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September 2021, 71 pages 

 

Alpine treeline ecotone (ATE) is the transition zones between forests and alpine 

grasslands. Because of its ecological importance due to its unique biodiversity, 

understanding the characteristics of the transition zone is essential. Recent climate 

change research has shown that the ATE tends to shift upwards. Understanding this 

upward shift enables the development of climate change indicators for mountain 

ecosystems and provides insight into efforts towards improving adaptation and 

mitigation measures. 

This thesis aims to develop and apply a methodology for objectively defining and 

delineating a tree line that is also ecologically meaningful. Another aim is to reveal 

the shift in ATE for a study area in which this altitudinal shift is expected to have 

been substantial in the last decades. Within this context, the factors that determine 

the spatial configuration of the ATE have been investigated through the use of 

remotely sensed resources. The study area is in the Western Taurus Mountains, 

located in the Mediterranean region of Turkey. 

An algorithm with four steps has been developed to delineate treeline for any given 

time during the study period, using Landsat images of the relevant years. For each 
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step, the methodology was chosen with the aim of minimising the need for human 

interpretation as much as possible and for developing a reproducible method. These 

steps include obtaining cloud-free seasonal composites from Landsat images, 

determining tree percentages over the area through spectro-temporal unmixing, and 

characterising the transition of ATE through fitting a sigmoid response to tree 

percentages along uphill transects, and modelling of the ATE transition using 

Random Forest Regression. 

Applying this algorithm has revealed that topographical variables combined with 

information on the percentage of canopy cover can be used effectively while 

modelling treeline ecotones. Outcomes of the model indicate a downward shift of 

the treeline on west face of the Dedegöl Mountain for some slopes since 1984, 

against theoretical expectations or contrary to observations of increases elsewhere in 

the world. However, on eastern slopes, the shift is indicated to be upwards. 

This study can provide input for estimating future shifts in ATE and for further 

development of models for various climates and latitudes. Also, the algorithm can 

easily be adapted to other satellite data, thus enabling higher resolution outcomes. 

 

Keywords: Alpine Treeline Ecotone, Treeline, Landsat, Treeline Dynamics, Spatio-

temporal Analysis 
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ÖZ 

 

ALPİN AĞAÇ SINIRI EKOTONUNUN LANDSAT TM GÖRÜNTÜLERİ 

KULLANILARAK BELİRLENMESİ VE MEKANSAL-ZAMANSAL 

ANALİZİ 

 

 

Bilgin, Gelincik Deniz 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

Ortak Tez Yöneticisi: Dr. Uğur Zeydanlı 

 

 

Eylül 2021, 71 sayfa 

 

Ormanlar ve alpin otsu vejetasyonlar arasındaki geçiş zonu Alpin Ağaç Sınırı 

Ekotonu (AAE) olarak adlandırılmaktadır. Kendine özgü bir biyoçeşitliğe sahip 

olmaları  nedeniyle ekolojik önem taşıyan bu geçiş zonlarının özelliklerini anlamak 

giderek daha fazla önem kazanmaktadır. Son zamanlardaki iklim değişikliği 

araştırmaları, AAE‘nin yukarı doğru kayma eğiliminde olduğunu göstermektedir. Bu 

değişimin haritalanması, iklim değişikliğinin dağ ekosistemlerindeki etkisini ortaya 

koyan göstergelerin oluşturulmasına katkıda bulunacak ve bu değişim için alınacak 

önlemlerin belirlenmesine, uyum çalışmalarının planlanmasına yardımcı olacaktır. 

Bu tez çalışması, ağaç sınırının ekolojik olarak anlamlı bir şekilde çizilmesini 

sağlayacak bir yöntem geliştirmeyi ve uygulamayı hedeflemektedir. Bu kapsamda, 

AAE’nin mekansal özelliklerini belirleyen etmenler uzaktan algılama verileri 

kullanılarak incelenmiştir. Bu çalışma ayrıca, AAE’nin zaman içindeki kaymasının 

mekânsal olarak ortaya çıkartılmasını da amaçlamaktadır. Çalışma alanı, 

Türkiye’nin Akdeniz Bölgesi’nde bulunan Batı Toroslar’dan seçilmiştir. 

Ağaç sınırının herhangi bir zaman için ortaya koyulmasını, ilgili  yıllara ait Landsat 

görüntüleri kullanılarak sağlayan dört aşamalı bir algoritma geliştirilmiştir. 
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Tekrarlanabilir olması amacı ile her aşama için insan değerlendirmesini en aza 

indirecek yöntemler seçilmiştir. Bu aşamalar; Landsat görüntülerinden bulutsuz 

mevsim bloklarının elde edilmesi, ayrıştırma yöntemi ile alan için ağaç yüzdesi 

katmanının oluşturulması, kesitler üzerine sigmoid eğrilerinin yerleştirilmesi yoluyla 

AAE’nin geçişinin karakterize edilmesi ve “Random Forest” regresyonu 

kullanılarak AAE’nin modellenmesinden oluşmaktadır. 

Tez çalışması kapsamında geliştirilen yöntemin uygulanması, topoğrafik 

değişkenlerin ağaç kapalılığı bilgisi ile birleştirilerek ağaç sınırı ekotonunlarının 

modellenmesinde etkili olarak kullanılabileceğini ortaya çıkarmıştır. Modelin 

çıktıları, teorik beklentilerin ve dünyadaki bir çok gözlemin aksine, Dedegöl 

Dağları’nın batı yüzünde 1984-2018 yılları arasında ağaç sınırında oluşan kaymanın 

bazı yamaçlarda aşağı yönlü olduğunu göstemektedir. Bununla birlikte model, doğu 

yamaçlarında bu değişimin yukarı yönlü olduğa işaret etmektedir. 

Bu yöntem, AAE’nin gelecekteki kaymasının tahmin edilmesi ve farklı iklimler ve 

enlemler kullanılarak yapılacak modellerin oluşturulması amacıyla yapılacak 

çalışmalara girdi sağlayabilecektir. Ayrıca, geliştirilen algoritma kolaylıkla başka 

uydulardan elde edilecek görüntüleri kullanacak şekilde uyarlanabilir olması 

sayesinde daha yüksek çözünürlüklü çıktıları olanaklı kılmaktadır.  

 

Anahtar Kelimeler: Alpin Ağaç Sınırı Ekotonu, Ağaç Sınırı, Landsat, Ağaç Sınırı 

Dinamikleri, Mekansal-zamansal Analiz 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Problem Definition 

In nature, distributions of organisms are restricted by physical boundaries such as 

soil, water, climatic properties, which characterize the ecosystems. Ecotones are 

transition zones between different types of ecosystems. Transitions from a forest to 

a field or from a lake to grassland are abrupt and easily recognized with the changing 

environmental conditions. In contrast, the transition between steppe and humid 

grasslands due to the changing slope resulting in increased soil moisture is not easily 

identified. Moreover, the change in environmental conditions may be gradual, 

resulting in a gradual transition, and thus, a wider ecotone. 

These areas are often inhabited by species common to both neighbouring 

communities and also with species that are specific to the transition area. Ecotones 

are important in terms of ecology since biodiversity is increased and genetic diversity 

is high. Also, ecotones play a role in landscape stability, as they act as a semi-

permeable membrane between the two systems (Farina, 2008).  

Alpine treeline ecotone (ATE), or shortly treeline, is the transition zone between 

forest and treeless grasslands in mountainous environments (Dinca et al., 2017). This 

transition can be abrupt or in a diffused manner where the density and tree heights 

decrease gradually, or the form of the trees can change into shrub form or irregular 

forms with the altitude. 

With the changing climate, ecotones are expected to respond to this change by 

shifting spatially. ATE is a suitable ecotone to monitor this response and can act as 

an indicator of climate change. In addition to the aforementioned importance of 

ecotones, ATE can serve as a refuge for species that are affected by direct and 
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indirect effects of climatic changes and other disturbances, such as trees surviving 

beetle outbreaks (Maher et al., 2021). The spatial configuration of the ATE depends 

on many factors such as topographical, edaphic, climatic, and anthropogenic 

variables. And as these variables change, the ATE also changes (Körner, 2012).  

