
Received November 20, 2021, accepted December 1, 2021, date of publication December 6, 2021,
date of current version December 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133020

Reusable Security Requirements Repository
Implementation Based on Application/
System Components
FERDA ÖZDEMIR SÖNMEZ 1, (Member, IEEE), AND BANU GÜNEL KILIÇ 2, (Member, IEEE)
1Institute for Security Science and Technology, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
2Informatics Institute, Middle East Technical University, Çankaya, 06800 Ankara, Turkey

Corresponding author: Ferda Özdemir Sönmez (f.ozdemir-sonmez@imperial.ac.uk)

ABSTRACT Forming high quality requirements has a direct impact on project success. Gathering security
requirements could be challenging, since it demands a multidisciplinary approach and security expertise.
Security requirements repository enables an effective alternative for addressing this challenge. The main
objective of this paper is to present the design of a practical repository model for reusable security require-
ments, which is easy to use and understand for even non-security experts. The paper also portrays an approach
and a software tool for using this model to determine subtle security requirements for improved coverage.
Proposed repository consists of attributes determined by examining common security problems covered in
state-of-the-art publications. A test repository was prepared using specification files and Common Criteria
documents. The outcomes of applying the proposed model were compared with the sample requirement sets
included in the state-of-the-art publications. The results reveal that in the absence of a security requirements
repository, key security points can be missed. Repository improves the completeness of the security terms
with reasonable effort.

INDEX TERMS Computer security, information security, requirement’s engineering, software reusability.

I. INTRODUCTION
Requirements engineering is a process of defining, docu-
menting, and maintaining requirements in the engineering
design process. It is a common role in both systems and
software engineering. If the documentation and storage of
the requirements are done in significant amounts, then the
structure or place used for this storage is called a reposi-
tory. Security requirements due to their nature are repeatable
from project to project, and thus, using security requirements
repositories is common in the requirements engineering
practices.

A software requirements specification (SRS) document is
written to provide a path from a problem domain to a solution
domain. In order to achieve this goal, it has multiple sets
of requirements. An SRS document is utilized for formal
correspondence among task partners, as well as for guidance
in all the phases of the product creation. Writing a high-
quality SRS is important, because it constitutes a base for

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

the project. Gathering the proper requirements in the early
phases of the project results in better designs and decreases
the overall cost of the product development.

Writing good software requirements is not straightfor-
ward. As indicated by the IEEE 830-1998 [1] standard,
‘‘A requirement of quality should be correct, unambiguous,
complete, consistent, ranked for importance and/or stability,
verifiable, modifiable, and traceable’’. Composing security
requirements is considerably more challenging. It requires a
multidisciplinary approach based on requirements engineer-
ing, security engineering, and systems engineering. Most of
the software teams (particularly in small organizations) do not
include security experts. For this reason, quite often security
is not handled properly in these projects.

Usually, detailed security analysis comes to the agenda too
late, sometimes considered after the project is completed.
In the best-case scenario, security issues are considered in
the design phase without properly specified security require-
ments. This problem is more prominent in the web-based
software development, because many of the web application
development processes lack enough security support in the

165966 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0908-2554
https://orcid.org/0000-0003-4917-192X
https://orcid.org/0000-0001-7005-6489

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

early phases [2]. Because of these reasons, companies that
develop and maintain software would benefit considerably
if they could determine how to reuse security requirements
from different projects naturally having similarities with each
other. When software requirements are reused, not only the
requirements, but also the related design, code, documen-
tation, and tests can also be reused as they are or in a
modified manner. This approach decreases the duration and
costs of the projects. Companies that store their prewritten
SRS know-how can use this knowledge for their incoming
projects.

Using a security requirements repository which stores the
security requirements in a structured way would help in
not only gathering better security requirements, but also in
other stages of the production. Defining assets of the project,
proposing better alternative solutions to the problems and
determining the constraints would become easier, and the
overall result would lead to a higher level of security.

The aim of this study is complementing usual prac-
tices of requirements engineering, not replacing or changing
them to reduce the difficulty of gathering security require-
ments. Requirements engineering includes processes, such
as requirements elicitation, analysis, validation, and manage-
ment. Users of the proposed model may continue applying
requirements engineering practices which are found nec-
essary or familiar. By applying the proposed methodology
on top of existing requirements engineering practices, it is
expected that reusability would increase.

