance, 𝑦𝑠 is taken as 𝑦𝑠 = 0. 

 [𝑀𝑠𝑡𝑜𝑟𝑒] = [

𝑀𝑠 0 −𝑥𝑠𝑀𝑠

0 𝐼𝑥𝑥 + 𝑧𝑠
2𝑀𝑠 −𝐼𝑥𝑦

−𝑥𝑠𝑀𝑠 −𝐼𝑥𝑦 𝐼𝑦𝑦 + (𝑥𝑠
2 + 𝑧𝑠

2)𝑀𝑠

] (3.7) 

4.1.3 Structural Equations of Motion 

The global form of system matrices provides the clean wing dynamic characteristics 

according to the discrete coordinates of the system. The structural part of the 

aeroelastic equation of motion for the clean wing can be reconsidered here. The 

equation can be modified for the wing store system as follows: 

 [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒]{𝑥̈} + [𝐾]{𝑥̇} = {0} (3.8) 

where {𝑥} is nodal displacements, [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] and [𝐾] are the global mass and 

stiffness matrices, respectively. Since the attachment is rigid without additional 

DOF, the mass matrix of the wing store structure, [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] can be defined as 

below: 

 [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] = [[𝑀𝑤𝑖𝑛𝑔] + [𝛥𝑀]] (3.9) 



 

 

78 

where [𝛥𝑀] defines local structural mass modification on the wing structure and its 

size n x n is equal to the size of [𝑀𝑤𝑖𝑛𝑔]. Modification matrix, [𝛥𝑀] can be formed 

according to [𝑀𝑠𝑡𝑜𝑟𝑒] that is defined previously. The spanwise location, 𝑦𝑠𝑝𝑎𝑛 of the 

concentrated mass and the corresponding structural node can be defined for each 

attachment. In the case of multiple concentrated mass attachments, this method 

allows modeling multiple store attachments for wing store systems. It should be 

noted that if a specific spanwise attachment location is defined, one is required to 

define a structural node at the desired attachment location. The generalized form of 

mass [𝑀̄𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] and stiffness [𝐾̄] matrices can be obtained as below: 

 [𝑀̄𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] = [𝜙]
𝑇 [[𝑀𝑤𝑖𝑛𝑔] + [𝛥𝑀]] [𝜙] (3.10) 

 [𝐾̄] = [𝜙]𝑇[𝐾][𝜙] (3.11) 

where [𝜙] is the modal matrix which is formed by the selected normal mode shapes 

and each column of [𝜙] represents a normal mode shape, 𝜙𝑖. Furthermore, the natural 

frequencies 𝜔𝑖 and the normal mode shapes 𝜙𝑖 can be obtained by solving the 

eigenvalue problem of the wing store structure, where 𝑖 is the order of the natural 

frequency or normal mode. 

4.2 Flat-Plate Delta Wing with Flexible External Store Model 

A delta wing is a low aspect ratio wing and is named for its similarity to a triangle. 

Although it is efficient in all flow regimes, it is generally used in supersonic aircraft. 

One of the main advantages of the delta wing is that it possesses structurally strong 

characteristics, which leads to carrying a large number of external stores 

simultaneously. 

A delta wing store experimental model has been developed by Demand Tang, Peter 

Attar, and Earl H. Dowell [9] to investigate the flutter and Limit Cycle Oscillation 

(LCO) characteristics of the wing store system. The effect of the external store pitch 
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stiffness (attachment stiffness) and the spanwise location of the external store on the 

flutter speed and limit cycle oscillations (LCO) are discussed in the study.  

In the present study, the wing is modeled as a simple plate with constant thickness. 

The external store is modeled as a slender rigid body that is attached to the wing 

through two support points. The vertical distance of the external store is arranged by 

these support points. The aft support is attached to the wing with a linear spring, on 

the other hand, the fore support has a joint that enables to store having pitch motion. 

The external store is assumed to have one degree of freedom (pitch) concerning the 

wing. In other words, the external store is a single degree of freedom system while 

considering wing store dynamics. Figure 4.4 presents the delta wing model with an 

external store and its two support points. 

 

Figure 4.4 Attachment Locations Between the Wing and Store [9] 

In addition, Figure 4.5 presents the section of the delta wing model with an external 

store. In the wing store dynamic model, 𝑀1 is the mass of the external store and 𝑀2 

is the mass of the aft mounting point, which can be interpreted as pylon mass. 𝑃1 and 

𝑃2 denote the fore and aft mounting points of the external store to the wing, 

respectively. 𝑍1and 𝑍2 are the vertical displacements of the fore and aft mounting 

points of the store, respectively. 𝑒2 is the distance between the aft and fore mounting 

point and 𝑒3 is the mass center location of the external store from the fore mounting 

point, 𝑃1. The distance between the tip of the store and the fore mounting point, 𝑃1 

is denoted by the distance 𝑒1.  
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Figure 4.5 Section of Delta Wing Model with an External Store[9] 

In the wing store model, the store pitch angle is 𝛽 and 𝑘𝑠 is the store pitch stiffness, 

i.e., store attachment stiffness. An equation of motion for the store pitch angle, 𝛽  

based on the test model can be given by Tang et al.[49] as below: 

 𝛽̈ + 2𝜉𝑠𝜔𝑠𝛽̇ + 𝜔𝑠
2𝛽 = −𝜔𝑀1𝑒3𝐴0 𝑠𝑖𝑛(𝜔𝑡/𝐽𝛽) (3.12) 

where 𝜔𝑠is the store pitch frequency, which is defined by 𝜔𝑠 = √𝑘𝑠𝑒22/𝐽𝛽; 𝐽𝛽 is the 

pitch moment of the store, 𝜉𝑠 is the modal damping rate, 𝐴0 and 𝜔 are the excitation 

amplitude and frequency.  

Structural nonlinearity can be included at the mounting points between the wing and 

the store. The structural nonlinearity can be a form of the free-play gap or stiction in 

the aft mounting location. In the case of stiction nonlinearity, store attachment 

stiffness, 𝑘𝑠 is defined by Tang et al. [49] as follows. 

 𝑘𝑠 = {
𝑘𝑠1 if |180

∘𝛽/𝜋| ≤ 𝜎
𝑘𝑠2 otherwise

 (3.13) 

where 𝜎 is the store pitch stiction gap angle,  𝜎 = 180∘𝑑/𝜋𝑒2. The stick region in 

the wing store system is denoted by 𝑑. The illustration of the stiction force at the aft 

spring position is presented in Figure 4.6. 
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Figure 4.6 Illustration of the Stiction Force [49] 

Since the present study covers the linear attachment elements between the wing and 

the store, nonlinear attachment parameters 𝜎, 𝑘𝑠1 and 𝑘𝑠2 can be taken as 𝜎 = 0∘ and 

𝑘𝑠1 = 𝑘𝑠2 for the linear case.  

4.2.1 Finite Element Model  

Attar et al. [50] modeled the wing store structure by implementing a high-fidelity 

nonlinear structural model by using the commercial FE software ANSYS. In the 

present study, the MSC®Patran is used to model the wing store structure linearly and 

MSC®Nastran commercial FE code is used as the linear structural solver. The wing 

store system is defined through different types of finite elements. Since the flexible 

delta wing is assumed to have isotropic thin plate characteristics, PSHELL entry and 

three-node CTRIA3 elements are used to model the structure. CTRIA3 element has 

six degrees of freedom, three translational, and three rotations. Mass of the external 

store, 𝑀1  and the mass of the aft connection point, 𝑀2 are modeled by using the 

CONM2 element that includes inertia terms. The elastic part of the external store is 

defined by equivalent beam theory using store pitch stiffness, 𝑘𝑠. The flexible section 

of the external store is modeled by using CBAR elements.  
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On the other hand, the rigid section of the store is modeled by using multi-point 

constraint MPC elements. The type of the MPC is selected as RBE2. Figure 4.7 

represents the elements used in the FE model of the delta wing store system.  

 

Figure 4.7 Illustration of the Elements of the FE Model 

The mounting location, P1 to the joint is modeled by using the explicit type of MPC 

element. An explicit type of MPC allows defining one node for dependent terms and 

unlimited nodes for the independent terms. P3 is selected as a dependent term while 

P1 is selected as an independent term. The DOFs are defined as UX, UY, UZ 

(translational DOFs), and RX, RZ (rotational DOFs) which means the rotation about 

the y-axis is not constrained as the store rotates about P3. Similarly, all translations 

and rotations are constrained between the point P2 and P4 and P2 and P5. 
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4.3 Wing Store Flutter Case Studies  

4.3.1 Beam-Like Wing with Concentrated Mass Case Study 

The wing store system consists of a uniform cantilever wing and mass attachment as 

described in Runyan et al. [4]. The mass is assumed as concentrated at different 

spanwise locations; however, it is about 0.41 chord forward of the flexural axis of 

the cantilevered wing. The model specifications are described for the analyses in 

Table 4.1.  

