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ABSTRACT 
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RESOLUTION POINT CLOUDS BY USING A MULTI-RESOLUTION 

PLANARITY-BASED APPROACH 

 

 

 

 

Koçan, Yasin 
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September 2021, 128 pages 

 

 

Digital Elevation Model (DEM) is a mathematical representation of the elevation of 

the Earth’s surface. There are two types of DEM, namely Digital Surface Model 

(DSM) and Digital Terrain Model (DTM). DSM contains natural (bare-ground, trees, 

bushes, etc.) and artificial above-ground objects (buildings, vehicles, powerlines, 

etc.), while DTM covers only the bare earth without anything on it. Above-ground 

objects need to be removed to extract the DTM, which is a tedious task. This thesis 

proposes an algorithm that extracts DTM from aerial point clouds using a robust 

multi-resolution planarity-based divide-and-conquer algorithm. In this approach, the 

problem is handled in few simple steps rather than trying to solve the problem at 

once. The approach contains different planarity checks to get rid of nonplanar above-

ground objects, segmentation step to find rough ground points, and an interpolation 

step to obtain the final DTM.   In this thesis, ground points are assumed planar, and 

planar patches are detected as ground candidates. First, approximate planarity values 

are calculated by using neighboring points. This helps to eliminate most of the above-

ground objects such as vehicles, trees, posts, etc. Nevertheless, since the building 
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facades and roofs are also planar, a second planarity check is needed in different 

resolutions. For this purpose, the grid planarity values are checked. The grids that do 

not fit a plane within the given threshold are marked as nonplanar. The second 

planarity check helps to get rid of the building facades and the vertical planes. After 

removing building facades, getting benefit from the sparsity between ground 

candidates and the roof points, a region growing segmentation is utilized to segment 

the remaining ground candidates for rough ground surface calculation. The segments 

far from the rough ground surface are omitted. By doing so, the roof points can be 

eliminated. Lastly, the ground points are interpolated to obtain the resulting DTM 

raster. Although the input point cloud is already classified as ground and non-ground, 

it has some errors. The input point cloud is used to create a DTM; then, the resulting 

DTM is manually edited to use it as a ground truth. The accuracy assessment is done 

on interpolated DTM rasters. Using a manually corrected ground truth, Root Mean 

Square Error (RMSE) is calculated for two datasets with different characteristics 

having 1.00 m and 2.20 m spatial resolutions. The results are compared with two 

existing DTM extraction algorithms and RMSE values are close to these solutions. 

The RMSE values are 0.25 m and 0.70 m, respectively. Results indicate that an 

accurate DTM extraction is possible using a combination of only planarity values. 

 

Keywords: Digital terrain model, digital elevation model, planarity, covariance 

features, Principal Component Analysis, point cloud 
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ÖZ 

 

YÜKSEK ÇÖZÜNÜRLÜKLÜ NOKTA BULUTLARINDAN ÇOKLU 

ÇÖZÜNÜRLÜKLÜ DÜZLEMSELLİK TABANLI YAKLAŞIM 

KULLANARAK DİJİTAL ARAZİ MODELİ ÇIKARIMI 
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Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

 

 

Eylül 2021, 128 sayfa 

 

Sayısal Yükseklik Modeli, Dünya yüzeyinin yükseklik verilerinin matematiksel bir 

temsilidir. Sayısal Yüzey Modeli (SYM) ve Sayısal Arazi Modeli (SAM) olmak 

üzere iki tür sayısal yükseklik modeli vardır. SYM, doğal (zemin, ağaçlar, çalılar, 

vb.) ve yapay yer üstü nesneleri (binalar, araçlar, elektrik hatları vb.) içerirken, SAM, 

üzerinde hiçbir şey olmayan, sadece arazi modelini temsil eder. Meşakkatli bir görev 

olan SAM’ı çıkarmak için yer üstü nesnelerin kaldırılması gerekir. Bu tez, sağlam 

bir çoklu-çözünürlüklü düzlemsellik tabanlı böl ve yönet algoritması kullanarak 

SAM'ı havadan toplanmış nokta bulutlarından çıkaran bir algoritma önermektedir. 

Yaklaşım, düzlemsel olmayan yer üstü nesnelerden kurtulmak için farklı 

düzlemsellik kontrolleri, kaba zemin noktalarını bulmak için bölütleme adımı ve 

nihai DTM'yi elde etmek için bir enterpolasyon adımı içerir. Bu tezde, yer noktaları 

düzlemsel kabul edilmiş ve düzlemsel noktaların yer aday noktaları olduğu tespit 

edilmiştir. İlk olarak, komşu noktalar kullanılarak yaklaşık düzlemsellik değerleri 

hesaplanmaktadır. Bu, algoritmanın araçlar, ağaçlar, direkler vb. gibi yer üstü 

nesnelerin çoğunu ortadan kaldırmasına yardımcı olur. Fakat, bina cepheleri ve 

çatılar da düzlemsel olduğundan, farklı çözünürlükte ikinci bir düzlemsellik 
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kontrolüne ihtiyaç duyulmaktadır. Bunun için ızgara düzlemsellik değerleri kontrol 

edilmektedir. Verilen eşik içinde bir düzleme uymayan ızgaralar, düzlemsel olmayan 

olarak işaretlenir. İkinci düzlemsellik kontrolü, bina cephelerinden ve düşey 

düzlemlerden kurtulmaya yardımcı olmaktadır. Bina cepheleri kaldırıldıktan sonra, 

zemin adayları ile çatı noktaları arasındaki seyreklikten yararlanılarak, kalan zemin 

adaylarının kaba zemin yüzeyi hesabı için bölütlenmesi için bölge büyüyen bir 

bölütleme kullanılır. Kaba zemin yüzeyinden uzaktaki parçalar atlanmıştır. Bu 

sayede çatı noktaları elenmektedir. Son olarak, elde edilen SAM ızgarasını elde 

etmek için zemin noktaları enterpolasyona tabi tutulur. Girdi olarak kullanılan nokta 

bulutu önceden sınıflandırılmış olmasına rağmen, yer noktalarını etiketlemede bazı 

hatalara sahiptir. Bir SAM oluşturmak için girdi olarak kullanılan nokta bulutu 

kullanılmıştır, ardından elde edilen SAM, referans olarak kullanılmak için el ile 

düzenlenmiştir. Doğruluk değerlendirmesi, enterpolasyonlu SAM ızgaraları 

üzerinde yapılmıştır. Elle düzeltilmiş bir referans kullanarak, 1.00 m ve 2.20 m 

uzamsal çözünürlüğe sahip farklı özelliklere sahip iki veri kümesi için Kök Ortalama 

Kare Hatası (RMSE) hesaplanmıştır. Sonuçlar, mevcut iki algoritma ile 

karşılaştırılmış ve yakın değerler elde edilmiştir. RMSE değerleri sırasıyla 0.25 m  

ve 0.70 m büyüklüğündedir. Sonuçlar, yalnızca düzlemsellik değerlerinin bir 

kombinasyonu kullanılarak doğru bir DTM çıkarımının mümkün olduğunu 

göstermektedir. 

Anahtar Kelimeler: Sayısal yükseklik modeli, Sayısal arazi modeli, Düzlemsellik, 

Kovaryans özellikler, Temel bileşenler analizi 
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1 

CHAPTER 1  

1 INTRODUCTION 

1.1 Problem Definition 

Digital elevation model is a three-dimensional (3D) representation of elevation of 

the surface of the Earth, which is available in various formats such as raster format 

(consisting of a matrix of pixels where each pixel contains the elevation value) or 

Triangular Irregular Network (TIN) models. As a subset of the Digital Elevation 

Model, Digital Surface Model (DSM) and Digital Terrain Model (DTM) can be 

considered. DSM represents the Earth's surface and all the non-stationary objects 

above ground. These objects can be categorized as vegetation, building, city 

furniture, vehicles, power lines, etc. On the other hand, DTM covers only the bare 

earth without any object on it. However, since the sensing devices cannot capture the 

earth crust beneath these objects, the initial product as an elevation model from 

photogrammetric survey is actually a DSM. Some sensing methods can penetrate 

partially through the vegetation like LIDAR (Light Detection and Ranging or Laser 

Imaging Detection and Ranging) sensors. However, the buildings and some other 

objects still need to be removed from the DSM to obtain the DTM. Depending on 

the project's scope and desired spatial resolution, there are different types of remote 

sensing methods for DTM extraction, namely, Synthetic Aperture Radar (SAR), 

LIDAR, and photogrammetric methods. 

Nevertheless, regardless of the sensing method, DTM extraction is a tedious task. 

There are different areas that DSMs, and DTMs are dominantly used. DSM is 

commonly used in telecommunication, fifth-generation wireless (5G) planning, 

urban planning, aviation, and viewshed analysis. On the other hand, DTM is 

frequently used in hydrology, soil research, land use planning, etc., where the bare-

earth representation is crucial.  
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Different approaches in the literature extract DTM from DSM; however, due to 

massive variability in the earth surface, it is not easy to find a robust strategy that 

handles different terrain types. Although DTMs are commonly used, it is still hard 

to find a method that does not depend on user input, the terrain type (flat, steep, etc.), 

or object types (houses, trees, etc.). There is a need for a robust pipeline that works 

on photogrammetric points which can handle different terrain types with minimizing 

the user input need. 

1.2 The objective of the Thesis 

This thesis aims to detect the ground points from the point cloud generated from 

photogrammetric point clouds by exploiting the geometry of the coordinate values 

(X, Y, and Z). The study is based on Eigen-derived covariance features to obtain the 

ground points from which a Digital Terrain Model (DTM) can be extracted. Color 

information (R, G, B) may not be available for all point clouds, so the proposed 

algorithm does not depend on color information. We want this algorithm to work 

everywhere except in dense urban areas without having problems while filtering 

buildings, trees, vehicles, etc. To summarize, the main objectives of the thesis are: 

1. To classify the ground points from the input point cloud as ground and non-

ground using only geometric information. 

2. To propose a robust algorithm that works in different terrain types (flat, steep, 

etc.) 

3. To interpolate the gaps resulting from non-stationary objects (buildings, 

vehicles, vegetation, powerlines, etc.) to obtain a continuous DTM raster 

output.  
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1.3 Contribution of the Thesis 

The following are the contributions of this thesis to the state-of-the-art: 

1. Having a robust method that works in multi-resolution planarity approach, 

2. Using only a planarity-based approach to get rid of the non-ground features 

without needing other covariance features, 

3. Using divide-and-conquer strategy to solve the problem in simpler steps. 

1.4 Structure of the Thesis 

This thesis is organized as follows: 

CHAPTER 1 introduces the significance and necessity of the digital terrain models. 

The research problem, objectives, contribution, and importance of the study are also 

described in this chapter. 

CHAPTER 2 presents the background and literature review of the digital 

photogrammetry, digital elevation models, point clouds, description of principal 

component analysis and covariance features, the principles of Hough Transform and, 

common surface interpolation techniques. Various point cloud classification and 

digital terrain model extraction studies are also discussed in this chapter. 

CHAPTER 3 gives information about the data characteristics and methodology used 

in this thesis. Ground point classification, terrain extraction processes and the 

proposed algorithm steps are explained in this chapter.  

CHAPTER 4 evaluates the quantitative and qualitative results. The algorithm 

performance is compared with two available DTM extraction solution.  

CHAPTER 5 presents a summary and results of the thesis are discussed in this 

chapter. Also, possible application of this algorithm and proposals for the future 

studies are given. 
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CHAPTER 2  

2 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

DEMs are simply the digital representation of the Earth's surface. DEMs and their 

derivatives provide valuable information about the terrain. They are used widely in 

different studies such as hydrology, geomorphology, vegetation analysis, change 

detection, geology, robotics, city planning, solar irradiance calculation, archeology, 

volumetric calculation, etc., as shown in Table 1. DEMs can be categorized into two, 

namely, DSM and DTM. DSM is the DEM that includes objects such as buildings, 

vegetation. On the other hand, DTM represents the bare-earth surface (Gupta, 2018).  

Table 1: DEM derivatives and their use (Gupta, 2018) 

DEM Derivatives 

DEM 

Derivative 

Description Use 

Shaded 

Relief 

Represents illumination 

conditions of a region based on 

the sun location 

Aesthetic visualization, provides 

hillshade visuals, etc. 