The first and main contribution of this study is a repository
model addressing the issue of reusing security requirements.
It is expected that using this model would improve software
security, eliminate the risk of omissions in the SRS docu-
ment and increase the quality of the products. Reuse will
also increase the effectiveness of IT companies and reduce
the overall cost. Existing repository structures for reusable
security requirements are reviewed in Section 2. The main
advantage of this model over the existing models is its struc-
ture, which directly concentrates on the areas that are more
prone to security problems. Thismodel is designed to be filled
in easily with known security requirement resources, such as
SRS documents, standards having requirement lists, security
handbook type books, and information coming from vendor
sites and other online communities, and it is also expected to
fit the requirements of all the stakeholders. The second contri-
bution of this paper is amethodology for relating non-security
requirements to security requirements that first utilizes key-
words and then maps them to application components. This
increases the usability and searchability in the repository. It is
a known fact that majority of the existing reusable security
requirements approaches lack automated tool support. The
third contribution is a Python based repository search engine
which fits to the proposed repository structure and allows an
efficient search of the necessary requirements, given a textual
description of a system. This study provides a model for
storing the security data and a tool that runs with this model.
Finally, two examples are provided to demonstrate the use

of the repository including how to fill in the repository with
data. However, preparing a real security repository is beyond
the scope of this work.

The article has four main contributions: (i) a repository
model addressing the issue of reusing security requirements;
(ii) a methodology for relating non-security requirements to
security requirements that first utilizes keywords and then
maps them to application components; (iii) a Python-based
repository search engine which fits to the proposed repository
structure and allows an efficient search of the necessary
requirements, given a textual description of a system; and
(iv) two examples to demonstrate the use of the repository
including how to fill in the repository with data.

The remainder of the paper is organized as follows:
Section 2 has the literature review. Section 3 has the method-
ology description. Section 4 introduces the proposed secu-
rity model. Section 5 explains the empirical study design
with two case studies and a validation workshop includ-
ing the presentation of the proposed methods and earlier
methods for comparison, application of the proposed method
and a user experience survey. Section 6 presents the results
of using a sample repository for two different cases and
workshop results. Section 7 is a discussion of the proposed
study. Finally, Section 8 contains the conclusions and further
research possibilities.

II. LITERATURE REVIEW
Frequently, security becomes a subsection of the researches
related to the application or system development [3]. How-
ever, since the development of security requirements is criti-
cal, several frameworks and models have been proposed each
having specific approaches. The first group of requirement
engineering methods focusing on security provide ways to
find security requirements without saving knowledge. They
are methodological in general and designed to be used mostly
during the requirement elicitation and analysis phases. The
second group of requirement engineering methods focusing
on security may or may not provide methodologies, but they
serve as a model to save a set of security knowledge for later
use.

Studies focusing on security requirements reusability
selected different features to be reused. These features
include requirement statements, security patterns, secu-
rity goals, countermeasures, threats, attacks, assets, orga-
nizations, and vulnerabilities [4]. The representation of
the reusable features also differs. In general, catalog/
taxonomy-based approaches store textual statements. Non-
textual representations include UML usage, ontology usage,
or specifically defined sets of shapes to define pat-
terns/scenarios. The categorization of the reusable secu-
rity knowledge is made based on assets, threat or attack
types, security objectives, security properties, countermea-
sures, and security tests. Reusable textual statements include
actual requirement statements, generic or prototype require-
ment statements, textual attack scenarios/patterns, attacker
goals (anti-goal), and misuse case scenarios. Graphical

VOLUME 9, 2021 165967

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

representations may be formed of graphics scenario defini-
tions including actors, such as users, systems administrators,
and attackers, assets, actions, and states.

The proposed model is based on saving textual security
requirements in a repository for reuse. Although the UML
class diagram is used to describe the proposed model, the
model does not store UML diagrams, but textual require-
ment statements in a classified manner. The categorization
criteria for the requirement statements are based on applica-
tion components/features which correspond to a mixture of
assets, architectural properties, infrastructure elements, and
application functionalities. In order to get more information
related to studies that take security goals, countermeasures,
threats, attacks, assets, organizations, and vulnerabilities as
reusability items, please refer to Souag et al. [4].
One of the well-known security resources is Common

Criteria (CC). CC is a framework for information technology
security evaluation, which is accepted as an international
standard and abbreviated as ISO/IEC 15408 [5]. The main
purpose of the CC framework is to provide a platform for
comparison among independent security evaluations. For this
purpose, it provides a process model that works on sets of
security requirement templates. More information about the
CC framework can be found on the Common Criteria portal
website [6]. The most significant similarity between the CC
and a security requirements repository is having existing sets
of defined requirements templates.