Table 4.1 Beam-Like Wing with Concentrated Mass Properties [5] 

Parameter Value Unit 

Half span,ℓ 1.2192 m 

Chord, 2𝑏 0.2032 m 

Mass per unit length, 𝑚 1.2942  kg/m 

Moment of inertia, 𝐼𝑃 0.0036  kg m 

Spanwise elastic axis (from LE), 𝑎 43.7 % chord - 

Center of gravity (from LE), 𝑒 45.4 % chord - 

Spanwise bending rigidity, 𝐸𝐼𝑧 403.76 N m2 

Torsional rigidity, 𝐺𝐽 198.58 N m2 

Store Mass, 𝑀𝑠 1.443 kg 

Store Moment of Inertia, 𝐼𝑦𝑦 0.0185 kg m2 

 

Two structural models are developed for this case study. For the first model, FEM 

Euler-Bernoulli beam theory is initially applied to develop the clean wing structure. 

Then, clean wing mass matrix is modified by means of a store mass matrix to 

construct wing store structure. 48 beam elements are used in Euler-Bernoulli beam 

formulation. The necessary analytical work for developing the clean wing structural 

model, structural modifications, and free vibration analysis are performed by 

utilizing Matlab® code. For the second structural model, MSC®Patran is utilized to 
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model the wing store structure. Similarly, 48 CBEAM elements with 6 DOFs per 

node are used for the entire wing. The node at the wing root is fixed. Elemental 

lumped masses are connected rigidly to the nodes located on the flexural axis with 

rigid elements RBE2. The structural nodes except fixed root are constrained in 

translational (Y and Z axes) and rotation (X-axis) degree of freedoms. The store is 

modeled by using the CONM2 element and it is attached to the beam nodes at desired 

wing spanwise location by RBE2 elements. Figure 4.8 shows the FEM of the beam-

like wing with the store is attached to the wingtip.  

 

 

Figure 4.8 Beam-Like Wing FEM with Concentrated Mass at Wingtip  

An aerodynamic model is developed by implementing 2-D Theodorsen 

aerodynamics. Both structural models are coupled with the same aerodynamic model 

to form aeroelastic models. The store aerodynamic properties are neglected in the 

present analysis. 

4.3.1.1 Structural Analysis 

The first four natural frequencies are obtained by use of both MSC®Nastran SOL103 

sequence and in-house analysis workflow. Since MSC®Patran provides the [𝑀] 

identical to [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] for the entire wing store structure, modification of the 
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clean wing mass matrix is not performed for the MSC®Nastran case. On the other 

hand, [𝑀𝑤𝑖𝑛𝑔] is initially obtained by utilizing FEM with Euler-Bernoulli beam 

theory.  Then, [𝑀𝑤𝑖𝑛𝑔+𝑠𝑡𝑜𝑟𝑒] is formed by use of store mass modification matrix, 

[𝛥𝑀] and clean wing mass matrix, [𝑀𝑤𝑖𝑛𝑔]. 

Calculation of the normal modes has been performed for the clean wing (store at 

wing root) and the wing with mass at six different spanwise positions. The mass is 

attached to the 0.2794 m, 0.4318 m, 0.762 m, 1.143 m, 1.1684 m, and 1.2192 m 

spanwise locations from the wing root, where the variation of the first four normal 

modes against mass nondimensional spanwise location can be seen in Figure 4.9. 

 

Figure 4.9 Wing Store Natural Frequencies vs Nondimensional Spanwise Location 

of Concentrated Mass for the First Four Modes 
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The first four normal modes of the wing mass structure are in good correlation when 

FEM with Euler-Bernoulli beam formulation and MSC®Nastran FEM results are 

considered. These results show that the development of the wing store structural 

model by structural modification approach has been successfully implemented for 

the beam-like wing with concentrated mass. Hence, the modified wing store structure 

is validated along with the free vibration analysis results of MSC®Nastran, whose 

solution is not included the structural modification approach. 

4.3.1.2 Aeroelastic Analysis 

The flutter speed and frequency of the beam-like wing store structure are calculated 

with the 2-D Theodorsen aerodynamics. The flutter analyses are carried out at sea 

level conditions taking air density as 1.225 kg/m3. 

Runyan and Seawall [4] experimentally investigated a wing store system that 

consists of a uniform cantilever wing and concentrated mass. Then, Runyan and 

Watkins [5] analyzed the flutter of the same wing store system and made a 

comparison between the analytical and the experimental results. In this developed 

approach, the differential equations were used to govern the motion of a uniform 

wing and an exact solution was applied. Besides, the two-dimensional aerodynamic 

forces were derived by applying Theodorsen’s aerodynamics. Since physical or 

mathematical simplifications are not involved in the exact solutions, Wilts [51] 

implemented a solution of the problem by use of finite-difference approximations to 

partial differential equations.  

The flutter results of the FE method by use of MSC®Nastran and Euler-Bernoulli 

beam formulation and the reference studies are compared in Figure 4.10. The flutter 

speed ratio (U/U0) is plotted against the span position of the concentrated mass. The 

spanwise position is normalized with wing half span, ℓ. U/U0  is the ratio of the flutter 

speeds for the wing with a mass to the flutter speed of the clean wing. Besides, Table 

4.2 shows the numerical results of the present methods.  
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Figure 4.10 Wing/store Flutter Speed at Different Store Attachment Locations  

Table 4.2 Comparison of Wing/store Flutter Speeds and Frequencies by Present 

FEM Methodology 

Spanwise Location  

of the Mass (m) 

  

FEM-1D Beam 

Nastran 

FEM-Euler Bernoulli 

Beam Theory 

𝑈𝑓 [m/s] ω𝑓 [Hz] 𝑈𝑓 [m/s] ω𝑓 [Hz] 

0 98.91 23.92 97.75 24.75 

0.2794 95.94 19.03 95.54 19.33 

0.4318 119.12 27.89 115.99 28.30 

0.762 184.84 31.84 181.81 32.23 

1.143 120.33 26.06 119.3 26.64 

1.1684 111.27 25.38 110.33 25.52 

1.2192 96.42 24.19 97.77 25.12 

 

The present methods show that the shape of the reference curve follows the present 

curve very closely in the regions where especially nondimensional span location is 

below 0.6. Since the divergence was reported experimentally beyond the store 
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nondimensional spanwise location of 0.3542, there are no experimental results up to 

nondimensional spanwise store location of 0.9375. Nevertheless, it is possible to 

calculate the flutter speed theoretically in these regions. The slight differences can 

be seen between the present results and the reference studies beyond the 

nondimensional store span location 0.6. Consequently, it is not possible to compare 

the theoretical results in that region with the experiment due to a lack of experimental 

data. Besides the comparison of the present results with the reference studies, flutter 

speed and frequency of both MSC®Nastran and Euler-Bernoulli beam formulation 

with structural modification are in good correlation. Therefore, the developed 

structural modification method has been validated for the beam-like wing with 

concentrated mass. 

4.4 Flat-Plate Delta Wing with Flexible External Store Case Study 

The theoretical flat-plate wing store data is taken from the experimental and 

theoretical study of Tang et al. [9] and a photograph of the wind tunnel model can 

be seen in Figure 4.11. Five span locations of the store are considered in the 

experiment: y/c = 0.161, 0.291, 0.419, 0.548, and 0.677 where y/c is the 

nondimensional store location, i.e. span location, y is normalized by the chord, c. 

The clean wing model is a delta wing with a sweep angle of 45 deg and it is built 

through a thickness of 0.147 cm Lucite® material. The wing root is partially 

cantilevered. The cantilevered length is 22.86 cm and the total length of the wing 

chord is 38.1 cm. As presented in Figure 4.5, the wing store parameters are given as 

follows; 𝑒1 = 12.7 cm, 𝑒2 = 9.84 cm, 𝑒3 = −0.23 cm, 𝑀1 = 0.037 kg, 𝑀2 =

0.004 kg, 𝑘𝑠 =  36 N/m and 𝐽𝛽 =  0.3686E-4 Nms
2. The FE model of the wing 

store structure is developed by utilizing MSC®Patran. The flexible plate structure 

has 3571 TRIA3 elements in the FE model. The aerodynamic model is developed in 

MSC®FlightLoads and Dynamics via the utilization of DLM. The free vibrational 

and flutter analyses are conducted by means of MSC®Nastran, which involves 

SOL103 and SOL145 solution sequences, respectively. 
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Figure 4.11 A Snapshot of the Wind Tunnel Model[52] 

4.4.1.1 Structural Analysis 

The wind-off frequencies of the delta wing plate without store are calculated by use 

of the MSC®Nastran Lanczos method in the SOL103 sequence. Experimental and 

analytical FEM reference results are presented for comparison purposes. Table 4.3 

compares the first five natural frequencies of present results with the reference 

studies.  

