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ABSTRACT

DELAYED DETACHED-EDDY SIMULATION BASED PREDICTIONS OF
BOUNDARY LAYER TRANSITION AND CAVITY FLOW NOISE

Yalçın, Özgür

Ph.D., Department of Aerospace Engineering

Supervisor: Prof. Dr. Yusuf Özyörük

November 2021, 157 pages

This dissertation investigates the boundary layer transition as well as the cavity flow

noise prediction capabilities of a high-order in-house solver using various Delayed

Detached-Eddy Simulation (DDES) frameworks. Before conducting the simulations,

multiblock topology with a high-order overset grid technique is implemented into

the solver, which makes mesh generation for complex geometries, such as the tunnel

grids around blade sections, and cavity grids composed of two separate domains of the

studied cases in this thesis. For the flow transition capability, the Baş-Çakmakçıoğlu

(BCM) transition model is incorporated into DDES with a shear-layer-adapted (SLA)

subgrid length scale, and applied to flowfields around a blade section and a cylinder.

The results show that the BCM model captures the transition onset maintaining the

laminar upstream flow while the SLA approach increases the turbulent content rapidly

beyond transition. The collaboration between these two approaches enables capturing

the aerodynamic coefficients of blade sections near the stall angles accurately. On the

other hand, the SLA length scale is incorporated into the Improved DDES framework

(IDDES-SLA) for computations of the M219 cavity flow, and its associated noise.

The cavity problems are considered to have no physical lateral walls for reducing the
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demand for computational resources. The results show that for these specific cases the

mean and turbulent flow fields could be captured reasonably without the lateral walls,

when the cavity width is taken as at least one depth. In addition, unlike the standard

one, the use of the SLA length scale helps capturing the Kelvin-Helmholtz instability

dominated region. IDDES-SLA yields the best acoustic results among some other

tested approaches, showing good agreement with reference studies. The absence of

viscous lateral walls does not seem to have an impact on overall sound levels except

near the front wall.

Keywords: detached-eddy simulation, aeroacoustics, cavity flow, boundary layer tran-

sition
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ÖZ

SINIR TABAKASI GEÇİŞİ VE BOŞLUK AKIŞI GÜRÜLTÜSÜNÜN
GECİKTİRİLMİŞ AYRIK-ÇEVRİNTİ BENZETİMİNE DAYALI

HESAPLAMALARI

Yalçın, Özgür

Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Yusuf Özyörük

Kasım 2021 , 157 sayfa

Bu tez, çeşitli Geciktirilmiş Ayrık-Çevrinti Simülasyonu (DDES) yöntemlerini kul-

lanan yüksek dereceli bir çözücünün, boşluk akış gürültüsü ve sınır tabakası geçiş

olayı tahmin yeteneklerini incelemektedir. Simülasyonları gerçekleştirmeden önce,

çoklu-blok ağ yapısı ile birlikte yüksek mertebeli üst-üste grid özellikleri koda ek-

lenmiştir. Böylece, kanat kesiti etrafındaki tünel ağ yapılarını ve iki ayrı bölgeden

oluşan boşluk ağ yapılarını oluşturmak kolaylaşmıştır. Geçiş olayı çözümleri için,

Baş-Çakmakçıoğlu (BCM) geçiş modeli, kayma-tabakasına-adapte (SLA) grid altı

uzunluk ölçeğini kullanan DDES’e dahil edilmiş ve kanat kesitleri ve silindirlerin

etrafındaki akış alanlarına uygulanmıştır. Sonuçlar, SLA yaklaşımının türbülanslı ya-

pıları, geçiş olayı sonrası bölgede hızla arttırdığını ve aynı zamanda BCM modelinin

gelen laminer akışı koruyarak geçiş başlangıcını doğru tahmin ettiğini göstermektedir.

Bu iki yaklaşım arasındaki işbirliği, perdövites açılarındaki kanat kesitlerinin aerodi-

namik katsayılarının doğru bir şekilde yakalanmasını sağlamıştır. Öte yandan, SLA

uzunluk ölçeği, M219 boşluk akışının ve bununla ilişkili gürültünün hesaplanması
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için Geliştirilmiş DDES yöntemine (IDDES-SLA) dahil edilmiştir. Boşluk problem-

lerinin, hesaplama kaynaklarına olan talebi azaltmak için fiziksel yan duvarlarının

olmadığı kabul edilmiştir. Sonuçlar, genişliği en az bir derinlik olarak alındığında,

boşluğun ortalama ve türbülanslı akış alanlarının yan duvarlar olmadan makul bir şe-

kilde elde edilebileceğini göstermektedir. Ayrıca, standart olandan farklı olarak, SLA

uzunluk ölçeğinin kullanımı Kelvin-Helmholtz kararsızlığının hakim olduğu bölge-

nin tahmin edilmesine yardımcı olmuştur. IDDES-SLA, test edilen yaklaşımlar ara-

sında en iyi akustik sonuçları vermekte ve referans çalışmalarla iyi bir uyum gös-

termektedir. Viskoz yan duvarların yokluğu, ön duvarın yakınları dışında genel ses

seviyeleri üzerinde bir etkiye sahip görünmemektedir.

Anahtar Kelimeler: ayrık-çevrinti benzetimi, aeroakustik, boşluk akışı, sınır tabakası

geçişi
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dinlediği, hem teknik anlamda hem de manevi anlamda bana destek verdiği için ken-
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yanı sıra, Yusuf Hoca bugüne kadar yaptığım tüm çalışmalarımda beni hep teşvik et-

miş, yayınlarımın her bir satırını özenle okuyup geri bildirim sağlamıştır. Kendisinin
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tavsiyelerden dolayı ayrıca teşekkür etmek istiyorum.
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teşekkür ederim. Tezimin önemli bir kısmı, ortak yürüttüğümüz çalışmalardan oluş-
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CHAPTER 1

INTRODUCTION

1.1 Backgrounds

1.1.1 Detached-Eddy Simulation

Turbulence is one of the most complex phenomena in mathematics and the physical

world. Among the many definitions in literature, Çıray describes it as "Turbulence

consists of essentially unsteady and three-dimensional (3-D) flow motions where any

quantities are random in time and space while mean quantities are deterministic" [18].

Such disordered flow fields result in eddies, a group of highly correlated fluid parti-

cles, and also known as coherent structures. They are inherently vortical, diffusive,

and dissipative. There is an energy cascading between eddies: At first, large eddies,

which are very energetic and unstable, are created under large gradients (due to either

a geometry and/or a freestream itself) in the flow field. Then, they break up and turn

into smaller eddies as they loose their energies because of viscosity. This decaying

energy transfer keeps going until the smallest eddy which then disappears or takes a

part in another flow. As a whole, this phenomena is observed in the energy spectrum

corresponding to different wavenumbers.

Turbulent flow simulations vary based on their setting the resolution level of eddies

within this energy spectrum. The best way to simulate the flow field is to resolve all

involved eddy structures. This is called Direct Numerical Simulation (DNS). In the

DNS approach the Navier-Stokes (N-S) equations, a mathematical model of the fluid

flow dynamics, are numerically solved resolving all eddies. However, as Reynolds

number (Re), representing relative magnitude of inertial to viscous forces, increases
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the length scale of the smallest eddy structure (Kolmogorov scale) decreases accord-

ingly. In a 3-D computational domain, roughly Re3 grid cells are required, which

makes DNS costly to perform for the real-world applications. This is why DNS stud-

ies in literature solve mostly simple two-dimensional (2-D) flow problems. Large

Eddy Simulation (LES), on the other hand, only resolves large eddies filtered out

from the N-S equations. Small eddies, which are on the subgrid scales by the filter-

ing process, are modeled, instead. Here, the large eddies represent the non-isotropic

and the geometry dependent components of the flow dynamics while the small eddies

are isotropic and under universal equilibrium. Resolving only the large eddies still

provides the desired momentum transfer and turbulent mixing in the field without

adequate dissipation mechanism. The modeling of subgrid scales makes up for this

mechanism and reduces the computational cost in comparison to DNS, making LES

a plausible approach, particularly in free shear flows. Nevertheless, in the case of a

wall-bounded flow problem with high Re, a very fine grid resolution requires inside

the boundary layer since the energetic eddies emanate mostly from the wall itself. The

total grid cell numbers could increase with Re2.4. Time step requirement reduces in

the same manner. The recent LES strategies prefer to model near wall region by using

wall-functions, solving different equations, or averaging the variables [87]. Besides

these, the Reynolds-averaged N-S (RANS) approach models all scales of eddies in

the entire flow domain by relating the Reynolds stresses with mean velocity field and

the “eddy viscosity”. This is a commonly used method for the Computational Fluid

Dynamics (CFD) applications because it cuts the computational cost down to feasi-

ble levels for all types of flow problems including the industrial ones. However, the

averaging procedure brings out new unknowns namely the Reynolds stresses, caus-

ing a closure problem. Thus, an additional model equation(s) must be solved. These

model equations are mostly good at estimating attached boundary layers. However,

they miss the instantaneous information necessary for acoustical and vibrational prob-

lems. Although Unsteady RANS (URANS) may reveal an unsteady solution, it fails

at largely separated zones as well as free shear flows. The reason is that modeling all

eddies causes redundant Reynolds stresses which damp the instabilities, and thereby

delaying the formation of 3-D structures in flow fields.

Detached-Eddy Simulation (DES) [108] was initially proposed to simulate massively
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separated flow fields observed around aircraft and automobiles while overcoming the

drawbacks of both URANS and LES. It is a kind of hybrid RANS/LES method, aim-

ing to model the attached boundary layers and then to resolve the highly separated

field. DES is based on the RANS equations. It models eddy viscosity in the boundary

layer as RANS does, and switches to an LES-like mode at the outer boundary layer

regions. The switching is done through the length scale of the model equation. It

is kept the same when the RANS mode is active. On the other hand, the maximum

dimension of a grid cell (∆max) is used as a subgrid length scale in the LES mode.

DES takes the minimum of them and solves the model equation(s) accordingly. Stud-

ies in the last two decades have shown that DES can supply high accuracy with low

computational costs in wall-bounded, highly separated aerodynamic flow problems.

Since large eddies dominate these separated regions, the RANS resolution suffices to

obtain accurate aerodynamic results [109]. However, its success is limited to only

highly detached flows due to the unnatural switching mechanism, revealing two ma-

jor defects. One of them is known as the grey-area problem, the most accentuated

one in literature, and the other is regarding a delay of possible instabilities inside the

shear layers.

DES makes the RANS/LES switching sharply, which is not natural. There is no en-

ergy transfer mechanism between the resolved and the modeled scales. In fact, there

is no such discontinuity in eddy viscosity levels. It means there is a region around

the boundary layer edge where the DES mode should not be LES or RANS alone.

This region is called the grey-area [108, 109], which restricts DES implementations.

Several modifications to DES have been proposed to cure the grey-area problem. For

example, DES may switch to the LES mode earlier due to “ambiguous grid” cases

(i.e. grids designed improperly). In this type of grids there are some cells, inside

the boundary layer, having smaller subgrid length than the model one. They lead to

an early switch to LES in the RANS region where the resolution is not sufficient to

resolve eddies. As a consequence, DES develops less eddy viscosity, known as the

Modeled-Stress Depletion (MSD) problem. In addition, low viscosity might induce

earlier separation than expected (the Grid-Induced Separation (GIS) problem). This

pitfall was overcome by Spalart et al. in their approach called Delayed DES (DDES)

[110]. It keeps the RANS mode inside the attached boundary layer through a bound-
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ary layer shielding function used in the length scale switching. This effort works well

in many aerodynamic flow problems and is the most commonly used method among

all the DES types. Another approach to avoid the grey-area problem is to divide

the grid domain into zones such that the user defines the RANS zone and the LES

zone on the grid. This method is called Zonal DES (ZDES) [25]. Despite its accu-

racy [25, 26], a zonal approach is difficult to implement in complex flow problems.

Besides, another group of researchers brings a different approach that adapted the

Wall-Modeled LES (WMLES) treatment [88] into DES [83, 105, 26]. In theory, the

modeling mode is activated in only a much thinner region of a boundary layer, and the

rest of the domain is resolved. The switching basically occurs very close to the wall

(y+ ≈ 15 − 20). DES type WMLES methods seem to solve the grey-area problem;

however, it brings up another issue: the Log Layer Mismatch (LLM) problem. WM-

LES reveals two log layer solutions in the boundary layer; a RANS solution (from the

inner layer) and an LES one (from the outer layer). The channel flow studies showed

that the intercept constants of the two log layer solutions do not match, which causes

an underprediction of the skin friction coefficient. A recent modification to solve the

LLM issue is Improved DDES (IDDES) [105]. This method combines DDES and

WMLES by an empirical blending function so that while in the cases without inflow

turbulent content it treats as DDES, in others the length scale reduces to the WMLES

one, resulting in much more turbulence resolution. In the WMLES mode, it uses an

elevating function to prevent less modeled viscosity due to the log layer mismatch-

ing. In this respect, IDDES cures some certain weaknesses of DES regarding the

uncertain switching and shows successful results in different flow problems where

DDES and WMLES activations differ [105]. Nevertheless, increase in the computa-

tional cost due to partly-resolved eddies inside the boundary layer should be taken

into consideration.

Apart from the enhancements to the DES switching, the selection of the subgrid

length scale has been discussed in literature. Most of the DES applications take the

standard subgrid length scale (∆max = max(∆x, ∆y, ∆z)) in the LES mode whereas

some approaches prefer to use the cube root of the cell volume (∆vol = 3
√
∆x∆y∆z)

[7, 25]. Since the grid cells outside the boundary layer are intended to be nearly

cubical, both definitions do not make any difference there. However, computational
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domains may have anisotropic grid cells just outside the boundary layers. In addition,

some DES applications (when properly adjusted) may resemble WMLES, as already

mentioned, which means LES mode is activated inside the boundary layer where

isotropy of the cells may not be preserved. In these anisotropic grids, the above-

mentioned subgrid length scale selections (∆max and ∆vol) become distinct, and this

may pose a problem. ∆vol approach may be too harsh for eddies of smaller dimen-

sions to survive [109]. Moreover, it may cause numerical instabilities because of too

small eddy viscosities. On the other hand, ∆max is absolutely a more conservative

and a safer choice. This is preferred in classical DES and DDES applications and it

provides a good RANS functioning. But this time, it may suppress the flow instabili-

ties that are expected to generate eddies. This is the second issue of DES drawbacks,

as mentioned previously. In brief, both subgrid length scale selections are not ideal.

There have been some progress towards resolving this issue. In IDDES, a modified

subgrid length scale is used to avoid these problems in case of anisotropic grid cells.

It roughly combines the wall distance and the grid cell dimensions in both DDES and

WMLES modes. But, it does not get any information from the turbulent flow solution

as well as not address the delay of instability problem. Another important improve-

ment, made by Chauvet et al., is taking the subgrid length scale as∆ω, which depends

on the vorticity orientation of the flow [16]. This flow-dependent length scale attempt

tries to defeat slow turbulent development. However, ∆ω is mostly used in the zonal

approaches [16, 26]. A more recent modification, a shear-layer-adapted length scale

(∆SLA), was introduced by Shur et al. [106]. This new definition makes use of a

vorticity-aligned grid dimension definition and a curbing mechanism for eddy viscos-

ity in 2-D shear layers so that it accelerates the transition to the LES mode in shear

layers. The resulting length scale serves as a reduction to the vorticity-oriented length

scale up to one order in regions where the K-H instability waves are expected to oc-

cur, thus leaving ground to transition to resolved (LES) contents. Additionally, for

wall-bounded flows, this reduction is inactivated to keep the boundary layer shielded

as done in the standard DDES with ∆max. This version has proven to be success-

ful not only in free shear layers, but also in wall-bounded flows, jet flow, decaying

turbulence, and backward-facing step flow [106].
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1.1.2 Boundary Layer Transition

Boundary layer transition phenomena refers to a process of transition from laminar

flow to fully turbulent flow. The transition process is complicated because many pos-

sible disturbances in flow setting may trigger the transition; in fact, flow instabilities

occurred later on may also differ. Freestream turbulence levels, surface roughness,

pressure gradients, compressibility (Mach number) effects, heat transfer, and suc-

tion/blowing air are some of the common examples to these disturbances. Boundary

layer transition problems are categorized regarding their instability mechanisms. One

of them is called natural transition (see Figure 1.1). Here, the completely attached

boundary layer is triggered under very low turbulence intensity and the process takes

place slowly. First, the disturbances start to grow inside the boundary layer as a re-

ceptivity stage. Then, the Tollmien-Schlichting (T-S) waves emanate. These 2-D

waves are known as the primary instability. From the receptivity stage to the end of

the primary instability, the disturbances interact to each other linearly; thus, the cor-

responding region is called the linear region. After the disturbances reach a certain

amplitude (if they are not damped out), the secondary instability is observed. The

waves are not 2-D anymore as spanwise vortices form in addition to the streamwise

ones. This yields nonlinear interactions between the waves, and therefore, a nonlin-

ear region starts. Nonlinearities and high disturbance growth rates make the process

go into the final stage, called breakdown stage, where the instability waves break

into the smaller ones. As a result, the flow becomes fully turbulent. In the case of

higher disturbances, commonly seen in the real-world applications, the primary in-

stability stage of the natural transition is bypassed. These situations are called bypass

transition. In addition, there is a separation-induced transition, where laminar flow

is separated first under an adverse pressure gradient or any geometrical induction,

then the transition process occurs in the separated shear layer, and finally the flow

becomes fully turbulent, which may reattach to the surface. Since transition is initi-

ated in free shear layers, 2-D Kelvin-Helmholtz (K-H) waves are seen as a primary

instability. This mechanism is inviscid as it happens above the surface. Although

the T-S waves still exist, the K-H instability, which has a higher amplification rate,

is the dominant one. These 2-D waves quickly roll along the spanwise direction so

that a three-dimensionality takes place as a secondary instability. After that, they
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breakdown to the smaller scales and the separated flow reattaches as turbulent flow,

resulting in a separation bubble. For high turbulence intensities (> 1.5%) the separa-

tion bubble length is reduced and the receptivity stage is bypassed. This means that a

bypass situation can be also seen in the separation-induced transition; however, in this

case the primary (K-H) instability is not bypassed [128]. As the turbulence intensity

continues to increase (> 5.5%) flow goes into turbulent regime without separation so

that the K-H instability does not appear 1.

Figure 1.1: Schematic of the natural transition process showing top and side views of

a boundary layer along a flatplate [124]

Laminar-to-turbulent transition influences the boundary layer quantities, which di-

rectly results in an alteration of aerodynamic performances (especially the maximum

lift coefficient prediction). Flow problems with low Re that are observed particu-

larly in low-speed wings, rotor blades, high-lift devices, and wind turbine blades

are exposed to transition effects excessively that is why both industry and academic

communities have been working on this topic over many years. Earlier studies were

mostly based on a linearized theory and measurements which investigated the linear

1 It should be noted that in the case of a geometrically induced separation, the K-H instability is bypassed
under a high turbulence intensity as in the attached boundary layer transition.
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region of the transition. After the nonlinear mechanism with 3-D breakdown was first

discovered by Klebanoff et al. [52], the natural transition process could be understood

as a whole. For a long time, the linear stability theory [71] had been extended and

widely used for transition estimations. However, this theory had ability to handle only

the natural transition. This is why the bypass mechanism had been discovered much

later (through measurements of Morkovin [78]). For the reason that the limitations

of measurement techniques made the investigation of the near-surface flow field dif-

ficult, detailed analysis of transition (including bypass and separation-induced cases)

was conducted by DNS [53, 68, 47, 94] and LES studies [89, 129, 64]. For practical

applications, on the other hand, transition models incorporated into RANS simula-

tions have been proposed because CFD based RANS approaches mostly assume the

whole flow field as fully turbulent. The eN method, which relates the amplification

rate to the transition onset based on the stability theory, is one of them [11, 114]. The

input variables required for the method are provided by a different boundary layer

solver that is coupled with a RANS code. Then, the output is used for the RANS

model. This incorporation procedure is complicated, and the eN method is limited to

certain type of problems [28]. Use of low Re transition models [125, 60] is another

approach. It basically damps the turbulence in viscous sublayer through a damp-

ing function; however, the transition capability is controversial as the physical back-

grounds of viscous sublayer and the transition mechanism are completely different.

Reformulating the function as the flow conditions change is not simple either.

The most common transition modeling approaches are based upon experimental cor-

relations. Here, the freestream turbulence intensity and the momentum thickness

Reynolds number required for transition (Reθt) are related (as in [1]). The main idea

is that when the calculated momentum thickness Reynolds number (Reθ) is exceeded

Reθt, turbulence (either any term of the turbulence model equation or the eddy vis-

cosity itself) is included in the flow equations; otherwise, it is suppressed. Suzen

and Huang [115] developed an intermittency transport equation in order to activate

turbulence through an intermittency function (γ) that is zero in the laminar flow and

one when the transition criteria (Reθ > Reθt) is satisfied. Despite its accuracy, the

computation of Reθ is hard to implement in modern CFD codes (especially the paral-

lel ones). The reason is that this is an integration operation, which requires not only
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a search algorithm to find the boundary layer edge but also a nonlocal cell informa-

tion at each step. An efficient nonlocal correlation-based transition model has been

improved by Kozulovic et al. for unstructured parallel codes and they showed that

only 7% computation load is added in steady state simulations [56]. On the other

hand, Menter et al. came with a novel idea that checks the transition criteria at each

cell by using the vorticity Reynolds number (Reν) which is proportional to Reθ and

obtained using only the local values [76]. Hereby, an implementation of the model

into any solver becomes easier. This widely used model is called γ − Reθ because it

solves an additional transport equation for Reθ. By doing this, nonlocal information

coming from the turbulent intensity is eliminated. Then, one-equation local transi-

tion model to be solved for only γ function has been proposed and it was shown that

use of nonlocal Reθ values can provide results in similar accuracy to the previous

one [77]. These correlation-based models were mainly developed for k − ω turbu-

lence equations where the production and destruction terms of the transport equation

for turbulent kinetic energy are multiplied with the intermittency function. Medida

and Baeder [75] modified the two-equation transition model to be coupled with the

Spalart-Allmaras (S-A) turbulence equation in which an eddy viscosity related term

is solved (ν̃). They also demonstrated that starting the simulation with ν̃/ν∞ 6 10−8

makes the upstream flow totally laminar before the transition onset which is essen-

tial for transitional problems. Lately, Baş and Çakmakçıoğlu have introduced a zero-

equation correlation-based model that obtains the intermittency function algebraically

(without any transport equation) [9]. This model (called B-C) has been introduced for

the S-A one-equation model. The B-C model directly multiplies the production term

of the S-A equation with γ that is computed via two terms: one is used to trigger tran-

sition as critical Reθ is exceeded (through Reν as in the γ −Reθ model) whereas the

other term allows γ, generated by the first term, into the boundary layer. The idea is

to benefit from the convection and diffusion features of the already solved turbulence

model instead of solving extra equations. This makes the model very cheap. They

showed that in steady-state simulations the B-C model can reveal quite comparable

results to those obtained by other transition models with transport equations.

In the last decade, researchers have taken interest in transitional DES approaches. Ini-

tial attempts have blended classical DES based on the k−ω turbulence equation with
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the γ − Reθ transition model [107]. Over the last few years, enhanced DES versions

(such as DDES, IDDES, and DDES with WALE subgrid scale) using the S-A or k−ω
turbulence closure have been coupled with different correlation-based models (B-C

model, γ model, or a two transport equation model based on an envelope amplifica-

tion factor) [19, 122, 24]. Most of them implemented the intermittency function in

the production and destruction terms of the turbulence equation as usual. On the other

hand, Coder et al. [19] used the function in the trip term of the S-A equation (ft2) in

order not to corrupt the numerical stability of the fully turbulent version as well as in

the length scale definition of DDES to ensure the RANS mode in the attached laminar

boundary layers.

It should be emphasized that the correlation-based models do not intend to represent

the process of transition mechanisms. The physics behind the process are ensured by

the empirical correlations. Hence, as long as the correct correlations are provided, the

models can be used for all transition types. The use of intermittency function taking a

value between 0 and 1 is capable of capturing the bypass transition. However, studies

involving laminar separation bubbles showed that this concept estimates the reattach-

ment point at too far downstream [77]. To compensate this, a separation intermittency

function, which can be greater than 1 when the laminar flow separates, is combined

with γ. This provides a large production of turbulence so that an early reattachment

is acquired.