For example, as the climate changes, snow cover, moisture regime, and nutrient 

conditions change. A large number of studies on ATE have shown its trend to shift 

upwards, especially if strong winter warming is present (Harsch et al., 2009). Given 

the ecological importance of the ATE, investigation of change in its pattern would 

be essential to produce data for adaptation and mitigation measures. 

Remote sensing methods are being used for monitoring ecology, biodiversity, and 

conservation metrics with an increasing frequency, due to their convenience. Using 

remote sensing to monitor larger extents or areas where the accessibility is low 

reduces the cost and time spent on the study (Kerr and Ostrovsky, 2003). Moreover, 

using remote sensing, more frequent sampling is possible with less effort compared 

to in situ studies. Thus, remote sensing is convenient for vegetation monitoring of 

mountainous areas. 

The use of automated processes for data generation from remotely sensed images 

widens the scope of outputs that can be obtained. Compared to manual generation of 

data, for example, visual interpretation of images, automation saves time and 

improves precision by eliminating the perspective differences of different experts. In 

other words, it provides standardization for the generation of data. By using an 

algorithm that combines the automated processes, the solution can be applied to 

similar areas. 

For monitoring the ATE and its change over time, a standardized and objective 

method proves to be essential. The portrayal of the nature of the transition is needed 

for understanding the importance of factors that determine the spatial configuration 

of the treeline. 

Landsat data goes back furthest of all remotely sensed multi-spectral imagery data, 

making it appropriate for monitoring long-term trends. Also, its availability for 
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public use makes it the most appropriate source of data for many studies (Kennedy 

et al., 2014). As treelines change in a slow manner, considering the largest possible 

window of time is essential. Landsat 5 and its predecessors have provided data since 

1984, with seven spectral bands and a spatial resolution of 30 m (NASA, 2021). 

1.2 Purpose and Scope 

Firstly, this thesis aims to develop an objective and easily repeatable algorithm to 

delineate the ATE and characterize the transition using Landsat TM data.  

Secondly, this thesis aims to analyse the contribution of different variables to the 

spatial configuration ATE.  

The third aim of this thesis is to investigate the change of ATE for the study area, 

using multi-temporal Landsat data via the algorithm developed.  

1.3 Contribution of Thesis to Literature 

This thesis aims to develop a new algorithm to delineate the treeline; 

- objectively, 

- by using an easily repeatable method, 

- by characterizing the form of transition, 

- by using easily accessible data and software. 

 With the data that is provided, further ecological investigations can be done. If the 

reason for the change can be identified, such as the change in the climate or human 

use, this information can be used for developing a conservation plan if the ecosystem 

is under threat. 

Also, this study is the first research on ATE change and the second study on the 

delineation of the ATE, conducted in Turkey. 
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1.4 Organization of the Thesis 

In the second chapter, detailed background information is given, and the relevant 

studies present in the literature are described. 

In the third chapter, information about the study area and also all of the data used in 

this thesis is given. Acquisition and the pre-processing stages of the data are also 

explained in this chapter. 

In the fourth chapter, the development of the algorithm to delineate the ATE is 

presented. Furthermore, the accuracy assessment is given.  

In the fifth chapter, results are given and discussed. 

In the sixth and the last chapter, the conclusions of this thesis study are presented. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Alpine Treeline Ecotone 

2.1.1 Definitions 

Alpine treeline ecotone or treelines are defined slightly differently in various sources. 

Moreover, various names are used for similar concepts. For example, forest line can 

be defined as the transition zones between the forests and treeless grasslands (Dinca 

et al., 2017). On the other hand, the alpine treeline can be defined as the upper limit 

of elevation where individual trees beyond it are smaller than two meters (Kullman, 

1979). Another naming is treeline forests, and it is defined as a physiological 

threshold where the tree form becomes not viable (Zhang et al., 2009).  

Christian Körner (2012) states that the “tree” from the Alpine treeline is the life form, 

not species. As the conditions get harsher, the upright tree form gets less suitable for 

woody vegetation. So the trees stay in the sapling or shrub form, or they take irregular 

forms due to continuous exposure to freezing winds, which is called krummholz. The 

Ecotone that Körner defines in the book is the transition zone between the tree form 

and the upper alpine vegetation forms, i.e., shrubs and grassland. The tree species 

can still occur in different forms above this ecotone. In this thesis, the definition of 

treeline is based on Körner’s.  

The transition can be sharp and can even form a line when the change in environment 

is more significant. For example, in mild slopes, it can be diffused so that the canopy 

opening increases and tree size decreases gradually, resulting in the ecotone being 

wide. Examples of forms of transition zones are given in the below photo and 

sketches (Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4, and Figure 2.5). 
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Figure 2.1. A typical treeline ecotone in the Taurus Mountains range Photo: UML  

 

Usually, instead of one line, two or three lines are used for defining the ATE; lower 

and upper treeline, and on occasion, a mid-line. 

In most studies, timberline refers to a boundary where crown closure and tree height 

decreases lower than some point. Several studies specify these limits using different 

values, which depend on the species of the trees at the ecotone (Holtmeier, 2009).  
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Figure 2.2. Gradual transition of ATE 

 

Figure 2.3. Sharp transition of ATE 
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Figure 2.4. Change of form through the ATE: Tree to shrub 

 

Figure 2.5. Change of form through the ATE: Tree to krummholz 
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2.1.2 Status in the Past Decades 

A study conducted by (Harsch et al., 2009) that examines globally distributed 166 

sites that the treeline dynamics have been recorded for over a century reveals that 

52% of them are advancing, and only 1% is in recession. They also state that treelines 

with a smooth transition or where the winter temperatures increased substantially are 

more likely to shift upwards. Furthermore, where no advancement is recorded, the 

area is more likely to have other constraints than climate that limits tree growth.  

Another study with hundred years of observation at the European Alps shows a 

115 m increase followed by an accelerated increase of 10 m at eight years. Showing 

that the changes in Alpine treeline ecotones have accelerated in the past decades as 

climate change became more prominent. Observed for a period of 25 years using 

Landsat images, the ATE in Glacier National Park, USA, has become greener over 

this period. This increase in NDVI suggests that an upwards shift is present at the 

ATE (Potter, 2016). Furthermore, some studies point to an increase in tree abundance 

near the treeline, although it is not increasing or decreasing in the lower parts of the 

forest (Chen et al., 2015). 

In contrast, another study reveals that in Sierra Nevada Mountains, there is no 

evidence of an increase in canopy leaf cover in subalpine forest stands. Furthermore, 

significant loss of canopy cover is observed for Sierra whitebark pine (Potter and 

Dolanc, 2016). Likewise, there are more sites where the treeline is stationary (Zhang 

et al., 2009) or decreasing (Kullman, 2005).  

As the temperature is a limiting factor for growth at ATE’s, temperature increase 

means higher altitudes can become suitable for trees, making climate change the 

primary driver of changes of treelines (Grace et al., 2002). Another limiting factor 

that inhibits tree growth is grazing. With the decreasing human population in rural 

areas, grazing pressure on forests is decreasing in some regions. The absence of 

grazing pressure may be causing the ATE to change (Gehrig‐ Fasel et al., 2007). 

As the spatial configuration of Alpine treelines changes, the biodiversity of these 

ecotones is impacted. In response, the effect of animals, especially the herbivorous 
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ones, have an impact on the ATE, in most cases as pressure upon it (Wielgolaski et 

al., 2017). 

2.2 Factors that Determine the ATE 

Although the altitude is the most obvious one, the spatial configuration of treeline 

ecotones in mountainous regions depends on various factors. Moreover, these 

dependencies change as the scale of the area of interest changes. For example, when 

a small area like one hillside of a mountain is observed, differences in precipitation 

amounts become irrelevant for shaping the ATE, as it would be similar all over the 

hillside. However, if the area of interest is a range of mountains, precipitation 

amounts would differ at the south and north sides of the mountains (Malanson et al., 

2013; Weiss et al., 2015).  

Species composition at the subalpine forest plays a vital role in shaping the treeline 

position since the ability to adapt to the harsh conditions of mountainous 

environments of each tree species varies (Weiss et al., 2015). 