Table 4.3 Comparison of Clean Wing Natural Frequencies  

 FEM-ANSYS 

Tang et al. [9] 

Experiment 

Tang and Dowell [53] 

FEM-

Nastran 

[Present] 

Mode-1 [Hz] 4.39 4.5 4.53 

Mode-2 [Hz] 17.84 17.2 17.98 

Mode-3 [Hz] 20.62 20.54 20.58 

Mode-4 [Hz] 42.21 44.4 42.49 

Mode-5 [Hz] 51.87 54.4 51.14 

 

As shown in Table 4.3, the agreement between the computational models by use of 

FEM and experiment is satisfactory when the wind-off frequencies of the clean wing 

are considered. Nevertheless, experimental results slightly differ from both reference 
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and present FEM results. It can be concluded that the developed flat plate FE Model 

is validated by computational and experimental references. 

Five span attachment location of the flexible store is considered in the reference 

computational model and experiment. Figure 4.12 shows the comparison of the first 

four natural frequencies of the wing store model at different span locations of the 

store. The reference results are presented for von Karman plate theory, FEM by use 

of ANSYS and experiment. All reference data are taken from the study of Tang et 

al.[50]. 

 

Figure 4.12 The First Four Natural Frequencies of Wing Store Against Different 

Store Span Locations 

The present FE model has been applied to conduct free vibration analysis of the wing 

store at different attachment locations of the store. Experimental results slightly 

differ from the theoretical ones especially in mode-2, mode-3, and mode-4. The 

present method shows a perfect agreement with the reference FE Model for all modes 
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and span locations of the store. Therefore, the developed wing store FE Model is 

validated by computational and experimental references. Figure 4.13 - Figure 4.16 

are given to show the first four natural frequencies and mode shapes of the wing store 

model for a store span location of y/c = 0.548. 

 

Figure 4.13 Mode-1 [3.78 Hz], y/c = 0.548 

 

Figure 4.14 Mode-2 [9.78 Hz], y/c = 0.548 

 

Figure 4.15 Mode-3 [16.11 Hz], y/c = 0.548 
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Figure 4.16 Mode-4 [20.53 Hz], y/c = 0.548 

The mode-1 is the first wing store bending mode while the mode-2 is the first wing 

store torsion mode. The mode-3 is dominated by the store pitch motion. The reason 

is that the calculated store pitch frequency that is 15.5 Hz is in the vicinity of wing 

store mode-3 frequency, 16.11 Hz. Lastly, mode-4 is the second wing bending mode. 

4.4.1.2 Aeroelastic Analysis 

The aerodynamic model is obtained by utilizing three individual lifting surfaces and 

a total of 201 lifting surface boxes. The boxes should maintain a maximum aspect 

ratio of 3 in the Doublet-Lattice formulation [54]. Figure 4.17 shows the 

aerodynamic mesh and it verifies the aspect ratio of the lifting surface boxes is 

smaller than 3. 
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Figure 4.17 Aerodynamic Mesh and Aspect Ratio of the Boxes 

Aero-structural coupling is achieved by using Infinite Plate Spline (IPS). The flutter 

analyses are carried out at sea level conditions with an air density of 1.225 kg/m3. 

The flutter solution is achieved by P-K Method since the MSC®Nastran DMAP 

language is not utilized in the present analysis. Besides, store aerodynamics are 

neglected. The reference results include von Karman plate theory with linear spring 

attachment [53], von Karman plate theory with nonlinear spring attachment [50], 

high-fidelity nonlinear structural model [50], and experiment estimated [50]. The 

comparison of the flutter speeds of the wing store model at different store span 

locations is presented in Figure 4.18. On the other hand, the flutter frequency 

comparison plot is presented in Figure 4.19.  
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Figure 4.18 Flutter Speed at Different Store Attachment Locations 

 

Figure 4.19 Flutter Frequency at Different Store Attachment Locations 
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Figure 4.18 and Figure 4.19 summarizes the flutter behavior of the wing with a 

flexible store system at different attachment locations through implementing linear 

FEM. The important thing to note in analyzing the results is that the tendency of the 

present curves is similar to the reference curves. Figure 4.18 indicates that flutter 

speed diverges after the nondimensional span location y/c=0.3. The reason could be 

that the nonlinear effects become dominant after the span location y/c=0.3. 

Nevertheless, the agreement of the present results with the reference study is 

satisfactory when linear attachment cases are considered. Thus, both structural and 

aeroelastic models have been validated by comparing the results of the reference 

studies. 

To sum up, the aeroelasticity of the wing structures with external stores has been 

investigated throughout the present chapter. The two different types of wing store 

systems are introduced. The first model depends on the beam-like wing structure 

with concentrated mass. The FEM is employed to develop the structural model. The 

wing is discretized into finite beam elements and corresponding structural nodes are 

used to attachment of the concentrated mass. The attachment between the wing and 

concentrated mass is considered rigid. The connection is introduced as a local 

structural modification on the wing structure. The modification matrix is formed by 

a mass matrix of the attached body, which is evaluated through the rigid body motion 

of the lumped mass element. A case study has been conducted based on the 

developed analytical model and FEM by MSC®Patran. The effect of the attachment 

location on both structural and aeroelastic characteristics is investigated.  It is found 

that the flutter behavior is significantly sensitive to the attachment location of the 

lumped mass. The results of the present work are compared with the results in the 

literature. Consequently, a good correlation is observed between the present 

analytical model and reference experimental and analytical studies. The second wing 

store system is based on the flat-plate delta wing with an elastic attachment between 

the wing and the external store. The wing store FE model is developed in 

MSC®Patran. The FE elements used in the model are explicitly defined involving 

two attachment locations, attachment stiffness, store mass and inertia, and the pylon 
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mass. The aerodynamic model is developed in MSC®FlightLoads and Dynamics via 

the utilization of DLM. The store aerodynamics are not included in the analyses. The 

present results are compared to published works and a good agreement is observed 

between the results. Hence, a comprehensive FE model for the wing with a flexible 

store system has been validated. The important thing in the implementation of the 

FEM for wing store systems is that the store attachment is not limited to the 

attachment of the one store. The present method can also be utilized for multi-store 

attachments. 
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CHAPTER 5  

5 STRUCTURAL MODIFICATIONS IN AEROELASTICITY 

Flutter analyses are carried out with discrete sets of modal data, which includes 

natural frequencies, mode shapes, and generalized modal masses of the pertinent 

aerospace structure. These may be obtained directly from Ground Vibration Tests 

(GVT) or analytically. Since the ground vibration tests are costly and very time-

consuming activities, these tests are not practical in the aerospace industry. Besides, 

one of the drawbacks of performing ground tests is that it requires a physical 

prototype of the structure, which is usually not possible to be provided at an early 

design stage of the structure. If a design change arises as a result of ground vibration 

tests, a redesign process should be considered, and tests need to be repeated.  

A redesign process is inevitable if the design does not satisfy the flutter requirements, 

or a large number of design candidates are present. It is generally not possible to 

perform ground vibration tests when a redesign process is necessary. The analytical 

models can easily be utilized for such cases to predict flutter behavior and they are 

cost-effective than conducting ground tests. For instance, a fighter aircraft is 

equipped with a large number of external stores and these lead to many fighter store 

loading configurations. The modern fighter and its external store inventory can be 

seen in Figure 5.1. 
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Figure 5.1 Modern Fighter Aircraft and Its External Store Inventory [55] 

The combination of possible store configurations must be examined analytically 

before flight tests. At this point, a redesign process is required to calculate flutter 

speeds for all external store configurations. The redesign process commonly involves 

successive structural modifications in the model and recomputing the flutter solution. 