Slope Represents the slope map of the 

region 

Hydrology, geomorphometry 

measurements, infrastructure 

planning (road planning etc.) 

Aspect 

 

Representation of the slope 

orientation. Each cell value 

indicates the slope direction 

Hydrology, geo-morphometry 

measurements, infrastructure 

planning, vegetation analysis, solar 

irradiation analysis, etc. 
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Table 1 (continued) 

DEM 

Derivative 

Description Use 

Viewshed Allows visibility analysis from 

specific points. There are different 

types of viewshed analysis: 

1. Line of Sight  

2. Area of Sight 

3. Dome -shaped viewshed 

Often used in archeology (Wheatley 

& Gillings, 2000), urban planning 

(Danese, Nolè, & Murgante, 2009), 

forestry (Domingo-Santos, de 

Villarán, Rapp-Arrarás, & de 

Provens, 2011), military (VanHorn 

& Mosurinjohn, 2010), and impact 

assessment (Howes & Gatrell, 1993) 

 

The reconstruction of precise surfaces from unorganized point clouds obtained from 

LIDAR or photogrammetry is a complicated task that is not entirely solved and 

troublesome on inadequate, noisy, and sparse data (Remondino, 2003). Although it 

is a tedious task to obtain DTM, there are different approaches and solutions that 

extract DTM from DSM point clouds. Due to variations on the Earth's surface, some 

may perform better in specific terrain types, whereas some are fast in certain cases.  

2.2 Digital Photogrammetry 

Photogrammetry, as the name implies, is the "science of measuring via images." To 

compute distances, areas, or anything similar, one must first obtain the object 

(terrain) coordinates of any point in the shot, from which one can then calculate 

geometric data or construct maps (Linder, 2009).  

Stereoscopic photogrammetry is based on trying to recreate, using two cameras, what 

we perceive with our eyes. The differential in the object positions in the photographs 

is the parallax of the item when the image from the left to the right camera are 

compared. Parallax causes the observer to perceive the distance from the object 

(Wang, Zhen, Zhang, & Sato, 2016).  
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Structure-from-Motion (SfM) is based on the same fundamentals as stereoscopic 

photogrammetry, in which 3D structure can be generated from a set of overlapping, 

offset images (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012). First, 

these overlapped images are matched and connected with tie points, then sparse and 

dense 3D point clouds can be generated automatically by using photogrammetry 

software packages that offer different types of techniques such as intensity-based, 

feature-based, and relational image matching. 

Thanks to enchantments in civilian UAV technology, Computer Vision (CV), image 

processing techniques, and Artificial Intelligence (AI), photogrammetry software 

suites allow users to create point clouds, orthophotos, and rasterized DEMs from 

UAV imagery (Woodget, Austrums, Maddock, & Habit, 2017). Camera pose and 

scene geometry are simultaneously rebuilt by automatically identifying the 

corresponding features for multiple images. These aspects are tracked from image to 

image to allow the camera locations and the object coordinates to be first estimated 

and repeatedly improved using non-linear least-squares minimization (Snavely, 

Seitz, & Szeliski, 2008). Most commercial UAVs have built-in GPS sensors that can 

be used to keep track of image coordinates. Two sets of factors must be considered 

while determining the interior orientation (IO). The first comprises the camera's 

geometric parameters, such as the principal distance and the principal point's 

coordinates. The parameters that characterize systematic errors are included in the 

second set (such as distortions or film deformations). The goal of the exterior 

orientation (EO) is to specify the camera's location (X, Y, Z, Omega, Phi, and Kappa) 

as illustrated in Figure 1 and attitude at the time of exposure (Grussenmeyer & Al 

Khalil, 2002).  
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Figure 1: DSM and stereo aerial photographs showing a small portion of Middle East 

Technical University campus (Produced by author) 

 

 

Figure 2: The perspective image of a point A, which produces an image point Ac, on 

the chip plane. The rotation is about the x, y, and z-axis of the world coordinate 

system is defined by 𝜃, 𝜙, and 𝜓. (Putz & Zagar, 2008) © 2008 IEEE 
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2.3 Digital Elevation Models 

A DTM is a set of discrete points with unique height values across two-dimensional 

(2D) points that approximates a section or the entire continuous terrain surface (Hirt, 

2014). Raster maps with a single elevation value allocated to each pixel are known 

as DEMs. Some vertical terrain characteristics cannot be described using DEMs, 

depending on the spatial resolution and terrain features. Although some applications 

can represent these raster maps as a 3D scene, they are not truly three-dimensional 

since they cannot represent cliff-like structures where sudden elevation change 

occurs. As a result, DEMs are classified as "2.5D" rather than "3D" (Longley, 

Goodchild, Maguire, & Rhind, 2005). DTM and DSM are commonly used together 

with DEMs to define the model characteristics. The term DTM refers to a DEM of 

the Earth's terrain in its purest form, i.e., the bare ground; conversely, DSM refers to 

ground items such as houses, trees, vehicles, and powerlines (Gupta, 2018). DEM is 

generally used as an inclusive term for elevation models from remote sensing, 

including DSM and DTM (Hirt, 2014). According to (Gupta, 2018), the acquisition 

of DTM can be in different ways and from various sources such as: 

1. Ground surveys 

2. Elevation contour maps 

3. Conventional aerial photogrammetry 

4. Digital aerial photogrammetry  

5. UAV imager 

6. SAR 

7. LIDAR 

This thesis focuses on the DTM generation from the photogrammetric point cloud. 

Thus, these methods are explained in detail in this chapter. 
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Figure 3: DTM (Up), DSM (Bottom) data acquired from Airborne Laser Scanning 

(Produced by author) 

 

2.4 Point Cloud 

A point cloud is a collection of data points in 3D space that represents an object or a 

surface. Each point has a set of Cartesian coordinates (X, Y, Z). Some additional 

fields such as color data (Red, Green, Blue, and Near-Infrared), Intensity, Return 

Number, Number of Returns (given pulse), Scan Direction Flag, Edge of Flight Line, 

Classification, etc. can be given as a set of features for each point in the cloud. In 

this thesis, only X, Y, Z values are used as input to extract the DTM. 



 

 

11 

LIDAR is a direct measurement in which a laser light pulse physically hits a surface, 

and the return time of the reflection is measured. Aerial photogrammetry uses 

overlapping images over a region and adequate ground control points to rebuild the 

landscape in an accurate 3D model using photos collected by airborne or space-borne 

platforms. These overlapping images need to be processed by a photogrammetry 

software to create surface models. Both approaches offer advantages and 

disadvantages, depending on the scale and scope of the project. Since some LIDAR 

sensors can penetrate through leaves which can provide ground observations, 

especially in forested areas, they are advantageous for DTM extraction. However, 

that does not mean that aerial photogrammetry is not applicable to these regions. 

Although some LIDAR solutions include cameras that can collect color information 

in addition to geometric data (X, Y, and Z values), this is expensive or uncommon 

in the remote sensing industry. On the other hand, aerial photogrammetry provides 

color information (multi-spectral) that may be utilized to infer information about a 

region. For example, when identifying vegetation, the Normalized Difference 

Vegetation Index (NDVI) provides valuable information for detecting vegetated 

area, as shown in Figure 4. Because of its accessibility and low cost, aerial 

photogrammetry is gaining popularity. In Table 2, the photogrammetric point cloud 

and LIDAR point cloud are compared in terms of cost, accuracy, process time, and 

additional information.  
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Figure 4: RGB and NDVI Colored Satellite Image (Produced by author) 

 

Table 2: Photogrammetry and ALS comparison (Höhle & Potucková, 2011) 

DTM 

collection 

method 

Vertical accuracy Terrain type 

< 𝟎. 𝟏 𝐦 (𝟎. 𝟏

− 𝟏. 𝟎)𝐦 

> 𝟏. 𝟎 𝐦 Open 

terrain 

Low 

vegetation 

Forested Built-

up 

areas 

PHM + ∗ + + + − − +/− 

ALS + + + + +/− ∗∗ + + 

DTM 

collection 

method 

Strongly influenced 

by atmospheric 

effects 

Holes in data Large area (> 10 km2) 

PHM + + + 

ALS - + + 

* Achievable in low flying heights and small pixel size (GSD)  

** Vegetation density-dependent  

*** Wavelength dependent 

ALS - airborne laser scanning PHM – photogrammetry 
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2.5 Principal Component Analysis and Covariance Features 

Large datasets are becoming more prevalent, yet they might be challenging to 

interpret. PCA is a way to reduce the dimensionality of such datasets, enhancing 

interpretability while minimizing information loss. It accomplishes this by 

generating new uncorrelated variables with maximized variance. After finding the 

covariance matrix of the data, the problem becomes solving an 

eigenvalue/eigenvector problem (Hubert, Rousseeuw, & Vanden Branden, 2005). 

The principal components (PCs) are linear combinations of the original variables 

classified by the variability of data. The PCs, therefore, describe the data variances 

in multiple orthogonal directions (Nurunnabi, Belton, & West, 2012). With a 

principal component analysis, the geometric properties of an area, such as linearity 

and planarity describing the characteristics of the regions, can be estimated as well 

(Rovers, de Vreede, Rook, Psomadaki, & Nagelkerke, 2015). A variety of 3D 

features can be determined easily by describing fundamental geometric features of a 

considered 3D neighborhood (specified radius and points inside this sphere or given 

number of nearest neighbors (k-NN)) (Weinmann, Urban, Hinz, Jutzi, & Mallet, 

2015). For a given point p and its neighborhood P, the covariance features shown in 

Table 3 can be calculated based on eigenvalues λ1, λ2, λ3 and eigenvectors e1, e2, e3 

of the covariance matrix 𝐶 =
1

𝑘
∑ (𝑝𝑖 − 𝑝̅)(𝑝𝑖 − 𝑝̅)

𝑇 𝑖∈𝑃  (Hackel, Wegner, & 

Schindler, 2016).  

Table 3: Geometric features based on eigenvalues of the local structure covariance 

matrix and corresponding eigenvectors (Hackel, Wegner, & Schindler, 2016) 

Covariance Feature Name Covariance Feature Formula 

Sum 𝜆1 + 𝜆2 + 𝜆3 

Omnivariance 
(𝜆1 ⋅ 𝜆2 ⋅ 𝜆3)

1
3 

Eigenentropy −∑𝑖=1
3  𝜆𝑖 ⋅ ln (𝜆𝑖) 

Anisotropy (𝜆1 − 𝜆3)/𝜆1 

Planarity (𝜆2 − 𝜆3)/𝜆1 
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Table 3 (continued) 

Covariance Feature Name Covariance Feature Formula 

Linearity (𝜆1 − 𝜆2)/𝜆1 

Surface Variation 𝜆3/(𝜆1 + 𝜆2 + 𝜆3) 

Sphericity 𝜆3/𝜆1 

Verticality  1 −  𝑛𝑍 
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Figure 5: PCA on linear point distribution 
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Figure 6: PCA on planar point distribution 

 

 

Figure 7: PCA on spherical point distribution 
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Linearity, planarity, and sphericity are used to determine whether a point is labeled 

as 1D (linear), 2D (planar), or 3D (volume). For example, if the linearity value of a 

point is high, it most likely belongs to a linear feature such as a building edge or a 

pole, and hence the points nearby are mostly distributed along a line. Similarly, the 

planarity value describes the smoothness of the surfaces and is high for features like 

building facades (Waldhauser, et al., 2014). Omnivariance is used to explain how the 

points spread inhomogeneously for a given 3D volume and high for inhomogeneous 

point distributions in this volume (Waldhauser, et al., 2014). Anisotropy is helpful 

to distinguish oriented and non-oriented objects and is higher if the eigenvalues differ 

a lot (Oude Elberink & Maas, 2000). Surface variation defines how closely a smooth 

planar patch forms a local neighborhood and is low for planar regions (Wang & 

Feng, 2015). The eigenentropy measures the order or disorder of the 3D points within 

the 3D volume (Weinmann, Urban, Hinz, Jutzi, & Mallet, 2015). Verticality value is 

high both for vertical planes and vertical linear features such as building facades and 

poles. Verticality (V) is calculated as 1 − |⟨[001], 𝒆3⟩| , in other words, 𝑉 =  1 −

 𝑛𝑍 where 𝑛𝑍 represents the third component of the normal vector 𝑛 (Demantké, et 

al., 2011). Lastly, sum of eigenvalues defines the total variance. If the corresponding 

eigenvalue is small compared to the summation, it may not be essential (Mark, 2010). 