As mentioned earlier, ATE’s are highly influenced by climatic drivers. As the 

altitude increases, temperatures decrease, limiting the photosynthesis process and 

making it less suitable for a tree to grow (Grace et al., 2002). Solar radiation also has 

an indirect relation to the photosynthesis process. Plants close their stomata to 

prevent moisture loss as a response to high radiation, but at the same time, this 

reduces the CO2 entrance, limiting photosynthesis (Cairns and Malanson, 1998). Soil 

temperature plays a critical role in tree growth, even more important than air 

temperature (Körner and Hoch, 2006). Precipitation, especially in spring, plays a 

vital role in tree growth at the treeline (Sigdel et al., 2018). Furthermore, snow 

accumulation, spring snow duration, and avalanche paths have an influence over the 

position of the ATE (Elliott and Petruccelli, 2018; Walsh et al., 1994) 

Topographic drivers have an important role in the alignment of treelines. Several 

studies point out that slope and aspect are the main drivers of alpine treelines (Bader 

and Ruijten, 2008; Dalen and Hofgaard, 2005; Elliott and Kipfmueller, 2010). Slope 
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and aspect determine the amount of solar radiation and creates microclimatic 

differences, resulting in treelines at different altitudes. These differences gain more 

importance for finer scales (Elliott and Cowell, 2015). Moreover, aspect and slope 

influence the composition of plant communities over the ecotones, making them 

significant drivers (Dearborn and Danby, 2017). In addition to slope and aspect, SPI 

(Snow potential index) and wetness index, which are derived using topography, can 

be used as proxies for drivers that control the configuration of ATE (Zong et al., 

2014). 

The location and configuration of the site are influential on the treelines. The aspect 

of the slopes has different effects on the treelines at different scales. For example, 

being located on the north side of the mountain and a north side of a small valley on 

the south-east side of the mountain has different effects on the treeline position. 

Thus, the slope aspect, which can be indicated by the Northness and Eastness 

parameters, is a valuable parameter that shapes the treeline (Bader and Ruijten, 

2008). Also, moving from the equator to the poles, the altitude of treelines decreases, 

making latitude an important variable. Furthermore, as continentality increases, the 

treelines move to higher altitudes (Caccianiga et al., 2008; Körner, 2012). 

Geomorphology and geology are other factors that affect the treeline configuration, 

and they can be either limiting or promoting advance. Large boulders, flat areas 

below steep slopes or rock walls can provide refuge from the harsh conditions of the 

mountain, such as strong winds, and promote sapling growth (Resler, 2006). Soil 

depth is inversely correlated with moisture stress, and as the soil depth increases, 

trees become more resistant to moisture stress (Cairns and Malanson, 1998). Soil 

organic matter decreases with the increasing elevation, limiting the tree growth 

(Müller et al., 2017). However, higher fertility of soil does not always mean a higher 

treeline since other alpine vegetation may be more competitive than the woody 

species (Malanson and Butler, 1994). Lithology and geologic structure can limit the 

ATE from reaching the climatic optimum (Butler et al., 2007). For example, slopes 

with scree may not be able to support seedling growth as the movement and lack of 
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organic material results in an unsuitable condition. Likewise, rock walls can act as a 

barrier and an unfavourable medium for seedling growth.  

Lastly, anthropogenic factors have effects on the ATE and sometimes can drastically 

inhibit its advancement to the climatic optimum. While grazing acts as a limiting 

factor, abandonment of former grazing areas can lead to an upwards shift in the ATE 

(Gehrig‐ Fasel et al., 2007). Although wood production and agricultural practices 

are usually not feasible at the altitude of treelines, combined with other limiting 

factors, those practices can have adverse effects on the ATE. 

2.3 Remote Sensing of the ATE 

Mountain ecosystems, with their rough terrain, have problematic and expensive 

accessibility, making them hard to monitor using in-situ studies. Moreover, for 

studies on a scale that focuses on whole mountains, the need for extensive 

examination arises. Remote sensing offers an alternative to field study, enabling 

remote and large areas to be examined cheaper and easier. 

For studies of treelines, which usually require surveillance of large areas, remote 

sensing is an invaluable tool. Furthermore, the ATE does not have a homogeneous 

spatial distribution, making it suitable for remote sensing studies (Weiss and Walsh, 

2009). 

For studies that focus on delineation or change of treelines, remotely sensed data is 

an important source. Various methods can be used for these research topics, such as 

vegetation classification or using indices. Also, satellite data and aerial images can 

be used individually, as well as combined together, which can be from different 

sources (Fissore et al., 2015). 

Earlier treeline dynamics research that used RS mainly focused on mapping the 

position of the treeline and used low or moderate resolution satellite data. With the 

arrival of higher resolution satellite sensors, a new focus on the limiting factors that 

determine the ATE arises (Chhetri and Thai, 2019). 
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2.3.1 Delineation of the ATE 

In the process of determining the spatial position of the ATE using RS data, 

vegetation classification is the most common approach, where supervised and 

unsupervised methods are used (Fissore et al., 2015). 

For situations where moderate resolution satellite data, such as Landsat, is available, 

using vegetation indices like NDVI can be preferred rather than hard classification 

due to its ability to provide a continuous representation of the vegetation cover at the 

transition zones (Zhang et al., 2009). This restriction of hard classification can also 

be avoided by using soft classification methods that provide an output of class 

membership probabilities, alongside the use of higher resolution RS images (Hill et 

al., 2007). 

2.3.1.1 Methods for Landsat Data 

Remotely sensed data provided by Landsat satellites is favoured by many researchers 

due to the accessibility of years’ worth of data. As mentioned earlier, most of the 

studies that use Landsat data use NDVI to delineate the treeline. More complex 

models use additional inputs, which are environmental variables.  

2.3.2 Change detection 

For change detection, most of the studies prefer to examine NDVI difference through 

the period in question. This method gives an idea of the change, even with coarse 

resolutions, because a small amount of greening in a sparsely vegetated pixel can 

influence the NDVI value considerably (Masek, 2001). 

A research conducted in southern Italy, which uses Landsat imagery with NDVI 

differencing, shows that high accuracy results are possible with this method and 

reveals that forest cover has increased significantly through the period 1984-2010 

(Mancino et al., 2014).  
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Other than NDVI differencing, regression and classification models are used. A 

study combines NDVI values of 30 years and topographical data to use in time series 

second-order polynomial regression (Potter and Dolanc, 2016). Another study, 

which is from Köprülü Kanyon, Turkey, uses aerial photographs, stand maps, and 

very high-resolution satellite data to perform coarse classification in order to detect 

the changes in a stand scale (Karahalil et al., 2009). 

Linear spectral mixture analysis can also be used for change detection. Abundance 

change over a period can be used as a measure for the change of treeline (Chen et 

al., 2015). 

2.4 Studies regarding the methods used in this thesis 

2.4.1 Cloud removal 

With low temporal resolution satellite data, the presence of clouds is a common 

problem. This can result in long periods without a usable image (Ju and Roy, 2008). 

Some studies use only the image itself to recover the small cloudy patches 

geometrically. However, this approach leads to high biases for large clouds. Another 

approach is to model the cloudy bands with cloud-free bands. An example of this 

would be using the NIR band of Landsat TM images for haze reduction (Ji, 2008). 

Nevertheless, this approach would be sufficient for images with thick cloud cover. 

Furthermore, using data from multiple satellite complementation of the cloudy 

patches could be performed, which is a costly computation in terms of time and 

effort. Lastly, cloud removal can be done using multi-temporal images to 

complement the cloudy patches. (Chen et al., 2017). 

Cloud removal using multi-temporal images can be done pixel-based or patch-based. 

Furthermore, more complex non-linear methods can be used to minimize radiometric 

inconsistency (Lin et al., 2014). 
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2.4.2 Unmixing using multi-temporal indices 

Since Landsat has a moderate spatial resolution, spectral mixture analysis, in other 

words unmixing, is a valuable tool to understand the components of each pixel of the 

image. Unmixing of Landsat images and other moderate resolution satellite data can 

be effectively used to understand the forest cover fractions and analyse forest areas 

where canopy cover is open or closed, or have a mixture of vegetation types. 

Furthermore, it is an invaluable tool for detecting change through time (Senf et al., 

2020). 

