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ABSTRACT

TIMELY COMMUNICATION FOR ENERGY-EFFICIENCY, DATA
FRESHNESS AND TRACKING

Bacınoğlu, Baran Tan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Elif Uysal

September 2021, 135 pages

This thesis considers data transmission scenarios where timeliness of information

transmission, or adapting to intermittently available resources is important. The first

part of the thesis focuses on energy harvesting communication systems. For such

systems, energy efficient scheduling algorithms that achieve certain throughput max-

imization and data freshness objectives are developed. The second part of the thesis

considers data transmission for the purpose of tracking unstable sources through noisy

channels. Conditions are developed on the rate of information transfer to satisfy order

m moment trackability of these processes.

Keywords: timely communication, energy harvesting and energy-efficient communi-

cations, age of information, data freshness, trackability, tracking through noisy chan-

nels
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ÖZ

ENERJİ VERİMLİLİĞİ, VERİ TAZELİĞİ VE TAKİP İÇİN ZAMANLI
HABERLEŞME

Bacınoğlu, Baran Tan

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Elif Uysal

Eylül 2021 , 135 sayfa

Bu tez, bilgi iletiminde zamanlılığın veya kesikli olarak erişilebilir kaynaklara adap-

tasyonun önemli olduğu veri iletimi senaryolarını ele almaktadır. Tezin ilk kısmı,

enerji hasatçı haberleşme sistemlerine odaklanmaktadır. Böyle sistemler için, belirli

veri hacmi en yükseltilmesi ve veri tazeliği amaçlarına erişen enerji verimli çizelge-

leme algoritmaları incelenmiştir. Tezin ikinci kısmı, stabil olmayan süreçleri gürül-

tülü kanallar üzerinden göndermek amaçlı veri iletimini ele almaktadır. Bu süreçlerin

m moment mertebesinde takip edilmesini sağlayan bilgi transferi hızı üzerine koşullar

geliştirilmiştir.

Anahtar Kelimeler: zamanında haberleşme, enerji hasatçı ve enerji-verimli haber-

leşme, bilgi yaşı, veri tazeliği, takip edilebilirlik, gürültülü kanallar üzerinden takip
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CHAPTER 1

INTRODUCTION

The modern understanding of digital communication heavily relies on Shannon’s

seminal work [1]. Remarkably, Shannon’s original theory, i.e., classical informa-

tion theory, captured the process of information transmission into a picture where the

transmitted information can be characterized free of meaning and the transmission

process can be characterized free of time. This picture showed that reliable trans-

mission of information with a strictly positive rate is possible while there exists as

fundamental limit on this rate. The evolution of digital communication systems fol-

lowed these fundamental observations.

When digital communication systems evolve into more complex communication net-

works, studying the problem of communication on such a level requires more ef-

fort [2]. The main problem in communication networks is to balance demands and

resources, both of which can be interfering and highly heterogeneously distributed

in practice. One side of this problem is to establish coordination and adaptation

which are required due to temporal changes in demands and resources. In accor-

dance with these requirements, the timing of communication events plays a signifi-

cant role in communication networks. Frequently, communication networks employ

network schedulers for network traffic control. In packet switching networks, reduc-

ing congestion,latency and packet loss are the typical goals of network traffic control.

Conventionally, such systems and mechanisms are studied as queuing systems [3].

The theory of queueing systems, i.e., queueing theory, is shown to be fruitful in

analysis of steady-state characteristics of queueing lengths, delays, packet losses or

throughput. On the other hand, the majority of theoretical work on queueing sys-

tems has concentrated on scheduling policies with limited adaptiveness. This is due
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to the following two reasons. First reason is that running highly adaptive schedul-

ing algorithms/policies on queueing systems can be computationally intensive hence

historically more affordable alternatives were preferred in practice. Second reason is

also similar but from analytical perspective that less adaptive but simple scheduling

policies are much more tractable in theory. In contrast, it can be argued that better

adaptivity might be benefited given that corresponding solutions are practically fea-

sible. Moreover, for some applications with time-sensitive goals, adaptivity might be

a necessity rather than being an option for performance improvement. Consequently,

studying communication systems with high adaptivity is important.

In this thesis, we will consider communication with high adaptivity under various set-

tings and objectives. We will refer to such type of communication as timely communi-

cation as we consider adaptivity in temporal sense which translates into the timeliness

of communication process.

In Part I of this thesis, we will mainly study timely communication for energy harvest-

ing communication systems. We will show how energy harvesting poses a timeliness

pressure on communication considering different settings and objectives. That is, the

transmission performed for communication should adapt to time-varying energy in-

come being neither too slow/delayed nor fast/rapid. While this is the main source

of timeliness in the problems that will be investigated in Part I, we will address its

interplay with other time-varying conditions. In Chapter 2, we will consider energy-

efficient transmission for an energy harvesting point-to-point communication system

with time-varying data arrival process and channel fading where its throughput is op-

timized in finite-horizon. In Chapter 3, we will apply the results from Chapter 2 to

a wireless energy transfer communication (WET) system and compare transmitter-

centric, receiver-centric and distributed scheduling scenarios in this system. In Chap-

ter 4, we will survey update-based communication systems and a measure of fresh-

ness, namely Age of Information (AoI), which sets an alternative objective for which

it will be discussed why it is a more relevant objective for monitoring applications.

In Chapter 5, we will study the optimization of transmission for an energy harvesting

point-to-point communication system under the objective discussed in Chapter 4.

Chapter 4 and 5 emphasize both the usefulness of the transmitted information and

2



the timeliness of the transmission process in the context of communication required

for a monitoring application. Interestingly, these aspects are purposefully ignored in

the fundamental information transmission problem of classical information theory.

One reason is that these aspects are application dependent which makes them hard fit

into an application independent theory. On the other hand, the need for monitoring

applications suggests the studying these aspects of information transmission on the

fundamental level.

In Part II of this thesis, we will investigate the fundamental role of timely communi-

cation for monitoring/tracking unstable processes. We will discuss why timeliness in

communication is crucial for reliable tracking of particularly unstable processes. The

reason is that losses and errors in transmission may have time dependent impacts on

the reliability of tracking that should be stabilized as the transmitted/tracked process

is unstable. While such an effect occurs only when the transmitted/tracked process

is unstable, conventional communication methods and update-based approach fail to

deal with this effect. In Chapter 6, we will survey the main challenges posed by

this effect and solutions proposed in the literature in connection with the fundamental

problem of networked control. In Chapter 7, we will consider information-theoretic

requirements for tracking an unstable process based on causal information that de-

rived from the process.

While Chapter 4 and 6 provide background information and review the literature on

related subjects, Chapter 2,3,5 and 7 present original work. The contents of Chapter

2,3,5 and 7 have been covered or partly covered in [4], [5], [6] and [7], respectively.
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for Timely Communication under
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CHAPTER 2

ENERGY-EFFICIENT TRANSMISSION OVER FADING CHANNELS

UNDER RANDOM DATA ARRIVALS AND ENERGY HARVESTING

2.1 Introduction

In this chapter, we will consider a problem of energy-efficient data transmission with

an energy harvesting transmitter where timeliness is crucial. The source of timeli-

ness pressure in this problem is that the transmitter should adapt three time-varying

exogenous processes that affect its transmission:

• Energy harvesting process which determines energy availability for realizing

transmission at the transmitter.

• Data arrival process which determines the length of data backlogged for trans-

mission.

• Channel fading process which determines the amount of data that can be trans-

mitted at a particular time.

The goal of the problem is to maximize data throughput within a finite problem hori-

zon, i.e., a finite duration of transmission. We will study two versions of this problem:

The offline version where exogenous processes are completely known to the transmit-

ter beforehand and the online version where exogenous processes are stochastic with

known statistics and reveal to the transmitter causally as they occur.

Energy efficient packet scheduling with data arrival and deadline constraints has been

the topic of numerous studies (e.g., [8–11]). Energy harvesting constraints have been

incorporated within the offline and online formulations (e.g., [12–24].)
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The offline problem of throughput maximization in energy harvesting communica-

tion systems with fading channels has been widely studied and structural properties

of throughput maximizing solutions have been investigated. For the throughput max-

imization problem in [18] and [25], it was proved that the offline optimal solution

can be expressed in terms of multiple distinct water levels (to be made precise later in

this chapter) that are non-decreasing. In [19], this result is generalized to a continu-

ous time system by introducing a directional water-filling interpretation of the offline

solution. Similar results are also shown in [20], [21] and [22] for the throughput

maximization problem over fading channels with energy harvesting transmitters. The

proposed solutions for the online counterpart of the problem in [18–22] were either

heuristic schemes unrelated to the offline optimal solution or direct applications of

stochastic dynamic programming.

Asymptotically throughput optimal and delay optimal transmission policies were stud-

ied in [26] under stochastic data and energy arrivals. In [27], an online solution max-

imizing overall throughput was formulated using a Markov Decision Process (MDP)

. The MDP approach was also used in [28] to obtain the performance limits of energy

harvesting nodes with data and energy buffers. In [29], a learning theoretic approach

was employed to maximize long term (infinite horizon) throughput. Another learning

algorithm based on post-decision state-functions was introduced in [30] for optimal

power control over fading channels with average delay and energy arrival constraints.

The authors in [31] suggested an even simpler online power control, namely the Fixed

Fraction policy, for an energy harvesting system with i.i.d. energy arrivals and finite

battery, which was shown to maintain a constant-gap approximation to the optimal

long term average throughput. In [32], the authors considered a MDP for throughput

maximization with energy harvesting transmitters over time-correlated fading chan-

nels.

The online problem has been also considered under non-stochastic formulations. For

example, competitive ratio analysis was used in [33] for a throughput maximiza-

tion problem on an energy harvesting channel with arbitrary channel variation and a

simple online policy with a competitive ratio equal to the number of remaining time

slots (much below the average performance estimated by stochastic approaches) was

shown.
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The results that we will present in this chapter rely on per slot computation of optimal

water levels. Together with the knowledge of channel fading levels, these optimal

water levels determine optimal transmission power levels and corresponding trans-

mission rates. These policies are throughput optimal in the sense that they maximize

the throughput achieved in the problem horizon but also they are energy-efficient as

they consume minimum energy to achieve maximum throughput. In offline problem,

we will provide an explicit formulation of these policies which allows the computa-

tion of optimal water levels through fixed-point iteration. In online problem, we will

formulate the solution using stochastic dynamic programming. Further, we will show

an online approach that considers offline solution as a stochastic process to be tracked

by an online solution. We will provide a method to derive performance guarantees

comparing expected performances of suggested online solutions and optimal offline

solutions.

2.2 System Model

In this section, we will describe the system model for an energy harvesting transmitter

with time-varying data traffic and fading communication channel. Consider an energy

harvesting transmitter S that sends data to a destination D through a fading point-to-

point communication channel. (Fig. 2.1) Assume that S can adapt its transmission

rate and power while observing three distinct exogenous processes, namely, energy

harvesting, packet arrivals and channel fading. Consider the system in discrete time

and over a finite horizon divided by equal time slots. Let {Hn}, {Bn} and {γn} be

discrete time sequences over the finite horizon n = 1, 2, . . .N, representing energy

arrivals, packet arrivals and channel gain, respectively, over a transmission window

of N < ∞ slots, where n is the time slot index. Particularly, Hn is the amount of

energy that becomes available in slot n (harvested during slot n− 1), Bn is the amount

of data that becomes available at the beginning of slot n and γn is the channel gain

observed at slot n.

Let en and bn be energy and data buffer levels at slot n, where transmit power ρn is

used in slot n and the received power is ρnγn.

9



The transmit power and rate decisions ρn and rn are assumed to obey a one-to-one

relation rn = f (1 + ρnγn), 1 2 where the function f (·) has the following properties:

• f (x) is concave, increasing and differentiable.

• f (1) = 0 , f ′(1 + x) < ∞ and lim
x→∞

f ′(1 + x) = 0.

The update equations for energy and data buffers3 can be expressed as below:

Update Equation for the Energy Buffer:

en+1 = en + Hn − ρn, ρn ≤ en, for all n. (2.1)

Update Equation for the Data Buffer:

bn+1 = bn + Bn − f (1 + ρnγn), f (1 + ρnγn) ≤ bn, for all n. (2.2)

S

Energy Buffer

Harvested Energy

D

Fading Channel

Data Buffer

Received Data

{Hn}

{Bn}

{γn}

Figure 2.1: An illustration of the system model.

2.3 Offline Problem

We consider the following offline problem over a finite horizon of N slots:

Maximize
N∑

l=1

f (1 + ρlγl)

1 The function f (·) is a general performance function as in [34].
2 The choice of the function f (·), representing the relation rn = f (1 + ρnγn), has been made to simplify

formulations and to signify the correspondence between the functions f (·) and log2(·).
3 We do not assume any limit on the capacities of energy and data buffers. This assumption simplifies the

problem and the characterization of the solution structure, and it is a reasonable assumption as we consider finite
horizon scenarios. For example, in the design of the transmitter, the capacities of energy and data buffers could be
chosen so large that overflow events do not occur within a typical range of transmission scenarios.
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subject to constraints in (2.1) and (2.2)

As the problem is offline, we assume the sequence {Hn}, {Bn} and {γn} are known for

n ∈ [1,N]. Accordingly, energy and data constraints can be completely determined

as:
n+u∑

l=n

ρl ≤ en +

n+u∑

l=n+1

Hl, u = 1, 2, ...., (N − n), (2.3)

ρn ≤ en, for all n.

n+v∑

l=n

f (1 + ρlγl) ≤ bn +

n+v∑

l=n+1

Bl, v = 1, 2, ...., (N − n) (2.4)

f (1 + ρnγn) ≤ bn, for all n.

We make the following definitions to characterize offline policies and depict a clear

distinction between the concepts of energy efficiency and throughput maximization.

Definition 1 Any collection of power level decisions ρ = (ρ1, ρ2, ...., ρN), satisfying

energy and data constraints in (2.3) and (2.4), is a feasible offline schedule.

Total Throughput

EE-TM-OFF Schedule

EE-OFF schedules

FEASIBLE SCHEDULES

Consumed Energy

Figure 2.2: An illustration of feasible offline schedules in terms of achieved total

throughput versus consumed energy.

Definition 2 An energy efficient offline (EE-OFF) transmission schedule is a feasible

offline schedule such that there is no other feasible offline schedule achieving higher

throughput by consuming the same total amount of energy or achieving the same

throughput by consuming less energy for a given realization of {Hn, Bn, γn, 1 ≤ n ≤
N.}.
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Definition 3 Among all EE-OFF schedules, those that achieve the maximum through-

put 4 are called energy efficient thoughput maximizing offline transmission (EE-TM-

OFF) schedules.

Note that EE-TM-OFF schedules are not only solutions to the offline problem but

also energy-efficient solutions i.e., EE-OFF schedules. Hence, in case the energy

harvested throughout the problem horizon is sufficient to transmit the received data

completely, an EE-TM-OFF schedule leaves more energy at the end of the problem

horizon than that of any other throughput maximizing schedule (Fig. 2.2).

We next define water level which will be useful in Theorem 1.

Definition 4 Given a choice of power level ρn, a water level wn is the unique solution

of the following:

ρn =
1

γn

[

( f ′)−1(
1

wnγn

) − 1

]+

.

Proposition 1 The water level wn is non-decreasing in ρn and f (1 + ρlγl).

Proof. As f (·) is increasing and concave, ( f ′)−1( 1
wnγn

) is non-decreasing in wn. �

Remark 1 For ρn > 0, the partial derivative of f (1+ρnγn) with respect to ρn is equal

to 1
wn

.

Clearly, any power level ρn can be obtained from a properly chosen water level wn.

Hence, any offline transmission schedule can be also defined by corresponding water

levels (w1,w2, ....,wn).

For the solution of offline throughput maximization problem, it will be shown in

Theorem 1 that the optimal water level for an EE-TM-OFF schedule is the maximum

water level that barely empties data or energy buffer if it is applied continuously.

Theorem 1 In an EE-OFF scheme, the water level wn is bounded as:

wn ≤ min{w(e)
n (wn),w(b)

n (wn)},
4 Note that not all feasible offline schedules that maximize the total throughput are EE-TM-OFF schedules.

A schedule can be throughput optimal by delivering the data received during transmission but this can be done by
consuming more energy than the corresponding EE-TM-OFF schedule.
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where

w(e)
n (wn) = min

u=0,...,(N−n)

en +

n+u∑

l=n+1

Hl +

n+u∑

l=n

K
(e)
l

(wn)

u + 1
,

f

(

1 +

[

( f ′)−1(
1

w
(b)
n (wn)γn

) − 1

]+)

= min
v=0,...,(N−n)

bn +

n+v∑

l=n+1

Bl +

n+v∑

l=n

K
(b)
l

(wn)

v + 1
,

K
(e)
l

(wn) = wn −
1

γl

[

( f ′)−1(
1

wnγl

) − 1

]+

,

K
(b)
l

(wn) = f

(

1 +

[

( f ′)−1(
1

wnγn

) − 1

]+)

− f

(

1 +

[

( f ′)−1(
1

wnγl

) − 1

]+)

.

Particularly, water levels in an EE-TM-OFF schedule should satisfy the inequality

above with equality, i.e. w∗n = min{w(e)
n (w∗n),w(b)

n (w∗n)} for all n in {1, 2, .....,N}.

Theorem 1 provides an explicit characterization of EE-TM-OFF schedules such that

a particular water level w∗n can be computed as the unique5 fixed point of the function

min{w(e)
n (wn),w(b)

n (wn)}. Accordingly, the optimal offline water level for each n can be

obtained separately without making iterations over the entire schedule. The resulting

offline schedule is similar to stair-case water-filling and directional water-filling with

non-decreasing water levels(Fig. 2.3).

2.4 Offline Problem with Logarithmic Rate Function

In the offline problem, the throughput function f (·) could be chosen as 1
2

log2(·) that

represents the AWGN capacity of the channel. The water level wn in this case deter-

mines the power level ρn as ρn =
1
γn

[
ln(2)

2
wnγn − 1

]+

. For this case, an EE-TM-OFF

schedule can be obtained by setting the water level wn
6 to min{we

n,w
b
n} for each time

slot n where we
n and wb

n are defined as follows:

we
n = min

u=0,...,(N−n)

en +

n+u∑

l=n+1

Hl +

n+u∑

l=n

M
(e)
l

(wn)

u + 1
, (2.5)

log2(wb
n) = min

v=0,...,(N−n)

bn +

n+v∑

l=n+1

Bl +
1

2

n+v∑

l=n

M
(b)
l

(wn)

1
2 (v + 1)

, (2.6)

5 the existence and uniqueness of the fixed-point is due to the fact that min{w(e)
n (wn),w(b)

n (wn)} is positive and
monotone non-increasing in with decreasing wn.

6 Since ln(2)
2 is a constant, in the rest, we will reset wn to ln(2)

2 wn in order to simplify the notation.
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where

M
(e)
l

(wn) = min

{

1

γl

,wn

}

, M
(b)
l

(wn) = log2

(

min

{

1

γl

,wn

})

.

The characterization of the offline optimal water level can be explicitly expressed as

in the above. Due to the correction terms M
(e)
l

(wn) and M
(b)
l

(wn), the offline optimal

water level w∗n corresponding the unique fixed point of min{we
n(wn),wb

n(wn)} should be

computed iteratively with any fixed point iteration method. For example, w∗n can be

found by iteratively evaluating min{we
n(wn),wb

n(wn)} as follows:

wn;k+1 = |wn=wn;k min{we
n(wn),wb

n(wn)}, (2.7)

where wn;1 = wmax
n for some wmax

n guaranteed to be higher than w∗n. (For example,

wmax
n = en +

1
γn

is always higher than w∗n.) The proposition in the below states that the

iteration in (2.7) converges.

Proposition 2 The sequence of water level iterations, wn;1,wn;2, .... converges to w∗n.

Proof. From (2.5),(2.6) and (2.7), wn;k+1 is non-increasing with decreasing wn;k. Ac-

cordingly, if wn;k+1 < wn;k for some k, then wn;k+2 < wn;k+1 should be true 7 and setting

wn;1 to a value larger than w∗n (e.g. en +
1
γn

) guarantees that wn;2 < wn;1. As wn;k’s are

bounded below by zero, the iterations converge. Unless w∗n is reached, the iterations

have not stopped, hence the iterations will converge to w∗n if wn;1 is above w∗n. �

The offline optimal power level ρ∗n that maximizes total throughput can be approached

by computing the sequence, wn;1,wn;2, ...., which converges w∗n by Proposition 2.

ρ∗n = lim
k→∞

[

wn;k −
1

γn

]+

(2.8)

2.4.1 The complexity of finding w∗n

Approximating the optimal offline water level w∗n within an absolute error less than

some ε > 0 has a linear complexity in N, i.e. O(N). Given wn, computing min{we
n(wn),wb

n(wn)}
can be done in 4(N−n)+2 time steps since the computation of either we

n(wn) or wb
n(wn)

requires 2(N − n) + 1 steps. After the computation of n = 0 term in (2.5)(or (2.6)),

the minimum until the next term can be evaluated by updating the current minimum

7 unless wn;k+2 = wn;k+1 which means wn;k+2 = w∗n.
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and computing n = 1 term based on n = 0 term. The procedure goes on in a similar

iterative fashion computing the next term based on the previous term. The number

of iterations (evaluations of min{we
n(wn),wb

n(wn)}) in (2.7) to approximate the fixed-

point within some ε > 0, does not depend on N. One can see this by applying

Banach’s fixed-point theorem to the function min{we
n(wn),wb

n(wn)}. The function is

non-decreasing in wn, which means it maps a region [0, a] into a region [0, b] such

that b ≤ a. Also, it can be seen that the derivative d
dwn

min{we
n(wn),wb

n(wn)} is bounded

by some q < 1. This depends on the fraction of slots such that wn < 1
γl

for any

l ∈ [n, n + u] (or l ∈ [n, n + v]) when u (or v) is minimizing we
n(wn) (or wb

n(wn)). The

largest of these fractions determines q which guarantees | wn;k − w∗n |≤ ε when k is

larger than log(ε(1−q)/|wn;2−wn;1 |)
log(q) .

1

γn

we
n

wb
n

n

Figure 2.3: An illustration of an EE-TM-OFF policy.

2.5 Online Problem

The online problem formulation is an online counterpart of the offline problem with

logarithmic 8 rate function. We formulate the problem as a dynamic program to

maximize the expected total throughput. Let xn = (en, bn, γn) be the state vector,

θn = (Hn
1 , B

n
1, γ

n
1) be the history and Xn = (Hn+1, Bn+1, γn+1−γn) exogeneous processes

at the slot n.

8 For the sake of simplicity, the logarithmic rate function will be used in online formulations. However, similar
formulations and results can be obtained also for the general concave function f (·).
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arrival and channel fading processes are generated by 4 state DTMCs.
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Define A(xn) as the set of admissible decisions such that [wn− 1
γn

]+ ≤ en and [log2(wnγn)]+ ≤
bn, ∀wn ∈ A(xn). For wn ∈ A(xn), the dynamic program for throughput maximization

can be written as below:

V̂∗n|θn
(xn) = max

wn∈A(xn)
V̂n|θn

(wn, xn) (2.9)

V̂n|θn
(wn, xn) = [log2(wnγn)]+ +

EXn
[V̂∗n+1|θn+1

(xn + Xn − φ(wn; γn)) | xn, θn] (2.10)

where φ(wn; γn) = ([wn− 1
γn

]+, [log2(wnγn)]+, 0) and ψn = (HN
n+1, B

N
n+1, γ

N
n+1) represents

the exogeneous processes for slots between n and N.