Searching for the most suitable design candidate is the ultimate goal of the redesign 

process. This can be accomplished by implementing various optimization 

frameworks. In the traditional approach, the redesign or optimization process can be 

given in Figure 5.2. 
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Figure 5.2 Traditional Redesign Process of Structural Model 

The process given in Figure 5.2 is applied and verified by calculating the flutter 

speed and frequency of beam-like wings with concentrated mass in Chapter 3. The 

original system consists of “n number of DOFs” that can be interpreted as a very 

large number. The structural modification is applied to the original structure 

assuming no additional DOFs in the structure where the modification is local. After 

solving the eigenvalue problem (EVP), n number of mode shapes and natural 

frequencies are obtained. In the aeroelastic analysis, “m number of DOFs” is 

typically interested, which is a significantly smaller number when compared to full 

system DOF. Then, m x m size of the generalized mass and stiffness matrices and n 

x m size of mode shape matrix of the modified structure can be formed accordingly. 

Finally, Generalized Aerodynamic Force (GAF) matrix can be formed utilizing the 

n x m size of the mode shape matrix.  
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The critical issue in the traditional methodology is that repeatedly solving the EVP 

with full size of n x n system matrices. Execution time is very high in this process 

depending on the size of the original system when a large number of successive 

modifications are considered. 

To generate reduced-order models (ROMs) that represent the dynamic 

characteristics of the full order aeroelastic system in a low computational cost 

manner, there exist several modal reduction methods in the literature. Static 

condensation method by Guyan [56], Improved Reduced System (IRS) method by 

O'Callahan [57] and System Equivalent Reduction Expansion Process (SEREP) by 

Kammer [58] can be given as examples. Such methods can be applied to aerospace 

structures when considering aeroelastic analysis. In this case, the equations of motion 

are much smaller, but the Aerodynamic Influence Coefficient (AIC) matrix must be 

recalculated since the aerodynamic model is constructed based on the reduced model. 

Modal reduction methods are usually applied to form original structure mass and 

stiffness matrices defined in Figure 5.2.  

The traditional redesign process can be reconstructed by implementing Dual Modal 

Space Modification (DMSM) given in Figure 5.3.  The method has been originally 

developed by Luk and Mitchell [59]. The mode shapes of the modified structure are 

approximated by this technique. In other words, the n x m size mode shape matrix 

of the modified structure can be obtained by using only the original structure and 

modification information. Hence, the GAF matrix in each design iteration can be 

computed by using these mode shapes, which can be calculated by the DMSM 

method. The accuracy depends on the modal information stored in the original 

structure. The main assumptions are that structural modification is local, the total 

DOF of the structure does not change and the aerodynamic configuration is fixed. 

Therefore, the AIC matrix of the original structure can be used repeatedly used in 

the successive structural modifications. Since the GAF matrices are as a function of 

reduced frequency, k and Mach number, M, the M-k set should be determined 

properly such that the aeroelastic analyses domain could cover modified structure 

dynamics. In other words, pre-defined kmin, kmax - Mach number, M sets should cover 
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all possible modification cases. The main advantage of the application of DMSM is 

to avoid solving EVP with full n x n size of system matrices successively in each 

design iteration. The new approach significantly reduces the computational cost. 

 

Figure 5.3 New Redesign Process of Structural Model 

5.1 Dual Modal Space Modification 

Since the theory is explained in detail in the work by Luk and Mitchell [59],  this 

section covers the review of the method for free vibration analyses. The dynamic 

characteristics of the aeroelastic system are given in Chapter 2. The equation of 

motion represents the dynamics of the system in physical space. Recalling the EOM 

but this time transformation into modal space is defined by using the relation below: 

 {𝑥}𝑛𝑥1 = [𝜙𝛪]𝑛𝑥𝑚{𝜂𝛪}𝑚𝑥1 (4.1) 
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where [𝜙𝛪]𝑛𝑥𝑚 is the modal matrix of the original system and {𝜂𝛪}𝑚𝑥1 vector of 

principle coordinates in modal space I, results in the following relation: 

 {𝜂̈𝛪} + [𝜔𝑚]{𝜂̇𝛪} = {0} (4.2) 

where 𝜔𝑚 is the natural frequencies of the original system. The system of Eq. (4.2)

can be considered the result of an experiment or can be obtained before aeroelastic 

analyses of the original structure, where “m” denotes the number of modes interested 

in the aeroelastic analyses. The effects of the structural modification can be included 

such that point mass changes, [𝛥𝑀] or stiffness changes between nodes, [𝛥𝐾]. 

Hence, the dynamics of the system is modified such that 

 [𝐾 ′] = [𝐾] + [𝛥𝐾] (4.3) 

 [𝑀′] = [𝑀] + [𝛥𝑀] (4.4) 

Then, the following relation can be formed by including the modifications to the 

original system given in Eq. (2.7) 

 [𝑀′]{𝑥̈} + [𝐾 ′]{𝑥̇} = {0} (4.5) 

Make the same coordinate transformation in Eq.(4.5) by using the modal matrix of 

the original system, [𝜙𝛪]𝑛𝑥𝑚.The result of such an operation is written as follows: 

 [𝑀̄]{𝜂̈𝛪} + [𝐾̄]{𝜂𝛪} = {0} (4.6) 

where 

 [𝑀̄] = [[𝐼] + [𝜙𝛪]
𝑇[𝛥𝑀][𝜙𝛪]] (4.7) 

 [𝐾̄] = [[ 𝜔\ 𝑚
2
 \
] + [𝜙𝛪]

𝑇[𝛥𝐾][𝜙𝛪]] (4.8) 

Note that the system defined in Eq. (4.6), (4.7) and (4.8) is no longer diagonal. An 

eigen analysis should be carried out to find natural frequencies and mode shapes of 

the modified structure. The system of Eq. (4.6) can be transferred from modal space 

I to modal space II by the relation between principal coordinates {𝜂𝛪} and {𝜂𝛪𝛪}, 

which is given as follows: 
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 {𝜂𝛪}𝑚𝑥1 = [𝜙𝛪𝛪]𝑚𝑥𝑚{𝜂𝛪𝛪}𝑚𝑥1 (4.9) 

where [𝜙𝛪𝛪] is the modal matrix of the modified structure defined in modal space II. 

The backward transform should be applied by using the relation given below, in 

which Eq. (4.1) and Eq. (4.9) are combined. 

 {𝑥}𝑛𝑥1 = [𝜙𝛪]𝑛𝑥𝑚[𝜙𝛪𝛪]𝑚𝑥𝑚{𝜂𝛪𝛪}𝑚𝑥1 (4.10) 

As a result, the mode shape of the modified structure can be approximated by the 

product of the mode shape matrices of modal space I and modal space II. This 

technique clearly shows that the accuracy of the mode shapes of the modified system 

relies on the modal information that exists in the original system. 

5.2 Evaluation of Generalized Aerodynamic Force (GAF) Matrix by 

Structural Modification 

The derivation of the GAF matrix is expressed throughout Chapter 2. Recalling the 

Eq. (2.50) and Eq. (2.59),  the general form of the GAF can be defined as follows: 

 [𝐺𝐴𝐹] = [𝜙]𝑇[𝐴𝐼𝐶][𝜙] (4.11) 

where [𝜙] is the modal matrix of the structure size of n x m, where m << n. The Eq. 

(4.11) can be rewritten according to the procedure defined in section 5.1. 

 [𝐺𝐴𝐹] = [𝜙𝛪𝛪]
𝑇[𝜙𝛪]

𝑇[𝐴𝐼𝐶][𝜙𝛪][𝜙𝛪𝛪] (4.12) 

where [𝜙𝛪] is the modal matrix of the original system in modal space I and [𝜙𝛪𝛪] is 

the modal matrix of the modified structure in modal space II. Note that [𝜙𝛪𝛪] is 

formed by using the only original structure and modification information. 

5.3 Case Study – Local Mass Modification on Cantilevered Plate Wing 

The experimental and computational FE wing model has been developed by Moradi, 

Sadeghi, and Dowell [60] to investigate the variation of the flutter speed with mass 
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balancing. The mass is assumed concentrated lumped mass and it is attached to the 

wing at 15 different attachment locations. The wing is made of a thin plate of 

aluminum 3105 with a thickness of 0.5 mm, 0.3 m span length, and 0.1 m reference 

chord.  The aspect ratio of the wing is 3, the lengths are 0.12 m at the wing root and 

0.08 m at the wingtip. In addition, the wing has 29 deg sweptback angle. The wing 

geometry is presented in Figure 5.4. 

 

Figure 5.4 Wing Geometry (in meters)[60] 

The mechanical properties of aluminum 3105 are defined as the density 2700 kg/m3, 

Poisson’s ratio 0.33, and elastic modulus 75 Gpa. The wing is modeled in MSC® 

Patran using 90 QUAD4 shell elements in both reference and present study. Table 

5.1 compares the first five natural frequencies of the clean wing with reference study. 