One study shows that unmixing with normalized difference indices can provide more 

accurate results compared to bands obtained by using principal component analysis 

with simple mixture models. Although using normalized indices may be problematic 

due to their nonlinearity, improvement of the results was observed (Rogers and 

Kearney, 2004). In addition, the effect of shadows on images can be minimized by 

using normalized difference indices. 

2.4.3 Sigmoid curve fitting to describe ecotone transition characteristics 

For studies that focus on the ecotone rather than one ecosystem, modelling the 

transition zone in a precise way is essential. Although some ecotones may be abrupt 

and can even be defined as a line, defining them using fuzzy classifications would 

be a more inclusive approach (Fisher et al., 2006). Sigmoid wave fitting is one of the 

methods used for defining ecotones in such a way. This method provides a robust 

approach to model ecotones that vary in steepness, patchiness, and width (Hufkens 

et al., 2008). 

At alpine treeline ecotones, tree cover percentages decrease as the altitude increase. 

A decreasing sigmoid curve fitted to the tree cover percentages represents the 

transition successfully, especially where it is shaped by climate (Cairns and Waldron, 

2003). 
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2.4.4 Random forest regression 

Random forests (RF) (Breiman, 2001; Ho, 1995) is a powerful statistical machine 

learning tool that can be used for ecological prediction models. Several studies show 

that it often outperforms other commonly used methods for this field of study. RF 

provides a robust approach that considers the predictor importance (Fox et al., 2017).  

Random forests can be used for performing regression and classification. RF also 

provides parameter importance information (Liaw and Wiener, 2002), which is 

essential for understanding the treeline ecotones dynamics, since determining the 

shaping factors is a prerequisite for that insight.  

For modelling the subalpine forests and the ATE, RF is used for various purposes 

such as classification, estimation of forest cover, calculation of variable importance, 

and creating a model using forest cover (Landry et al., 2018; McCaffrey and 

Hopkinson, 2020; Resler et al., 2014). 
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CHAPTER 3  

3 STUDY AREA AND DATA 

3.1 Study Area 

The study area used in this thesis is the Dedegöl Mountain. 

 

 Figure 3.1. Dedegöl Mountain’s location in Turkey 

Dedegöl Mountain is located at the East of Isparta, near Yenişarbademli, and it is a 

part of the Western Taurus Mountains. Beyşehir Lake is located at its East. It has a 
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peak with a 2992 m elevation. The area ranges from N 37 34 to N 37 42 and from E 

31 18 to E 31 40. 

 

Figure 3.2. Dedegöl Mountain study area 

Woody vegetation cover around the mountain consists primarily of coniferous trees 

and shrubs. Black pine (Pinus nigra) and cedar (Cedarus libani) are the dominant 

species at the east side of the mountain, near the treeline, alongside Greek juniper 

(Juniperus excelsa) and fir (Pinaceae abies). The north side consists of black pine, 

kermes oak (Quercus coccifera), and occasionally cedar and deciduous oaks. Black 

pine, Greek juniper, and kermes oak are the dominant species located on the west 

side of the mountain alongside cedar and deciduous oaks. 
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3.2 Satellite Data and Problems 

This thesis aims to create an algorithm that can be used to determine the past state of 

the ATE and subsequently to provide a tool for examination of the change of ATE 

through periods. Consequently, Landsat images were chosen to be used in the 

algorithm. Although the resolution of 30 m presents itself as a drawback in 

accurately defining the transition of the ecotone, being easily accessible and dating 

back to 1985 with 30 m resolution makes Landsat data the most appropriate satellite 

data for this thesis. 

3.2.1 Landsat TM Data 

3.2.1.1 Acquisition 

In order to make the data download process easily repeatable, a code was written 

using Google Earth Engine (GEE). This code was constructed to select the images 

from the target year and support years where the total cloud cover of the image is 

smaller than 10%. Then, using GEE’s function simple cloud cover, the cloud cover 

of each pixel in each image was calculated. Finally, the cloud cover raster was added 

to the images as a band to be downloaded in TIFF format. 
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3.2.1.2 Cloud Problem 

As the area of interest is mountainous, obtaining cloud-free images is a problem. 

When the Landsat TM images of 2018 and 2019 are examined, as presented in Figure 

3.3, it can be seen that there are not enough cloud-free images to form meaningful 

seasonal composites, especially for the spring. 

 

Figure 3.3. Cloudy Landsat image of 25th of April, 2018, Dedegöl Mountain 
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Table 3.1 Available cloud-free images of the study area 

 

A study about the land-cover classification of areas where it is frequently clouded 

proposes to use images of multiple years, using scores to create one cloudless image. 

The importance of the pixels decreases as the distance between the target year and 

the year of the used image increases, whereas they increase as the cloudiness 

decreases (Man et al., 2018). To overcome the cloud problem, this method was 

simplified and used in this thesis. 

3.2.1.3 Shadow Problem 

Shadow presence often leads to classification problems or erroneous results in 

change detection in remote sensing applications. Since the shadows present on an 

area change depending on the imaging time and season, the remotely sensed images 

must be modified prior to use. This can be done either by producing shadow-free 

images or reducing the impacts of the shadow variability of images (Shahtahmassebi 

et al., 2013). 

2018 2019

January 19th -

February - -

March - -

April - -

May - 14th

June - -

July - 1st

August 15th -

September - 19th

October 18th -

November 3rd 6th

December 21st 8th
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Figure 3.4. Landsat image of 3rd of September, 2018, Dedegöl Mountain 

 

The above Landsat image (Figure 3.4) shows that north-facing slopes are dark, and 

south-facing faces are bright. This causes similar compositions of vegetation to have 

different reflectance values depending on the direction they face. 

There are many indices developed for vegetation monitoring using multiple spectral 

wavebands, and they are widely used due to their simplicity and practicality. Most 

of the widely used ones are normalized difference indices which eliminate the effects 

of shadows using ratios of various bands. 

For sparsely vegetated areas, in addition to commonly used indices like Normalized 

difference vegetation index (NDVI) and its derivatives, indices that differentiate soil 

surfaces should also be used (Barati et al., 2011). 
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3.3 Ancillary Data 

As topography defines the position of treelines, in addition to satellite data, 

topographical data were used for determining the ATE. ASTER GDEM (NASA, 

2019) was selected to use as the digital elevation model because of its resolution of 

30 m, wide accepted usage, and easy accessibility. 

 

Figure 3.5. Digital elevation model of the Dedegöl Mountain study area 

Other topographical data were also derived from the digital elevation model. Slope, 

slope aspect, topographic roughness index (TRI), and topographic position index 

(TPI) were calculated using the terrain function of the R package “raster” (Hijmans, 

2020). The slope aspect layer was further processed to generate northness and 

eastness layers, using the R programming environment, using the below equations. 

𝑛𝑜𝑟𝑡ℎ𝑛𝑒𝑠𝑠 = cos(𝑎𝑠𝑝𝑒𝑐𝑡) 

𝑒𝑎𝑠𝑡𝑛𝑒𝑠𝑠 = sin(𝑎𝑠𝑝𝑒𝑐𝑡) 
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Topographic wetness index (TWI) is calculated using the “RSAGA” package 

(Brenning et al., 2018) 

 

Figure 3.6. Derived topographical layers 

Topographic variables were calculated using different spatial resolutions in order to 

provide the relevant inputs for the model of ATE. Used resolutions are shown below 

(Table 3.2). 

Table 3.2 Topographic variables and calculation scales 

Name of the variable Pixel aggregation Spatial resolution for calculation 

DEM 1 30 m 

Slope 1 30 m 

Northness 1 30m 

6 180 m 

Eastness 1 30m 

6 180 m 

TRI 6 180 m 

TPI 8 240 m 

TWI 1 30 m 
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CHAPTER 4  

4 ALGORITHM FOR DELINEATION OF THE ATE 

4.1 Summary of the Algorithm 

The flowchart of the algorithm is given in Figure 4.1. 

 

Figure 4.1. Summary of the flow of the algorithm 
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4.2 Cloud removal and calculation of indices 

4.2.1 Cloud removal 

With the intention of capturing the temporal characteristics of the area, multi-

temporal images were used. Seasonal composites were created to overcome the 

limitation caused by Landsat’s relatively low temporal resolution. 