The solution of this dynamic programming formulation constitutes the online op-

timal policy maximizing expected total throughput to be achieved within the finite

problem horizon. The drawback of this solution is that it suffers from the exponential

time/memory computational complexity of the dynamic programming. On the other

hand, when the vector ψn = (HN
n+1, B

N
n+1, γ

N
n+1) is deterministic, the online problem

is no different than the offline problem. The solution to the offline problem for the

realization of ψn can be a reference for the online problem. It can be observed that

a policy, which simply applies the statistical average of EE-TM-OFF water levels as

its online water level at each and every time slot, typically closely follows the orig-

inal EE-TM-OFF schedule (Fig. 2.4). Motivated by this observation, we consider

EE-TM-OFF decisions as stochastic processes in the online problem domain. The

next subsection will introduce an alternative dynamic programming formulation for

minimizing the expected throughput loss of the online decisions with respect to the

corresponding offline optimal decisions.

2.5.1 Online Schedule Based On the Offline Solution

Let w̃∗n = w̃∗n(xn) be the offline optimal water level which is a random variable gener-

ated over the realizations of ψn given the state vector xn. Then, the total throughput

achieved by applying offline optimal water levels until the end of transmission time

window can be expressed as:

Ṽ∗n|θn
(xn) = [log2(w̃∗nγn)]+ + Ṽ∗n+1|θn+1

(xn + Xn − φ(w̃∗n; γn)) (2.11)
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The online throughput maximization problem can be reformulated by the following

cost minimization problem:

J∗n|θn
(xn) = min

wn∈A(xn)
Jn|θn

(wn, xn) (2.12)

where

Jn|θn
(wn, xn) = Eψn

[Ṽ∗n|θn
(xn) | xn, θn] − V̂n|θn

(wn, xn) (2.13)

The cost function Jn|θn
(wn, xn) can be separated into two parts:

• The expected throughput achieved by applying offline water levels for slots

[n,N] minus the expected throughput achieved by applying the decision wn at

the slot n, then applying offline optimal water levels for the rest, i.e. in [n+1,N].

Let Eψn
[F̃n(w̃∗n,wn) | xn, θn] represent this term.

• The expected throughput achieved by applying offline water levels for slots [n+

1,N] minus the expected total throughput achieved by online optimal decision

for slots [n+1,N] after wn is applied at the slot n. Let D∗
n+1|θn+1

(xn+Xn−φ(wn; γn))

represent this term. Then, we have:

Jn|θn
(wn, xn) =Eψn

[F̃n(w̃∗n,wn) | xn, θn] + D∗n+1|θn+1
(xn + Xn − φ(wn; γn)).

(2.14)

Clearly, both of the terms are non-negative for any wn since, by definition, EE-TM-

OFF schedules are superior to online throughput maximizing schedules for any given

realization. The first term Eψn
[F̃n(w̃∗n(xn),wn) | xn, θn] is the conditional expectation

of the variable F̃n(w̃∗n,wn) as follows:

F̃n(w̃∗n,wn) = (log2(w̃∗nγn))+ − (log2(wnγn))+ + Ṽ∗
n+1|θn+1

(xn + Xn − φ(w̃∗n; γn))

−Ṽ∗
n+1|θn+1

(xn + Xn − φ(wn; γn)) (2.15)

The equation in (2.14) can be rewritten as in below:

Jn|θn
(wn, xn) = Eψn

[Fn(w̃∗n,wn) | xn, θn] + D∗n+1|θn+1
(xn + Xn − φ(wn; γn)),

(2.16)

where Fn(w̃∗n,wn) = Eψn
[F̃n(w̃∗n,wn) | w̃∗n, xn, θn].
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Accordingly, the function Fn(w̃∗n,wn) can be seen as a loss term for the decision wn

since it corresponds to the throughput loss that cannot be recovered even if offline

optimal decisions are applied in the rest of the time. The expectation of this loss term

will be called as the immediate loss of the decision wn as we define in below.

Definition 5 Define Eψn
[Fn(w̃∗n,wn) | xn, θn] as the immediate loss of the decision wn.

On the other hand, the second term D∗
n+1|θn+1

(·) can be expressed as :

D∗n+1|θn+1
(xn+1) = EXn

[J∗n+1|θn+1
(xn+1) | xn, θn] (2.17)

where xn+1 = xn + Xn − φ(wn; γn).

Therefore, the problem has the following dynamic programming formulation:

J∗
n|θn

(xn) =min
wn∈A(xn)

Eψn
[Fn(w̃∗n,wn) | xn, θn] + EXn

[J∗n+1|θn+1
(xn + Xn − φ(wn; γn)) |xn, θn].

(2.18)

As this formulation is equivalent to the initial formulation in (2.9), its solution gives

the online optimal policy. While the exact computation of this solution may also have

exponential complexity, the formulation will lead us to define the IF metric which will

be a vehicle toward the derivation of online solutions with performance guarantees.

2.5.2 Immediate Fill

The performance of any online policy w can be also evaluated by the ratio of its ex-

pected total throughput to the expected total throughput of the offline optimal policies.

Definition 6 Define the online-offline efficiency of an online policy w as follows:

ηw(xn, θn) =
V̂w

n|θn
(xn)

Eψn
[Ṽ∗

n|θn
(xn) | xn, θn]

(2.19)

where V̂w
n|θn

(xn) is the expected total throughput achieved by the online policy w given

the present state xn and the history θn.

Any decision in the online schedule will incur an immediate throughput gain, let’s

call this immediate gain.
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Definition 7 Define the ratio of immediate gain to its sum with immediate loss as

Immediate Fill (IF). For slot n, let µw
n (xn, θn) be the IF of policy w when the system is

in state xn with history θn.

µw
n (xn, θn) =

(log2(wnγn))+

(log2(wnγn))+ + Eψn
[Fn(w̃∗n,wn) | xn, θn]

(2.20)

We will show that the minimal IF of the policy w lower bounds its online-offline

efficiency.

Fig. 2.5 is an illustration of the IF approach in relation with the expectation of the

achievable total throughput.

Eψn
[Ṽ ∗
n|θn

(xn)]

Eψn+1
[Ṽ ∗
n+1|θn+1

(xn +Xn − φ(wn; γn))]

L

O

S

S

Throughput

Immediate Fill

Figure 2.5: The expectation of the achievable total throughput by offline optimal

decisions decreases as the state of the system changes due to an online decision. Each

online decision incurs a gap from the expected throughput potential of the offline

optimal policy and this gap is partially filled by the throughput gain achieved within

the corresponding slot.

Theorem 2 The efficiency of an online policy w with wN = w̃∗N is lower bounded by

the minimum IF observed by that policy:

ηw(xn, θn) ≥ min
m≥n

min
(xm ,θm)

µw
m(xm, θm) (2.21)

Theorem 2 provides an average performance lower bound for any policy considering a

possible state and slot index at which the IF of the policy is worst. For the throughput

value at any slot n, the state xn can be considered to a “bad" state if en, bn and γn have

low values or a “good" state if they have high values. On the other hand, there is no

obvious choice of a “bad" state for the IF (The states where any of en, bn or γn is zero

can be assumed to be perfectly “good" states for the IF as the IF is always 1 in those
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cases.) value. In many cases, rather the state it is the statistics of energy harvesting,

packet arrival and channel fading processes are forcing the IF to be close to zero.

The approach could be useful in either of the following ways:

• To derive a lower bound for the online-offline performance gap of a given online

policy. By Theorem 2, if an online policy guarantees a minimum value on the

IF for all reachable states, then this minimum value bounds the online-offline

performance gap of the policy.

• To design an online policy based on the optimization of the IF or a simpler

metric which is guaranteed to be smaller. Such a policy could also use an

approximation of the immedite fill based on Monte Carlo methods.

We will not display the latter use of the IF however, considering a special case, we

will show that the performance gap estimated by this approach can be reasonably

small.

The next section considers stochastic offline optimal decisions in a simpler case,

namely the static channel case, in order to demonstrate how simple bounds on IF

can be found and the distribution of offline optimal decisions can be characterized.

2.5.3 Results on the Static Channel Case

In this section, we focus on the case where the channel is static, i.e. γn = 1 for all

n, and the data buffer is always full, i.e. bn = ∞ for all n. Accordingly, the online

power level and the offline optimal power level can be represented by ρn = wn−1 and

ρ̃∗n = w̃∗n − 1. Then, the offline optimal power level at slot n can be expressed as:

ρ̃∗n = min
u=0,...,(N−n)

en +

n+u∑

l=n+1

Hl

u + 1
(2.22)

Proposition 3 Assuming that the channel is static i.e., γn = 1 for all n, and the data

buffer is always full i.e., bn = ∞ for all n, the IF is lower bounded as follows:

µw
n (xn, θn) ≥ ln(1 + ρn)

E
[

ln(1 + ρ̃∗n)
]

+ E

[

(ρn−ρ̃∗n)+

1+ρ̃⊲
n+1

]
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Figure 2.6: The lower bounds of the IF metric at (a) N − n = 25 (b) N − n = 5 for

ρn = E[ρ̃∗n] policy where {Hn} is a Bernoulli process with Pr(Hn = 0) = 1 − p and

Pr(Hn = 24 units) = p.
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where ρ̃⊲
n+1 is the offline optimal decision at slot n + 1 after the decision ρn is made.

Proposition 4 Let µw̌
n (xn, θn) represent the maximum (achievable) IF at slot n, i.e,

µw̌
n (xn, θn) = max

wn∈A(xn)
µw

n (xn, θn). Then, the inequality below should hold:

µw̌
m(xm, θm) ≥ 1

1 +
E

[

(E[ρ̃∗n]−ρ̃∗n)+

1+ρ̃⊲
n+1

]

ln(1+E[ρ̃∗n])

, (LB)

and it can be simplified as in the following:

µw̌
m(xm, θm) ≥ 1

1 +
E[(E[ρ̃∗n]−ρ̃∗n)+]

ln(1+E[ρ̃∗n])

which implies µw̌
m(xm, θm) ≥ 1

1+
√

Var(ρ̃∗n)
ln(1+E[ρ̃∗n])

.

In Fig. 2.6, the lower bound LB in Proposition 4 is plotted against varying arrival

probabilities of a Bernoulli energy harvesting process 9 at different system states of

energy level en and remaining number of slots N − n.

2.5.4 Online Heuristic

The online problem formulation in the previous sections assumes statistical informa-

tion on exogeneous processes energy harvesting, packet arrival and channel fading.

Then, the offline optimal decisions take these processes as their inputs in (2.5) and

(2.6).

Alternatively, a heuristic policy could use (2.5) and (2.6) with estimated values of
n+u∑

l=n+1

Hl,
n+u∑

l=n+1

Bl,
n+u∑

l=n

M
(e)
l

(wn) and
n+u∑

l=n

M
(b)
l

(wn). We propose such a policy where

n+u∑

l=n+1

Hl,
n+u∑

l=n+1

Bl,
n+u∑

l=n

M
(e)
l

(wn) and
n+u∑

l=n

M
(b)
l

(wn) are estimated through observed time

averages giving the estimated values of we
n and wb

n as follows:

ŵe
n =






en−H̄n

(N−n)
+ H̄n + M̄

(e)
n (wn) ; en ≥ H̄n

en + M̄
(e)
n (wn) ; o.w.

(2.23)

9 Note that the lower bound LB is also valid for non-iid energy arrival processess however meaningful only
with an assumption on arrival statistics. In case, the distribution of energy arrival is difficult to be known as in
[24], one may take a distribution according to the principle of maximum entropy for example.
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log2(ŵb
n) =






2(bn−B̄n)
(N−n) + B̄n + M̄

(b)
n (wn) ; bn ≥ B̄n

2bn + M̄
(b)
n (wn) ; o.w.

(2.24)

where
H̄n =

1

n

n∑

l=1

Hl, B̄n =
1

n

n∑

l=1

Bl,

M̄(e)
n (wn) =

1

n

n∑

l=1

M
(e)
l

(wn), M̄(b)
n (wn) =

1

n

n∑

l=1

M
(b)
l

(wn).

The estimate of the throughput maximizing water level can be computed iteratively:

ŵ(k+1)
n = |

wn=ŵ
(k)
n

min
{

ŵe
n, ŵ

b
n

}

where ŵ
(k)
n is the kth iteration of the estimated value of throughput maximizing water

level and ŵ
(1)
n = min

{

en, 22bn

}

.

2.6 Numerical Study of the Online vs Offline Policies

The purpose of the numerical study is to compare the online heuristic proposed in

Section 3.4 with the EE-TM-OFF policy, under Markovian arrival processes. For the

packet arrival process, a Markov model having two states as no packet arrival state

and a packet arrival of constant size 10 KB per slot state with transition probabilities

q00 = 0.9, q01 = 0.1, q10 = 0.58, q11 = 0.42 where slot duration is 1ms and the

transmission window is N = 100 slots. Gilbert-Elliot channel is assumed where

good (γgood = 30) and bad (γbad = 12) states appear with equal probabilities i.e.,

P(γn = γ
good) = P(γn = γ

bad) = 0.5. Similarly, in energy harvesting process, energy

harvests of 50nJs are assumed to occur with a probability of 0.5 at each slot.

For a typical sample realization of packet arrival, energy harvesting and channel fad-

ing processes, water level profiles of throughput maximizing offline optimal policy

and online heuristic policy are shown in Fig. 2.7 (a) and (b). Fig. 2.7 (a) shows water

level profiles when transmission window size N is set to 100 slots and Fig. 2.7 (b)

shows water level profiles when transmission window size is extended to 200 slots.

In the first 100 slot, water level profiles are similar to each other though, due to the

relaxation of the deadline constraint, both optimal and heuristic water levels sligthly

decrease when transmission window size is doubled.
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To illustrate the effect of transmission window size, average throughput performances

and energy consumption of throughput maximizing offline optimal policy and online

heuristic are compared against varying transmission window size in Fig. 2.8 (a) and

(b), respectively. The average performances of both offline optimal policy and online

heuristic tend to saturate as transmission window size increases beyond 100 slots.

The experiment is repeated in Fig. 2.9, for the case where energy harvesting process

has a memory remaning in the same state with 0.9 probability and switching to other

state with probability 0.1.

In Fig. 2.10 for (a) Gilbert-Elliot and (b) Rayleigh fading channels, the online heuris-

tic is compared with the “Power-Halving" (PH) policy in [25]. The PH policy ba-

sically operates as follows: in each slot except the last one, it keeps half the stored

energy in the battery, and uses the other half. It has been shown in [25], the average

throughput performance of the PH policy can reach 80%−90% of average throughput

of offline optimal policy. On the other hand, the online heuristic uses casual informa-

tion on energy-data arrivals and channels states to achieve average throughput rate

much closer to offline optimal average throughput rates.

2.7 Appendix

2.7.1 The Proof of Theorem 1

Proof. We divide the proof of Theorem 1 into two parts:

(i) We show that if the water level of any slot n is higher than the water level of the

next slot n + 1 (wn > wn+1), then, there is an offline transmission schedule which

achieves at least the same throughput or consumes at the most the same amount of

energy with the initial schedule i.e., the initial schedule with wn > wn+1 for some slot

n is not an EE-OFF schedule.

(ii) We show that in the offline optimal (EE-TM-OFF) policy, wn is not lower than

the maximum feasible level incurred by the inequalities resulting from the argument

of part (i) i.e., wn = min{w(e)
n (wn),w(b)

n (wn)} should be satisfied for any slot n in an

EE-TM-OFF policy.
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Figure 2.7: Water level profiles of throughput maximizing offline optimal policy and

online heuristic policy for a sample realization of packet arrival, energy harvesting

and channel fading processes when N = 100 (a) and N = 200 (b).
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Figure 2.8: Average throughput (a) and energy consumption per slot (b) comparison

of throughput maximizing offline optimal policy and online heuristic policy against

varying transmission window size for stationary energy harvesting.
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Figure 2.9: Average throughput (a) and energy consumption per slot (b) comparison

of throughput maximizing offline optimal policy and online heuristic policy against

varying transmission window size for energy harvesting with memory.
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Figure 2.10: Average throughput comparison of throughput maximizing offline op-

timal policy and online heuristic policy and Power-Halving policy against varying

transmission window size for stationary energy harvesting of 90nJs occuring with 0.1

probability in each time slot under (a) Gilbert-Elliot channel where good (γgood = 30)

and bad (γbad = 12) states appear with equal probabilities and (b) Rayleigh fading

with average channel gain 20.
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Part (i): Suppose that in a given transmission scheme π, wn > wn+1 for some n. π

can be improved by reducing wn and increasing wn+1 through one of the following:

(Case a) move some data form slot n to slot n + 1 while keeping the total throughput

achieved during (n, n + 1) fixed, (Case b) move some energy from slot n to slot n + 1

while keeping the total energy consumed during (n, n + 1) fixed. Let ρπn and ρπ
n+1 be

the transmission power levels for slots (n, n + 1) belonging to the scheme π.

(Case a): Consider the following convex optimization problem for slots (n, n + 1):

min
ρn,ρn+1

ρn + ρn+1

s.t. f (1 + ρnγn) + f (1 + ρn+1γn+1) = Dn,n+1,

ρn ≥ 0, ρn+1 ≥ 0. (2.25)

where Dn,n+1 corresponds to the total throughput obtained by the scheme π during

(n, n+ 1) i.e., f (1 + ρπnγn) + f (1 + ρπ
n+1γn+1). The Lagrangian of the problem in (2.25)

can be written as:

L(ρn, ρn+1, λ, µn, µn+1) = −(ρn + ρn+1) + λ( f (1 + ρnγn) + f (1 + ρn+1γn+1) − Dn,n+1)

−µnρn − µn+1ρn+1,

which yields γn f ′(1 + ρnγn) = µn+1
λ

by setting
∂L
∂ρn

= 0. Also, considering the com-

plementary slackness for µn, µn should be set to zero whenever ρn ≥ 0. Therefore,

the optimal solution ρ∗n can be expressed as ρ∗n =
1
γn

[

( f ′)−1( 1
λγn

) − 1
]+

. Similarly,

the optimal ρ∗
n+1 satisfies ρ∗

n+1 =
1

γn+1

[

( f ′)−1( 1
λγn+1

) − 1
]+

. Accordingly, (ρn + ρn+1) is

minimized when both water levels wn and wn+1 are set to λ that satisfies the total

throughput constraint.

When wn > wn+1, the optimal water level should be inside (wn,wn+1) as the total

throughput strictly decreasing with decreasing wn as long as ρn > 0 . Therefore, the

water levels wn and wn+1 can always be equalized by transferring some data from slot

n to n + 1 . This does not violate data causality as the throughput at slot n is reduced

while the total throughput achieved during (n, n + 1) is preserved by increasing the

throughput at slot n + 1 to compensate.
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(Case b): Similarly, we consider the following optimization problem:

max
ρn, ρn+1

f (1 + ρnγn) + f (1 + ρn+1γn+1)

s.t. ρn + ρn+1 = En,n+1,

ρn ≥ 0, ρn+1 ≥ 0. (2.26)

where En,n+1 corresponds to the total energy consumption by the scheme π during

(n, n + 1) i.e., En,n+1 = ρ
π
n + ρ

π
n+1.

The Lagrangian of the problem in (2.26) can be written as follows:

L(ρn, ρn+1, λ, µn, µn+1) = f (1 + ρnγn) + f (1 + ρn+1γn+1) + λ((ρn + ρn+1) − En,n+1)

−µnρn − µn+1ρn+1,

which yields γn f ′(1 + ρnγn) = µn − λ by setting
∂L
∂ρn

= 0. After setting the KKT

multiplier µn to zero where ρn ≥ 0, we get ρ∗n =
1
γn

[

( f ′)−1( λ
γn

) − 1
]+

for ρ∗n. Similarly,

for optimizing ρn+1 setting
∂L
∂ρn+1

= 0 gives ρ∗
n+1 =

1
γn+1

[

( f ′)−1( λ
γn+1

) − 1
]+

for ρ∗
n+1.

When both water levels wn and wn+1 are equalized to 1
λ

that satisfies the total energy

constraint, the total throughput achieved during the slots (n, n + 1) is maximized and

this can be done whenever wn > wn+1 by transferring energy from n and n + 1 with-

out violating energy causality or total energy constraints. Therefore in an EE-OFF

schedule, wns are non-decreasing with increasing n.

Part (ii): By the energy causality, total energy consumption is bounded as follows:

n+u∑

l=n

ρl ≤ en +

n+u∑

l=n+1

Hl, u = 1, 2, ...., (N − n).

Expressing ρl using water levels, we get the following from energy causality con-

straints:
n+u∑

l=n

1

γl

[

( f ′)−1(
1

wlγl

) − 1

]+

≤ en +

n+u∑

l=n+1

Hl. (2.27)

In an EE-OFF schedule, wn ≤ wm for any slot m > n as it is proven in Part (i), thus

we have:
n+u∑

l=n

1

γl

[

( f ′)−1(
1

wnγl

) − 1

]+

≤
n+u∑

l=n

1

γl

[

( f ′)−1(
1

wlγl

) − 1

]+

. (2.28)
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Combining (2.27) and (2.28) gives the following:

n+u∑

l=n

1

γl

[

( f ′)−1(
1

wnγl

) − 1

]+

≤ en +

n+u∑

l=n+1

Hl (2.29)

The above inequality should be satisfied for any u = 1, 2, ...., (N−n) and it can be seen

that wn is bounded by its lowest value for which the inequality holds with equality for

some u = 1, 2, ...., (N − n). To find the energy bound value for wn, the inequality can

be transformed into the following form:

wn ≤
en +

n+u∑

l=n+1

Hl +

n+u∑

l=n

K
(e)
l

(wn)

u + 1
.

The maximum value of wn that satisfies the energy causality is given by the following:

w(e)
n (wn) = min

u=0,...,(N−n)

en +

n+u∑

l=n+1

Hl +

n+u∑

l=n

K
(e)
l

(wn)

u + 1
.

Similarly, the data causality bounds the water level wn as follows:

f

(

1 +

[

( f ′)−1(
1

w
(b)
n (wn)γn

) − 1

]+)

= min
v=0,...,(N−n)

bn +

n+v∑

l=n+1

Bl +

n+v∑

l=n

K
(b)
l

(wn)

v + 1
.

Any EE-TM-OFF schedule is EE-OFF by definition, hence wn ≤ min{w(e)
n (wn),w(b)

n (wn)}
for any EE-TM-OFF schedule. We will show that, in EE-TM-OFF schedule, wn

should not be smaller than min{w(e)
n (wn),w(b)

n (wn)} i.e., wn ≥ min{w(e)
n (wn),w(b)

n (wn)}.

Consider an EE-OFF schedule where wn = min{w(e)
n (wn),w(b)

n (wn)} for slot n and wm ≤
min{w(e)

m (wm),w(b)
m (wm)} for slots m > n since the schedule is EE-OFF. The selection of

wn only affects the throughput achieved during the slots n to N, hence if the reselection

of wn as wn < min{w(e)
n (wn),w(b)

n (wn)} could improve the throughput achieved by the

schedule within [n,N] while keeping EE-OFF property, then the modified schedule

could be EE-TM-OFF. This is not possible due to the observation in Remark 1. When

wn = min{w(e)
n (wn),w(b)

n (wn)}, to improve the total throughput achieved in later slots

n + 1, n+ 2, .....,N, some energy/data can be moved from n to later slots, however the

throughput decrease in slot n would be larger than the possible increase in some later

slot m > n as the derivative of the throughput with respect to power level (Remark

1) decreases with increasing water level and wm ≥ wn in an EE-OFF policy. Hence,
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selecting the water level as wn = min{w(e)
n (wn),w(b)

n (wn)} always maximizes the total

throughput as long as wm ≥ wn for m > n which means all of wms after n should be

also selected as wm = min{w(e)
m (wm),w(b)

m (wm)}. �

2.7.2 The Proof of Theorem 2

Proof. Consider the inequality for n = N:

ηw(xN , θN) ≥ min
m≥N

min
(xm ,θm)

µw
m(xm, θm) (2.30)

which means,ηw(xN , θN) ≥ min
(xN ,θN )

µw
N(xN , θN) The inequality (2.30) always holds as the

offline optimal water level of the last slot w̃∗
N

is deterministic given xN implying that

ηw(xN , θN) and µw
N

(xN , θN) are both equal to 1 if wN = w̃∗
N

for any xN and θN .