1.1.3 Cavity Flow

Cavity flow is observed around the cavities in aerodynamic structures, which are ex-

posed to intense turbulent and acoustic fields at relatively high speeds. It causes

noise, vibration, fatigue, and drag force, which should be avoided for aerodynamic

and structural efficiency. Two important examples to such cavities include those

found in landing gear housings in commercial airplanes and weapon bays on mili-

tary aircraft [30, 31] (see Figure 1.2). During landing, extension of the landing gear

forms a resonant cavity creating noise almost at the same level as the propulsion unit

[5, 39, 65]. On the other hand, the effect of cavity flow occurred in military aircraft is

more harmful. Rockets, bombs and similar stores are carried inside the fuselage both
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for low observability and preventing performance degradation. The problem appears

when these stores are dropped, such that airflow immediately rushes in and over the

arising cavity. This in turn causes highly turbulent flow which causes noise and vi-

brational loads [65, 74, 95]. Level of these loads on the store might even exhibit an

entirely unsafe operation due to a possible crash of it to the fuselage [98, 112]. In

addition, vortices created by all these cavities could increase the induced drag upto

250% [95]. Apart from the aviation industry, cavity flow can be observed in auto-

mobiles. For instance, open sunroof and side windows create noise and decrease the

aerodynamic performance [23, 35].

(a) Landing gear housings during land-

ing [100]

(b) Weapon bay in a F-22 fighter during

store separation [33]

Figure 1.2: Examples of cavities in aerodynamic structures

Cavity flows contain a wide range of complex flow phenomena, particularly at tran-

sonic and supersonic flow velocities. These are separation, flow instability, 3-D ef-

fects, unsteadiness, secondary flows (corner flows), and reattachment [65, 95, 104].

It is not straightforward to analyze these flow fields by analytical and numerical ap-

proaches. Hence, at first, experiments were conducted to find out the fundamental

behaviors of cavity flows [57, 96, 97]. Rossiter is one of the pioneers who observed

that a depth and a length of a cavity (see Figure 1.3) directly influence its flow char-

acteristics. His experiments showed that as the cavity becomes deeper, waves having

narrow-band frequencies occur, and vice versa. Then, he developed a semi-empirical

formula that calculates the frequency of highly-intense and narrow-band tones. These

tones are called Rossiter modes. This formula (valid for Mach numbers between 0.4

and 1.4) and its enhancements (valid for all Mach regimes) [44] are still being used

11



to estimate the Rossiter modes (see Appendix A for the original equation).

Figure 1.3: Flow over a typical cavity geometry

Today, it is well-known that the ratio of the cavity length to depth directly influences

the unsteady flow character, from length scales to frequency scales of the turbulent

structures. According to this ratio, cavity flow types are classified as:

• Open (deep) cavity flow: L/D ≤ 10

• Closed (shallow) cavity flow: L/D > 13

• Transitional cavity flow: 10 < L/D ≤ 13

where L represents the cavity length (streamwise length) and D represents the cavity

depth (normalwise length). On the other hand, the cavity width (W , spanwise length)

affects the boundaries of L/D at subsonic and transonic velocities mostly [90]. The

above boundaries are valid for W/D = 1. As W/D increases, the transition region

expands to 9− 14. Dimensions of a typical cavity geometry is shown in Figure 1.3.

Presented in Figure 1.4 is a schematic of the cavity flow where solid lines represent

the open cavity flow, and dashed lines represent the closed cavity flow. In closed and

transitional cavities, flow separating from the upstream edge strikes the ceiling of the

cavity, and then gets separated and diverted to the downstream edge. This causes a

significant variation in pressure along the mouth of the cavity. Low pressure around

the upstream edge and high pressure around the opposing edge yield an unwanted

pitching moment on the deployed missile or bomb, putting the store separation in

danger. This is why the use of closed and transitional cavity geometries are mostly

avoided in military aircraft. Instead, open cavities, where the separated flow strikes
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the downstream edge of the aft wall directly, are preferred thanks to an occurrence of

nearly uniform pressure distribution. In this case, however, impingement of the shear

layer leads to noise as well as vibration. Moreover, the upstream propagating acoustic

waves increase the instability of the shear layer forming a feedback mechanism, as

shown in Figure 1.5, and thereby complicating the problem. Therefore, modifications

to the aft wall are more effective to suppress this mechanism [95]. Supersonic flow

regime increases the instability as well. In this case, oblique shock happens at the

downstream edge. Then, boundary layer thickens and shear layer instability starts

earlier. As a consequence, sound levels of high frequency waves become higher than

those in case of subsonic flows [69]. A typical open cavity noise spectrum is shown

in Figure 1.6. In this spectrum, broadband noise is composed by the shear layer

separation from the incoming turbulent boundary layer whereas intense and narrow-

band discrete tones, which are the Rossiter modes, are generated by the feedback

mechanism [97, 95, 65].

Figure 1.4: Schematic of the cavity flow (solid line: open cavity, dashed line: closed

cavity) [66]

There are still unclear flow behaviors in cavity problems. Although the traditional

signal processing methods have shown that the Rossiter (pressure) modes have con-

stant magnitudes in time, some experiments revealed a change of dominant modes in

time in case of open cavity flows [50]. This is called as mode-switching. Accord-

ing to the studies, energies of modes exchange between each other and this results

in a shifting of the dominant ones. However, mode-switching phenomena is still a

question whether it occurs in all cavity problems.
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Figure 1.5: Acoustic feedback mechanism occurring in the open cavity flow [65]

Figure 1.6: Broadband noise spectrum with Rossiter modes inside an open cavity [65]

In early experiments, use of equipments such as pitot-tubes or pressure transducers,

that were in contact with unsteady turbulent flow field, had influenced the flow charac-

teristics. Accordingly, early cavity experiments were conducted by Shadowgraph or

Schlieren Photography techniques, which do not interfere with the flow [15, 57, 97].

In these results, dominant acoustic tones with narrow-band frequency were observed,

and they were called Rossiter modes. However, since it was difficult to increase the

spatial resolution in these techniques, broadband frequency spectrum could not be ob-

tained. Later on, modern experimental equipments such as Particle Image Velocime-

try (PIV) and Laser Doppler Velocimetry (LDV) were developed and high resolution

observations in cavity flows could be made [42, 41]. Nevertheless, these equipments

are expensive, and they have low resolution in time. Increasing spatial and tempo-

ral resolutions at the same time is challenging; limited to flow problems with Re of
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order 105 while most cavity flows at relatively high speeds have at least Re of order

106. Therefore, experimental approaches are not adequate and effective to analyze

this kind of problem with its all aspects.

Numerical studies, in recent years, have shown that CFD has rhe capability to increase

the flow field resolution in both space and time. The numerical algorithms developed

have lowered both the grid cell and iteration number requirements; thereby, steady

problems with high Re could be resolved accurately. However, resolving unsteady

turbulent flows is still quite a challenge as Re increases. Cavity problems, at first,

was treated as 2-D flow. Even though the fundamental behavior of cavity flow, shear

layer development, is 2-D, the vortices created at downstream and upstream edges

make the flow field 3-D [92]. This is why 3-D solvers obtain results closer to the

measurements than 2-D ones [65].

Considering the requirements of small time steps and fine grid domains, use of DNS

is not realistic for cavity flows even with modern computing resources. In literature,

there are some DNS studies that analyze flows with low Re and/or 2-D problems [20,

37, 43, 99]. These studies generally indicate the noise generation mechanism of cavity

flows. URANS applications showed that it is not capable of resolving broadband

spectrum of cavity problems [2, 81, 43, 38, 113]. It could only capture the main

acoustic tones with low frequencies because of its modeling approach in the whole

domain. Although high frequency waves have low energies, they cause noise as well

as fatigue in cavity structures [2]. This is why prediction of the whole spectrum is

essential. One of the reasons of failure is that modeling of all scales leads to an

overproduction of eddy viscosities, especially near the wall corners. Another reason

is that URANS could not diffuse the energies of fluctuations in the lateral direction

accurately. Nevertheless, URANS gives reasonable results in those problems in which

the cavity doors are 90◦ open since the doors restrict the three-dimensionality of the

flow [81]. On the other side, LES studies provide better prediction of broadband

spectrum than URANS because of their resolving most of the waves [6, 37, 59, 63,

81, 62, 93]. However, LES applications are excessively expensive due to high Re

and presence of 5 walls inside the cavity domain. In addition, LES based on a scale

invariance approach (Smagorinsky subgrid model) encounters a difficulty to model

subgrid (filtered) scales near the aft corner regions where high vortical structures with
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relatively low Re exist [37, 59, 63]. This causes redundant contribution of subgrid

eddies to resolved (large) ones, resulting in increase of the narrow-band acoustic tones

[6, 59, 63]. Instead, Improved LES (ILES) and Monotone Integrated LES (MILES)

techniques, which add a filtered scales effect through special numerical algorithms,

provide more plausible results [62].

Studies using DES have shown quite good agreement with experimental results, par-

ticularly in obtaining the shape of the sound level spectrum [43, 2, 81, 82, 86, 85,

51, 69]. These problems include subsonic and supersonic flows over cavities with

and without weapons. The corresponding results can reach accuracy levels similar

to those yielded by LES, but on much coarser grids due to RANS resolutions near

the walls. It is also found that DES is superior to RANS for all tonal modes as well

as the broadband noise, as expected. Furthermore, some recent flow control tech-

niques aiming to reduce the noise and vibration levels have been examined via DES

approaches [81, 51]. Apart from the weapon bays, cavity flows caused by landing

gears have successfully being studied using DES [61]. However, an overprediction

in the Overall Sound Pressure Levels (OASPL) along the cavity ceiling is reported

in the studies with standard DES approaches although the spectrum trend is perfectly

captured. In the Sound Pressure Levels (SPL), the frequencies of the Rossiter modes

and the broadband noise are estimated well, but the magnitudes of the modes are

overpredicted while the high-frequency content is underpredicted [43, 2]. These mis-

predictions are in the range of 5 − 10 dB. The mismatches increases in the Power

Spectral Density (PSD) analysis. Those are mainly related to the uncertain transition

between the RANS and the LES regions. There are some enhancements to DES,

over the last years, in an aim to improve and extend its capabilities (see Section

1.1.1 for details); however, its implementations in cavity flows are seldom. Luo et

al. have performed IDDES over an open cavity for transonic and supersonic flows

and improved the velocity and turbulent kinetic energy profiles around the rear wall

compared to DES [69, 70]. Around the front wall where the shear layer instabilities

dominate, the fluctuations could not be predicted as such. They commented that the

slow transition from the RANS mode to the LES mode might be the reason. Along

the cavity ceiling, the OASPL results as well as the magnitudes of the Rossiter modes

perfectly matches with the measurements. The magnitudes in higher frequencies are

16



overpredicted though. Additionally, the narrow-band frequencies reveal upto 30 Hz

deviations. As a final remark, DES simulations based on different turbulence closure

models obtain very similar acoustic results for cavity flows [2] as the flow field is

dominated by the large eddies inherently.

1.2 Motivation of the Thesis

Past knowledge on complex flow problems such as cavity noise and boundary layer

transition was mostly based on experimental studies. However, probes used to mea-

sure flow quantities were in direct contact and hence in interaction with the flow

itself. Instead of such conventional probes, modern techniques such as PIV and LDV

are often used to measure quantities of unsteady flow phenomena, making more accu-

rate measurements possible. These techniques are quite expensive though, and they

limit Re of interest. On the other hand, CFD methods are favored more today due

to tremendous improvements achieved in computer power and numerical algorithms.

They also enable resolution increments both in time and space as long as sufficient

computational resources are provided. Commercial CFD softwares are commonly

used in industrial establishments due to the availability of wide range of physical and

algorithmic models. However, the algorithmic models are usually limited to conven-

tional low-order methods, which are not necessarily the best for resolving unsteady

flow field and acoustic environment. On the other hand, on a given computational

mesh high-order methods provide better resolution of the scales, and this fact di-

rects many research institutions and universities to develop their own high-order flow

solvers. One other important point is that commercial software updates are not as

fast as the progress made in turbulence modeling. In-house research codes are better

platforms to incorporate such fast developments. There is a high-order aeroacoustic

in-house solver recently developed in Aerospace Engineering Department at Middle

East Technical University, and named as METUDES [14, 12, 126]. This is a par-

allel code written in Fortran 95 and based on the finite volume approach. It solves

the N-S equations using the algorithms which preserve the dispersion and dissipation

characteristics of acoustic waves. The turbulence closure is obtained by solving the

S-A one-equation model. The eddy modeling and resolving issues are managed by
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the DES approach since DES reduces the necessity of a very fine grid in high Re

wall-bounded flows while keeping the accuracy of the results high. This thesis aims

to enhance the METUDES flow solver towards accurately capturing turbulent and

acoustic flow fields around the cavities in aerodynamic structures as well as transi-

tional flow over the wing/blade profiles. The enhancement is intended to be realized

mostly using a hybrid scheme of DES because the switching between the RANS and

the LES modes restricts the application of DES. As already discussed, the problems

mentioned are out of the scope of DES. Despite its improvements over the last years,

their implementations in the cavity as well as the transitional flow cases are very lim-

ited and recent. Besides, an efficient DES method that captures these kinds of flow

physics with minimum additional computational effort (compared to the original ver-

sion) has not become available yet. These points form the motivation of the thesis.

1.3 Proposed Methods and Models

1.3.1 Cavity Flow Part

In this thesis, open cavity flow is studied since open cavities are important in the

design processes of weapon bays in military aircraft in order to ensure a safe store

separation. The M219 cavity model has tremendous experimental and numerical val-

idation data in literature; therefore, this model is selected to simulate. The geometric

dimensions are an L/D of 5 and a W/D of 1. As mentioned, it causes a tonal noise

with broadband spectrum. Open cavity noise is dominated by two main mechanisms:

shear layer instability starting from the front corner and the impingement of this shear

layer on the aft wall. DES requires an immediate activation of the LES region after

separation of the incoming flow because 2-D K-H instability waves are highly unsta-

ble such that 3-D breakdown happens quickly. In addition, the eddy resolution level

should be increased very near the reattachment surface, which represents the region

around the aft wall in open cavities. In this respect, following methods are proposed:

• The SLA subgrid length scale is used to provide rapid transition from the RANS

mode to the LES one when the K-H instability is detected.
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• The IDDES method is selected for simulations so that an LES content could be

increased by the WMLES approach, stepping in the impingement zone while

the rest is performed by DDES, ensuring the RANS modeling inside the at-

tached boundary layers.

• METUDES has already an SLA option, which can be used with DES and

DDES. During this study, IDDES is implemented, and the SLA length scale

is incorporated into IDDES.

On the other hand, METUDES is a single-block solver on structured mesh domains.

Although cavity structures are generally simple rectangular prisms, multiblock do-

mains are required to generate a mesh including both the outer and the inner flow

fields. Hence,

• a multiblock structured grid topology with one-to-one interface communication

is implemented in the solver.

In addition, METUDES has been used for flow over a blade profile problems thus far

involving only 1 viscous wall boundary. In the cavity problem, there are 5 walls just

inside the cavity where wall boundary conditions are applied in all three directions.

Those increase the complexity of the flow field which is prone to worsen the con-

vergence and stability behavior as it changes the stiffness characteristic of the flow

equations. As a result, the convergence acceleration techniques already implemented

in the dual-time stepping algorithm of the solver are improved as follows:

• The residual smoothing algorithm used for the N-S equations is modified and a

residual smoothing for the turbulent model equation is added.

• Dissipation for shock capturing while solving the turbulent equation is en-

hanced with the TVD (Total Variation Diminishing) shock sensor.

• A biased artificial dissipation is added to be activated in grid cells near the solid

walls.

• A scaling factor is added to the artificial dissipation of the turbulent equation

for high aspect-ratio cells which exist along the shear layer at the cavity mouth.
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1.3.2 Transitional Flow Part

METUDES was developed for wind turbine blade simulations, but it treats the entire

flow field as fully turbulent. It solves a modified version of the S-A equation by

Crivellini et al. [21] which gives an opportunity to start the simulations with almost

zero eddy viscosity. As discussed in Section 1.1.2, laminar-to-turbulent transition is

taking essential part of the aerodynamic predictions, particularly the maximum lift

coefficient for the blades. Thus, performing transitional DES is the other target of the

thesis. Wind turbine blades are thick in which a laminar separation and the bypass

transition might be observed at the same flow condition. Hence, it is intended to

capture both the bypass and the separation-induced transitions. On the other hand,

the solver already solves 6 partial differential equations together with the S-A model

equation. Moreover, computation of the high-order low-dissipation low-dispersion

schemes brings an additional cost. This leads to an idea that the fully turbulent RANS

equations should be incorporated with a zero-equation transition model. Lastly, the

wake resolution is another important issue in this kind of problems for estimating the

aerodynamic coefficients. In the light of all the above information, following methods

are proposed:

• For all types of transition, in order to predict the exact transition onset location,

the modified version of the B-C (BCM) algebraic correlation-based model [10]

is implemented in the solver.

• For the separation-induced transition, the SLA length scale is used to detect the

K-H instability observed in laminar separation bubbles, and then to switch to

the resolution mode rapidly so that the 3-D content can be resolved.

• A new triggering term together with some modifications are proposed to com-

bine the SLA length scale and the BCM model through DDES approach.

• The initial eddy viscosity value is set almost to zero, thanks to the modified S-A

equation.

• A Chimera type overset grid technique compatible with the multiblock topol-

ogy is implemented. This provides a creation of a sufficiently fine wake domain

while keeping the grid cell number in reasonable levels. As the solver is based

20



on high-order schemes, a high-order interpolation proposed by Lee et al. [67]

is used in the overset method.

1.4 The Outline of the Thesis

The rest of the thesis proceeds with a methodology chapter that includes the intro-

duction of the flow solver as well as the implementations of the new methods. Next,

a chapter of simulation setups describing the grid generation strategy, boundary con-

ditions, initial conditions, and time step selection is presented. The thesis continues

with some simulations in order to validate the code implementations. After that,

the results of transitional and cavity flow simulations are shown in comparison to

available experimental and numerical data from literature. This thesis presentation is

finalized by conclusions and future suggestions.
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CHAPTER 2

METHODOLOGY

All numerical simulations conducted in this thesis are performed by the METUDES

flow solver. In this regard, this chapter starts with a brief introduction to the solver in-

cluding the flow equations, numerical approaches, and the structure of the code. Then,

it continues with a detailed description and formulation of the methods which were

not available in METUDES but required for the corresponding simulations, thereby

being implemented in the solver.

2.1 METUDES - Flow Solver

METUDES is an in-house flow solver which has been developed in the Department

of Aerospace Engineering at the Middle East Technical University. The development

of the solver was initiated from scratch [12] originally for wind turbine blade noise

predictions under a TÜBİTAK 1001 project grant no. 112M106 [14]. This project re-

sulted in one MSc thesis [126], one PhD thesis [12], and thereby a few early versions

of METUDES. The development of this solver was continued after the completion of

the project with some added capabilities. The features of the version leading to this

thesis are briefly described first in the following sections:

2.1.1 Favre-Averaged Navier-Stokes Equations

METUDES solves 3-D, time-dependent, compressible, Favre-averaged Navier-Stokes

equations, together with a modified version of Spalart-Allmaras turbulence equation

simultaneously. The Favre averaging process [32] is a mathematical simplification of
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the RANS equations for compressible flows. The Favre averaging of any instanta-

neous quantity (let say φ) is obtained as

φ̃ =
ρφ

ρ̄
=

1

T

∫ t+T
t

ρ(xi, τ)φ(xi, τ)dτ

1

T

∫ t+T
t

ρ(xi, τ)dτ
(2.1)

where ρ is density, xi denotes the space vector, t denotes time, and τ denotes a

dummy integration variable. Here, tilde and overbar represent the Favre averaging

and Reynolds averaging, respectively. The Favre averaging simply computes the

density-weighted averaged of φ using the Reynolds averaging process that is real-

ized over a time interval, T . In this way, the additional correlation terms due to the

density fluctuation are eliminated.

The Favre-averaged Navier-Stokes (FANS) equations are composed of continuity,

momentum, and energy equations, which can be written using the Einstein index

notation as follows,

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0,

∂ρ̄ũi
∂t

+
∂

∂xj
(ρ̄ũjũi) = − ∂p̄

∂xi
+
∂τ̄ji
∂xj

,

∂ρ̄Ẽ

∂t
+

∂

∂xi

[
(ρ̄Ẽ + p̄)ũi

]
=

∂

∂xi
(τ̄ijũj − q̄i)

(2.2)

where ui is the velocity vector, and p is pressure. E represents the total energy and

obtained as Ẽ = p̄/ [ρ̄(γ − 1)] + ũ2i /2 where γ is the heat capacity ratio. After the

Boussinesq hypothesis is applied, the Reynolds stress, emanating from the averaging

process, is governed by an eddy viscosity concept; therefore, the shear stress (τij) and

the heat flux (qi) terms are defined as

τ̄ij = (µ+ µt)

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
δij
∂ũj
∂xj

]
q̄i = −

(
µ

Pr(γ − 1)
+

µt
Prt(γ − 1)

)
∂T̃

∂xi

(2.3)
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where µ and µt are the molecular dynamic viscosity and the eddy viscosity, whereas

Pr and Prt are Prandtl and turbulent Prandtl numbers, respectively. δij represents the

Kronecker delta, and T denotes temperature. One may notice that density and pres-

sure terms in the equations are not Favre-averaged; they are just Reynolds-averaged.

In the FANS equations, there are 7 unknowns: ρ, ui (3 components), p, T , and µt.

In order to solve them, at least 7 equations are required: 5 of them are the FANS

equations, and 1 of them comes from the ideal gas law, which is

p̄ = ρ̄RT̃ (2.4)

whereR is the gas constant. The remaining equation for closure is the S-A turbulence

model equation, which solves µt.

2.1.2 Spalart-Allmaras One-Equation Model

A modified version of the S-A turbulence model equation proposed by Crivellini et al.

[22] is used in METUDES. This is a transport equation solving a turbulence-related

variable, ν̂t, and the equation may be written as

∂ν̂t
∂t

+ ũi
∂ν̂t
∂xi

= Ψ + Π− Φ (2.5)

where Ψ,Π, and Φ are the source terms and denote diffusion, production, and destruc-

tion, respectively. The turbulence-related variable is used to compute the kinematic

eddy viscosity, νt, and then µt as follows,

νt = fv1 max(ν̂t, 0),

µt = ρνt
(2.6)

where fv1 = χ3/(χ3 + c3v1), and χ = ν̂t/ν. ν is the kinematic molecular viscosity,

whereas cv1 is a constant. Since the solver does not enforce a laminar suppression
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with a tripping mechanism, the trip term, ft2, in the original equation is taken as zero.

Thus, the right hand side terms without ft2 are calculated as

Ψ =
∂

∂xi

(
ν + max(ν̂t, 0)

σ

∂ν̂t
∂xi

)
, (2.7a)

Π− Φ =


0, ν̂t < 0( cb1
κ2r
− cw1fw

)( ν̂t
dw

)2

+
cb2
σ

∣∣∣∣∂ν̂t∂xi

∣∣∣∣2 , ν̂t ≥ 0
(2.7b)

where

r =

rmax, r∗ < 0

min (r∗, rmax) , r∗ ≥ 0
, (2.8a)

r∗ =

(
Sκ2d2w
ν̂t

+ fv2

)−1
. (2.8b)

S denotes the vorticity magnitude which is computed as S =

∣∣∣∣εijk ∂ũk∂xj

∣∣∣∣. In addition,

dw is the nearest wall distance. The remaining variables are obtained as follows,

fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6w3
g6 + c6w3

]1/6
, g = r + cw2(r

6 − r). (2.9)

Finally, all constants appearing in the equations so far are given as

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw1 =
cb1
κ2

+
1 + cb2
σ

,

cw2 = 0.3, cw3 = 2, cv1 = 7.1, rmax = 10.

(2.10)

This modified version differs from the original S-A model equation [3] mostly in

the source term calculations, curing the problem of negative ν̂t values and related

numerical instabilities. On the other hand, these modifications give an opportunity

to set the initial eddy viscosity values as zero throughout the computational domain.
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This provides an apparent laminar-to-turbulent transition behavior, especially when a

transition is induced by laminar separation bubbles [21, 13]. Consequently, the most

of the simulations in this thesis started by setting an initial value of ν̂t∞/ν as 10−8

where the subscription of∞ represents the freestream.