For demonstration purposed, these features are calculated for a building point cloud 

for a 0.5 m radius neighborhood; for each point, the points in its 0.5 m neighborhood 

are used for covariance matrix estimation. In Figure 8, an RGB-colored point cloud 

is illustrated. Verticality (Figure 9), sphericity (Figure 10), surface variation (Figure 

11), linearity (Figure 12), planarity (Figure 13), anisotropy (Figure 14), eigenentropy 

(Figure 15), omnivariance (Figure 16), the sum of eigenvalues (Figure 17), and 

values are shown to illustrate how these features change on a single building 

example. For example, in Figure 9, it is observed that the building facades have high 

verticality values. Because the surface normal is horizontal, their inner product with 

the vertical vector is small, so the verticality values are significant. In Figure 10, it 

is noticed that the sphericity value is high for complex 3D structures and close to 

zero in planar and linear regions. Like sphericity, Figure 11 shows a similar behavior 
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because the planar regions have low surface deviation, whereas the complex 

structures show the opposite. In Figure 12, the linearity value is significant for linear 

formations such as building edges, roof edges, post-like structures, and object 

boundaries. In Figure 13, large planarity values are observed at ground points, planar 

regions, building roofs, and smooth building facades. In Figure 14, the anisotropy 

value is considerable for complex structures and almost zero around the planar areas. 

In Figure 15, since the eigenentropy is a measure of order/disorder of the points, it 

is significant for the complex 3D structures and relatively low for planar regions. 

Similarly, in Figure 16, the omnivariance value is high along the lines where the roof 

planes intersect because the point distribution is relatively inhomogeneous in these 

regions that contain multiple planes. In Figure 17, the higher sum values represent 

the significant variance. 

 

Figure 8: RGB-colored point cloud of a building 
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Figure 9: Verticality of a building point cloud in 0.5 m radius 

 

 

Figure 10: Sphericity of a building point cloud in 0.5 m radius 
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Figure 11: Surface variation of a building point cloud in 0.5 m radius 

 

 

Figure 12: Linearity of a building point cloud in 0.5 m radius 
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Figure 13: Planarity of a building point cloud in 0.5 m radius 

 

 

Figure 14: Anisotropy of a building point cloud in 0.5 m radius 
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Figure 15: Eigenentropy of a building point cloud in 0.5 m radius 

 

 

Figure 16: Omnivariance of a building point cloud in 0.5 m radius 
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Figure 17: Sum of eigenvalues of a building point cloud in 0.5 m radius. 

 

2.6 Hough Transform 

This thesis aims to extract DTM by using a planarity-based approach and to measure 

planarity, Hough transform is utilized. The principles of the Hough transform are 

explained in Section 2.6, and its utilization in plane detection is discussed in Section 

2.7. 

The Hough transform is a method for detecting lines in visual representations (US 

Patent No. 3,069,654, 1962). To identify straight lines, curves, and ellipses, an 

improved version, "Generalized Hough Transform" (GHT) (Duda & Hart, 1972), is 

frequently applied in the digital image processing area (Tarsha-Kurdi, et al., 2007). 

Detecting straight lines is the most basic application of the GHT. It is based on a 

voting mechanism after conversion from image space to a parameter space. In Figure 

18, the conversion from (x,y) to (ρ,θ) parameter space is illustrated for lines. (x,y) 

space can be converted into (ρ,θ) parameter space where ρ is the orthogonal distance 

to the straight line from (x,y) to the origin, and θ is the angle between the x-axis and 
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the line segment AB, and the slope of AB can be found by the following equation 

(Chandrasekar & Durga, 2014): 

𝑚 = −
sin𝜃

cos𝜃
= −cot 𝜃    (1) 

The two parameters that form a straight line are estimated using the linear Hough 

transform method. However, there are infinitely many lines that can pass through a 

single point. Hence, for a single point, different ρ values can be calculated by 

changing θ values (Chandrasekar & Durga, 2014). Some points in (x,y) space and 

their equivalents in (ρ,θ) parameter space are shown in Figure 19 and Figure 20, 

respectively (Chandrasekar & Durga, 2014). As seen in Figure 20, when there is a 

line in the image, the corresponding point in the parameter space will receive many 

votes from the image. As a result, the lines in the image will show themselves as 

peaks in the parameter space if an accumulator is implemented. 

In the case of line detection, there might be a problem. When the line approaches the 

vertical direction, m (the slope of the line) approaches infinity. Every point in the 

parameter space is used as an accumulator to find or identify a line defined by 𝜌 =

𝑥𝑐𝑜𝑠 θ + 𝑦𝑠𝑖𝑛 θ to overcome this problem (Gonzalez & Woods, 2018).  

 

 

Figure 18: xy-space converted into (ρ,θ) parameter space (Chandrasekar & Durga, 

2014) © 2014 IEEE  
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Figure 19: Line graph in (x,y) space. Adapted from (Chandrasekar & Durga, 2014) 

© 2014 IEEE 

 

 

Figure 20: Line representation in (ρ,θ) parameter space (Chandrasekar & Durga, 

2014) © 2014 IEEE 
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2.7 Approximate Coplanarity 

According to (Limberger & Oliveira, 2015), existing plane detection algorithms are 

computationally costly and have a scale problem in big datasets; therefore, for 

performance enhancements, they usually benefit from non-deterministic strategies 

such as randomly chosen subgroup of the original point cloud. To overcome this 

problem, they proposed an efficient technique for plane detection in point cloud data 

that can work in real-time and faster than the plane detection algorithms such as 

Random Sample Consensus (RANSAC) and Hough Transform algorithms. Their 

approach is based on the segmentation of planar patches using a subdivision 

operation to refine an octree and approximate coplanar samples. They leveraged the 

detected clusters to achieve an efficient Hough-transform voting arrangement instead 

of casting votes for each cluster on a spherical accumulator for each sample. They 

utilized a Gaussian kernel centered on the cluster's best-fitting plane, which 

considers the variances of the cluster. In this regard, their technique enhances the 

kernel-based voting method described by (Fernandes & Oliveira, 2008), which uses 

a Gaussian distribution that has three variables over spherical coordinates (𝜃, 𝜑, 𝜌). 

For better understanding, the voting procedure on spherical accumulator is illustrated 

in Figure 21. They first segment approximate planar clusters of samples then they 

use this information for their Hough-transform voting procedure where the votes are 

casted by cluster rather than individual samples on a spherical accumulator. For 

voting, they use a trivariate Gaussian distribution over spherical coordinates. In 

Figure 21 (a), it is shown that the number of votes cast by a plane on the spherical 

accumulator cell increases substantially to the equatorial regions where the color 

scale represents the number of votes cast by a cluster. In Figure 21 (b), it is possible 

that the plane is oriented incorrectly because of the noise in the point cloud, which 

is represented by a cone of normals around a normal of the best-fitting plane's 

orientation shown in red. In Figure 21 (c), for a fixed value of 𝜌, on the equator, these 

uncertainity cases result an isotropic Gaussian kernel. Nevertheless, an isotropic 

Gaussian kernel is observed near a pole.  
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Since the eigenvalues of the covariance matrix describe the proportions of the 

variances of the sample distribution in the given cell, similar to covariance-based 

feature studies discussed in Section 2.5, they are used to filter out the non-planar 

clusters. Two conditions have been inspected to determine whether a series of 

samples are approximately coplanar: 

1. The cluster thicknesses 

2. The degree of isotropy to eliminate misclassification of lines and thin 

extended clusters as planes 

To achieve that, they defined two scaling factors 𝑠𝛼 and 𝑠𝛽. 𝑠𝛼 defines the relative 

off-plane displacement, and 𝑠𝛽 defines the degree of sample anisotropy of the cluster. 

Note that 0 ≤ 𝜆1 ≤ 𝜆2  ≤ 𝜆3 and a point is marked as approximate coplanar if (𝜆2 >

𝑠𝛼𝜆1) and (𝑠𝛽𝜆2 > 𝜆3) is satisfied. In the study 𝑠𝛼 = 25 and 𝑠𝛽 = 6 scale factors 

produced satisfactory results. Thus, the same values are used in this thesis study as 

well.  

 

 

Figure 21: (a). Number of the votes casted and best-fitting planes (b) Cones of 

normals (c) isotropic (top) and sliced anisotropic (bottom) are the Gaussian kernels 

in the (θ, ϕ). (Limberger & Oliveira, 2015) 

 

The robustness of the proposed algorithm was tested on a synthetically created cubic 

box dataset where inclined planes and missing data cases occur. It performed well 

both in these cases, and the results are shown in Figure 22. 
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Figure 22: Cube dataset. (a) A point cloud showing a cube that evenly distributed 

noise on each face. (b) A 3D view of a flattened accumulator slice (c) Reconstructed 

planes (d) Inclined reconstructed planes with 20°, 40°, 60°, and 80° around the x-

axis, respectively. (e) Thinned version of the cube that contains around 60% of the 

initial area for each face. (Limberger & Oliveira, 2015) 

 

2.8 Region Growing Segmentation 

Region growing segmentation is used in this thesis to divide the point cloud into 

sub-groups to estimate a rough ground surface from these segments. This section 

explains the principles of the algorithm. 

Segmentation is a process of dividing the point cloud measurements into such groups 

that the points belonging to the same surface or region have the same label (Rabbani, 

Heuvel, & Vosselman, 2006). (Vo, Truong-Hong, Laefer, & Bertolotto, 2015), 

evaluate point cloud segmentation algorithms in three main groups: model-fitting, 

region growing, and clustering feature-based methods. Region growing 

segmentation is proposed by (Besl & Jain, 1988) because it was hard to interpret the 

extensive amounts of raw data by computers. Although the algorithm was initially 

built for image segmentation, it is developed by other researchers for 3D point cloud 

applications. (Vieira & Shimada, 2005), extended the existing algorithm to handle 

noisy point clouds by focusing on seed point selection.  (Nurunnabi, Belton, & West, 

2012) proposed an algorithm using PCA-based region growing segmentation, (Vo, 

Truong-Hong, Laefer, & Bertolotto, 2015) introduced an octree-based region 

growing segmentation.  
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Briefly, in region growing segmentation, the aim is to merge the sufficiently close 

points with the smoothness condition. First, a seed point is selected, and the neighbor 

points are found. Then, these neighboring points are tested for the curvature value to 

check whether it satisfies the smoothness criteria. If so, the points are added to the 

same cluster. The algorithm steps are given as the following steps:  

1. All the points are sorted by their curvature value, and the region starts to grow 

from the minimum curvature value (flattest area) to reduce the total number 

of segments. 

2. The minimum curvature point is added to a seed point set. 

3. For each seed point, the neighboring points are found. 

4. For each neighboring point, a normal is calculated. 

5. If the angle between the point normal and the seed point set normal is less 

than the given threshold, the point is added to the current region. 

6. Current seed is removed from seed point set. 

7. If there is no point left in the seed set, the process is repeated from the 

beginning. (Rusu & Cousins, 2011) 

 

2.9 Common Surface Interpolation Techniques 

2.9.1 Introduction 

Spatial interpolation is a technique to logically estimate a continuous field's values 

that are not actually measured by using existing observations (Longley, Goodchild, 

Maguire, & Rhind, 2005). Most of the quantities such as elevation, climate data, soil 

properties, population density, precipitation, etc. are described by measured or 

sampled point data, which are often irregularly distributed in Geographic 

Information System (GIS) applications, so there is a need for interpolation 

techniques to derive information about the missing points (Mitas & Mitasova, 2005). 
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For example, in practice, it is impossible to cover a whole country with weather 

stations. Climate values around the areas without these stations can be interpolated 

from existing weather stations. Despite the availability of different spatial 

interpolation techniques, some of them are used in DEM interpolation. Within the 

scope of this thesis, only the common interpolation methods for DEM interpolation 

are covered. Different spatial interpolation methods are covered in this thesis with 

their advantages and disadvantages to explain why Inverse Distance Weighting is 

used over the other spatial interpolation techniques. 