Now, consider the following inequality:

ηw(xn+1, θn+1) ≥ min
m≥n+1

min
(xm ,θm)

µw
m(xm, θm) (2.31)

We will show that the inequality (2.31) implies the inequality (2.21). The efficiency

of the online policy w can be expressed as follows:

ηw(xn, θn)=
(log2(wnγn))+ + EXn

[V̂∗n+1|θn+1
(xn+1) | xn, θn]

(log2(wnγn))++Eψn
[Fn(w̃∗n,wn)+Ṽ∗

n+1|θn+1
(xn+1)|xn, θn]

≥ min





µw

n (xn, θn),
EXn

[V̂∗n+1|θn+1
(xn+1) | xn, θn]

Eψn
[Ṽ∗

n+1|θn+1
(xn+1) | xn, θn]






≥ min

{

µw
n (xn, θn), min

(xn+1,θn+1)
ηw(xn+1, θn+1)

}

= min
m≥n

min
(xm ,θm)

µw
m(xm, θm) (2.32)

Similarly, by the backward induction, the inequality (2.30) implies the inequality

(2.21). �

2.7.3 The Proof of Proposition 3

Proof. To obtain the lower bound in Proposotion 3 for the IF of the decision ρn =

wn − 1, we first consider the immediate loss term Eψm
[Fm(w̃∗m,wm) | xm, θm] which is
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basically the expected throughput difference between the schedules (ρn, ρ̃
⊲
n+1, ...., ρ̃

⊲
N

)

and (ρ̃∗n, ρ̃
∗
n+1, ...., ρ̃

∗
N

) where ρ̃⊲
n+1, ...., ρ̃

⊲
N

are offline optimal power levels following ρn.

The immediate loss is the expectation of the throughput difference in below:

log2(1 + ρ̃∗n) − log2(1 + ρn) + ξ(ρn), (2.33)

where ξ(ρn) =
N∑

k=n+1

log2(1 + ρ̃∗k) −
N∑

k=n+1

log2(1 + ρ̃⊲k).

Then, we can upper bound the term ξ(ρn) as follows:

ξ(ρn) =
N∑

k=n+1

log2

(

1 +
ρ̃∗

k
− ρ̃⊲

k

1 + ρ̃∗
k
− (ρ̃∗

k
− ρ̃⊲

k
)

)

≤ max
∆∈S(ρn)

N∑

k=n+1

log2

(

1 +
∆k

1 + ρ̃∗
k
− ∆k

)

(2.34)

where ∆ is the vector [∆n+1,∆n+2, ....,∆N] and S(ρn) is the set of all ∆ vectors for

which ∆ is a possible instance of the vector [ρ̃∗
n+1 − ρ̃⊲n+1, ρ̃

∗
n+2 − ρ̃⊲n+2, ...., ρ̃

∗
N
− ρ̃⊲

N
].

We know the following facts for any ∆ vector in the set S(ρn): If ∆ ∈ S(ρn), 0 ≤
∆ ≤ [ρ̃∗

n+1, ρ̃
∗
n+1, ...., ρ̃

∗
N

] and ‖∆‖1 = (ρn − ρ̃∗n) since the energy consumption of both

(ρn, ρ̃
⊲
n+2, ...., ρ̃

⊲
N) and (ρ̃∗n, ρ̃

∗
n+1, ...., ρ̃

∗
N) schedules should be equal. Now, consider the

case ρn < ρ̃∗n. Clearly, ξ(ρn) < 0 for this case since the offline optimal decisions ρ̃⊲
k
s

have more energy to spend than the offline optimal decisions ρ̃∗
k
s. Therefore, we can

upper bound ξ(ρn) considering the instances of ρ̃∗n where ρn ≥ ρ̃∗n:

ξ(ρn) ≤ max
∆∈S(ρn)
ρ̃∗n≤ρn

N∑

k=n+1

log2

(

1 +
∆k

1 + ρ̃⊲
k

)

≤ max
∆∈S(ρn)
ρ̃∗n≤ρn

N∑

k=n+1

log2

(

1 +
∆k

1 + ρ̃⊲
n+1

)

≤ max
‖∆‖1=(ρn−ρ̃∗n)

ρ̃∗n≤ρn

N∑

k=n+1

log2

(

1 +
∆k

1 + ρ̃⊲
n+1

)

= (N − n) log2



1 +
(ρn−ρ̃∗n)

N−n

1 + ρ̃⊲
n+1





≤ sup
N∈N+
ρ̃∗n≤ρn

(N − n) log2



1 +

(ρn−ρ̃∗n)
N−n

1 + ρ̃⊲
n+1





= lim
N→+∞
ρ̃∗n≤ρn

(N − n) log2



1 +

(ρn−ρ̃∗n)
N−n

1 + ρ̃⊲
n+1



 (2.35)
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Therefore, ξ(ρn) can be upper bounded as ξ(ρn) ≤ ln(2) (ρn−ρ̃∗n)+

1+ρ̃⊲
n+1

since ξ(ρn) < 0 for

ρn < ρ̃
∗
n. Accordingly,

Eψm
[Fm(w̃∗m,wm) | xm, θm] ≤ E[log2(1 + ρ̃∗n)] − log2(1 + ρn) + ln(2)E

[

(ρn − ρ̃∗n)+

1 + ρ̃⊲
n+1

]

,

which implies:

µw
n (xn, θn) =

log2(1 + ρn)

log2(1 + ρn) + Eψm
[Fm(w̃∗m,wm) | xm, θm]

≥ ln(1 + ρn)

E
[

ln(1 + ρ̃∗n)
]

+ E

[

(ρn−ρ̃∗n)+

1+ρ̃⊲
n+1

] . (2.36)

�

2.7.4 The Proof of Proposition 4

Proof. The bound in Proposition 3 can be simplified as follows,

µw
n (xn, θn) ≥ ln(1 + ρn)

E
[

ln(1 + ρ̃∗n)
]

+ E
[

(ρn − ρ̃∗n)+
]

When ρn = E[ρ̃∗n], E
[

ln(1 + ρ̃∗n)
] ≤ ln(1+E[ρ̃∗n]) due to Jensen’s inequality. Therefore,

µw̌
m(xm, θm) ≥ 1

1 +
E[(E[ρ̃∗n]−ρ̃∗n)+]

ln(1+E[ρ̃∗n])

≥ 1

1 +
E

[√
(E[ρ̃∗n]−ρ̃∗n)2

]

ln(1+E[ρ̃∗n])

≥ 1

1 +
√

Var(ρ̃∗n)

ln(1+E[ρ̃∗n])

,

where the last step used Jensen’s inequality on
√
. function. �
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CHAPTER 3

ENERGY-EFFICIENT TRANSMISSION WITH WIRELESS ENERGY

TRANSFER

3.1 Introduction

In this chapter, we will show an application of EH transmission optimization methods

in Chapter 2 to communication systems with wireless energy transfer (WET). Mech-

anisms of WET, which involve the transmission of electrical energy without wires

using time-varying electric, magnetic, or electromagnetic fields, have been demon-

strated as viable options for various communication systems [35–37]. Such technolo-

gies are of particular interest in the case of sensing and data collection applications

with a simple sensor that does not have a large battery or energy source, which can

simply sample, encode and transmit data on demand to the receiver of the data using

the RF energy sent to it by the receiver, as illustrated in the system scenario in Figure

3.1.

The transmission optimization in the wireless energy transfer scenario, where the re-

ceiver supplies energy to the transmitter, is distinguished from the general literature in

the EH transmission optimization problem in the following aspect: when the energy

transfer and data transfer are made in subsequent time intervals in the same frequency

band as in time division duplexing, the energy sent from the RX to the TX, and the

data transmission sent from the TX to the RX, may experience a correlated, and in

many cases nearly equal channel gain. This phenomenon introduces an inherent cor-

relation in the energy and data transfer decisions. Another aspect that distinguishes

the WET transmission optimization problem from earlier formulations is the interest-

ing question of where the optimization is carried out: if the transmitter is doing the
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Figure 3.1: System Model.

optimization, it can determine how much data to transmit at a given time, by consid-

ering the energy it has received so far (e.g., energy stored in its battery). On the other

hand, if the optimization is carried out on the receiver side, the receiver can also opti-

mize the amount of energy it will inject to the transmitter. This means, equipped with

the channel state information, and the knowledge of the amount of data to be pulled

from the transmitter, the receiver may be able to solve the optimization problem in a

larger solution space.

The motivation in this chapter is to address the differences in transmitter-centric,

receiver-centric and distributed scheduling approaches regarding possible gains in

terms of throughput and energy efficiency. First, we will solve transmitter-centric and

receiver centric WET and transmission optimization problems in an offline setting.

Secondly, we will propose online algorithms for both formulations that are based on

computing estimates of the offline policy. Next, we will formulate a more general dis-

tributed problem where energy transfers are scheduled at the receiver, and data trans-

missions are scheduled at the transmitter. We will show that under static channels,

distributed and receiver centric solutions are equivalent, and are potentially superior

to transmitter centric solutions.

3.2 System Model

We consider a point to point channel consisting of a transmitter receiver pair. Variable

rate external data requests are assumed to arrive intermittently at the receiver during

the transmission. The receiver in turn forwards these requests to the transmitter, e.g.,

a sensor, to pull the data at the desired rate. The transmitter is powered solely by RF

energy harvesting, and the energy required for its operation is assumed to be wire-

lessly transmitted by its designated receiver, also during the transmission. Let γrt
n

denote the channel gain on the energy transfer channel from the receiver to the trans-

mitter and γtr
n denote the channel gain on the data link channel from the transmitter
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to the receiver. To keep the model general, we do not assume a particular relation

between γrt
n and γtr

n . However, if one further assumes that both the uplink data trans-

mit channel and the downlink energy transfer channel suffer from frequency flat slow

fading, it is possible to make use of channel reciprocity, i.e., set γrt
n = αγtr

n , where

α < 1 captures the energy transfer/harvesting inefficiency. Such an assumption can

be justified whether we assume that wireless energy transfer from the receiver takes

place on a frequency band which is orthogonal, but close to the band used by the

transmitter for data transmission (hence the loss due to slightly different frequency of

operation is negligible), or we assume that it takes place on orthogonal consecutive

time intervals. A model with channel reciprocity has the additional advantage that

the energy transfer channel can be used to estimate the instantaneous channel state

for the transmitter-receiver link.

The model is simplified in the sense that energy transfer by RF harvesting is assumed

to be linear and transmission power solely reflects the energy consumption in the

transmitter. The first assumption is practical when the RF harvester operates in a

power regime where its harvesting efficiency does not depend on the received power.

The second assumption can be justified as we consider the sensor is always ON during

the problem interval and the power consumption for sensing is negligible compared

to the power required for wireless transmission.

As in Chapter 2, we will use a slotted transmission model: the scheduling strategy

remains constant for each T second long slot, and potentially changes at the beginning

of the next slot. The coherence time of the channel is chosen to be large enough so that

the channel state remains constant during the slot. The total transmission takes place

for N slots. In each slot n, the receiver gets a data request of Bn bits. For technical

reasons, particularly to facilitate comparison of various problem formulations, we will

assume that the receiver (energy supplier) has a total of E0 units of energy available

to it in the beginning of the transmission window.

We consider two offline models, with varying scheduling capabilities at the transmit-

ter and the receiver. The objective is to find energy efficient throughput maximizing

scheduling policies. Energy efficiency is defined as in Chapter 2 ( see Definition 2):

Definition 8 A throughput optimal offline policy is energy efficient if there is no other
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Figure 3.2: Transmitter-Centric System Model.

feasible offline schedule that achieves the same maximum throughput by consuming

less energy for a given realization of energy arrival, fading and data request patterns.

Hence, the optimal policies that we are looking for are energy efficient, throughput

maximizing offline policies, i.e. EE-TM-OFF policies as defined in Chapter 2. In

the rest of this section, after stating the offline problem formulations and discussing

their solutions, we build on these solutions to obtain good policies for their online

counterparts.

3.2.1 Transmitter-Centric Scheduling

In the first model, called transmitter-centric scheduling, the receiver wirelessly trans-

fers energy to the transmitter at a fixed rate, Qn = Q , E0/N. The received power at

the transmitter side is attenuated by a factor proportional to the channel gain γrt
n , as

shown in Figure 3.2. Accordingly, we assume that the transmitter harvests Hn = Qγrt
n

units of energy during slot n ∈ {1, . . . ,N}. The receiver also sends the size Bn of the

data requests to the transmitter over a low rate feedback link, so that the transmit-

ter has knowledge of Bns. The transmitter samples the required amount of data and

selects its optimal transmit powers, Pn, that provide an energy efficient solution (see
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Definition 8) to the following offline problem1:

(P1) : max
Pn

N∑

n=1

1

2
log2

(

1 + γtr
n Pn

)

s.t.
n∑

ℓ=1

Pℓ ≤
n∑

ℓ=1

E0

N
γrt
ℓ , ∀n (3.1)

n∑

ℓ=1

1

2
log2

(

1 + γtr
ℓ Pℓ

) ≤
n∑

ℓ=1

Bℓ, ∀n (3.2)

0 ≤ Pn, ∀n. (3.3)

3.2.2 Receiver-Centric Scheduling

In the second model, called receiver-centric scheduling and illustrated in Figure 3.3,

the receiver determines the amount of energy transfers to its designated transmitter,

jointly taking into account the backlogged data requests, its available energy, and the

channel state. The transmitter does not make any decisions, it simply uses the energy

it has received without storing it, to transmit the data that it samples on demand, at

a rate dictated by the receiver. The receiver seeks an energy efficient solution which

solves the following problem:

(P2) : max
Qn

N∑

n=1

1

2
log2

(

1 + γrt
n γ

tr
n Qn

)

s.t.
N∑

n=1

Qn ≤ E0, (3.4)

n∑

ℓ=1

1

2
log2

(

1 + γrt
ℓ γ

tr
ℓ Qℓ

) ≤
n∑

ℓ=1

Bℓ, ∀n (3.5)

0 ≤ Qn, ∀n. (3.6)

As previously stated, maximization of the objective (total throughput) in the problems

stated above is not sufficient for finding a solution, as among all throughput optimal

schedules, only the ones that use minimum energy per bit are also energy efficient.

For P1, energy efficiency is defined at the transmitter while for P2 (and in P3, to be

proposed in Section 3.5) it is defined in the end-to-end sense. In the next section, we

1 In general, there will be a solution set containing policies {Pl} that achieve the same objective function value
(total throughput). Among these there is at least one that minimizes the LHS of (3.15), i.e., that uses least energy,
and that is the solution according to Definition 8.
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characterize the EE-TM-OFF solutions for these problems. In Section 3.4, we will

present online algorithms developed so as to mimic the offline solutions.

3.3 Optimal Offline Schedules

The main goal of this section is to provide offline solutions to problems P1 and P2,

in a format which is amenable for online implementation. Therefore, it is desirable

to express the offline solutions in terms of current energy, data and fading states of

the system model of choice. To this end, we define the current energy state, en of the

system for all n ∈ {1, . . . ,N} through the following update equations for n ≥ 0, for

each system model P ∈ {P1,P2}:

en+1 =






en + γ
rt
n E0/N − Pn, e0 = 0, P = P1;

en − Qn, e0 = E0, P = P2;
(3.7)

Note that, for P1, en denotes the energy state at the transmitter, which is initialized

as e0 = 0, whereas for P2, en is the energy state at the receiver, thus initialized at

e0 = E0.

Similarly, the backlog on data requests at the beginning of slot n is denoted by bn,

n ≥ 0, with b0 = 0, and

bn+1 =






bn+Bn− 1
2

log2

(

1 + γtr
n Pn

)

, P = P1;

bn+Bn− 1
2 log2

(

1 + γrt
n γ

tr
n Qn

)

, P = P2.
(3.8)
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3.3.1 Optimal Offline Transmitter-Centric Schedule

In Chapter 2, the EE-TM-OFF schedule was shown to be solutions for the following

problem, will refer to it as P0 here for convenience:

(P0) : max
Pn

N∑

n=1

1

2
log2 (1 + γnPn)

s.t.
n∑

ℓ=1

Pℓ ≤
n∑

ℓ=1

Hl, ∀n (3.9)

n∑

ℓ=1

1

2
log2 (1 + γℓPℓ) ≤

n∑

ℓ=1

Bℓ, ∀n (3.10)

0 ≤ Pn, ∀n. (3.11)

The solution of P1 rests on recognizing that with an appropriate choice of parameter

values, the solution of P0 provides the solution of P1. To map P1 to P0, γℓs are

replaced with γrt
l

s and Hls are replaced with E0

N
γrt

l
values.

3.3.2 Optimal Offline Receiver-Centric Schedule

The solution of P2 similarly proceeds by mapping it to P0 by replacing γℓs with

γrt
l
γtr

l
s, setting e0 = E0 and all Hls to zero. Therefore, for a particular slot n, given the

energy level en and the backlog on data requests bn (b0 = 0) at that slot, the optimal

offline value for Qn can be computed as Qn = [wn − 1
γrt

n γ
tr
n

]+ where wn satisfies the

following:

wn = min{we
n(wn),wb

n(wn)}

we
n = min

u=0,...,(N−n)

en +

n+u∑

l=n

M
(e,r)
l

(wn)

u + 1
(3.12)

log2(wb
n) = min

v=0,...,(N−n)

bn +

n+v∑

l=n+1

Bl +
1

2

n+v∑

l=n

M
(b,r)
l

(wn)

1
2(v + 1)

(3.13)

M
(e,r)
l

(wn) = min

{

1

γrt
l
γtr

l

,wn

}

M
(b,r)
l

(wn) = log2

(

min

{

1

γrt
l
γtr

l

,wn

})
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3.3.3 Minimum Energy Demand Profile in WET

Consider an EE-TM-OFF schedule defined via successive water levels. Now suppose

that for a given data arrival profile {Bn}, water levels are never to be limited by energy

arrivals {Hn} so that we
n ≥ wb

n for all n:

min
u=0,...,(N−n)

en +
∑n+u

l=n+1 Hl +
∑n+u

l=n M
(e)
l

(wn)

u + 1

≥ min
v=0,...,(N−n)

2
bn+

∑n+v
l=n+1

Bl+
1
2

∑n+v
l=n

M
(b)
l

(wn)

1
2 (v+1) ;∀n (3.14)

Definition 9 When (3.14) is satisfied with equality for all n, the energy arrival profile

corresponds the minimum demand of the given data arrival profile.

A minimum demand energy profile always exists and is unique: the corresponding

Hns can be found by backward induction starting from n = N as long as Hns are

allowed to take arbitrary non-negative values. Let {H(demand)
n }N1 denote the sequence of

energy arrivals satisfying (3.14) with equality for every slot n

Accordingly, any energy arrival profile {Hn} that does not satisfy the following condi-

tions,
m∑

n=1

Hn ≥
m∑

n=1

H(demand)
n ; m ∈ [1,N − 1]

N∑

n=1

Hn =

N∑

n=1

H(demand)
n

is either insufficient to transmit all received data or provides more energy than needed.

In other words, for any energy arrival profile {Hn} that does not satisfy above condi-

tions, energy or data buffers become non-empty at the end of the problem horizon.

This observation leads to the following result, which says that, when channel states

are constant, receiver-centric optimization, which is able to adjust the energy transfer

minimally according to the data demand, operates in a solution space that subsumes

transmitter-centric optimization.

Theorem 3 Under time invariant channel conditions, i.e., γtr
n = c1, γrt

n = c2, where

c1 > 0 and c2 > 0 are arbitrary constants, the objective value attained by solving P2

is greater than or equal to that obtained by solving P1.
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Proof. Let γtr
n = c1 and γrt

n = c2, and let Pn = c2Q′n for some Q′n ≥ 0. Then P1

becomes,

(P1,c) : max
Q′n

N∑

n=1

1

2
log2

(

1 + c1c2Q′n
)

s.t.
n∑

ℓ=1

Q′ℓc2 ≤
n∑

ℓ=1

E0

N
c2, ∀n (3.15)

n∑

ℓ=1

1

2
log2

(

1 + c1c2Q′ℓ
) ≤

n∑

ℓ=1

Bℓ, ∀n (3.16)

0 ≤ c2Q′n, ∀n. (3.17)

As c2 > 0, the constraints in the above definition of P1,c can be rearranged and P1,c

can be rewritten as follows:

(P1,c) : max
Q′n

N∑

n=1

1

2
log2

(

1 + c1c2Q′n
)

s.t.
n∑

ℓ=1

Q′ℓ ≤
n∑

ℓ=1

E0

N
, ∀n < N (3.18)

N∑

ℓ=1

Q′ℓ ≤ E0, (3.19)

n∑

ℓ=1

1

2
log2

(

1 + c1c2Q′ℓ
) ≤

n∑

ℓ=1

Bℓ, ∀n (3.20)

0 ≤ Q′n, ∀n. (3.21)

Now, it can be seen that P1,c is P2 evaluated at γtr
n = c1, γrt

n = c2, with additional

constraints in (3.18), and is therefore stricter, and the result follows. �

3.4 Online Policies

As P1 and P2 can both be mapped to P0 by an appropriate choice of parameter val-

ues, we will consider online algorithms based on the online algorithm developed in

Chapter 2 for P0.
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3.4.1 Transmitter-Centric Online Policy

For the transmitter-centric case, we extend the online algorithm in Chapter 2 to the

transmitter-centric problem formulation. This policy uses (2.5) and (2.6) with esti-

mated values of
∑n+u

l=n+1 γ
rt
l

,
∑n+v

l=n+1 Bl,
∑n+u

l=n M
(e)
l

(wn) and
∑n+v

l=n M
(b)
l

(wn). The estimated

average on energy arrivals is H̄n =
E0

Nn

∑n
l=1 γ

rt
l

. The values of
∑n+u

l=n+1 Hl,
∑n+v

l=n+1 Bl,
∑n+u

l=n M
(e,t)
l

(wn) and
∑n+v

l=n M
(b,t)
l

(wn) are estimated through observed time averages giv-

ing the estimated values of we
n and wb

n as follows:

ŵe
n =






en−H̄n

N−n
+ H̄n + M̄

(e,t)
n (wn) ; en ≥ H̄n

en + M̄
(e,t)
n (wn) ; o.w.

log2(ŵb
n) =






2(bn−B̄n)
N−n

+ B̄n + M̄
(b,t)
n (wn) ; bn ≥ B̄n

2bn + M̄
(b,t)
n (wn) ; o.w.

Here,

H̄n =
E0

Nn

n∑

l=1

γrt
l , B̄n =

1

n

n∑

l=1

Bl

M̄(e,t)
n (wn) =

1

n

n∑

l=1

M
(e,t)
l

(wn)

M̄(b,t)
n (wn) =

1

n

n∑

l=1

M
(b,t)
l

(wn)

The estimate of the throughput maximizing water level can be computed iteratively:

ŵ(k+1)
n = |

wn=ŵ
(k)
n

min
{

ŵe
n, ŵ

b
n

}

where ŵ
(k)
n is the kth iteration of the estimate of the throughput maximizing water

level and ŵ
(1)
n = min

{

en, 22bn

}

.

