
IMPLEMENTATION ANALYSIS OF CRYPTOGRAPHY TOOLBOX IN
HYPERLEDGER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET ŞİMŞEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2021





Approval of the thesis:

IMPLEMENTATION ANALYSIS OF CRYPTOGRAPHY TOOLBOX IN
HYPERLEDGER

submitted by AHMET ŞİMŞEK in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Cenk
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Oğuz Yayla
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Sedat Akleylek
Computer Engineering, Ondokuz Mayıs University

Assist. Prof. Dr. Adnan Özsoy
Computer Engineering, Hacettepe University

Assoc. Prof. Dr. Fatih Sulak
Mathematics Department, Atılım University

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: AHMET ŞİMŞEK

Signature :

v



vi



ABSTRACT

IMPLEMENTATION ANALYSIS OF CRYPTOGRAPHY TOOLBOX IN
HYPERLEDGER

Şimşek, Ahmet

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

September 2021, 47 pages

Hyperledger was set up with the aim of being an open-source platform targeted at
accelerating industry-wide collaboration hosted by The Linux Foundation for devel-
oping robust and dependable blockchain and distributed ledger-based technological
platform that may be applied across several industry sectors to improve the efficiency,
performance, and transactions of different business operations. Various distributed
ledger frameworks and libraries have been developed for this purpose. In this thesis,
the Ursa cryptographic library, which is one of the libraries being developed to offer
its users with dependable, secure, user friendly and pluggable cryptographic applica-
tions to its users, has been examined and the performances of both the anonymous
identity creation process and the presented cryptographic algorithms are examined.

Keywords: Hyperledger, CurveZMQ, Verifiable Credentials, Decentralized Identi-
fiers, Aries, Ursa, Indy, libursa etc.

vii



viii



ÖZ

HYPERLEDGER ÜZERİNDEKİ KRİPTOGRAFİK ARAÇLARIN
GERÇEKLEMELERİNİN İNCELENMESİ

Şimşek, Ahmet

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Eylül 2021, 47 sayfa

Hyperledger, verimliliği ve performansı artırmak için çeşitli endüstri sektörlerinde
kullanılabilecek yüksek performanslı ve güvenilir blok zincir ve dağıtılmış defter ta-
banlı teknoloji çerçevesi geliştirmek için Linux Vakfı tarafından yürütülen endüstri
çapında işbirliğini ve çeşitli iş süreçlerindeki işlemlerini hızlandırmayı hedefleyen
açık kaynak kodlu bir platform olmak amacıyla kuruldu. Bu tezde, kullanıcılara güve-
nilir, güvenli, kullanımı kolay ve taşınabilir kriptografik uygulamalar sağlamak ama-
cıyla geliştirilmekte olan kütüphanelerden biri olan Ursa kriptografi kütüphanesi in-
celenmiş ve hem anonim kimlik oluşturma sürecinin hem de sunulan kriptografik
algoritmaların performansları incelenmiştir.

Anahtar Kelimeler: Hyperledger, CurveZMQ, Doğrulanabilir Kişisel Bilgiler, Mer-
kezsizleşmiş Tanımlayıcılar Aries, Ursa, Indy, libursa vd.

ix



To my family

x



ACKNOWLEDGMENTS

I would like to express my very great appreciation and thank to my thesis supervisor
Assoc. Prof. Dr. Oğuz Yayla for his knowledge, emphasis on details, encourage-
ment, vision, invaluable ideas during the development and preparation of this thesis.
His willingness to give his time and guidance was unvaluable on the process.

I thank my examining committee members for their time they spared for me. I would
also like to express my gratitude and thanks to Assoc. Prof. Dr. Ali Doğanaksoy for
introducing me to cryptography.

Also a special thanks to my friends and colleagues who are there for me when I asked
for and supported me in the completion of this thesis.

Last but not least, I would like to express my deepest gratitude to my family who
stood besides me and supported me. I’m grateful for their love and encouragement.

xi



xii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Hyperledger Aries . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Implementing the Hyperledger-Indy Framework using ACA-
Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Hyperledger Indy . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The Decentralized Identifiers (DIDs) . . . . . . . . 9

2.3.2 Verifiable Credentials (VCs) . . . . . . . . . . . . 13

3 CURVEZMQ PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . 15

xiii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 CurveZMQ’s Main Functioning . . . . . . . . . . . . . . . . 17

4 HYPERLEDGER URSA . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Libursa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . 23

4.3 Anonymous Credentials . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Schema Attributes . . . . . . . . . . . . . . . . . 25

4.3.2 Schema Primary Credential Cryptographic Setup . 26

4.3.3 Schema Optional: Setup Correctness Proof . . . . 26

4.3.4 Schema Non-revocation Credential Cryptographic
Setup . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.4.1 New Accumulator Setup . . . . . . . 28

4.3.5 Issuance Holder Setup . . . . . . . . . . . . . . . 28

4.3.5.1 Optional: Issuer Proof of Setup Cor-
rectness . . . . . . . . . . . . . . . . 29

4.3.6 Primary Credential Issuance . . . . . . . . . . . . 30

4.3.7 Non-revocation Credential Issuance . . . . . . . . 31

4.3.8 Issuance Storing Credentials . . . . . . . . . . . . 31

4.3.9 Issuance Non revocation proof of correctness . . . 32

4.3.10 Revocation . . . . . . . . . . . . . . . . . . . . . 32

4.3.11 Presentation Proof Request . . . . . . . . . . . . . 33

xiv



4.3.12 Presentation Proof Preparation . . . . . . . . . . . 33

4.3.12.1 Hashing . . . . . . . . . . . . . . . . 37

4.3.12.2 Final preparation . . . . . . . . . . . 37

4.3.12.3 Sending . . . . . . . . . . . . . . . . 38

4.3.13 Presentation Verification . . . . . . . . . . . . . . 38

4.3.13.1 Non-revocation check . . . . . . . . . 38

4.3.13.2 Validity . . . . . . . . . . . . . . . . 39

4.3.13.3 Verification . . . . . . . . . . . . . . 40

4.3.13.4 Final hashing . . . . . . . . . . . . . 40

4.3.14 Performance Analysis . . . . . . . . . . . . . . . 40

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xv



xvi



LIST OF TABLES

TABLES

Table 4.1 Benchmark Results of Cryptographic Operations . . . . . . . . . . 24

Table 4.2 Anonymus Credential Test Implementation Speed . . . . . . . . . . 41

xvii



LIST OF FIGURES

FIGURES

Figure 2.1 Running Instance of Aries Cloud Agent on local host . . . . . . . . 7

Figure 2.2 Example Real World Identity-Proofing Paper Documents (Licensed
under CC By 4.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.3 Structure of a DID (Licensed under CC By 4.0) . . . . . . . . . . . 9

Figure 2.4 The basic components of DID architecture . . . . . . . . . . . . . 10

Figure 2.5 DIDs and Their Relations (Licensed under CC By 4.0) . . . . . . . 12

Figure 2.6 Example Of Some Communicating Indy Agents (Licensed under
CC By 4.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.7 The roles and information flows in the verifiable credential ecosystem 14

Figure 3.1 CurveZMQ Handshake . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 4.1 Cryptographic primitives inside Libursa Library Module . . . . . . 22

xviii

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


LIST OF ABBREVIATIONS

DLTs Distributed Ledger Technologies

DID Decentralized Identifier

DIDComm DID Communication

VCs Verifiable Credentials

VON Verifiable Organizations Network

CredDef Credential Definition

UI User Interface

SSI Self-Sovereign Identity

ACA-Py Aries Cloud Agent-Python

TLS Transport Layer Security

MITM Man-in-the-Middle

DOS Denial of Service

xix



xx



CHAPTER 1

INTRODUCTION

Ever since the computer revolution began in the 1950s, databases have played an im-

portant part in business and society. Databases began as simple applications with all

the data arranged in flat files, like a list of contacts. As companies called for more

speed and power, database management played a key role as all the information ar-

ranged as rows and columns in tables. The globe is currently so interconnected that

people often have to access the same info. To fulfill this demand, distributed databases

have been created in which more than one individual may view particular portions of

data simultaneously. Once a database is shared with others, a lot of practical ques-

tions emerge when you share a database. Over the years, many alternative solutions

have been explored. One exciting new way to share databases that can help solve

these problems is through blockchain technology. Blockchain technology, started to

be implemented by companies/individuals in the industry according to their needs

and created their own blockchain infrastructures. However, the lack of standards in

the technology, which has gained great momentum in recent years, was an obstacle

for all small and large companies and individuals to use this technology that could

meet their problems/needs. Also because of lack of standardization, blockchain solu-

tions, which were successfully applied to business models, raised concerns in terms

of security. To relieve users and businesses and to increase reliability Hyperledger

[3, 11], an umbrella project aiming to develop and combine open source blockchain

technologies, was launched by the Linux Foundation in December 2015 in order to

ensure that blockchain technology is more efficient and reliable, and to create a code

base that companies/individuals can quickly adapt to their needs. In our studies on

Hyperledger, we focus on the three identity-focused projects in the community, Indy

1



[1], a distributed ledger purpose-built for decentralized ID with transferable, private,

and secure credentials, Aries [19], which is an infrastructure that supports interactions

between peers and between blockchains and other DLTs, offers exchange protocols

and implementations of agents for people, organizations and things, and Ursa [20],

Ursa is a modular, flexible library that enables developers to share time-tested and

secure cryptography which is also the underlying crypto library for the Indy [1] and

Aries [19] projects. In our thesis, with the aim of getting familiar with the Hyper-

ledger ecosytem’s cryptographic toolbox and searching for possible bottlenecks that

is open for improvements, we take the performance metrics of the crypto algorithms

used by the ursa crypto library in the anonymous identity creation stages and share

the benchmark values of the algorithms on different devices.