2.9.2 Inverse-Distance Weighting (IDW) 

IDW is one of the most straightforward local neighborhood interpolation methods in 

which it is assumed that the value of an unsampled point can be estimated as a 

weighted average of the values at the points within a certain cut-off distance or at a 

specified m of the nearest points (Longley, Goodchild, Maguire, & Rhind, 2005). 

The value of the unsampled point can be estimated by using the following formula 

(Garnero & Godone, 2013): 

   𝑍𝑗 =

∑  𝑛
𝑖=1  

𝑍𝑖

(ℎ𝑖𝑗+𝛿)
𝛽

∑  𝑛
𝑖=1  

1

(ℎ𝑖𝑗+𝛿)
𝛽

     (2) 

where Zj is the value at an unsampled location, Zj is the known value, 𝛽 is the weight, 

𝛿 is the smoothing parameter, and ℎ𝑖𝑗 is the Euclidian separation distance between 

the known and the unknown point. The main assumption in this technique is that all 

points on the surface of the world are treated interdependent based on distance. 

According to (Achilleos, 2011), the height of an interpolated point is connected with 

the elevations of the reference points around, and it is generally inversely 

proportional to the distance from each point of reference raised to a square or cubic 

power. The study also discusses the method's weaknesses in DEM generation, such 

as the occurrence of peaks in various places, smoothened out curved parts in low-

resolution DEM, and the creation of small isolated islands in contour lines. As an 
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example, interpolation results are shown on the Ankeny dataset. For the sake of 

computation, the Ankeny dataset (Becker, Rosinskaya, Häni, D'Angelo, & Strecha, 

2018) is resampled into approximately 75000 points. Then from these points, a DSM 

is generated by using IDW interpolation. The resulting DSM and the elevation 

histogram are illustrated in Figure 23 and Figure 24, respectively.  

 

Figure 23: IDW interpolation of resampled Ankeny data 

 

 

Figure 24: Elevation histogram of IDW interpolated Ankeny data 
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2.9.3 Spline Interpolation 

Spline interpolation is a method of interpolation to construct new points using a 

specific type of piecewise polynomial called a spline. An interpolation of low degree 

polynomials is chosen to fit into sub-sets of values rather than a single high-degree 

polynomial fitting all values directly. A linear combination of n functions is used in 

the method, one for every known point (Garnero & Godone, 2013), and the generic 

form of the interpolation is defined as:  

𝑍̂(𝑠0) = ∑  𝑛
𝑖=1 𝜔𝑖𝜙(∥∥𝑠𝑖 − 𝑠0∥∥) + 𝜔𝑛+1   (3) 

where 𝜙(𝑟) is the interpolation function, ∥∥𝑠𝑖 − 𝑠0∥∥ is the Euclidian distance between 

an unknown and observed point, and 𝜔𝑖 is the weight. 

(Garnero & Godone, 2013) listed the common spline functions, such as thin-plate 

spline, multi-quadratic, inverse multi-quadratic, completely regularized spline 

function, and spline with tension function.  

 

 

Table 4: Common spline functions (Garnero & Godone, 2013) 

Example Spline Functions 

Thin-plate Spline function 𝜙(𝑟) = (𝜎 ⋅ 𝑟)2ln (𝜎 ⋅ 𝑟) 

Multi-quadric function 𝜙(𝑟) = [𝑟2 + 𝜎2]1/2 

Inverse Multi-quadric 

function 

𝜙(𝑟) = [𝑟2 + 𝜎2]−1/2 

Completely regularized 

Spline function 
𝜙(𝑟) = −∑𝑛=1

∞  
(−1)𝑛 ⋅ 𝑟2𝑛

𝑛! 𝑛

= ln [
𝜎 ⋅ 𝑟

2
]
2

+ 𝐸1 [
𝜎 ⋅ 𝑟

2
]
2

+ 𝐶𝐸 

Spline with tension 

function 

𝜙(𝑟) = ln (
𝜎 ⋅ 𝑟

2
) + 𝐾0(𝜎 ⋅ 𝑟)

2 + 𝐶𝐸 
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For the given functions in Table 4, 𝑟 is the distance between the point and the sample, 

𝜎 is the tension parameter, 𝐸1 is the exponential integral function, 𝐶𝐸 is the Euler – 

Mascheroni constant (0,577215), and   𝐾0 is the modified Bessel function. 

From the thinned Ankeny data, a DSM is generated by using spline interpolation. 

The resulting DSM and the elevation histogram are illustrated in Figure 25 and 

Figure 26, respectively. There are some spikes and surface anomalies around the 

vegetated area and building boundaries in this DSM. 

 

 

Figure 25: Spline interpolation of resampled Ankeny data 
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Figure 26: Elevation histogram of spline interpolated Ankeny data 

 

2.9.4 Triangulated Irregular Networks (TIN) 

Triangulation is a relatively straightforward technique to determine a complete 

collection of minimal clusters in a scattered data set where these minimal clusters 

are triangles for (x, y, f(x, y)) data forms, and data points are located at each vertex 

of the triangle (Watson & Philip, 1984). Elevation data can be evaluated in the form 

of (x,y,f(x,y)) where f(x,y) is the elevation. An ensemble of space-filling triangles 

forms a triangular, irregular mesh, and the interpolation system is used directly to 

raw data without griding (Watson & Philip, 1984). A triangulation that is based on a 

well-defined and cost-efficient criterion is required in systems using triangular 

tesselations, which is why Delaunay is utilized in those systems (Fowler & Little, 

1979). According to (Fortune, 1995), let S be a set of n points in a d-dimensional 

space (𝐸𝑑). The diagram of Voronoi divides 𝐸𝑑   amongst regions with one region 

per site so that the points of site 𝑠 ∈ 𝑆 in the region are closer to 𝑠 than any other 

location in 𝑆. The triangulation of Delaunay 𝑆 is the unique triangulation of 𝑆 so that 

no 𝑆 elements are contained in the circumference of any triangle. In this case, 

triangulation is evolved from planar to the arbitrary dimension. The convex hull of 

the 𝑆 is decomposed into simple structures utilizing S vertices. 
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Figure 27: (a,c) represent the Voronoi diagram both in 2D and 3D, respectively. 

Similarly, (b,d) showing the Delaunay triangulation for the same set of points in 2D 

and 3D, respectively (Fortune, 2017) 

 

 

Figure 28: Rasterized TIN interpolation of resampled Ankeny data 
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Figure 29: Elevation histogram of TIN interpolated Ankeny data 

 

2.9.5 Kriging 

Kriging is a geo-statistical local estimation method of the best linear unbiased 

estimator that utilizes variograms for spatial and temporal variables (Arun, 2013; 

Chung, Venkatramanan, Elzain, Selvam, & Prasanna, 2019). The variogram is a 

measure of spatial dependence (Chung, Venkatramanan, Elzain, Selvam, & 

Prasanna, 2019) that gives a piece of precise information about the influence zone 

(Matheron, 1963). In other words, the more or less fast growth of the variogram 

means a deterioration of the impact of a sample on more and more remote areas of 

the value measured (Matheron, 1963). Kriging is defined as (Chung, 

Venkatramanan, Elzain, Selvam, & Prasanna, 2019): 

𝑍𝐾
∗ = ∑  𝑛

𝑗=1 𝜆𝑖𝑍𝑖      (4) 

where 𝑍𝐾
∗  is the Kriging estimation, 𝜆𝑖 is the weight, and 𝑍𝑖 is the variable. 

The weight is selected to provide an unbiased estimator and a minimum estimated 

variance (Journel & Huijbregts, 1976), and in unbiased kriging, the condition is 

satisfied when 𝐸{𝑍𝑉 − 𝑍𝐾
∗ } = 0, where 𝑍𝑉 is the actual value and 𝑍𝐾

∗  is the estimated 

value. Also, note that the summation of the weights is equal to unity. The estimate 

of variance of kriging is defined as: 
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𝜎𝐾
2 = 𝐸{[𝑍𝑉 − 𝑍𝐾

∗ ]2} = 𝐶‾(𝑉, 𝑉) + 𝜇 − ∑  𝑛
𝑖=1 𝜆𝐶‾(𝑣𝑖 , 𝑉)   (5) 

where 𝐶‾(𝑉, 𝑉) is the covariance between sample variables, 𝜇 is the Lagrange 

parameter, and 𝐶‾(𝑣𝑖, 𝑉) is the covariance between the sample variable and the 

estimates. 

The semi-variogram is defined as (Chung, Venkatramanan, Elzain, Selvam, & 

Prasanna, 2019): 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑  
𝑁(ℎ)
𝑖=1

[𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]
2    (6) 

where 𝑍(𝑥𝑖) and 𝑍(𝑥𝑖 + ℎ) are the sampled values at 𝑥𝑖 and 𝑥𝑖 + ℎ, and 𝑁(ℎ) is the 

number of pairs of samples separated by the lag h. 

The following equation is used to calculate the covariance between sample data 

(Chung, Venkatramanan, Elzain, Selvam, & Prasanna, 2019): 

𝐶(ℎ) = 𝑠𝑖𝑙𝑙 − 𝛾(ℎ)      (7) 

 

where 𝐶(ℎ) is the covariance, and 𝛾(ℎ) is the semivariogram. 

Spherical, exponential, Gaussian, linear, and power models are the most widely used 

theoretical semivariograms that fit to the empirical semivariogram (Pouliou, 

Kanaroglou, Elliott, & Pengelly, 2008). Simple, Ordinary, and Universal Kriging 

types are the most frequently used kriging types, and the major distinction is the 

assumptions made concerning the spatial trend of the mean value of the examined 

variable (Pouliou, Kanaroglou, Elliott, & Pengelly, 2008). An ordinary kriging with 
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a spherical semivariogram is used to create Figure 31. The generic form of the 

spherical variogram is defined as (Bailey & Gatrell, 1995): 

𝛾(h) =

{
 

 𝛼 + 𝜎2 (
3h

2r
−
h3

2r3
)      for 0 < h ≤ r

0     for h = 0
𝜎2     otherwise 

 

where 𝜎2 is the sill, 𝑟 is the range, and 𝛼 is the nugget effect. 

 

Figure 30: Common variogram types (Deutsch, 2003) 
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Figure 31: Kriging interpolation of resampled Ankeny data 

 

 

Figure 32: Elevation histogram of kriging interpolated Ankeny data 
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2.10 Point Cloud Classification and Digital Terrain Model Extraction Studies 

2.10.1 Introduction 

Digital terrain modeling is the common name for methods for building a DTM from 

different data inputs such as point clouds and aerial imagery. Some points are 

sampled from the ground to form accurate, dense, and distributive observations; then, 

these sample points represent the ground surface (Li, Zhu, & Gold, 2004). If 

information about other than sample points is needed, in that case, interpolation 

techniques are used with the sampled data points to construct a DTM surface (Li, 

Zhu, & Gold, 2004) to obtain information about the rest of the points. DTM has been 

a critical research subject for the International Society for Photogrammetry and 

Remote Sensing (ISPRS) since the 1960s, as photogrammetrists usually are 

manufacturers of DTM (Li, Zhu, & Gold, 2004). Since then, many different 

approaches have been proposed to create the DTM. Since there are multiple data 

acquisition methods such as satellite imaging, ALS, and photogrammetry, these 

studies have focused on various remote sensing data sources. Several studies focused 

on aerial point cloud classification and, consequently, classification of ground points. 

In the meantime, some focused on DTM extraction specifically. These studies are 

divided into two chapters and discussed separately.  

2.10.2 Point Cloud Classification Studies 

Point cloud classification is a crucial step in understanding the topography, the 

environment for further applications like object recognition, surface reconstruction, 

etc. According to the American Society for Photogrammetry and Remote Sensing 

(ASPRS), standard LIDAR point classes are shown in Table 5.  