3.4.2 Receiver-Centric Online Policy

For the receiver-centric problem setting, the corresponding estimation-based online

policy is the following:

ŵe
n =

en

N − n
+ M̄(e,r)

n (wn).

log2(ŵb
n) =






2(bn−B̄n)
N−n

+ B̄n + M̄
(b,r)
n (wn) ; bn ≥ B̄n

2bn + M̄
(b,r)
n (wn) ; o.w.
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B̄n =
1

n

n∑

l=1

Bl

M̄(e,r)
n (wn) =

1

n

n∑

l=1

M
(e,r)
l

(wn)

M̄(b,r)
n (wn) =

1

n

n∑

l=1

M
(b,r)
l

(wn)

3.5 Distributed Scheduling

Before evaluating the performance of the offline and online algorithms, we propose a

third scheduling problem formulation, namely, distributed scheduling.In this formu-

lation, the scheduling decision is formed partly at the TX and partly at the RX. The

amounts of energy transfers are determined by the receiver. On the other hand, the

transmitter chooses its transmit powers based on its energy level (i.e. battery state),

channel state, and the data requests coming from the receiver. The resulting optimiza-

tion problem is,

(P3) : max
{Pn,Qn}

N∑

n=1

1

2
log2

(

1 + γtr
n Pn

)

s.t.
N∑

n=1

Qn ≤ E0, (3.22)

n∑

ℓ=1

Pℓ ≤
n∑

ℓ=1

Qℓγ
rt
ℓ , ∀n (3.23)

n∑

ℓ=1

1

2
log2

(

1 + γtr
ℓ Pℓ

) ≤
n∑

ℓ=1

Bℓ, ∀n (3.24)

0 ≤ Qn, 0 ≤ Pn, ∀n. (3.25)

Distributed scheduling requires less feedback between the transmitter and the re-

ceiver. Moreover, it allows the RX to send energy at times that γrt
ℓ

takes a large

value, whereas the TX can optimize its own transmissions according to γtr
n . This

flexibility can result in a higher overall throughput than that achieved by TX-centric

and RX-centric solutions when γrt
ℓ

and γtr
n differ significantly (e.g., have low corre-

lation.) On the other hand, under a fixed channel state, this problem reduces to the

receiver-centric formulation, as summarized in Theorem 4.

47



Theorem 4 Under time invariant channel conditions, i.e., γtr
n = c1, γtr

n = c2, where

c1 > 0 and c2 > 0 are arbitrary constants, P2 and P3 are equivalent.

Proof. Let γtr
n = c1, γrt

n = c2, and let Pn = c2Q′n. Then, P3 becomes,

(P3,c) : max
{Q′n,Qn}

N∑

n=1

1

2
log2

(

1 + c1c2Q′n
)

s.t.
N∑

n=1

Qn ≤ E0, (3.26)

n∑

ℓ=1

Q′ℓc2 ≤
n∑

ℓ=1

Qℓc2, ∀n (3.27)

n∑

ℓ=1

1

2
log2

(

1 + c1c2Q′ℓ
) ≤

n∑

ℓ=1

Bℓ, ∀n (3.28)

0 ≤ Qn, 0 ≤ c2Q′n, ∀n. (3.29)

Let the pair of sequences {Q′n,Qn} constitute an optimal solution for P3,c, for which

(3.27) is not tight. We can set Qn = Q′n for all n, without changing the value of

the objective function, and without violating (3.26). This reduces the problem to P2.

Therefore, among the optimal solutions, Q′n, ofP3,c, there exists one which also solves

P2 when γtr
n = c1 and γrt

n = c2. �

While we postpone further discussion of P3 and its solution to future work, we will

plot numerical solutions of it along with the other algorithms in the next section.

3.6 Numerical and Simulation Results

In this section, we compare the average throughput performances of offline optimal

schedules for P1,P2 and P3, and the proposed online policies.

First, we consider a reciprocal Rician channel (κ = 0.5) on both uplink and downlink,

with a path loss of -70dB in each direction. We assume a random data request in

each slot, which is distributed uniformly with mean 5bits/Hz. For this simulation, we

assume that the energy buffer of the transmitter is not limited. In Figure 3.4, we com-

pare the throughput of all policies in question. The distributed optimal offline policy

serves as a benchmark for other policies. We observe that the transmitter centric of-

fline policy performs better than the receiver centric offline policy, due to its ability
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Figure 3.4: Average total throughput (in Mbits) versus horizon length N (in seconds)

under each policy.

to store power at the transmitter, for future better channel states. However, the online

receiver centric schedule outperforms its transmitter centric counterpart, and achieves

nearly identical performance to optimal receiver centric schedule, with its ability to

adaptively control the energy packets. In any case, the online policies can be said to

closely follow their offline counterparts.
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CHAPTER 4

AGE OF INFORMATION: A MEASURE OF FRESHNESS FOR QUALITY

OF SERVICE IN TIMELY COMMUNICATION

4.1 Introduction

In Chapter 2 and 3, we merely considered communication problems with constraints

and objectives but not the actual use of communication. The use of communication

may vary from application to application however, mainly, one can consider two types

of uses. The first is the use where shared information can be treated as a record being

persistently useful or having a long-term value. The second is the use where an end-

user is in need of following a process, i.e., a source of interest, for the sake of curiosity

or in order to achieve a goal. In this chapter, we will focus on this second use and

refer to it as monitoring in the widest sense.

4.2 Update-based Systems

When communication is about monitoring, a basic solution is to simply deliver status

updates from the source of interest. Particularly, such a communication takes place in

existing applications of sensor networks, industrial manufacturing, telerobotics, In-

ternet of Things (IoT) and social networks. In these applications, communication can

be designed and viewed as an exchange of status updates. We will refer to communi-

cation systems designed in this way as update-based systems.

One aspect of update-based systems is that their performance can be characterized by

generation and successful delivery times of updates from the source to the end-user 1.

1 Here, we assume that both sides see their clocks ticking at the same rate while being synchronized.
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Assuming that the updates capture the status of the source of interest precisely at their

generation instant, it will be sufficient to measure the quality of service for monitoring

on a temporal basis. Ideally, we require both the duration between generation and de-

livery times, i.e., delay, to be small and the frequency of updates, i.e., throughput, to

be large. On the other hand, neither of these describes timeliness which actually de-

termines the success of monitoring. From the perspective of the end-user, timeliness

can be understood in terms of the freshness of available information.

4.3 Data Freshness

4.3.1 Age of Information

In monitoring, one typically requires fresh updates as usefulness of old updates de-

grades over time. Moreover, when there is no need to store old updates, they get

obsolete upon the arrival of an update with a more recent time-stamp. In that case,

a measure of data freshness at a particular instant is the time elapsed since the most

recent update available to the end-user was generated at the source. This measure

the Age of Information (AoI), or simply the age, which was proposed in [38, 39].

Precisely, the age is defined as:

∆(t) = t − U(t), (4.1)

where U(t) is the time-stamp of the most recent update.

Let S i and Di denote generation and delivery times of an update with index i, respec-

tively. Then, U(t) can be expressed as follows:

U(t) = max{S i : Di ≤ t}. (4.2)

From its definition, it can be seen that the age is a process that grows linearly with

unit slope and if an update providing a smaller age, i.e., a fresher update, arrives,

the age drops to that level (Fig. 4.1). Considering generation and delivery times that

are random, the age is a stochastic process. In that case, a reasonable objective is to

minimize the average age which is defined as follows:

∆̄ = lim sup
T→∞

1

T
E

[∫ T

0

∆(t)dt

]

. (4.3)
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Figure 4.1: The Age of Information versus time.

Minimization of the average age ∆̄ is a particularly relevant goal for an update-based

system where the usefulness of status updates typically degrades linearly proportional

to the elapsed time. The average age can be connected most commonly used measures

in remote estimation such as the time-average mean-square error (MSE). An example

of this is the result in [40] where it was shown that remote estimation of a Wiener

process minimizing MSE reduces to minimizing average age when the sampling times

at the transmitting side are independent from the process. On the other hand, in

many scenarios, the success of monitoring may be related to non-linear (see [41–48])

functions of the age.

4.3.2 Non-linear Functions of the Age

In general, the change in the usefulness of updates can be less/more significant as the

age grows. If there is a fixed pattern which characterizes this change for all updates,

then one can model the usefulness of available information as a non-linear function

p(∆(t)) of the age ∆(t), i.e., the age-penalty where the function p : [0,∞)→ [0,∞) is

non-deceasing such that available information becomes less useful as the age grows.

The relevant goal for such cases can be the minimization of the average age-penalty
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which is defined as follows:

p̄ = lim sup
T→∞

1

T
E

[∫ T

0
p(∆(t))dt

]

. (4.4)

Si−2 Di−2 Si DiSi−1 Di−1 t

p(∆(t))

Figure 4.2: The Age-penalty versus time.

Similar to age-penalty functions, one can characterize the usefulness of updates using

utility functions of age, i.e., age-utility functions, which decrease with increasing age.

Some examples of age-penalty and age-utility functions include: The age-penalty for

online learning [43], the age-penalty based on autocorrelation [44], the age-penalty

based on the probability of mission failure [47], the age-utility based on mutual in-

formation [45], the age-penalty based on quadratic error in the estimation of a multi-

dimensional linear system [48].

4.3.3 The Age of Information and Queueing

Several studies on AoI considered this performance metric under various queue-

ing system models comparing service disciplines and queue management policies

(e.g., [49–57]). A common observation in these studies was that many queueing/ser-

vice policies that are throughput and delay optimal but are often suboptimal with

respect to AoI, while AoI-optimal policies can be throughput and delay optimal, at

the same time. This showed that AoI optimization is quite different than optimization
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with respect to classical performance metrics. This required many queueing models

to be re-addressed under respect to age related objectives. Moreover, some studies

considered the adjustment of physical layer parameters for source and channel cod-

ing [58–69] . However, these formulations typically assume no precise control on the

transmission or generation times of status updates. Indeed, such control is important

for age optimization [42, 43].

4.3.4 Timely Updating

A direct control on the generation times of status updates is possible through a control

algorithm that runs at the source. This is the “generate-at-will" assumption formu-

lated in [70, 71] and studied in [40, 42, 43]. In [70], the problem of AoI optimization

for a source, which is constrained by an arbitrary sequence of energy arrivals was

studied. In [71], AoI optimization was considered for a source that harvests energy

at a constant rate under stochastic delays experienced by the status update packets.

The results in these studies showed suboptimality of work-conserving transmission

schemes. Often, introducing a waiting time before sending the next update is opti-

mal. That is, for maximum freshness, one may sometimes send updates at a rate lower

than one is allowed to which may be counter-intuitive at first sight.
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CHAPTER 5

TIMELY COMMUNICATION FOR OPTIMIZING AGE OF INFORMATION

UNDER ENERGY HARVESTING

5.1 Introduction

Sensor networks for monitoring applications are arguably the most important use

cases of update-based systems. As we discussed in Chapter 4, the optimization for

data freshness appears to be a more relevant goal for such applications, than through-

put and delay optimization. This suggests the significance of studying sensor net-

works under data freshness measures. Another aspect of sensor networks is that

they are composed of “nodes" which are envisioned to be ideally simple and self-

sustainable (or more specifically energy harvesting) devices.

Motivated by these practical concerns, several studies [70–79] were dedicated to AoI

optimization for energy harvesting communication.The common assumption in these

studies is that energy harvesting process is considered as an arrival process where

each energy arrival carries the energy required for an update. The goal of AoI opti-

mization in such formulations is to find an optimal timing of update instants (under

“generate-at-will" assumption) in order to minimize average AoI while transmission

opportunities are subject to the availability of energy. Energy arrivals occur irregu-

larly or randomly, which models an energy harvesting scenario. The main challenge

in optimizing time average expected age under random energy arrivals is that in the

case of an energy outages (empty battery), the transmitter must idle for an unknown

duration of time. If it is the case that such random durations are inevitable, they in-

troduce a tension for the regulation of inter-update durations. Another challenge is

due to the finiteness of battery sizes. Theoretically, it is possible to achieve asymp-
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totically optimal average AoI by employing simple schemes assuming infinite [72] or

sufficiently large battery [73] sizes. However, when the battery size is comparable to

the energy required per update, such simple schemes do not allow performance guar-

antees. Consequently, it is important to explore optimal policies under such regimes

where performance depends heavily on the statistics of energy arrivals and the battery

size.

In this chapter, we will consider an AoI optimization capturing both the randomness

of energy arrivals and finite energy storage capability. In addition capturing both

challenges we go further, by optimizing not only average age itself, but an average

age-penalty (see Chapter 4.3.2). Under the assumption of Poisson energy arrivals, we

will show the structure of solutions for the age-penalty optimization problem. The

structure of the optimal solution reflects a basic intuition about the optimal strategy:

Updates should be sent when the update is valuable (when the age is high) and the

energy is cheap (the battery level is high). We show that the optimal solution is given

by a stopping rule according to which an update is sent when its immediate cost

is surpassed by the expected future cost. For Poisson energy arrivals, this stopping

rule can be found in the set of policies that we refer as monotone threshold policies.

Monotone threshold policies have the property that each update is sent only when

the age is higher than a certain threshold which is a non-increasing function of the

instantaneous battery level. One of the key results is that the value of the age-penalty

function at the optimal threshold corresponding to the full battery level is exactly

equal to the optimal value of the average age-penalty.

5.2 System Model

In this section, we will describe the system model for an energy harvesting update-

based system and the problem of average age-penalty minimization. Consider an

energy harvesting transmitter that sends update packets to a receiver, as illustrated in

Fig 5.1. Suppose that the transmitter has a finite battery which is capable of storing

up to B units of energy. Similar to [72], we assume that the transmission of an update

packet consumes one unit of energy. The energy that can be harvested arrive in units

according to a Poisson process with rate µH. Let E(t) denote the amount of energy
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stored in the battery at time t such that 0 ≤ E(t) ≤ B. The timing of status updates

are controlled by a sampler which monitors the battery level E(t) for all t. We assume

that the initial age and the initial battery level are zero, i.e., ∆(0) = 0 and E(0) = 0.

Energy Buffer

Harvested Energy

Channel

Sensor Sampler &

Scheduler

B

Transmitter Receiver

Figure 5.1: System Model.

Let H(t) and A(t) denote the number of energy units that have arrived during [0, t] and

the number of updates sent out during [0, t], respectively. Hence, {H(t), t ≥ 0} and

{A(t), t ≥ 0} are two counting processes. If an energy unit arrives when the battery is

full, it is lost because there is no capacity to store it.

The system starts to operate at time t = 0. Let Zk denote the generation time of the

k-th update packet such that 0 = Z0 ≤ Z1 ≤ Z2 ≤ . . .. An update policy is represented

by a sequence of update instants π = (Z0, Z1, Z2, ...). Let Xk represent the inter-update

duration between updates k − 1 and k, i.e., Xk = Zk − Zk−1. In many status-update

systems (e.g., a sensor reporting temperature [80]), update packets are small in size

and are only sent out sporadically. Typically, the duration for transmitting a packet is

much smaller than the difference between two subsequent update times, i.e., Xks are

typically large compared to the duration of a packet transmission. With such systems

in mind, in our model, we will approximate the packet transmission durations as

zero. In other words, once the k-th update is generated and sent out at time t = Zk,

it is immediately delivered to the receiver. Hence, the age of information ∆(t) at any

time t ≥ 0 is

∆(t) = t −max{Zk : Zk ≤ t}, (5.1)

which satisfies ∆(t) = 0 at each update time t = Zk. Because an update costs one unit
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of energy, the battery level reduces by one upon each update, i.e.,

E(Zk) = E(Z−k ) − 1, (5.2)

where Z−
k

is the time immediately before the k-th update. Further, because the battery

size is B, the battery level evolves according to

E(t) = min{E(Zk) + H(t) − H(Zk), B}, (5.3)

when t ∈ [Zk, Zk+1) is between two subsequent updates.

In terms of energy available to the scheduler, we can define update policies, that do

not violate causality, as in the following:

Definition 10 A policy π is said to be energy-causal if updates only occur when the

battery is non-empty, that is, E(Z−
k

) ≥ 1 for each packet k.

Another restriction on update instants is due to the information available to the sched-

uler which we define as follows,

Definition 11 Information on the energy arrivals and updates by time t is represented

by the filtration 1 Ft = σ({(H(t′), A(t′)), 0 ≤ t′ < t}) which is the σ-field generated by

the sequence of energy arrivals and updates, i.e., {(H(t′), A(t′)), 0 ≤ t′ < t}.

Similar to the definition of energy-causal policies, in the policy space that we will

consider we merely assume the causality of available information besides energy

causality. To formulate this assumption, we use the definition of Ft. In terms of

information available to the scheduler, any random time instant θ does not violate

causality if and only if {θ ≤ t} ∈ Ft for all t ≥ 0. We will refer such random instants as

Markov times [81] and consider update times as Markov times based on the filtration

Ft in general. Notice that such update times do not have to be finite, however, we

will refer Markov times that are also finite with probability 1 (w.p.1.) as stopping

times [81]. For a policy trying to regulate age, it is legitimate to assume that update

instants are always finite w.p.1. as otherwise the age may grow unbounded with a

1 Note that the filtration is right continuous as both H(t) and A(t) are right continuous.
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positive probability. With this in mind, we will consider only the update instants that

are stopping times.

Accordingly, we can define the online update policies combining the causality as-

sumptions on available energy and information as follows:

Definition 12 A policy is said to be online if (i) it is energy causal, (ii) no update

instant is determined based on future information, i.e., all update times are stopping

(finite Markov) times based on Ft, i.e., Zk is finite w.p.1. while {Zk ≤ t} ∈ Ft for all

t ≥ 0 and k ≥ 1.

Let Πonline denote the set of online update policies. To evaluate the performance of

online policies, we consider an age-penalty function that relates the age at a particular

time to a cost which increases by the age. This function is defined as in below:

We consider an age-penalty function p(·) that maps the age ∆(t) at time t to a penalty

p(∆(t)):

Definition 13 A function p : [0,∞) → [0,∞) of the age is said to be an age-penalty

function if

• lim∆→∞ p(∆) = ∞.

• p(·) is a non-decreasing function.

•
∫ ∞

0
p(t)e−αtdt < ∞ for all α > 0.

Observe that the definition of age-penalty functions covers any non-decreasing func-

tion of age that is of sub-exponential order2 and grows to infinity.

The time-average expected value of the age-penalty or simply the average age-penalty

can be expressed as

p̄ = lim sup
T→∞

1

T
E

[∫ T

0

p(∆(t))dt

]

. (5.4)

2 This is due to the third property in the definition, which is a technical requirement for the proofs.
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Let p̄π denote the average age-penalty achieved by a particular policy π. We will try

to find the optimal update policy for minimizing the average age-penalty, which is

formulated as

min
π∈Πonline

p̄π. (5.5)

5.3 Main Results

We begin with a result guaranteeing that the space of threshold-type policies (see

Definition 14) contains optimal update policies hence we can focus our attention to

these policies for finding solutions to (5.5).

Note that at time t = Zk, the age ∆(t) is equal to 0. In the meanwhile, the battery level

E(t) will grow as more energy is harvested. In threshold policies, the threshold τE(t)

changes according to the battery level E(t) and a new sample is taken at the earliest

time that the age ∆(t) exceeds the threshold τE(t). We define such policies as follows:

Definition 14 When E(t) ∈ {ℓ = 1, ..., B} represents the battery level at time t, an

online policy is said to be a threshold policy if there exists τℓ for ℓ = 1, ..., B s.t.

Zk+1 = inf
{

t ≥ Zk : ∆(t) ≥ τE(t)
}

, (5.6)

Note that a policy is said to be stationary if its actions depend only on a current state

while being independent of time. An immediate observation is that given ∆(t) and

E(t) threshold policies do not depend on time, hence:

Proposition 1 All threshold policies are stationary.

Proof. By definition, the update instants of a threshold policy only depend on the

time elapsed since the last update, i.e., ∆(t), and the current battery level. �

We expect that such stationary policies can minimize ∆̄ among all online policies as

energy arrivals follow a Poisson process which is memoryless. Due to the memory-

lessness of energy arrivals, the evolution of the system can be understood through a

renewal type behaviour which suggests that an optimal policy should be stationary.

Indeed, we note the following as the first key result,
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Theorem 5 There exists a threshold policy that is optimal for solving (5.5).

Proof. See Appendix 5.5.1. �

One significant challenge in the proof of Theorem 5 is that (5.5) is an infinite time-

horizon time-averaged MDP which has an uncountable state space. When the state

space is countable, one can analyze infinite time-horizon time-averaged MDP by

making a unichain assumption. However, this method cannot be directly applied

when state space is uncountable. To resolve this, we use a modified version of the

“vanishing discount factor" approach [82] to prove Theorem 5 in two steps:

1. Show that for every α > 0, there exists a threshold policy that is optimal for solving

min
π∈Πonline

E

[∫ ∞

0
e−α(t−a) p(∆(t))dt

]

.

2. Prove that this property also holds when the discount factor α vanishes to zero.

In our search for an optimal policy, we can further reduce the space of policies:

Definition 15 A threshold policy is said to be a monotone threshold policy if τ1 ≥
τ2 ≥ . . . ≥ τB.

Note that the definition of monotone threshold policies refers only to the case of

thresholds that non-increasing in battery levels as opposed to the non-decreasing case.

Let ΠMT be the set of monotone threshold policies, then, the following is true:

Theorem 6 There exists a monotone threshold policy π ∈ ΠMT that is optimal for

solving (5.5).

Proof. See Appendix 5.5.2. �

Theorem 6 implies that in the optimal update policy, update packets are sent out more

frequently when the battery level is high and less frequently when the battery level

is low. This result is quite intuitive: If the battery is full, arrival energy cannot be

harvested; if the battery is empty, update packets cannot be transmitted when needed
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and the age increases. Hence, both battery overflow and outage are harmful. Mono-

tone threshold policies can address this issue. When the battery level l is high, the

threshold τl is small to reduce the chance of battery overflow; when the battery level

l is low, the threshold τl is high to avoid battery outage.

E(t)

∆(t)
τ1τ2τB

E = 1

E = 2

E = B

Figure 5.2: An illustration of a monotone threshold policy.

For a policy inΠMT, the state (∆(t), E(t)) does not spend a measurable amount of time

anywhere ∆(t) ≥ τE(t) in which an update is sent out instantly reducing the battery

level. Otherwise, the battery level is incremented upon energy harvests while the age

is increasing linearly in time. The illustration in Fig. 5.2 shows the time evolution

of the state (∆(t), E(t)) for policies in ΠMT. If the energy level is E(Zk) = j upon

the previous update, then the inter-update time Xk+1 ∈ [τm, τm−1] holds if and only if

m− j packets arrive during the inter-update time. In other words, reaching the battery

state m or higher is necessary and sufficient for the next inter-update duration being

shorter than some x when x ∈ [τm, τm−1). Let Yi denote the duration required for

i ≥ 1 successive energy arrivals, which obeys the Erlang distribution at rate µH with

parameter i,

P(Yi ≤ x) = 1 −
i−1∑

v=0

1

v!
e−µH x(µH x)v, (5.7)

and let Yi = 0 for i ≤ 0.

Accordingly, for policies in ΠMT, the cumulative distribution function (CDF) of inter-

update durations, can be expressed as
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Pr(Xk+1 ≤ x | E(Zk) = j) =






0, if x < τ
,

B

Pr(Ym− j ≤ x), if τm ≤ x < τm−1,∀m ∈ {2, ..., B},

Pr(Y1− j ≤ x), if τ1 ≤ x,

(5.8)

From (5.8), an expression for the transition probability Pr(E(Zk+1) = i | E(Zk) = j)

for i = 0, 1, ...., B − 1 can be derived3

Pr(E(Zk+1) = i | E(Zk) = j) =






Pr(YB− j ≤ τB−1), if i = B − 1,

Pr(Y1+i− j ≤ τi) − Pr(Y2+i− j ≤ τi+1), if i < B − 1,

(5.9)

Hence, energy states sampled at update instants can be described as a Discrete Time

Markov Chain (DTMC) with the transition probabilities in (5.9) (See Fig. 5.3). When

thresholds are finite, this DTMC is ergodic as any energy state is reachable from any

other energy state in B − 1 steps with positive probability.

E =B−1E = 0 E = 1 E = j E =j+1 E =j+2 · · ·

Figure 5.3: The DTMC for energy states sampled at update times.

Any optimal policy in ΠMT has the following property:

Theorem 7 An optimal policy for solving (5.5) is a monotone threshold policy that

satisfies the following

p(τ∗B) = p̄π∗ = min
π∈Πonline

p̄π. (5.10)

where π∗ is a monotone threshold policy solving (5.5) and τ∗
B

is its age threshold for

the full battery case.