The outline of the thesis is as follows. In Chapter 2, we review the Aries and Indy

projects and their related components and talk about emerging issues of identity in

the digital world to highlight the issues Indy is trying to answer, and we present the

ACA-Python application provided by the Province of British Columbia to show a

living example of VCs and DIDs. In Chapter 3, we focus on overall operation of

CurveZMQ [21, 22] protocol and the design aim of the protocol is explained. It is

essential protocol that is used for communication between two digital identity in hy-

perledger network. In Chapter 4, we move on Ursa [20] project which is intended

and used by open-source blockchain developers and enthusiasts for a range of appli-

cations that demand the same secure, effortless, and pluggable cryptographic imple-

mentations. We will try to explain why the Ursa lib was created. Further, we explain

the concept of anonymous credentials and give the performance test results of the

both anoncreds creation/revocation [23] and cryptographic primitives like digital sig-

natures, key exchange algorithm used within libursa library [4]. Finally, in Chapter 5,

we conclude our studies and give some future works.

2



CHAPTER 2

PRELIMINARIES

When we set out to examine the cryptographic infrastructure on the hyperledger plat-

form, we examined some projects in order to see which problems the system answers.

One of them was Aries and the other was Indy projects. The reason why we examined

these projects was simply that the Indy and Aries projects offered solutions to the big

question of how to create an identity in the digital environment and how to provide

secure communication between identities in digital environment, and to see running

instance of the system respectively. In this regard, in this chapter we look through

Aries solution and its components which are building blocks of most of hyperledger

projects, we show running instance provided by Province of British Columbia and

what are the problems that Indy solves and important components of it explained.

2.1 Hyperledger Aries

Hyperledger Aries [19], according to its documentation, offers reliable interactions

between peers on the basis of decentralized identities and verifiable credentials. An

Aries solution has several important components which are building blocks of most

of hyperledger projects :

• agents [16]

• DID Communication [17]

• protocols [15]

• and key management [18]

3



Agent concept is like a real estate to help us buy a house because in digital world

humans and organization cannot directly store and manage data or perform the crypto

that self-sovereign identity(SSI) [12, 13] demands. They needs delegates–agents–

to help. An agent has three defining characteristic that don’t tie an agent to any

particular blockchain. Therefore it is possible to implement agents without any use

of blockchain at all. These characteristics are:

1. It acts as a fiduciary on behalf of a single identity owner.

2. It holds cryptographic keys that uniquely embody its delegated authorization.

3. It interacts using interoperable DIDComm protocols.

We mentioned that agents are interacts using DIDComm. So lets explain how this

typical DIDComm interaction works with a high level example :

Assume Alice wishes to bargain with Bob to sell things online, and DIDComm is

used instead of actual human communication. This indicates that Alice’s and Bob’s

agents will be exchanging communications. Alice may just click a button, oblivious

to the facts, but her agent starts by creating an unencrypted JSON message detail-

ing the intended sale. It then looks up Bob’s DID Doc to access two key pieces of

information:

• An endpoint (web, email, etc) where messages can be delivered to Bob.

• The public key that Bob’s agent is using in the Alice:Bob relationship.

Now, Alice’s agent encrypts the plain-text with Bob’s public key so that only Bob’s

agent can read it, and it adds authentication with its own private key. The agent

prepares for Bob’s delivery. This "preparing" can include a number of hops and in-

termediates. It can be difficult. Bob’s agent finally receives and decrypts the commu-

nication, verifying its source as Alice using her public key. It prepares its answer and

routes it back through a reciprocal process :

• plaintext→ lookup endpoint and public key for Alice→ encrypt with authen-

tication→ arrange delivery

4



The specific interactions enabled by DIDComm–connecting and maintaining rela-

tionships, issuing credentials, providing proof, etc.–are called protocols. Protocols

used in communication between agents are stateful interaction patterns. They specify

things like, "If you want to negotiate a sale with an agent, send it a message of type

X. It will respond with a message of type Y or type Z, or with an error message of

type W. Repeat until the negotiation finishes."

Aries is a fledgling project that is rapidly developing. As a result, developers inter-

ested in solving business challenges should begin with an Aries agent framework.

2.2 Implementing the Hyperledger-Indy Framework using ACA-Py

ACA-py (Aries Cloud Agent Pyhton) is the suggested way to build enterprise applica-

tions on top of the decentralized identity-related Hyperledger projects which has pro-

duction deployments. It is appropriate for any non-mobile agent application. ACA-Py

run together with a controller, which are communicating across an HTTP interface.

An ACA-Py agent instance that has been deployed creates an OpenAPI-documented

REST interface for administering the agent’s internal state and sparking communica-

tion with connected agents. Because API methods will often kick off asynchronous

processes, the JSON response provided by an endpoint is not always sufficient to

determine the next action. To handle this situation as well as events triggered due

to external inputs (such as new connection requests), it is necessary to implement a

webhook processor. The combination of an OpenAPI client and webhook processor

is referred to as an ACA-Py Controller. The controller can start agent activities such

as credential issuance and respond to agent events such as sending a presentation re-

quest upon the acceptance of a new pairwise DID Exchange connection. Agent events

are sent to the controller as webhooks to a structured URL.

As we stated that ACA-Py is suggested way to build enterprise application. So, in

order to understand ACA-Py better, we need to implement the framework but fortu-

nately The Verifiable Organizations Network (VON) team based in the Province of

British Columbia created the initial implementation of ACA-Py.

The Verifiable Organizations Network (VON) [7] is a portable development level Indy

5



Node network and its components are based on Hyperledger Indy distributed ledger

technology. It is a community effort to establish a better way to find, issue, store

and share trustworthy data about organizations. Von partners are using jointly devel-

oped software components to enable the digitization of organizations-issued public

credentials—registrations, permits, and licenses. VON helps by making :

• applying for credentials faster and less error prone

• issuing (and reissuing) credentials simpler and more secure, and

• verifying credentials more standard, trustworthy, and transparent,anywhere in

the world.

It is a useful mechanism for testing on sandbox Indy Networks.

We’ll construct and launch a VON Network instance to explore what you can do with

it.

1. To begin, open a bash command prompt and clone the von-network repository:

2. After cloning the source, we’ll construct docker images for the VON Network

and then launch your Indy network:

As the nodes of the Indy network start up, keep an eye on the logs for any problem

warnings. The ./manage bash script streamlines the operation of the VON Network.

When the ledger is up and running, you may view it by connecting to the web server

at port 9000. That implies going to http://localhost:9000 on localhost. With the VON-

Network you can see states of nodes, examine genesis file and create a DID.

Additionaly you can walk through the three ledgers that make up an Indy network:

6



Figure 2.1: Running Instance of Aries Cloud Agent on local host

◦ The Domain ledger, where the DIDs, schema, etc. reside.
◦ The Pool ledger, where the set of nodes on the network are tracked.
◦ The Config ledger, where changes to the network configuration are tracked.

You can see all this from the Figure 2.1.

1. To halt and remove a running VON Network, open a command prompt (Ctrl-C

if necessary), and then type the following command:

You’d usually do this after you’ve accomplished some work and testing and

would like to start over.

2. Use the following command to terminate the network without destroying the

data on the ledger:

3. You can relaunch the ledger later by issuing the standard network startup com-

mand:

7



Inside von network we mentioned that its components are based on Hyperledger Indy

distributed ledger technology. Lets dig deep on Hyperledger Indy distributed ledger

technology.

2.3 Hyperledger Indy

Hyperledger Indy is a distributed ledger technology in which Plenum [2, 14] is the

heart of the distributed ledger technology inside Hyperledger Indy. Plenum is special

purposed for use in an identity system. The system maintains a replicated sequential

transaction log called a ledger, and all communication between client and node and

node and node takes place in CurveZMQ protocol [3], which we will explain the

details of the protocol in the next chapter. Indy is all about Identity on the Internet.

It is about being able to prove to people who you are and being assured of who they

are. The problems with Identity on the Internet today come down to a single word -

trust. When you are interacting online with someone, do you trust:

• Is the person you are connecting with online who they say they are?
• Are the claims they are making true?

The basic mechanism for knowing who you are on the Internet is the UserID/Pass-

word combination Figure 2.2. We all know the problems with User IDs and Pass-

words, we deal with them every day: We either have too many passwords to track or

less that are used in many places. In the former case, we prefer guessable passwords

to keep track of them. As a result password cracking mechanism provide avenues

of attack by hackers. In the latter case, when we have few passwords that we use in

many systems, this time when there is a data breach in one system, it exposes our data

on other systems.

You register on a website and receive a UserID and create a secret password which

you alone are aware of, and you use to access your account each time you return.

Also need to note that while website users have IDs for the site, the opposite is not

true - you don’t receive a "id and password" for the site that you can verify each time

you logged in. This has enabled the "phishing" techniques. Indy solve above mention

problem with DIDs-Decentralized Identifiers.

8



Figure 2.2: Example Real World Identity-Proofing Paper Documents
(Licensed under CC By 4.0)

2.3.1 The Decentralized Identifiers (DIDs)

The Decentralized Identifiers (DIDs) [29] are a new type of globally unique identifier

designed to enable individuals and organizations to generate our own identifiers using

systems we trust, and to prove control of those identifiers (authenticate) using crypto-

graphic proofs (for example, digital signatures). In other words, DIDs are URIs that

link a DID subject to a DID document, permitting for trusted engagements with that

subject. A DID specifies any subject that the DIDs’ controller wishes to identify (e.g.,

people, organisation, thing, data schema, abstract entity, etc.). A DID is a simple text

string consisting of three parts as shown in Figure 2.3.

Figure 2.3: Structure of a DID (Licensed under CC By 4.0)

Each DID has associated with it one or more public keys created by the DID owner

(and the owner holds the corresponding private keys), and one or more endpoints -

addresses where messages can be delivered for that identity.

9

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 2.4: The basic components of DID architecture

We can see how a DID ecosystem looks like by looking at Figure2.4 and to under-

standing the Figure2.4 we need to define the components of it. After that, it will be

self-explanatory.

DID Subject

The entity recognized by the DID and described by the DID document is the DID

subject.