2.1.3 Turbulence Modeling and Resolving

Resolving all eddies throughout the computational domain with 3-D, unsteady, high

Re flow fields is unlikely when considering the computational resources by year 2030

[72]. Instead, METUDES models eddies partly or completely using URANS and

DES strategies, which are described mathematically in the following sections.

2.1.3.1 Unsteady Reynolds-Averaged Navier-Stokes

The URANS simulation approach models all scales of eddies. The modeling is carried

out through the turbulence model length scale which is the wall distance term, dw,

appearing in the source terms of the S-A model equation (see Equation 2.7b). That

is, the RANS (model) length scale is obtained as

lRANS = dw. (2.11)

As fluid particles flow near a solid wall, the length scale becomes very small, and

thereby increasing the destruction term extremely. This suppresses the eddy forma-

tion in the viscous sublayer as expected. On the other hand, as the particles move

away from the wall, the eddy viscosity starts to generate. After a certain distance,

the destruction effect due to the model length totally dissipates and the eddy viscosity

continues increasing and diffusing as long as the numerical dissipation allows.

2.1.3.2 Detached-Eddy Simulation

DES [108] is a hybrid RANS/LES approach based on the RANS equations. It es-

sentially models eddies in the boundary layer by its RANS mode, and resolves them
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away from the boundary layer and/or in separated regions by its LES mode. DES

makes a switching between these modes through the turbulence model length scale as

lDES = min(lRANS, lLES). (2.12)

Here, lLES = CDES∆ where CDES is 0.65, and ∆ is the subgrid length scale, which

is taken as the local maximum cell dimension, ∆max. In the desired DES grid,

∆max >> δ in attached flow regions where δ represents the boundary layer thick-

ness. This ensures that the RANS modeling is kept inside the boundary layer since

DES chooses dw as the length scale. After a separation, since the rapidly growing δ

becomes higher than ∆max, the LES mode takes place. Henceforth, the length scale

serves as a subgrid scale. Because this is a massive separation, large eddies domi-

nate the field such that the grid resolution by ∆max suffices for eddy resolution. In

this field, the destruction term of the S-A equation still exists, unlike URANS, and

provides a reduction of eddy viscosity.

2.1.3.3 Delayed Detached-Eddy Simulation

The switching mechanism of DES is totally mesh dependent. If a grid is designed

improperly, that is ∆max of some cells becomes smaller than δ inside an attached

boundary layer, DES switches to the LES mode earlier. In other words, the grey-area

between RANS and LES regions shifts inside the boundary layer. At this point, the

subgrid scales (eddies smaller than ∆max), which should be modeled by the RANS

mode, could not be resolved. This causes MSD and/or GIS problems, as discussed in

Section 1.1.1. The DDES approach [109] ensures to keep the modeling mode inside

the boundary layer by modifying the DES length scale as follows,

lDDES = lRANS − fd max(0, lRANS −ΨCDES∆max). (2.13)

Here, fd is a delaying function which delays the LES activation in the boundary layer
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and it is computed as

fd = 1− tanh
(
[8rd]

3) (2.14a)

rd =
νt + ν(

∂ũi
∂xj

∂ũi
∂xj

)0.5

κ2d2w

(2.14b)

where κ is Karman constant and equals to 0.41. By this formulation, in attached

boundary layers fd goes to 0 and makes lDDES = lRANS, whereas in other regions it

returns to the original DES formulation (Equation 2.12). On the other hand, Ψ is a low

Re correction term which prevents an excessive reduction of eddy viscosity values in

the low Re regions and/or in case of an overmuch grid refinement. It is calculated as

(without the trip term)

Ψ =

√√√√√√√min

102,
1− cb1fv2

cw1κ20.424
fv1

. (2.15)

2.1.3.4 Shear-Layer-Adapted Subgrid Length Scale

The choice of ∆max as a subgrid length scale is safe to keep the RANS functioning

in the boundary layer. However, if prediction of a thin boundary layer separation,

separated shear layers, and/or free shear layers is intended, ∆max would be a bad

choice as it damps and delays the K-H instability waves. The eddy viscosity should

be lowered to release the K-H instability. For this purpose, the SLA subgrid length

scale was proposed recently [106]. This approach, which depends not only on the grid

but also on the flow, and its three-dimensionality, reduces the subgrid length scale by

two levels. Firstly, a vorticity dependent subgrid length scale is defined as

∆̃ω =
1√
3

max
n,m=1,8

|In,i − Im,i| (2.16)

where In,i = εijknω,krn,j , and nω,i is the unit vorticity vector, whereas rn,i is the

position vector for the vertices of the cell (n = 1, ..8 for hexahedral cells). This
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formulation removes the dependence of subgrid viscosity on a cell length (mostly

∆max = ∆z for a shear layer in x − y plane) in the vorticity direction, which had

been a problem in shear layers where the planar shear is expected to initiate transition

to the LES mode. Instead, the subgrid viscosity is based on the maximum dimension

on the shear plane in a quasi-2D region. Still, the resulting reduction of the subgrid

viscosity is not sufficient to initiate the transition in quasi-2D regions.

As a second level, an ILES-like behavior is used in such regions to allow the K-H

instabilities to take over. The so-called “Vortex Tilting Measure” (VTM) function is

defined to detect such regions:

V TM =

√
6|εijk(Ŝijωj)ωj|

|ωi|2
√

3tr(ŜijŜjk)−
[
tr(Ŝij)

]2 (2.17)

where Ŝij is the strain rate tensor, ωi is the vorticity vector, and tr refers to trace. It

yields zero when the vorticity is aligned with any eigenvectors of the strain; nonzero

when the deformation tensor tilts the vorticity vector. V TM is facilitated in the func-

tion,

FKH(〈V TM〉) = max

[
Fmin
KH ,min

{
Fmax
KH , Fmin

KH +
Fmax
KH − Fmin

KH

a2 − a1
(〈V TM〉 − a1)

}]
(2.18)

where the angle bracket, 〈·〉, means the value is averaged among neighboring cells.

Averaging is necessary for smoothing the distribution since it is reported that V TM

may have downward excursions locally. FKH is a simple function depending on

V TM with the sole purpose of reducing the subgrid viscosity properly. Fmax
KH = 1

that recovers the original length scale, while Fmin
KH = 0.1. a1 and a2 are constants

that are adjusted through numerical experiments and equal to 0.15 and 0.3, respec-

tively. Accordingly, FKH varies linearly between 〈V TM〉 of 0.15 and 〈V TM〉 of 0.3

yielding values ranging from 0.1 to 1. Finally, the ultimate subgrid length scale is
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calculated by

∆SLA = ∆̃ωFKH(〈V TM〉). (2.19)

The resulting length scale serves as a reduction to ∆̃ω up to one order in regions

where the K-H instabilities are expected to occur, thus leaving ground to transition

to the resolved 3-D turbulent mode. However, for wall-bounded flows, this reduction

should be inactivated to keep the boundary layer shielded as done in DDES with

∆max. The following limitation to FKH was proposed for that purpose:

F lim
KH =

1, fd < 0.99

FKH , fd ≥ 0.99
. (2.20)

Moreover, in order to avoid numerical oscillations in inviscid regions, 〈V TM〉 should

be multiplied with max

(
1,

0.2ν

max(νt − νt,∞, 10−6νt,∞)

)
. This makes FKH 1 so that

it is deactivated in inviscid regions.

The SLA subgrid length scale is implemented into DDES by simply replacing ∆max

with ∆SLA. Thus, this new length scale, called as DDES-SLA, becomes

lDDES-SLA = lRANS − fd max(0, lRANS −ΨCDES∆SLA). (2.21)

Note that METUDES has another option as a DES strategy: Zonal DES (ZDES).

However, ZDES is not described here as it is not used in the simulations.

2.1.4 Numerics

The numerical features of the solver are summarised in the following list:

• The governing equations are transformed from the physical domain to the com-

putational domain by one-to-one mapping using metric terms. The flux com-

putations of flow equations are realized on curvilinear structured single grids.
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• The fluxes are discretized in space by the central finite volume scheme. For the

FANS equations, a 4th-order accurate algorithm with the dispersion-relation-

preserving (DRP) as well as the skew-symmetry schemes (suggested by Kok

[54]) is performed. The 4th-order accurate central discretization provides low-

dissipation, whereas the DRP scheme [118], requiring additional nodes in sten-

cils, provides low-dispersion. In addition, the skew-symmetry algorithm pre-

serves the kinetic energy. A prediction of acoustic waves in aeroacoustic sim-

ulations benefits greatly from this low-dissipation low-dispersion scheme. On

the other hand, the fluxes of the S-A model equation is discretized by a 2nd-

order accurate finite volume.

• Time integration is conducted in dual time stepping based on a 2nd-order back-

ward difference, but solved in explicit iterative manner by adding a pseudo time

derivative term [49]. The resulting explicit integration is computed using a 5-

stage Runge-Kutta algorithm. The dual time stepping integration provides an

opportunity to increase the CFL number, and thereby avoiding the restriction

of time step in viscous wall-bounded flows.

• Preconditioning squared approach, based on a cooperation of low speed precon-

ditioning and Jacobi preconditioning [119], is used for acceleration of a steady

state flow convergence in subiterations of dual time steps. Low speed precon-

ditioning removes the stiff behavior of flow equations at low Mach numbers.

This stiffness is caused by a large discrepancy between the acoustic speed and

the convective speed when the flow has low speed. Low speed preconditioning,

in principle, makes the Courant number 1. On the other hand, Jacobi precondi-

tioning enhances high frequency error damping by introducing a matrix-based

artificial viscosity and using a matrix time stepping. Hence, the preconditioning

squared provides a fast convergence to low Mach number steady state flows.

• A blended matrix artificial dissipation [91] is used to damp spurious high-

frequency waves. This algorithm blends the preconditioners for both steady

and unsteady flows to properly scale the artificial dissipation.

• Implicit residual smoothing [48] is also added to increase the convergence rate

during the subiterations. In brief, a residual obtained after spatial discretiza-

32



tions is smoothed out by the Laplace operator using residuals of neighboring

cells. The resulting tridiagonal system of equations in each direction is solved

by the Thomas algorithm implicitly. Implicit residual smoothing results in an

increment of the maximum CFL number by a factor of almost 2.

The detailed mathematical expressions of these numerical algorithms mentioned above

can be found in [12].

2.1.5 Code Structure

METUDES is written in Fortran90/95 language. It is parallelized using OpenMPI

libraries [34] for distributed memory machines. A master processor decomposes the

computational mesh and distributes it to the others, and then, they all start to solve

the equations simultaneously within their borders. After each subiteration, they com-

municate the required (shared) information with their neighboring processors in all

directions by the send/receive routines of the MPI library. The paralellization of the

solver with 3-D decomposition provides almost a linear speedup.

2.2 Improvements to METUDES

This section describes and discusses the improvements made to METUDES by the

present thesis work. The incorporated features are geared especially towards both

cavity and boundary layer transition simulations. The contributions are divided mainly

into two categories: improvements to DDES frameworks, and improvements to nu-

merics.

2.2.1 DDES Frameworks

2.2.1.1 Transitional DDES

Prediction of laminar-to-turbulent transition in flows over wing/turbine blade profiles

has a key role in capturing the aerodynamic coefficients. Assuming fully turbulent
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throughout the computational domain fails at this point. Despite starting DDES with

almost laminar flow everywhere by the modification to the S-A equation, there is

no information regarding the transition onset in the solver. In order to make DDES

transitional, the Baş-Çakmakçıoğlu (B-C) transition model has been implemented in

METUDES. Since transition begins in the RANS region, but may end in the LES

region, the incorporation of the model into DDES frameworks requires special atten-

tion. This section presents the B-C model and its incorporation.

Baş-Çakmakçıoğlu Transition Model A modified version of the B-C model (BCM),

which has been coded into the present solver, is a zero-equation correlation-based

transition model [10]. It uses an intermittency function to trigger the transition. This

function depending on local flow information is simply multiplied with the production

term of the S-A equation:

∂ν̂t
∂t

+ ũi
∂ν̂t
∂xi

= Ψ + γBCMΠ− Φ. (2.22)

The intermittency value, γBCM, is calculated algebraically through two terms: Term1

is used to trigger transition in the outer boundary layer using the vorticity Reynolds

number (Reν), and Term2 transports the intermittency value, produced by Term1, into

the boundary layer. γBCM takes a value of 0 in laminar flow such that the production of

eddy viscosity is prevented. As the transition criterion is met, γBCM abruptly goes to 1,

thereby recovering the turbulence equation fully. The calculation is straightforward:

γBCM = 1− exp
(
−
√

Term1 −
√

Term2

)
(2.23)

Term1 =
max(Reθ −Reθc, 0)

χ1Reθc
,

Term2 =
max(νt, 0)

χ2ν

(2.24)
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where

Reθ =
Rev

2.193
, Rev =

ρd2wΩ

µ
. (2.25)

Ω is the vorticity vector magnitude. χ1 = 0.002 and χ2 = 0.02 are the calibration

constants. The critical momentum thickness Reynolds number, Reθc, is found from

empirical correlations as

Reθc = 803.73(Tu∞ + 0.6067)−1.027 (2.26)

where Tu∞ denotes the freestream turbulence intensity.

Incorporation of the BCM Model into DDES The BCM model was proposed

for the RANS framework. The studies showed that the transition onset in steady

transitional flows and corresponding aerodynamic results are well-estimated by the

model [9, 10, 79]. It is remarkable to achieve these results without solving extra

transport equations. The model benefits from the convection and diffusion terms

of the already-solved turbulence equation. In principle, it makes the flow laminar

upstream of the trigger point, and fully turbulent the entire downstream. However,

the suitability of this model for time-dependent problems was studied in this thesis,

and three deficiencies have been observed:

1. In unsteady flow problems, Term1 becomes unstable in the vicinity of transi-

tion onset. This makes, at some instants, the intermittency function less than

1, which in turn affects the production term of the S-A equation instantly. This

strong coupling between the transition and turbulence models as well as the ab-

sence of history effect of the intermittency function can hamper the eddy pro-

duction. Under weak unsteadiness conditions such as large adverse pressure

gradients, the time and length scales are big enough to reduce the unsteadi-

ness effect on Term1, resulting in a persistent intermittency value (see Section

5.2 presenting a flow problem over a circular cylinder). Contrarily, in strong

35



unsteadiness the persistence is lost (see Section 5.1 presenting a flow problem

over a blade section).

2. In the LES mode of DDES, the balance between the production and the destruc-

tion terms is essential for the performance of the subgrid scale model. Although

the LES region in DDES is supposed to be fully turbulent such that the balance

is already ensured, the LES mode might be activated in early transition region

in case of DDES-SLA. In this context, the multiplication of the intermittency

function only with the production term becomes a problem.

3. The SLA subgrid length scale reduces the eddy viscosity in quasi-2D regions

of K-H instabilities in accordance with its purpose. In separation-induced tran-

sition cases, Term1 is expected to trigger transition around the K-H instability

waves. When the BCM model is directly used in the DDES-SLA simulations,

even though the intermittency function is triggered successfully, it may not be

penetrated into the boundary layer as desired (see Section 5.1.2.2). The rea-

son is that Term2 is calibrated according to the RANS eddy viscosity, which is

much higher than the DDES-SLA one.

All of three deficiencies could be overcome by decoupling the transition and the tur-

bulence model, and solving another transport equation for the intermittency function,

as discussed in Section 1.1.2. Instead, three improvements to the BCM transition

model are proposed to stick with the algebraic model approach 1:

1. For the 1st deficiency mentioned above, an additional term, called Term3, to

be inserted in γBCM calculation is proposed. This term is designed to trigger

transition due to slight separations in unsteady flows such as laminar separation

bubbles where both time and length scales are small. In this regard, Term3 is

formulated by benefiting from the VTM sensor used in the SLA calculations

(see Section 2.1.3.4). This sensor works as a detector of quasi-2D K-H insta-

bility waves which are expected to initiate transition in separated shear layers.

1 The mentioned improvements have been developed by a collaborative work with Dr. Kenan Cengiz. For
details about calibrations and initial attempts, see [127]
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The new γBCM and Term3 are computed as follows,

γBCM = 1− exp
(
−
√

Term1 −
√

Term2 − Term3

)
, (2.27)

Term3 = fd(χ3〈V TM〉)p (2.28)

where fd, the delaying function of DDES (Equation 2.14a), provides to make

Term3 active only outer attached boundary layer. 〈V TM〉 is the "Vortex Tilting

Measure" function of DDES-SLA (Equation 2.17). The constants of χ3 and p

are calibrated to make γBCM as 1 quickly when 〈V TM〉 is close to 0.15. Note

that 〈V TM〉 is 0 in quasi-2D regions, and larger than 0.3 in fully developed

turbulence regions. In DDES-SLA simulations, when 〈V TM〉 is between 0

and 0.15, FKH is kept constant as 0.1, which increases the destruction term of

the S-A model equation 100 times. This ensures an ILES behavior (i.e. "no

model"). After 〈V TM〉 = 0.15, FKH starts to increase and the destruction

term reduces accordingly; therefore, eddy production is allowed. This is why

〈V TM〉 = 0.15 is targeted while calibration. As a result, χ3 and p are set as 12

and 6, respectively.

2. Regarding the 2nd deficiency, a balance between the source terms of the turbu-

lence equation can be easily preserved by replacing Equation 2.22 with

∂ν̂t
∂t

+ ũi
∂ν̂t
∂xi

= Ψ + γBCMΠ− γBCMΦ. (2.29)

Here, the intermittency function is multiplied with not only the production term

but also the destruction term.

3. The last proposal, related to the 3rd deficiency, is to rearrange Term2 as

Term2 =

max

(
νt
F 2
KH

, 0

)
χ2ν

(2.30)

where FKH is already used in DDES-SLA to reduce the SLA subgrid length

scale (Equations 2.18 and 2.19). In case of the SLA reduction, this proposed

approach scales the eddy viscosity appearing in Term2 up to the level used in

37



calibration. This means the reduced eddy viscosity is increased by the same

amount as the destruction term. Thus, Term2 can transport the generated inter-

mittency function into the boundary layer as desired. Note that when there is

no SLA reduction, FKH takes the value of 1 such that the term returns to its

original version.

The first and the third methods are proposed only for the DDES-SLA framework. As

the new functions are already computed for ∆SLA, they do not cause an additional

computational load to the BCM model. For the pure DDES, on the other hand, the

first method is suggested to include in case of a strong unsteadiness in flow field

even there is an additional VTM calculation. In the rest of the study, DDES with the

BCM model called DDES-BCM which includes only the second proposed method.

Likewise, DDES-SLA with the BCM model includes all of the proposed methods,

and called DDES-SLA-BCM3 ("3" comes from Term3 which covers the largest part

of the modifications).

2.2.1.2 Improved Delayed Detached-Eddy Simulation

The IDDES method [105] is a combination of DDES and WMLES approaches. It

behaves like WMLES if there is an unsteady inflow turbulent content as well as the

grid resolution is sufficient. In other conditions, it acts as DDES exactly. In the

WMLES branch, IDDES shifts the RANS/LES border from the boundary layer edge

(or above it) to approximately the end of the inner layer. This results in a turbulence

resolution increment as desired. The turbulent length scale of IDDES is computed as

lIDDES = f̃d(1 + fe)dw + (1− f̃d)CDES∆IDDES. (2.31)

Here, f̃d is a blending function that makes the switching automatically. It is calculated

as

f̃d = max(1− fdt, fB) (2.32)
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where fdt = 1 − tanh[(8rdt)
3]. rdt is the turbulent part of rd used in the DDES

formulation (see Equation (2.14b)). The empirical blending function, fB, is obtained

as

fB = min(2 exp
(
−9α2

)
, 1), α = 0.25− dw/∆max. (2.33)

The empirical elevating function, fe, prevents an excessive reduction of the modeled

Reynolds stresses in the grey-area, and thereby solving the LLM problem. fe is cal-

culated as

fe = max((fe1 − 1), 0)Ψfe2 (2.34)

fe1 =

2 exp(−11.09α2), α ≥ 0

2 exp(−9α2), α < 0
(2.35)

fe2 = 1−max(ft, fl), ft = tanh[(c2t rdt)
3], fl = tanh[(c2l rdl)

10] (2.36)

where rdl is the laminar part of rd (see Equation (2.14b)). The constants, ct and cl, are

1.63 and 3.55, respectively. Ψ is the low-Reynols number correction term, the same

as in Equation 2.15.

Lastly, the subgrid length scale of IDDES was determined to provide a variation along

the wall-normal direction as in the eddy viscosity levels. Besides, it gives a reduction

of the original subgrid length, thereby destabilizing the flow under potential instabil-

ities. ∆IDDES is calculated as follows,

∆IDDES = min (max(Cwdw, Cw∆max, hwn),∆max) (2.37)

where Cw is 0.15, and hwn is a grid step in the wall-normal direction. It is suggested

in the original paper [105] that in WMLES regions, one may use a stretching ratio of

1.14 with y+1 < 1 while generating a boundary layer mesh.
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Incorporation of the ∆SLA into IDDES One of the objective of this thesis is to

simulate the cavity flow problems by the combination of the IDDES and the SLA

approaches. For the implementation of the IDDES-SLA framework in METUDES,

the steps in the paper of Guseva et al. [40] has been followed. Since f̃d is used

in IDDES instead of fd, the delaying function of DDES, the limitation to FKH (see

Equation 2.20) is changed as

F lim
KH =

1.0, f̃d > 0.01

FKH , f̃d ≤ 0.01
(2.38)

in a similar manner. The remaining computations to obtain ∆SLA are the same. The

subgrid length scale is, then, obtained as

∆IDDES-SLA = min (max(Cwdw, Cw∆max, hwn),∆SLA) (2.39)

which is used to find the ultimate length scale of IDDES-SLA by replacing Equation

2.31 with

lIDDES-SLA = f̃d(1 + fe)dw + (1− f̃d)CDES∆IDDES-SLA. (2.40)

2.2.2 Numerics

2.2.2.1 Multiblock Topology

Computational domain of cavities is composed of two main regions: inside and out-

side of the cavity. It is difficult and inefficient to create a single block structured

grid for the whole domain. Instead, two separate single grids can be generated, and

connected to each other through an interface (see Figure 2.2a). Besides, some of the

boundary layer transition simulations require a tunnel grid, where maintaining the

grid orthogonality by a single grid from the airfoil surface to the wind tunnel walls is

inconvenient. However, the previous version of METUDES works on a single block.
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Hence, a multiblock topology option has been implemented. During the implementa-

tion into the code, data structure of the CFL3D solver, developed in NASA Langley

Research Center [58], has been beneficial. A one-to-one blocking strategy is an easy

as well as an efficient way for block interfaces. In this situation, the interface shared

by multiple single blocks are identical such that all grid points located at the interface

are coincided. The crucial point is the communication between the blocks, which

are performed through ghost cells. These cells should be identical to the inner cells

of the neighbor block. Figure 2.1 describes this communication. Here, the ghost

cells of block 2 receive the flow variables directly from the inner cells of block 1. In

METUDES, this send and receive routine is realized for three ghost cells to complete

the central spatial discretization of the 4th-order DRP scheme. Note that METUDES

conducts this multiblock communication after the physical boundary conditions are

enforced.

block 1

block 2 with ghost cells

communication

interface

block 1

Figure 2.1: Multiblock communication between two blocks through ghost and inner

cells

2.2.2.2 High-Order Overset Grid Technique

The one-to-one multiblock approach needs an identical communication region. This

limits the mesh generation capability around complex geometries. One example is
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block 1solid

walls

multiblock interface

block 2

(a) 2-D view

X

Y

Z

(b) 3-D view at IJK plane surfaces (showing one every

three cells)

Figure 2.2: The multiblock structured mesh domain around an open cavity geometry

with L/D = 5. Block 1 represents the inside of the cavity while Block 2 represents

the outside of it.

the store separation simulations from cavities2. Even though a structured meshing

around a store is achieved, merging of that with the cavity mesh is quite challenging.

Moreover, one may aim to refine a certain region such as a wake zone following a

blade section, which is crucial for transitional flows, while keeping the rest of the do-

main the same. On the contrary, one may want to coarsen a grid locally. For instance,

in cavity domains very fine grid steps in boundary layers near the existing walls are

extended to the far field boundaries of the outer block. This causes a redundant grid

refinement, considering the walls locating along all directions (see Figure 2.2b). Such

a local refinement or coarsening spoils the coincidence of cells at the multiblock inter-

face. Therefore, the Chimera type overset grid technique, developed for complex and

moving geometries [4], has been implemented into the code. This method handles the

2 The store separation is out of the scope of this thesis; however, in the long term it might be simulated via
METUDES.
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communication between overlapped structured blocks by interpolation. Overlapping

gives a freedom to connect two blocks having different grid topologies.