Table 5.1 Comparison of First Five Natural Frequencies of the Clean Wing 

Natural Frequency [Hz] 

Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 

FEM Nastran [60] 4.66 25.67 35.15 68.93 97.40 

Experiment [60] 4.57 24.80 33.59 65.62 94.53 

 FEM Nastran 

[Present]  

4.67 25.70 35.16 69.02 97.41 

FEM Nastran DMAP 

[Present] 

4.67 25.70 35.16 69.02 97.41 
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The results show a perfect agreement between the present study and the 

computational results of the reference study.  On the other hand, there is no 

significant difference between the experimental and the theoretical results. 

The concentrated 10 g mass is attached to 15 different locations on the wing. The 

labels are denoted for chord centerline M, for trailing edge MB and for leading edge 

MF [60]. The mass is modeled by using the CONM2 element and there are a total of 

112 nodes in the FE model of the structure. The mass attachment is defined as local 

structural modification in the current analyses. For instance, attachment at node 16 

corresponds to the MF5 in the reference study as given in Figure 5.5. 

 

Figure 5.5 Mass Attachment Locations and Labels on the Structure 

5.3.1 Aeroelastic Analysis of Clean Wing 

The aerodynamic modeling of the structure is carried out by utilizing DLM in MSC® 

FlightLoads. The aerodynamic model is obtained by dividing the surface into 968 

aero boxes. The analyses are carried out at sea level conditions, taking air density 

1.225 kg/m3.  The present results are given in three different analyses cases. The first 

analysis is carried out directly on MSC®Nastran implementing the P-K Method for 
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the solution. For the second and third analyses, MSC®Nastran DMAP is used for the 

clean wing to extract structural mass and stiffness matrices. Moreover, AIC matrices 

are exported for the defined reduced frequency and Mach numbers. The modal and 

flutter analyses are carried out with developed in-house Matlab® code. The second 

analysis case involves P-K Method for the flutter solution while the third analysis 

case has NIPK Method. Table 5.2 compares the obtained flutter speeds with the 

reference study for the clean wing. The V-g and V-f graphs for the MSC®Nastran 

DMAP Non-Iterative P-K Method solution can be seen in Figure 5.6. 

Table 5.2 Comparison of Flutter Speed of the Clean Wing 

 Flutter Speed 

[m/s] 

Flutter Frequency 

[Hz] 

Nastran 

P-K Method [60]  
22.3 - 

Experiment [60] 21.5 - 

Nastran 

P-K Method [Present] 
22.04 18.07 

Nastran DMAP 

P-K Method [Present] 
22.05 18.02 

Nastran DMAP 

NIPK Method [Present] 
22.06 17.97 

 

  

Figure 5.6  Nastran DMAP NIPK-Method V-g and V-f Graphs 

As shown in Figure 5.6, the first mode is damped whereas the second mode shows 

positive damping as airspeed increases. The flutter occurs at the second mode in the 
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vicinity of airspeed 22.06 m/s. The vibration frequencies of the first mode and second 

mode tend to close each other around 17.97 Hz. 

Since the NIPK Method provides a non-iterative solution approach, the execution 

time of the flutter solution by P-K Method is approximately 2.5 times slower than 

the NIPK Method in the current in-house flutter calculation framework. There is no 

significant difference in the flutter speeds among the present results. Likewise, a 

good agreement can be seen between the obtained results and the reference study. 

The results validate the FE and aerodynamic model of the structure. Besides, AIC 

matrix export methodology to form GAF matrices is validated with the results. 

5.3.2 Aeroelastic Analysis of Clean Wing with Lumped Mass 

The aerodynamic model is fixed for the clean wing in the flutter analyses.  The 

present results are obtained by two distinct analyses cases. The first analysis case is 

performed such that the flutter solution is directly calculated for the wing attached 

mass structure. In other words, the traditional process is implemented as given in 

Figure 5.2 and structural modification is not implemented. The solution involves the 

abstraction of structural and aerodynamic matrices from MSC®Nastran to Matlab® 

environment by using DMAP language and NIPK Method for the in-house flutter 

calculation. The second analysis case is carried out such that flutter solution is 

obtained by implementing structural modification technique. This process has been 

described in Figure 5.3. The second solution involves the abstraction of structural 

and aerodynamic matrices of the clean wing by MSC®Nastran DMAP. Hence, the 

structure is modified for each 15 attachment cases by using the original structure 

information with in-house Matlab® codes. The clean wing AIC and mode shape 

matrices are used to evaluate the GAF matrices of the modified structure. The NIPK 

Method is applied for the flutter solution. In the reference study, analytical results 

belong to the direct output of the MSC®Nastran by providing the P-K Method. The 

wing with mass structure is modeled employing MSC®Patran for 15 attachment 

cases. Besides, experimental results are given in the reference study. The numerical 
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results of the present study and comparison with the reference study are presented in 

Table 5.3.  

Table 5.3 Comparison of Mass Attached Wing Flutter Results 

 

Flutter Speed [m/s] 

Nastran 

PK-

Method 

[60] 

 

Experiment 

[60] 

Nastran 

DMAP 

NIPK-Method 

[Present] 

Nastran DMAP 

“Structural 

Modification” 

NIPK-Method 

[Present] 

CLEAN 

WING 
22.30 21.40 22.00 - 

M1 22.30 21.50 22.00 21.97 

M2 22.30 21.40 22.00 22.02 

M3 23.20 22.20 22.90 22.91 

M4 23.60 22.40 23.60 23.55 

M5 23.20 22.40 23.60 23.69 

MB1 22.30 21.50 21.90 21.93 

MB2 21.00 21.50 17.90 17.90 

MB3 19.40 20.00 18.00 18.06 

MB4 18.80 19.50 18.40 18.39 

MB5 18.80 19.40 19.10 19.12 

MF1 22.10 21.40 21.70 21.69 

MF2 21.00 20.70 20.30 20.32 

MF3 23.40 23.10 22.90 22.89 

MF4 28.00 25.00 27.80 27.71 

MF5 14.00 16.70 13.85 13.90 

 

It can be observed that both present solution cases agree with each other regarding 

all attachment locations. The correlation between the present results and reference 

results is satisfactory. The V-g and V-f plots for the MSC®Nastran DMAP NIPK 

Method (MF5 mass attachment case) are presented as an example in Figure 5.7. 
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Figure 5.7  V-g and V-f Plots for the MF5 Mass Attachment Case 

As can be seen in Figure 5.7, mode-2 is damped, and mode-3 shows positive 

damping as airspeed increases. The flutter onset can be seen in the mode-3 around 

13.85 m/s airspeed. Mode-2 and mode-3 tend to close each other around vibration 

frequency 23 Hz.  

5.3.3 Comparison of Computational Time 

Flutter analysis generally begins with the calculation of the modal matrices, namely, 

mode shape matrix, generalized mass, and stiffness matrices. Then, GAF matrices 

are formed by using the mode shape matrices. Lastly, these matrices are involved in 

the flutter solution. To compare the computational efficiency of the structural 

modification approach in the flutter analysis, three different grid sizes are employed 

for the plate wing structure. The first model is developed by using a 6x15 grid size, 

which is currently utilized in the above-mentioned analysis. The second model has a 

30x75 grid size while the third model has a 30x150. A total of 15 local structural 

modifications are introduced successively in the analysis, which has been shown in 

Figure 5.5. In the traditional approach, modification is directly introduced to the 

wing structure and eigen solution is performed with Matlab® built-in function “eigs”. 

The first ten modes are selected by “smallestabs” option to calculate eigenvalues and 

eigenvectors, i.e., mode shapes.  On the other hand, the successive modifications are 

introduced to the system by implementing Dual Modal Space Method (DMSM) as 

shown in Figure 5.3. The comparison of the calculation time is given in Table 5.4 
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for the three different structural models. Note that the aerodynamic model is fixed, 

and the number of aero boxes is taken as 968 for all analyses. The calculations are 

performed with a PC that has a 3.6 GHz 6-core processor and 32 GB RAM. The 

results are the means of the CPU time of the total 15 successive modifications. 

Hence, they correspond to each modification cycle time.  