DID Document

Each DID document can express cryptographic material, verification techniques, or

service endpoints, which offer a set of procedures that allow a DID controller to

confirm DID control. Verifiable timestamps and signatures allow DID documents

to be cryptographically verifiable. A verifiable timestamp allows a third party to

validate that a data object existed at a certain point in time and has not been updated

or damaged since that point in time.

DID Controller

The controller of a DID is the entity (person, organisation, or autonomous software)

with the capacity to make modifications to a DID document as described by a DID

method. Control of a set of cryptographic keys used by software working on behalf

of the controller is generally used to establish this capacity.

DID Methods

DID methods are the mechanisms for creating, resolving, updating, and deactivating

a certain type of DID and its associated DID document utilizing a specific verified

data registry.

10



Verifiable Data Registry
A verifiable data registry is a system that allows for the recording of DIDs and the

retrieval of data required to create DID documents.

DID URLs
A DID URL expands the syntax of a basic DID to include extra common URI compo-

nents (path, query, fragment) in order to identify a specific resource, such as a public

key within a DID document or a resource available outside of the DID document.

DID Resolvers
A DID resolver is a software or hardware element that accepts a DID (and related

input metadata) as input and outputs a complying DID document (and associated

information).

Indy uses DIDs to establish connections between two identities, such as a user and

a service’s website, so that they can securely communicate. Further, the expectation

is that an entity - e.g. you - will have many DIDs - one for each relationship you

have with another entity. The reason is that with many DIDs as one need to maintain

intended separation of identities, personas, and contexts since you can control the

production and assertion of these identifiers (in the everyday sense of these words).

Think of each DID like a userID/password pair, but one that is backed with strong

cryptography in the form of public/private keypairs. As well, note that both sides of

a relationship provide a DID for the other to use to communicate with them. The

Figure 2.5 show three entities, Alice, Bob and a Bank that both Alice and Bob use.

For each entity, we see the various DIDs they have created for their relationships.

We’ve also highlighted the DIDs that they have exchanged with each other - Alice’s

for Bob, Alice’s for the Bank and so on.

To better understand it let’s look at the following example : A user registers for a

service’s website by creating and giving the service a new, never-used-before DID,

and receives back from the service the same thing - a new, never-used-before DID

created by the service. Each records the "relationship" DIDs so that when one wants

to communicate with the other, they have an endpoint to send the message, and a

public key to end-to-end encrypt the message. Later, when the user returns to the

website to login, the user and the service exchange encrypted messages to confirm

that each holds the private key to decrypt the messages. On completion, the service

11



Figure 2.5: DIDs and Their Relations (Licensed under CC By 4.0)

knows that it’s the user because the user used their DID, and the user knows it’s the

service because the service used its DID. With that we’ve already addressed one of

the challenges raised with today’s Internet Identity - two-way verification!

The term "decentralized" is a hint that Indy uses blockchain technology. The Figure

2.6 shows how the Agents send requests to the ledger to read and write DID (and

other) information. The edge layer, which generates and stores the majority of pri-

vate keys, and the agent layer, which exchanges and verifies DIDs, public keys, and

verifiable claims via encrypted peer-to-peer interactions. An identity (e.g. a person,

organization or thing) creating a DID can publish that DID to an Indy immutable pub-

lic ledger. The "DID" (a globally unique string) can then be looked up ("resolved")

on the public ledger, and the information associated with the DID (called the "DID

Doc") returned - the public key(s) and endpoint(s) associated with the DID. The pri-

vate keys associated with the public keys are held by the owner of the DID in their

Wallet. As long as the private keys are protected (a non-trivial, but manageable chal-

lenge), the DID cannot be used by anyone else. Using a decentralized system based

on blockchain technology empowers users to securely publish their DIDs without a

Central Authority.

12

https://creativecommons.org/licenses/by/4.0/


Figure 2.6: Example Of Some Communicating Indy Agents
(Licensed under CC By 4.0)

DIDs that are controlled by their owning entities and shared to establish relationships

between entities. But how does each party know who it is that created and controls the

DID? That’s where the next part of the Hyperledger Indy story comes in - Verifiable

Credentials.

2.3.2 Verifiable Credentials (VCs)

Verifiable credentials (VCs) [30] are trusted way to provide identity attributes about

ourselves. Verifiable Credentials and their use closely mimics that of the real world.

VCs take that model and put it online, in a trusted manner. The data flow for Verifiable

Credentials is the same as with paper documents - Issuers give Verifiable Credentials

to the Holder, and the Holder can prove them to Verifiers at any time Figure 2.7.

In the Figure 2.7

• holder is an entity that possesses one or more verifiable credentials

• issuer refers to an entity that acts by making claims about one or more subjects

and generating a verifiable credential from these assertions.

• subject is an entity about which claims are made. Humans, animals, and objects

are some examples of subjects.

13

https://creativecommons.org/licenses/by/4.0/


Figure 2.7: The roles and information flows in the verifiable credential ecosystem

• verifie is a role that an entity plays by getting and verifying one or more ver-

ifiable credentials. Employers, security staff, and websites are examples of

verifiers.

• verifiable data registry is a function that a system may play by facilitating the

generation and verification of identities, keys, and other necessary data, such

as verifiable credential schemas, revocation registries, issuer public keys, and

so on, that may be needed to utilize verifiable credentials. Trusted databases,

decentralised databases, government ID datasets, and distributed ledgers are

examples of verified data registries.

14



CHAPTER 3

CURVEZMQ PROTOCOL

CurveZMQ [21] is the protocol followed for client-to-node and node-to-node com-

munication in distributed ledger technology used in identity systems such as Indy,

which we mentioned in the previous section. In this section, the protocol details will

be examined and it will be explained how the communication between the users in

the network is provided. But first let’s explain how CurveZMQ protocol come about

and what is it compelling about.

CurveZMQ is an adaptation of the CurveCP protocol [8], which was designed by

Daniel J. Bernstein. CurveCP is a more comprehensive, security-enhanced protocol

for the Internet, which delivers improvements over TCP in a number of areas, and

is designed to be an enhanced replacement for TCP. CurveZMQ uses the same high-

speed elliptic curve cryptography that CurveCP uses and adopts the initial CurveCP

“handshake” mechanism of initial key exchange. Combined with minor changes to

adapt CurveCP for a connected and message-based use provides much of the security

benefit of CurveCP in a more traditional flavor that is compatible with the ubiquitous

TCP protocol.

3.1 Introduction

Curve ZMQ is a protocol created to establish secure communication on the web based

on Curve PC security handshake. CurveZMQ employs the Curve25519 elliptic curve

to provide high performance with small key sizes (256 bits). To ensure complete

forward security, the protocol creates short-term session keys for each connection.

15



Session keys are stored in memory and are deleted when the connection is terminated.

CurveZMQ has two primary applications: To secure a single hop between client and

server, and end-to-end security for a client and server over distrusted peers when TLS

is insufficient. To send data from one peer to another using out-of-band transports like

as email or file transfer, providing that both peers first conduct the initial handshake

using a compatible transport.

The goal of technology design is to avoid:

• Eavesdropping, where an attacker watches a conversation without authoriza-

tion. Every packets are sent into boxes that can only be opened by the genuine

receiver having the secret key required.

• Fraudulent data, where an attacker creates a data packet that supposedly comes

from one of the peer. Only when the actual transmitter knows the required

secret key can create a valid box, thus creating a valid data packet.

• Change the input, where adversary located among the user and the service dis-

torts the data packet in a particular way. When a package is altered in any way,

the box it carries will not be opened, alerting the receiver to the fact that an

assault has happened and trash the package.

• Data replay, where the adversary records data packets and forwards those later

to mimic a legitimate pair. Each box is encrypted with a unique random number.

Two types of random numbers used in CurveZMQ. The long random number

protects the permanent key and has a good 16-byte random number generator.

The short random number protects the temporary key, which is an 8-byte serial

number. The attacker cannot reproduce any packets other than the hello packet,

which has no effect on the server or the client. Your receiver will discard any

other played packets.

• Amplification attack, where the evil party sends several short unauthenticated

requests, yet utilizes a bogus source address and thus causes a large number of

responses to be sent innocent parties, overwhelming them. Only Hello pack-

ages are not authenticated and they are padded to be larger than Cookie packets.

• MITM attack, that allows an evil party between a user and a service to play a

"server" to the user and a "client" to the service to open all boxes by replacing

16



the key. Since the permanent key is known in advance, if the server authenti-

cates the client, the attacker cannot successfully imitate the server or the client.

• A key theft attack, wherein the adversary captures encrypted content and subse-

quently obtains the private key, may be a physical attack on the peers. The peers

use temporary keys that they discard when they end up the communication.

• Client identification, where the attacker traces the client’s identity by obtaining

its persistent public key from the data packet. The user only transmits this in an

Initiate packet, which is secured by the temporary keys.

• DOS attack is an evil party’s depletion of a server by causing it to perform

expensive tasks before authentication. Before client send the Initiate packet he

server does not allocate memory until a client sends the Initiate packet.

3.2 CurveZMQ’s Main Functioning

Users and services have long-lasting persistent keys, and for each session, they gener-

ate and safely exchange short-lasting temporal keys. Each key is a public/private key

pair, which follows the Curve25519 elliptic curve design to generate a fixed-length

256 bit key pair. These key pairs are used both as long-term and short-term keys in

the elliptic curve security model. Also, since CurveZMQ closely follows CurveCP,

as a result keys are 32 octets (256 bits) as previously indicated, and nonces are 24

octets. An encrypted box is 16 bytes bigger than the unencrypted data. The under-

lying cryptographical library enforces these sizes and acts as universal constants for

CurveZMQ deploys.

The client requires the permanent public key of the server to establish a secure con-

nection. Then a temporary key pair is generated and a HELLO instruction is sent to

the server with its short-term public key.

When the server receives a HELLO command, it produces its own short-term key

pair and encodes this new private key in a "cookie," which it delivers back to the

client as a WELCOME command. The cookie is encrypted with server’s minute key.