3 Note that the event E(Zk+1) = i happens if and only if Xk+1 ∈ [τi+1, τi), accordingly Pr(E(Zk+1) = i | E(Zk) =
j) = Pr(Xk+1 ≤ τi | E(Zk) = j) − Pr(Xk+1 ≤ τi+1 | E(Zk) = j).
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Proof. See Appendix 5.5.5. �

The result in Theorem 7 exhibits a structural property of optimal policies which also

appears in the sampling problem that was studied in [45]. The sampling problem

in [45] considered sources without energy harvesting, where the packet transmission

times were i.i.d. and non-zero. On the one hand, the optimal sampling policy in Theo-

rem 1 of [45] is a threshold policy on an expected age penalty term, and the threshold

is exactly equal to the optimal objective value. On the other hand, we consider a sam-

pling problem for an energy harvesting source with zero packet transmission time.

The optimal sampling policy in Theorem 7 can be rewritten as

Zk+1 = inf
{

t ≥ Zk : p(∆(t)) ≥ p(τ∗E(t))
}

which is a multi-threshold policy on the age penalty function, each threshold p(τ∗
ℓ
)

corresponding to a battery level ℓ. Further, the threshold p(τ∗B) associated with a full

battery size E(t) = B is equal to the optimal objective value. The results in these two

studies are similar to each other. Together, they provide a unified view on optimal

sampler design for sources both with and without energy harvesting capability. The

proof techniques in these two studies are of fundamental difference.

5.3.1 Average Age Case

If we take the age-penalty function as an identity function, i.e., p(∆) = ∆, then (5.5)

becomes the problem of minimizing the time-average expected age. In this case, the

result in Theorem 7 implies that in optimal monotone threshold policies, inter-update

durations can be small as much as the minimum average AoI only when the battery

is full. From results in [72] and [73], we know that the minimum average AoI for

the infinite battery case is 1
2µH

and this can be achieved asymptotically using the best-

effort scheme in [73] or with a threshold policy [72] where all thresholds are nearly

equal to 1
µH

. On the other hand, according to Theorem 7, the optimal threshold for the

full battery level tends to 1
2µH

as the battery capacity increases. This shows that the

optimal monotone threshold policies remain structurally dissimilar to asymptotically

optimal policies when the battery capacity is approaching to infinity. The result is

more useful when the battery capacity is finite as it may lead to the optimal threshold
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values of the other battery levels. We will use this in an algorithm for finding near op-

timal policies for any given integer sized battery capacity. In addition, the special case

of Theorem 7 for average age [83] can be derived from a more general result which we

provide in Lemma 1. This result shows a relation between the partial derivatives of a

non-negative random variable with respect to the thresholds determining the random

variable in a similar way to the inter-update duration case.

Lemma 1 Suppose X is a r.v. that satisfies the following:

Pr(X ≤ x) =






0 if x < τB,

Fi(x) if τi ≤ x < τi−1,∀i ∈ {2, ..., B},

F1(x) if τ1 ≤ x,

where 0 < τB ≤ ... ≤ τ2 ≤ τ1 and for each i ∈ {1, ..., B} Fi(x) is the CDF of a

non-negative random variable. Then:

∂

∂τi

E

[

X2
]

= 2τi

∂

∂τi

E [X] .

Proof. See Appendix 5.5.3. �

Corollary 1 The inter-update intervals, X, for any π ∈ ΠMT satisfy the following:

∂

∂τi

E

[

X2 | E = j
]

= 2τi

∂

∂τi

E
[

X | E = j
]

,∀(i, j) ∈ {1, 2, ..., B}2, (5.11)

where E
[

X | E = j
]

, E
[

Xk | E(Zk) = j
]

and E

[

X2 | E = j
]

, E

[

X2
k
| E(Zk) = j

]

.

Note that the transition probabilities (5.9) do not depend on τB hence the steady-state

probabilities obtained from (5.9) also do not depend on τB. This leads to a property

of τB the average age case of Theorem 7 as shown in [83]. The unit-battery case , i.e.,

B = 1 case was solved in [72] and [73]. For completeness, this result is summarized

in Theorem 8.

Theorem 8 When B = 1, the average age ∆̄ can be expressed as

∆̄ =

1
2
(µHτ1)2 + e−µHτ1(µHτ1 + 1)

µH(µHτ1 + e−µHτ1)
, (5.12)

and τ∗1 = ∆̄π∗ =
1
µH

2W( 1√
2
) where W(·) is the Lambert-W function.
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Proof. See Appendix 5.5.6. �

Theorem 9 When B = 2, the average age ∆̄ can be expressed as:

∆̄ =

α2
2

2 +e
−α2[α2+1+ρ1(α2

2+2α2+2)]−e−α1[α1+1+ρ1(α2
1+α1+1)]

µH(α2+e−α2 [1+ρ1(α2+1)]−e−α1 [1+ρ1α1]) , (5.13)

where

ρ1 =
e−α1

1 − e−α1α1
,

and

α1 = µHτ1, α2 = µHτ2.

Proof. See Appendix 5.5.7. �

5.3.2 An Algorithm for Finding Near Optimal Policies

We propose an algorithm to find a near optimal policy π ∈ ΠMT such that ∆̄π − ∆̄π∗ ≤
1

2q+1µH
for any given B and q ∈ Z

+. Let m1(τ1, τ2, ..., τB) and m2(τ1, τ2, ..., τB) denote

the functions such that:

m1(τ1, τ2, ..., τB) =
B−1∑

j=0

E
[

X | E = j
]

Pr(E = j), (5.14)

m2(τ1, τ2, ..., τB) =
B−1∑

j=0

E

[

X2 | E = j
]

Pr(E = j), (5.15)

where Pr(E = j) is the steady-state probability for energy state j, E
[

X | E = j
]

,

E
[

Xk | E(Zk) = j
]

and E

[

X2 | E = j
]

, E

[

X2
k
| E(Zk) = j

]

.

Note that it is straight forward to derive m1(τ1, τ2, ..., τB) and m2(τ1, τ2, ..., τB) using

(5.8) and (5.9), hence we assume these functions are available for any B.

In the below theorem , we state the main result that we will use in an algorithm for

finding near optimal policies:

Theorem 10 For B > 1, the equation

2τBm1(τ1, τ2, ..., τB) − m2(τ1, τ2, ..., τB) = 0, (5.16)

has a solution with monotone non-increasing thresholds, i.e., τB ≤ ... ≤ τ2 ≤ τ1 if and

only if τB ≥ ∆̄π∗ .
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Proof. See Appendix 5.5.8. �

Algorithm 1 uses this result to find a near optimal policy π ∈ ΠMT such that ∆̄π−∆̄π∗ ≤
1

2q+1µH
. Each iteration in Algorithm 1 halves the interval where the minimum average

AoI can be found based on the existence of solution to (10) with the current estimate

of the smallest threshold τ̂B. Accordingly, it is guaranteed that Algorithm 1 finds a

solution within a gap to the optimal value that is 1
2q+1µH

.

Algorithm 1 assumes a numerical solver that can solve the transcendental equation

in (5.16), however, the exact solution is required only once at the final step while

iterations only require verifying the existence of a solution to (10).

Algorithm 1 Find π ∈ ΠMT such that ∆̄π − ∆̄π∗ ≤ 1
2q+1µH

Require: B ≥ 1 ∧ q ≥ 1

Ensure: ∆̄π − ∆̄π∗ ≤ 1
2q+1µH

τ−
B
← 1

2µH
, τ+

B
← 1

µH

for i = 1, 2, ..., q do

τ̂B ←
τ−

B
+τ+

B

2

if ∃τB−1 ≤ ... ≤ τ2 ≤ τ1 s.t. τB−1 ≥ τ̂B and

2τ̂Bm1(τ1, τ2, ..., τ̂B) − m2(τ1, τ2, ..., τ̂B) = 0 then

τ+
B
← τ̂B

else

τ−B ← τ̂B

end if

end for

Solve 2τ̂Bm1(τ1, τ2, ..., τ̂B) − m2(τ1, τ2, ..., τ̂B) = 0

Return: π = (τ1, τ2, ..., τ̂B)

5.4 Numerical Results

For battery sizes B = 1, 2, 3, 4, the policies in ΠMT are numerically optimized giving

AoI versus energy arrival rate (Poisson) curves in Fig 5.4. We give the corresponding

threshold values in Table 5.1. These results were obtained through exhaustive search
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for possible threshold values, and Monte Carlo analysis for approximating AoI values

in the simulation of the considered system and policies without relying on analytical

results. It can be seen that these optimal thresholds and corresponding AoI values (in

Table 5.1) agree with Theorem 7. Fig. 5.5 and 5.6 show the dependency of AoI on

threshold values τ1 and τ2 which is consistent with the result in Theorem 9 for the

special case of B = 2.
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Figure 5.4: AoI versus energy arrival rate (Poisson) for different battery sizes B =

1, 2, 3, 4.
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Figure 5.5: AoI versus τ1 against various τ2 values for B = 2 and µH = 1.
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Figure 5.6: AoI versus τ2 against various τ1 values for B = 2 and µH = 1.

Table 5.1: Optimal thresholds for different battery sizes for µH = 1

τ1 τ2 τ3 τ4 ∆̄π∗

B = 1 0.90 - - - 0.90

B = 2 1.5 0.72 - - 0.72

B = 3 1.5 1.2 0.64 - 0.64

B = 4 1.5 1.2 0.86 0.604 0.604
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5.5 Appendix

5.5.1 The Proof of Theorem 5

In order to prove Theorem 5, we use a modified version of the “vanishing discount

factor" approach [82] which consists of 2 steps:

Step 1. Show that for every α > 0, there exists a threshold policy that is optimal for

solving

min
π∈Πonline

E

[∫ ∞

0

e−αt p(∆(t))dt

]

.

Step 2. Prove that this property still holds when the discount factor α vanishes to zero.

We first discuss Step 1. Recall that Ft represents the information about the energy

arrivals and the update policy during [0, t]. Given Fa, we are interested in finding the

optimal online policy during [a,∞), which is formulated as

min
π∈Πonline

E

[∫ ∞

a

e−α(t−a) p(∆(t))dt

∣
∣
∣
∣
∣
Fa

]

. (5.17)

Observe that, in (5.17), the term e−α(t−a) ensures that the exponential decay always

starts from unity so that the problem is independent of a given Fa. In addition, this

problem has the following nice property:

Lemma 2 There exists an optimal solution to (5.17) that depends on Fa only through

(∆(a), E(a)). That is, (∆(a), E(a)) is a sufficient statistic for solving (5.17).

Proof. In Problem (5.17), the age evolution {∆(t), t ≥ a} is determined by the initial

age ∆(a) at time a and the update policy during [a,∞). Further, the update policy

during [a,∞) is determined by the initial age ∆(a), the initial battery level E(a), and

the energy counting process {H(t) − H(a), t ≥ a}. Hence, {∆(t), t ≥ a} is determined

by ∆(a), E(a), and {H(t) − H(a), t ≥ a}.

Recall that ∆(0) and E(0) are fixed. Hence, for any online update policy, the online

update decisions during [0, a] depends only on {H(t), t ≤ a}. Hence, Fa is determined
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by {H(t), t ≤ a}. Because {H(t), t ≥ 0} is a compound Poisson process, {H(t) −
H(a), t ≥ a} is independent of {H(t), t ≤ a}. Hence, {∆(t), t ≥ a} depends on Fa only

through ∆(a) and E(a). By this, (∆(a), E(a)) is a sufficient statistic for solving (5.17).

�

By using Lemma 2, we can simplify (5.17) as (7.29) and define a cost function

Jα(∆(a), E(a)) which is the optimal objective value of (7.29):

Jα(∆(a), E(a)) : =min
π∈Πonline

E

[∫ ∞

a

e−α(t−a) p(∆(t))dt

∣
∣
∣
∣
∣
Fa

]

=min
π∈Πonline

E

[∫ ∞

a

e−α(t−a) p(∆(t))dt

∣
∣
∣
∣
∣
∆(a), E(a)

]

. (5.18)

Furthermore, one important question is: Given that the previous update occurs at

Zk = a, how to choose the next update time Zk+1. This can be formulated as

min
(Z1,...,Zk=a,Zk+1,...)∈Πonline

E

[∫ ∞

a

e−α(t−a) p(∆(t))dt

∣
∣
∣
∣
∣
Zk = a,∆(a) = 0, E(a)

]

,

(5.19)

where we have used the fact that if Zk = a, then ∆(a) = ∆(Zk) = 0.

According to the definition of Πonline, Zk+1 is a finite Markov time, i.e., stopping time,

hence the problem of finding Zk+1 for a solution to (5.19) can be formulated as an

infinite horizon optimal stopping problem in the interval [a,∞). We will consider

a gain [81] process G = (Gt)t≥a adapted to the filtration Ft where a stopping time

Zk+1 for a solution to (5.19) maximizes E
[

GZk+1 | Fa

]

when we choose Zk+1 from a

family of stopping times based on Ft. Let Ma denote this family of Zk+1s which can

be expressed as:

Ma = {Zk+1 ≥ a : Pr(Zk+1 < ∞) = 1, {Zk+1 ≤ t} ∈ Ft,∀t ≥ a} .

Note that a stopping time inMa may violate energy causality however our definition

of the gain process will guarantee that those stopping times cannot be optimal.

We will define the gain process (Gt)t≥a based on the value of the discounted cost

when an update is sent at a particular time t. The gain process (Gt)t≥a for E(t) > 0
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corresponds to the additive inverse of this cost and can be written as follows:

Gt = − min
π∈Πonline

E

[∫ ∞

a

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
Zk = a, Zk+1 = t, E(t)

]

,

E(t) > 0. (5.20)

Note that the stopping time cannot be at time t when E(t) = 0 as there is no energy

to send another update in that case. To cover this case, we set Gt to −∞ so that a

stopping time Zk+1 maximizing E
[

GZk+1 | Fa

]

should satisfy energy causality hence

belongs to an online policy. In other words, the stopping time Zk+1 in a solution to

(5.19) maximizes E
[

GZk+1 | Fa

]

among all the stopping times inMa.

Alternatively, the gain process (Gt)t≥a can be expressed in terms of the cost defined in

(7.29) as follows

Gt = −
∫ t

a

e−α(w−a) p(w − a)dw − E
[∫ ∞

t

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
Zk = a, Zk+1 = t, E(t)

]

= −
∫ t

a

e−α(w−a) p(w − a)dw − e−α(t−a) Jα(0, E(t) − 1), (5.21)

for t ≥ a and E(t) > 0.

Let’s define J(0,−1) := ∞ so that (5.21) holds for the E(t) = 0 as well. Notice that

the process Gt is driven by the random process E(t) which is not conditioned on any

particular value of E(a) while being adapted to the filtration Ft. However, for a policy

solving (5.19), the stopping time Zk+1 depends on E(a) as it maximizes E
[

GZk+1 | Fa

]

which depends on E(a) through the filtration Fa.

Accordingly, we define the stopping problem of maximizing the expected gain in the

given interval [a,∞) as in the following:

max
t∈Ma

E [Gt | Fa] . (5.22)

Based on this formulation, we will show that the optimal stopping time exists and is

given by the following stopping rule for Zk+1:

Zk+1 = inf{t ≥ Zk = a : Gt = S t}, (5.23)

where S is the Snell envelope [81] for G:

S t = ess sup
t′∈Mt

E [Gt′ | Ft] . (5.24)
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Showing that Zk+1 in (5.23) is finite w.p.1 is sufficient to prove the existence of the

optimal stopping time and the optimality of the stopping rule in (5.23)(see [81, The-

orem 2.2.]). Consider the lemma below and its proof in order to see the finiteness of

Zk+1 in (5.23):

Lemma 3 For the stopping rule in (5.23) Zk+1 is finite w.p.1, i.e., Pr(Zk+1 < ∞) = 1.

Proof. Consider the Markov time Qk+1 which is defined as follows:

Qk+1 := inf{t ≥ Zk = a : E(t) = B,Gt = S t}. (5.25)

Clearly, the stopping time Zk+1 chosen in (5.23) is earlier than Qk+1 as Qk+1 has an

additional stopping condition E(t) = B. This means that if Pr(Qk+1 < ∞) = 1, then

Pr(Zk+1 < ∞) = 1.

Accordingly, for the proof of this lemma, it is sufficient to show that Qk+1 is finite

w.p.1. We will show this by showing the finiteness of (i) the first time t ≥ Zk = a such

that E(t) = B, and (ii) the duration between this time and the Markov time Qk+1. Note

that E(t) = B condition is always satisfied after it reached for the first time. Let Rk+1

be the Markov time representing the first time when E(t) = B is satisfied:

Rk+1 := inf{t ≥ Zk = a : E(t) = B}. (5.26)

(i) Observe that the Markov time Rk+1 is finite w.p.1 as it is stochastically dominated

by a + YB where YB is an Erlang distributed random variable with parameter B which

obeys (5.7) and Pr(YB < ∞) = 1.

(ii) In order to see that Qk+1−Rk+1 is also finite, consider the time period after Rk+1, i.e.,

[Rk+1,∞). As E(t) = B for any t ≥ Rk+1, the evolution of Gt becomes deterministic

after t ≥ Rk+1:

Gt = −
∫ t

a
e−α(w−a) p(w − a)dw − e−α(t−a) Jα(0, B − 1) , (5.27)

for t ≥ Rk+1.

On the other hand, for t ≥ Rk+1, the Snell envelope is S t = ess supt′∈Mt
Gt′ = supt′≥t Gt′ .

We will show that Gt is always non-increasing after some finite time so that S t = Gt

is always satisfied after that time.
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In order to see this, consider the change in Gt for t ≥ Rk+1. As

− ∂
∂t

[∫ t

a
e−α(w−a) p(w − a)dw + e−α(t−a) Jα(0, B − 1)

]

=

e−α(t−a) (αJα(0, B − 1) − p(t − a)) ,

(5.28)

and p(t − a) is non-decreasing, for t ≥ Rk+1, Gt is non-increasing if t ≥ tc for some tc

such that

tc := inf{t ≥ a : p(t − a) = αJα(0, B − 1)}. (5.29)

This implies that, for t ≥ max{Rk+1, tc}, Gt = supt′≥t Gt′ and hence S t = Gt. Ac-

cordingly, the stopping conditions of Qk+1 are satisfied for the first time when t =

max{Rk+1, tc} which means Qk+1 = max{Rk+1, tc}.

As αJα(0, B− 1) is finite, tc is finite which implies Qk+1 is finite w.p.1 as Rk+1 is finite

w.p.1. This completes the proof. �

We just showed that the Markov time in (5.23) is finite w.p.1 and this means that it

is the optimal stopping time by [81, Theorem 2.2.]. Next, we show that the optimal

stopping rule in (5.23) is a threshold policy by using the properties of the cost function

in (7.29). To relate the optimal stopping time and the cost function in (7.29), we will

express the Snell envelope in an alternative way.

Notice that the Snell envelope can be written by substituting (5.20) in (5.24) as fol-

lows:

S t = ess sup
t′∈Mt

− min
π∈Πonline

E

[∫ ∞

a

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
Zk = a, Zk+1 = t′,Ft

]

. (5.30)

Hence,

S t = − min
π∈Πonline

E

[∫ ∞

a

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
Zk = a, Zk+1 ≥ t,Ft

]

. (5.31)

Accordingly, using the definition of Jα(∆(a), E(a)), we can write

S t = −
∫ t

a

e−α(w−a) p(w − a)dw + e−α(t−a) Jα(∆(t), E(t)). (5.32)

Therefore, as the first terms in (5.27) and (5.32) are identical, the optimal stopping

rule in (5.23) is equivalent to

Zk+1 = inf{t ≥ Zk = a : Jα(0, E(t) − 1) = Jα(∆(t), E(t))}. (5.33)
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Next, we show that the stopping rule in (5.33) is a threshold rule in age. In order to

show this, let us define the function ρα(·) : {0, 1, ..., B} → [0,∞) such that:

ρα(ℓ) := inf{w ≥ 0 : Jα(0, ℓ − 1) = Jα(w, ℓ)}. (5.34)

We can show that for any ∆ ≥ ρα(ℓ), it is guaranteed that Jα(0, ℓ − 1) = Jα(∆, ℓ) due

to the following reasons:

• For any ∆ and ℓ ∈ {0, 1, 2, .., B}, Jα(∆, ℓ) is smaller than or equal to Jα(0, ℓ − 1)

as :

Jα(∆, ℓ) = min
π∈Πonline

ea
E

[∫ ∞

a

e−αw p(∆(w))dw

∣
∣
∣
∣
∣
Zk = ta − ∆, Zk+1 ≥ ta, E(ta) = ℓ

]

≤ min
π∈Πonline

ea
E

[∫ ∞

a

e−αw p(∆(w))dw

∣
∣
∣
∣
∣
Zk = ta − ∆, Zk+1 = a, E(t) = ℓ

]

= Jα(0, ℓ − 1),

where the inequality is true as the expectation is conditioned on policies with

Zk+1 = ta.

• For any ℓ ∈ {0, 1, 2, .., B}, Jα(∆, ℓ) is non-decreasing in ∆ as :

Jα(∆, ℓ) = min
π∈Πonline

E

[∫ Zk+1

a

e−α(w−a) p(w + ∆ − ta)dw

∣
∣
∣
∣
∣
∣
θ(∆)

]

+ E

[∫ ∞

Zk+1

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
∣
θ(∆)

]

≤ min
π∈Πonline

E

[∫ Zk+1

a

e−α(w−a) p(w + ∆′ − ta)dw

∣
∣
∣
∣
∣
∣
θ(∆)

]

+ E

[∫ ∞

Zk+1

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
∣
θ(∆)

]

= min
π∈Πonline

E

[∫ Zk+1

a

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
∣
θ(∆′)

]

+ E

[∫ ∞

Zk+1

e−α(w−a) p(∆(w))dw

∣
∣
∣
∣
∣
∣
θ(∆′)

]

=Jα(∆′, ℓ),

for any ∆′ ≥ ∆ and θ(∆) := (Zk = ta−∆, Zk+1 ≥ ta, E(ta) = ℓ) where the inequal-

ity follows from the fact that p(·) is non-decreasing and the second equality is

due to that, given Zk+1, the integrated values are conditionally independent from

Zk.
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Accordingly, Jα(∆, ℓ) = Jα(0, ℓ−1) for any ℓ ∈ {0, 1, 2, .., B} and ∆ ≥ ρα(ℓ). Therefore,

the stopping rule in (5.33) is equivalent to:

Zk+1 = inf{t ≥ Zk = a : ∆(t) ≥ ρα(E(t))}, (5.35)

for ℓ ∈ {0, 1, 2, .., B}.

We showed that the stopping rule in (5.35) gives the optimal stopping time Zk+1 for a

policy solving (5.19). Now, we can start discussing Step 2 in order to show that the

optimal stopping rule with the same structure also gives a solution to (5.5).

In this part (Step 2) of the proof, we will consider the optimal stopping rules in (5.35)

while the discount factor α is vanishing to zero. Notice that the policy solving (5.19)

is identified by ρα(ℓ) due to (5.35). Let πα and ∆πα(t) be a policy obeying (5.35) and

solving (5.19) for discount factor α and the age at time t for that policy, respectively.

We will show the following

limβ↓0 limt f→∞

∫ t f

0 E

[

p(∆πβ (t))
]

dt

t f
= infπ∈Πonline lim supt f→∞

∫ t f

0 E[p(∆π(t))]dt

t f
, (5.36)

which implies that for any {βn}n≥1 ↓ 0 sequence, πβn
converges to the policy solving

(5.5).

To prove the equivalence in (5.36), we will use Feller’s Tauberian theorem [84] (also

see the Tauberian theorem in [85]) which can be stated as follows:

Theorem 11 (Feller 1971) Let f (t) be a Lebesgue-measurable, bounded, real func-

tion. Then,

lim inf
t f→∞

∫ t f

0
f (t)dt

t f

≤ lim inf
α↓0

α

∫ t f

0
e−α(t−a) f (t)dt

≤ lim sup
α↓0

α

∫ t f

0
e−α(t−a) f (t)dt ≤ lim sup

t f→∞

∫ t f

0
f (t)dt

t f

. (5.37)

Moreover, if the central inequality is an equality, then all inequalities are equalities.