The key point, here, is the interpolation algorithm. A conventional linear interpolation

is adequate for low-order solvers; however, it has shown that a high-order interpola-

tion is required to preserve the high-order accuracy of solvers [17]. Lee et al. [67]

introduced a high-order interpolation method for overset grid based on a finite vol-

ume scheme. This method basically finds the interpolation polynomial for overlapped

grid cells in one grid (called donor grid), then transforms the coordinates, and finally

obtains the desired cell value of the other grid (called fringe grid). The study also

suggests to use a multidimensional limiting process to remove the oscillations ap-

pearing because of high-order interpolations. In the mentioned study, the results from

Euler equations demonstrated that the 4th-order interpolation preserves the 6th-order

accuracy of a solver without changing the flow solutions.

donor cells

fringe cells

(a) overlapped region

donor cells

fringe cell

d

d

f

f

(i­1,j­1) (i,j­1)

(x
f
,y

f
)

(i,j)(i­1,j)

(x
d
,y

d
)

(b) fringe and donor cells

Figure 2.3: Overset interpolation between two blocks through fringe and donor cells

Three different interpolation methods based on finite volume schemes have been de-

veloped to be implemented in METUDES: 2-D 2nd-order, 2-D 3rd-order, and 3-D 3rd-

order interpolations. Since METUDES is 4th-order accurate in space, the 3rd-order

interpolations are intended to use for the overlapped regions including highly turbu-

lent structures, thereby preserving the accuracy. In the Euler regions, the 2nd-order

interpolation should be adequate. During the development, the same steps shown for
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the 2-D 4th-order interpolation in [67] have been followed.

2-D 2nd-Order Interpolation In METUDES, the overlapped region involves ghost

cells so that the interpolation is used to obtain flow variables attached to them. Sup-

pose a uniform mesh block and an O-mesh block are connected as in Figure 2.3a. If

the ghost cell values of the O-mesh are tried to obtain, the cells in red are called fringe

cells. On the other hand, the Cartesian grid which interpolates its inner cell values and

transfers the resulting value to the O-mesh is called donor grid; and consequently, the

cells in black are the donor cells. As an example, the value of the fringe cell indicated

by a blue circle (see Figure 2.3a) is calculated through the 2-D 2nd-order interpolation

method. Firstly, the interpolation function is written in the donor grid coordinates (see

Figure 2.3b) as follows,

φd(ξd, ηd) = Aξd +Bηd + Cξdηd +D. (2.41)

Here, φ represents any flow variable whereas A,B,C, and D are the unknown coef-

ficients. 4 cell values are required to solve for the unknowns; therefore, 4 donor cells

closest to the fringe cell are selected as in Figure 2.3b. Each donor cell value is equal

to the integrated value of the interpolation function. The integration boundaries are

determined according to the coordinate origin. For instance, the value of φ at the cell

with the indices (i− 1, j) is equal to

φi−1,j =

∫ 1

0

(∫ 0

−1
φd(ξd, ηd)dξd

)
dηd. (2.42)

Remember that φi−1,j is known from the donor cell. Using the other donor cells, the

coefficients of the interpolation function are obtained as


A

B

C

D

 =


−1/2 1/2 −1/2 1/2

−1/2 −1/2 1/2 1/2

1 −1 −1 1

1/4 1/4 1/4 1/4




φi−1,j−1

φi,j−1

φi−1,j

φi,j

 .
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Next, the coordinates should be transformed; thus, the interpolation function for the

fringe cell, φf , could be obtained. Here, φf is written in the fringe cell coordinates as

φf (ξf , ηf ) = A′ξf +B′ηf + C ′ξfηf +D′ (2.43)

where A′, B′, C ′, and D′ are the new unknowns and can be computed by relating the

coordinates. Using the chain rule,

xf =
∂xf
∂ξf

ξf +
∂xf
∂ηf

ηf , yf =
∂yf
∂ξf

ξf +
∂yf
∂ηf

ηf ,

ξd =
∂ξd
∂xd

xd +
∂ξd
∂yd

yd, ηd =
∂ηd
∂xd

xd +
∂ηd
∂yd

yd,

(2.44)

and the distance between the coordinate origins,

xd = xf + ∆x, yd = yf + ∆y, (2.45)

the relations between (ξd, ηd) and (ξf , ηf ) can be found as

ξd = α1ξf + β1ηf + γ1, ηd = α2ξf + β2ηf + γ2 (2.46)

where

α1 =
∂ξd
∂xd

∂xf
∂ξf

+
∂ξd
∂yd

∂yf
∂ξf

, β1 =
∂ξd
∂xd

∂xf
∂ηf

+
∂ξd
∂yd

∂yf
∂ηf

, γ1 =
∂ξd
∂xd

∆x+
∂ξd
∂yd

∆y,

α2 =
∂ηd
∂xd

∂xf
∂ξf

+
∂ηd
∂yd

∂yf
∂ξf

, β2 =
∂ηd
∂xd

∂xf
∂ηf

+
∂ηd
∂yd

∂yf
∂ηf

, γ2 =
∂ηd
∂xd

∆x+
∂ηd
∂yd

∆y.

(2.47)

The fractional terms are obtained from the metric tensor. Then, substituting Equation

2.46 into Equation 2.41 and equating the result to Equation 2.43, the coefficients of

φf are obtained as
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
A′

B′

C ′

D′

 =


α1 α2 α1γ2 + α2γ1 0

β1 β2 β1γ2 + β2γ1 0

0 0 α1β2 + β1α2 0

γ1 γ2 γ1γ2 1




A

B

C

D

 .

Finally, the flow variable at the fringe cell is calculated by integrating φf (ξf , ηf ) func-

tion. This is repeated for each fringe cell at each numerical iteration. Since fixed

meshes are used in this thesis, searching for the donor cells, and computing the most

of the parameters including metrics and constants are conducted once at the beginning

of the simulations. This reduces the computational cost of the overset grid, substan-

tially. As a final remark, the donor cells are found simply by searching for the cell

centers in the donor grid closest to the fringe cell center.

2-D 3rd-Order Interpolation For the 2-D 3rd-order method, the interpolation func-

tion of the fringe grid is

φf (ξf , ηf ) = A′ξ2f +B′η2f + C ′ξfηf +D′ξf + E ′ηf + F ′. (2.48)

Now, 6 donor cells are needed. Let the closest donor cell to the fringe cell have

indices (i, j). After the previous procedure is followed, the ultimate relation between

the donor flow variables and the coefficients are found as

K = L ∗M ∗N (2.49)

where

K =



A′

B′

C ′

D′

E ′

F ′


, L =



α2
1 α2

2 α1α2 0 0 0

β2
1 β2

2 β1β2 0 0 0

2α1β1 2α2β2 α1β2 + α2β1 0 0 0

2α1γ1 2α2γ2 α1γ2 + α2γ1 α1 α2 0

2β1γ1 2β2γ2 β1γ2 + β2γ1 β1 β2 0

γ21 γ22 γ1γ2 γ1 γ2 1


,
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M =



0 0 1/2 −1 1/2 0

0 1/2 0 −1 0 1/2

1 −1 −1 1 0 0

−1/2 1/2 −1/2 1/2 0 0

−1/2 −1/2 1/2 1/2 0 0

1/4 1/12 1/12 11/12 −1/6 −1/6


, N =



φi−1,j−1

φi,j−1

φi−1,j

φi,j

φi+1,j

φi,j+1


α, β, and γ variables are the same as in Equation 2.47.

3-D 3rd-Order Interpolation The 3-D 3rd-order interpolation function requires 10

coefficients, and written as

φf (ξf , ηf , ζf ) = A′ξ2f+B
′η2f+C

′ζ2f+D′ξfηf+E
′ξfζf+F

′ηfζf+G
′ξf+H

′ηf+I
′ζf+J

′

(2.50)

Again, if the closest donor cell have indices (i, j, k), following the same steps yields

the coefficients as

K = L ∗M ∗N (2.51)

where

K =



A′

B′

C′

D′

E′

F ′

G′

H ′

I ′

J ′



, L =



α2
1 α2

2 α2
3 α1α2 α1α3 α2α3 0 0 0 0

β2
1 β2

2 β2
3 β1β2 β1β3 β2β3 0 0 0 0

θ21 θ22 θ23 θ1θ2 θ1θ3 θ2θ3 0 0 0 0

2α1β1 2α2β2 2α3β3 α1β2 + α2β1 α1β3 + α3β1 α2β3 + α3β2 0 0 0 0

2α1θ1 2α2θ2 2α3θ3 α1θ2 + α2θ1 α1θ3 + α3θ1 α2θ3 + α3θ2 0 0 0 0

2β1θ1 2β2θ2 2β3θ3 β1θ2 + β2θ1 β1θ3 + β3θ1 β2θ3 + β3θ2 0 0 0 0

2α1γ1 2α2γ2 2α3γ3 α1γ2 + α2γ1 α1γ3 + α3γ1 α2γ3 + α3γ2 α1 α2 α3 0

2β1γ1 2β2γ2 2β3γ3 β1γ2 + β2γ1 β1γ3 + β3γ1 β2γ3 + β3γ2 β1 β2 β3 0

2γ1θ1 2γ2θ2 2γ3θ3 γ1θ2 + γ2θ1 γ1θ3 + γ3θ1 γ2θ3 + γ3θ2 θ1 θ2 θ3 0

γ2
1 γ2

2 γ2
3 γ1γ2 γ1γ3 γ2γ3 γ1 γ2 γ3 1



,
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M =



−1 1/2 0 1/2 0 0 0 0 0 0

−1 0 1/2 0 1/2 0 0 0 0 0

−1 0 0 0 0 1/2 1/2 0 0 0

1 −1 −1 0 0 0 0 1 0 0

1 −1 0 0 0 −1 0 0 0 1

1 0 −1 0 0 −1 0 0 1 0

0 0 1/2 0 0 1/2 0 −1/2 0 −1/2

0 1/2 0 0 0 1/2 0 −1/2 −1/2 0

0 1/2 1/2 0 0 0 0 0 −1/2 −1/2

5/4 −1/6 −1/6 −1/6 −1/6 −1/6 −1/6 1/4 1/4 1/4



, N =



φi,j,k

φi−1,j,k

φi,j−1,k

φi+1,j,k

φi,j+1,k

φi,j,k−1

φi,j,k+1

φi−1,j−1,k

φi,j−1,k−1

φi−1,j,k−1



.

This time α, β, γ, and the new θ variables include the third dimension metrics, addi-

tionally. The ones with the subscript 1 are as follows,

α1 =
∂ξd
∂xd

∂xf
∂ξf

+
∂ξd
∂yd

∂yf
∂ξf

+
∂ξd
∂zd

∂zf
∂ξf

,

β1 =
∂ξd
∂xd

∂xf
∂ηf

+
∂ξd
∂yd

∂yf
∂ηf

+
∂ξd
∂zd

∂zf
∂ηf

,

θ1 =
∂ξd
∂xd

∂xf
∂ζf

+
∂ξd
∂yd

∂yf
∂ζf

+
∂ξd
∂zd

∂zf
∂ζf

,

γ1 =
∂ξd
∂xd

∆x+
∂ξd
∂yd

∆y +
∂ξd
∂zd

∆z.

(2.52)

2.2.2.3 Optimizing the Numerical Algorithms

The METUDES solver had been tested mostly for flow simulations over airfoil pro-

files and flat plates until this thesis study. When cavity flow problems were simulated,

three numerical difficulties were encountered:

1. The subiteration number in dual time stepping substantially increased. In other

words, late convergence of residual values was observed, which slowed down

the running performance of the code.

2. The code could be suddenly aborted even after the transition period had passed.

This abortion was caused by negative ν̂t values emerged in the outer domain

along the intersection of two orthogonal cavity walls.
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3. A deformity was observed along the shear layer revealed at the cavity mouth.

As time step of an unsteady simulation was advanced, turbulent viscosity con-

tours started to deform around the grid cells having very high aspect ratios

(AR ∼ O(4)) and located along the cavity mouth. This deformation is shown

in Figure 2.4. Here, a discontinuity exists in the normal direction, which is also

seen in the pressure contours at later time steps, as indicated in the same fig-

ure. This nonphysical situation inevitably caused a misprediction in the results.

Interestingly, no discontinuity was observed when the flow was simulated as

laminar everywhere. However, slow convergence problem was still the issue.

In summary, the mentioned problems were preventing to obtain successful cavity

flow simulations quite a while in the early stages of this study. The following im-

provements implemented in the solver algorithms resolved all the problems.

Figure 2.4: Cavity flow field deformations happening during initial cavity flow simu-

lations. Above: eddy viscosity related contours, below: pressure contours
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Change in the Residual Smoothing Algorithm In METUDES, residual obtained

after spatial discretization is smoothed out to increase the CFL number within the

subiterations, as discussed in Section 2.1.4. This smoothing operations (by the Laplace

operator) are only performed for the N-S equations. In order to reduce the computa-

tional cost, the Laplace operator is applied in each direction separately. For instance,

in ith-direction the following equation is to be solved:

−εiR̄i−1,j,k + (1 + 2εi)R̄i,j,k − εiR̄i+1,j,k = Ri,j,k (2.53)

where R̄ is the smoothed residual (R), and ε is the coefficient containing spectral

radius and some constants. Including the neighboring cells results in a tridiagonal

system, which is solved implicitly by the Thomas algorithm. If one writes Equation

2.53 for a boundary cell index (say i = 1),

−ε1R̄0,j,k + (1 + 2ε1)R̄1,j,k − ε1R̄2,j,k = R1,j,k (2.54)

is obtained. Here, R̄0,j,k needs to take the values of a boundary condition (BC).

Previously, it was assumed as R̄0,j,k = 0 (Dirichlet type BC). By applying the same

BC for the other ghost cell (R̄imax+1,j,k = 0), the following matrix system is obtained:



1 + 2εi −εi 0 0 · · · 0

−εi 1 + 2εi −εi 0 · · · 0

0
. . . . . . . . .

... . . . . . . . . .

... −εi 1 + 2εi −εi
0 · · · · · · · · · −εi 1 + 2εi


·



R̄1,j,k

R̄2,j,k

...

...

R̄imax−1,j,k

R̄imax,j,k


=



R1,j,k

R2,j,k

...

...

Rimax−1,j,k

Rimax,j,k


.

(2.55)

Suppose that all smoothed residual values are equal to each other. In this situation,

R̄i,j,k becomes the same as Ri,j,k except those of the boundary cells where, as an

example, (1 + ε1)R̄1,j,k = R̄1,j,k. This suggests that the mentioned Dirichlet BC may

cause some numerical instabilities. Instead, a Neumann type BC is used in this study,
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that is, the gradient is taken as zero: R̄0,j,k = R̄1,j,k and R̄imax−1,j,k = R̄imax,j,k.

Consequently, the new system of equations becomes as



1 + εi −εi 0 0 · · · 0

−εi 1 + 2εi −εi 0 · · · 0

0
. . . . . . . . .

... . . . . . . . . .

... −εi 1 + 2εi −εi
0 · · · · · · · · · −εi 1 + εi


·



R̄1,j,k

R̄2,j,k

...

...

R̄imax−1,j,k

R̄imax,j,k


=



R1,j,k

R2,j,k

...

...

Rimax−1,j,k

Rimax,j,k


.

(2.56)

When this new form was used in cavity simulations, the breakdown issue of the code

was resolved. As a matter of fact, it increased the convergence speed as well. In

addition, it was decided that a residual smoothing operator should be applied to not

only the N-S equations but also the S-A equation. This provided a quick drop of

the corresponding eddy viscosity residual. Note that for the turbulence equation, the

same system of equations is used. However, ε is taken as constant, which is 0.75 to

double the CFL number.

Shock Sensor in the N-S Equations using TVD Approach Sharp gradients of

flow quantities occurring mostly in shear layers and/or at high Mach number condi-

tions (such as shock waves) may cause numerical oscillations which result in poor

results during the computations. METUDES involves a pressure-based shock sensor

in the blended matrix dissipation calculations to prevent this problem. The sensor, ν,

is obtained in the ith-direction as

νi =

∣∣∣∣pi+1,j,k − 2pi,j,k + pi−1,j,k
pi+1,j,k + 2pi,j,k + pi−1,j,k

∣∣∣∣ (2.57)

where p is the pressure variable. ν behaves as a switch which enforces 2nd-order dis-

sipation terms in case of sharp gradients. In cavity flow, these oscillations become

stronger than the ones in the airfoil problems. One explanation is the possible shock

waves on the shear layer instabilities. In [116], it was suggested the use of a TVD
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(Total Variation Diminishing) switch instead of Equation 2.57 to overcome strong os-

cillations. A mix of a TVD switch and the current formulation is coded by following

[116] as

νi =
|pi+1,j,k − 2pi,j,k + pi−1,j,k|

ωP + (1− ω)PTV D
,

P = pi+1,j,k + 2pi,j,k + pi−1,j,k,

PTV D = |pi+1,j,k − pi,j,k|+ |pi,j,k − pi−1,j,k|.

(2.58)

The ω parameter determines the weight of the TVD switch. When ω = 1, Equation

2.57 is recovered. After making several cavity flow simulations, ω is calibrated as

0.6. When only the TVD approach improvement was applied, the breakdown issue

was resolved but the convergence got worse. Conversely, the convergence was accel-

erated more when TVD and new residual smoothing algorithm were used together.

Moreover, the discontinuity appearing in the flow contours was reduced by the TVD

switch.

Biased Artificial Dissipation near the Solid Walls METUDES conducts central

discretization in space for accurate resolution of flow with minimum dissipation.

Artificial dissipation is used to eliminate the spurious waves induced by the cen-

tral scheme throughout the computational domain. However, an excessive addition

of artificial dissipation may change the effective Reynolds number near walls [117].

Since the cavity domain has solid walls in all directions, this issue should be con-

sidered carefully. In order to increase stability and convergence, artificial dissipation

is decided to be computed with biased grid cells at wall boundaries as proposed in

[117]. Suppose that a 4th-order artificial dissipation is added to a 2nd-order spatial

differencing of a variable, W , at the wall grid cell (cell index = 1) in jth-direction

(normalwise). The artificial dissipation is calculated as follows,

D4
jW1 = (λε)2(W3−2W2+W1)−2(λε)1(W2−2W1+W0)+(λε)0(W1−2W0+W−1)

(2.59)
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where D represents the artificial dissipation, λ is the spectral radii, and ε is the co-

efficient containing the pressure sensor. Figure 2.5 describes the cells used in this

discretization. Here, grid cells with indices 0 and −1 indicate the ghost cells, located

outside the domain.

Figure 2.5: Cells used for the 4th-order artificial dissipation in jth-direction at the

wall cell (j=1)

If a forward differencing of the variable between ghost cells (∆W−1/2 = W0 −W−1)
is equated as

∆W−1/2 = 2∆W1/2 −∆W3/2, (2.60)

then, W−1 is replaced by 3W0−3W1 +W2 such that Equation 2.59 takes a noncentral

(biased) form as follows,

D4
jW1 = (λε)2(W3−2W2+W1)−2(λε)1(W2−2W1+W0)+(λε)0(W2−2W1+W0).

(2.61)

This form of dissipation near walls ensures that the viscous sublayer formed in turbu-

lent flows is conserved while the numerical stability and convergence are enhanced

[117]. In the test studies, convergence acceleration was observed.

Directional Scaling Factor in the Artificial Dissipation of the Turbulence Model

The high AR grids cause over dissipation, and thereby affecting the numerical con-

vergence and accuracy [116]. On high AR grids, especially when AR > 50, use
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of an isotropic scaling factor in the artificial dissipation leads to excessive numerical

dissipation [84]. In METUDES, this numerical difficulty is suppressed by use of a

directional scaling factor, instead. This is applied only for the N-S equations, which

is commonly preferred in literature. In the previous airfoil problems, the high AR

grids were present near the solid walls; therefore, the S-A equation was not the prob-

lem as the eddy viscosity was already hampered by the viscous sublayer. In cavity

flow problems, however, the high AR grids are present away from the wall, and as

mentioned before, this causes discontinuities along the shear layer. Consequently, it

was decided to scale the artificial dissipation of the S-A equation as well. Literature

has a little information about this issue. In [55], it is suggested to add the directional

scaling only to the fourth-order diffusion. In the light of this information, two scaling

factors are computed:

λi = max
(
|~u · ~Ai|, 0.01(|~u · ~Ai|+ c|| ~Ai||)

)
,

λi,AR = λi

(
1 + rζ1 + rζ2

)
.

(2.62)

Here, λi is the spectral radius used for the second-order dissipation term as an isotropic

scaling factor whereas λi,AR is the directional one and added to the fourth-order dis-

sipation. In λi computation, ~u is the local velocity, ~Ai is the cell-face area vector in

ith-direction, and c is the speed of sound. On the other hand, r1 = λj/λi, r2 = λk/λi,

and ζ = 0.66. Here, use of λi,AR is expected to remove the effect of grid spacing dis-

crepancies of high AR cells. This algorithm has resolved the discontinuity problem

upto cell AR of O(4). Thus, the cavity meshing along the shear layer for the rest of

the study is generated, accordingly.

After implementing the above improvements in the solver, the same simulation is

repeated. The new flow contours are shown in Figure 2.6. This instantaneous flow

field represents much further time step than the previous one in Figure 2.4. It shows

that the deformation problem is disappeared completely. Additionally, the new and

old convergence speeds are compared in Figure 2.7 where the residual drop in x-

momentum values is drawn. The interval between two sequential peaks represents

the subiteration number required for one physical time step. The results show that the

running performance of the solver is clearly accelerated.
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Figure 2.6: Flow field by DDES after numerical improvements. Above: eddy viscos-

ity related contours, below: pressure contours
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CHAPTER 3

SIMULATION SETUPS

This chapter discusses how simulation configurations are set up. Specifically, grid

generation strategy, setting of boundary & initial conditions, and selection of time

step are presented. Unless otherwise stated, the simulations carried out in the next

chapters are configured as described below:

3.1 Grid Generation

DES meshing strategies of [111] are partially followed during grid creation. A typical

DES grid is composed of RANS, LES, and Euler zones. The RANS zone is a region

where all eddy structures are modeled. It starts from a solid wall, and usually ends

around the corresponding boundary layer edge. Subsequently, the LES zone, where

the most of the eddies are resolved, extends from the end of the RANS zone to the

beginning of the Euler one. The rest is covered by the Euler zone in which the eddy

and vortical structures no longer exist.

DDES shields an attached boundary layer as a RANS zone. By DDES, the grey-

area is located away from the boundary layer edge. However, when the DDES-SLA

framework is used (as in almost all flow problems in this thesis), it is possible that

the grey-area penetrates inside the outer layer of the boundary layer. This means the

RANS zone may end at the beginning of the outer layer. Therefore, all the computa-

tional grids are created according to this scenario, which differs from the suggestions

in [111].

In the wall normal direction, the first cell height is determined by taking the nondi-
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mensional wall normal distance, y+, as approximately 1. Then, the subsequent grid

nodes are created with a stretching ratio (SR) of 1.2, which is typical in RANS grids.

SR is reduced to 1.05 when the outer layer (and possible LES zone) starts, which is

expected at a distance of δ/3 (δ: boundary layer thickness). This SR value is main-

tained up to the maximum cell dimension, ∆max, corresponding to the minimum

resolved eddy size. After that, no further stretching is applied until the LES zone

ends. In the Euler zone, SR is gradually increased to 1.2, thereby extruding the grid

rapidly. This provides some mesh damping eventually for non-reflective boundary

conditions.

A grid spacing in the spanwise direction, ∆z, is directly dependent on ∆max. In most

cases the domain in the spanwise (lateral) direction is terminated by the periodic

boundary condition such that ∆z becomes uniform. Because cubic (isotropic) cells

are preferred in the LES zone, which includes the eddies that are less dependent on

the geometric boundary, ∆z is to be the same as ∆max. In addition, the span length

should be sufficiently long to cover the largest vortical structure in the domain.

In the problems including straight solid walls such as flatplate, backward-facing step,

and cavity flow, the streamwise grid spacing, ∆x, grows with an SR of 1.2. If there

exists a corner due to the intersection with another perpendicular solid wall, the grid is

clustered towards the corner by following the boundary layer grid strategy, as shown

in Figure 3.1a. In blade section problems, grid nodes along the surface are distributed

according to the slope of the surface. As the slope increases, the mesh spacing gets

finer (see Figure 3.1b). Again, the cubic cells are provided by setting the maximum

of ∆x as ∆max in the LES zone.