Table 5.4 Comparison of Computational Time 

 Modal 

Matrices 

Calculation 

Time [sec] 

GAF 

Matrices 

Calculation 

Time [sec] 

Flutter 

Solution 

Time[sec] 

Total 

Calculation 

Time [sec] 

Structural Grid: 6x15 0.063 3.039 181.1 184.2 

Structural Grid: 6x15 

(Structural Mod.) 
0.013 3.026 154.6 157.6 

Structural Grid: 30x75 32.26 3.468 185.6 221.3 

Structural Grid: 30x75 

(Structural Mod.) 
0.274 3.445 177.8 181.5 

Structural Grid: 30x150 161.93 4.248 212.23 378.4 

Structural Grid: 30x150 

(Structural Mod.) 
0.987 3.934 192.72 197.6 

 

Table 5.4 indicates that as structural grid size increases the calculation of the modal 

matrices takes more time. For the first model, the total number of shell elements is 

90, resulting in 540 DOFs in total. The computation of modal matrices takes 0.063 

seconds. In the second model, 2250 elements are used with 13500 DOFs in the 

structure while the computation takes 32.26 seconds. The last model has 4500 

elements and 27000 DOFs in the structure. The computation of the modal matrices 

takes 161.93 seconds, which is significantly larger than the previous models. On the 

other hand, the computational times of the modal matrices are 0.013, 0.274, and 

0.987 seconds when the structural modification method is introduced for the three 

different grid sizes. A significant reduction in computation time is observed for the 

structural modification cases because it uses only original generalized mass and 

stiffness matrices and modification information. In other words, there is no need for 

the full system matrices to calculate the modal matrices of the modified structure. 
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Note that the execution times of both GAF matrices and flutter solution are close to 

each other because the size of the modal output matrices is the same for both 

approaches. Therefore, a substantial execution time reduction can be observed by 

implementing the structural modification method in the aeroelastic flutter analysis. 

The efficiency of the method appears when working with a large number of DOF 

systems. Even though these results belong to one modification cycle, the 

employment of the structural modification method considerably decreases the 

computation time when a large number of successive modifications is present in the 

analysis. Also note that NIPK Method is implemented in the solution, which provides 

the outputs relatively faster than P-K Method. 

In summary, structural modifications are introduced to the traditional flutter solution 

procedure. In the traditional method, large-scale aeroelastic systems are generally 

converted into ROMs which reduces the computational complexity. Although ROMs 

are computationally efficient, it is required to recalculate the structural and 

aerodynamic models when structural modifications are present in the structure. This 

situation usually involves comprehensive effort when introducing modifications into 

the aeroelastic system. In particular, if there are successive modifications present in 

the structure, continuously constructing the aerodynamic model and related GAF 

matrices require tedious work. A new flutter calculation procedure is introduced 

when structural modifications are present in the system. In this method, the main 

assumptions are that modifications are local, and the aerodynamic configuration is 

fixed at each modification cycle. Hence, the AIC database of the original structure 

that is based on the M-k sets can be used for the modified structures. Since the Dual 

Modal Space Modification (DMSM) can approximate the modified systems’ modal 

information based on the original structure information, DMSM is introduced to the 

flutter solution process. It can be implemented to both ROMs and large-scale 

systems, however, its significance is mostly present in large-scale systems, i.e., when 

working with a large number of DOFs. Furthermore, this method enables predicting 

the flutter speed of the modified structure by using the original modal and 

aerodynamic information. The validation of the new method has been carried out 
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through an experimental model. The reference study aimed to investigate the effect 

of mass balancing on flutter behavior. Consequently, a total of 15 mass attachment 

locations are defined on the wing structure and 10 g mass is attached to these 

attachment locations. For all cases, experiments were conducted, and flutter speeds 

were recorded. On the other hand, a computational model was developed utilizing in 

MSC®FlightLoads and Dynamics in the reference work. To validate the present 

aeroelastic model, the wing aero-structural model has been developed in 

MSC®FlightLoads and Dynamics. Clean wing structural and aerodynamic models 

are exported to Matlab® via utilizing DMAP language. Firstly, modifications are 

considered local and directly applied to the wing structure. The present results are 

compared to reference work and a good agreement is observed between the present 

and reference results. Then, a new flutter solution process has been implemented to 

the problem. Modifications are implemented successively by using the DMSM 

method and a total of 15 flutter speeds are obtained. The present results show a good 

correlation with the previously obtained results and reference results. In addition to 

that, the study is extended to analyze the new method’s computational efficiency. 

Two additional structural models are developed which have finer mesh sizes, i.e., a 

large number of DOFs. The first additional model has 13500 DOFs while the second 

model has 27000. The new method is implemented to these structural models and 

modal matrices, GAF matrices, and flutter solution execution times have been 

recorded. The results are compared along with the results of the traditional method. 

It is shown that when the systems become larger, the computation time of the modal 

matrices drastically increases when the traditional method is considered. However, 

when the DMSM method is applied in the flutter solution, the modal matrices 

computation time is significantly decreased, especially working with a large number 

of DOFs systems. The computational contributions to the total flutter calculation 

time can be seen obviously when three distinct cases are considered. 
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CHAPTER 6  

6 DESIGN OPTIMIZATION OF WING-STORE SYSTEMS 

 BASED ON THE FLUTTER CRITERIA 

The military aircraft are capable of externally carrying large varieties and 

combinations of external stores, such as unguided bombs, guided bombs, missiles, 

pods, fuel tanks, etc. The integration phase of these external stores into military 

aircraft involves a specific certification process. There are generally two possible 

situations for the certification process. In the first and most common situation, an 

external store is particularly designed for the aircraft whose design has already been 

completed. In the second situation, an aircraft is being designed but existing external 

store inventory would be taken into account to maintain the operational capabilities. 

The aeroelastic concerns, for example, flutter criteria, certainly shall be taken into 

consideration for the above-mentioned situations. On the other hand, determination 

of the worst-case flutter configuration for the existing inventory is essential because 

the total number of external store loading configurations is close to a million. In the 

present chapter, optimization of the wing store systems is investigated considering 

the worst-case flutter.  

6.1 Wing Store Aeroelastic Model Definition  

Since there is a growing demand and attraction for the tactical UAVs which are 

capable of carrying external stores in the defense industry, a HALE wing is adopted 

for the optimization case studies. When a lower bending rigidity is involved with the 

stores, the natural frequencies of the wing store system tend the decrease and close 

to each other. In this case, flutter occurs at very low airspeeds. Due to this reason, 

the wing is taken the same as provided in section 3.1 but this time it is stiffened by 
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taking spanwise bending rigidity, 𝐸𝐼𝑧, 1x106 Nm2. The structural model is achieved 

utilizing FEM with Euler-Bernoulli beam theory. A total of 32 finite beam elements 

and 33 structural nodes are used to discretize the entire wing. The wing is clamped 

at the wing root. Each structural node (except the node at wing root) corresponds to 

the external store attachment location. The optimization cases involve three different 

types of external stores which are given in Figure 6.1. Store 1 is a representative 

bomb which is labeled as B-1, while Store 2 is a representative missile which is 

labeled as M-1. Lastly, Store 3 corresponds to another missile that is labeled as M-

2.  

 

Figure 6.1 – External Store Definitions 

Stores are structurally modeled as lumped masses having store pitch inertia. The 

attachment of the stores into a wing is accomplished by local structural modification 

with store mass and inertia. The attachment between the mass and store is rigid and 

the chordwise location of the store center of gravity from the wing flexural axis is 

zero.  

Theodorsen’s aerodynamics is implemented for the aerodynamic modeling and store 

aerodynamics are neglected in the analysis. The flutter analysis condition is achieved 

by taking air density 0.0889 kg/m3 that corresponds to 20000 m altitude. The flutter 

solution is obtained via NIPK Method. Considering the above wing store aeroelastic 

analysis conditions, the clean wing flutter speed is calculated as 68.03 m/s. Since the 

attachment of the external stores tends to decrease the flutter speed of the wing,  

𝑈𝑚𝑎𝑥 is taken as 80 m/s while 𝑈𝑚𝑖𝑛 is taken as 5 m/s and number of 𝑘, 𝑁𝑘 = 15 for 

all analysis cases. Since 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 are determined depending on the natural 

frequencies of the wing store structure, 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥  are calculated for the 

particular wing store structure.  
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6.2 Flutter Critical Multi-Store Design Parameters 

Store mechanical properties are generally determined without considering the 

possible effects on the vibrational characteristics of the wing store system when the 

store is mounted to the wing structure. In particular cases, store design authorities 

like to choose store mass or other properties larger to make use of its operational 

capability as much as possible. Since the stores are carried with air vehicles, the 

aeroelastic behavior of the particular wing store systems can degrade the 

performance or operational requirements of the air vehicles. For instance, a flight 

envelope of the fighter aircraft can be substantially limited when an external store is 

mounted to the aircraft wing. While a store design activity is being performed for a 

specific aircraft, the above-mentioned effects can be eliminated in advance by 

introducing additional design constraints during the preliminary design stage of the 

store if the store design authority permits. Investigating the worst-case flutter 

condition for the wing store system can be a good choice to introduce such design 

constraints for the store design activities. 