This theorem can be applied for the function f (t) = E

[

p(∆πβ(t))
]

where β > 0 4. To

simplify the inequalities for this case, let’s define a function Jα;β(∆(a), E(a)) for β > 0

4 Note that the function E

[

p(∆πβ (t))
]

is Lebesgue-measurable (as p(·) is non-decreasing) and bounded (as Xks
are bounded w.p.1 for a policy obeying (5.35)).

78



such that:

Jα;β(∆(a), E(a)) :=

∫ ∞

a

e−α(t−a)
E

[

p(∆πβ(t))
∣
∣
∣∆(a), E(a)

]

dt. (5.38)

Note that for a = 0:

Jα;β(0, 0) :=

∫ ∞

a

e−α(t−a)
E

[

p(∆πβ(t))
]

dt.

Accordingly, we can apply Feller’s Tauberian theorem for f (t) = E

[

p(∆πβ(t))
]

when

a = 0 giving:

lim inft f→∞

∫ t f

0 E

[

p(∆πβ (t))
]

dt

t f
≤ lim infα↓0 αJα;β(0, 0) ≤

lim supα↓0 αJα;β(0, 0) ≤ lim supt f→∞

∫ t f

0 E

[

p(∆πβ (t))
]

dt

t f
.

(5.39)

We can show that the inequalities in (5.39) are satisfied with equality for any πβ with

β > 0 as limt f→∞

∫ t f

0 E

[

∆πβ (t)
]

dt

t f
exists for any πβ with β > 0. To see this, consider the

following lemma:

Lemma 4 For α > 0 and {Zk+1, k ≥ 0} with Zk+1 as in (5.35), the following holds:

lim
t f→∞

∫ t f

0
E

[

p(∆πα(t))
]

dt

t f

=
limn→+∞

1
n

∑n
k=0 E[p(Xk)]

limn→+∞
1
n

∑n
k=0 Xk

w.p.1. (5.40)

Proof. The proof of Lemma 3 showed that for Zk = a and optimal stopping time

solving (5.22) it is true that Pr(Xk+1 ≥ x) ≤ Pr(tc − ta + YB ≥ x) where tc is the

deterministic time defined in (5.29) and YB is an Erlang distributed with parameter B

which obeys (5.7). Accordingly, E[p(Xk+1)] is finite as E[p(αJα(0, B) + YB)] is finite

for α > 0. On the other hand, limn→+∞
1
n

∑n
k=0 Xk < ∞ w.p.1 and limn→+∞

1
n

∑n
k=0 Xk >

1
µH

w.p.1 due to the energy causality constraint. Therefore, we can apply the derivation

steps in [86, Theorem 5.4.5] and obtain (5.40). This completes the proof. �

Lemma 4 and (5.39) imply the following for for a = 0 and β > 0:

lim
α↓0

αJα;β(0, 0) = lim
t f→∞

∫ t f

0
E

[

p(∆πβ(t))
]

dt

t f

. (5.41)
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Now, consider an arbitrary online policy π for whichE
[

p(∆π(t))
]

is Lebesgue-measurable

and bounded, then apply Feller’s Tauberian theorem for f (t) = E
[

p(∆π(t))
]

giving the

following inequality when ta = 0:

lim supα↓0 α
∫ ∞

0
e−α(t−a)

E
[

p(∆π(t))
]

dt ≤ lim supt f→∞

∫ t f

0 E[p(∆π(t))]dt

t f
. (5.42)

Note that for α > 0, Jα;β(0, 0) is minimized for α = β, hence:

limβ↓0 limα↓0 αJα;β(0, 0) = infβ>0 limα↓0 αJα;β(0, 0) ≤

lim supα↓0 α
∫ ∞

0
e−α(t−a)

E
[

p(∆π(t))
]

dt. (5.43)

Combining (5.41), (5.42) and (5.43), we get (5.36). This completes the proof.

5.5.2 The Proof of Theorem 6

Theorem 6 follows from the proof of Theorem 5. To prove the theorem it is sufficient

to show that for any α > 0, ρα(ℓ) (see (5.34)) is non-increasing in ℓ as this guaran-

tees that the monotonicity of optimal thresholds holds for any sequence of α values

that vanishes to zero. To see this, consider the following lemma and the argument

provided below its proof:

Lemma 5 For J(·, ·) is the function defined in (7.29), Jα(0, ℓ) − Jα(0, ℓ + 1) is non-

increasing in ℓ ∈ {0, 1, ..., B − 1} for any α ≥ 0.

Proof.

First, consider the alternative formulation of Jα(r, ℓ + 1) in below:

Jα(r, ℓ + 1) = min
π∈Πonline

ea
E[E

[∫ ∞

a

e−αt p(∆(t))dt

∣
∣
∣
∣
∣
Zk+1,∆(ta) = r, E(ta) = ℓ + 1

]

],

where the outer expectation is taken over Zk+1.

Let

Kr,ℓ+1(z, σ) := Pr (Zk+1 = z,H(z) − H(a) = σ|∆(ta) = r, E(ta) = ℓ + 1)
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be the joint distribution of Zk+1 ∈ Ma and the energy harvested during [a, z]. Then,

we can write Jα(r, ℓ + 1) as follows:

Jα(r, ℓ + 1) = min
Zk+1∈Ma

∞∑

σ=0

∫ ∞

ta

Kr,ℓ+1(z, σ)ea

[∫ z

a

e−αt p(∆(t))dt + e−αzJα(0,min{ℓ + σ, B − 1})
]

dz.

(5.44)

Similarly,

Jα(r, ℓ + 2) = min
Zk+1∈Ma

∞∑

σ=0

∫ ∞

ta

Kr,ℓ+2(z, σ)ea

[∫ z

a

e−αt p(∆(t))dt+e−αzJα(0,min{ℓ+1+σ, B − 1})
]

dz.

(5.45)

Now, let K∗
r,ℓ+2(z, σ) be the distribution corresponding to the update time Zk+1 ∈ Ma

that is optimal in (5.45), which means:

Jα(r, ℓ + 2) =
∞∑

σ=0

∫ ∞

ta

K∗r,ℓ+2(z, σ)ea

[∫ z

a

e−αt p(∆(t))dt + e−αzJα(0,min{ℓ+1+σ, B − 1})
]

dz.

(5.46)

Clearly, K∗
r,ℓ+2(z, σ) is not necessarily the joint distribution corresponding the update

time Zk+1 ∈ Ma that is optimal for (5.44), hence:

Jα(r, ℓ + 1) ≤
∞∑

σ=0

∫ ∞

ta

K∗r,ℓ+2(z, σ)[

∫ z

a

e−α(t−a) p(∆(t))dt + e−α(z−a) Jα(0,min{ℓ + σ, B − 1})]dz.

(5.47)

Combining (5.46) and (5.47) gives:

Jα(r, ℓ + 1) − Jα(r, ℓ + 2) ≤
∞∑

σ=0

∫ ∞

a

K∗r,ℓ+2(z, σ)e−α(z−a)×

[Jα(0,min{ℓ + σ,B − 1})−Jα(0,min{ℓ + 1 + σ,B − 1})]dz. (5.48)

which implies :

Jα(r, ℓ + 1) − Jα(r, ℓ + 2) ≤ maxσ∈{0,1,..,B−ℓ} Jα(0,min{ℓ + σ,B − 1})−Jα(0,min{ℓ+1+σ,B − 1})

Now, consider the case when r = 0 and ℓ = B − 2 for (5.48):

Jα(0, B − 1) − Jα(0, B) ≤
∞∑

σ=0

∫ ∞

a

K∗r,ℓ+2(z, σ)e−α(z−a)[Jα(0,min{B −2+σ,B − 1})−

Jα(0,min{B−1+σ,B − 1})]dz, (5.49)
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which implies:

Jα(0, B − 1) − Jα(0, B) ≤ Jα(0, B − 2) − Jα(0, B − 1). (5.50)

Suppose that the inequality below is true for j ≥ ℓ + 1:

Jα(0, j + 1) − Jα(0, j + 2) ≤ Jα(0, j) − Jα(0, j + 1). (5.51)

Then, we have:

Jα(0, ℓ + 1) − Jα(0, ℓ + 2) ≤

≤
∞∑

σ=0

∫ ∞

a

K∗r,ℓ+2(z, σ)e−α(z−a)×

[Jα(0,min{ℓ + σ,B − 1})−Jα(0,min{ℓ + 1 + σ,B − 1})]dz

≤
∫ ∞

a

K∗(z, 0)e−α(z−a)[Jα(0, ℓ) − Jα(0, ℓ + 1)]dz +

∞∑

σ=1
∫ ∞

a

K∗r,ℓ+2(z, σ)e−α(z−a)[Jα(0, ℓ + 1) − Jα(0, ℓ + 2)]dz

≤ Jα(0, ℓ) − Jα(0, ℓ + 1). (5.52)

This means that the inequality (5.51) is also true for j = ℓ so is for any j = 0, 1, ..., B−
2 by induction. Combining this and (5.49):

Jα(r, ℓ + 1) − Jα(r, ℓ + 2) ≤ Jα(0, ℓ) − Jα(0, ℓ + 1), (5.53)

for α ≥ 0, r ≥ 0 and �

Lemma 5 shows that ρα(ℓ) is non-increasing in ℓ for α > 0. It is sufficient to consider

(5.53) when r = ρα(ℓ):

0 = Jα(0, ℓ − 1) − Jα(ρα(ℓ), ℓ) ≤ Jα(0, ℓ − 2) − Jα(ρα(ℓ), ℓ − 1), (5.54)

which implies ρα(ℓ − 1) ≥ ρα(ℓ) combining

Jα(0, ℓ − 2) − Jα(ρα(ℓ − 1), ℓ − 1)

and that Jα(r, ℓ−1) is non-decreasing 5 in r. Accordingly, the optimal policies solving

(5.17) are monotone threshold policies, i.e., πα ∈ ΠMT for any α > 0.

5 This fact is provided in the proof of Theorem 5.
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5.5.3 The Proof of Lemma 1

Let τB+1 = 0. Then, consider:

∂

∂τi

E

[

X2
]

=
∂

∂τi

∫ ∞

0
2x Pr(X ≥ x)dx

=
∂

∂τi

B∑

i=0

∫ τi

τi+1

2x Pr(X ≥ x)dx

= 2
∂

∂τi

[∫ τi

τi+1

x Pr(X ≥ x)dx +

∫ τi−1

τi

x Pr(X ≥ x)dx

]

= 2τi

∂

∂τi

∫ τi−1

τi+1

Pr(X ≥ x)dx

= 2τi

∂

∂τi

B∑

i=0

∫ τi

τi+1

Pr(X ≥ x)dx = 2τi

∂

∂τi

E [X] ,

for i = 0, 1, ..., B.

5.5.4 Useful Results for Asymptotic Properties

Lemma 6, 7 and 8 provide some useful results that combine ergodicity properties and

renewal-reward theorem for a DTMC with transition probabilities in (5.9).

Lemma 6 The DTMC with the transition probabilities in (5.9) is ergodic for a mono-

tone threshold policy where τ1 is finite.

Proof. Consider an energy state j in [0, B − 1]. We will show that any other energy

state i is reachable from j in at most B− 1 steps with a positive probability. For i ≥ j,

the higher energy state i is reachable from j in one step with a positive probability as

for i = B − 1, Pr(YB− j ≤ τB−1) is strictly positive and for j ≤ i < B − 1:

Pr(Y1+i− j ≤ τi) − Pr(Y2+i− j ≤ τi+1) ≥

Pr(Y1+i− j ≤ τi+1) − Pr(Y2+i− j ≤ τi+1) > 0,

as τi+1 ≤ τi and i − j ≥ 0.
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Similarly, the energy state i = j − 1 for j = 1, ...., B − 1 can be reached from j with

a probability 1 − Pr(Y1 ≤ τ j) which is strictly positive as τ j is finite. This means that

any state i < j can be reached from j in at most B−1 steps with a positive probability.

�

Lemma 7 For monotone threshold policies with finite τ1, the following is true:

lim
n→+∞

1

n

n∑

k=0

Xk =

B−1∑

j=0

E
[

X | E = j
]

Pr(E = j) w.p.1. (5.55)

lim
n→+∞

1

2n

n∑

k=0

E[X2
k ] =

1

2

B−1∑

j=0

E

[

X2 | E = j
]

Pr(E = j), (5.56)

where Pr(E = j) is the steady-state probability for energy state j, E
[

X | E = j
]

,

E
[

Xk | E(Zk) = j
]

and E

[

X2 | E = j
]

, E

[

X2
k
| E(Zk) = j

]

.

Proof. Consider:

1

n

n∑

k=0

Xk =
1

n

B−1∑

j=0

∑

k∈[0,n]
E(Zk)= j

Xk =
1

n

B−1∑

j=0

L j∑

ℓ=0

Xℓ; j,

where L j is the number of ks in [0, n] such that E(Zk) = j and Xℓ; j is a r.v. with the

CDF Pr(Xℓ; j ≤ x) = Pr(Xk ≤ x | E(Zk) = j) for some k.

Note that the sequence X0; j, X1; j, ..., XL j; j is i.i.d. for any j and their mean is bounded

as all thresholds are finite, hence:

lim
L j→∞

1

L j

L j∑

ℓ=0

Xℓ; j = E
[

X | E = j
]

,w.p.1.

Due to the ergodicity of E(Zk)s (Lemma 6):

lim
n→∞

L j

n
= Pr(E = j),w.p.1.

Therefore,

lim
n→∞

1

n

n∑

k=0

Xk = lim
n→∞

B−1∑

j=0

L j

n
(

1

L j

L j∑

ℓ=0

Xℓ; j),

=

B−1∑

j=0

E
[

X | E = j
]

Pr(E = j),w.p.1.
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Similarly,

lim
n→∞

1

n

n∑

k=0

E[X2
k ] = lim

n→∞

B−1∑

j=0

L j

n
(

1

L j

L j∑

ℓ=0

X2
ℓ; j)

=

B−1∑

j=0

E

[

X2 | E = j
]

Pr(E = j),w.p.1.

�

Lemma 8 For a threshold policy where τ1 is finite, the average age ∆̄ is finite (w.p.1)

and given by the following expression.

∆̄ =
limn→+∞

1
2n

∑n
k=0 E[X2

k
]

limn→+∞
1
n

∑n
k=0 Xk

w.p.1. (5.57)

Proof. The proof is a generalization of Theorem 5.4.5 in [86] for the case where Xks

are non-i.i.d. but the limits still exist (w.p.1). When Xks are i.i.d. with E[Xk] < ∞ and

E[X2
k
] < ∞, the convergence (w.p.1) of the limits is guaranteed. �

5.5.5 The Proof of Theorem 7

Theorem 7 follows from the proof of Theorem 5. The proof of Lemma 3 shows that

given that Zk = a is the last update time and E(t′) = B for some t′ > a, the condition

S t = Gt is satisfied for the first time when t ≥ {t′, tc} (see (5.29)). This means that

ρα(B) = αJα(0, B − 1) for ρα(E(t)) in (5.35). Accordingly,

p(τ∗B) = lim
α↓0

ρα(B) = lim
α↓0

αJα(0, B − 1)

= min
π∈Πonline

lim sup
t f→∞

∫ t f

0
E

[

p(∆π(t)) | E(0) = B
]

dt

t f

= p̄π∗ ,

which follows from the application of Feller’s Tauberian theorem (applying Theorem

11 for f (t) = E
[

p(∆π(t)) | E(0) = B
]

). This completes the proof.

5.5.6 The Proof of Theorem 8

By Lemma 8 and Lemma 7, ∆̄ for B = 1 can be computed as follows

∆̄ =
1

2

E

[

X2 | E = 0
]

Pr(E = 0)

E [X | E = 0] Pr(E = 0)
, (5.58)
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where Pr(E = 0) = 1, E
[

X2 | E = 0
]

= τ2
1+ ( 2

µ2
H

+ 2
µH
τ1)e−µHτ1 and E [X | E = 0] = τ1+

1
µH

e−µHτ1 . Accordingly, ∆̄ is given by (5.12). By Theorem 7, τ∗1 = ∆̄π∗ and combining

this with (5.12) results in

µHτ
∗
1 =

1
2 (µHτ

∗
1)2 + e−µHτ

∗
1(µHτ1 + 1)

µHτ
∗
1 + e−µHτ

∗
1

. (5.59)

Solving (5.59) gives that (τ∗1)2 = 2
µH

e−µHτ
∗
1 which means τ∗1 =

1
µH

2W( 1√
2
).

5.5.7 The Proof of Theorem 9

By Lemma 8 and Lemma 7, ∆̄ for B = 2 is the following:

∆̄ =
1

2

E

[

X2 | E = 0
]

Pr(E = 0) + E
[

X2 | E = 1
]

Pr(E = 1)

E [X | E = 0] Pr(E = 0) + E [X | E = 1] Pr(E = 1)
. (5.60)

The probability of being in E = 1, i.e. Pr(E = 1) can be solved using:

Pr(E = 1) =
1∑

j=0

Pr(E(Zk+1) = 1 | E(Zk) = j) Pr(E = j). (5.61)

Combining (5.61) and (5.8),

Pr(E = 1) =
e−µHτ1

1 − e−µHτ1µHτ1
. (5.62)

Now, we can obtain E

[

X2 | E = j
]

, E
[

X | E = j
]

using (5.8). Combining these with

(5.62) and substituting in (5.60) gives (9).

5.5.8 The Proof of Theorem 10

First, we show that τB ≥ ∆̄π∗ is necessary to find a solution to (5.16) with monotonic

non-increasing thresholds. Then, we show that this condition is also sufficient.

The necessity part of the proof follows from the fact that τB = ∆̄π for any solution

of (5.16), as ∆̄π = m1(τ1, τ2, ..., τB)/2m2(τ1, τ2, ..., τB) by Lemma 8 and Lemma 7.

Therefore, by the optimality of ∆̄π∗ , τB ≥ ∆̄π∗ must hold for any solution of (5.16).

Now, we consider the sufficiency part of the proof where it is useful to define a func-

tion φ : [0,∞)B → R as follows:

φ(τB, τB−1 − τB, ..., τ1 − τ2) , 2τBm1(τ1, τ2, ..., τB) − m2(τ1, τ2, ..., τB).
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Using this definition, (5.16) can be written as,

φ(τB, τB−1 − τB, ..., τ1 − τ2) = 0.

We need to show that given τB ≥ ∆̄π∗ , one can find a set of non-negative real num-

bers d1, ...., dB−1 such that φ(τB, dB−1, ..., d1) = 0. Accordingly, τB and d1, ...., dB−1

constitute a solution to (5.16) with monotonic non-decreasing thresholds where τi =

τi+1 + di, for i = 1, ..., B− 1. In order to prove this, let us start with the optimal policy

π∗ = (τ∗1, τ
∗
2..., τ

∗
B) where we know that τ∗B = ∆̄π∗ by Theorem 7. Starting from the

optimal policy π∗, the policy will be modified following the procedure below:

• Phase 1: Modify the policy π(+) = (τ(+)
1 , τ

(+)
2 ..., τ

(+)
B

) from the previous phase to

the policy π(−) = (τ(−)
1 , τ

(−)
2 ..., τ

(−)
B

) so that τ(−)
B
= min{τ(+)

B−1, τB} while τ(−)
i
= τ

(+)
i

,

for i = 1, ..., B − 1. Then, go to Phase 2 with policy π(−).

• Phase 2: Modify the policy π(−) = (τ(−)
1 , τ

(−)
2 ..., τ

(−)
B

) from the previous phase to

the policy π(+) = (τ(+)
1 , τ

(+)
2 ..., τ

(+)
B

) so that τ(+)
B
= τ

(−)
B

while τ(+)
i
= τ

(−)
i
+ x for

i = 1, ..., B − 1 where x > 0 is the solution of the following:

φ(τ(−)
B
, τ

(−)
B−1 − τ

(−)
B
+ x, ..., τ

(−)
1 − τ

(−)
2 + x) = 0. (5.63)

If τ(−)
B
= τB, the procedure stops and (5.63) gives the solution that φ(τB, dB−1, ..., d1) =

0, otherwise go to Phase 1 with policy π(+).

It can be shown that the procedure always stops with a solution that φ(τB, dB−1, ..., d1) =

0. To see this, first observe that (5.63) always has a solution as long as:

φ(τ(−)
B
, τ

(−)
B−1 − τ

(−)
B
, ..., τ

(−)
1 − τ

(−)
2 ) > 0. (5.64)

This is due to the following facts about the function φ(τ(−)
B
, τ

(−)
B−1 − τ

(−)
B
+ x, ..., τ

(−)
1 −

τ
(−)
2 + x): (i) it is a continuous function of x, (ii) it goes to −∞ as x grows.

Next, observe that (5.64) always holds, i.e.,

φ(τ(−)
B
, τ

(−)
B−1 − τ

(−)
B
, ..., τ

(−)
1 − τ

(−)
2 ) = φ(τ(+)

B
, τ

(+)
B−1 − τ

(+)
B
, ..., τ

(+)
1 − τ

(+)
2 )

︸                                   ︷︷                                   ︸

=0 due to the Phase 2 or the initial/optimal policy

+

∫ π(−)

π(+)

dφ,

is positive. This can be seen by considering:

∂φ

∂τB

= 2m1(τ1, τ2, ..., τB) +
B−1∑

j=0

[

2τB

∂

∂τB

E
[

X | E = j
] − ∂

∂τB

E

[

X2 | E = j
]
]

Pr(E = j),
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which follows from the fact that Pr(E = j) does not depend on τB (see (5.9)) and can

be further simplified by Lemma 1, hence:

∂φ

∂τB

= 2m1(τ1, τ2, ..., τB).

Accordingly, we have:

φ(τ(−)
B
, τ

(−)
B−1 − τ

(−)
B
, ..., τ

(−)
1 − τ

(−)
2 ) =

∫ π(−)

π(+) dφ = 2
∫ τ

(−)
B

τ
(+)
B

m1(τ(+)
1 , τ

(+)
2 , ..., τ)dτ > 0,

where the inequality follows from the fact that m1(τ(+)
1 , τ

(+)
2 , ..., τ) being the average

inter-update time is always positive.

Therefore, (5.63) can be always satisfied in Phase 2. Also, as the second smallest

threshold is strictly increased in Phase 2, the smallest threshold can be moved toward

τB in Phase 1. Also, it can be shown that the procedure does not converge any policy

other than the policy that φ(τB, dB−1, ..., d1) = 0. This can be seen considering the

following:

d

dx
m2(τ1 + x, τ2 + x, ..., τ̂B) |x=0

< lim
x→0

lim
n→+∞

1

nx

n∑

k=0

(

E[(Xk + x)2] − E[X2
k ]
)

= lim
n→+∞

2

n

n∑

k=0

E[Xk] = 2m1(τ1, τ2, ..., τ̂B),

hence,

d

dx
φ(τ̂B, τB−1 − τ̂B + x, ..., τ1 − τ2 + x) |x=0 +

d

dx
φ(τ̂B + x, τB−1 − τ̂B − x, ..., τ1 − τ2) |x=0

> 2τ̂B

d

dx
m1(τ1 + x, τ2 + x, ..., τ̂B) |x=0, (5.65)

which implies that the procedure cannot converge to a policy with τ(+)
B

< τB as the

RHS of (5.65) is positive 6 and does not vanish for a finite set of thresholds. Therefore,

as the smallest threshold of the policies modified by the procedure is increased up to

τB, a solution that φ(τB, dB−1, ..., d1) = 0 is eventually reached. This completes the

proof.

6 This follows from the fact that any increase in thresholds causes an increase in the battery overflow proba-
bility which means an increase in the average inter-update duration, i.e, m1(τ1, τ2, ..., τ̂B).
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CHAPTER 6

THE NECESSITY OF TIMELY COMMUNICATION FOR TRACKING AND

NETWORKED CONTROL

6.1 Introduction

The setting and the objective considered in Chapter 5 rely on a common assump-

tion in the related literature of update-based systems: While updates have identical

sampling/communication costs, they capture the status of the source equally well, at

the moment when they are generated. This assumption is reasonable when it is practi-

cally feasible that updates either carry the exact status, i.e., all bits required to describe

the status, or an approximation (quantization) of the status such that updates can be

treated as equally precise samples. On the other hand, the assumption is problematic

when the status is an unstable (or non-stationary) process.