This key only maintained by server. It also provides its short-term public key, which

is encrypted and can only be read by the client. This short-term key pair is then

discarded.

17



The server SHOULD maintain minimum state with the client until the client answers

with an appropriate INITIATE command. In this manner, an adversary cannot com-

pel the server to execute costly tasks prior to authentication, therefore depleting the

server, which prevents Denial-of-Service attacks.

The client responds with an INITIATE instruction, which gives the server its cookie

back as well as the client’s permanent public key, which is encrypted as a "vouch"

so that only the server can read it. The voucher is just client short-term public key

is encrypted with server permanent public key. As we observed here, pre-distributed

long-term keys serve as an authentication voucher for short-term keys.The server is

now authenticated in the client’s eyes, so it may send back metadata in the command.

The server reads the INITIATE and persisting client public key may now be authen-

ticated. It also unwraps the cookie and retrieves the connection’s short-term key pair.

The client is now authenticated as regards the server, so that the server may securely

provide its information. Both parties can then transmit messages and orders.

Both sides have own short-term keys, are mutually authenticated, and can freely ex-

change encrypted and authenticated data such as symmetric keys for data encryption.

To describe this process with the Figure 3.1, the CurveCP notation being used "Box

[X](C->S)" indicates a cryptographic box which encrypts X "from C to S," implying

that only C can build it and only S can open it. Simply put, CurveCP protocol pro-

vides authenticated encryption for the message payload. Data in the Box is encrypted

by the counterpart’s short-term public key and authenticated by the peer’s short-term

private keys (or peer’s long-term private key in case of message 1). Short-term session

key pairs are generated only after successful authentication and are used to establish

shared secret employing the ECDHE key agreement protocol. Shared secret is then

used by xSalsa20 [12] stream cipher to ensure data confidentiality. Lastly, algorithm

poly1305 [10] is used as a Message Authentication Code (MAC) confirming data

integrity.

18



Server Client

S: long-term public key
s: long-term private key

C: long-term public key
c: long-term private key

S’:short-term public key
s’: short-term private key

C’: short-term public key
c’: short-term private key

K: cookie key

0: Start
Handshake

HELLO COMMAND

2: Generating
key pair 1 : C ′, [64 ∗%x0](C ′

− > S)

2 : [S′ + cookie](S− > C ′)

3 : [C ′ + s′](K)

WELCOME COMMAND

5 : [C + vouch+metadata](C ′
− > S′)

vouch : [C ′, S](C− > S′)

INITIATE COMMAND

READY COMMAND

6 : [metadata](S′
− > C ′)

ERROR COMMAND

7:ERROR REASON[7 octets]

[payload](S′
− > C ′)or[payload](C ′

− > S′)

MESSAGE COMMAND

payload = [

MORE

︷︸︸︷

0

Reserved

︷ ︸︸ ︷

1 · · · 7
︸ ︷︷ ︸

octet

+data]

Figure 3.1: CurveZMQ Handshake

19



20



CHAPTER 4

HYPERLEDGER URSA

4.1 Motivation

Each blockchain has different requirements from the others that affect their choice in

crypto libraries. As certain features in a blockchain gain popularity, other blockchains

want to adopt these features in order to remain competitive. Different projects on Hy-

perledger want to get crypto features in another. Having parts of the code in different

places is a maintenance nightmare [5] because fixing security issues found in a crypto

application requires developers to review all projects and make sure every copy is up-

dated. The solution to this problem is to collect all crypto applications and put them

in one library that everyone uses. That’s why the Ursa library was created.

On the other hand motivation for using the Ursa project is the Rust programming lan-

guage which was used in the development of the Ursa project. Rust is specifically

designed for writing secure code. The language and compiler support features that

eliminate all of the most common mistakes programmers make. This makes it an ideal

language for Ursa because it offers maximum security expected from a cryptographic

components. Thus, Ursa adds extra security measures by wrapping crypto apps with

Rust and can ensure that memory and data are always handled correctly and program

execution is always predictable. Also Rust comes with the powerful software cre-

ation tool namely Cargo. With Cargo, you can provide an easy-to-use and therefore

hard-to-confuse system for determining exactly which crypto applications should be

included when compiling Ursa.

Moreover, Ursa uses openssl, libsodium and libsecp256k1 external dependencies.

21



There is two large libraries on Ursa namely: libursa [4, 6] and libzmix. The main

pillar of our study is the library of libursa.

4.2 Libursa

Libursa library is designed for fundamental cryptography such as digital signatures,

encryption methods and key exchange. Cryptographic primitives in the Libursa li-

brary are shown in Figure 4.1.

Figure 4.1: Cryptographic primitives inside Libursa Library Module

AES-CBC is supported for historical reason. It’s older which means more compatible

and as a plus, CBC doesn’t fail as catastrophically if the IV is reused compare to

GCM, and it can be faster if implemented on basic hardware. As for AES-GCM, is not

a silver bullet for symmetric encryption but it’s fast and secure if used correctly, and

very versatile, hence its popularity. Finally AES CBC with HMAC is also supported

because of MAC and it does not catastrophically fail for IV resued. On the supported

22



signature schemes Boneh-Lynn-Shacham signatures particular of interest. Imagine

we have a block with 1000 transactions and every transaction contains a signature Si,

a public key Pi and a message that is signed mi. Insted of storing all the signatures

with BLS we can combine them. After all, we only care if all signatures in the block

are valid. Aggregated signature will be just a sum of all signatures in the block and

it’s the primary reason of support.

4.2.1 Benchmarks

Benchmark tests for implementation of libursa library is performed respectively on an

Ubuntu 16.04.7 LTS with Linux Kernel 4.15.0 machine running on VMware Work-

station 16 Pro with host operating system Windows 10 running on Intel Xeon Silver

4116 Processor running at 2100 MHz, Arch Linux with Linux Kernel 5.13.8 running

on Intel Xeon Silver 4116 Processor running at 2100 MHz and Fedora 34 worksta-

tion edition running on Intel Xenon E-2136 Processor at 3300 MHz and software is

compiled respectively with rustc-1.51.1 and rustc-1.54.0. The benchmark results for

cryptographic operations are given in Table 4.1. Although there is no special rea-

son for using different compiler versions here, it is aimed to use the facilities [21]

provided to the developers.

As you can see on Table 4.1, encryption/decryption and signing processes takes micro

seconds whereas verification, which is highlighted with orange colour, takes millisec-

onds. Operation such as addition, rotation, xor which are ChaCha20-Poly1305 cipher

suites based on are CPU friendly instructions as a result ChaCha is working fast as

expected. As is the case with ChaCha, AES operations works fast enough but not as

quite as ChaCha, but Intel processors have AES hardware support that makes AES

operations cheap and tons of cryptanalysis on AES can make AES preferred choice

over ChaCha. This results shown with green colour in the Table 4.1. Moreover, proof

verification, highlighted with red colour, stands as the slowest operation among them.

Because in the CKS schema proving knowledge of a valid credential requires expo-

nentiation and pairing operations. At this point we move forward to look at how this

crypto implementations perform on a anonymous credential protocol that put ahead

as an integration test on libursa library.

23



Table 4.1: Benchmark Results of Cryptographic Operations
Cryptographic Operations Performance Results

group ubuntu arch fedora
Create small bls key pair 1318.6±31.48µs 1174.2±24.90µs 815.1±6.34µs
Create usual bls key pair 676.7±15.96µs 608.5±12.15µs 417.9±3.59µs

Encrypt/Decrypt for Aes128CbcHmac256 for 1024bytes 55.9±0.18µs 54.2±0.78µs 38.6±0.23µs
Encrypt/Decrypt for Aes128CbcHmac256 for 1048576 bytes 48.5±0.43ms 51.6±0.19ms 34.3±0.17ms

Encrypt/Decrypt for Aes128CbcHmac256 for 128 bytes 13.3±0.25µs 13.0±0.16µs 9.7±0.09µs
Encrypt/Decrypt for Aes128CbcHmac256 for 16384 bytes 742.8±5.24µs 781.8±2.96µs 525.9±3.23µs

Encrypt/Decrypt for Aes128Gcm for 1024 bytes 22.4±0.23µs 21.0±0.08µs 15.2±0.11µs
Encrypt/Decrypt for Aes128Gcm for 1048576 bytes 18.5±0.31ms 17.5±0.14ms 11.7±0.05ms

Encrypt/Decrypt for Aes128Gcm for 128 bytes 6.5±0.08µs 6.1±0.06µs 5.2±0.04µs
Encrypt/Decrypt for Aes128Gcm for 16384 bytes 291.1±3.84µs 272.1±1.94µs 185.0±2.13µs

Encrypt/Decrypt for Aes256CbcHmac512 for 1024 bytes 61.9±1.62µs 61.1±0.32µs 42.0±0.41µs
Encrypt/Decrypt for Aes256CbcHmac512 for 1048576 bytes 56.4±0.56ms 56.3±0.20ms 37.6±0.21ms

Encrypt/Decrypt for Aes256CbcHmac512 for 128 bytes 15.4±0.14µs 14.1±0.08µs 10.6±0.11µs
Encrypt/Decrypt for Aes256CbcHmac512 for 16384 bytes 864.3±6.15µs 856.8±3.35µs 576.2±5.12µs

Encrypt/Decrypt for Aes256Gcm for 1024 bytes 27.8±0.34µs 26.4±0.10µs 18.7±0.12µs
Encrypt/Decrypt for Aes256Gcm for 1048576 bytes 23.9±0.56ms 22.2±0.12ms 14.7±0.07ms

Encrypt/Decrypt for Aes256Gcm for 128 bytes 8.0±0.07µs 7.6±0.07µs 6.1±0.04µs
Encrypt/Decrypt for Aes256Gcm for 16384 bytes 364.1±3.41µs 344.4±1.17µs 232.0±1.26µs