As a result, the selection of both ∆max and the span length is vital while creating

a DES mesh. In turbulence aspect, since ∆max exists inside the LES zone, mesh

spacing criterion of LES studies can be used as a guide. In [36], it was suggested that

∆+
z (∆z in wall units) should be less than 40. This is given for low-order (mostly 2nd-

order) spatial algorithms. Because METUDES is of high-order, the above limit can

be relaxed. In aeroacoustic aspect, which is the most determining factor, ∆max should

be set such that high frequency sound waves are resolved. Suppose that the highest

frequency wave to be resolved has a frequency of fmax. Then, ∆max is determined
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upstream corner

(a) Cavity mesh

leading edge

(b) Airfoil mesh

Figure 3.1: Close views of grids showing the grid nodes clustered around a) the up-

stream corner of a cavity, b) the leading edge of the NRELS826 airfoil profile

approximately as

∆max ≤
c

Afmax
(3.1)

where A is the minimum required number of mesh spacings to resolve a wave, and

c is the sound speed. A depends on the spatial accuracy of a solver. For instance,

the standard 2nd-order, 4th-order, and 6th-order algorithms require 15.7, 9.0, and 6.3

mesh spacings, respectively (when convective effects are ignored) whereas the 4th-

order DRP scheme requires only 4.5 mesh spacings to resolve the same wave [126].

To be more conservative,A is taken as 5 in the present simulations. On the other hand,

there is no certain formula for the span length. As Reynolds number and the thickness

of the geometry increase, the span length should be increased as well. In brief, the

selection of mentioned grid criteria is not straightforward. The best way is to perform

a grid dependency study by changing ∆max and the span length, separately. Most of

the flow problems in this dissertation starts with this kind of grid dependency study.

3.2 Boundary Conditions

The computational domains are composed of single/multiple structured blocks. The

boundary conditions (BCs) are set for all faces of each block. At solid boundaries,

no-slip conditions are applied. The freestream values at inlet and/or far field bound-
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aries are specified by the Riemann invariants. For infinite spans, the faces at the

spanwise direction are connected to each other by periodic conditions. In case of a

tunnel grid, tunnel walls are treated as inviscid (slip) wall with symmetry conditions.

In simulations having an initial flatplate wall, a fraction of the wall following the

flow entrance from the inlet boundary employs the slip wall BC. At subsonic outlet

boundaries, pressure is specified as a freestream value whereas the rest of the variables

are computed by linear extrapolations (i.e. back pressure BC). At supersonic outlet

boundaries, all variables including pressure are extrapolated from the inner cells. The

multiblock interfaces are communicated by either a one-to-one blocking strategy or

a high-order overset interpolation. When an O-mesh is created around an airfoil, the

interface between two end-to-end faces are seamed (i.e. seam BC).

Boundary conditions applied on all boundary faces (see Figure 3.2) of each compu-

tational domain demonstrated in Chapters 4 and 5 are listed in Table 3.1. The grid

configurations are shown in the corresponding sections.

Figure 3.2: Boundary faces of a single computational block

3.3 Initial Conditions

All calculations are started by URANS by assigning freestream values everywhere.

The initial value of the turbulence-related variable is set as ν̂t∞/ν = 10−8 thanks to

the modified version of S-A equation [22]. If the BCM transition model is activated,

the initial value is changed as ν̂t∞/ν = 0.015 (Otherwise, the transition could not be
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triggered). After initial transients leave the computational domain, and the mean flow

fields reach statistical stationary state, simulations are continued with the selected

DDES approach.

3.4 Time Step Selection

METUDES conducts a 2nd-order accurate time integration despite its high-order spa-

tial scheme. This indicates that time step, ∆t, should be chosen very carefully; other-

wise, the truncation error due to a large time step might annihilate the gains from the

spatial scheme. On the other hand, a very small time step increases the computational

cost of unsteady simulations.

In wall-resolved LES studies, nondimensional time scale, ∆t+, was suggested to be

in the order of 1 where ∆t+ = u2τ∆t/ν, and uτ is the friction velocity [36]. Since near

the wall region is modeled, this criterion is too conservative for DES. In DES studies,

time step can be computed as ∆t = ∆max/Umax whereUmax represents the maximum

flow velocity in the LES zone, and can be assumed roughly as Umax = 1.5U∞ [111].

This time step corresponds to the CFL number of 1. The dual time stepping approach

of METUDES allows to take the CFL number as 100 approximately. Therefore, time

step can be estimated according to this criterion.

In aeroacoustic simulations, there is an additional criterion that depends on both the

grid resolution (or the maximum frequency of resolvable sound waves) and the tem-

poral scheme. For 2nd-order accurate schemes, at least 5 time steps are required for

one period [111]. Hence, in order to obtain the highest frequency content the acoustic

data should be collected at every time step of Tmin/5 where Tmin = 1/fmax. This

enforces that

∆t ≤ 1

5fmax
. (3.2)

Nevertheless, the appropriate time step requires some experimentation in considera-

tion of the grid resolution.
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CHAPTER 4

VALIDATION STUDIES

This chapter presents the simulations that validate the code implementations of the

methods. For the BCM transition model, incompressible flow simulations over a

flatplate as well as an Eppler E387 airfoil are performed. In addition, an isentropic

vortex convection case is tested for both the multiblock and the overset grid topolo-

gies. Lastly, the IDDES implementation is validated through a backward-facing step

flow problem. All flow problems are performed as unsteady simulations.

4.1 Flatplate Test Case

Incompressible flow over a flatplate with zero pressure gradient is simulated via tran-

sitional DDES approaches. The freestream velocity is set to 5.4 m/s, and Reynolds

number to 3.6× 105 /m. Upstream turbulence intensity (Tu∞) is taken 3.0%, yielding

a bypass transition. This is a well-known validation problem in literature, called as the

T3A case [103]. One of the verification flatplate grids from NASA Langley Reserch

Center [80] is used. The grid is shown in Figure 4.1. It has 137× 97× 7 grid nodes.

Flow enters the domain in +x-direction, and goes over an inviscid wall before the

viscous wall that starts at x = 0 m. The boundary conditions are given in Table 3.1.

The nondimensional time step with respect to speed of sound1 (∆t∗ = ∆tc∞/Lref

where Lref = 2 m) is 5× 10−2.

DDES-BCM and DDES-SLA-BCM3 are conducted for computations. Since there is

no flow separation in this case, both methods yield exactly the same results. Hence,

only DDES-BCM results are presented, here. For comparison, the same problem

1 All nondimensional time steps are given with respect to speed of sound in this dissertation.
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Figure 4.1: 2-D view of the computational domain of the flatplate test case

Figure 4.2: Comparison of γBCM distributions around the flatplate obtained by

METUDES and SU2 codes

is performed by a steady RANS-BCM simulation using SU2 (Stanford University

Unstructured) open-source software [29] in which the BCM model based on the S-A

turbulence equation is present. Figure 4.2 shows the intermittency function, γBCM,

distribution over the viscous wall. The turbulence equation is fully activated when

γBCM = 1.0. DDES-BCM via METUDES reveals non-zero γBCM contours in the

regions very similar to the ones obtained by SU2. However, METUDES estimates

the onset of non-zero γBCM on the wall a little further than SU2 does. In Figure

4.3, triggering terms of the BCM model by METUDES are drawn, separately. It is
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observed that Term1 triggers the intermittency function at x = 0.3 m away from the

wall, and then Term2 takes the function inside the boundary layer approximately at

x = 0.6 m. Hereby, it is understood that the slight difference is caused by Term2.

This is possibly due to the numerical algorithm discrepancies between the two codes

because Term2 constants were calibrated using SU2 in the original study [9].

Figure 4.3: Distributions of Term1 (above) and Term2 (below) around the flatplate

Figure 4.4: The eddy viscosity contours around the flatplate

The eddy viscosity contours are shown in Figure 4.4. Flow remains laminar up to

x ≈ 0.7 m, which is compatible with the previous figures. Then, the transition is

triggered such that flow becomes fully turbulent in a short distance. This behavior

can be observed clearly in Figure 4.5 where the friction coefficient, Cf , distribution

along the wall are compared with an experimental study [103], the original study [9]

that presents the BCM model via RANS, and another RANS study with the γ − Reθ
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Figure 4.5: The friction coefficient distributions along the flatplate viscous wall

transition model [76]. The BCM models reveal similar Cf profiles. In both results,

the laminar behavior is preserved till almost the same location where the production

term of the turbulence equation is activated. However, although the flow suddenly

goes into the fully turbulent regime in the original study, the current study exhibits a

longer transition period. This also explains the discrepancy observed in Figure 4.2.

4.2 Eppler E387 Airfoil Test Case

Flow with freestream velocity of 3 m/s and Reynolds number of 2.0 × 105 /m over

the airfoil is simulated via DDES, DDES-BCM, and DDES-SLA-BCM3. Upstream

Tu∞ is set to 0.1%, and the angle of attack (AoA) to 0◦. Under these conditions,

transition is expected to be initiated under an adverse pressure gradient on the suction

side, after which a laminar separation bubble takes place. Hence, this case is tested

for a separation-induced transition, as is commonly done in literature. Besides, there

is a lot of available data regarding flow over the E387 airfoil in literature. An O-

type DES grid is generated around the airfoil. Since the transition is expected to be

triggered by the adverse pressure gradient, the streamwise grid number on the surface

is important2. In this regard, two grids with different streamwise node number are
2 Indeed, Term1 requires a sufficient mesh resolution since it is the term that triggers transition.
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created: Grid 1 has 257× 73× 7 nodes whereas Grid 2 has 501× 73× 7 nodes. The

close view of Grid 2 is shown in Figure 4.6. Meshing details, boundary conditions,

and initial conditions are provided in Chapter 3. ∆x,max values on the surface of

Grid 1 and Grid 2 are 8 × 10−3 /m and 19 × 10−3 /m, respectively. Accordingly,

the spanwise mesh spacings, ∆z, of each grid are determined to provide cubic cells.

Moreover, the nondimensional physical time step is 1× 10−2.

x/c

y
/c

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

Figure 4.6: 2-D close view of Grid 2 for the E387 airfoil test case. Only odd-

numbered points are shown.

The pressure coefficient distributions from all the current simulations on both grids

are plotted in Figure 4.7. The results are compared with an experiment [73] and the

original BCM study [9] where the corresponding 2-D grid had 699× 179 grid nodes.

The present results with the BCM model are in good agreement with the reference

studies when Grid 2 is used. In contrast, use of Grid 1 fails to capture the ripple

appearing around x/c = 0.7 on the suction side. A similar failure is seen from

DDES with fully turbulent equations. Therefore, not only the transition model but

also the streamwise grid points are important to predict the transition. Even though a

slight difference is observed around the ripple, the proposed BCM model (BCM3) to

be compatible with DDES-SLA achieves almost the same distribution as in DDES-

BCM.

Instantaneous distributions of the triggering terms of BCM are presented in Figure
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Figure 4.7: The pressure coefficient distributions along the E387 airfoil surface

4.8. These are obtained by DDES-SLA-BCM3; therefore, Term3 is also included in

the figures. The intermittency function becomes 1.0 between x/c of 0.6 and 0.7 near

the wall, and in the whole upstream (except very close to the wall, inherently), the

turbulence production is fully activated (see Figure 4.8d). Unlike the previous case,

γBCM is also 1.0 outside the boundary layer where the flow is already laminar. This is

caused by the mathematical expression of Term3 in which VTM sensor has nonzero

values in inviscid regions (see Section 2.1.3.4). Again, the intermittency function is

triggered by Term1 (at x/c = 0.6), and Term2 takes the generated function inside

the boundary layer (at x/c = 0.7). As discussed in Section 2.2.1.1, in unsteady

simulations the continuity of Term1 appearance along upstream is difficult to ensure,

which is observed in Figure 4.8a. Since the unsteadiness is weak in this problem (the

flow is steady, but, time-marching is unsteady), Term2 provides for the generation of

γBCM in most of the upstream (see Figure 4.8b). Term3 compensates the remaining

gaps as desired (see Figure 4.8c).

The averaged flow field with eddy viscosity contours and streamlines are shown in

Figures 4.9a and 4.9b, respectively. The eddy viscosity, on the suction side, is gen-

erated starting from x/c ≈ 0.6. After that, the flow becomes fully turbulent at

x/c = 0.7. Meanwhile, a separated region is observed between x/c = 0.5 and

x/c = 0.7. Both figures show that the incoming laminar flow separates at x/c = 0.5,
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(a) Term1 (b) Term2

(c) Term3 (d) γBCM

Figure 4.8: Instantaneous distributions of the triggering terms (red color: 30.0) and

the intermittency function (red color: 1.0) around the E387 airfoil
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(b) Streamlines

Figure 4.9: The eddy viscosity contours and the streamlines indicating the laminar

separation bubble around the E387 airfoil

and then, it reattaches at x/c = 0.7 as fully turbulent, forming a laminar separation

bubble. This is the transition mechanism which is quite compatible with the observa-

tions in Figures 4.7 and 4.8 as well as the original BCM study [9]. The pressure side,

on the other hand, is kept completely laminar as expected.
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To conclude, the flatplate and the E387 airfoil results validate the BCM model imple-

mentations into METUDES. In addition, it is demonstrated the incorporated model

works with the DDES frameworks properly in steady flows even though they are

solved by unsteady time integration.

4.3 Isentropic Vortex Convection

The implementations of the multiblock and overset grid topologies are validated

through an isentropic vortex convection problem. An isentropic vortex is generated

by Gaussian distribution on a single sinusoidal structured grid having 50×50×7 grid

cells (see Figure 4.10a). The vortex is convected in the +x-direction. The shape of

the vortex must be preserved during the convection process due to absence of diffu-

sion. The time step of the 2nd-order accurate time integration is selected sufficiently

small not to spoil the 4th-order accuracy from the spatial scheme. In Figures 4.10a-c,

the pressure distribution is shown at sequential times (from t0 to t2). The shape is

preserved as expected.

The same problem is tested on the same grid which is divided into two separate sin-

gle blocks where the interface cells overlap perfectly. At the interface, the one-to-one

multiblock communication is set as a boundary condition. The results shown in Fig-

ures 4.10d-e point out that the multiblock implementation works as desired.

In the next test, the second block is replaced with a Cartesian mesh block (see Fig-

ure 4.10g). There is no interface, this time. Instead, the overlapping region includes

two different grid topologies. The solution is repeated by the 2nd- and the 3rd-order

overset interpolation techniques, and their results are shown in Figures 4.10g-i and

Figures 4.10j-l, respectively. It is observed that use of the 2nd-order interpolation

causes some distortions on the vortex shape. On the other side, the 3rd-order interpo-

lation preserves the shape during the convection.

For each plot in Figure 4.10, a cut through the isentropic vortex at y = 0.5 m (along

the vortex center) is taken, and normalized. The resulting pressure distributions are

shown in Figure 4.11. It is observed that although the vortex is perfectly convected

through the identical overlap region by one-to-one communication, some distortions
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(a) t = t0, single (b) t = t1, single (c) t = t2, single

(d) t = t0, one-to-one (e) t = t1, one-to-one (f) t = t2, one-to-one

(g) t = t0, 2nd-order (h) t = t1, 2nd-order (i) t = t2, 2nd-order

(j) t = t0, 3rd-order (k) t = t1, 3rd-order (l) t = t2, 3rd-order

Figure 4.10: Pressure contours of the isentropic vortex convected along single (a-

c) and multiblock (d-l) domains at sequential times. Communication between two

blocks is conducted by one-to-one (d-f), the 2nd-order overset interpolation (g-i), and

the 3rd-order overset interpolation (j-l).
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appear on the overset grids. This is partly due to the different grid topologies. Nev-

ertheless, using the 3rd-order overset interpolation reveals less distortions than using

the 2nd-order one. As a result, it is decided to use the 3rd-order interpolation for the

overset boundary conditions.
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Figure 4.11: Normalized pressure distribution of the isentropic vortex along y = 0.5

m at sequential times. The plots are obtained from Figure 4.10.

4.4 Backward-Facing Step Flow

As discussed in Section 2.2.1.2, in DDES the RANS/LES interface (the grey-area)

shows up around the boundary layer edge whereas the interface shifts to the border

between the inner and outer layers in case of WMLES. The IDDES length scale is
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simply a blend of these two approaches. In this context, the backward-facing step

flow is a good test case for validating the IDDES implementation as the case includes

the RANS/LES interfaces of both the DDES and WMLES frameworks, in separate

regions. This problem is a kind of a channel flow where an abrupt sectional change

exists beyond which the lower wall is shifted downward (see Figure 4.12). Here, it

is expected that the upcoming attached boundary layer is treated as RANS, and the

separated flow turns out to be a LES region, forming a typical DDES case. Addition-

ally, the separated flow reattaches to the wall one step below; therefore, the WMLES

mode gets activated because the inflow already has turbulent contents. This kind of

flow is similar to one that appears in open cavity flow problems except the aft wall. In

open cavities, on the other hand, there is only an impingement on the aft wall which

can be treated as a reattachment zone. Consequently, the backward-facing step flow

is also a good test problem before conducting cavity flow simulations.
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Figure 4.12: 2-D views of the computational grid of the backward-facing step flow

problem. One quarter of nodes are shown. Red lines indicate the block edges.

The simulation parameters are selected to make comparisons with the experiment of
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[120] and the IDDES study of [105]. The Reynolds number is 28, 000 based on the

step height (H), and the Mach number is approximately 0.1. The channel has a depth

of 4H; hence, the area expansion ratio due to the step is 5/4. The upstream viscous

wall length before the step is set as 51H to achieve the measured boundary layer

thickness of 1.07H at x/H = −3.8 in the experiment. There is also an inviscid part

between the uniform inlet and the viscous wall, as in the flat plate problem described

earlier. The span length is 2H with 30 cells distributed uniformly, which matches

with the IDDES base study. The computational grid is composed of two blocks (73×
169 × 31 and 481 × 301 × 31 grid nodes, separately) communicated by one-to-one

multiblock topology. Far and close views of the grid with the edges of the blocks are

shown in Figure 4.12. The mesh is created following the guidelines given in Section

3.1 except that the stretching ratio inside the boundary layers along the reattachment

wall is replaced by 1.14 as proposed in [105]. Besides, the grid nodes of the WMLES

zones are clustered in the streamwise direction as shown in Figure 4.12.

The simulation is carried out by IDDES. ∆t∗ of the unsteady simulation is set to

6 × 10−2. The mean flow field is obtained by averaging the field over time after the

initial transient period passed. The friction coefficient distribution along the reattach-

ment wall is compared in Figure 4.13 with the measurements [120] as well as RANS,

DDES, and IDDES (based on the S-A equation) results of [105]. The trend of the

current Cf distribution is similar with the experiment and the IDDES base results.

The negative peak, indicating a recirculating zone, appears at around x/H = 5. The

straight lines past the x/H ≈ 12 station represent the recovery region. The current

results show an overprediction in the recirculating zone and an underprediction in the

recovery zone, slightly. This might be due to the mesh resolution and/or the solver

accuracy. On the other hand, it is clear that RANS fails to capture the flow behavior,

entirely. Furthermore, DDES could not predict the recirculating zone as accurately as

IDDES. These prove the superiority of IDDES in the reattached flow region.

Figure 4.14 shows Q-criterion isosurfaces at an instance of unsteady computations

which clearly reveal vortical structures related to the developing eddies. The flow

appears perfectly 2-D up to the step corner. After separation, the flow turns into one

containing 3-D structures following a quasi-2D short region. This points out to a

switch from the RANS to the LES modes of IDDES. In the vicinity of the wall one
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Figure 4.13: Comparison of the friction coefficient distributions along the reattach-

ment wall

step below, smaller eddy structures are observed. The WMLES mode is expected to

activate, there. The structures become bigger through the recovery region, and around

x/H = 18 the flow becomes 2-D again (see Figure 4.14a).

Figure 4.15 presents some variables to help understand the switching mechanism of

IDDES. Recall that the IDDES length scale is defined in Section 2.2.1.2 as

lIDDES = f̃d(1 + fe)dw + (1− f̃d)CDES∆IDDES

This equation tells that when f̃d becomes zero, the length scale is equal toCDES∆IDDES,

and therefore, the domain is treated as pure LES. When f̃d = 1, the wall distance, dw,

takes over such that the RANS mode is activated. Figure 4.15a shows the f̃d contours

where the dark regions represent the RANS mode, and the white regions represent the

LES mode. The RANS regions are thinner in the reattachment zone than over the pre-

separation wall and the upper wall. The reason can be understood by analyzing the fB

contours shown in Figure 4.15b. Recall that f̃d = max(1− fdt, fB), and in WMLES

zones, f̃d is equal to fB. Comparing both figures shows that near the reattachment

wall from the step corner (x/H = 0) to the recovery region (x/H ≈ 18), f̃d takes

its value from fB. Hence, these regions (marked in Figure 4.15a) are where IDDES
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(a) 2-D view

(b) 3-D view

Figure 4.14: Isosurfaces of Q-criterion (Q = 0) of an instantaneous flow field around

the backward-facing step geometry from different views

behaves as WMLES by limiting the RANS mode very close to wall. Likewise, f̃d

differs from fB in the rest of the domain, which is treated as DDES. In addition, the

vicinity of the walls in the WMLES regions are investigated in Figures 4.15c-d. The

color change in Figure 4.15c shows the RANS/LES interface, appearing at the end

of the log layer. In order to prevent the Log Layer Mismatch problem (see Section

2.2.1.2), the elevating function, fe, goes to 1 inside the log layer (see Figure 4.15d),

and thereby compensating for the reduction in the modeled Reynolds stresses. As

a result, the ultimate length scale and the eddy viscosity are obtained as in Figures

4.15e and 4.15f, respectively. It is inferred that the reduction of the length scale as

well as the eddy viscosity starts around the same region of the appearance of 3-D

structures in Figure 4.14. Then, they both begin to increase in the recovery region.
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(a) f̃d (b) fB

(c) f̃d around the corner (d) fe around the corner

(e) lIDDES (f) ν̂t/ν

Figure 4.15: Some variables from an instantaneous flow field around the backward-

facing step geometry
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CHAPTER 5

TRANSITIONAL AND CAVITY FLOW SIMULATIONS

This chapter presents the simulations regarding the boundary layer transition as well

as the cavity noise predictions. Transition simulations are carried out over the NREL

S826 wind turbine blade profile near the stall threshold as well as over a circular

cylinder. For the latter, results of a drag crisis phenomena, in which as Reynolds

number increases the drag coefficient decreases suddenly, are shown. Both studies

correspond to severe situations for DDES, as the flow fields include not only large

separated regions but also laminar separation bubbles, slight separations, and reat-

tachment. By these particular studies it is aimed to improve aerodynamic coefficients

by providing DDES with transitional behavior. Transonic and supersonic flow simu-

lations over open cavities are conducted as well. Combining the modifications made

to the DDES, it is aimed to estimate the acoustic field resulting from the complex

flow phenomena over such cavities.

5.1 Flow over an NRELS826 Blade Section

3-D unsteady flow around the NRELS826 wind turbine blade profile, which was de-

signed for turbines with a span of 10− 15 meters by the National Renewable Energy

Laboratory (NREL), is simulated using DDES, DDES-SLA, and DDES-SLA-BCM3

approaches. The flow parameters of the problem are selected according to those of the

available literature data: experimental measurements by Technical University of Den-

mark (DTU) wind tunnels [102], the numerical studies by Çakmakçıoğlu et al. [8]

that performed URANS based on k−ω shear stress transport equations with Langtry-

Menter transition prediction model (denoting as k − ω SST Transition, in the rest of
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this study) as well as DDES based on S-A using CFD++ commercial software, and

the numerical results of Sarlak et al. [101] using LES through DTU’s CFD solver,

EllipSys3D.

Table 5.1: Blade and flow parameters of the benchmark studies where U∞ is the

freestream velocity, Tu∞ is the freestream turbulence intensity, and s/c is the span-to-

chord ratio

Re number U∞ (m/s) Tu∞ s/c

LES [101] 100,000 15 %0.2 0.12

Experiment [102] 100,000 15 %0.2 5

DDES [8] 145,000 20 N/A 5

k − ω SST Transition [8] 145,000 20 N/A 5

Some flow and geometric parameters of the benchmark studies are given in Table

5.1. The simulations are carried out for two Reynolds numbers of 100, 000 (Re1) and

145, 000 (Re2). Mach number is set to ∼ 0.06, which corresponds to 20 m/s. The

selected AoAs are 4◦, 6◦, 8◦, 10◦, and 12◦ for Re1, whereas 8◦, 10◦, and 12◦ for Re2.