For example, an unstable Markov process can drift arbitrarily far from any reference

point given sufficient time. Accordingly, capturing its exact state or an approximation

with guaranteed precision may require growing 1 amount of resources. Hence, sam-

pling the actual state can be impractical for such a source. One solution is differential

encoding which captures the change in the process rather than its actual state. How-

ever, in that case, the number of bits to describe the change in the unstable process is

likely to grow with time 2. This means that status updates can be more costly as we

wait.

1 In fact, for a practical scenario, one can set a finite horizon and apply a fixed quantizer for the range of
states which can be possibly reached in that horizon, such that each quantization requires a fixed resource, i.e.,
number of bits. However, considering the time evolution of the source, one can see that this solution can be highly
inefficient and more efficient solutions should exist.

2 This is due to that the difference between the unstable process and its sample at a particular time is also an
unstable process, hence it produces entropy with a positive rate.
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The need for differential encoding suggests that the information transmitted for the

status of an unstable Markov process should benefit from earlier transmissions. This

arises another problem when the transmission is prone to errors. This problem is

also due to the process being unstable. That is, any transmission error occurred at

a certain time contributes to an estimate of the process, and because of the positive

feedback in unstable modes of the process, the impact of this contribution may grow

to be significant in long term. Accordingly, past errors should be corrected by new

transmissions to prevent the estimate of the process from diverging away from the

actual state of the process.

The aforementioned observations exhibit the main challenges of designing commu-

nication schemes for monitoring or tracking an unstable stochastic process. While

models of unstable stochastic processes are reasonable under a certain3 regimes, they

appear ubiquitously in many theories. For example, the Wiener process is used to

model the physical diffusion process known as Brownian motion [87], option pricing

in financial analysis [88], phase noise in communication channels [89] and forms a

basis for analysis tools such as Feynman-Kac formula [90]. One important appli-

cation of unstable processes is that they are used to model uncontrolled systems in

control scenarios where the goal of the controller is to stabilize the system. The de-

sign of control and communication schemes for stabilizing systems where observers

and controllers are separated with communication links is the main problem of the

area known as networked control [91].

6.2 Networked Control

6.2.1 Networked Control Problem with a Communication Link

A basic problem of networked control is as follows (see Fig. 6.1). Consider a sensor

which takes measurements (S t) from a dynamical system and encodes its measure-

ments to symbols Xt for communicating with a controller. Then, the controller applies

control inputs (Ut) to stabilize the dynamical system using the information obtained

3 The statistics of an unstable process can grow to infinity. Any model with underlying infinity assumption is
practically questionable yet its model can be understood as a representation under a certain regime.
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from the outputs (Yt) of the communication channel. The sensor, the encoder and the

controller should agree with the causality structure of the setting.

Dynamical

System
Sensor Encoder Channel

Observer

Controller

St Xt Yt

Ut

Figure 6.1: An illustration of the basic networked control setting.

This problem differs from conventional control problems due to the communication

channel between the observer and the controller, and the limitedness of this commu-

nication channel poses the main challenge. In other words, together with control ob-

jectives, the problem is characterized by the limitations on the communication chan-

nel. This problem of stabilizing a dynamical system with limited communication

has been extensively studied from stochastic control [92–100], rate-distortion the-

ory [101–105] and joint source-channel coding [106] perspectives for linear systems

and from the perspectives of metric and topological entropy for non-linear dynamical

systems [107]. Some of these studies actually considers tracking problems relying on

the fact that the separation principle applies to the considered scenario.

When separation principle, which suggests that optimal estimation and optimal con-

trol can be decoupled, applies, then the networked control problem can be studied

through a dual problem which is about the tracking of the dynamical system (see Fig.

6.2). This tracking problem can be understood from the perspective of information

theory as it considers the flow of information from measurements (S t) to estimates

(Ŝ t).

Dynamical

System
Sensor Encoder Channel

Observer

Estimator

St Xt Yt Ŝt

Figure 6.2: An illustration of the tracking problem setting.
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6.2.2 Causal Source Coding of Unstable Processes

A significant amount of research has focused on studying minimum communication

rate requirements for stabilizing dynamical systems through noiseless channels. Find-

ing such requirements is essentially related to the causal source coding of an unstable

process that represents the dynamical system.

Considering the Wiener process in particular, a source coding theorem was pro-

vided in [108]. The difficulty of source coding for general non-stationary autoregres-

sive processes was observed in [109] where only a finite-horizon result was shown.

The rate-distortion function for non-stationary Gaussian autoregressive processes was

studied in [110]. These studies and other related studies considered the problem from

the perspective of information theory usually for scalar sources.

From the perspective of control theory, a practically important case is the stabilization

of multidimensional linear systems. In this context, [93] suggested and studied adap-

tive quantizers for the stabilization of a multidimensional linear system. It was shown

that adaptive quantizers which “zoom-in" and “zoom-out" following the system evo-

lution can stabilize the system asymptotically. However, the considered scheme tar-

geted the asymptotic stability only rather than using the minimum communication

rate needed. In [94] and [95], a lower bound on the minimum rate needed for stabi-

lizing a multidimensional linear system was given and shown to be tight when only

an average rate constraint is considered [95]. The result showed that the minimum

rate is the sum of logarithms of unstable eigenvalues of the system evolution matrix

which is independent from the statistics of the process and observer noises. In [96],

this rate bound was generalized for different stability criteria. Similar rate bounds

were studied for channels with packet losses in [97, 102, 111] and for links with ran-

dom communication delays in [104]. In [102] and [105], non-asymptotic bounds on

the minimum rate requirement were provided. A rate-cost function, considering both

system distortion and control cost, was formulated in [103].
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6.2.3 Anytime Reliability and Capacity

Channel requirements for tracking or stabilizing unstable processes can be more de-

tailed than rate constraints. This side of the problem was considered in [112], which

introduced the notions of anytime reliability and anytime capacity. In particular, the

anytime reliability is defined as follows:

Definition 16 Suppose {Bt}t=1,2,... is a fixed-rate binary source of rate R. Then, an

encoder-decoder pair is said to be (α,R)-anytime reliable if we have the following

for some K < ∞

Pr
(

Bτ , B̂τ|t
)

≤ K2−α(t−τ) ,∀t, (6.1)

where B̂τ|t is an estimate of Bτ based on information available up to t.

Then, we have the following definition for the α-anytime capacity of a channel:

Definition 17 The α-anytime capacity of a channel is the maximum R such that there

exists an (α,R)-anytime reliable encoder-decoder pair over the channel.

It was shown that anytime capacity provides the necessary and sufficient condition on

the rate of an unstable scalar Markov source that can be tracked in the finite mean-

squared error sense. Accordingly, it was claimed that anytime capacity, which is

upper bounded by Shannon capacity, is the correct figure of merit to measure the

quality of a channel on the purpose of tracking an unstable source and also control-

ling through an unreliable channel [113]. In that study, anytime capacity was shown

to be strictly positive for memoryless channels, however a closed-form expression

for anytime capacity was not shown in similar way that Shannon capacity can be ex-

pressed as an optimization of mutual information. Yet, anytime capacity of particular

channels such as erasure channels with feedback [114] and Markov channels [113]

were derived.
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6.2.4 Anytime Reliable Codes

In [112], the existence of anytime reliable codes on memoryless channels was shown

4 using a random coding argument considering random ensembles of infinite tree

codes. Anytime reliable codes on erasure channels was shown to exist with high

probability among random ensembles of linear causal codes with time-invariance

property in [116,117]. In [106], an error-exponent was provided for the same ensem-

ble of linear codes and particularly under sequential decoding to guarantee feasible

expected complexity. Convolutional extensions of low density parity check (LDPC)

codes [118, 119], spatially coupled codes [120] and causal codes based on chaotic

maps [121] were also shown to have anytime reliability.

4 In fact, this result was shown in [115, Theorem 7] where “forced" decoding of input symbols at arbitrary
times was considered.
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CHAPTER 7

ON THE TRACKABILITY OF STOCHASTIC PROCESSES

In this chapter, we will consider the requirements for tracking an unstable process

through a noisy communication channel. As we discussed in Chapter 6, such require-

ments are particularly relevant in network control setting with a communication link.

In networked control, an important stability condition is the m-th moment stability of

the system. In accordance with this condition, the study will be centered on a defini-

tion of reliable estimation which we refer as order m moment trackability. Based on

this definition, we study the estimation of integer-valued 1 stochastic processes which

may represent linear or non-linear discrete-time systems.

We will show two moment-entropy inequalities for integer-valued random variables

inspired from the inequality for the moments of guessing random variables in [122].

One of these bounds is for bounded integer-valued random variables (see Lemma

9) while the other (see Lemma 10) is valid for integer-valued random variables that

do not necessarily have finite support. Based on these moment-entropy inequalities,

we will provide necessary conditions (see Theorem 12 and Theorem 13) for tracking

integer-valued sources using causal information. Corollaries of Theorem 12 are upper

bounds on anytime capacity based on Gallager’s reliability function and the Gartner-

Ellis limit of the information density between channel inputs and outputs. Then,

we will provide sufficient conditions for tracking integer-valued sources using causal

information in Theorem 14 and Theorem 15, and also an achievable bound on the

estimation error, which can be used to obtain sufficient conditions for tracking, in

Theorem 16.

1 Our results are for integer-valued sources, however, note that this is not restrictive for digital systems where
data is represented using integers.
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7.1 System Model

In this section, we will describe the general setting of trackability. Consider the prob-

lem of tracking a scalar discrete-time and discrete-valued stochastic process {Xt}t=1,2,...

based on causal knowledge of another stochastic process {Yt}t=1,2,.... At any time t, the

estimator generates a guess X̂t = ft(Y1:t) of the current value Xt, where ft(·) is a func-

tion and Y1:t = (Y1, Y2, . . . , Yt) is the information that is available at time t.

Definition 18 For any m > 0, {Xt}t=1,2,... is said to be order m moment trackable based

on {Yt}t=1,2,... if there exists a family of functions { ft(·)}t=1,2,... such that X̂t = ft(Y1:t) and

sup
t>0

E

[

|Xt − X̂t|m
]

< ∞. (7.1)

The first goal is to find necessary conditions and sufficient conditions for the m-th

moment trackability of process {Xt}t=1,2,... based on the process {Yt}t=1,2,.... In [112],

the anytime capacity of a noisy channel was shown to be a necessary and sufficient

quality measure of a channel to allow order m moment trackability of a Markov

source {S t}t=1,2,... based on the channel output {Yt}t=1,2,..., The second goal is to find

new bounds of the anytime capacity, based on the trackability results.

7.2 Main Results

7.2.1 Necessary Conditions for Trackability

We provide two necessary conditions for order m moment trackability, which are

expressed in terms of Rényi entropy and information density. The Rényi entropy of

order α, where α ≥ 0 and α , 1, is defined as [123]

Hα(X) =
1

1 − α logE
[

PX(X)α−1
]

(7.2)

=
1

1 − α log





∑

x∈X
PX(x)α



 . (7.3)

Given joint distribution PXY , the information density function is defined as [124]

i(x; y) = log

[

PXY(x, y)

PX(x)PY (y)

]

. (7.4)
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The first necessary condition that we present is as follows:

Theorem 12 If {Xt}t=1,2,... is an integer-valued stochastic process that satisfies

|Xt| ≤ ct, (7.5)

lim
t→∞

1

t
log(log(ct)) = 0, (7.6)

then {Xt}t=1,2,... is order m moment trackable based on {Yt}t=1,2,..., where Yt ∈ Y and

|Y| < ∞, only if the following inequality holds, for all ρ ∈ (0,m] and q > ρ + 1,

lim inf
t→∞

− 1

ρt
logE

[

E

[

e−
ρ

q
i(Xt;Y1:t)

∣
∣
∣
∣Y1:t

]q]

≥ lim sup
t→∞

1

t
H q−1

q−ρ−1
(Xt). (7.7)

Proof. See Appendix 7.3.1. �

The proof of Theorem 12 uses the following moment-entropy inequality for the Rényi

entropy, which is inspired by Theorem 1 in [122].

Lemma 9 If X is an integer-valued random variable that takes values from the set

X = {−M−, . . . ,−1, 0, 1, . . . , M+} where M− and M+ are positive integers, then for all

ρ ≥ 0

E[|X|ρ] + 1 ≥ [

3 + log(M−M+)
]−ρ

e
ρH 1

1+ρ
(X)
. (7.8)

Proof. See Appendix 7.3.2. �

Lemma 9 requires that M− and M+ are finite. As a result, Theorem 12 only applies

to stochastic processes that satisfy (7.5) and (7.6). Next, we will provide a neces-

sary condition for the trackability of unbounded stochastic processes in Theorem 13,

which is based on the following moment-entropy inequality.

Lemma 10 If X is an integer-valued random variable, then for all ρ ∈ (0,m)

E[|X|m] + 1 ≥
[

1 + 2ζ

(

m

ρ

)]−ρ

e
ρH 1

1+ρ
(X)
, (7.9)

where ζ(·) is the Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
. (7.10)
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Proof. See Appendix 7.3.3. �

Theorem 13 An integer-valued stochastic process {Xt}t=1,2,... is order m moment track-

able based on {Yt}t=1,2,... , where Yt ∈ Y and |Y| < ∞, only if (7.7) holds for all

ρ ∈ (0,m) and q > ρ + 1.

Proof. The proof is identical to the proof of Theorem 12, except that it uses Lemma

10 instead of Lemma 9. Note that ζ(m
ρ

) is finite for all ρ ∈ (0,m). �

Theorem 13 requires a weaker condition than Theorem 12. Accordingly, the result

of Theorem 13 is weaker than that of Theorem 12. For this, notice that ρ = m is not

allowed in Theorem 13.

7.2.2 Upper Bounds of Anytime Capacity

Now, we show that (7.7) implies two inequalities that provide upper bounds on any-

time capacity. First one can be expressed in terms of Gallager’s reliability function

which is defined as [125]

E0(ρ, PY |X, PX) = − log
∑

y∈Y





∑

x∈X
PX(x)[PY |X(y|x)]

1
1+ρ





1+ρ

. (7.11)

In [126], an alternative expression for Gallager’s reliability function was used as fol-

lows

E0(ρ, PY |X, PX) = − logE

[

E

[

e−
1

1+ρ i(X̄;Y)
∣
∣
∣
∣Y

]1+ρ
]

, (7.12)

where PXYX̄(x, y, x̄) = PX(x)PY |X(y|x)PX(x̄) is the joint density for X, Y and X̄.

We find the following expression of Gallager’s reliability function convenient, due to

its connection with the LHS of (7.7).

E0(ρ, PY |X, PX) = − logE

[

E

[

e−
ρ

1+ρ i(X;Y)
∣
∣
∣
∣Y

]1+ρ
]

. (7.13)

Using (7.13), one can observe that the LHS of (7.7) becomes the Gallager’s reliability

function as q reduces to ρ + 1. Based on this observation, we derive the following

corollary of Theorem 12:
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Corollary 2 Suppose that S t → X1:t → Y1:t is a Markov chain for each t. If {S t}t=1,2,...

is an integer-valued stochastic process that satisfies

|S t| ≤ ct, (7.14)

lim
t→∞

1

t
log(log(ct)) = 0, (7.15)

then {S t}t=1,2,... is order m moment trackable based on {Yt}t=1,2,..., where Yt ∈ Y and

|Y| < ∞, only if

lim inf
t→∞

1

mt
E0(m, PY1:t |X1:t , PX1:t)≥ lim sup

t→∞

1

t
H∞(S t). (7.16)

Proof. Apply Theorem 12 for S t considering ρ = m and the limit that q reduces to

ρ + 1 yields

lim inf
t→∞

1

mt
E0(m, PY1:t |S t

, PS t
) ≥ lim sup

t→∞

1

t
H∞(S t). (7.17)

Observe that (7.17) implies (7.16) as E0(m, PY1:t |S t
, PS t

) is upper bounded by E0(m, PY1:t |X1:t , PX1:t)

due to data-processing inequality for Rényi divergence (see [126, Theorem 5]). �

Corollary 2 can be related to the α-anytime capacity of a channel (see [127, Definition

3.2]) when we consider the following communication system. Let Y1:t be the outputs

of a channel given by PY1:t |X1:t(y1:t |x1:t) with X1:t being inputs that encode a source

{S t} 2. As the outputs of the channel depend on the source process only through the

channel inputs, the system follows S t → X1:t → Y1:t. For ease of analysis, we will

consider the type of source representing a stream of bits with fixed rate as follows:

Definition 19 For R being a positive integer, a discrete-time process {S t} is said to

be a rate-R source if it obeys:

S t+1 = 2RS t +Wt, (7.18)

where {Wt} is an i.i.d. process such that Wt is uniformly chosen from the set
{

0, 1, ...., 2R − 1
}

,

and S 0 = 0.

Note that a rate-R source satisfies |S t| ≤ 2Rt almost surely and H∞(S t) = Rt log(2) as it

has a uniform distribution for all t. Accordingly, we can apply Corollary 2 to a rate-R

source and show the following
2 A causal and general communication system as such is given by PY1:t |X1:t (y1:t |x1:t) =

∏t
t′=1 PYt′ |X1:t′ ,Y1:t′−1

(yt′ |x1:t′ , y1:t′−1) and PX1:t |S 1:t (x1:t |s1:t) =
∏t

t′=1 PXt′ |S 1:t′ (xt′ |s1:t′ ) if we describe the encoding
in terms of conditional probabilities for ease of description.
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Corollary 3 If Cany(α) is the α-anytime capacity of a discrete memoryless channel

(DMC) without feedback, R is an positive integer, m > 0 is an arbitrary positive

number, and

R log(2) ≤ Cany(mR), (7.19)

then

R log(2) ≤ E0(m)

m
, (7.20)

where E0(m) = supPX
E0(m, PY |X, PX) for given transition probabilities PY |X of the

channel.

Proof. First suppose that (7.19) holds which means a rate-R source is order m moment

trackable though a DMC with anytime capacity Cany(α) (see [127, Theorem 3.3]). On

the other hand, if a rate-R source is order m moment trackable through a DMC, the

following should also hold:

lim inf
t→∞

1

mt
E0(m, PY1:t |X1:t , PX1:t) ≥ R log(2), (7.21)

which follows from Corollary 2. Moreover, this implies (7.20) as E0(m, PY1:t |X1:t , PX1:t) ≤
tE0(m) (see [125, Theorem 5]) for DMCs without feedback. �

A result that is similar to Corollary 3 was shown (see [114, Theorem 3.3.2 ]) for

symmetric DMCs with feedback based on sphere packing exponent. On the other

hand, Corollary 3 holds both for asymmetric and symmetric DMCs without feedback.

The second inequality that we provide can be obtained 3 from (7.16) while consider-

ing a rate-R source for S t. Accordingly, when Y1:t are the outputs of a channel with

inputs X1:t that encode a rate-R source, the source is order m trackable based on Y1:t

only if:

lim inf
t→∞

1

ρt
logE

[

eρi(X1:t;Y1:t)
]

≥ R log(2). (7.22)

In fact, the LHS of (7.22) is the Gartner-Ellis limit of i(X1:t; Y1:t) which provides

another upper bound for anytime capacity if we use (7.22) instead of (7.21) in the

proof of Corollary 3. Also, observe that both (7.21) and (7.22) can be applied for

channels other than DMCs without feedback.

3 See Appendix 7.3.6 for the proof.
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7.2.3 Sufficient Conditions for Trackability

Next, we provide two sufficient conditions for order m moment trackability. The first

one is based on MAP estimators.

Definition 20 An estimator X̂
(MAP)
t is said to be a maximum a posteriori (MAP) esti-

mator if

X̂
(MAP)
t = arg max

x∈X
PXt |Y1:t(x|Y1:t), (7.23)

with ties in the maximization broken arbitrarily.

We will use the following lemma to derive a sufficient condition for order m moment

trackability based on MAP estimators:

Lemma 11 For an integer-valued stochastic process {Xt}, a discrete-valued stochas-

tic process {Yt} and d(·, ·) being a distance metric such that d : Z ×Z→ Z
≥0 we have

the following for arbitrary real numbers ρ > 0 and s > 1:

E

[

d(Xt, X̂
(MAP)
t )

]

≤ ζ(s)
∑

y1:t

PY1:t (y1:t)
∑

x

[PXt |Y1:t(x|y1:t)]
1
ρ+1





∑

x′

[PXt |Y1:t(x′|y1:t)]
1
ρ+1 d(x, x′)

s
ρ





ρ

,

(7.24)

Proof. See Appendix 7.3.4 �

A sufficient condition for order m moment trackability using Lemma 11 is as follows:

Theorem 14 Let

τ(x, y1:t) = E

[

PXt |Y1:t(Xt|Y1:t)
− m

m+1 |Xt − x|s | Y1:t = y1:t

]

, (7.25)

where s > 1 is an arbitrary real number and m is an integer. Then, the integer-valued

stochastic process {Xt}t=1,2,... is order m moment trackable using {Yt}t=1,2,... if

sup
t>0

E

[

τ(Xt, Y1:t)
mPXt |Y1:t(Xt|Y1:t)

− m
m+1

]

< ∞. (7.26)

Proof. Apply Lemma 11 for d(x, x′) = |x − x′|m and ρ = m, then observe that

E

[∣
∣
∣Xt − X̂

(MAP)
t

∣
∣
∣
m
]

≤ ζ(s)E
[

τ(Xt, Y1:t)
mPXt |Y1:t(Xt|Y1:t)

− m
m+1

]

. (7.27)
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In addition to MAP estimators, we consider another type of estimators which are

defined below:

Definition 21 For ρ > 0 being an arbitrary real number, let {X̂(ρ)
t (Y1:t)} be a family

of estimators such that X̂
(ρ)
t (y1:t) is uniformly chosen from the setAt(ρ, y1:t, Jt(ρ, y1:t))

where

At(ρ, y1:t, c) =
{

x :
PXt |Y1:t(x|y1:t)

PXt |Y1:t(x′|y1:t)
≥ c|x − x′|ρ,∀x′

}

(7.28)

and

Jt(ρ, y1:t) = sup{c ≥ 0 : At(ρ, y1:t, c) , ∅}. (7.29)

Observe that, as opposed to MAP estimators, the estimator X̂
(ρ)
t has a notion of dis-

tance and it requires that a possible value to be less likely proportional with its dis-

tance to the estimate. This requirement is natural as more likely values cluster around

the estimate value. Accordingly, considering the family of estimators {X̂(ρ)
t } yields

Theorem 15 If p > 1 and s > 1 are arbitrary real numbers, and m is a positive inte-

ger, then, the integer-valued stochastic process {Xt}t=1,2,... is order m moment trackable

based on {Yt}t=1,2,... if

sup
t>0

E

[

E

[[

PXt |Y1:t(Xt|Y1:t)
− m

m+1 | Y1:t

]m+1
− 1

]p]
1
p

E

[

Jt(sm(m + 1), Y1:t)
mp

(m+1)(1−p)

] p−1
p
< ∞,

(7.30)

where Jt(ρ, y1:t) is as defined in (7.29) .

Proof. See Appendix 7.3.5. �

Note that the first term in (7.30) can be expressed in terms of conditional Rényi 4

entropy when p = 1 while Jt function in the second term can be considered as a

measure for the shape of the conditional distribution PXt |Y1:t(x|Y1:t).