Encrypt/Decrypt for XChaCha20Poly1305 for 1024 bytes 8.9±0.23µs 9.6±0.05µs 7.5±0.04µs
Encrypt/Decrypt for XChaCha20Poly1305 for 1048576 bytes 7.1±0.11ms 5.1±0.04ms 3.3±0.02ms

Encrypt/Decrypt for XChaCha20Poly1305 for 128 bytes 3.1±0.06µs 5.4±0.05µs 4.7±0.04µs
Encrypt/Decrypt for XChaCha20Poly1305 for 16384 bytes 111.3±1.36µs 77.8±0.71µs 53.3±0.38µs

Sign small bls 550.7±8.17µs 487.3±1.43µs 335.7±1.48µs
Sign usual bls 1954.1±33.06µs 1745.9±15.31µs 1218.0±9.03µs

Small bls aggregate signatures no rogue key protection 17.9±0.24µs 15.3±0.32µs 10.5±0.16µs
Small bls aggregate signatures no rogue key protection verify 3.6±0.11ms 3.1±0.01ms 2.2±0.01ms

Small bls aggregate signatures rogue key protection verify 3.5±0.03ms 3.0±0.01ms 2.2±0.01ms
Small bls multisignature verify 16.1±0.08ms 14.0±0.03ms 10.0±0.05ms

Small bls sign with rogue key protection 1532.2±23.70µs 1389.5±6.45µs 962.5±11.13µs
Usual bls aggregate signatures no rogue key protection 45.2±0.55µs 40.0±0.12µs 28.0±0.22µs

Usual bls aggregate signatures no rogue key protection verify 4.4±0.03ms 3.8±0.01ms 2.6±0.02ms
Usual bls aggregate signatures rogue key protection verify 4.4±0.03ms 3.9±0.01ms 2.7±0.01ms

Usual bls multisignature verify 24.0±0.31ms 21.0±0.11ms 14.6±0.14ms
Usual bls sign with rogue key protection 3.8±0.02ms 3.3±0.01ms 2.3±0.03ms

Verify small bls 3.7±0.14ms 3.1±0.01ms 2.2±0.02ms
Verify usual bls 4.2±0.04ms 3.7±0.02ms 2.6±0.02ms

cks revocation proof generation with on demand issuance/(10, 2) 124.7±3.36ms 104.2±0.22ms 71.9±0.32ms
cks revocation proof generation with on demand issuance/(100, 2) 124.6±0.69ms 104.6±0.36ms 71.8±0.34ms

cks revocation verify proof with on demand issuance/(10, 2) 129.1±1.30ms 109.9±0.77ms 75.4±0.43ms
cks revocation verify proof with on demand issuance/(100, 2) 130.2±1.42ms 109.1±0.27ms 73.3±0.16ms

4.3 Anonymous Credentials

The anonymous credentials [23] idea enables individuals to demonstrate that their

identity fulfills specific criteria in an unrelated manner without exposing other identi-

fying data. Before moving on to the performance results of the anonymous credential

protocol, we explain the implementation steps of the protocol explaining how the

credentials granted by different publishers (issuers) to numerous rights holders are

created to be presented to the various affiliated parties (verifier).

• Prover chooses a master secret to prove the attributes owned by himself/herself

in all credentials [26].

• A credential schema [10, 31], which is a BTree set to add the attributes, is

chosen by issuer.

• Credential definition is created by issuer. The issuer’s public-private key pair,

24



the revocation public-private key pair and proof of correctness of issuer is de-

fined.

• Issuer creates nonce used by Prover to create correctness proof for blinded se-

crets.

• Credential values is created by issuer. Issuer figures out how to map the at-

tributes in the schema to a flat array of integer values and add them to credential

schema BTree.

• Hidden attributes are blinded by prover. Prover checks the correctness proof of

issuer, generates blinded primary credential factors, blinded revocation creden-

tial secrets and correctness proof of blinded credential secrets [24].

• Credential values are signed by issuer. First, issuer verifies the inputs sent by

prover and then generates and signs credential context.

• Prover processes credential signature. Prover checks the signature of issuer and

stores the credential and related non-revocation credential.

• Prover creates nonce used by Issuer to create correctness proof for signature.

• In the system, there exist three types of credential: known credentials, hidden

credentials and predicates. For predicates, there are commitments created by

prover. In the process of sub proof request creation by verifier, BTree sets for

revealed credentials and predicates are created and then verifier adds the proof

requests for revealed attributes and predicates

• Prover checks the proof requests sent by verifier. Then creates and initializes

the proofs and sent them to verifier [25].

• Verifier verifies the proofs sent by prover by using relevant variables.

The mathematical background under the application steps are given in the following

sections.

4.3.1 Schema Attributes

Issuer defines the primary credential schema S with l attributes m1,m2, . . . ,ml and

the set of hidden attributes Ah ⊂ {1, 2, . . . , l}. In Sovrin, m1 is reserved for the link

secret of the holder, m2 is reserved for the context – the enumerator for the holders,

m3 is reserved for the policy address I . By default, {1, 3} ⊂ Ah whereas 2 /∈ Ah.

25



Issuer defines the non-revocation credential with 2 attributesm1,m2. In Sovrin,Ah =

{1} and m1 is reserved for the link secret of the holder, m2 is reserved for the context

– the enumerator for the holders.

4.3.2 Schema Primary Credential Cryptographic Setup

In Sovrin, issuers use CL-signatures for primary credentials, although other signature

types will be supported too.

For the CL-signatures issuer generates:

1. Random 1536-bit primes p′, q′ such that p← 2p′+1 and q ← 2q′+1 are primes

too. Then compute n← pq.

2. A random quadratic residue S modulo n;

3. Random xZ , xR1 , . . . , xRl
∈ [2; p′q′ − 1]

Issuer computes

Z ← SxZ (mod n); {Ri ← SxRi (mod n)}1≤i≤l; (4.1)

The issuer’s public key is Pk = (n, S, Z, {Ri}1≤i≤l) and the private key is sk = (p, q).

4.3.3 Schema Optional: Setup Correctness Proof

1. Issuer generates random x̃Z , x̃R1 , . . . , x̃Rl
∈ [2; p′q′ − 1];

2. Computes

Z̃ ← Sx̃Z (mod n); {R̃i ← Sx̃Ri (mod n)}1≤i≤l; (4.2)

c← HI(Z||Z̃||{Ri, R̃i}i≤i≤l); (4.3)

x̂Z ← x̃Z + cxZ (mod p′q′); {x̂Ri
← x̃Ri

+ cxRi
(mod p′q′)}1≤i≤l;

(4.4)

26



Here HI is the issuer-defined hash function, by default SHA-256.

3. Proof PI of correctness is (c, x̂Z , {x̂Ri
}1≤i≤l)

4.3.4 Schema Non-revocation Credential Cryptographic Setup

In Sovrin, issuers use CKS accumulator and signatures to track revocation status of

primary credentials, although other signature types will be supported too. Each pri-

mary credential is given an index from 1 to L.

The CKS accumulator is used to track revoked primary credentials, or equivalently,

their indices. The accumulator contains up to L indices of credentials. If issuer has to

issue more credentials, another accumulator is prepared, and so on. Each accumulator

A has an identifier IA.

Issuer chooses

• Groups G1,G2,GT of prime order q;

• Type-3 pairing operation e:G1 ×G2 → GT .

• Generators: g for G1, g′ for G2.

Issuer:

1. Generates

1.1. Random h, h0, h1, h2, h̃ ∈ G1;

1.2. Random u, ĥ ∈ G2;

1.3. Random sk, x (mod q).

2. Computes

pk ← gsk; y ← ĥx.

The revocation public key is Pr = (h, h0, h1, h2, h̃, ĥ, u, pk, y) and the secret key is

(x, sk).

27



4.3.4.1 New Accumulator Setup

To create a new accumulator A, issuer:

1. Generates random γ (mod q).

2. Computes

2.1. g1, g2, . . . , gL, gL+2, . . . , g2L where gi = gγ
i .

2.2. g′1, g
′
2, . . . , g

′
L, g

′
L+2, . . . , g

′
2L where g′i = g′γ

i .

2.3. z = (e(g, g′))γ
L+1 .

3. Set V ← ∅, acc← 1.

The accumulator public key is Pa = (z) and secret key is (γ).

Issuer publishes (Pa, V ) on the ledger. The accumulator identifier is IDa = z.

4.3.5 Issuance Holder Setup

Holder:

• Loads credential schema S.

• Sets hidden attributes {mi}i∈Ah
.

• Establishes a connection with issuer and gets nonce n0 either from issuer or as

a precomputed value. Holder is known to issuer with identifierH.

Holder prepares data for primary credential:

1. Generate random 3152-bit v′.

2. Generate random 593-bit {m̃i}i∈Ah
, and random 3488-bit ṽ′.

3. Compute taking S,Z,Ri from Pk:

U ← (Sv
′
)
∏
i∈Ah

Rmi
i (mod n); (4.5)

28



4. For proving correctness of U , compute

Ũ ← (S ṽ
′
)
∏
i∈Ah

Rm̃i
i (mod n); (4.6)

c←H(U ||Ũ ||n0); v̂′ ← ṽ′ + cv′; (4.7)

{m̂i ← m̃i + cmi}i∈Ah
; (4.8)

5. Generate random 80-bit nonce n1

6. Send {U, c, v̂′, {m̂i}i∈Ah
, n1} to the issuer.

Holder prepares for non-revocation credential:

1. Load issuer’s revocation key PR and generate random s′R mod q.

2. Compute UR ← h
s′R
2 taking h2 from PR.

3. Send UR to the issuer.

4. For proving correctness of UR

• generate random s̃′R mod q and compute ŨR ← h2
s̃′R

• Compute above challenge c as c← H(U ||Ũ ||UR||ŨR||n0) instead of c←
H(U ||Ũ ||n0)

• Compute ŝ′R ← s̃′R + cs′R

• Send c and ŝ′R to issuer

4.3.5.1 Optional: Issuer Proof of Setup Correctness

To verify the proof Pi of correctness, holder computes

Ẑ ← Z−cSx̂Z (mod n); {R̂i ← R−ci S
x̂Ri (mod n)}1≤i≤l;

and verifies

c = HI(Z||Ẑ||{Ri, R̂i}1≤i≤l)

.