 

 

41 

Table 5: ASPRS Standard Lidar Point Classes (Point Data Record Formats) (The 

American Society for Photogrammetry and Remote Sensing, 2019) 

Classification Value Meaning 

0 Created, never classified 

1 Unclassified  

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point (noise) 

8 Reserved 

9 Water 

10 Rail 

11 Road Surface 

12 Reserved 

13 Wire - Guard (Shield) 

14 Wire - Conductor (Phase) 

15 Transmission Tower 

16 Wire-structure Connector (e.g., Insulator) 

17 Bridge Deck 

18 High Noise 

19 Overhead Structure 

20 Ignored Ground 

21 Snow 

22 Temporal Exclusion 

23-63 Reserved 

64-255 User definable 
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(Oude Elberink & Maas, 2000) used anisotropic height texture measure to detect 

trees and buildings from laser scanner image textures using the knowledge that the 

buildings have a regular, smooth pattern with height, in contrast to trees that show 

the opposite characteristics. This distinctness is used in this study to derive co-

occurrence matrices for discriminating between trees and buildings.  

The 3D covariance matrix, also known as a 3D structure tensor, describes the local 

3D structure (Jutzi & Gross, 2009). Using this matrix, (Demantké, Vallet, & 

Paparoditis, 2012) derived verticality to detect vertical rectangles. Similarly, 

(Weinmann, Urban, Hinz, Jutzi, & Mallet, 2015) derived linearity, planarity, 

scattering omnivariance, anisotropy, eigenentropy, local surface variation and used 

these features to classify the points in large-scale scene analysis in urban areas. 

(Hackel, Wegner, & Schindler, 2016) extended the set of covariance features; 

additionally, they used 1st order 1st axis, 1st order 2nd axis, 2nd order 1st axis, and 2nd 

order 2nd axis moments for feature extraction. Then they used a random forest 

classifier to calculate the probabilities of the points for each class. (Becker, 

Rosinskaya, Häni, D'Angelo, & Strecha, 2018) have combined pointwise color 

information and multi-scale pyramid approach with the features utilized by (Hackel, 

Wegner, & Schindler, 2016). They indicated that if color information is provided, it 

can be used to boost performance and classification accuracy. (Xu & Yang, 2018) 

used eigenentropy based scale selection for the covariance and color features. They 

pointed out that scale has a vital role in point classification. 

2.10.3 DTM Extraction Studies 

(Kraus & Pfeifer, 1998) proposed the first interpolation-based filtering method that 

approximates the terrain iteratively. While doing that, they used weighted linear least 

squares interpolation. In binary pictures, two critical operations are usually used to 

expand (dilate) or decrease (erode) feature size (Zhang, et al., 2003). (Nar, Yilmaz, 

& Camps-Valls, 2018), proposed an algorithm based on sparsity-driven stepwise 

nonlinear smoothing operation by minimizing the cost function.  
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(Elmqvist, Jungert, Lantz, Persson, & Söderman, 2001) proposed an algorithm based 

on active contours to extract DTM on grid data. Metaphorically, they draped a rubber 

cloth on the terrain and tried to extract it by using the cloth's rigidity and elasticity. 

(Zhang, et al., 2016) has a similar approach based on a physical process called Cloth 

Simulation Filtering. First, they process the point cloud upside down as a cloth 

draped on these inverted points. Then, they analyze the interaction between the cloth 

and the points to give the shape of the final cloth.  

(Vosselman, 2000) used a slope-based approach which is similar to erosion operation 

in mathematical morphology. In this research, the height difference between two 

points plays an essential role. (Zhang, et al., 2003) proposed a progressive 

morphological filter that combines erosion and dilation operation to get rid of non-

ground objects. For the robustness of the approach, they used different window sizes. 

Also, note that their filter depends on the elevation difference.  

(Axelsson, 2000) used adaptive TIN models that start with a coarse TIN for the given 

point cloud, then iteratively densifying this TIN model with the adjusted parameters 

in each iteration. It goes on until all the points are classified as ground or non-ground. 

(Sohn & Dowman, 2002), used two-step progressive TIN approach to obtain DTM. 

They used downward and upward TIN densification and, Minimum Description 

Length to find the flattest tetrahedrals.  

(Brovelli, Cannata, & Longoni, 2002) have an edge-detection-based approach to 

create splines. These splines are later used to detect above-ground object. In their 

assumption, the points above the splines are considered as potential objects, and the 

points below the splines are the potential ground points. To connect the edges, they 

used a region growing step that works on raster data. 

(Wack & Wimmer, 2002) first, convert the point cloud into a low-resolution 

elevation model to overcome the large objects and dense vegetation. Then, using a 

Laplacian of Gaussian operation, all the non-ground objects are detected and 

removed. They do the same for the finer resolution raster. The values of the non-



 

 

44 

ground object elements in finer grids are replaced with the coarser resolution grid. 

They do it iteratively to obtain the final results. 

(Mongus & Žalik, 2012) conducted a parameter-free ground filtering of LIDAR 

study based on multi-resolution thin-plate spline interpolation to detect non-ground 

objects. In each resolution level, they use top-hat transformation to enhance the low-

contrast high-frequency details. In the end, they use a statistical filter to distinguish 

non-ground objects.  

(Bartels, Wei, & Mason, 2006) came up with a statistical approach that finds the 

points that disturb the normal distribution. Their assumption is based on naturally 

measured samples that would lead to a normal distribution, and the ones that disrupt 

the normal distribution are non-ground points. Although it performs well in building 

and vegetation classification, it might fail in complex scenes that contain bridges and 

motorways.  

Advances in Deep Learning and Graphic Processor Units (GPU) led remote sensing 

researchers to use them for DTM extraction. (Hu & Yuan, 2016) presents a novel 

way of extracting ground points using Convolutional Neural Networks based (CNN). 

The adjacent points within a window are retrieved and converted into a picture for 

each point with a spatial context. The classification of a point may thus be considered 

as image classification; the transition from point to an image is carefully carried out 

in the surrounding region, taking account of high-level information. Similarly, (Xu 

& Yang, 2018) used CNN with intensity, eigenvalue-based covariance features, 

normal vector-based features, and height above ground values. They benefit from 

eigenentropy for their scale selection to make the classification more efficient and 

straightforward. 

(Çınar & Koçan, 2019) trained a generative adversarial network that creates DTM. 

In their approach, instead of modifying the existing DSM, they create DTM from 

scratch. Although some artifacts exist, the study shows that creating DTM for a 

region with a generative network is possible. 
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CHAPTER 3  

3 DATA AND METHODOLOGY 

3.1 Data Collection 

3.1.1 The Study Area and Point Cloud Characteristics 

Two different photogrammetric point clouds representing various terrain 

characteristics are selected to test the robustness of the algorithm. Both 

photogrammetric point clouds contain seven fields: X, Y, Z, R, G, B, and 

Classification. The first dataset called "Ankeny" has around 9 million points 

representing relatively flat ground, buildings, vehicles, poles, trees, and vegetation. 

The second dataset, called "Cadastre" has approximately 5.8 million points showing 

fairly steep ground, buildings, vehicles, poles, trees, powerlines, and vegetation 

(Becker, Rosinskaya, Häni, D'Angelo, & Strecha, 2018). The points are classified by 

their proposed algorithm, and the overall errors for ground points are 16.5% and 

18.9% in Ankeny and Cadastre datasets, respectively. Both data have some missing 

points on the facades, making these point clouds challenging for DTM extraction. 

Ground sampling distances (GSD) for these data are 2.3 𝑐𝑚/𝑝𝑖𝑥𝑒𝑙 and 

5.1 𝑐𝑚/𝑝𝑖𝑥𝑒𝑙, respectively. Figure 33 and Figure 34 illustrate the Ankeny data from 

front and back isometric views. Similarly, Figure 35 and Figure 36 show Cadastre 

data from front and back isometric views. Table 6 shows the general information 

about the datasets. Meanwhile, Table 7 shows the point cloud dataset content.  
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Table 6: Point cloud dataset used for evaluation (Becker, Rosinskaya, Häni, 

D'Angelo, & Strecha, 2018) 

Dataset Acquisition Color Number of Points GSD (𝒄𝒎/

𝒑𝒊𝒙𝒆𝒍) 

Ankeny Aerial 

images 

RGB ≈ 9 million 2.3 

Cadastre Aerial 

images 

RGB ≈ 5.8 million 5.1 

 

Table 7: Point cloud dataset content (Becker, Rosinskaya, Häni, D'Angelo, & 

Strecha, 2018) 

Feature Ankeny Cadastre 

Roads + + 

Ground/Grass on flatland + + 

Ground/Grass on slopes - + 

Cropland + - 

Powerlines - + 

Vehicles + + 
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Figure 33: Front isometric view of Ankeny data 

 

 

Figure 34: Back isometric view of Ankeny data 
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Figure 35: Front isometric view of Cadastre data 

 

 

Figure 36: Back isometric view of Cadastre data 
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3.1.2 Ground Truth for Validation 

The point cloud datasets have a "Classification" field for different classes such as 

ground, building, vegetation, low vegetation, etc. However, 16.5% and 18.9% of the 

ground points in Ankeny and Cadastre datasets are misclassified by their algorithm 

(Becker, Rosinskaya, Häni, D'Angelo, & Strecha, 2018). Thus, these points are 

corrected manually so that they can be used as the ground truth data. For the ground 

points, misclassified points are corrected manually within the framework of this 

thesis. Later on, from these ground points, terrain surfaces are created by using 

Delaunay triangulation to be used for the accuracy assessment of the proposed 

algorithm. 

3.2 The Proposed Method 

3.2.1 Overview 

In this section, the proposed algorithm steps, whose flowchart is given in Figure 37, 

are discussed briefly. These steps are explained in detail in the corresponding 

sections. 

1. Section 3.2.2 explains the voxelization process and why it is needed. 

2. Section 3.2.3 describes what Approximate Coplanarity check is and how it is 

exploited to get rid of the non-ground object. 

3. Section 3.2.4 explains why a grid-based planarity check is needed and how 

it is used to get rid of vertical planar parts. 

4. Section 3.2.5 explains region growing segmentation and its use to segment 

the corresponding parts from the previous steps. 

5. Section 3.2.6 explains how Delaunay triangulation is utilized to calculate a 

rough terrain surface to calculate the approximate height above ground 

values. 
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6. Section 3.2.7 describes the method used to eliminate the left-over roof planes 

from the previous steps. 

7. Section 3.2.8 explains the rasterization process from the ground points. 

8.  Section 3.2.9 explains how the parameters and thresholds are selected. 

These steps are realized using Point Data Abstraction Library (PDAL), Point Cloud 

Library (PCL) Strawlab Python Implementation, and some custom scripts are written 

from the scratch. Also note that PDAL library uses Fast Library for Approximate 

Nearest Neighbors (FLANN) for fast nearest neighbor search.  

 

Figure 37: The flowchart of the proposed algorithm 
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3.2.2 Voxelization 

Since raw point clouds are unstructured, they have limited use beyond visualization 

and simple distance measurements; thereby, a considerable effort has been made to 

create automated techniques for point cloud interpretation (Hackel, Wegner, & 

Schindler, 2016). In other words, the distance between two random adjacent points 

might not be equal, and as a result, spatial algorithms may perform poorly in some 

datasets. A voxel is a three-dimensional equivalent of a pixel (volumetric pixel or 

volumetric image element) (Pyysalo, Oksanen, & Sarjakoski, 2009). A voxelization 

process is applied to overcome this unstructured data problem. In this study, the 

covariance features are calculated primarily based on nearest neighborhood queries. 

Voxelization not only helps these queries be faster since it makes the data organized 

compared to raw data, but also reducing number points that allows neighborhood 

queries and algorithms to work faster. In Figure 38, the raw point cloud, and in Figure 

39, voxelized point cloud are shown. For the voxelization process, at the chosen cell 

size (0.25 m), the input point cloud is split into 3D voxels. Each voxel is represented 

with a point that satisfies the given conditions below. For the voxelization, the 

following ruleset is applied by using PDAL "voxelcentroidnearestneighbor" filter: 

1. The input point cloud is split into 3D voxels for the chosen cell size (0.25 m).  

2. If the given cell size contains only one point, this point is used directly.  

3. The point closest to the voxel center is selected if the given cell size has two 

points. 

4. If there are more than two points, first, the centroid is calculated for the points 

in the given cell size. Then, the closest point to the centroid is selected (PDAL 

Contributors, 2018).  