5.1.1 Configurations and Setups

5.1.1.1 Geometry

DTU wind tunnel test section dimensions are 1 × 1 × 2 m. The chord length of the

wing is 0.2 m. In this study, a computational domain is built with the same dimen-

sions as the tunnel, except in the spanwise direction. In the experiment the blades has

a wall-to-wall span with negligible gap or full contact between the blade tips and the

side walls of the wind tunnels. Therefore, an infinite span with periodic conditions

is preferred in the numerical simulations in order to reduce the computational ex-

pense. In classical DES simulations of massively detached flow, the spanwise length

is mostly taken as 1 chord length [111]. In contrast, the LES study by [101] shows

that a span-to-chord ratio (s/c) of 0.12 is sufficient for slightly separated flows, as in

the current problem. In this regard, the mesh is formed with a blade span of 0.15
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chord length. Nevertheless, for the highest AoA, a span-length-sensitivity analysis

is performed by doubling the span (see Section 5.1.2.1), since the spanwise length

becomes more critical when stall starts due to spanwise correlations of separation

bubbles.

The location of the blade leading edge with respect to the inlet is similar to that of

the experiment when viewed in the same scales. Since the wind tunnel has fixed inlet

flow direction parallel to its wall surfaces, various angles of attack are configured by

rotating the airfoil itself.

5.1.1.2 Grid Generation

A multiblock structured mesh is generated in 2-D, and then extruded along spanwise

direction for 0.15 chord length (see Figure 5.1). The first block includes an O-mesh

structure around the airfoil and the remaining 4 blocks extend the mesh domain to the

tunnel walls, and inlet & outlet boundaries, as shown in Figure 5.1a. This is a tunnel

grid with an O-H type multiblock topology. In order to be able to capture the wake

region, one block with higher resolution is created in the expected wake region of

the blade section. The mesh resolution is set in accordance with the criteria given in

Section 3.1. All grids are built considering Re2, and used for both Reynolds numbers.

In the wall-normal direction, y+ ≈ 1. In the streamwise direction, ∆x+max ≈ 100 on

the suction side, and ∆x+max ≈ 180 on the pressure side. In the spanwise direction, all

blocks have 25 grid points uniformly distributed with ∆z+ ≈ 45 which corresponds to

6.25×10−3 chord length. This dimensionless spacing is approximately 3.5 times that

of the benchmark LES study. The O-mesh around the airfoil has 297× 71× 25 cells

whereas the whole domain contains 947, 175 cells in total. The airfoil geometry and

block structure together with an enlarged view of the O-mesh can be seen in Figure

5.1b. Table 5.2 compares the grids and the numerical solvers used in the current and

the benchmark studies. It is expected that the use of higher accuracy order gives the

freedom of using coarser grid than the benchmark studies.

81



x (m)

y
 (

m
)

0 0.5 1 1.5
­0.5

0

0.5

(a) O-H type mesh for the whole grid domain com-

posed of 5 blocks

x (m)

y
 (

m
)

0 0.1 0.2

­0.1

0

0.1

(b) O-mesh around the airfoil.

Every other grid lines in both di-

rections are shown.

Figure 5.1: 2-D views of the tunnel grid with multiblock topology around the blade

section having AoA of 8◦

Table 5.2: Simulation parameters of the current and benchmark studies

# of cells y+ mesh type solver accuracy

Current study 947,175 ≈ 1 O-H (multiblock) 4th-order

k − ω SST Transition

as well as DDES [8]
11,434,420 < 1 O-H (overset) 2nd-order

LES [101] 16,777,216 ≈ 1-2 O-H (multiblock) 2nd-order

5.1.1.3 Boundary Conditions

The boundary conditions for the computational domain are given in Figure 5.2. The

application of each condition is described in Section 3.2. It should be noted that in the

studies of k − ω SST Transition and DDES, the effects of the top, bottom and lateral

tunnel walls were all included through no-slip wall conditions. On the other hand,

the LES study used slip wall conditions at the top and bottom walls, and periodic

boundary conditions at the spanwise ends of the domain to reduce the computational

cost, exactly as in the present study. The inlet and outlet conditions are the same as

those of the benchmark studies except a characteristic based inflow boundary type

was used in the k − ω SST Transition and DDES studies.
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Figure 5.2: 3-D view of the computational domain with boundary conditions

5.1.2 Results and Discussion

Simulations are carried out using 120 processors until the flow statistics converge.

Convergence of the flow statistics is determined by drawing the running average of

the aerodynamic coefficients, typically as shown in Figure 5.3. Unsteady data are

collected from t∗1 = 150 to t∗2 = 250. Hence, convergence requires approximately 6

chord convection times based on the freestream velocity. Note that ∆t∗ = 2.5×10−3.
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Figure 5.3: Lift and drag coefficients together with the running averages of the blade

profile changing with dimensionless time at AoA of 10◦ and Re1 via DDES-SLA-

BCM3
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5.1.2.1 Grid Dependency Analysis

In 2-D domain, no grid dependency analysis is done in this case, since this is only

a comparative study with focus on showing the superiority of the SLA length scale

over the standard DDES length scale for revealing the LES-like structures on the same

mesh. Thus, only the spanwise length sensitivity is analyzed. It is conducted by dou-

bling the span dimension. When the flow goes into stall, scope of 3-D effects on the

aerodynamic results might increase, that is, larger structures in the spanwise direction

could emerge. Hence, the high AoA case, i.e. AoA of 12◦, is selected for compar-

isons. Note that for both Reynolds numbers in consideration (Re1 and Re2), this AoA

shows a near-stall or post-stall (see Section 5.1.2.2 and Section 5.1.2.3). The results

of DDES-SLA in Figure 5.4 show that the pressure coefficient, Cp, distributions of

the cases with s/c of 0.15 and s/c of 0.30 for Re1 almost coincide. When the lift

and drag coefficients (Cl and Cd) are compared, only slight differences are observed

(0.35% for Cl and 1.8% for Cd). Consequently, s/c of 0.15 is considered sufficient to

resolve the 3-D structures. The simulations shown hereafter are performed using the

grids with s/c of 0.15.
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Figure 5.4: Cp distributions over the blade surface at AoA of 12◦ and Re1 via DDES-

SLA
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5.1.2.2 Case 1: Reynolds number of 100,000

This section presents the aerodynamic results for the Re1 case. In Figure 5.5, Cl and

Cd values of the wind turbine blade profile are compared with those from the LES and

experimental studies. As seen in the figure, the lift slopes in the linear region obtained

from all current simulations are in good agreement with the measurement. Despite the

much coarser meshes employed, the current simulation approaches both capture the

Cl values more accurately than LES in both pre- and post-stall regions. This is mainly

due to the numerical scheme discrepancies of the solvers1. In the current studies, stall

occurs at AoA of 10◦, the same as the measurement. On the other hand, a similar trend

in the Cd curves is observed in Figure 5.5. After stall, the discrepancies between the

studies increase. Moreover, DDES and DDES-SLA appear to have yielded almost

the same levels in both aerodynamic coefficients. Despite a slight difference in Cl

around stall, use of the BCM transition model makes significant changes to Cd. In

fact, Cd values of DDES-SLA-BCM3 are in very good agreement with those of the

experiment.
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Figure 5.5: Cl andCd values of the wind turbine blade profile for several AoAs around

stall (Re = 100, 000)

Figure 5.6 shows the Cp comparisons with the available AoAs from the benchmark

LES study. Since quite similar Cp profiles are given by DDES and DDES-SLA (as

1 In the LES study [101], the deviations from the experiment is related to inability to estimate the transition
point, the limitations of the subgrid scale model of LES, the numerical schemes, and the short span width. The
main difference between the current study and the LES one is due to the numerical discretization schemes.
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expected from lift coefficients), DDES ones are not included. The results are in good

agreement to a great extent. However, at AoA of 10◦, the present simulations show

neither a separation nor a reattachment as opposed to the LES study, which might be

a clue explaining the difference in stall estimations as previously stated. Note that

in the LES study (see [101]) they related this unexpected prediction of separation to

incapabilities of the standard Smagorinsky subgrid scale model. In general, between

DDES-SLA and the one with the transition model, there is no significant difference.
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Figure 5.6: Cp distributions over the blade surface for various AoAs (Re = 100, 000)

Presented in Figure 5.7 are the friction coefficient distributions (Cf ) along the blade

surface, which possibly explains the discrepancies observed in Cd predictions. At
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AoA of 10◦, all DDES frameworks give almost the same results whereas at AoA of

12◦ some differences occur on the suction side. The peak in the profiles at AoA of 12◦

is an indication to flow separation, causing boundary layer transition. The transition

model, at this point, changes the onset of this separation, which is also observed in

Figure 5.8. The flow separation starts at x/c ≈ 0.06 both in the DDES and DDES-

SLA computations while at x/c ≈ 0.05 in the DDES-SLA-BCM3 ones. The flow

is laminar before separation, and turbulent after the reattachment point, as also indi-

cated by the eddy viscosity levels in Figure 5.10. Hence, this is a separation bubble

inducing the transition mechanism. Since it appears to be located very close to the

leading edge, nearly a sharp stall occurs. Here, the transition model suppresses the

eddy production completely for a very short distance before separation, and thereby

providing a pure laminar separation. Figure 5.9, which shows the intermittency func-

tion contours, supports this conclusion. The function is zero between x/c = 0 and

x/c ≈ 0.05 over the suction side as well as all over the pressure side as expected. In

the other frameworks, the separation onset is retarded slightly due to missing transi-

tion information, which makes a significant difference in estimating the drag coeffi-

cients (reconsider Figure 5.5). Nonetheless, the separations observed in the DDES

and DDES-SLA computations are still laminar, which is enabled by setting the initial

condition of eddy viscosity as almost zero by using the modified version of the S-A

equation.
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Figure 5.7: Cf distributions over the blade surface for various AoAs (Re = 100, 000)
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Figure 5.8: Laminar separation bubble observed around the leading edge at AoA of

12◦ via DDES-SLA and DDES-SLA-BCM3 (Re = 100, 000)

Figure 5.9: The intermittency function contours (red: γBCM3 = 1.0) around the blade

via DDES-SLA-BCM3 (Re = 100, 000)

Comparing the friction coefficient profiles at AoA of 12◦ (see Figure 5.7b), DDES

differs from DDES-SLA only for a fraction of the suction side after the transition.

Hence, it would be beneficial to look at the vortical flow structures over the surface.

Figure 5.10 shows the isosurfaces of Q-criterion colored by the eddy viscosity at

an instant of time. In the DDES-SLA results, the vortical structures turn into 3-D

fine turbulence immediately, whereas the DDES results mostly show somewhat 2-D

behavior. These visuals support that the shear-layer-adapted length scale accelerates

transition from the modeled (RANS) mode to the resolved (LES) mode of DDES,

and acts more like LES. The contour levels signify that this acceleration is achieved

by reducing the viscosity in the initial region of separation. As a result, DDES-SLA

gives somewhat a closer Cd value to the measured value, although Cl values of both
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DDES approaches look very similar.

(a) DDES (b) DDES-SLA

Figure 5.10: Isosurfaces of Q-criterion (Q = 0) colored by ν̂t/ν around the blade at

AoA of 12◦ via DDES and DDES-SLA (Re = 100, 000)

(a) Term1 contours (b) Term1 isosurfaces

(c) Term2 from the original model (d) γBCM from the original model

(e) Term2 after modifications (f) γBCM after modifications

Figure 5.11: Transition model terms (red color: 30.0) and the intermittency function

(red color: 1.0) around the blade surface at AoA of 10◦ (Re = 100, 000)
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Lastly in this section, the functions of the BCM model are presented at AoA of 10◦.

Figure 5.11 shows instantaneous contours of Term1, Term2, and γBCM variables. The

same problem is solved by DDES-SLA-BCM using the original BCM model to com-

pare with the current one involving modifications recently done to the model (see

Section 2.2.1.1). As mentioned before, during solutions of unsteady problems Term1

may not exist permanently along the downstream. This tackled case has strong un-

steadiness such that nonzero Term1 values disappear instantly at some points both in

the spanwise and streamwise directions (see Figures 5.11a-b). This spoils the per-

manence of γBCM generation (and the eddy viscosity production) outside the bound-

ary layer, as time advances. Consequently, Term2 could not activate γBCM inside

the downstream boundary layer, as shown in Figures 5.11c-d. Hereby, the proposed

Term3 as well as the modified version of Term2 could trigger the intermittency func-

tion in the desired regions, as evident from Figures 5.11e-f.

5.1.2.3 Case 2: Reynolds number of 145,000

In this case, results for the Re2 case are presented in the same manner as Section

5.1.2.2. Table 5.3 gives the aerodynamic coefficients for the three computed AoAs

(8◦, 10◦ and 12◦) and compares with the benchmark studies including DDES and k−ω
SST Transition of [8]. Apparently, the lift coefficient results of the AoA of 8◦ case

are overpredicted by the current DDES approach when compared to the benchmark

DDES study which has finer grid domain in the streamwise and normal directions.

On the contrary, DDES-SLA with and without the transition model gives almost the

same Cl value as the benchmark DDES. Therefore, this can be considered as an in-

dication that DDES needs finer grids than DDES-SLA to capture the same Cl values.

Similar statements can be made regarding the drag coefficient results. On the other

hand, as AoA is increased, the current studies with DDES and DDES-SLA could not

reveal a stall angle, unlike the other benchmark simulations. In addition, all current

approaches overpredict the lift coefficients and underpredicted the drag coefficients

when compared to the benchmark ones. This can be explained by the grid resolution

as well as the span width differences. Nevertheless, DDES-SLA gives closer results

than DDES.
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Table 5.3: Comparison of lift and drag coefficients of the blade section

AoA of 8◦ AoA of 10◦ AoA of 12◦

Cl Cd Cl Cd Cl Cd

DDES 1.446 0.0318 1.559 0.0404 1.6982 0.0524

DDES-SLA 1.378 0.0332 1.509 0.0415 1.604 0.0578

DDES-SLA-BCM3 1.380 0.0270 1.505 0.0340 1.530 0.0605

DDES [8] 1.355 0.0284 1.374 0.0456 1.315 0.0744

k − ω SST Transition [8] 1.202 0.0281 1.322 0.0472 1.343 0.0672

When the transition model is involved into DDES-SLA, closer Cl and Cd values to

the benchmark values are observed at AoA of 12◦, as shown in Table 5.3. The same

results also indicate a stall behavior after AoA of 10◦. However, stall starts at AoA of

8◦ in the benchmark simulations, unlike DDES-SLA-BCM3. This can be related to

the grid resolution difference as stated earlier. It should be noted here that the k − ω
SST Transition simulation had the same fine grid domain as the DDES of the same

study, but yielded the closest results to the experimental ones. Hence, considering

both DDES-SLA-BCM3 and k − ω SST Transition simulations, use of transition

models could be necessary in such low Reynolds number wing flows.

In order to examine the reason of observed discrepancies, pressure coefficient distri-

butions on the surface and the streamlines over the blade are plotted in Figure 5.12

and Figure 5.13, comparing the results at AoAs of 8◦ and 12◦, respectively. At AoA

of 8◦, whereas k − ω SST Transition simulation predicts a sudden Cp change around

the middle of the upper surface, both standard DDES studies fail to capture it. This

is also emphasized in the study of [8]. At this point, DDES-SLA and DDES-SLA-

BCM3 results reveal a ripple, similar to those of the k − ω SST Transition. This is

also noticeable in the streamlines, which can be related to the Cp distribution. The

reason of this relation is that such ripples indicate a sudden velocity change of flow.

This is obviously caused by a separation bubble since the surface inclination of the

airfoil does not change abruptly at this point, and there is no compressibility effect to

change the velocity as well. When Figure 5.12 is analyzed, the mentioned separation

bubble is only observed in DDES-SLA among the methods without transition mod-
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els. The explanation of the failure of DDES studies is that the flow does not involve

a massively separated region, a well-known requirement for classical DES/DDES.

On the other hand, success in DDES-SLA comes from the SLA subgrid length scale

originally proposed for shear layer separations. The findings show that DDES with

the SLA length scale has a potential to simulate slightly separated flows. Note that

the location of this bubble is not exactly the same as in the k−ω SST Transition sim-

ulation. This is expected due to the lack of a transition model. DDES-SLA-BCM3,

on the other hand, not only captures the beginning of the ripple, but also computes

the upstream region better than DDES and DDES-SLA, thanks to the BCM transi-

tion model. Considering the ripple onset together with the eddy viscosity levels to be

shown below in Figures 5.14a-b infers that this ripple is a laminar separation bubble

that induces the transition.
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Figure 5.12: Cp distributions over the surface (left) and the streamlines around the

blade (right) at AoA of 8◦ (Re = 145, 000)

The results of the AoA of 12◦ case in Figure5.13 show that although Cp distributions

do not reveal much difference among all numerical studies, a small ripple near the

leading edge is only seen in the k − ω SST Transition one. This time, DDES-SLA-

BCM3 fails to predict the ripple as well, which may indicate an insufficient grid

resolution along the streamwise direction.

Figure 5.14 demonstrates isosurfaces of Q-criterion around the blade at AoAs of 8◦

and 12◦. Likewise in the case of Re1, at both AoAs DDES-SLA reveals more 3-D

structures than DDES. In other words, the structures appearing in the DDES results
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Figure 5.13: Cp distributions over the surface (left) and the streamlines around the

blade (right) at AoA of 12◦ (Re = 145, 000)

are formed of mostly 2-D big vortices whereas DDES-SLA obviously seems to pro-

vide the transition of the LES mode earlier. In addition, at AoA of 8◦, DDES reveals

vortical structures on the pressure side, in contrast to DDES-SLA. In fact, those struc-

tures should not be generated on the pressure side. The reason of this behavior is not

known although overcoming is simply taking a little higher initial ν̂t value. Another

important observations from DDES-SLA isosurfaces at AoA of 8◦ is the structures

firstly appear just outside the boundary layer edge, and then in a short distance they

cover all over the near wall regions, as evident in Figure 5.14b. This may indicate the

presence of the Kelvin-Helmholtz (K-H) instabilities, detected by the SLA sensors.

These are the primary instabilities triggering separation-induced transition. Here, un-

like DDES, DDES-SLA unlocks the instabilities, and makes the downstream region

completely 3-D. This can explain the superiority of DDES-SLA over DDES in pre-

dicting aerodynamic coefficients.

Figure 5.15 demonstrates the ratio of the eddy related viscosity (ν̂t) to the molecular

viscosity (ν) around the blade given by the current simulations. It is evident that the

SLA subgrid length scale reduces the eddy viscosity to increase the LES content, as

is already stated in the previous case (Re1). This is related directly to the emergence

of 3-D structures shown in Figure 5.14. DDES-SLA-BCM3, on the other hand, main-

tains the leading edge (indicated by a rectangle in Figure 5.15) and the pressure side

fully laminar whereas DDES-SLA generates some eddy viscosity there. The BCM
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(a) AoA of 8◦ via DDES (b) AoA of 8◦ via DDES-SLA

(c) AoA of 12◦ via DDES (d) AoA of 12◦ via DDES-SLA

Figure 5.14: Isosurfaces of Q-criterion (Q = 0) colored by ν̂t/ν around the blade at

AoAs of 8◦ and 12◦ via DDES and DDES-SLA (Re = 145, 000)

(a) DDES (b) DDES-SLA

(c) DDES-SLA-BCM3

Figure 5.15: ν̂t/ν contours of mean flow fields at AoA of 12◦ (Re = 145, 000)

94



model enhances the aerodynamic performance in this way.

One may notice that simulating both the pre- and post-transition regions accurately is

vital for this type of flow problems. In this regard, DDES-SLA-BCM3 gives plausible

results by blending the SLA length scale and the BCM model. It should be pointed

out again that the BCM transition model captures the transition onset without solving

any additional differential equations.

5.2 Flow over a Circular Cylinder

Flow over a circular cylinder is a difficult problem for DDES because different flow

regimes are involved in a way that a Reynolds number (Re) increment yields a drag

crisis, namely a sudden decrease in drag, after a certain point. The aim of this study

is to compare the prediction capabilities of different frameworks based on URANS2,

DDES, DDES-SLA, DDES-BCM, and DDES-SLA-BCM3. In this regard, flow with

a Mach number of 0.1 is simulated at various Reynolds numbers (Re of 104, 105, 5.0×
105 and 106).

5.2.1 Grid Generation and Boundary Conditions

An O-grid is generated around the 2-D circle and then extruded with a uniform spac-

ing, ∆z, in the spanwise direction. The mesh generation parameter details are given

in Section 3.1. Wake resolution is quite important in this problem as large vortices

emanating from an unsteady separation from a blunt body are shed along the wake in

a repeating pattern (Kármán vortex street). Thus, in the mesh generation procedure

in the x − y plane, the cylinder wake is divided into three regions as suggested by

[111] (D: diameter of the cylinder): Viscous (0.5D − 1.5D), Focus (1.5D − 15.0D),

and Euler Regions (15.0D−50.0D). Viscous and Focus Regions are the zones where

turbulent structures are resolved directly by the LES mode; therefore, ∆max (= ∆z) is

kept constant there. ∆z equals to 0.03125D considering [111]. For grid dependency

analysis, an additional grid is examined having different ∆max = 2∆z (see Table 5.4

for Grid 1 and Grid 2). Changing the span length is also studied, using the same grid
2 URANS results are included to show a superiority of DDES.

95



resolution as in Grid 2. 0.5D, 1.0D, and 1.5D values are selected for this purpose,

referring to as Grid 2, Grid 3, and Grid 4, respectively. Close and far views of the

two grids having different resolutions in the wake region are shown in Figure 5.16.

Grid 2 is a single block domain whereas Grid 1 is composed of three blocks (see Fig-

ure 5.16b) that are communicated by 3rd-order overset technique in the overlapping

regions. Once again, boundary conditions can be found in Table 3.1.
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Figure 5.16: Close and far views of two grids having different wake resolutions over

a cylinder
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5.2.2 Results and Discussion

Parallel simulations are performed using multiprocessors, the number of which varies

from 32 to 64. ∆t∗ is equal to 5×10−1, which is rather big comparing to the previous

problems since the field is dominated by large eddies. Mean flow values are obtained

by averaging the unsteady flow data gathered for 300 nondimensional time after 100

nondimensional time has passed.

5.2.2.1 Grid Dependency Analysis

Grid dependency study is performed at the largest Reynolds number, which is 106.

Table 5.4 shows some grid parameters with separation angles and drag coefficients

obtained by DDES. The values of the benchmark study that employed DDES with

γ−Reθ transition model [107] based on k−ω SST eddy viscosity equations are also

included to make comparison. It is shown that the wake resolution of Grid 2 is suffi-

cient to predict aerodynamic values. On the other hand, when the wake resolution is

kept constant, it is observed that at least 1.0D span length is necessary. Hence, the rest

of the simulations are performed on Grid 3. Note that ∆z that is twice the benchmark

one is not examined in the grid dependency study. This is to demonstrate the supe-

riority of DDES-SLA over DDES as the SLA length scale is less dependent on the

spanwise grid spacing (recall Section 2.1.3.4). Lastly, the total cell number is much

lower than the benchmark one. It should be emphasized that the benchmark simula-

tions are performed employing the EllipSys3D code which is 2nd-order in space and

time, whereas the current computations are carried out by a high-order code.

5.2.2.2 Simulations

In this section the attained mean flow fields are compared with those given by DDES

with and without γ−Reθ transition model presented in [107], as well as experimental

data of [123, 27]. In the present computations the turbulent intensity is taken as

0.13 just as in the benchmark studies. This parameter is used only for the Term1

calculations in DDES-BCM and DDES-SLA-BCM3. It should be noted that unlike

the previous problems, the original BCM model used for DDES-BCM provides a
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Table 5.4: Grid dependency study for cylinder flow

Grid 1 Grid 2 Grid 3 Grid 4 DDES [107]

∆z 0.03125D 0.03125D 0.03125D 0.03125D 0.0156D

∆max 0.03125D 0.06250D 0.06250D 0.06250D -

span length 0.5D 0.5D 1.0D 1.5D 2.0D

total # of cells 0.82× 106 0.69× 106 1.37× 106 2.1× 106 8.4× 106

Cd 0.60 0.59 0.49 0.47 0.42

θsep 112.5 110.7 106.9 106.3 109.6

permanent intermittency function over the surface in this problem since the time and

length scales are big enough. Therefore, the results of DDES-BCM are included as

well.