Determination of the store design parameters based on worst-case flutter criteria, 

specifically store mass and inertia, can produce additional store design constraints. 

As a consequence of the mentioned necessity, three optimization cases have been 

defined to investigate additional store design constraints. Each optimization case 

involves three types of stores, and its mass and pitch moment of inertia are searched 

within a pre-defined analysis range. Store parameters are considered as the design 

variables. The design constraints are presented in Table 6.1. Upper bound of the store 

pitch inertias is defined by introducing a specific store pitch moment/mass ratio 

parameter, r. This parameter defines store pitch moment based on the store mass and 

it can be taken as unique to a specific store type. The ratio parameter for the B-1 is 

defined as 𝑟1, M-1 is defined as 𝑟2 , and M-2 is defined as 𝑟3, which are taken as 

1.69, 1.19, and 1.3, respectively.  
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Table 6.1 Store Design Constraints 

Store 

Type 

Store Mass, 

Ms [kg] 

Store Pitch Moment of 

Inertia, Is [kgm^2] 

Min. Max. Min. Max. 

 
0 150 0 𝑀𝑎𝑥(𝑀𝑠) ∗ 𝑟1 

 
0 80 0 𝑀𝑎𝑥(𝑀𝑠) ∗ 𝑟2 

 
0 40 0 𝑀𝑎𝑥(𝑀𝑠) ∗ 𝑟3 

 

The multi-store attachment locations are defined for the particular loading 

configurations. For the first optimization case, B-1 is attached to the 7th structural 

node, while M-1 is attached to the 10th structural node and M-2 is attached to the 13th 

node. The corresponding spanwise distances from the wing root (1st structural node) 

are 3 m, 4.5 m, and 6 m, respectively. For the second optimization case, B-1 is 

attached to the 7th structural node, while M-1 is attached 15th and M-2 is attached to 

the 17th structural node. The corresponding spanwise distances from the wing root 

are 3 m, 7 m, and 8 m, respectively. Likewise, 4th, 7th, and 17th structural nodes are 

defined as attachment locations for the last case, which corresponds to the 1.5 m, 3 

m, and 8 m spanwise locations from the wing root. The illustration of the multi-store 

attachment locations for each optimization case is given in Figure 6.2. 
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Figure 6.2 Optimization Cases for Store Design Parameters 

The flutter speed is the objective or cost function used in the optimization process. 

Since there are six search variables and worst-case flutter is the minimum flutter 

speed, the “fminbnd” function in Matlab® is employed to find the minimum of a 

constrained multivariable function.  Since “fminbnd” function gives local minimum 

solutions depending on the initial values, fminbnd is used with “GlobalSearch” 

function in Matlab®. Hence, the solver attempts to locate a solution globally which 

has the lowest objective function value in the defined boundary. Considering all the 

above, multi-store design optimization calculations have been performed with a PC 

that has a 3.6 GHz 6-core processor and 32 GB RAM.  The parallel-run option is 

enabled during the executions, hence, a total of 6 cores are simultaneously utilized 

in the optimization process. The optimization results for Case-1, Case-2, and Case-

3 are given in Table 6.2, Table 6.3 and Table 6.4, respectively. 
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Table 6.2 Optimization Case-1 Results 

Store Type 
Store Mass, 

 Ms [kg] 

Store Pitch Moment 

of Inertia, Is 

[kgm^2] 

 
150.0 244.5 

 
80.0 14.7 

 
40.0 29.8 

Execution Time  [Hours] 18.65 

Flutter Speed [m/s] 8.40  

 

Table 6.3 Optimization Case-2 Results 

Store Type 
Store Mass, 

Ms [kg] 

Store Pitch Moment 

of Inertia, Is 

[kgm^2] 

 
111.73 251.5 

 
80.0 15.4 

 
40.0 37.8 

Execution Time  [Hours] 13.27 

Flutter Speed [m/s] 5.76  

 

Table 6.4 Optimization Case-3 Results 

Store Type 
Store Mass, 

Ms [kg] 

Store Pitch Moment 

of Inertia, Is [kgm^2] 

 
13.9 4.1 

 
72.2 95.2 

 
40 28.5 

Execution Time  [Hours] 10.47 

Flutter Speed [m/s] 7.62 
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The results show that all flutter speeds are significantly lower than the flutter speed 

of the clean wing, which is expected.  Since the mass addition tends to reduce to first 

bending and torsion natural frequencies resulting in the coupling of these modes in 

lower airspeeds.  

In optimization case-1, masses of all stores are maximized at the upper bound of the 

mass constraint. However, it is not valid for the store pitch inertias. The B-1 store 

pitch inertia tends to maximize the value as considering the closest store to the wing 

root. On the contrary, optimization of the M-1 store inertia tends to decrease its value 

as locating the between the B-1 and M-2 store. Lastly, M-2’s optimization results 

show that a moderate level of pitch store inertia is found within the pre-defined range 

as considering the most distant store from the wing root. Consequently, a unique 

combination of the store parameters results in the lowest value of flutter speed, i.e. 

worst-case flutter point. Similarly, in the second optimization case, M-1 and M-2 

store mass close to their maximum value as seen in case-1. However, B-1’s store 

mas is lower than case-1 despite having the same attachment location in case-1. This 

can be due to moving the stores M-1 and M-2 away from the B-1 leads to a change 

in the vibration characteristics of the wing store structure. Moreover, the store 

parameters of M-1 and M-2 are close to each other whereas case-1 and case-2 are 

compared. On the whole, the significant difference between case-1 and case-2 is seen 

at the B-1’s store mass.   

The last case differs from the first two cases as considering the B-1 and M-1 are close 

to the wing root and M-2 is away from the wing root. In this particular loading 

configuration, B-1 store parameters interestingly tend to be minimized. On the other 

hand, M-1’s pitching inertia is close to its maximum value. No change is observed 

in the store mass of the M-2 as considering all three optimization cases. This is 

expected because heavier stores close to wingtip generally decrease the flutter speed. 

All in all, three unique multi-store loading configurations have been defined and 

store parameters are optimized based on the worst-case flutter criteria. The 

optimization problem is not limited to the number of stores and accordingly 
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attachment locations. The optimization problem can be extended by introducing 

more stores and defining constant store properties at the particular attachment 

location. For instance, an engine or drop tank with constant parameters can be 

introduced at a specific span location under the wing. As a result of store parameters 

optimization based on the worst-case flutter criteria, an additional design constraint 

can be introduced in the store development phase. 

6.3 Multi-Store Attachment Locations at Worst-Case Flutter Condition 

Since the total number of external store loading configurations is close to a million 

considering the fighter aircraft, the determination of the most critical loading 

configuration is crucial.  In this case, the total number of possible stores is generally 

defined in the inventory. The selected set of stores among the inventory is introduced 

as the candidate external stores for the attachment with their store properties. The 

ultimate aim is to determine store attachment locations for the given set of stores 

which causes the worst-case flutter condition. In the present work, the representative 

stores are defined in Table 6.5 to search their attachment locations. As considering 

the stores are representative, the store B-1, M-1 and M-2 masses are given as 150 kg, 

50 kg, and 25 kg, respectively. To define store pitch moment of inertias, the pre-

defined ratio parameters 𝑟1, 𝑟2 and 𝑟3, which are again taken as 1.69, 1.19, and 1.3, 

respectively. 

Table 6.5 Set of Stores Selected in Virtual Inventory 

Store Type 
Store Mass, 

Ms [kg] 

Store Pitch Moment 

of Inertia, Is [kgm^2] 

 
150 253.5 

 
50 59.5 

 
25 32.5 
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The all-possible conditions are considered in the determination of the attachment 

locations. Since a particular store can be located at 32 different attachment locations 

(except wing root), there is a total of 32768 possible loading configurations for the 

three stores. In this case, all three stores can be located at the same attachment 

location. A simple flutter search procedure is developed in Matlab® by calculating 

flutter speed for each case instead of utilizing a specific built-in search algorithm. 

Then, the lowest flutter speed case is picked among the number of 32768 cases. The 

worst-case flutter loading configuration is given in  Figure 6.3. 