Tree species that live about the treeline are primarily conifers; therefore, the most 

apparent seasonal change at the treeline ecotone is the change of herbaceous 

vegetation. Also, since the study area is high altitude, seasons tend to differ from 

those used in remote sensing analyses, such as agricultural studies. For this reason, 

the seasons should be selected in order to represent the growing season of herbaceous 

vegetation present at high altitudes. 

By observing the satellite images of the area, the year was divided into four seasons. 

April-June, July-August, September-October, and November-March.  

As mentioned previously, one year’s remotely sensed data may not be sufficient to 

provide cloud-free images that represent each season for some years. Since this thesis 

aims to develop an algorithm that can be implemented for any year and region, to 

eliminate the cloudy pixels of Landsat data, an existing study (Man et al., 2018) was 

simplified and used. This method takes RS images from the previous and following 

years into consideration, where data from the year of interest is not sufficient. 

A procedure was established to overcome the cloudy pixels problem. Firstly, the 

period to be used for the target year was specified. For example, the three-year period 

for 2018 means that images from 2017, 2018, and 2019 were used. 

Secondly, using Google Earth Engine, the following steps were implemented: 

- Images that have less than 10% cloud cover were imported for the selected 

years.  
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- Cloud score was calculated for each image using 

“Landsat.simpleCloudScore” function of the Earth Engine (Gorelic et al., 

2017) and added to the image as a band. 

- The resulting images were downloaded. 

Lastly, the following steps were implemented using R programming environment: 

- Year score was calculated for each image using the following formula: 

𝑦𝑒𝑎𝑟𝑆𝑐𝑜𝑟𝑒 =  1 −  |𝑡𝑎𝑟𝑔𝑒𝑡𝑌𝑒𝑎𝑟 − 𝑖𝑚𝑎𝑔𝑒𝑌𝑒𝑎𝑟| ∗
2

𝑝𝑒𝑟𝑖𝑜𝑑 + 1
 

- Using the cloud score band and the year scores, a compound weight band was 

calculated for each image, with the following formula: 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑎𝑛𝑑 = 𝑦𝑒𝑎𝑟𝑆𝑐𝑜𝑟𝑒 ∗ (1 − 𝑐𝑙𝑜𝑢𝑑𝑆𝑐𝑜𝑟𝑒) 

- For each season, bands of the corresponding images were combined using 

“weighted.median” function of the package “spatstat” (Baddeley et al., 

2015). 

The year score assigns less importance to the image in hand, as the year of the image 

used moves farther from the target year, and the cloud score represents each pixel's 

cloudiness for an image. Combining these two scores enables to assign a measure of 

quality for each pixel of the images of interest and, thus, provides the most suitable 

pixels to use for building the seasonal composite image. 

For the study area, Dedegöl Mountain, cloudless images were created for 2018 (using 

images from years 2017, 2018, and 2019) and for 1984 (using images from years 

1984, 1985, and 1986). Images from a period of three years were sufficient for cloud-

free image calculation of both years. 

4.2.2 Calculation of indices 

NDVI, EVI2, NDSI, and NDWI were calculated using the seasonal cloud-free 

composites. The following formulas were used: 
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NDVI =
NIR − RED

NIR + Red
 

NDWI =
Green − SWIR

Green + SWIR
 

EVI2 = 2.5 ∗
NIR − RED

NIR + 2.4 ∗ RED + 1
 

NDSI = 2.5 ∗
NIR − SWIR

NIR + SWIR
 

4.3 Transects for examination of the treeline transition 

With the aim of minimizing the need for manual interpretation, a simple method has 

been developed in order to examine the transition area. For the study area's latitude 

and for its climate zone, ATE is very coarsely located around 1800 m altitude. To 

explore the transition zone without the bias of this assumption, very long transects 

were created along the predicted ATE. 

Generation of the transects was realized through the following steps, using R 

programming and QGIS: 

- A contour layer has been generated using the DEM for the area of interest 

using “rasterToContour” function of the “raster” package (Hijmans, 2020) 

(Figure 4.2).  

- The 1300 m, 1800 m, and 2300 m altitude contours around the mountain were 

selected manually. 

- The 1800 m altitude contour was smoothed using the “smoothr” package in 

R environment (Strimas-Mackey, 2021). The method for smoothing was 

selected as "ksmooth", which uses Gaussian kernel regression. The 

smoothing factor was chosen as 50. Smoothing was done to ensure a more 

homogeneously directed set of transects, i.e., from the foothills to the top of 

the mountain (Figure 4.3). 

- Using the smoothed line, perpendicular transects were drawn to stretch 1000 

m in each direction for every 60 m. 

- As the slope of the hills is variant around the mountain, to provide a more 

standard approach, the lines created were trimmed to be constrained by 1300 

m and 2300 m altitudes. 
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Figure 4.2. Contours on DEM, Dedegöl Mountain 

 

Figure 4.3. 1800 m contour and its smoothing, Dedegöl Mountain 
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4.4 Unmixing using multi-temporal indices 

The main idea is to form multi-seasonal endmembers for main constituents of the 

ecotone and analyse the transition in terms of the abundances of these constituents. 

4.4.1 Endmember selection 

Endmembers were chosen to represent the highest abundance in the study area and 

characterize the ATE transition accurately. As the vegetation cover of the study area 

consists of coniferous and broadleaved tree and shrub species and herbaceous 

vegetation, these were chosen as endmembers. Rocks and bare soil, and water were 

also chosen as the fourth and fifth endmembers to represent non-vegetated areas. 

The number of endmembers was deliberately chosen to be a small number. Similar 

to the situation of unmixing using multi-spectral images as opposed to using 

hyperspectral images, the input of 16 seasonal indices means high numbers of 

endmembers must be avoided. 

Coniferous tree and shrub species are evergreen and expected to show little variance 

in terms of reflectance throughout the seasons. 

Broadleaved tree and shrub species are mostly deciduous at the study sites Therefore, 

they are expected to grow green shoots in spring, have very high NDVI values at the 

end of spring through the summer, and shed their leaves in autumn. 

Herbaceous vegetation, which in the case of mountains are alpine grasslands, 

strongly reaches its peak of NDVI as the snow cover melts in spring. Then, as the 

temperatures rise and soil moisture drops, NDVI starts to decrease gradually 

throughout the summer and autumn. In winter, it is completely covered with snow. 

Rocks and bare soil has consistently very low NDVI throughout the year. Soil index 

and water index only change with the arrival of snow cover. 
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4.4.2 Unmixing process 

The unmixing was done using four indices; NDVI, EVI2, NDSI, and NDWI, for four 

seasonal composite images. Extraction of these seasonal indices for the endmember 

polygons resulted in a matrix of five endmembers * 16 seasonal indices, to be used 

as the input of the unmixing process. 

For performing unmixing, the “mesma” function of the R package “RStoolbox” was 

used (Leutner et al., 2019). “mesma” stands for multiple endmember spectral mixture 

analysis, and the function was originally for spectral unmixing. Although indices 

were used instead of spectral bands in this algorithm, this function was used for 

unmixing.  

The method was selected as NNLS (non-negative least squares) regression which 

uses SCA (sequential coordinate-wise algorithm) (Franc et al., 2005). 

For the scenario in hand, FCLS (fully constraint least squares) is more convenient as 

the total abundance of endmembers for each pixel is assumed to be 100%. However, 

as this thesis aims to use open source platforms, NNLS, which is the method 

available in the R environment, was chosen. To overcome this shortcoming, for 

calculating the percentage of abundances, the following formula was applied. 

𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒[01],𝑖  =
(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑚𝑑𝑚𝑒𝑚𝑏𝑒𝑟𝑖)

∑ 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟
  

4.4.3 Calculation of tree percentage 

ATE at the study area consists mostly of conifers, with occasional broadleaved oaks. 