Next, we consider an achievable bound on the estimation error together with a for-

mulation of causal encoding and channel models. Let {S t}t=1,2,..., where S t ∈ Z, be

4 We consider the definition of conditional Rényi entropy that fits our case.
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a discrete-time and discrete-valued process, i.e., the source, to be tracked based on

causal information obtained through a communication channel . Let Xt ∈ X and

Yt ∈ Y be the input and the output of the channel at time t where X and Y represent

the input and the output alphabet of the channel, respectively. Then, {Xt}t=1,2,... and

{Yt}t=1,2,... represent the stochastic processes as the inputs and the outputs of the chan-

nel, respectively. We will consider a causal channel such that the following holds for

all x1:t ∈ Xt, y1:t ∈ Yt and t > 1:

PY1:t |X1:t(y1:t |x1:t) =
t∏

t′=1

PYt′ |X1:t′ ,Y1:t′−1
(yt′ |x1:t′ , y1:t′−1). (7.31)

Accordingly, the conditional probabilities PY1 |X1(y1|x1), PY2 |X1:2,Y1(y2|x1:2, y1) · · · char-

acterize the channel.

An encoder observes {S t}t=1,2,... and applies channel inputs causally such that Xt is

determined based on S 1:t and a codebook c as the output of the function εt;c : Zt → X,

i.e., Xt = εt;c(S 1:t) 5. The family of functions
{

εt;c(·)
}

t=1,2,··· defines the codebook

c. Let ε1:t;c(S 1:t) represent the sequence of coded inputs corresponding to S 1:t, i.e.,

ε1:t;c(S 1:t) = X1:t where Xt = εt;c(S 1:t).

On the other end of the channel, an estimator observes {Yt}t=1,2,... and produce the

estimate Ŝ t for S t based on Y1:t as the output of the function θt : Yt → Z, i.e.,

Ŝ t = θt(Y1:t). The family of functions {θt(·)}t=1,2,··· defines the estimator.

We will consider MAP estimators for S 1:t such that:

Ŝ
(MAP)
1:t = arg max

s1:t∈Zt
PS 1:t |Y1:t(s1:t|Y1:t). (7.32)

For such estimators, we have the following bound on the estimation error:

Theorem 16 For a random causal code encoding the source S 1:t, Ŝ t is the estimate

at time t for the MAP estimator of S 1:t, i.e., Ŝ
(MAP)
1:t in (7.32), d(·, ·) being a distance

metric such that d : Z × Z→ R
≥0 and r ≥ 0, we have

Pr
(

d(S t, Ŝ t) > r
)

≤ E
[

min {1, Mt(r, σ, q, S 1:t)κt(p, σ, Y1:t, S 1:t)}
]

, (7.33)
5 Technically, t
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where

Mt(r, σ, q, S 1:t) = E




I{d(S t ,S̄ t)>r}

(

PS 1:t (S̄ 1:t)
)q(σ−1)

(

PS 1:t (S 1:t)
)qσ

∣
∣
∣
∣S 1:t





1
q

, (7.34)

κt(p, σ, Y1:t, S 1:t) = E





t∏

t′=1

(
PYt′ |X1:t′ ,Y1:t′−1

(Yt′ |ε1:t′;C(S̄ 1:t′), Y1:t′)

PYt′ |X1:t′ ,Y1:t′−1
(Yt′ |ε1:t′;C(S 1:t′), Y1:t′)

)pσ ∣
∣
∣
∣Y1:t, S 1:t





1
p

, (7.35)

where
{

εt;C(·)}t=1,2,··· is a family of encoding functions, S̄ ts are chosen independently

from Y1:t having the same distribution as S t, (p, q) are Hölder conjugates, and σ > 0.

Proof. See Appendix 7.3.7 �

A sufficient condition for order m moment trackability of the source {S t}t=1,2,... or other

achievability results based on long-term estimation objectives can be obtained from

Theorem 16. Besides, we can gain insights from this result through a comparison

with other random coding bounds.

Theorem 16 is partly inspired by the random coding union bound introduced in [128,

Theorem 16] and hence has a similar form 6. Due to this similarity, one can compare

7 an achievable estimation performance in the causal communication setting to an

achievable decoding error performance in the communication setting of finite block-

length channel coding where the codes are not necessarily causal and the information

source, i.e., the message, is fully known to the transmitter beforehand.

Note that the term Mt(r, σ, q, S 1:t) quantifies a property of the source combining the

evolution of its uncertainty with the estimation goal, while the term κt(p, σ, Y1:t, S 1:t)

quantifies the uncertainty reduction due to the causal information obtained through

the channel. Accordingly, one can observe a small estimation error if the reduction in

κt(p, σ, Y1:t, S 1:t) can compensate the growth in Mt(r, σ, q, S 1:t).

6 Theorem 16 is also closely related to the bound in [129, Theorem 1] which considers joint source-channel
coding with MAP criterion as in our case.

7 The term Mt(r, σ, q, S 1:t) is comparable to the term representing the message set size and the term
κt(p, σ,Y1:t, S 1:t) is comparable to the conditional probability term in the upper bound of [128, Theorem 16].
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7.3 Appendix

7.3.1 The Proof of Theorem 12

Consider arbitrary estimators {X̂t} such that |X̂t| ≤ ct for t > 0 8 . Let us define

estimators {X̂(c)
t } such that X̂

(c)
t = ⌈X̂t⌉ where ⌈·⌉ is the ceiling function. If m ∈ (1,∞),

E

[

|Xt − X̂
(c)
t |m

] 1
m ≤ E

[

|Xt − X̂t |m
] 1

m
+ 1, (7.36)

where the inequality follows from Minkowski’s inequality and that E
[

|X̂t − X̂
(c)
t |m

]

≤
1. If m ∈ (0, 1],

E

[

|Xt − X̂
(c)
t |m

]

≤E
[(

|Xt − X̂t| + |X̂t − X̂
(c)
t |

)m]

≤E
[

|Xt − X̂t|m + |X̂t − X̂
(c)
t |m

]

≤E
[

|Xt − X̂t|m
]

+ 1, (7.37)

where the first inequality is due to triangle inequality, the second inequality follows

from the inequality that (a + b)m ≤ am + bm for a, b ≥ 0 when m ∈ (0, 1], and the

third inequality is due to E

[

|X̂t − X̂
(c)
t |m

]

≤ 1. Hence, combining (7.36) and (7.37), we

conclude that:

sup
t>0

E

[

|Xt − X̂t|m
]

< ∞ (7.38)

holds only if

sup
t>0

E

[

|Xt − X̂
(c)
t |m

]

< ∞. (7.39)

Accordingly, (7.39) is a necessary condition to satisfy (7.38).

Now, we find a necessary condition for (7.39). Let Et := Xt − X̂
(c)
t be estimation error

for estimators {X̂(c)
t }. As |Xt| ≤ ct for t > 0 and X̂

(c)
t is integer-valued, Et is an integer

valued random variable taking values in [−2ct, 2ct].

Using Lemma 9 for Et being conditioned on Y1:t, we have:

E
[|Et|m | Y1:t = y1:t

]

+ 1 ≥

E
[|Et|ρ | Y1:t = y1:t

]

+ 1 ≥ (

3 + 2 log(2ct)
)−ρ

E

[

PEt |Y1:t(Et|Y1:t)
− ρ

ρ+1 | Y1:t = y1:t

]ρ+1

(7.40)
8 Clearly, any estimator X̂t which can take values that are outside of [−ct, ct] is suboptimal for minimizing

E

[

|Xt − X̂t |m
]

.
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wherePEt |Y1:t is the conditional distribution for Et conditioned on Y1:t and the first in-

equality is due to that Et is integer-valued and the second inequality is due to Lemma

9.

As (Et, Y1:t)→ (Xt, Y1:t) is a bijective transformation when both Xt and X̂
(c)
t are integer-

valued, (7.40) becomes:

E
[|Et|m | Y1:t = y1:t

]

+ 1 ≥ (

3 + 2 log(2ct)
)−ρ

E

[

PXt |Y1:t(Xt|Y1:t)
− ρ
ρ+1 | Y1:t = y1:t

]ρ+1
.

(7.41)

Taking expectations over Y1:t on both sides in (7.41) gives:

E [|Et|m] + 1 ≥ (

3 + 2 log(2ct)
)−ρ

E

[

E

[

PXt |Y1:t(Xt|Y1:t)
− ρ

ρ+1 | Y1:t

]ρ+1
]

.

(7.42)

Now, consider

E

[

PXt |Y1:t(Xt|Y1:t)
− ρ

ρ+1 | Y1:t

]ρ+1

≥ E

[

e−
ρ

p(ρ+1) i(Xt;Y1:t) | Y1:t

]p(ρ+1)
E

[

PXt
(Xt)

ρ
(p−1)(ρ+1) | Y1:t

](1−p)(ρ+1)
, (7.43)

where the inequality follows from the reverse Hölder inequality for p ∈ (1,∞) and

i(Xt; Y1:t) is the information density for PXtY1:t . Then, we can get:

1

ρ
logE

[

E

[

PXt |Y1:t(Xt|Y1:t)
− ρ

ρ+1 | Y1:t

]ρ+1
]

≥ 1

ρ
logE

[

E

[

e−
ρ

p(ρ+1) i(Xt;Y1:t) | Y1:t

]p(ρ+1)
]

+ Hα(Xt), (7.44)

where α = (p(ρ + 1) − 1)/((p − 1)(ρ + 1)).

Combining (7.42) and (7.44):

1

ρ
log (E [|Et|m] + 1)

≥ 1

ρ
logE

[

E

[

e−
ρ

p(ρ+1) i(Xt;Y1:t) | Y1:t

]p(ρ+1)
]

+Hα(Xt) − log
(

3 + 2 log(ct)
)

. (7.45)

As limt→∞ log(log(ct))/t = 0,

lim sup
t→∞

−1

t
log

(

3 + 2 log(2ct)
)

= 0. (7.46)
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Therefore, combining (7.45) and (7.46) implies that:

lim sup
t→∞

1

ρt
log (E [|Et|m] + 1) < ∞ (7.47)

holds only 9 if

lim inf
t→∞

− 1

ρt
logE

[

E

[

e−
ρ

p(ρ+1) i(Xt;Y1:t) | Y1:t

]p(ρ+1)
]

≥ lim sup
t→∞

1

t
Hα(Xt). (7.48)

In addition, if (7.39) holds then (7.47) holds. Hence (7.48) is a necessary condition

for (7.39). Therefore, (7.48) is a necessary condition for (7.38), i.e., {Xt} being order

m moment trackable though process {Yt}. As p > 1 is arbitrary, p(ρ + 1) can be

replaced with an arbitrary q such that q > ρ + 1.

7.3.2 The Proof of Lemma 9

We have two methods to prove Lemma 9. The first method follows the proof of The-

orem 1 in [122], with the guessing function replaced by A(x) defined in (7.49) below

and some other necessary changes. In the sequel, we provide a second proof method,

which is based on the reverse Hölder inequality approach used in [122, Lemma 1]

and in [130, Theorem 2.1].

Let us define the following function:

A(x) =






|x| if x , 0,

ǫ if x = 0,
(7.49)

where ǫ is an arbitrary positive real number. Accordingly, observe that

E[|X|ρ] + ǫρPX(0)

=
∑

x∈X
PX(x)A(x)ρ

≥




∑

x∈X
PX(x)

1
p





p 



∑

x∈X
A(x)

−ρ
p−1





−(p−1)

, (7.50)

9 Here, it is possible that (7.47) holds when both limits in (7.48) diverge. However, observe that the LHS of
(7.48) converges as i(Xt; Y1:t) is uniformly bounded by log(|Y|) and |Y| is finite.
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where the inequality is due to the reverse Hölder inequality for p ∈ (1,∞). Consider-

ing p = 1 + ρ in (7.50), we get

E[|X|ρ] + ǫρPX(0)

≥




∑

x∈X
PX(x)

1
1+ρ





1+ρ 


∑

x∈X
A(x)−1





−ρ

≥




∑

x∈X
PX(x)

1
1+ρ





1+ρ[

2 +
1

ǫ
+ log(M−M+)

]−ρ

, (7.51)

where the second inequality is due to

M+∑

x=−M−

A(x)−1 = ǫ−1 +

M−∑

i=1

i−1 +

M+∑

j=1

j−1

≤ 2 + ǫ−1 + log(M−M+).

Letting ǫ = 1, combining (7.51) with PX(0) ≤ 1 and

e
ρH 1

1+ρ
(X)
=





∑

x∈X
PX(x)

1
1+ρ





1+ρ

, (7.52)

we obtain (7.8).

7.3.3 The Proof of Lemma 10

The proof is similar to the proof of Lemma 9 where A(x) is defined as in (7.49). We

have

E[|X|m] + 1

≥




∞∑

x=−∞
PX(x)

1
1+ρ





1+ρ 


∞∑

x=−∞
A(x)−

m
ρ





−ρ

≥




∞∑

x=−∞
PX(x)

1
1+ρ





1+ρ 
1 + 2

∞∑

n=1

1

n
m
ρ





−ρ

, (7.53)

where the first inequality follows from reverse Hölder inequality and the second in-

equality follows from the choice of ǫ = 1.
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7.3.4 The Proof of Lemma 11

We first consider the following:

E

[

d(Xt, X̂
(MAP)
t )

]

=

∞∑

r=1

Pr
(

d(Xt, X̂
(MAP)
t ) ≥ r

)

. (7.54)

Then, observe that:

Pr
(

d(Xt, X̂
(MAP)
t ) ≥ r | Xt = x, Y1:t = y1:t

)

≤ min





1,

∑

x′:d(x,x′ )≥r

I{PXt |Y1:t
(x|y1:t)≤PXt |Y1:t

(x′ |y1:t)}






≤




∑

x′

I{d(x,x′)≥r}I{PXt |Y1:t
(x|y1:t )≤PXt |Y1:t

(x′ |y1:t)}





ρ

≤




∑

x′

(

d(x, x′)

r

) s
ρ
(

PXt |Y1:t(x′|y1:t)

PXt |Y1:t(x|y1:t)

) 1
ρ+1





ρ

(7.55)

where I{·} is the indicator function, the first inequality is due to the definition of MAP

estimators, the second inequality follows from the inequality min {1, x} ≤ xρ for any

ρ ≥ 0 when x is either 0 or larger than equal to 1, and the third inequality follows

from the inequality I{x≥r} ≤ (x/r)s for any x ≥ 0, r > 1, s ≥ 0. Combining (7.55) and

(7.54) gives (7.24).

7.3.5 The Proof of Theorem 15

Consider X̂
(ρ)
t for ρ = sm(m + 1), and the following:

E

[

|Xt − X̂
(ρ)
t |m

]

=

∞∑

r=1

Pr
(

|Xt − X̂
(ρ)
t |m ≥ r

)

. (7.56)
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Then observe that:

Pr
(

|Xt − X̂
(ρ)
t |m ≥ r | Xt = x, Y1:t = y1:t

)

≤ min





1,

∑

x′:|x−x|m≥r

I{Q(x,x′)≤PXt |Y1:t
(x′ |y1:t)}






≤




∑

x′

I{|x−x|m≥r}I{Q(x,x′)≤PXt |Y1:t (x′ |y1:t)}





ρ

≤




∑

x′,x

(

|x − x|m
r

)s (
PXt |Y1:t(x′|y1:t)

Q(x, x′)

) 1
m+1





m

,

=
Jt(ρ, y1:t)

−m
m+1

rs





∑

x′

(

PXt |Y1:t(x′|y1:t)

PXt |Y1:t(x|y1:t)

) 1
m+1

− 1





m

,

≤ Jt(ρ, y1:t)
−m

m+1

rs









∑

x′

(

PXt |Y1:t(x′|y1:t)

PXt |Y1:t(x|y1:t)

) 1
m+1





m

−1



,

(7.57)

where Q(x, x′) = Jt(ρ, y1:t)|x − x′|ρPXt |Y1:t(x|y1:t) , I{·} is the indicator function, the first

,second and third inequalities follow similarly as (7.55), and the last inequality is due

to Jensen’s inequality. Combining (7.57) and (7.56) gives:

E

[

|Xt − X̂
(ρ)
t |m

]

≤ ζ(s)E[Jt(ρ, Y1:t)
−m

m+1

[

E

[

PXt |Y1:t(Xt |Y1:t)
− m

m+1 | Y1:t

]m+1
− 1

]

].

(7.58)

Applying Hölder inequality to the RHS of (7.58) gives the sufficient condition.

7.3.6 The Proof of (7.22)

Consider (7.16) for a rate-R source for S t:

lim inf
t→∞

1

ρt
− logE

[

E

[

e−
ρ

1+ρ i(X1:t;Y1:t)
∣
∣
∣
∣Y

]1+ρ
]

≥ R log(2). (7.59)

Then, we have:

E

[

E

[

e−
ρ

1+ρ i(X1:t;Y1:t)
∣
∣
∣
∣Y

]1+ρ
]−1

≤E
[

E

[

eρi(X1:t;Y1:t)
∣
∣
∣
∣Y

]−1
]−1

≤E
[

E

[

eρi(X1:t;Y1:t)
∣
∣
∣
∣Y

]]

, (7.60)

112



where the inequalities follow from Jensen’s inequality. Combining (7.60) with (7.59)

gives (7.22).

7.3.7 The Proof of Theorem 16

Consider the MAP estimator for S 1:t, i.e., Ŝ
(MAP)
1:t , and that Ŝ t is the estimate at time t

for this estimator, which gives the following:

Pr
(

d(S t, Ŝ t) > r
)

= E

[

Pr
(

d(S t, Ŝ t) > r | C
)]

≤ E




E




min





1,

∑

s1:t:d(S t ,st)>r

I{PS 1:t |Y1:t (s1:t |Y1:t)≥PS 1:t |Y1:t (S 1:t |Y1:t)}






∣
∣
∣
∣Y1:t, S 1:t,C









= E




E




min





1,

∑

s1:t:d(S t ,st)>r

I{PS 1:t |Y1:t
(s1:t |Y1:t)≥PS 1:t |Y1:t

(S 1:t |Y1:t)}






∣
∣
∣
∣Y1:t, S 1:t









≤ E




min





1,E





∑

s1:t:d(S t ,st)>r
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(7.61)

where I{·} is the indicator function, the first inequality is due to the MAP estima-

tion of S 1:t (as in (7.32)), the second inequality follows from Jensen’s inequality for

min {1, x}, the third inequality follows from the inequality I{x≥r} ≤ (x/r)σ for any

x ≥ 0, r > 1, s ≥ 0, and S̄ 1:t are chosen independently from Y1:t having the same

distribution with S 1:t.
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Now, consider:
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where the inequality follows from Hölder’s inequality.

Combining (7.61) and (7.62) gives (7.33).
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Conclusion: Summary and Research

Directions
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CHAPTER 8

CONCLUSION

8.1 Summary

Ubiquitous connectivity for reliable sensing and control is one of the ultimate goals

of communication networks. Engineering communication systems and schemes to be

more adaptive or responsive is a natural direction towards this goal. Communicating

agents may adapt their data transmission in accordance with observable dynamic con-

ditions affecting the efficiency of their transmission. The intermittent availability of

resources, the usefulness of the transmitted data, or a dynamic information source

from which transmitted data are obtained are such conditions. In this thesis, we

studied communication problems where communication schemes are not oblivious

to either of these conditions.

In Chapter 2, we considered a problem of energy efficient data transmission for an

energy harvesting transmitter. The transmitter was modelled as a device which con-

sumes its accumulated energy to forward its accumulated data with an efficiency de-

termined by its transmission power and the fading level of the channel. Through-

put maximizing and energy efficient offline transmission schedules for finite horizons

were characterized through a per-slot based water-filling solution where water levels

are dynamic and adapting to energy and data arrival processes. The structure of these

schedules exhibits the intuition that while a late consumption of energy and data is

undesirable for throughput maximization over a finite horizon, an early consumption

is also undesirable for energy efficiency which in turn limits the achievable through-

put. This suggests that the transmission should be timely in order to adapt to these

dynamics. On the other hand, such a timely transmission is highly sensitive to future
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arrivals of energy, data and channel fading which are not known in advance. For this

reason, we studied online schedules and proposed an approach where online sched-

ules are derived from the estimates based on the possible outcomes of their offline

counterparts. The content of Chapter 2 has been covered in [4].

In Chapter 3, we studied energy-efficient transmission schedules in communication

systems where the energy income of the transmitter is controlled by the receiver

through wireless energy transfer and affected by the channel gain of the energy trans-

fer channel. We compared energy-efficient transmission under transmitter-centric,

receiver-centric and distributed scheduling scenarios that differ depending on which

side of the transmitter-receiver pair controls the transmission and whether they adapt

their energy transmission/consumption. This comparison showed the effectiveness of

energy aware and channel aware transmission power control adaptations. The content

of Chapter 3 has been covered in [5].

In Chapter 4, we described and discussed the AoI and its variants as performance

measures for data freshness or the usefulness of the transmitted data. These measures

are particularly suitable for evaluating and optimizing update-based systems where

the freshness of the updates available to the end-user is essential. Neither of through-

put maximization and delay minimization objectives, which are conventionally used

in the optimization of communication networks, may match the end-user’s actual de-

mand. On the other hand, the non-linear functions of the age provide a high degree

of freedom for constructing an optimization objective close to the actual demand. For

machine to machine communication, this is rather doable as communicating agents

may have well-defined and quantifiable performance goals1. Although being an ap-

plication centric approach, the optimization of these measures can be done solely

through the timing of update transmissions which makes resulting communication

schemes extendable and manageable.

In Chapter 5, we considered a problem of timely update transmission for an energy

harvesting transmitter. We assumed that the transmission of update packets is error-

free and takes zero delay which is reasonable for scenarios where the update packets

are transmitted over a direct link with high packet success rate and small delay. The

1 For example, consider the communication between two devices that takes place as a part of an automated
process.
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optimal policy was shown to be an age-based and energy-dependent threshold policy

for a age-penalty objectives based on a general class of non-decreasing and non-

linear functions of the age. As in the problem of energy efficient data transmission,

an early consumption of update transmission opportunities can be undesirable as well

as their late consumption. This explains why the optimal threshold is positive even

for the highest energy level. Due to this property, optimal policies cannot consume

energy harvests that occur at the highest energy level hence attain a lower throughput

than what is possible. Yet, this can be viewed as an advantage of optimal policies a

they produce a lower packet traffic under utilizing network resources. The content of

Chapter 5 has been covered in [6].

In Chapter 6, we discussed what happens when the information source is an unstable

(or non-stationary) dynamic process and reviewed the related literature. In the case

of an unstable source, past transmission errors may become more significant over

time as opposed to update-based communication where only the error incurred by the

freshest update matters. This is the main challenge in the transmission of unstable

sources through a noisy system. Particularly, this challenge emerges in networked

control systems where communicating agents are in need of stabilizing a dynamical

system. The advancement of networked control systems and applications motivates

overcoming this challenge with practical communication mechanisms.

In Chapter 7, we studied when the tracking of an unstable source can be maintained

with the help of causal and noisy information encoding the source. We formulated

the communication setting considering only the basic operations and making minimal

assumptions besides causality in order to focus on what is possible statistically. The

channel can be the model of a communication system itself. For example, the encod-

ing scheme with the goal of tracking can be considered as an outer code to short-term

error control mechanisms. An application layer error control scheme relying on error

control and transmission capabilities provided by the lower layer protocols of the net-

work stack, can be designed for that purpose. In that case, the latency and noisiness

due to the network infrastructure characterize the channel model in the communica-

tion setting which has the goal of tracking. The limits of such settings can be studied

through the provided results. The content of Chapter 7 has been partly covered in [7].
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The need for timeliness in communication was the common theme in all settings

considered in this thesis. Though these settings, we showed why the transmission

of information may need to be studied and engineered in a timely manner in the

existence of dynamic conditions.

8.2 Research Directions

We suggest the following research directions for further advances in the study of

communication systems considered in this thesis:

• A general formulation of the condition that is both necessary and sufficient for

reliable tracking through noisy communication, and its study is an important

research direction. This formulation may provide a framework for practical

schemes.

• The complexity of timely communication schemes, that achieve reliable track-

ing, may be considered as a practically important research direction. A formu-

lation that incorporates the goal of tracking with complexity based measures

may reveal the achievable tracking performance for communicating agents with

limited complexities.

• The statistics of relevant processes may not be a priorly known to communicat-

ing agents. This makes the study of universal timely communication schemes,

that attain performance guarantees without relying on a priorly known statistics,

another practically important research direction.
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