 

Figure 6.3 Worst-Case Flutter Loading Configuration 

M-2 is found at the 2nd structural node and spanwise distance 0.5 m, B-1 is found at 

the 9th structural node with a spanwise distance of 4 m. Lastly, M-1 is found at the 

24th structural node with a spanwise distance of 11.5 m. The flutter speed is 

calculated as 5.07 m/s at this multi-store loading configuration. Consequently, the 

calculated attachment locations cause the worst-case flutter condition considering 

the given number of stores and parameters. 

In conclusion, two different types of study are presented in this chapter. The first 

study involves three optimization cases that search for the store design parameters at 

a given particular loading configuration. On the other hand, the second study 

provides the determination of the worst-case flutter loading configuration for the 

given set of stores. A design optimization problem for the wing store systems is 

introduced based on the worst-case flutter criteria. The wing is chosen as the HALE 

wing which is validated in chapter 3. However, the structural rigidity is increased to 

perform the store attachments efficiently. Accordingly, three different store types are 

defined in the model.  Firstly, store design parameters are determined considering 

the three different case studies, which correspond to three different wing store 

loading configurations. The store mass and pitch inertias are calculated in multiple 
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store attachment cases considering particular loading configurations. The minimum 

flutter speed is searched within the pre-defined store parameters. As a result of this 

study, it can be concluded that additional store design constraints can be introduced 

in the store design activities based on the worst-case flutter condition. Additional 

work has been conducted considering the three designed stores with masses and 

inertias. The worst-case store loading configuration is searched involving all possible 

loading conditions. The attachment locations for the separate stores are obtained. 

The study of optimization can be extended by introducing a large number of stores 

and attachment locations since the application of FEM by structural modification 

easily encounters the attachment of the lumped mass elements. Besides, wing design 

parameters can be optimized for a given set of particular external loading 

configurations considering the maximum flutter speed condition. Furthermore, a full 

aircraft structure with external loads can be optimized by this approach. 
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CHAPTER 7  

7 CONCLUSION 

7.1 General Conclusions 

Aeroelastic modeling and analysis of wing store systems have been investigated 

through the study. Since aircraft structures are mainly on the subject of aeroelasticity, 

the wings are utilized to investigate the aeroelastic instability problem, i.e., flutter. 

In the present work, it is mainly focused on the flutter analysis of wing store systems. 

The structural and aerodynamic models are initially developed for the clean wing 

structures. FE method and unsteady aerodynamics are implemented for structural 

and aerodynamic models, respectively. The evaluation of the aeroelastic equation of 

motion is performed and flutter solution methods are implemented mathematically, 

namely, K-Method and P-K Method. Besides, a novel approach for the flutter 

solution is specifically implemented, which is called the Non-Iterative P-K Method 

(NIPK Method). The fast and accurate solution approach of the NIPK Method is 

provided to solve the aeroelastic EOM during the analysis. To calculate the flutter 

solution, there is required to define a structural and aerodynamic model of the wing. 

Hence, the wing structures are modeled through the FE considering 1-D beam and 

2-D shell elements. Case studies for the clean wing structure are performed to 

validate the developed aeroelastic analysis models. The validation of the models is 

carried out through three well-known wing models, namely High-Altitude Long 

Endurance (HALE) wing, Goland wing, and AGARD wing 445.6 (weakened). 

Since the structural modeling of wing store systems are not a simple process and it 

mostly requires comprehensive FE modeling by utilizing commercial software, a 

simple and efficient analytical method is developed to model wing store systems in 

the 1-D framework. In the developed method, the structural modification approach 

is used to model wing store dynamics. The attachment of the store is defined as rigid 



 

 

124 

with no additional DOF in the system. The similarity of rigid body motion of the 

concentrated mass under free-free condition is taken advantage of deriving the rigid 

body mass matrix of the store for the wing store structures. 2-D Theodorsen 

aerodynamics are applied for the wing store systems in the 1-D framework whose 

structural model is obtained through FEM and structural modification approach. 

Hence, free vibration and flutter analyses of such systems are performed simply and 

efficiently. The developed model is used to investigate the effect of the spanwise 

attachment location of the store on the flutter behavior of the wing store systems. It 

is found that the flutter speed of the system increases as moving the store toward the 

wingtip. However, the flutter speed tends to decrease after a certain location of the 

store. Multi-store attachment cases can be easily developed by introducing this 

method since the structural model is developed by use of FEM and structural 

modification considering the 1-D framework. 

Having introduced that an aeroelastic model for a 1-D cantilevered beam-like wing 

with lumped mass structures, a relatively comprehensive wing store system model is 

provided to investigate its aeroelastic behavior. For such a system, 2-D shell FEM 

and 3-D Doublet Lattice Method (DLM) are introduced for the structural and 

aerodynamic model, respectively. The commercial software is utilized to develop 

both structural and aerodynamic models. The store is considered flexible means that 

a linear spring element is used for its attachment to the wing structure. Consequently, 

the store has a 1-DOF pitching motion considering the one attachment location is 

pivoted while the other has a linear spring mounting element. In addition to this, a 

mass element is introduced between the store and wing structure. Hence, a realistic 

aeroelastic model is defined to investigate the flutter behavior for wing store systems. 

The varying flexible store mounting locations are considered in the analysis. A 

similar flutter behavior to 1-D wing store systems is observed for the flexible store 

case. Flutter speed tends to increase toward the wingtip but at a specific location, it 

decreases gradually. The main idea behind the modeling flexible store wing system 

by utilizing the FEM is to prove that altering the attachment location of the flexible 

store can be easily introduced in an aeroelastic system. Hence, the structural 
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characteristics of the flexible wing store system are not limited to the attachment 

location. For instance, the sensitivity analysis cases considering the variation on 

linear spring attachment element, point mass at the attachment, store mass properties, 

etc. can be performed efficiently by introducing this approach. 

When a large number of design candidates are present during the aeroelastic analysis 

of the wing store systems, a significant computational effort is required to conduct 

such analyses. Moreover, working with high-fidelity aeroelastic models can 

substantially contribute to these computational efforts since it requires encountering 

a large number of DOFs for the wing store structures. That kind of analysis addresses 

the redesign or optimization activities. If the aerodynamic configuration is fixed in 

the successive aeroelastic analysis, the same aerodynamic model can be used 

repeatedly. This knowledge leads to the implementation of a structural modification 

approach in case of having different structural design candidates while performing 

aeroelastic analysis. In the present developed approach, the GAF database for the 

modified wing structure is obtained by implementing Dual Modal Space 

Modification (DMSM) method by using the original wing’s AIC database. Modal 

matrices of the modified system are approximated by this approach to form the 

modified system’s generalized mass, stiffness, and aerodynamic matrices. DMSM 

method does not require solving full system EOM by eigenvalue analysis to obtain 

modified system modal matrices. In other words, the DMSM method requires only 

original structure and structural modification information to obtain modal matrices 

of the modified structure. DMSM method is typically implemented to obtain modal 

matrices for the lower set of modes of the structure likewise flutter analysis. Hence, 

flutter analysis of the structurally modified structure is calculated based on the 

original structure and structural modification information. Moreover, it is found that 

it significantly reduces the calculation of the modal matrices of the modified 

structure, especially the large DOF systems are considered. Note that the accuracy 

of this method depends on the modal information that exists in the original system. 

The store mass properties have been investigated considering the worst-case flutter 

condition for the wing store systems. The flutter speed is minimized while 
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optimizing the store mass and pitch moment of inertia parameters. It is found that 

additional store design constraints can be introduced to the store design activities. If 

such design constraints are considered during the preliminary design stage of the 

store, the operational capability of the aircraft can be maintained before conducting 

ground vibration and flutter flight tests. On the contrary, a ballast weight is desired 

to be added to the wing structure to increase the flutter speed. That kind of 

optimization problem can be easily obtained by implementing the same optimization 

approach to search for the optimal solution for the ballast weight and its location on 

the wing. 

7.2 Recommendations for Future Work 

This thesis involves the application of FEM into wing store structures to analyze its 

vibrational and dynamic aeroelasticity characteristics. FEM approach enables 

structural modifications when both forming and solving the aeroelastic equation of 

motion of the structure. The present approach is not limited to obtain a flutter 

solution but can be applied to any static aeroelastic problems like divergence. 

Moreover, the study can be extended to obtain the dynamic and elastic response of 

the aerospace structures in gust loads. Since the present study includes only linear 

systems considering linear attachment elements to wing structures, the non-linear 

attachment elements can be utilized in the present methodology. On the other hand, 

modifications can be extended to aerodynamics. Store aerodynamics can be included 

in the analyses. The study is not limited to wing store systems but can be 

implemented in full-scale aerospace structures. The related design optimization 

activities can be performed efficiently concerning FE modeling and structural 

modification approach. 
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