To consider all of the woody species, the sum of the abundance of the two was 

calculated using the below formula: 

𝑡𝑟𝑒𝑒𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = (𝑐𝑜𝑛𝑖𝑓𝑒𝑟𝑜𝑢𝑠𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 +  𝑏𝑟𝑎𝑑𝑙𝑒𝑎𝑣𝑒𝑑𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 ) 

This value provides an estimation of crown cover, making it suitable to observe the 

change through the ATE. 
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4.5 Fitting of sigmoid waves to the transition of ATE 

Using the generated transects, tree percentage values along with the DEM values 

were extracted, resulting in a plot of tree percentage versus pixel ID. The pixel IDs 

were sequenced to increase as they moved from the foothill to the top of the 

mountain. There were small elevation fluctuations since transects are straight line 

segments, and the topography is not very homogeneous. 

Extracted values along the transects were examined, and it is seen that some long 

transects along the ridge, where the maximum altitude is lower than 2100 m, may 

reach the max altitude and then start to decrease. Likewise, transects located through 

a valley may show a trend that decreases first and starts to head up later. To 

standardize the sigmoid fitting process to the transects, all were examined in the R 

environment. The line segments were trimmed so that the lines start at the minimum 

elevation and end at the maximum elevation along the transect. 

 

Figure 4.4. From left to right: original transect, part after the maximum elevation was 

eliminated, the part before the minimum elevation was eliminated. 

To eliminate the elevation fluctuations and obtain a monotonically increasing 

elevation profile, sample points along the transect where elevation drops were not 

used. 
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Figure 4.5. An example of before and after the elimination of elevation drops. Filled 

grey parts were eliminated. 

 

The sigmoid responses were fitted to those plots generated for each selected transect 

using the “nls” function of R package “stats” (R Core Team, 2020). Not all transects 

could be fitted since the transition is not always as expected. This situation can be 

observed where there is grazing or settlement pressure or where a topographic 

barrier, such as a cliff is present. 

To standardize the fitted sigmoids and define the lower and upper limits of the 

ecotone, the sigmoids were normalized to be in the range [0, 1]. Taking the nature of 

the sigmoid curve into consideration, the lower limit was defined as 0.9, and the 

upper limit was defined as 0.1. Also, value 0.5 was defined as the treeline. 
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Figure 4.6. An example of fitted sigmoid wave and its normalization 

 

Also, the correlation of the tree percentage values and the fitted sigmoids were 

calculated for each transect using the “cor” function from the R package “stat” (R 

Core Team, 2020). Transects that correlate higher than 90% were selected to be used 

in the training of the model. 

As a result of this step, ATE was defined as a transition zone where the sigmoid 

values represent the nature of the transition at a point. 

4.6 Random Forest Regression and Model 

In order to model the position of the ATE as a transition zone, firstly, the model was 

trained using random forest regression. 

As predictors, the following topographic variables were used; 

- DEM 

- Slope 
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- Northness (two different scales) 

- Eastness (two different scales) 

- Topographic position index (TPI) 

- Topographic roughness index (TRI) 

- Topographic wetness index (TWI) 

Selected transects to which sigmoids were fitted with high correlation have been 

used to prepare the predictand input. Along these transects, predictor values and the 

normalized sigmoid value that represents the ATE were extracted using the 

“ExtractAlongTransect” function of the R package “inlmisc” (Fisher, 2020). By 

merging these values, a large matrix of eight variables and 37039 rows was obtained 

(Table 4.1). 

Table 4.1 First ten rows of the matrix for the model input, for Dedegöl Mountain. 

 

The data were randomly divided into two parts for validation; training data to be 

80% and test data to be 20% of the original data. 

Using the “randomForest” function of the “randomForest” package in the R 

environment, the model was trained using the following model parameters: 

x = training data predictors (First 7 columns of the matrix) 

y = training data predictand (Last column of the matrix) 

mtry = 3 (Number of variables to be sampled at each split) 

ntree = 200 (Number of trees to grow) 
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importance = TRUE (Importance of predictor variables is to be calculated) 

xtest = test data predictors (First 7 columns of the matrix) 

ytest =test data predictand (Last column of the matrix) 

To run the model for the whole coverage of the area of interest, a raster stack 

composed of the predictor layers was created. The random forest regression output 

and the predictor raster stack were used as input to the model using the “predict” 

function of the “raster” package of R (Hijmans, 2020). 

Since the predictand input of the model was the sigmoid values, which changed in 

the range [0, 1], the output was a raster with values changing from 0 to 1. As stated 

earlier, the treeline ecotone was defined as the transition zone between the values 0.9 

and 0.1. In addition, the treeline was defined as threshold 0.5. The following steps 

were realized to provide an output that can be easily interpreted. 

- Contour lines were drawn for the values 0.1, 0.5, and 0.9 using 

“rasterToContour” function of the “raster” package (Hijmans, 2020). 

- Using those lines, polygons that represent areas corresponding to the values 

[0,0.1] (area above the upper limit of treeline ecotone), [0,0.5] (area above 

the treeline), and [0,0.9] (area above the lower limit of treeline ecotone) were 

created. 

- For all three polygons, those with areas smaller than 0.1 km2 were deleted, 

and voids smaller than 0.1 km2 were filled. 

- By selecting the [0,0.9] polygons that have [0,0.1] polygons inside, areas that 

have a complete treeline transition were obtained. 

- The same selection was performed for the [0,0.5] polygon. 

- By subtracting the [0,0.1] polygons from selected [0,0.9] polygons, the 

ecotone was obtained. 

- By converting the selected [0,0.5] polygon to line, the treeline was obtained. 
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Figure 4.7. The output of the random forest regression, 2018, Dedegöl Mountains 
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CHAPTER 5  

5 RESULTS AND DISCUSSION 

5.1 Outputs of the Algorithm 

5.1.1 Cloud removal and calculation of indices 

5.1.1.1 Cloud removal 

An automated cloud removal step is essential for an algorithm that aims to be 

objective and repeatable. The method developed is fast and easy to implement using 

Google Earth Engine and R programming platform. This method makes up for 

periods where cloud-free images are not available by using successive years. Since 

mountains are areas where gaps in availability of cloud-free images is a frequent 

problem, this advantage becomes invaluable. In addition, it is possible to standardize 

the method for any year by predefining the periods for the composite images to be 

used. Lastly, for satellite images with more than one tile, sometimes partial images 

of the area of interest are available. This method makes use of partial images by 

ignoring the NA pixels and using the rest. This feature of the method provides more 

input to obtain cloud-free images. 

Using three successive years’ data, cloud-free images were obtained for the study 

area for 2018 and 1984 years. The improvement can be seen in the images below, 

showing the cloud-free outputs for the year 2018, calculated using 2017, 2018, and 

2019 Landsat images (Figure 5.1, Figure 5.2Figure 5.3, Figure 5.4). 
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Figure 5.1. Cloudless April – June 

image for 2018, Dedegöl mountain 

 

Figure 5.2. Cloudless July – August 

image for 2018, Dedegöl mountain 

 

Figure 5.3. Cloudless September – 

October image for 2018, Dedegöl 

mountain 

 

Figure 5.4. Cloudless November – 

March image for 2018, Dedegöl 

mountain 
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5.1.1.2 Seasonal indices 

Seasonal indices were generated using cloud-free seasonal images calculated for the 

same period.  

 

Figure 5.5. Seasonal indices calculated for 2018, Dedegöl Mountain 
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When correlations are examined, it can be seen that (Figure 5.6) some indices are 

highly correlated when considered as a whole. Nevertheless, taking into 

consideration that differences at small areas would be significant for the next steps 

of the algorithm, no indices were disregarded. 

 

Figure 5.6. Correlation of indices 

 

5.1.2 Transects 

During the development of the algorithm, the importance of how the transects were 

drawn was observed. In the early stages of the study, the contour of 1800 m was used 

directly for the generation of transects. The desired direction of the transects is from 

downhill to the top of the mountain. However, since the contour is wavy in its nature 

across valleys and ridges, and the transects were drawn perpendicular to this line, the 
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process resulted in some transects that were not in the required direction or crossing 

each other. With the smoothing step added, this problem was solved. 

In addition, since the number of transects needed is very high, the advantage of using 

RS data has become evident. 

 

Figure 5.7. DEM, 1800 m contour and transects for the Dedegöl Mountain 

  



44 

 

5.1.3 Unmixing 

5.1.3.1 Endmember selection 

Endmember selection for unmixing was done in order to obtain total tree abundance 

over the study area.  