In Table 8, the comparison between the raw point and the voxelized point cloud is 

shown. Figure 42, Figure 43, Figure 44, Figure 45 are the spherical volume density 

(r = 1 m), which is a measure of the point count in the given spherical volume, 

histograms of Ankeny raw data, Ankeny voxelized data, Cadastre raw data, and 

Cadastre voxelized data, respectively. Spherical volume density is the value of the 
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number of neighbors divided by the neighborhood volume in a given unit sphere 

(r = 1 m).  

Table 8: Comparison between raw and voxelized data 

Dataset Input 

Number of 

Points 

Voxelized 

Number of 

Points 

Voxel Cell 

Size (m) 

Raw Point 

Spherical 

Volume 

Density 

Mean 

(1 m3) 

Voxelized 

Point 

Spherical 

Volume 

Density 

Mean  

(1 m3) 

Ankeny 8924117 776465 0.25 126.703 8.590 

Cadastre 5771358 2641573 0.25 20.101 6.972 

 

 

Figure 38: Ankeny raw point cloud data 



 

 

53 

 

Figure 39: Ankeny voxelized point cloud data 

 

 

Figure 40: Cadastre raw point cloud data 
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Figure 41: Cadastre voxelized point cloud data 

 

 

Figure 42: Histogram of spherical volume density (r =1 m) in Ankeny raw data 

(Gaussian Mean = 126.703, Standard Deviation = 51.732) 
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Figure 43: Histogram of spherical volume density (r =1 m) in Ankeny voxelized 

data (Gaussian Mean = 8.590, Standard Deviation = 3.432) 

 

 

Figure 44: Histogram of spherical volume density (r =1 m) in Cadastre raw data 

(Gaussian Mean = 20.101, Standard Deviation = 7002) 



 

 

56 

 

Figure 45: Histogram of spherical volume density (r =1 m) in Cadastre voxelized 

data (Gaussian Mean = 6.972, Standard Deviation = 2.593) 

3.2.3 Approximate Coplanarity Check 

In this thesis, a divide-and-conquer approach is used to split this problem into simpler 

steps. First, by using an approximate planarity check, the data is divided into two 

main groups namely, ground and non-ground candidates. In this thesis, a planarity-

based divide-and-conquer algorithm is utilized. It is assumed that ground candidates 

often show a planar characteristic, whereas above-ground objects distort this 

assumption. After voxelization, as a first step of the divide and conquer approach, 

all the points are labeled as planar or nonplanar using an approximate coplanarity 

check. This allows the algorithm to eliminate most of the above-ground objects such 

as vehicles, posts, trees, etc., since they show a nonplanar behavior within the 

neighborhood.  However, since building facades and roofs show a planar behavior, 

it is not possible to filter these points in this step. This check also helps us eliminate 

outliers that do not fit to plane in a given size. Although an approximate planarity 

check can help us to filter above-ground objects, these points are not removed in this 

step. These points help the algorithm to calculate a grid-based planarity to get rid of 

the vertical planes in the following algorithm step. The approximate planarity check 
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is applied to the voxelized data by checking 128 nearest neighborhoods using the 

approximate planarity algorithm explained in Section 2.7, which is efficient and fast 

since it is designed initially for real-time plane detection in unorganized point clouds. 

Different neighborhood sizes (8, 16, 32, 64, 128, 256) have been tried, and it is 

decided to check 128 neighbors because if the size decreases, there may be some 

leftovers from the approximate planarity check.  On the other hand, when the size 

increase, the object boundaries are extended, and ground points near the objects are 

labeled nonplanar. The approximate planarity check results with neighborhood sizes 

of 8, 12, 16, 32, 64, 128, 256 are illustrated in Figure 46, Figure 47, Figure 48, Figure 

49, Figure 50, and Figure 51, respectively. Note that the red points show the 

approximate planar samples, whereas the blue shows the non-planar examples. If the 

neighborhood size decreases too much, some walls are considered nonplanar due to 

noisy data. There is a trade-off between the computation time and the robustness; 

however, since the approximate coplanarity algorithm is designed to work in real-

time, for the sake of robustness, it is chosen to check 128 neighbors that do not cost 

a significant computation time. These coplanar points primarily represent the 

facades, the ground, and the roofs. Figure 52 shows a section of the RGB-colored 

voxelized Ankeny dataset that contains trees, buildings, vehicles, posts; Figure 53 

indicates the coplanarity result, and Figure 54 shows the result after filtering on the 

Ankeny dataset. Figure 55, an area of the RGB-colored voxelized Cadastre dataset 

with the same features, in Figure 56, the coplanarity filter result, and in Figure 57, 

the filtered points are shown, respectively. 
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Figure 46: Approximate coplanarity check with 8 neighbors 

 

 

Figure 47: Approximate coplanarity check with 16 neighbors 
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Figure 48: Approximate coplanarity check with 32 neighbors 

 

 

Figure 49: Approximate coplanarity check with 64 neighbors 
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Figure 50: Approximate coplanarity check with 128 neighbors 

 

 

Figure 51: Approximate coplanarity check with 256 neighbors 
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Figure 52: Voxelized Ankeny dataset 

 

Figure 53: Approximate coplanarity check result on Ankeny dataset. Red points 

represent the approximate planar points, and blue points are the non-planar ones. 
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Figure 54: Ankeny dataset after approximate coplanarity filter is applied 

 

 

Figure 55: Voxelized Cadastre dataset 
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Figure 56: Approximate coplanarity check result on Cadastre dataset. Red points 

represent the approximate planar points, and blue points are the non-planar ones. 

 

 

Figure 57: Cadastre dataset after approximate coplanarity filter is applied 
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3.2.4 Vertical Plane Removal 

After an approximate planarity check, most of the non-planar regions are detected. 

Building facades, vertical planes, roof planes, and other non-ground areas should be 

removed so that the ground points are not segmented together with the ground points 

in the following region growing segmentation. A grid-based planarity method is 

designed to get rid of the vertical planes. It is valuable for detecting vertical planes 

and beneficial to preserve some contextual information since some features might be 

misclassified in the nearest neighborhood approach. 

In the grid-based planarity check, the data is divided into 2D grids. Then for these 

grids, the eigenvalues of the covariance matrix are calculated together with the 

approximate coplanarity filter. The planarity value of the grids lower than 0.3 are not 

considered as the ground planes because they contain both ground and vertical plane 

samples. The grid size is selected as 2 m, so these grids have multi-class samples 

(both ground and building facade points). In Figure 59, the grids colored as blue have 

a grid planarity value less than the given threshold. It can be seen that near the 

building footprints, these grids contain some ground points as well. Since removing 

these points do not have a significant impact on the resulting DTM, they are 

eliminated as well. In Figure 58, a single building is shown in RGB colors, and in 

Figure 59, the grid planarity values are calculated for 2 m grids. It can be seen in 

Figure 59 that the grids having points from different classes (generally the building 

boundaries) have high grid planarity values. Then from these eigenvalues, the 

planarity values for these grids can be obtained. If 𝜆1 ≥ 𝜆2  ≥ 𝜆3  ≥  0, the planarity 

value is defined as: 

(𝜆2 − 𝜆3)/𝜆1     (8) 

Because, in a planar distribution, the first two eigenvectors are expected to define 

the plane, and corresponding eigenvalues are expected to be large, while the third 

component is perpendicular to the plane and the variance on that direction (hence 

eigenvalue) is expected to be just the noise. The grids with a planarity value lower 
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than 0.3 and the approximate planar points in the previous step are filtered out 

together in this step. In Figure 60, the approximate planarity filtered Ankeny data, 

and in Figure 61, the grid-based filtered Ankeny data are illustrated. The same results 

are shown for Cadastre data in Figure 62 and Figure 63, respectively.  

 

Figure 58: A single building colored in RGB 
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Figure 59: Grid planarity values on a single building 

 

 

Figure 60: Ankeny dataset after approximate coplanarity filter is applied 
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Figure 61: Eliminating vertical planes in Ankeny dataset using grid-based planarity 

values 

 

 

Figure 62: Cadastre dataset after approximate coplanarity filter is applied 
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Figure 63: Eliminating vertical planes in Cadastre dataset using grid-based planarity 

values 

3.2.5 Region Growing Segmentation 

The principles of the region growing segmentation are discussed in section 2.8. For 

region growing segmentation, Point Cloud Library (PCL) Strawlab Python 

Implementation is used. 

In Figure 64 and Figure 65, random RGB-colored segmentation results of two 

datasets are shown for Ankeny and Cadastre datasets, respectively. It can be seen 

that, although there are small segments representing terrain, most of the ground 

points are segmented into a big piece that contains enough points to estimate a rough 

ground surface.  
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Figure 64: Top view of random RGB-colored segmentation result of Ankeny dataset 

 

 

Figure 65: Top view of random RGB-colored segmentation result of Cadastre dataset 
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3.2.6 Delaunay Triangulation and Rough Relative Height Calculation 

The input point clouds store elevation as absolute values. Since there is no prior 

DTM, there is no information about "Height Above Ground (HAG)" in the input 

dataset. However, after segmentation, the most significant segments for each dataset 

are considered to estimate a rough ground surface to make the height-based 

elimination process available. If the area is not dense urban area, the biggest segment 

is expected to belong to the ground samples. PDAL offers “hag_delaunay” filter that 

takes ground points into account and creates a surface. In this step, the segments with 

the highest number of points are considered as the ground points to estimate the 

rough surface. Later, the distances are calculated from each point to obtain HAG 

values. By doing so, it is possible to eliminate the small clusters (roof parts, etc.) in 

the next step based on HAG values. Absolute height values might misguide since the 

elevation change may occur due to terrain. To overcome this problem, the relative 

height values are taken into account in the further steps.  

 

3.2.7 Eliminating Roof Planes 

After calculating HAG values, it can now be estimated whether a point is close to 

the ground or not. HAG-based thresholding is applied to eliminate the points that are 

0.5 m distant from the rough ground surface. In Figure 66 and Figure 67, the points 

are colored by HAG values for Ankeny and Cadastre datasets, respectively. In Figure 

66 and Figure 67 the negative values represent the points beneath the rough surface, 

and within 0.5 m threshold, the points are considered ground points. In other words, 

if the HAG value is greater than -0.5 m and less than 0.5 m, these points are labeled 

as ground points.  
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Figure 66: Ankeny dataset is colored based on HAG values 

 

 

Figure 67: Cadastre dataset is colored based on HAG values 
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3.2.8 Rasterization 

After HAG-based filtering is applied, the only points left are the ground points. By 

the IDW interpolation method, a surface is interpolated considering using 12 

neighboring points and a power of 2. The IDW is selected because of its simplicity 

and speed. The increase in the number of neighboring points causes a huge increase 

in computation time, so due to limited computational power, and our aim of having 

a fast algorithm, 12 neighbors are considered. The interpolation is done in ArcGIS 

desktop. The input datasets do not have regular boundaries, and some data gaps 

around the borders might cause errors in accuracy assessment. The distorted areas 

are clipped from the resulting raster to have better accuracy assessment. For better 

visualization, the RGB-colored clipped rasters are shown in Figure 68, and Figure 

69, for Ankeny and Cadastre datasets, respectively. 
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Figure 68: RGB-colored clipped Ankeny dataset 
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Figure 69: RGB-colored clipped Cadastre dataset 

 

3.2.9 Parameter Selection 

The proposed algorithm contains various parameters in processing steps and this 

section describes how these values are selected. For varying parameter and threshold 

values, the remaining parameters kept constant. The parameters are tested, and 

selected with respect to Ankeny dataset. Later, these parameters are tested for 

Cadastre dataset to check the algorithm’s robustness in different point density. 

 



 

 

75 

Table 9: CSF parameters 

 Terrain 

Type 

Cloth 

Resolution 

(m) 

Maximum 

Iteration 

Classification 

Threshold 

Ankeny Flat 1 500 0.5 

Cadastre Steep 

Slope 

1 500 0.5 

   

3.2.9.1 Grid Resolution 

In the proposed algorithm, the grids filter out the vertical planes, especially the 

building facades. Because of this reason, it is better to select a grid resolution bigger 

than the building wall thickness to cover these facade points as much as possible in 

a single grid. The change in this value does not significantly affect the RMSE of the 

DTM; so, this value is selected as 2 m to filter out the building walls and vertical 

planes. Any other step except grid planarity check uses kNN search. For these 

queries, the neighborhood size is fixed. 