29



4.3.6 Primary Credential Issuance

Issuer verifies the correctness of holder’s input:

1. Compute

Û ← (U−c)
∏
i∈Ah

Rm̂i
i (S v̂

′
) (mod n); (4.9)

2. Verify c = H(U ||Û ||n0)

3. Verify that v̂′ is a 673-bit number, {m̂i, r̂i}i∈Ac are 594-bit numbers.

4. If a revocable credential is requested

• Compute ÛR = UR
−ch2

ŝ′R

• Verify that c equals H(U ||Û ||UR||ÛR||n0) instead of H(U ||Û ||n0)

Issuer prepare the credential:

1. Assigns index i < L to holder, which is one of not yet taken indices for the

issuer’s current accumulatorA. Computem2 ← H(i||H) and store information

about holder and the value i in a local database.

2. Set, possibly in agreement with holder, the values of disclosed attributes, i.e.

with indices from Ak.

3. Generate random 2724-bit number v′′ with most significant bit equal 1 and

random prime e such that

2596 ≤ e ≤ 2596 + 2119. (4.10)

4. Compute

Q← Z

USv′′
∏

i∈Ak
Rmi
i (mod n)

; (4.11)

A← Qe−1 (mod p′q′) (mod n); (4.12)

30



5. Generate random r < p′q′;

6. Compute

Â← Qr (mod n); (4.13)

c′ ← H(Q||A||Â||n1); (4.14)

se ← r − c′e−1 (mod p′q′); (4.15)

7. Send the primary pre-credential ({mi}i∈Ak
, A, e, v′′, se, c

′) to the holder.

4.3.7 Non-revocation Credential Issuance

Issuer:

1. Generate random numbers s′′, c mod q.

2. Take m2 from the primary credential he is preparing for holder.

3. Take A as the accumulator value for which index i was taken. Retrieve current

set of non-revoked indices V .

4. Compute:

σ ←
(
h0h

m2
1 · UR · gi · hs

′′

2

) 1
x+c

; w ←
∏
j∈V

g′L+1−j+i; (4.16)

σi ← g′1/(sk+γi); ui ← uγ
i

; (4.17)

A← A · g′L+1−i; V ← V ∪ {i}; (4.18)

witi ← {σi, ui, gi, w, V }. (4.19)

5. Send the non-revocation pre-credential (IA, σ, c, s
′′,witi, gi, g

′
i, i) to holder.

6. Publish updated V,A on the ledger.

4.3.8 Issuance Storing Credentials

Holder works with the primary pre-credential :

31



1. Compute v ← v′ + v′′.

2. Verify e is prime and satisfies Eq. (4.10).

3. Compute

Q← Z

Sv
∏

i∈Cs
Rmi
i

(mod n); (4.20)

4. Verify Q = Ae (mod n)

5. Compute 1

Â← Ac
′+se·e (mod n). (4.21)

6. Verify c′ = H(Q||A||Â||n2).

7. Store primary credential Cp = ({mi}i∈Cs , A, e, v).

Holder takes the non-revocation pre-credential (IA, σ, c, s
′′,witi, gi, g

′
i, i) computes

sR ← s′+s′′ and stores the non-revocation credentialCNR ← (IA, σ, c, s,witi, gi, g
′
i, i).

4.3.9 Issuance Non revocation proof of correctness

Holder computes

e(gi, accV )

e(g, w)
?
= z; (4.22)

e(pk · gi, σi)
?
= e(g, g′); (4.23)

e(σ, y · ĥc) ?
= e(h0 · hm2

1 hs2gi, ĥ). (4.24)

4.3.10 Revocation

Issuer identifies a credential to be revoked in the database and retrieves its index i, the

accumulator value A, and valid index set V . Then he proceeds:

1 We have removed factor Sv′se here from computing of Â as it seems to be a typo in the Idemix spec.

32



1. Set V ← V \ {i};

2. Compute A← A/g′L+1−i.

3. Publish {V,A}.

4.3.11 Presentation Proof Request

Verifier sends a proof request, where it specifies the ordered set of d credential schemas

{S1,S2, . . . ,Sd}, so that the holder should provide a set of d credential pairs (Cp, CNR)

that correspond to these schemas.

Let credentials in these schemas contain X attributes in total. Suppose that the re-

quest makes to open x1 attributes, makes to prove x2 equalities mi = mj (from

possibly distinct schemas) and makes to prove x3 predicates of form mi >≤≥< z.

Then effectively X − x1 attributes are unknown (denote them Ah), which form x4 =

(X − x1 − x2) equivalence classes. Let φ map Ah to {1, 2, . . . , x4} according to this

equivalence. Let Av denote the set of indices of x1 attributes that are disclosed.

The proof request also specifies Ah, φ, Av and the set D of predicates. Along with a

proof request, Verifier also generates and sends 80-bit nonce n1.

4.3.12 Presentation Proof Preparation

Holder prepares all credential pairs (Cp, CNR) to submit:

1. Generates x4 random 592-bit values ỹ1, ỹ2, . . . , ỹx4 and set m̃j ← ỹφ(j) for

j ∈ Ah.

2. Create empty sets T and C.

3. For all credential pairs (Cp, CNR) executes Section 4.3.12.

4. Executes Section 4.3.12.1 once.

5. For all credential pairs (Cp, CNR) executes Section 4.3.12.2.

6. Executes Section 4.3.12.2 once.

33



Verifier:

1. For all credential pairs (Cp, CNR) executes Section 4.3.13.3.

2. Executes Section 4.3.13.4 once.

Non-revocation proof Holder:

1. Load issuer’s public revocation key p = (h, h1, h2, h̃, ĥ, u, pk, y).

2. Load the non-revocation credential CNR ← (IA, σ, c, s,witi, gi, g
′
i, i);

3. Obtain recent V, acc (from Verifier, Sovrin link, or elsewhere).

4. Update CNR:

w ← w ·
∏

j∈V \Vold g
′
L+1−j+i∏

j∈Vold\V g
′
L+1−j+i

;

Vold ← V.

Here Vold is taken from witi and updated there.

5. Select random ρ, ρ′, r, r′, r′′, r′′′, o, o′ mod q;

6. Compute

E ← hρh̃o D ← grh̃o
′
; (4.25)

A← σh̃ρ G ← gih̃
r; (4.26)

W ← wĥr
′ S ← σiĥ

r′′ (4.27)

U ← uiĥ
r′′′ (4.28)

and adds these values to C.

7. Compute

m← ρ · c mod q; t← o · c mod q; (4.29)

m′ ← r · r′′ mod q; t′ ← o′ · r′′ mod q; (4.30)

and adds these values to C.

34



8. Generate random ρ̃, õ, õ′, c̃, m̃, m̃′, t̃, t̃′, m̃2, s̃, r̃, r̃′, r̃′′, r̃′′′,modq.

9. Compute

T1 ← hρ̃h̃õ T2 ← E c̃h−m̃h̃−t̃ (4.31)

T3 ← e(A, ĥ)c̃ ·e(h̃, ĥ)r̃ ·e(h̃, y)−ρ̃ ·e(h̃, ĥ)−m̃ ·e(h1, ĥ)−m̃2 ·e(h2, ĥ)−s̃ (4.32)

T4 ← e(h̃, acc)r̃ · e(1/g, ĥ)r̃
′

T5 ← gr̃h̃õ
′

(4.33)

T6 ← Dr̃′′g−m̃
′
h̃−t̃

′
T7 ← e(pk · G, ĥ)r̃

′′ · e(h̃, ĥ)−m̃
′ · e(h̃,S)r̃

(4.34)

T8 ← e(h̃, u)r̃ · e(1/g, ĥ)r̃
′′′

(4.35)

and add these values to T .

Validity proof

Holder:

1. Generate a random 592-bit number m̃j for each j ∈ Ar.

2. For each credential Cp = ({mj}, A, e, v) and issuer’s public key pkI :

2.1. Choose random 3152-bit r.

2.2. Take n, S from pkI compute

A′ ← ASr (mod n) and v′ ← v − e · r as integers; (4.36)

and add to C.

2.3. Compute e′ ← e− 2596.

2.4. Generate random 456-bit number ẽ.

2.5. Generate random 3748-bit number ṽ.

35



2.6. Compute

T ← (A′)ẽ

∏
j∈Ar

R
m̃j

j

 (S ṽ) (mod n) (4.37)

and add to T .

3. Load Z, S from issuer’s public key.

4. For each predicate p where the operator ∗ is one of >,≥, <,≤.

4.1. Calculate ∆ such that:

∆←



zj −mj; if ∗ ≡ ≤

zj −mj − 1; if ∗ ≡ <

mj − zj; if ∗ ≡ ≥

mj − zj − 1; if ∗ ≡ >

4.2. Calculate a such that:

a←

−1 if ∗ ≡≤ or <

1 if ∗ ≡≥ or >

4.3. Find (possibly by exhaustive search) u1, u2, u3, u4 such that:

∆ = (u1)2 + (u2)2 + (u3)2 + (u4)2 (4.38)

4.4. Generate random 2128-bit numbers r1, r2, r3, r4, r∆.

4.5. Compute

{Ti ← ZuiSri (mod n)}1≤i≤4; (4.39)

T∆ ← Z∆Sr∆ (mod n); (4.40)

and add these values to C in the order T1, T2, T3, T4, T∆.

4.6. Generate random 592-bit numbers ũ1, ũ2, ũ3, ũ4.

4.7. Generate random 672-bit numbers r̃1, r̃2, r̃3, r̃4, r̃∆.

36



4.8. Generate random 2787-bit number α̃

4.9. Compute

{Ti ← Z ũiS r̃i (mod n)}1≤i≤4; (4.41)

T∆ ← Zm̃jSar̃∆ (mod n); (4.42)

Q← (Sα̃)
4∏
i=1

T ũii (mod n); (4.43)

and add these values to T in the order T1, T2, T3, T4, T∆, Q.