Broadleaved species that are present in the study area are deciduous or evergreen. 

Kermes oak is the most widely distributed of broadleaved species at Dedegöl 

Mountain and its surrounding area, and it is an evergreen species. One shortcoming 

of this step is that broadleaved trees were not separately examined as deciduous and 

evergreen species since they are not easily distinguished from Google Earth images 

and are usually sparsely distributed over the area. Thus, creating pure endmember 

samples for evergreen broadleaved species was not possible for the study area. 

Another limitation was that it was not possible to provide information on the form 

and height of woody species for the endmember selection process, even though they 

are important parameters for defining the treeline. Tree species in the shrub form or 

irregular forms, or smaller trees were not sampled as separate endmembers. 

Thirdly, 30 m wide plots of plain pure rock or bare soil are not typical in nature. 

Even though the endmembers were selected so that the pixels would be as pure as 

possible, there would be some vegetation present in them. 

Endmembers and variations of index values through the seasons can be seen in the 

figures below (Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11).  

NDVI variation of rocks and bare soil shows that a mixture of vegetation is present 

at the endmember samples. However, it can be easily distinguished from the other 

endmembers by observing seasonal changes. Herbaceous vegetation is found in 

different densities, and this can be observed at the endmember variabilities within 

each season, especially in the spring. For trees, it can be seen that the variation 

through seasons is affected by the presence of sparsely distributed evergreen oaks in 

broadleaved trees samples. Water is easily differentiated for all seasons. 
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Figure 5.8. NDVI variation through seasons for endmembers 

 

 

Figure 5.9. EVI2 variation through seasons for endmembers 

 

The high index value of the Rocks and bare soil endmember in summer indicates 

that after the snow melts, alpine vegetation with a short lifespan emerges strongly at 

the sample points. Because the NDVI and EVI2 patterns of the endmembers 

herbaceous vegetation and show a different trend than patterns of rocks and bare soil, 

it can be concluded that different vegetation covers are present at those sample 
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points. Therefore, these two endmembers being unmixed separately is not likely to 

cause a problem. 

 

Figure 5.10. NDWI variation through seasons for endmembers 

 

NDWI variation of the tree endmembers through the seasons emphasizes the 

difference between the broadleaved and coniferous trees. 

 

Figure 5.11. NDSI variation through seasons for endmembers  

Figure 5.11 shows that the variation within the endmembers in spring is very high. 

The reason might be the melting of snow cover during those months. Because all 
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endmember samples are located in various locations in the study area, melting may 

not occur at the same date. Moreover, the herbaceous endmember has a high value 

of soil index. This may be caused by newly emerging annual herbaceous vegetation 

at the time. Another unexpected case present in the plot is that water takes a high 

index value in spring with a small confidence interval. The water endmember 

samples were located on the Beyşehir Lake. Although it is not an expected situation 

as the water level increases as the melted waters emerge to the lake in spring, it may 

be related to the increase in primary production at those months (Bucak, 2017) and 

requires further investigation to determine the cause.  

Also, another examination was done using the reflectance values of the bands; blue, 

green, red, NIR and SWIR. This analysis shows that endmembers were not selected 

from the best sites to represent them Figure 5.12. A more detailed selection process 

is needed to improve the representations of vegetation and land cover uses in the 

area.  

 

Figure 5.12. Reflectance values of five bands for the endmembers 

 

5.1.3.2 Unmixing results 

The resulting maps for each endmember and the RMSE are shown below (Figure 

5.13 and Figure 5.14). 



48 

 

  

Figure 5.13. Results of unmixing for the endmembers, Dedegöl mountain 
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Figure 5.14. Results of unmixing for the endmembers, and the RSME 

 

Evergreen species abundances were classified as conifers or broadleaved trees in the 

output pixel mixture. However, as the broadleaved and coniferous tree abundances 

were summed to obtain total tree percentage, this issue did not affect the further steps 

of the algorithm excessively. 

 

Figure 5.15. Results of unmixing extracted for a transect as an example 
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Abundances of each endmember change going uphill. Typically, where human 

disturbance is not high, total tree abundance is higher on the lower slopes of the 

mountain. This is expected when the dominant ecosystems are forests in the area. 

When moved upwards, the abundance of trees decreases, and herbaceous vegetation 

abundances start to increase. This transition is the ATE. Going farther up, the 

vegetation becomes sparser, and the abundance of rocks and bare soil increases 

(Figure 5.15). 

5.1.3.3 Tree percentages 

As seen in the figure below, the abundance of woody vegetation, which is shortly 

referred to as tree percentage, decreases sharply around the 1800 m elevation contour 

(Figure 5.16). This abundance value is an indicator of canopy cover. Although this 

value cannot give direct information about the tree height, moving up the treeline 

ecotone, as the trees get smaller in size, the abundance is expected to get smaller too. 

 

Figure 5.16. Percentage of trees, 2018, Dedegöl Mountain 
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5.1.3.4 Assessment of the unmixing step 

During the unmixing process, normalized difference indices NDVI, EVI2, NDWI, 

and NDSI were used to overcome the effects of shadows on satellite images. Since 

this approach is not frequently used, the decision to use the indices has been backed 

up by comparing the results obtained using these four indices and using the bands’ 

reflectance values (Figure 5.17). Since it is easier to interpret using the tree 

abundance change, images showing the difference between the 1984 and 2018 

images were compared with the help of Google Earth images for visual 

interpretation. Both approaches, especially unmixing with bands, estimate the tree 

abundance for the aforementioned years successfully for the areas where the 

abundance is increased. Unmixing using bands indicates a decreasing trend at and 

above the treeline at the north and west slopes of the mountain, which does not 

accurately describe the actual situation. In contrast, unmixing with indices indicates 

a decreasing trend at and below the treeline, reflecting the actual case more closely 

but exaggerating the change at the lower flat surfaces. Both models have their 

weaknesses, but since this output was generated to be used in modelling the treeline, 

unmixing with normalized difference indices was chosen. 

 

Figure 5.17. Comparison of tree abundance changes from 1984 to 2018, generated 

using spectral bands and normalized difference indices 
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Tree abundance and their change maps show that the unmixing approach is more 

robust for some species. The eastern slopes, which consists mainly of black pines 

and cedars, is more accurately represented by the output of this step. This may be 

due to their tendency to form denser forest patches, which can be observed in the 

study area. In contrast, the west-facing slopes dominated by more sparsely dispersed 

juniper and oak species, representation success slightly drops. 

This step of the algorithm has shown that unmixing of areas where the woody 

vegetation is sparsely dispersed requires further efforts for the determination of 

endmember pixels to be used as input for unmixing.  

5.1.4 Fitting of sigmoid waves 

For 965 transects around the Dedegöl mountain, 669 of them were fitted with 

sigmoid responses successfully, using tree percentages calculated from the 2018 

images of the study area. 455 of those transects were fitted with a correlation higher 

than 90% (Figure 5.18). 

Although climatically suitable, other factors can limit tree growth. Therefore, the 

transition is often not in a standard form. There may be openings in the forest just 

below the treeline, or trees may be sparsely distributed at the lower side of the 

ecotone due to reasons like poor soil conditions or grazing pressure. These cases may 

cause the sigmoid to fit poorly to the tree abundance samples along the transect. 

 

Figure 5.18. Histogram for correlation of sigmoid fits to the tree abundances of input 

sample points 
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Figure 5.19. Examples of successfully fitted transects (correlation > 90%) 

 

Figure 5.20. Examples of poorly fitted transects (correlation < 90%) 
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5.1.5 Random forest regression and model 

Results of the regression and model are examined here in two perspectives; 

quantitatively and qualitatively. 

5.1.5.1 Quantitative results 

Firstly, the predictor variables' importance and the effect of their addition were 

inspected. It can be seen that addition of each variable results in a decrease in the 

error of the regression (Figure 5.21). 

 

Figure 5.21. Error versus the number of variables for the regression. 

 

Variable importance was also calculated for the regression model. The bar plot below 

(Figure 5.22) shows the variable importance in terms of mean decrease in accuracy 

(%IncMSE) and mean decrease in the Gini index (IncNodePurity). 