On the other hand, the number of points inside the grids is critical for calculating 

covariance features. The more points inside the grids help us to understand the 

geometric properties of the grid better (planar or nonplanar). For this step, both 

datasets, the relation between grid size, grid point count, are evaluated. Table 11 

shows the relation between the grid size, and the point count.  

Table 10: Grid size vs. RMSE for Ankeny dataset 

Grid Size vs. RMSE 

Grid Size 1 m 2 m 3 m 4 m 

RMSE (m) 0.258199778 0.262687771 0.264310471 0.263813 

Max. Height 
Difference (m) 2.67928 2.68216 2.80679 2.67928 
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Table 11: Grid size vs. point count 

Grid Size vs. Point Count 

 Ankeny Cadastre 

Grid Size (m) Grid Point Count Grid Point Count 

1 160.9921525 29.1104879 

2 632.6020415 114.1690174 

4 2464.544877 446.2505219 

8 9513.984009 1724.852959 

 

 

Figure 70: Grid Size vs. Point Count for both datasets 
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Figure 71: Grid Size vs. RMSE values for both datasets 

 

Table 12: Grid Size vs. RMSE for both datasets 

Ankeny Grid Size vs. RMSE 

Grid Size 1 m 2 m 3 m 4 m 

RMSE (m) 0.2582 0.262688 0.264310471 0.263813 

Max. Height Difference 
(m) 

2.67928 2.68216 2.80679 2.67928 

Cadastre Grid Size vs. RMSE 

Grid Size 1 m 2 m 3 m 4 m 

RMSE (m) 0.830879 0.730556 0.853694638 0.840037894 

Max. Height Difference 
(m) 

6.01813 4.71918 7.40826 7.63757 

0.258199778 0.262687771 0.264310471 0.263813
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Figure 72: Grid Size vs. RMSE for Ankeny dataset 

 

Table 12, Figure 70, Figure 71, and Figure 72 together indicate that a change from 1 

m to 2 m grid does not significantly impact (around 4 mm) the RMSE value for 

Ankeny dataset. However, for Cadastre dataset, from 1 m to 2 m grid size, RMSE 

value, and maximum error decreased significantly (around 13 cm RMSE, and 2 m in 

maximum error). Although 1 m grid shows slightly better results in Ankeny dataset, 

2 m grid is a much better solution for Cadastre dataset with less point density. 2 m 

grid also help to cover the walls, and ground points in the same grid, and helps to 

detect buildings facades more accurately. 
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3.2.9.2 Approximate Coplanarity Neighborhood 

For the approximate coplanarity check, the information from neighboring points is 

needed. The approximate coplanarity algorithm is tested with varying kNN values. 

Up to 64 kNN, there are some vertical leftovers, so it is decided to check more 

neighbors. If kNN is 128, the proposed algorithm can filter out the nonplanar 

features. Between 128 and 256 neighbors, although RMSE values decrease, the 

change is not significant. Since kNN search is a costly operation, for the sake of 

computation time, the kNN size is selected as 128 for coplanarity check.  

Table 13: Approximate Coplanarity kNN vs. RMSE for Ankeny dataset 

Approximate Coplanarity vs. RMSE  

kNN 8 16 32 64 128 256 

RMSE (m) 0.493466706 0.336471 0.280662261 0.277444 0.262688 0.261824 

Max. Height 
Difference (m) 5.68613 5.81039 2.83746 3.10413 2.68216 2.63638 

 

 

 

Figure 73: Approximate Coplanarity kNN vs. RMSE for Ankeny dataset 
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3.2.9.3 Grid Planarity Threshold 

The grids used in this part is based on the grid size decided in Section 3.2.9.1. By 

using a grid-based threshold, it is possible to filter out the vertical planes. Although 

RMSE values are close in different threshold values, the maximum height difference 

varies. From 0.2 to 0.3, there is approximately a 10 cm change in the maximum 

height difference between ground truth and the extracted DTM. As a result, the grid 

planarity value is chosen as 0.3.  

Table 14: Grid Planarity vs. RMSE for Ankeny dataset 

Grid Planarity vs. RMSE 

Grid Resolution (m) 0.1 0.2 0.3 0.4 

RMSE (m) 0.261701 0.262116 0.262688 0.262781 

Max. Height Difference (m) 2.78195 2.78195 2.68216 2.68216 

 

 

 

Figure 74: Grid Planarity vs. RMSE for Ankeny dataset 
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3.2.9.4 Region Growing Segmentation Parameters 

Three different parameters for region growing segmentation are tested, namely, 

smoothness, curvature, and kNN. 

• Smoothness: If the difference between the normals of the points is less than 

the smoothness threshold, they are thought to be in the same cluster. 

• Curvature: The disparity between the curvatures of two points is checked if 

they have a slight normals deviation. If this number is lower than the 

curvature threshold, the algorithm will use the newly added point to continue 

cluster expansion. 

• kNN: Number of neighbors to be checked 

The smoothness value is selected as low as possible to segment the ground points 

with minor normal deviations. So, for this segmentation, it is aimed to keep the 

smoothness threshold as low as possible to segment ground points accurately for 

rough ground point estimation. There is a slight improvement in RMSE, and 

maximum height difference value between the ground truth and DTM in 0.2 radians; 

however, this improvement can be neglected.  

 

Table 15: Region Growing Smoothness vs. RMSE for Ankeny dataset 

Region Growing Smoothness vs. RMSE 

Smoothness (radian) 0.05 0.1 0.2 0.4 

RMSE (m) 0.262687771 0.263641636 0.261275482 0.262107 

Max. Height Difference (m) 2.68216 2.68216 2.67928 2.67928 
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Figure 75: Region Growing Smoothness vs. RMSE for Ankeny dataset 

 

Similarly, for the curvature value, there is a slight change in RMSE and maximum 

height difference values with varying curvature values, so the lowest value within 

those values is selected to segment ground points that have low curvature values. 

Table 16: Region Growing Curvature vs. RMSE for Ankeny dataset 

Region Growing Curvature vs. RMSE 

Curvature 1 2 3 4 

RMSE (m) 0.326329 0.326349 0.326235 0.326241631 

Max. Height Difference (m) 3.35944 3.36423 3.35944 3.35944 
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Figure 76: Region Growing Curvature vs. RMSE for Ankeny dataset 

 

Lastly, different neighborhood sizes are tested for region-growing segmentation. As 

previously mentioned, the higher the kNN value, the more computation time. Here, 

the fastest solution is to check 8 neighbors in the tested conditions. Nevertheless, in 

densely populated point distributions, 8 kNN might represent a small neighborhood 

that may be segmented inaccurately. Although checking 16 kNN is more costly, for 

the sake of robustness, 16 is chosen.  

Table 17: Region Growing kNN vs. RMSE for Ankeny dataset 

Region Growing kNN vs. RMSE 

kNN 8 16 32 64 

RMSE (m) 0.311714 0.317983 0.325347 0.325336 

Max. Height Difference (m) 3.40657 3.39337 3.36423 3.36423 
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Figure 77: Region Growing kNN vs RMSE for Ankeny dataset 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

4.1 Introduction 

In this study, the aim is to create a DTM rather than point cloud classification. The 

input point cloud is thinned in a way that the omitted points have a minor effect on 

the resulting DTM. Because of that, the accuracy assessment is based on raster data 

rather than point cloud. (Becker, Rosinskaya, Häni, D'Angelo, & Strecha, 2018) used 

an algorithm to classify the point clouds used in this thesis; however, this algorithm 

misclassified some of the ground points. Due to this reason, the labeled data cannot 

be used directly as the ground truth. Since this thesis focuses on DTM rather than 

point cloud classification, a DTM is created directly from their point cloud. 

Afterwards, the DTM model is corrected to use as the ground truth. By doing so, 

their results could also be evaluated, and their findings are compared with our 

algorithm. In addition, the results are also compared with an available DTM 

extraction algorithm. In CloudCompare software, there is a free DTM extraction 

called CSF (Cloth Simulation Filter) Plugin developed by (Zhang, et al., 2016).  

There are two different datasets with different point densities and characteristics. 

According to (The American Society for Photogrammetry and Remote Sensing, 

2004), vertical accuracy is the main criterion to evaluate the quality of a DEM. Root 

Mean Square Error (RMSE) is calculated to assess DEM accuracies. RMSE is 

defined as: 

RMSE = √
∑  𝑛
𝑖−0  (𝑥𝑖−𝑦𝑖)

2

𝑛
     (9) 

where xi is the original data, yi is the reference data and n is the total number of 

samples.  
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In Section 4.2, the overall RMSE values for Ankeny and Cadastre are evaluated. In 

Section 4.3, the classification performance on different objects (buildings, vegetation 

vehicles, etc.) is compared qualitatively with the ground truth data. 

Table 18: Comparison of RMSE values three different algorithms 

 Ankeny Cadastre 

 RMSE (m) Maximum 

Height 

Difference 

(m) 

RMSE (m) Maximum  

Height  

Difference  

(m) 

Proposed 

Algorithm 

0.25 2.58 0.70 4.00 

CSF 0.26 2.67 0.72 10.14 

Pix4D 

Research 

0.25 4.57 0.44 3.95 

 

 

4.2 Quantitative Results 

The RMSE values for both datasets are calculated. In Table 19, the results can be 

seen for Ankeny and Cadastre datasets. The height difference results from CSF for 

each dataset are illustrated in Figure 78 and Figure 84. The height differences 

between the extracted DTM and ground truth for both datasets are shown in Figure 

80 and Figure 86 for Ankeny and Cadastre, respectively. Similarly, from (Becker, 

Rosinskaya, Häni, D'Angelo, & Strecha, 2018) classification result, the points 

labeled as ground and road are taken into account to create a DTM. The height 

difference between the ground truth and the results are presented in Figure 82, and 

Figure 88, for Ankeny and Cadastre dataset, respectively. For each difference map, 

the histogram plots are shown in Figure 79, Figure 81, Figure 83, Figure 85, Figure 
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87, Figure 89 for three different algorithms in two different datasets. CSF algorithm 

removes some steep regions that may represent the fallacious. All of the algorithms 

perform well in building removal tasks; however, in the Cadastre dataset, all of the 

DTMs have some errors where the adjacent buildings occur due to data gaps after 

the removal that cause a poor interpolation over the regions.   
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Figure 78: The RGB colored Ankeny dataset (top) and difference map between 

ground truth and CSF output 
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Figure 79: The histogram of the CSF output height difference in Ankeny dataset 
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Figure 80: The RGB colored Ankeny dataset (top) and difference map between 

ground truth and the proposed algorithm output  
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Figure 81: The histogram of the proposed algorithm output height difference in 

Ankeny dataset 
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Figure 82: The RGB colored Ankeny dataset (top) and difference map between 

ground truth and Pix4D research output  
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Figure 83: The histogram of the Pix4D research output height difference in Ankeny 

dataset 
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Figure 84: The RGB colored Cadastre dataset (top) and difference map between 

ground truth and CSF output 
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Figure 85: The histogram of the CSF output height difference in Cadastre dataset 
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Figure 86: The RGB colored Cadastre dataset (top) and difference map between 

ground truth and the proposed algorithm output 
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Figure 87: The histogram of the proposed algorithm output height difference in 

Cadastre dataset 
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Figure 88: The RGB colored Cadastre dataset (top) and difference map between 

ground truth and the Pix4D research output 
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Figure 89: The histogram of the Pix4D research output height difference in 

Cadastre dataset 

 

Table 19: RMSE Errors of the proposed algorithm 

 Raster Spatial Resolution 

(m)  

RMSE Error (m) 

Ankeny 1  0.25 

Cadastre 2.2  0.70 

 

4.3 Qualitative Results 

In this chapter, the performance of the proposed algorithm on object removal is 

discussed in different examples. The Ankeny dataset is good for evaluating the 

algorithm performance in a flat region with buildings, vehicles, and posts whereas 

Cadastre dataset is a relatively dense urban area with complex road structures, steep 
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slopes, and adjacent buildings. The algorithm works as expected for removing 

buildings, vehicles, powerlines, and posts. However, in some densely vegetated areas 

and steep slopes, it may suffer. The Ankeny dataset has an example of vegetation on 

a riverbed, and the example is shown in 4.3.2. Cadastre dataset contains complex 

road structures and steep slope areas, which is discussed in 4.3.5.  