4.3.12.1 Hashing

Holder computes challenge hash

cH ← H(T , C, n1); (4.44)

and sends cH to Verifier.

4.3.12.2 Final preparation

Holder:

1. For non-revocation credential CNR compute:

ρ̂← ρ̃− cHρ mod q ô← õ− cH · o mod q

ĉ← c̃− cH · c mod q ô′ ← õ′ − cH · o′ mod q

m̂← m̃− cHm mod q m̂′ ← m̃′ − cHm′ mod q

t̂← t̃− cHt mod q t̂′ ← t̃′ − cHt′ mod q

m̂2 ← m̃2 − cHm2 mod q ŝ← s̃− cHs mod q

r̂ ← r̃ − cHr mod q r̂′ ← r̃′ − cHr′ mod q

r̂′′ ← r̃′′ − cHr′′ mod q r̂′′′ ← r̃′′′ − cHr′′′ mod q.

and add them to X .

37



2. For primary credential Cp compute:

ê← ẽ+ cHe
′; (4.45)

v̂ ← ṽ + cHv
′; (4.46)

{m̂j ← m̃j + cHmj}j∈Ar
; (4.47)

The values PrC = (ê, v̂, {m̂j}j∈Ar
, A′) are the sub-proof for credential Cp.

3. For each predicate p compute:

{ûi ← ũi + cHui}1≤i≤4; (4.48)

{r̂i ← r̃i + cHri}1≤i≤4; (4.49)

r̂∆ ← r̃∆ + cHr∆; (4.50)

α̂← α̃ + cH(r∆ − u1r1 − u2r2 − u3r3 − u4r4); (4.51)

The values Prp = ({ûi}, {r̂i}, r̂∆, α̂, m̂j) are the sub-proof for predicate p.

4.3.12.3 Sending

Holder sends (cH ,X , {PrC}, {Prp}, C) to the Verifier.

4.3.13 Presentation Verification

For the credential pair (Cp, CNR), Verifier retrieves relevant variables fromX , {PrC}, {Prp}, C.

4.3.13.1 Non-revocation check

Verifier computes

T̂1 ← EcH · hρ̂ · h̃ô T̂2 ← E ĉ · h−m̂ · h̃−t̂ (4.52)

38



T̂3 ←

(
e(h0G, ĥ)

e(A, y)

)cH

·e(A, ĥ)ĉ·e(h̃, ĥ)r̂·e(h̃, y)−ρ̂·e(h̃, ĥ)−m̂·e(h1, ĥ)−m̂2 ·e(h2, ĥ)−ŝ

(4.53)

T̂4 ←
(
e(G, acc)

e(g,W)z

)cH
· e(h̃, acc)r̂ · e(1/g, ĥ)r̂

′
T̂5 ← DcH · gr̂h̃ô′ (4.54)

T̂6 ← Dr̂′′ · g−m̂′h̃−t̂′ T̂7 ←
(
e(pk · G,S)

e(g, g′)

)cH
· e(pk · G, ĥ)r̂

′′ · e(h̃, ĥ)−m̂
′ · e(h̃,S)r̂

(4.55)

T̂8 ←
(
e(G, u)

e(g,U)

)cH
· e(h̃, u)r̂ · e(1/g, ĥ)r̂

′′′
(4.56)

and adds these values to T̂ .

4.3.13.2 Validity

Verifier uses all issuer public key pkI involved into the credential generation and the

received (c, ê, v̂, {m̂j}, A′). He also uses revealed {mj}j∈Ar . He initiates T̂ as empty

set.

1. For each credential Cp, take each sub-proof PrC and compute

T̂ ←

 Z(∏
j∈Ar

Rj
mj

)
(A′)2596


−c

(A′)ê

 ∏
j∈(Ar̃)

Rj
m̂j

 (S v̂) (mod n).

(4.57)

Add T̂ to T̂ .

2. For each predicate p:

∆′ ←



zj; if ∗ ≡ ≤

zj − 1; if ∗ ≡ <

zj; if ∗ ≡ ≥

zj + 1; if ∗ ≡ >

39



a←

−1 if ∗ ≡≤ or <

1 if ∗ ≡≥ or >

2.1. Using Prp and C compute

{T̂i ← T−ci Z ûiS r̂i (mod n)}1≤i≤4; (4.58)

T̂∆ ←
(
T a∆Z

∆′
)−c

Zm̂jSar̂∆ (mod n); (4.59)

Q̂← (T−c∆ )
4∏
i=1

T ûii (Sα̂) (mod n), (4.60)

and add these values to T̂ in the order T̂1, T̂2, T̂3, T̂4, T̂∆, Q̂.

4.3.13.3 Verification

For the credential pair (Cp, CNR), Verifier retrieves relevant variables fromX , {PrC}, {Prp}, C.

4.3.13.4 Final hashing

1. Verifier computes

ĉH ← H(T̂ , C, n1).

2. If c = ĉ output VERIFIED else FAIL.

4.3.14 Performance Analysis

Performance tests for implementation is performed respectively on an Ubuntu 16.04.7

LTS with Linux Kernel 4.15.0 machine running on VMware Workstation 16 Pro with

host operating system Windows 10 running on Intel Xeon Silver 4116 Processor run-

ning at 2100 MHz. To obtain more consistent results, we reported the minimum,

maximum and average time of the respective implementation over 100 and 1000 ex-

ecutions. The results for anonymous credential setup are shown in Table 4.2

40



Table 4.2: Anonymus Credential Test Implementation Speed
master secret gen. time issuer GVT credential schema gen time issuer GVT credential definition gen time

n100 n1000 n100 n1000 n100 n1000

MIN 17.47µs 15.17µs 18.5µs 18.2µs 1.00557315s 1.057872s
MAX 50.49µs 117.27µs 107.04µs 167.42µs 947.2851s 870.46875s

AVERAGE 20.7583µs 19.62601µs 24.0495µs 23.7571µs 30.78273532s 15.80892103s
issuer GVT revocation registry gen time issuer GVT credential values gen time prover hidden attribute blinding time

n100 n1000 n100 n1000 n100 n1000

MIN 337.23855ms 331.57356ms 41µs 40.78µs 73.42475ms 72.89835ms
MAX 408.36219ms 534.09137ms 329.33µs 215.88µs 103.44737ms 138.99228ms

AVERAGE 345.3957446ms 339.4934018ms 56.6513µs 51.84878µs 76.3689156ms 75.43458866ms
issuer sign GVT credential values gen time prover GVT witness creation time prover GVT credential processing time

n100 n1000 n100 n1000 n100 n1000

MIN 125.47951ms 122.93533ms 49.2µs 48.63µs 469.30908ms 461.60831ms
MAX 322.58375ms 386.90856ms 156.59µs 179.2µs 585.23201ms 583.67048ms

AVERAGE 165.966149ms 163.1786705ms 63.4952µs 58.22852µs 482.4763579ms 470.9423873ms
issuer XYZ credential schema gen time issuer XYZ credential definition gen time issuer XYZ revocation registry gen time

n100 n1000 n100 n1000 n100 n1000

MIN 20.67µs 19.08µs 1.58330112s 1.05539338s 448.60208ms 440.92805ms
MAX 145.05µs 126.54µs 804.4612s 989.43063s 561.5501ms 566.64639ms

AVERAGE 39.1393µs 29.14326µs 20.07649803s 22.50077315s 462.8122666ms 450.868284ms
issuer XYZ credential values gen time prover blind hidden attribute gen time issuer XYZ credential values gen time

n100 n1000 n100 n1000 n100 n1000

MIN 34.15µs 34.48µs 57.37726ms 57.07111ms 124.69843ms 122.71689ms
MAX 127.3µs 218.98µs 72.73212ms 86.46947ms 367.32748ms 378.17915ms

AVERAGE 50.9141µs 48.39224µs 59.7042193ms 59.04681154ms 167.3723781ms 162.7702631ms
prover XYZ witness create time prover XYZ credential signature processing time subproof request creation time related to GVT credential

n100 n1000 n100 n1000 n100 n1000

MIN 1.09492ms 1.07825ms 469.26361ms 462.4839ms 26.59µs 1.16507µs
MAX 3.67564ms 4.6593ms 554.53307ms 591.3504ms 124.39µs 138.52µs

AVERAGE 1.2317891ms 1.18287572ms 482.1433752ms 471.0339915ms 45.0879µs 38.63973507µs
subproof request creation time related to XYZ credential prover proof creation fime for two subproof creation request verifier verify proof gen time

n100 n1000 n100 n1000 n100 n1000

MIN 3.91µs 4µs 3.55959207s 3.49669162s 4.45898388s 4.3867859s
MAX 20.85µs 68.05µs 4.14176742s 4.40915196s 5.06590458s 5.00973582s

AVERAGE 5.0608µs 5.70737µs 3.637155797s 3.563194193s 4.559505885s 4.46603348s

As can be seen in the Table 4.2 highlighted with red colour, it takes seconds for

the protocol validators to complete the verification period for anonymous identity

information. It is not surprising to us that this part is one of the slowest parts of the

protocol. Because the study in [27] confirms that the CKS scheme is slow in proving

a valid credential for the verifier to check the user’s revocation status with the help of

zero-knowledge proof. On the other hand, before each zero-knowledge proof call, an

update witness protocol must be found as described in the CKS article [9]. As a result,

the effectiveness of witness updates is important. Looking at the results obtained

from the article in [27], it is seen at the left bottom corner of the Table 4.2 with green

highlight that the witness update performance of the CKS schema is good. However,

with regard to witness update, in small-scale environments with limited number of

revocations or additions, the effectiveness of the user’s revocation status where the

time spend for it is shown with green colour on the right side of the Table 4.2, with the

help of the zero-knowledge proof protocol may be more important than the efficiency

of the update witness protocol [27]. Therefore, when you decide to use the library

for anonymous credential revocation, you should consider the scale of your business

which schema best suits your situation.