%IncMSE is a measure of comparison between using random values to using values 

from the variable in question. IncNodePurity is a measure of the effect of splitting. 

For both variables, higher values mean higher importance (Liaw and Wiener, 2002). 

As expected, altitude is the most important predictor. Secondly,  
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Figure 5.22. Predictor variable importance plot 

 

Accuracies for training and test data are shown below as an output of the regression 

(Figure 5.23). RMSE is 0.025 for training and 0.02 for test data. The predictand 

values range from 0 to 1; the regression model can be considered successful 

regarding the RMSE values. For training data, 88.4% of the variation is explained 

by the model, and for test data, this value is 88.3%. 

 

Figure 5.23. Accuracies of training and test data 
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5.1.5.2 Qualitative results 

Visual investigation of the model output shows that the model estimates the actual 

case successfully for some situations, but for others, there are problems. Examples 

of successful fits are shown in Figure 5.24 and Figure 5.25. 

 

Figure 5.24. An example from model output, calculated using 2018 images, Dedegöl 

Mountain 

 

Figure 5.25. An example from model output, calculated using 2018 images, Dedegöl 

Mountain 
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In the images (Figure 5.24, Figure 5.25, Figure 5.26, and Figure 5.27), the blue line 

(0.1) represents the upper limit of the ecotone, and the red line (0.9) represents the 

lower limit. The purple line is the treeline. 

 

Figure 5.26. An example from model output, calculated using 2018 images, Dedegöl 

Mountain 

 

Figure 5.27. An example from model output, calculated using 2018 images, Dedegöl 

Mountain 
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For some parts, model estimation fails by extending the upper limit of the ecotone 

well into openings above forests. Most of the time, this situation is caused by the 

presence of scree paths. As the model does not use the locations of screes or lithology 

information, it cannot predict such openings. In Figure 5.26, it can be seen that, 

although the model predicts that topography is suitable for treeline to reach a higher 

elevation, scree areas likely prevent that. 

For some areas, the actual treeline reaches higher than the predicted line. This may 

be caused by the microclimate of that specific valley. Such local climate variation 

cannot be estimated by the model correctly. An example of this situation is presented 

in Figure 5.27. 

5.1.5.3 Assessment of the Random forest regression model 

The high quantitative accuracy of the model verifies that this step of the algorithm 

provides a robust method for modelling the treeline ecotone using the sigmoids fitted 

to the tree abundance. The qualitative results show that the model gives valuable 

results. However, the model failing at occasional areas points to some problematic 

aspects of the input. 

5.2 Change of treeline position from 1984 to 2018, Dedegöl Mountain 

Unexpectedly, the model suggests that treeline altitude has dropped for most slopes 

of the mountain over the 34-year period. The drop can be observed on the west side 

of the mountain in (Figure 5.28). The drop at this specific slope is due to the tree 

cover at the ecotone becoming less dense. Thus, change occurs in a longer transect, 

and the ecotone becomes wider, lowering the midpoint of the transition, which is 

defined as the treeline. 



59 

 

 

Figure 5.28. Comparison of 1984 and 2018 Treelines, western slopes of Dedegöl 

Mountain 

No significant change can be detected on the northern slopes with occasional 

increases and decreases (Figure 5.29). 

 

Figure 5.29. Comparison of 1984 and 2018 treelines, north slopes of Dedegöl 

Mountain. 
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On the eastern slopes of the mountain, the treeline has not shifted much, although, 

on some east-facing slopes, an upwards shift can be observed clearly when the upper 

limit of the treeline is examined (Figure 5.30). 

 

Figure 5.30. Comparison of 1984 and 2018 upper limit of ecotones, east slopes of 

Dedegöl Mountain. 

When the transects that sigmoid curve has been fitted the tree abundance with high 

correlation are examined, it can be seen that the change in treeline elevations are 

distributed as follows (Figure 5.31). The mean value for change is a decrease of 22.9 

m. 
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Figure 5.31. Barplot showing the change in treeline altitude 

 

5.3 Discussion  

The algorithm developed provides more information on the nature of the treeline 

ecotone at the Dedegöl Mountains at each step of it. Firstly, cloud-free images and 

normalized indices give an initial idea of the area. Then the unmixing step presents 

the abundance, which gives an insight into the vegetation cover of the mountain. The 

addition of sigmoid fitting and the random forest regression model provides an 

understanding of the factors that shape the treeline ecotone. This last step also gives 

a tool to model similar areas and estimate the ATE. 

The most surprising finding is the lowering of the treeline from 1984 to 2018 at the 

mountain's eastern slopes. Models are simplifications of the real world, and it is 

impossible to reflect every aspect of the real world in a model; thus, assumptions are 
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used to reflect it as efficiently as possible. Simplifications in this model include 

excluding grazing pressure by domestic flocks and disregarding the complex 

interaction between temperature and rainfall. Either of those factors might possibly 

cause a recession of the treeline by lowering the survival and growth of 

physiologically stressed tree saplings on the ecotone. 

Examination of Landsat images and the calculated NDVI maps for both years 

indicate that as the seasons change with the changing climate, both woody and 

herbaceous vegetation has become greener in the spring and summer months, and 

the period that they stay green has increased. This observation emphasizes the need 

for more complex models to model the ATE that distinguishes the woody vegetation 

from herbaceous vegetation, than only using NDVI differencing. 

Nevertheless, NDVI is a powerful tool that can also be used for visual interpretation. 

Along with the moderate resolution images, NDVI can give the observer an idea of 

how the tree cover changes over the years. A visual check of NDVI maps for both 

years reveals densification of trees across the treeline ecotone for some areas where 

the model suggests that it has decreased. Further examination of such areas using the 

tree abundances suggests that the problematic areas are where the unmixing has a 

poor output. 

Since the algorithm was developed in a way that its overall accuracy is the 

accumulation of each step’s accuracy, the model is dependent on the unmixing step. 

This step may be improved by further efforts and fieldwork, which is beyond the 

scope of this thesis. 

This algorithm cannot take the tree height and the change in form from tree to shrub 

or krummholz into account. However, this shortcoming was compensated by 

defining the transition by sigmoid curves and using thresholds to define the upper 

and lower limits. 

The objective for developing this algorithm was to create a method that is 

ecologically meaningful and easily repeatable. The algorithm developed fulfils this 

objective. 
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CHAPTER 6  

6 CONCLUSIONS 

In a world where climate change is starting to gain unprecedented pace, monitoring 

its effects on ecosystems is an essential tool for understanding what the future will 

bring and for sustaining adaptation, mitigation, and conservation attempts. As the 

climate changes, some indicators of the response of nature can be observed spatially. 

Forests are the most suitable ecosystems for monitoring this response, as this can be 

done using remote sensing applications. Ecotones, connecting the forests to other 

vegetation types, respond to climate change in a way that can be monitored using 

publicly available remotely sensed data. In addition, ecotones are worth monitoring 

as they are important areas on their own for biodiversity. 

This thesis has developed a reproducible method for monitoring Alpine treeline 

ecotones, using publicly available data and open source programs. Since Landsat 

satellites that provide 30 m resolution images of the Earth have been in orbit for 

nearly forty years, using these images was preferred. Despite their relatively coarse 

resolution, Landsat images provide invaluable information necessary for analyzing 

past changes, thus enabling the prediction of future changes. By using unmixing, 

sigmoid fitting, and random forests regression, the dependency on human 

interpretation has been minimized. 

The output of the algorithm has shown that topographical variables combined with 

the canopy cover information can be used for effectively modelling the treeline 

ecotone. The model indicated the treeline had shifted downwards since 1984 at the 

western slopes of the Dedegöl Mountain, against theoretical expectations or contrary 

to observations of increases elsewhere in the world. On the eastern slopes, the shift 

is indicated to be upwards. 
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This study can provide input for estimating the future spatial configuration of ATE 

as well as for further development of models for various climates and latitudes. 

Furthermore, this study can easily be adapted to other satellite data and enable higher 

resolution results. 

A future research direction would be improving the unmixing step and validating 

abundances using high-resolution images. Moreover, adaptation of this algorithm to 

be used with Sentinel-2 data would provide valuable information. Another research 

direction would be to test the algorithm at other mountains. 
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