 

4.3.1 Building Removal Performance 

In Figure 90, the voxelized point cloud is shown before the building removal and in 

Figure 91, after the removal. The algorithm works well for individual building 

removal processes. These datasets do not contain dense urban areas. Consequently, 

the performance could not be tested for dense urban areas where the buildings are 

close to each other. However, since the algorithm utilizes a multi-resolution 

approach, the contextual information can be preserved, and it is not expected to have 

a problem removing such structures. 
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Figure 90: Building example before removal 

 

 

Figure 91: Building example after removal 
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4.3.2 Vegetation Removal Performance 

In Figure 92, the voxelized point cloud is shown before the vegetation removal and 

in Figure 93, after the removal. The algorithm works well for individual tree removal 

processes. Densely vegetated areas are challenging for DTM extraction process from 

photogrammetric point cloud because it is hard to take reference terrain points in 

most cases.  This study is based on exploiting the planarity values, and trees show 

the opposite characteristic. The multi-resolution planarity approach works well for 

vegetation removal in most cases.  However, there are some minor terrain deviations 

and bushes next to the river bed in the following example. Some terrain points are 

filtered out with the bushes and grassland. In Figure 93, it can be seen that while 

removing the low vegetation and bushes, the algorithm removed some points that 

belong to the riverbed. The planarity-based filtering is conducted by checking 128 

nearest neighbors, which is suitable for filtering objects, and some points beyond 

that exceed the object boundary. If these objects are next to missing data points 

(inside the riverbed), they may cause data gaps.  

 

Figure 92: Vegetation before removal 
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Figure 93: Vegetation after removal 

4.3.3 Vehicle Removal Performance 

In Figure 94, the voxelized point cloud is shown before the vehicle removal and in 

Figure 95, after the removal. The algorithm handles vehicle removal processes 

effectively.  
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Figure 94: Vehicles and other objects before removal 

 

 

Figure 95: Vehicles and other objects after removal 
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4.3.4 Missing Facades Performance 

Due to the flight path or missing photos, there might be some missing points where 

some objects are not sensed properly. For example, in Figure 96, it can be observed 

that there are missing points in the facades. In Figure 97, the resulting ground points 

from these examples are illustrated. The algorithm can handle the missing data 

problem by using a combination of grid-based and neighborhood-based planarity 

approaches. 

 

Figure 96: Missing points on facades 
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Figure 97: Resulting terrain on missing data example 

 

4.3.5 Steep Slopes 

The algorithm has some defects in some challenging cases. In Cadastre dataset, there 

is an example with some vegetation and buildings on a steep area shown in the 

middle of Figure 98 and in Figure 100. The algorithm removes some terrain points 

while removing the trees and the buildings, which results in a data gap in this 

example. However, there are other steep slope examples in the same dataset without 

objects on them. In these examples, the algorithm manages to remove the objects by 

preserving the terrain characteristics. In Figure 99 and Figure 101, the steep slope 

example without objects is shown as before and after the algorithm is applied, 

respectively.  
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Figure 98: Steep slope with vegetation and buildings in Cadastre dataset 

 

Figure 99: Steep slope with vegetation and buildings in Cadastre dataset after object 

removal 

 

 

Figure 100: Steep slope example with complex road structure 
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Figure 101: Steep slope example without objects after object removal 

 

4.3.6 Qualitative Comparison 

Although three algorithms show similar RMSE values, they have advantages and 

disadvantages depending on the terrain characteristics. There are some vegetation 

leftovers in Pix4D Research DTM. CSF and the proposed algorithm perform better 

and show similar results. It can be seen in Figure 102 that the vegetated river case is 

challenging for all the algorithms. In the second case, the performances of the 

algorithms are compared in a road example. The proposed algorithm performs better 

than CSF and Pix4D Research algorithms in the given case. As illustrated in Figure 

103, the proposed algorithm flattens the bumps on the road where CSF and Pix4D 

Research algorithms keep these bumps.  
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Figure 102: The proposed algorithm (top), CSF (middle),  Pix4D Research results 

(bottom) in river example 
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Figure 103: The proposed algorithm (top), CSF (middle), Pix4D Research results 

(bottom) in road example 
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4.4 Test Areas and Failure Cases 

The proposed algorithm results are compared with CSF and Pix4D research results 

in different test areas to check algorithms accuracy on different features. There are 

six different test areas, namely; road samples, buildings samples from flat region, 

buildings samples from steep region, complex road samples and hilly vegetation 

samples, and vegetation samples from riverbed area. The samples from Ankeny and 

Cadastre datasets are shown in Figure 104, and Figure 105, respectively. For each 

sample area, the maximum difference from the ground truth, and the RMSE values 

are calculated. The algorithm performance results on different samples in Ankeny 

dataset are presented in Table 20, Table 21, and Table 22. Similarly, for Cadastre 

datasets, the results are shown in Table 23, Table 24, and Table 25. Based on these 

results, the algorithm performance is compared with the existing algorithms. 

 

Figure 104: Ankeny test samples 
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Figure 105: Cadastre test samples 

 

 

Table 20: Ankeny test areas 

CSF Proposed Algorithm Pix4D Research 

  

Max. 
Height 
Difference 
(m) 

RMSE  
(m) 

Max. Height 
Difference 
(m) 

RMSE 
(m) 

Max. 
Height 
Difference 
(m) 

RMSE 
(m) 

Road 0.68485 0.11796 0.27707 0.05170 0.33908 0.04733 

Building 1.37337 0.20990 0.92186 0.12123 1.11423 0.16147 

Vegetation 2.63643 0.44585 2.57681 0.41490 3.70518 0.34662 
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Table 21: Ankeny RMSE values for different samples 

 

Results indicate that in Ankeny dataset (flat) three algorithms perform similarly. 

Their performance in different areas is summarized in Table 22. Although Pix4D 

shows the best performance in vegetation and road samples, the proposed algorithm 

shows better performance in building samples. 

Table 22: Comparison of the algorithms on Ankeny dataset samples 

 CSF Proposed Algorithm Pix4D 

Road Samples + ++ +++ 

Building Samples + +++ ++ 

Vegetation Samples + ++ +++ 

+ sign means better performance 

 

 

 CSF Proposed Algoritm Pix4D Research

Road Samples 0.117960329 0.051700526 0.047330317

Building Samples 0.209903391 0.121234172 0.161469287

Vegetation Samples 0.445845079 0.414898915 0.346618581

0.118

0.052 0.047

0.210

0.121

0.161

0.446

0.415

0.347

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
M

SE
 (

m
)

Ankeny Test Samples

Road Samples Building Samples Vegetation Samples
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Table 23: Cadastre test samples 

CSF Proposed Algorithm Pix4D Research 

  

Max. 

Height 

Difference 

(m) 

RMSE 

(m) 

Max. 

Height 

Difference 

(m) 

RMSE 

(m) 

Max. 

Height 

Difference 

(m) 

RMSE 

(m) 

Hilly 

Building 2.99341 0.512416 3.74316 1.0927638 0.442358 0.122936 

Complex 

Road 8.68323 1.397526 4.34857 0.3554827 1.10291 0.162776 

Hilly 

Vegetation 2.99799 0.279232 4.20294 0.4397704 0.649841 0.080413 

 

Table 24: Cadastre RMSE values for different samples 

 

 

CSF Proposed Algorithm Pix4D Research

Hilly Building Samples 0.512415936 1.092763811 0.122935875

Complex Road Samples 1.397526354 0.35548275 0.162776385

Hilly Vegetation Samples 0.279231971 0.439770392 0.080412873

0.512

1.093

0.123

1.398

0.355

0.163

0.279

0.440

0.080

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
M

SE
 (

m
)

Cadastre Test Samples

Hilly Building Samples Complex Road Samples Hilly Vegetation Samples
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Results show that in Cadastre dataset (flat) three algorithms performs differently. 

Their performance in different areas is summarized in Table 25. Pix4D research 

algorithm performs the best in each sample. In complex road sample, CSF algorithm 

performed poorly having around 1.4 m RMSE. Similarly, the proposed algorithm 

suffers in hilly building sample area having around 1.1 m RMSE. 

 

Table 25: Comparison of the algorithms in Cadastre dataset 

 CSF Proposed Algorithm Pix4D Research 

Hilly Building 

Samples 

++ + +++ 

Complex Road 

Samples 

+ ++ +++ 

Hilly Vegetation 

Samples 

++ + +++ 

+ sign means better performance 

 

4.5 Computation Time 

The computation time for both datasets are given in Table 26. The computation times 

are measured for different parts of the algorithms: reading the points, grid planarity 

calculation, approximate coplanarity calculation, planarity-based filtering, region 

growing segmentation, rough ground calculation, and final ground point extraction. 

Processing the Ankeny dataset takes around 199 seconds, and about 282 seconds on 

Cadastre dataset on Intel i7700HQ CPU with 16 GB memory and GTX 1060 Max-

Q GPU computer. With the same computer specifications, CSF takes 28 seconds 

Cadastre and 5 seconds in Ankeny dataset. (Becker, Rosinskaya, Häni, D'Angelo, & 

Strecha, 2018) states that their classification algorithm takes 3 minutes for 17.5 

million points.  
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Table 26: Computation time for the proposed algorithm 

Computation Time (seconds) 

 

Reading 

and 

Gridding 

Coplanarity 

Filtering 

(kNN + Grid 

Based) 

Grid 

Planarity 

Calculation 

Region 

Growing 

Segmentation 

Rough 

Ground 

Calculation 

and Roof 

Filtering Total 

Ankeny 94.4 79.7 8.4 2.5 13.8 198.8 

Cadastre 57.1 158.6 12. 4 7.8 45.7 281.6 
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CHAPTER 5  

5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

The purpose of this chapter is to abridge the study and give recommendations for 

future work. In Section 5.1, all the findings from the study are summarized and 

concluded. The applications that will benefit from the study are also evaluated in 

this section. In Section 5.2, the recommendation and possible enhancements for 

future works are discussed. Conclusions 

This study aims to extract DTM from aerial photogrammetric point clouds using a 

robust multi-resolution planarity-based divide-and-conquer algorithm. In the 

proposed algorithm, the DTM extraction process is divided into more 

straightforward steps to solve this complex problem in multiple stages. A 

combination of planarity values is used in these steps for the above-ground object 

removal. The algorithm is tested for two different terrain types: flat and relatively 

steep, in which sudden elevation changes and complex road structures occur. From 

this study, the following conclusions can be inferred: 

Only using a multi-resolution planarity-based object removal approach, different 

types of objects such as buildings, vehicles, powerlines, trees, bushes can be removed 

efficiently to estimate the DTM from given input point clouds. However, since some 

of the steep regions that belong to terrain filtered out in the planarity-based approach, 

there might be substantial data gaps around these regions. As a result, the DTM might 

have a high error on these regions. In a flat dataset, the RMSE error is calculated as 

0.28 m in 1 m spatial resolution. It is calculated as 0.7 m in 2.2 m spatial resolution 

for relatively steep terrain with complex structures.  
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This proposed algorithm can be used as an alternative to existing DTM extraction 

methods. Although this study aims to create DTM from photogrammetric point 

cloud, it is applicable to LIDAR datasets as well. 

5.2 Future Work 

Based on the results from this study, if planarity values are utilized in different 

resolutions, they can preserve the contextual ground information. Hole filling 

algorithms can increase the performance in DTM extraction studies based on point 

clouds. However, these data gaps should be identified first to fill the missing point 

clouds. It is logical to assume that, in dense urban areas, color features can be used 

to detect vegetation together with the planarity values to increase accuracy. To 

increase the algorithm accuracy in vegetated areas and steep areas, another 

covariance features such as sphericity can be combined with planarity values. Also, 

the interpolation method can be improved have better results in sparse and steep 

areas. In addition to planarity values, other covariance features can be considered to 

adapt this multi-resolution divide-and-conquer approach. Computation time can be 

enhanced by parallel processing and better software implementation. It is planned to 

implement the algorithm into C++ by using Point Cloud Library and compare the 

results with Python implementation.  
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