41



42



CHAPTER 5

CONCLUSION

In this thesis, Aries, Indy projects, which are part of the Hyperledger umbrella project,

and the Ursa cryptographic library, which is the focus of our thesis, where the crypto-

graphic tools of this project are brought together, are examined. To elaborate further,

firstly, we briefly talked about why we studied the Aries and Indy projects, examined

the theoretical details of these projects, explained how the ACA-Py framework works

and how you can run the framework, and then we presented a working example of

it. Secondly, we explained the general operation and design intent of the CurveZMQ

protocol. Finally, we explained why Ursa lib was created, what the concept of anony-

mous identity means, and gave the performance test results of both anonymous iden-

tity creation/revocation and cryptographic primitives such as digital signatures and

key exchange algorithm used in the libursa library. With the performance values we

showed in this study, it has been shown that processes such as revocation verification,

proof verification and credential definition parts which took more time, needs to be

studied in depth to increase overall performance of the library.

As a future work, some algorithms can be replaced and their effectiveness may be

investigated. For example, anonymous credential systems was using CL signature of

which it’s security is based on factoring of two large prime numbers. To achieve suf-

ficient security, CL signature-based Anoncred systems require long keys and signa-

tures, resulting in slow cryptographic operations. For that reason, the BBS+ signature

proposed which compared to CL signatures has much shorter keys and signatures for a

comparable level of security but it’s performance on anoncreds yet unknown although

it is documented extensively on Anonymous Credential 2.0 paper [28]. Also, there

are ongoing discussions for the application of post quantum algorithms to be used in

43



blockchain projects. Implementation of cryptographic primitives such as signature,

key exchange/basic encryption with Post-quantum algorithms and the effects of these

studies on system security and performance remain an important field of study.

44



REFERENCES

[1] Hyperledger indy, https://hyperledger-indy.readthedocs.io/
en/latest/index.html.

[2] Hyperledger indy-plenum, https://hyperledger-indy.
readthedocs.io/projects/plenum/en/latest/index.html.

[3] An introduction to hyperledger [white paper], https://www.
hyperledger.org/wp-content/uploads/2018/08/HL_
Whitepaper_IntroductiontoHyperledger.pdf.

[4] Libursa, Github repository, https://github.com/hyperledger/
ursa/tree/main/libursa, December 2018.

[5] Ursa library motivation, https://wiki.hyperledger.org/
display/ursa/Ursa+Library+Motivation, February 2019.

[6] Ursa for tokyo meetup presentation, Jira Software, https://wiki.
hyperledger.org/display/ursa/Presentations, July 2019.

[7] Von network, Github repository, https://https://github.com/
bcgov/von-network, November 2017.

[8] D. J. Bernstein, High-speed high-security cryptography: encrypting
and authenticating the whole internet, 27th Chaos Communication
Congress, https://fahrplan.events.ccc.de/congress/2010/
Fahrplan/events/4295.en.html, December 28 2010.

[9] J. Camenisch, M. Kohlweiss, and C. Soriente, An Accumulator Based on Bilin-
ear Maps and Efficient Revocation for Anonymous Credentials, Springer, Berlin,
Heidelberg, 2009.

[10] J. Camenisch and A. Lysyanskaya, A signature scheme with efficient protocols,
Security in Communication Networks, Third International Conference, 2567 of
Lecture Notes in Computer Science, pp. 268–289, 2002.

[11] L. Foundation, Hyperledger, https://www.hyperledger.org.

[12] S. Foundation, Self-sovirin identity, https://sovrin.org/, 2021.

[13] S. Foundation, Sovrin: A protocol and token for self-sovereign identity and
decentralized trust, https://sovrin.org/wp-content/uploads/

45

https://hyperledger-indy.readthedocs.io/en/latest/index.html
https://hyperledger-indy.readthedocs.io/en/latest/index.html
https://hyperledger-indy.readthedocs.io/projects/plenum/en/latest/index.html
https://hyperledger-indy.readthedocs.io/projects/plenum/en/latest/index.html
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://github.com/hyperledger/ursa/tree/main/libursa
https://github.com/hyperledger/ursa/tree/main/libursa
https://wiki.hyperledger.org/display/ursa/Ursa+Library+Motivation
https://wiki.hyperledger.org/display/ursa/Ursa+Library+Motivation
https://wiki.hyperledger.org/display/ursa/Presentations
https://wiki.hyperledger.org/display/ursa/Presentations
https://https://github.com/bcgov/von-network
https://https://github.com/bcgov/von-network
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4295.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4295.en.html
https://www.hyperledger.org
https://sovrin.org/
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf


2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf, Jan-
uary 2018.

[14] L. Harchandani, S. Khoroshavin, Toktar, Ashcherbakov, A. Nikitin,
A. Obruchnikov, V. Muzychenko, and A. Kononykhin, Hyperledger indy-
plenum, GitHub repository, https://github.com/hyperledger/
indy-plenum, 2016.

[15] D. Hardman, Aries rfc 0003: Protocols, https://github.
com/hyperledger/aries-rfcs/blob/master/concepts/
0003-protocols/README.md, 2019.

[16] D. Hardman, Aries rfc 0004: Agents, https://github.com/
hyperledger/aries-rfcs/blob/master/concepts/
0004-agents/README.md, 2019.

[17] D. Hardman, Aries rfc 0005: Did communication, https://github.
com/hyperledger/aries-rfcs/blob/master/concepts/
0005-didcomm/README.md, 2019.

[18] D. Hardman, Aries rfc 0051: Decentralized key management, https:
//github.com/hyperledger/aries-rfcs/blob/master/
concepts/0051-dkms/README.md, 2019.

[19] D. Hardman, R. Jones, S. Curran, S. Curran, T. Ronda, R. Esplin, and
D. Bluhm, Hyperledger aries, GitHub repository, https://github.com/
hyperledger/aries, May 2019.

[20] D. Huseby, Hyperledger ursa, Github repository, https://www.
hyperledger.org/use/ursa, November 2018.

[21] iMatrix Corporation, Curvezmq - security for zeromq, http://curvezmq.
org/page:read-the-docs, [Accessed: 19.02.2021], 2013.

[22] iMatrix Corporation, Frequently asked questions - zeromq, http://wiki.
zeromq.org/area:faq, [Accessed: 19.02.2021], 2013.

[23] D. Khovratovich and M. Lodder, Anonymous credentials with type-3 revoca-
tion, 19 June 2019, version 0.5.

[24] D. Khovratovich and M. Lodder, Issuance of credentials, Anonymous creden-
tials with type-3 revocation, pp. 4–6, 19 June 2019, version 0.5.

[25] D. Khovratovich and M. Lodder, Presentation, Anonymous credentials with
type-3 revocation, pp. 6–7, 19 June 2019, version 0.5.

[26] D. Khovratovich and M. Lodder, Schema preparation, credentials with type-3
revocation, pp. 2–3, 19 June 2019, version 0.5.

46

https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://github.com/hyperledger/indy-plenum
https://github.com/hyperledger/indy-plenum
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0003-protocols/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0004-agents/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0004-agents/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0004-agents/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0051-dkms/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0051-dkms/README.md
https://github.com/hyperledger/aries-rfcs/blob/master/concepts/0051-dkms/README.md
https://github.com/hyperledger/aries
https://github.com/hyperledger/aries
https://www.hyperledger.org/use/ursa
https://www.hyperledger.org/use/ursa
http://curvezmq.org/page:read-the-docs
http://curvezmq.org/page:read-the-docs
http://wiki.zeromq.org/area:faq
http://wiki.zeromq.org/area:faq


[27] J. Lapon, M. Kohlweiss, B. De Decker, and V. Naessens, Performance Analysis
of Accumulator-Based Revocation Mechanisms, Springer, Berlin, Heidelberg,
2010.

[28] M. Lodder, B. Zundel, and D. Khovratovich, Pairings-based anonymous cre-
dentials with circuit-based revocation and permission policies, 17 June 2019,
version 0.7.

[29] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, and M. Sabadello,
Decentralized identifiers (dids) v1.0, https://www.w3.org/TR/2021/
WD-did-core-20210103/#introduction, November 2019.

[30] M. Sporny, D. Longley, and D. Chadwick, Verifiable credentials data model
1.0, https://www.w3.org/TR/vc-data-model/#refreshing,
January 2021.

[31] R. Tosirisuk, Anonymous credential part2: Selective disclosure and cl signature,
Medium repository, https://medium.com/finema, Feb 4, 2018.

47

https://www.w3.org/TR/2021/WD-did-core-20210103/#introduction
https://www.w3.org/TR/2021/WD-did-core-20210103/#introduction
https://www.w3.org/TR/vc-data-model/#refreshing
https://medium.com/finema

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	PRELIMINARIES
	Hyperledger Aries
	Implementing the Hyperledger-Indy Framework using ACA-Py
	Hyperledger Indy
	The Decentralized Identifiers (DIDs)
	Verifiable Credentials (VCs)


	CurveZMQ Protocol
	Introduction
	CurveZMQ's Main Functioning

	Hyperledger Ursa
	Motivation
	Libursa
	Benchmarks

	Anonymous Credentials
	 Schema Attributes
	 Schema Primary Credential Cryptographic Setup
	 Schema Optional: Setup Correctness Proof
	 Schema Non-revocation Credential Cryptographic Setup
	New Accumulator Setup

	Issuance Holder Setup
	Optional: Issuer Proof of Setup Correctness

	Primary Credential Issuance
	Non-revocation Credential Issuance
	Issuance Storing Credentials
	Issuance Non revocation proof of correctness
	Revocation
	Presentation Proof Request
	Presentation Proof Preparation
	Hashing
	Final preparation
	Sending

	 Presentation Verification
	Non-revocation check
	Validity
	Verification
	Final hashing

	Performance Analysis


	Conclusion
	REFERENCES