First, the drag coefficient values, computed from the averaged flow field, are given

in Figure 5.17. All referenced data are included for comparison. For clear visual-

ization, the results are divided into two groups. The drag crisis can clearly be seen

in the measured data after Re of 2 × 105. Before this, the drag values appear to be

almost constant except at Re of 104. It is evident from Figure 5.17a that the trend of

the measurements is not predicted by the simulations without a transition model. In

addition, the DDES and DDES-SLA simulations show a constant decrease whereas

URANS computations are of a total failure. This indicates that all the DDES ap-

proaches appear to have performed much better than URANS at each Reynolds num-

ber, as expected. The present DDES results are in fair agreement with the benchmark

DDES ones, yielding that the grid resolution can be considered sufficient. Moreover,

among the methods without transition models, DDES-SLA gives the closest results

to the benchmark ones. On the other side, in Figure 5.17b, the drag crisis can be

observed by the simulations using a transition model. Interestingly, the DDES-SLA-

BCM results are in more agreement with the benchmark transitional DDES and the

experiment results than the DDES-SLA-BCM3 ones.

The onset angles of wake separation (θsep, starting from the stagnation point) are

shown in Figure 5.18a. Here, wake separation means flow separation that results in a

wake. Figure 5.18b, on the other side, presents the angles at which the eddy viscosity
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Figure 5.17: Comparison of drag coefficients of the cylinder flow for different

Reynolds numbers. For clear visualization, the results are divided into two groups.
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Figure 5.18: The onset angles of the flow separation forming wake as well as certain

eddy viscosity values (dashed dot: ν̂t/ν = 0.001, solid: ν̂t/ν = 5.0) for different

Reynolds numbers

reaches some certain values. Each solid line in this figure represents the first ap-

pearance of fully turbulent flow. Note that both figures include only the DDES-SLA,

DDES-BCM, and DDES-SLA-BCM3 results from the current studies since they pre-
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dict more accurate Cd values than the others. At Re of 104, laminar flow separates

just before the angle of 90◦, and then forms wake without reattachment on the surface,

supported by Figure 5.20a. The flow becomes turbulent around the angle of 120◦ as

shown in Figure 5.18b. This behavior can be observed in all numerical studies. As Re

increases up to the critical point (Recritical ≈ 2 × 105), laminar-to-turbulent transition

is not expected before the wake separation. Besides, according to the experiment and

the transitional DDES study from literature, flow keeps separating around the same re-

gion up to Recritical. Re of 105 results from the current simulations except DDES-SLA

also follow this trend. When looking at both Figure 5.18a and Figure 5.18b, DDES-

BCM and DDES-SLA-BCM3 exhibit a transition to turbulent flow downstream from

the separation point, as desired. This is achieved by suppressing the turbulence pro-

duction until transition criteria are met, thanks to the BCM model. DDES-SLA, on

the other hand, shows a late separation considerably at the corresponding Reynolds

number. In fact, a reattachment is observed in DDES-SLA, retarding the wake sepa-

ration. Figure 5.20b can support this observation. This results in an early drag crisis,

which is compatible with the Cd results of DDES-SLA (see Figure 5.17).

The reason for the sudden increase of θsep after the critical Reynolds number, as ob-

served in the measurements, can be attributed to that the separated laminar flow turns

into turbulent rapidly such that it reattaches to the surface, followed by a wake sep-

aration downstream. This behavior is exhibited only when using the SLA subgrid

length scale (at Re of 5.0 × 105), resulting in a good agreement with the experiment

in estimating θsep. The delay of wake separation revealed by the SLA length scale can

be seen in Figure 5.19, which shows streamlines over the cylinder. Figure 5.19e, a

close view of the red spot in Figure 5.19d, shows the initial separation, reattachment,

and the second separation obtained by DDES-SLA. The reattachment part reduces

the pressure drag caused by the wake. Although the skin friction increases due to

turbulent boundary layer, the drag coefficient is reduced in total. Hence, the drag

crisis phenomena occurs. The same spot is plotted for DDES-SLA-BCM3 as well

(see Figure 5.19f). It should be noted that in the DDES-SLA-BCM3 results the first

separation point is not an inflection point on the wall. Instead, that point is the starting

point of a reverse flow inside the boundary layer. Unlike the others, the separated flow

is revealed without an inflection point, which is not physical. This indicates an in-
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(a) URANS (b) DDES

(c) DDES-BCM (d) DDES-SLA

(e) DDES-SLA (close view) (f) DDES-SLA-BCM3 (close view)

Figure 5.19: Averaged streamlines over the cylinder obtained by different methods

(Re = 5.0× 105)

compatibility between SLA and BCM3 for this problem. This might be the reason for

the differences observed in the Cd values. On the contrary, methods without SLA do

not show any reattachment at all, as evident from Figures 5.19a-c at Re of 5.0× 105.

Lastly, at Re of 106, θsep is predicted more accurately by SLA again. It seems that an

increment of the eddy resolution by rapid switching to the LES mode helps capturing

flow reattachment.

In addition to the results from Figure 5.18, in DDES-SLA, the eddy viscosity reaches

a fully turbulent value significantly earlier than the wake separation onset for the
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(a) Re = 104 (b) Re = 105

(c) Re = 5.0× 105 (d) Re = 106

Figure 5.20: Averaged streamlines over the cylinder obtained by DDES-SLA for dif-

ferent Reynolds numbers

last two Reynolds numbers. However, DDES-SLA can exhibit a separation bubble

although the incoming flow is turbulent (compare Figures 5.18b and 5.19e). The

reason is when SLA detects the K-H instabilities, it reduces the eddy viscosity, and

thereby causing the separation. Nevertheless, the success of the simulation methods

with the BCM transition model in estimating drag force is achieved by suppressing

the eddy viscosity production until separation. It should be emphasized that the BCM

model is much cheaper than the other transition model used in the benchmark study.

The k − ω − γ − Reθ approach involves solving 9 equations in total. Therefore, it is

estimated up to 33% increased efficiency of the solution algorithm when BCM based

on the S-A one equation is used instead (6 PDEs against 9).

Time-averaged streamlines over the cylinder are shown in Figure 5.19 and Figure

5.20. In the first figure, it is seen that URANS creates narrower wake as compared

to the others at the same Re. DDES and DDES-BCM exhibit similar wake shapes

whereas DDES-SLA reveals two separation zones as spotted in red rectangle, which is

already discussed. On the other hand, Figure 5.20 shows the change of the wake shape

as Re increases via DDES-SLA. It is observed that the turbulent flow separations yield
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(a) URANS (b) DDES (c) DDES-SLA

Figure 5.21: Mean eddy viscosity (ν̂t/ν) contours obtained by different methods

(Re = 105)

(a) URANS (b) DDES (c) DDES-SLA

Figure 5.22: Instantaneous isosurfaces of Q-criterion colored by eddy viscosity levels

(ν̂t/ν) obtained by different methods (Q = 103, Re = 105)

(a) URANS (b) DDES (c) DDES-SLA

Figure 5.23: Instantaneous vorticity contours at wake region obtained by different

methods (Re = 106)

wider wake regions than the laminar one as in the Re of 104 case.

The effect of eddy viscosity levels on the flow resolution can be seen in Figures 5.21,

5.22, and 5.23 showing mean eddy viscosity contours, instantaneous Q-criterion lev-

els, and instantaneous vorticity contours over the cylinder, respectively. It appears

that URANS yields larger eddy viscosity values in the wake region because the ed-
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dies are modeled everywhere. This causes the turbulent structures to appear as com-

pletely 2-D. On the contrary, DDES can reveal 3-D contents by resolving the eddies

in the wake region. Use of SLA, on the other hand, accelerates the activation of the

eddy-resolving mode so that 3-D structures suddenly appear after flow separation,

unlike DDES. The reduction of eddy viscosity at flow separation onset provides this,

as already discussed. Vorticity snapshots support these conclusions.

5.3 Transonic Flow over an Open Cavity

This section presents the computations of a transonic open cavity flow and the noise

produced. Mach number and Reynolds number are set to 0.85 and 6.75×106, respec-

tively. Simulations are performed through DDES, DDES-SLA, and IDDES-SLA. In

this problem, flow is fully turbulent before it goes over the cavity geometry; hence,

no transition model is used.

5.3.1 Configurations and Setups

5.3.1.1 Geometry and Boundary Conditions

The investigated flow configuration is an open cavity with a length-to-depth ratio

(L/D) of 5. This configuration matches that of the widely studied M219 case, and

hence the computed results could be compared to the available M219 data.

The computational domain is formed of two structured mesh blocks, one covering the

inside of the cavity, and the other outside of it. Two different configurations are han-

dled, called as Configurations 1 and 2. Configuration 1 represents the classical M219

case that has 5 solid walls inside the cavity. On the other side, Configuration 2 has no

physical lateral solid walls, and thereby having only 3 solid walls inside the cavity.

Besides, Configuration 1 has wider span in the outer block than Configuration 2. The

rest of the domain dimensions are the same in both configurations. A schematic of

the computational domain with relevant dimensions and outer boundary conditions is

shown in Figure 5.24 whereas the outer span differences between the configurations
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can be seen in Figure 5.25. The dimensions are given as follows,

xa/D = 45, xb/D = 5, L/D = 5, xc/D = 177, y/D = 35, W2/W = 8

(5.1)

In Configuration 1, width-to-depth ratio (W/D) is 1 in the inner block while being 8

in the outer one. Riemann invariant based far field conditions are applied on the outer

span faces. The inner walls are treated as no-slip walls. In Configuration 2, both mesh

blocks, inside and outside the cavity, are set to have the same width. Periodic BC is

applied on the lateral boundaries of the outer block. However, inside the cavity either

periodic or slip wall conditions are enforced to avoid boundary layer resolutions such

that the computational resource requirements are lowered, as compared to Configu-

ration 1. The effects of this approach are evaluated using the lateral dimensions of

0.5D, 1.0D, and 1.5D, while keeping the mesh resolution in that direction fixed. The

rest of BCs, available in Section 3.2, are the same in both configurations.
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Figure 5.24: Schematic of Configuration 2 with boundary conditions
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Figure 5.25: Comparison of outer span widths between two configurations. Red lines

belong to Configuration 1.

5.3.1.2 Grid Generation

DES gridding strategies given in Section 3.1 are followed for both configurations.

Near the walls, y+ is taken as 1, leading the first cell distance away from all the walls

to equal to a physical dimension of 2×10−5D. The grid is stretched in the wall-normal

direction with a ratio of 1.2 up to the boundary layer edges. In case of IDDES, in or-

der to capture the WMLES region, which is the impingement zone occurring around

the aft corner of the cavity, a stretching ratio of 1.14 would be a better choice as

pointed out in Section 2.2.1.2. Nevertheless, it is commented out in [105] that 1.2 is

also an acceptable growth rate. In a sense, over all the walls RANS boundary layer

mesh is created. On the other hand, in the LES region inside the cavity, ∆max is set

to resolve the high frequency feedback mechanisms. In this context, two grids with

different ∆max values are generated for Configuration 2: ∆max,1 = 3 × 10−2D and

∆max,2 = 4.5× 10−2D. In the outer block, cells with ∆max are maintained up to 1D

length in the upward, y-direction from the cavity mouth, as well as up to 1D length

downstream from the aft corner to ensure that the vortical structures originated along

the shear layer and their impingement on the aft wall are resolved properly. The rest

of the mesh in the x− y plane is stretched rather rapidly, yielding some mesh damp-
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Table 5.5: The details of the cavity grids

Grids y+ W/D ∆max/D total # of cells spatial scheme

Grid A ∼ 1 0.5 4.5 ×10−2 ∼ 0.5 million 4th-order DRP

Grid B ∼ 1 1.0 4.5 ×10−2 ∼ 1.0 million 4th-order DRP

Grid C ∼ 1 1.5 4.5 ×10−2 ∼ 1.5 million 4th-order DRP

Grid D ∼ 1 1.0 3.0 ×10−2 ∼ 2.4 million 4th-order DRP

Grid E ∼ 1 1.0 3.0 ×10−2 ∼ 13.3 million 4th-order DRP

LES [63] wall model 1.0 3.0 ×10−3 ∼ 6.0 million 2nd-order

IDDES [69] ∼ 1 1.0 1.5 ×10−2 ∼ 28.7 million 3rd-order Roe

ing eventually for non-reflective property along with the outer boundary conditions.

In the spanwise direction, the grids that belong to Configuration 2 are extruded uni-

formly with a dimension of ∆z = ∆max to have cubic cells. In Configuration 2, 4

different computational grids, denoted A, B, C, and D, having 2 different ∆max val-

ues and 3 different lateral dimensions are used for studying their effects. Only one

grid is created for Configuration 1, denoted E, which has the same 2-D grid topology

in the x − y plane as Grid D. In the spanwise direction in Grid E, the inner block is

clustered through the lateral faces whereas it is extruded with a stretching ratio of 1.2

in the outer block from the cavity width edges to the far field boundaries. The details

of the grids together with those of the benchmark studies from literature are tabulated

in Table 5.5.

The results are compared with those of an LES study [63], an IDDES study [69], and

measurements [45] from literature. As indicated in Table 5.5 all the employed grids

of Configuration 2 in the present study are coarser than those of the benchmark cases.

One reason is the present use of a higher order solver enabling of setting a larger max-

imum cell dimension in the LES region. Besides, there are lateral viscous walls inside

the cavity in both the LES and IDDES studies in literature, and corresponding outer

domains have wider spans. The present study aims to capture similar turbulent and

acoustic environment without placing physical lateral walls, which gives the benefit

of using less demanding grids. This approach, however, necessitates to investigate the

effects of spanwise dimensions, and this is done in the present study. A close view
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of Grid D is provided in Figure 5.26. On the other hand, Grid E which has the same

configuration as those of the literature studies are inherently much finer than the other

current grids. However, it is still coarser than the grid of benchmark IDDES study.

In addition, the reason why the LES grid from literature has a lower cell number than

Grid E can probably be explained by the use of the wall model near solid walls in the

related study. Figure 5.27 demonstrates a close view of Grid E.

X

Y

Z

(a) 3-D view

X

Y

Z

(b) 2-D view

Figure 5.26: Close views of Grid D showing one every four cells

X

Y

Z

Figure 5.27: 3-D close view of Grid E showing one every four cells at IJK plane

surfaces

5.3.2 Results and Discussion

The simulations that use Grids A-D are carried out using 112 cores, and for the one

with Grid E, 280 cores are used. Since the effects of different grids and lateral BC

options are evaluated in the study, for clarity all these subcases are summarized in

Table 5.6, including some additional parameters. ∆t∗ is set to 1.25 × 10−3 for all

the computations. This corresponds to a physical time step of 2 × 10−6 s. Data
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Table 5.6: The details of the transonic open cavity flow simulations

Methods grid inner lateral BC ∆tsampling (s) Tsampling (s)

DDES A, B, C periodic 0.8 ×10−5 0.24

DDES-SLA B, D periodic, slip wall 0.8 ×10−5 0.2 - 0.32

IDDES-SLA D slip wall 0.8 ×10−5 0.32

IDDES-SLA E no-slip wall - -

LES [63] - viscous wall 1.0 ×10−5 0.5

IDDES [69] - viscous wall 1.8 ×10−5 0.295

sampling time step, ∆tsampling, is taken as 0.8× 10−5 s, which is quite similar to those

of the reference studies. Computed data is collected over physical durations, Tsampling,

ranging from 0.2 s to 0.32 s. Note that Grid E could only be simulated until mean flow

results are obtained. The computational resources of this dissertation is not enough to

maintain the corresponding simulation to gather acoustic data. Therefore, the results

of Grid E are presented only for mean flow fields.

5.3.2.1 Mean Flow Fields

Mean flow quantities are obtained by temporal averaging of the whole field, which re-

quires a physical time period of about 0.1 s. Turbulent kinetic energy (TKE) levels are

extracted from the mean velocity field. About 500 instantaneous flow fields are suffi-

cient to obtain statistically converged mean velocity and TKE profiles. The computed

profiles along the cavity at the midspan plane from all the cases described in Table 5.6

are demonstrated in three separate figures for clear visualization. The reference LES

and IDDES data are included in plots of all these figures for comparison. Figure 5.28

shows results computed by DDES on Grids A, B, and C as well as by DDES-SLA on

Grid B. All the corresponding grids have lateral periodic BC. The results show that

all the DDES approaches employed are capable of capturing the time-mean quantities

around the cavity without lateral physical walls. Except for W/D = 0.5, the DDES

results are not away from those of the reference studies, indicating the domain width

should at least be equal to 1.0D, in order to capture the mean flow characteristics
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Figure 5.28: Comparisons of mean flow velocity and TKE profiles along the cavity at

middle of the span

observed in the M219 cavity problem. In addition, the present computations reveal

in general quite similar flow profiles to the benchmark IDDES data, which deviate

from the LES ones in the vicinity of the aft wall, especially for the normalwise veloc-

ity and TKE results (see Figures 5.28b-c). The current profiles appear to have larger

deviations from the reference IDDES data, in comparison to LES. The only excep-

tion is the TKE profile at x/D = 0.5 where the DDES-SLA prediction is better than

the benchmark IDDES, as indicated in Figure 5.28c. This improvement is achieved

by accelerating transition to the LES mode using the SLA length scale. The corre-
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sponding region is dominated by the K-H instability which is investigated in details

later.

Figure 5.29 presents the profiles pertain to DDES-SLA and IDDES-SLA calculations

on Grids B and D. This figure also compares the results from periodic and slip wall

BC applications on the lateral boundaries inside the cavity. It is observed that there is

no evidence that the fine grid (Grid D) improves the averaged quantities. Neverthe-

less, DDES-SLA and IDDES-SLA simulations with slip wall conditions on the lateral
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Figure 5.29: Comparisons of mean flow velocity and TKE profiles along the cavity at

middle of the span
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cavity boundaries are conducted on Grid D in order to resolve high frequency acous-

tic feedback. Applying slip wall condition there makes an improvement in capturing

the gradients towards the aft wall even though the deviations in TKE profiles on the

cavity mouth horizontal center plane are somewhat increased. The intersection of two

different lateral BCs may be responsible for this effect. In addition, IDDES-SLA en-

hances the profile predictions around the aft wall in comparison to DDES-SLA. The

former almost captures the benchmark IDDES velocity profiles in the corresponding

region.
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Figure 5.30: Comparisons of mean flow velocity and TKE profiles along the cavity at

middle of the span
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On the other hand, Figure 5.30 includes IDDES-SLA results with slip wall (Grid D)

and no-slip wall (Grid E) BCs, separately. Recall that Grid E is the only one that

belong to Configuration 1, which has the same configuration as in the benchmark

studies. Comparison of IDDES-SLA approaches on Grid D and Grid E shows that

while use of actual M219 configuration improves the streamwise velocity profiles

towards the aft wall, a slight enhancement is observed in capturing other profiles.

Figure 5.31 shows the streamlines associated with the mean flow fields obtained using

the aforementioned DDES frameworks. In all the computed results, the separated

flow seems to impinge on to the aft corner. This is the typical behavior of an open

cavity flow. DDES appears to yield a large vortex with its center located at around

x/D = 3, and two small vortices in the form of secondary flows near the corners.
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Figure 5.31: Streamlines of the mean flow fields at middle of the span
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When SLA is activated, the vortex at the front corner becomes smaller in size and

the large one gets focused around two centers, approximately at x/D = 2.5 and

x/D = 3.5. Also, the lateral domain termination with the slip wall condition changes

the vortex shapes considerably. The second center of the large zone shifts towards

the small vortex at the back, which results in bending of the shear layer downward.

This behavior is consistent with the previous graphs in which the velocity gradients

have some differences through the aft wall when the lateral walls are treated as of

the slip type. DDES-SLA and IDDES-SLA results with the slip wall BC exhibit

similar vortex shapes. The locations of the vortex centers are the only observable

discrepancies in these figures. Streamlines shown in Figure 5.31e are the only ones

computed from Configuration 1, which has lateral solid walls inside the cavity. These

streamlines, which are also compatible with the findings in the study of [86], are very

similar to those with slip wall BC, particularly in the vicinity of the aft wall. Limiting

the spanwise flow velocity by an inviscid wall seems to help the frameworks capture

midspan flow fields of the actual M219 configuration. However, near the front corner

IDDES-SLA with no-slip wall BC exhibits larger corner vortex than the one with slip

wall BC.

Before analyzing the acoustic results, the characteristics of the computed time-mean

shear layers are discussed since they have an impact on the cavity acoustic field.

In this regard, momentum and vorticity thicknesses (δm and δω) are calculated as

follows,

δm(x, z) =

∫ +∞

y0(x,z)

ū1(x, y, z)

U∞

(
1− ū1(x, y, z)

U∞

)
dy,

δω(x, z) =
U∞

max

(
∂ū1(x, y, z)

∂y

) (5.2)

where ū1(x, z) represents the mean streamwise velocity component in the x−z plane,

and y0(x, z) is the maximum of y coordinate points in that plane where ū1(x, z) = 0.

Figure 5.32 presents how the dimensionless momentum and vorticity thicknesses,

as well as their ratio, obtained by each employed DDES approach vary along the

shear layer (at z/D = 0.5) emanating from the cavity leading edge. The results are
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Figure 5.32: Variations of the momentum thickness, the vorticity thickness, and the

ratio of them along the shear layer

compared with the reference LES data. It is evident that the slopes of the predicted

momentum thickness curves of all the cases are within 0.03 to 0.04. This range is

common to free shear layers [46]. It may then be interpreted from these results that

the momentum thickness spreading rates for the cavity in hand and those of free shear

flows are similar, as also reported by some other studies [63]. As in the LES data given

by [63], almost a linear variation can also be captured by the simulations with periodic

BC. However, in the second half of the mixing layer the results with the slip wall BC

show higher spreading rate unlike that predicted by LES. The reason may be again
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the transition between the lateral BC conditions of the two mesh blocks: the outer

block applies periodic conditions while the inner one applies slip wall BC. When the

mentioned transition takes place between the same inner block and the wider outer

block in the case of no-slip wall BC, the momentum thickness does not increase as

such in the middle of the cavity mouth. In the vicinity of the aft corner, on the other

hand, the thicknesses suddenly decrease, as expected because of the impingement.

The vorticity thickness variation of the reference LES study indicates existence of

two linear zones, as shown in Figure 5.32b. The first zone has higher spreading rate,

ending at x/D ≈ 0.7. This zone is dominated by the K-H instability, revealing initial

quasi-2D vortical structures with high amplification rates, followed by appearance

of 3-D structures. This is like the transition state of the free mixing layers. The

second zone starts with a lower spreading rate, representing a fully developed free

shear layer region. The current simulations reveal two linear zones as well; however,

the DDES one yields the first zone with a lower slope. This indicates that DDES

fails to sufficiently resolve the K-H instability region due to the RANS mode. On the

other hand, the SLA length scale detects the K-H instability waves and activates the

LES mode, and thereby capturing the first zone slope. However, the end of the zone

is estimated farther than that given by LES. Figure 5.32c points to this conclusion as

well. The fully developed free shear layer zone starts at around x/D = 1.5 − 2.0 in

all the present computations. The spanwise resolution may not be sufficient at this

point.

Figure 5.33 demonstrates spanwise two-point auto-correlation of mean streamwise

velocity profiles at different x/D locations along the shear layer. The locations are

selected inside the K-H instability domain such that initial 2-D behavior of the sepa-

rated shear layer can be investigated. The correlation function is computed as

C(x, r) =

∫ 0.5D

r
[ū1(x,D, z)− ū1z(x,D)] [ū1(x,D, z − r)− ū1z(x,D)] dz∫ 0.5D

0
[ū1(x,D, z)− ū1z(x,D)]2 dz

(5.3)

ū1z is the span-averaged ū1 value, and r is a distance between two points. The results,

obtained by IDDES-SLA, show that as r increases, the correlation reduces as ex-

pected. The reason of obtaining negative values at some points is that the correlation
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is computed from the perturbation values. In addition, it is observed from the varia-

tions the streamwise velocities at x/D = 0.1 are highly correlated up to r/D = 0.2,

indicating 2-D structures. As the flow goes downstream, the spanwise correlation

reduces. After x/D = 0.7, there is no correlation between points at r/D = 0.1

and further away such that flow field is dominated mostly by 3-D structures. This is

consistent with the findings of the benchmark LES study.
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Figure 5.33: Spanwise two-point auto-correlation of mean streamwise velocity pro-

files at different locations along the shear layer

5.3.2.2 Instantaneous Flow Fields

This section presents instantaneous flow fields related to turbulence and acoustic

properties. Recall that the current results of this section include only the ones avail-

able for the configuration without lateral solid walls. Q-criterion isosurfaces colored

by the computed eddy viscosity values are presented first in Figure 5.34, in order to

compare the turbulence resolution levels of the employed DDES, DDES-SLA, and

IDDES-SLA methods. It is evident from the figure that some 2-D tubes near the

leading edge exist as a sign of developing K-H instability waves. At this point it is

useful to note that the SLA methods detect these waves immediately and accelerate

the transition to the LES contents by reducing the subgrid length scale as well as the

eddy viscosity. Consequently, the 2-D waves quickly roll in the spanwise direction,

yielding a breakdown to 3-D fine structures in the simulations with the SLA length

scale, but DDES delays this three-dimensionality. The effects of mesh resolution can
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also be observed in Figures 5.34b-c. The resolution levels of the eddies from DDES-

SLA and IDDES-SLA seem similar on the same mesh. However, the eddy viscosity

contour levels differ locally. In the area around the cavity ceiling and the aft wall,

IDDES-SLA reveals lower viscosity levels than DDES-SLA, indicating the WMLES

mode is, indeed, activated by IDDES. On the contrary, higher levels appear around

the front wall. Perhaps, the IDDES subgrid length scale in Equation (2.39) is not able

to accomplish the rapid switching to the resolution mode of DDES as intended.

(a) DDES on Grid B (b) DDES-SLA on Grid B

(c) DDES-SLA on Grid D (d) IDDES-SLA on Grid D

Figure 5.34: Isosurfaces of Q-criterion (Q = 0) colored by ν̂t/ν values

Pressure fluctuations predicted by IDDES-SLA at four sequential instants with equally

spaced time intervals of one quarter of one eddy convection period along the cavity

are presented in Figure 5.35. At the time of t1 the development of the separated flow

near the front wall can be seen while the downstream structures impinge on the aft

wall. Then, at t2, a large region of sparse contour lines appears near the aft wall,

indicating a pressure build up due to the impingement. At t3 and t4 it is observed

that upstream pressure fluctuations caused by the impingement merge with the down-

stream separated flow, increasing the complexity of the shear layer. This is typical of

the feedback mechanism of open cavity flows.

118



(a) time = t1 (b) time = t2

(c) time = t3 (d) time = t4

Figure 5.35: Pressure fluctuations by IDDES-SLA at equally spaced instants over a

convection period of shear layer

Acoustic results are obtained from the collected pressure data along the cavity ceiling

at midspan. OASPL variations computed from this data are plotted in Figure 5.36.

Experimental and IDDES data from literature are also included. OASPL is one of

the important indicators for the simulation accuracy, as OASPL represents the total

pressure energy at the data collection point. Besides, computation of total energy

includes the contributions from all frequency levels; thus, it reduces the uncertain

energy changes between dominant modes in the spectrum (recall the mode-switching

phenomena in Section 1.1.3), and presents a more reliable sound levels [50, 63]. In

general, all the current studies seem to have captured the OASPL trend along the

ceiling except the front region. As aforementioned, the present simulations have no

viscous lateral walls in the cavity, as opposed to the base studies. This may be the

reason of large deviations around the front wall. As expected the sound levels increase

towards the aft wall as a consequence of the widening shear layer structures and aft

wall impingement. DDES-SLA simulations show closer levels to the benchmark data

than DDES as expected. IDDES-SLA seems to have given the best results among
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all the present computations. Apart from the front region, IDDES-SLA computes

levels about 3 dB higher than those of the reference data whereas DDES-SLA shows

nearly 5 dB and DDES shows 8 dB higher levels, respectively. This concludes that

an increment in the eddy resolution directly enhances the noise level predictions. In

addition, when looking at the DDES-SLA results, it is observed that changing the

mesh resolution has an impact on the OASPL trend around the middle of the ceiling,

particularly. Applying slip wall BC seems to correct the trend further as well as

decrease the level discrepancies about 2 dB. Note that the improvement in sound

levels using the slip wall BC compared to the periodic one is consistent with the

findings in the study of [62].
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Figure 5.36: Comparison of overall sound pressure levels emitted from the cavity

ceiling at midspan

In addition to the OASPL calculations, further analysis concerning particularly the

spectral variations of the computed results is performed for the positions of x/D =

0.25, 2.25, and 4.25 along the ceiling at midspan. The time histories of the gathered

pressure data are divided into multiple windows with 50% overlapping. Each win-

dow has 8192 data. Hanning windowing to minimize the spectral leakage, and then

FFT are applied to each window. Then, the Power Spectral Density (PSD) levels are

computed. The frequencies of Rossiter modes, corresponding to discrete peaks with

narrow band, are given in Table 5.7 where all reference data as well as the ones ob-

tained by the semi-empirical Rossiter’s formula (see Appendix A) are also included.

The agreement in these frequencies between the reference data and the present simu-
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lations is reasonably good. In addition, the PSD levels of these modes at x/D = 0.25

are included in the same table. It is found that the current simulations somewhat

overestimates the sound levels at the first two modes. The other modes’ levels can

accurately be predicted, though. In general, DDES shows large discrepancies in PSD,

compatible with the higher OASPL results. Using the SLA length scale reduces the

discrepancies clearly. When compared to the measurements, performing simulations

on the finer grid domain enhances the 4th mode sound level, particularly. Besides,

conducting slip wall BC makes slight improvements on the first two mode levels.

Apparently, the best agreement is provided by IDDES-SLA, as also observed in the

OASPL levels. In particular, it is far better in estimating the first mode.
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Figure 5.37: Comparison of PSD spectra at three cavity ceiling locations at midspan
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Figure 5.37 compares the PSD spectrum of the IDDES-SLA results to the benchmark

ones at the positions of x/D = 0.25, 2.25, and 4.25. In the graphs of all the data

positions, Rossiter modes can clearly be observed. The mode frequencies appear

independent from the data collection location. Analyzing Figure 5.37 shows that the

current study overpredicts the low-frequency sound levels at x/D = 0.25, which

causes a large discrepancy in OASPL in the corresponding region. It is observed

for the rest that IDDES-SLA with slip wall BC is capable of capturing the cavity

noise. Larger data collection periods may improve the predictions of the first mode.

Moreover, differences at high frequencies up to 5 dB could be reduced by a finer grid

than Grid D. Nevertheless, it is remarkable that this result of IDDES-SLA is obtained

using much coarser grid than the reference studies, thanks to the turbulent length scale

improvements as well as the high-fidelity numerical discretizations.

Presented in Figure 5.38 are sound level spectral surfaces along the span for the same

three streamwise locations on the cavity ceiling. The results belong to the IDDES-

SLA with slip wall BC study. It is shown that the Rossiter modes at all positions do

not vary in the z-direction. As opposed to that, higher frequency sound levels ex-

hibit spanwise variations. At x/D = 0.25, dominant modes apart from the Rossiter

ones are clearly observed. These are the spanwise modes. Their sound levels vary

throughout the span in a way of harmonic wave such that the modes can be ordered

as 1st spanwise mode (1s), 2nd spanwise mode (2s), and so on as the frequency in-

creases. Frequencies of these modes are shown in Figure 5.39 in which the PSD

spectra at z/D = 0 for the first streamwise location are plotted. The frequencies are

f1s = 1850 Hz, f2s = 3650 Hz, and f3s = 5200 Hz, which are in fair agreement with

the frequencies computed from the theoretical formula (Equation 5.4): 1840 Hz, 3680

Hz, and 5520 Hz, respectively.

fms =
c∞m/(2W )√
1− (κM∞)2

. (5.4)

Here, ms is the mth spanwise mode number, and κ is the same function given in

Appendix A. On the other hand, Figures 5.38b-c show that the 1st spanwise mode

appears at x/D = 2.25, and x/D = 4.25 locations as well; however, the other

ones are not clearly seen. It is also evident that the spanwise variations in higher

frequencies increase at x/D = 4.25, probably due to the presence of the aft wall.
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(a) x/D = 0.25

(b) x/D = 2.25

(c) x/D = 4.25

Figure 5.38: Sound level spectral surfaces along the span at three cavity ceiling loca-

tions
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Figure 5.39: PSD spectra at x/D = 0.25, and z/D = 0 on the cavity ceiling with a

spanwise acoustic mode representation

5.4 Supersonic Flow over an Open Cavity

In this section, a supersonic flow over an open cavity geometry is simulated by the

IDDES-SLA framework. L/D and W/D are 5, and 0.5, respectively. The flow Mach

number is 1.19 and the Reynolds number is 2× 105. These values are selected so that

the results with a reference LES study [93] can directly be compared. In addition,

L/D is the same as in the previous problem of this thesis. Because the main flow

characteristics are much more dependent on this ratio rather than W/D, the super-

sonic results could also be compared with the transonic ones.

5.4.1 Configurations and Setups

The simulation configuration is very similar to the transonic one which is given in

Figure 5.24. Both the inner and the outer blocks have the same width. The rest of the

dimensions of the outer block are set as

xa/D = 13, xb/D = 9.2, L/D = 5, xc/D = 15.5, y/D = 20 (5.5)

The same BCs are applied on the computational boundaries as in the transonic prob-
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Table 5.8: The details of the cavity grids

Grids y+ ∆z/D ∆max/D total # of cells spatial scheme

IDDES-SLA ∼ 2 2.0× 10−2 2.0× 10−2 ∼ 1.75 million 4th-order DRP

LES [93] 1.6 0.5× 10−2 2.2× 10−2 ∼ 20.0 million 6th-order

lem, except that since the flow leaving the domain is supersonic, all quantities at

the outflow boundaries are extrapolated from the inner cells instead of using a pres-

sure outlet condition. Moreover, unlike the transonic case, only one type of BCs is

imposed at the spanwise boundaries. They are treated using periodic boundary con-

ditions.

The mesh is generated in the same manner as in the transonic problem. Because the

reference LES results were obtained by employing a solver with similar accuracy to

METUDES, cell dimensions in the LES region are set as in the reference study. In

this regard, ∆max = ∆z = 2 × 10−2D. Note that ∆z of the LES study is 4 times

shorter than the current one because the LES and DES grid requirements differ in the

lateral direction. The grid details are compared in Table 5.8. The current grid density

is much lower than the LES one, thanks to the RANS meshing near the solid walls.

5.4.2 Results and Discussion

Simulations are conducted using 112 cores. ∆∗t is taken as 4 × 10−4, corresponding

to a physical time of 1.2× 10−6 s.

Time-averaged flow fields are presented first. The boundary layer profile of the in-

coming flow is compared with the LES data at x/L = −0.83 in Figure 5.40. The

velocity profile is in good agreement to the reference one, ensuring that the flow fields

inside the cavity of both studies are subject to similar upstream conditions. Next, the

stremwise velocity component and the TKE profiles over the cavity at midspan are

demonstrated in Figure 5.41. Although the velocity profiles are in good agreement,

the TKE results reveal some discrepancies, particularly in the vicinity of the aft wall.

An insufficient resolution inside the WMLES region might be the reason for this.
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Figure 5.41: Comparisons of mean flow velocity and TKE profiles along the cavity at

middle of the span

Figure 5.42 shows the streamlines at the midspan plane. It is observed that the sepa-

rated flow directly impinges on the aft wall, which is the main characteristic of open

cavity flows. Comparing the streamlines with the transonic flow one (recall Figure

5.31) indicates that supersonic flow results exhibit a large vortex near the front wall.

In addition, the largest vortex has only one center in the supersonic flow while having

two centers in the transonic one.
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Figure 5.42: Streamlines of the mean flow fields at middle of the span obtained by

IDDES-SLA

Momentum and vorticity thicknesses are shown in Figure 5.43. The correspond-

ing transonic results obtained by DDES-SLA which has periodic spanwise boundary

conditions are included for comparison. The results indicate that the initial super-

sonic momentum thickness is much larger than the transonic one, as a result of lower

Reynolds number. The slopes of both momentum thickness variations match each

other though, which is related to the mixing layer characteristic as discussed in Sec-

tion 5.3. However, after x/D ≈ 2.8, the thickness starts to decrease in the supersonic

case. Such decrease is also seen in the vorticity thickness variation at a similar lo-

cation. Moreover, at a downstream location (x/D ≈ 3.5), a sudden drop in the

momentum thickness is evident. This is probably related to a shock wave, which is

observed at a similar location in another study [121] that conducted a dynamic mode

decomposition analysis. The same study also reported that this shock wave possibly

occurs as a consequence of feedback compression wave. After x/D ≈ 3.5, the ratio

of thicknesses reaches a plateau matching the fully developed free shear layer line.

Figure 5.44 presents the isosurfaces of Q-criterion colored by the eddy viscosity lev-

els. For comparison, IDDES-SLA results from the transonic problem are added in

the same figure by resetting the viscosity levels to be the same as in the supersonic

one. The first observation is that the supersonic flow field reveals eddy structures with

lower viscosity levels than the transonic one. This is expected since the freestream

Reynolds number of the supersonic flow is one order lower. Another observation is

that IDDES-SLA with supersonic flow exhibits longer K-H instability region than the

one with transonic flow, yielding mostly 2-D behavior around the front corner on the

ceiling. Conversely, the same area is filled with 3-D structures in the transonic case.

128



x/D

m
/D

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

IDDES­SLA ­ supersonic

DDES­SLA ­ transonic

(a) momentum thickness

x/D

/D

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
IDDES­SLA ­ supersonic

DDES­SLA ­ transonic

(b) vorticity thickness

x/D

m
/

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

IDDES­SLA ­ supersonic

DDES­SLA ­ transonic

fully developed free shear layer

(c) spreading ratio

Figure 5.43: Variations of the momentum thickness, the vorticity thickness, and the

ratio of them along the shear layer

Lastly, at the streamwise location where the momentum thickness suddenly drops, as

shown in Figure 5.43a, 3-D structures disappear for a short distance. Again, this may

signify the shock wave occurrence.
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(a) IDDES-SLA - supersonic (3-D view) (b) IDDES-SLA - supersonic (2-D view)

(c) IDDES-SLA - transonic (3-D view) (d) IDDES-SLA - transonic (2-D view)

Figure 5.44: Isosurfaces of Q-criterion (Q = 0) colored by ν̂t/ν values of instanta-

neous flow fields
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CHAPTER 6

CONCLUSIONS

In this thesis, various DDES frameworks are implemented in a high-order solver

called METUDES, and its turbulent and acoustic flow field prediction capabilities

are investigated by solving boundary layer transition as well as cavity noise prob-

lems. This chapter presents some concluding remarks and findings from the thesis

study, and the further suggestions.

6.1 Improvements to METUDES

For transitional flow problems, the BCM transition model is incorporated into the

DDES and DDES-SLA approaches of METUDES. The BCM implemented versions

of the DES frameworks are called DDES-BCM and DDES-SLA-BCM3. In particu-

lar, three improvements are proposed and implemented in DDES-SLA-BCM3, aim-

ing to overcome the deficiencies encountered during unsteady flow solutions. The

implementations are validated through flatplate and Eppler E387 test cases.

On the other hand, the IDDES method is implemented and validated for cavity flow

and acoustics problems. In addition, the SLA subgrid length scale is introduced into

IDDES, called IDDES-SLA.

In order to provide application flexibility for complex geometries, a multiblock fea-

ture with overset capability is also added to the solver. This feature enables genera-

tion of tunnel grids around airfoils as well as cavity grids composed of two separate

regions more easily. The overset grid approach is based on the Chimera technique

with high-order interpolation methods. This allows the mesh blocks to have different
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grid topologies. The multiblock and overset approaches are validated by solving an

isentropic vortex convection problem.

Lastly, numerical difficulties encountered while performing the cavity flow simula-

tions are eliminated by the following improvements:

• The residual smoothing algorithm used for the N-S equations is modified, and

residual smoothing for the turbulence model equation is added.

• Dissipation for shock capturing regarding the turbulence equation is enhanced

by the TVD switch.

• A biased artificial dissipation is implemented to be activated in grid cells near

the solid walls.

• A scaling factor is added to the artificial dissipation of the turbulence equation

for high aspect-ratio cells locating along the shear layer at the cavity mouth.

6.2 Boundary Layer Transition

In the transitional flow problems, DDES, DDES-SLA, and DDES-SLA-BCM3 ap-

proaches are considered. Flow conditions of the problems are selected to include

mostly the separation-induced transition caused by slight separations of attached flows.

These are difficult cases for DDES. There are two common findings from the studies

of all these problems:

• The approaches using the SLA subgrid length scale reduces the eddy viscosity

in the regions dominated by the Kelvin-Helmholtz instabilities, unlike DDES.

This accelerates the transition from the RANS mode to the LES mode of DDES,

thereby letting the instabilities inside boundary layers grow and increasing the

turbulent content downstream. This allows DDES-SLA to achieve more accu-

rate results than DDES at most of the flow conditions.

• The proposed modifications to the BCM model prevents the intermittency func-

tion from losing its persistence in cases involving strong unsteadiness.
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The other significant results obtained in each problem are listed individually as fol-

lows:

6.2.1 Flow over an NRELS826 Blade Section

At Re of 100, 000

• When compared to a literature study, using a higher-order solver in the present

computations enables capturing the stall angle better.

• Despite some small differences in the lift coefficients around the stall, the drag

coefficients results of DDES-SLA-BCM3 are in better agreement with the mea-

sured data in literature than those of the DDES and DDES-SLA.

• At the post-stall angle, the onset of the separation bubble that triggers transition

is predicted differently when the BCM model is used. This results in a more

accurate Cd value.

• The flow can be kept laminar up to the transition point even without the BCM

model. This is provided by solving the modified version of the S-A equation.

At Re of 145, 000

• All present approaches overpredict Cl and underpredict Cd at all angles of at-

tack around the stall, when compared to the benchmark studies. It is inferred

that a finer grid is needed.

• The expected stall occurs only in the DDES-SLA-BCM3 solution, but at a far-

ther AoA.

• At the pre-stall angle, DDES-SLA reveals a separation bubble, unlike DDES.

This is provided by the K-H instability sensor of the SLA approach. However,

the exact location of the bubble can be predicted when the transition model is

added.
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6.2.2 Flow over a Circular Cylinder

• The results of DDES-BCM are also included in this case as the unsteadiness is

weak (i.e. time and length scales are big enough).

• The drag coefficients given by DDES-BCM and DDES-SLA-BCM3 are in bet-

ter agreement with the measured data from literature than those by DDES and

DDES-SLA. The success of the frameworks with the transition model is pro-

vided by suppressing the eddy production unless a transition criterion is met,

as indicated by the eddy viscosity onset angles.

• Higher Reynolds number causes the separated flow to reattach to the surface,

and then separate again in the DDES-SLA simulations, whereas this is not ob-

served in DDES. This late separation is also evident in the measurements.

• At Re of 5.0× 105, despite showing an accurate flow separation angle, DDES-

SLA-BCM3 reveals a reverse flow inside the boundary layer without an inflec-

tion point, which is not expected. This is possibly an indication of an incompat-

ibility between the transition model and the SLA approach in this case, which

requires further investigation.

All the investigated transitional flow problems demonstrate that predictions of both

the pre- and post-transition regions are important in accurately calculating the desired

aerodynamic coefficients. In this context, the collaboration of the SLA length scale

and the BCM transition model has important roles in providing DDES with transi-

tional behavior. It should be also emphasized that the BCM model is very attractive

as it does not require any extra differential equations.

6.3 Cavity Flow

Transonic and supersonic flows over the M219 cavity without lateral solid walls are

simulated by DDES, DDES-SLA, and IDDES-SLA. In the transonic case, the results

are compared with some studies in literature in which the cavity geometry has lateral

walls. On the other hand, the supersonic results are compared with another refer-
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ence study which has the same lateral configuration. The main findings are given as

follows:

6.3.1 Transonic Flow over an Open Cavity

• All the present approaches are able to capture the mean flow characteristics and

turbulent kinetic energy profiles as long as the cavity width is taken equal to at

least one depth.

• The simulations with SLA show the most accurate results in the early shear

layer region, which are dominated by the K-H instabilities. This is attributed to

a rapid transition to the LES mode.

• Using slip wall BC along the lateral cavity faces, instead of periodic one, im-

proves the velocity and TKE gradients towards the aft wall, but worsens the

gradients along the shear layer.

• The onsets of fully developed free shear layer obtained by all simulations oc-

cur at further downstream from the expected location. This requires a further

investigation by increasing the mesh resolution in the LES region.

• IDDES-SLA yields less eddy viscosity in the vicinity of cavity ceiling and aft

wall than DDES-SLA. This is considered as an indicator of the WMLES re-

gions as intended, providing an increment of the eddy resolution.

• All present simulations capture the OASPL trend along the cavity ceiling except

near the front wall. A possible reason is the absence of lateral walls in the

present computations.

• All present simulations capture the frequencies of the Rossiter modes that are

highly-intense and narrow-band tones.

• In general, the sound levels emanating from the ceiling predicted by IDDES-

SLA are in better agreement with the benchmark results than those by the other

approaches, whereas the levels obtained by DDES deviate from the benchmark

results the most.
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• Sound level spectral surfaces along the span show that the Rossiter modes ex-

hibit mainly 2-D behavior. Apart from the Rossiter modes, there appear span-

wise acoustic modes, the frequencies of which fairly match with those from the

theoretical formula.

6.3.2 Supersonic Flow over an Open Cavity

• The simulation of this case is performed only by IDDES-SLA.

• Even though the velocity profiles over the cavity are in good agreement with

the LES ones from literature, there appear slight deviations in the TKE profiles

towards the aft wall.

• When compared to the transonic case, a longer K-H instability region is ob-

served near the front wall.

• The supersonic flow reveals similar momentum and vorticity thickness varia-

tions along the shear layer to the transonic one. This is compatible with the free

shear layer characteristics.

• At a certain point between the middle of the shear layer and the aft wall, the

momentum thickness drops suddenly, unlike in the transonic case, which may

indicate a shock wave occurrence.

The cavity studies show that a combination of IDDES and the SLA subgrid length

scale has a great potential to simulate this type of complex flow fields. In addition,

the results without lateral walls indicate that the proposed simulation configuration to

reduce the computational cost substantially could be a good alternative in cavity flow

problems, particularly in case of high Reynolds numbers.

6.4 Suggestions and Future Work

This study contains many efforts on improving the METUDES flow solver to be able

to predict the transitional flow aerodynamics as well as the cavity flow noise through

DDES frameworks. However, there are still numerical issues to overcome. The solver
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needs further developments to accelerate the running performance. In this regard,

multigrid method, implicit time integration, and nonblocking communications are

some of the recommended features to include in the solver. On the other hand, the

main problems encountered during the simulations are mainly related to the artificial

dissipation of the S-A turbulence equation. In this context, the information in liter-

ature is limited. Although some improvements have been made during this thesis, a

detailed numerical investigation regarding the weight of the TVD switch, the scaling

of the artificial dissipation, etc. requires to validate these improvements.

For transitional DDES, the proposed incorporation of the BCM model into the DDES-

SLA framework requires further development considering the incompatibility ob-

served in the cylinder problem. Besides, DDES-SLA-BCM3 is mainly tested on the

separation-induced transitional flow problems. However, it should be also tested on

the other types of transition mechanisms such as natural, bypass, and wake-induced.

In addition, a new approach, IDDES-SLA-BCM3, might be useful to predict the reat-

tachment point in the separation-induced transitions.

For the cavity flow noise part, a decomposition of the Rossiter as well as the spanwise

modes would indicate the flow physics better, and therefore, the effect of absence of

lateral walls can be understood clearly.
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APPENDIX A

THE ROSSITER FORMULA

The original Rossiter formula was given in [97] as

fm =
U∞
L

m− α
M∞ + 1/κ

(A.1)

where m is the mode number and f is the frequency. U∞ and M∞ are the freestream

velocity and Mach numbers, respectively. κ and α are functions of L/D where L

represents the cavity length and D represents the cavity depth. The cavity geometries

studied in this work have L/D of 5. The corresponding κ and α functions equal to

0.57 and 0.29, respectively.
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Türbülansa Geçişli Akış Problemi Benzetimi, Ulusal Havacılık Ve Uzay Konferansı

(UHUK), 2020.

Özgür Yalçın, Kenan Cengiz, and Yusuf Özyörük. Akış Kaynaklı Rüzgar Türbini
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