In CC the security requirements templates are given in
two different documents; functional security requirements [7]
and assurance security requirements [8]. The requirement sets
in CC are very generic and template-based. They have to
be tailored and worked on to be used in an actual project.
CC offers a tailoring process that includes iteration, assign-
ment, selection, and refinement. Tailoring the sets of security
requirements templates would require a security expert view
so as to accomplish a decent set of security requirements
at the end. CC model does not take advantage of existing
SRS documents. It does not offer an approach to relate
non-security requirements to security requirements, either.
Mellado et al. [9] offered a process for requirements reuse
by integrating CC usage into software development practices.
Saeki and Kaiya [10] proposed a requirements elicitation
method based on CC. In Mellado et al.’s study, the objectives
that fit the solution space for the specific project/case are
taken from the CC catalog, furthermore, CC security function
definitions are benefited to form the security requirements.

MAGERIT is another framework for risk analysis and
management [11], that is developed by the Spanish Ministry
of Public Administrations. It enables risk analysis and pre-
scribes countermeasures for each risk. These countermea-
sures are counted as security requirements. Its main focus is
analyzing the requirements, however, reusing requirements is
not targeted. TheMAGERIT asset hierarchy was exploited by
the SIREN (Simple Reuse of Software Requirements)method
in its repository model [12] and ontology-based study by
Lasheras et al. [13].

SIREN attempts to translate the ‘‘security measures stated
in MAGERIT into reusable security requirements’’ [11]. Its
approach is based on creating a document hierarchy and doc-
ument templates. The SIREN model stores reusable require-
ments using domains and profiles which correspond to a
homogenous set of requirements that can be applied to a
domain. The SIREN model has a particular labeling sys-
tem for requirement trees. Its main drawbacks compared to
the proposed model are that it does not relate non-security
requirements to security requirements, and even though the
document structures have their labeling systems that give
information on the classification of the requirement, they do
not give enough information on the content of the require-
ment, which would eventually make it difficult to search in
the repository and cause usability problems. Nevertheless,
this approach was used along with an audit method for a
healthcare application [14]. The results of the audit were
reported as an audit report.

Firesmith’s [15] model is also a study that stores secu-
rity requirements as reusable knowledge. In this model,
valuable assets, their identification, threats to these assets,
and negative impacts are identified. Filling this repository
model requires relatively high resource and time usage to
construct a dependency relationship among a large set of
security-related objects including security goal, security pol-
icy, security requirement, security mechanism, security risk,
security quality factor, security mechanism, security risk,
threat, attack, attacker, vulnerability, harm, system, asset,
property, people, service, data, hardware, software, facility.
This repository model allows the storage of a comprehensive
set of knowledge, however, for some IT companies which
prefer practicality over the availability of all security-related
data, it may not be the first solution.

Using the use cases to define security requirements is
another approach. There have been several studies propos-
ing the use of use-case modeling techniques, such as UML,
to define security requirements [16]. In this approach, once
the valuable assets are identified, the misuse scenarios of
the system are defined using use-cases, forming the threat
scenarios. Security scenario(s) related to each misuse sce-
nario are also defined by the same approach. These security
scenarios include bundles of security requirements, which
may be reused for similar use-cases again and again.

Zuccato et al. [17] presented a process that is based
on not reusing security requirements, but security require-
ment profiles, which is close. They proposed a process that
included risk analysis, questionnaire, selection of require-
ments, and grouping requirements. These requirement groups
are forwarded to suppliers. This method provides require-
ment groups for different business profiles. This method
has similarities to the proposed method such that groups of
application components which will be explained in Section
4 may also correspond to business profiles and technological
divisions.

Lasheras et al. presented an ontology-based security
requirements repository [13]. They implemented a model

165968 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

using Ontology Web Language, (OWL), which is recom-
mended as an information-sharing mechanism by W3C. This
is a lightweight model permitting the detection of incon-
sistencies and incompleteness of security requirements and
allowing the reuse of security requirements. This approach
requires learning a special language, OWL, and tools for
the implementation of the ontology and consistency check-
ing. When building and using requirement ontologies, hav-
ing domain-specific ontology sets and corresponding tools,
instead of generic OWL tools results in the higher usability of
the systems [18]. There are other ontology-based earlier secu-
rity requirements studies. For example, Salinesi et al. [19]
proposed a method for the requirements elicitation based on
ontologies.

Model-driven engineering approaches also commonly
depend on the repository usage. Hamid [21] used models to
ease, systematize and standardize the software development
process, not only the requirements phase. The repository
stored domain-specific modeling artifacts. The repository
elements were characterized based on the keywords, lifecy-
cle stage search, and relationship types. As modeling tools,
UML, profiling, and Ecore modeling language were used.
Mainly this repository held a dictionary of binaries, lan-
guages, and artifacts in compartment forms. Unlike security
requirement repositories, model-driven repositories focus on
the whole project lifecycle components. In another work,
Hamid and Perez [22] provided a repository model to reuse
the features (techniques, measures, etc.) related to domain
standards specific to the engineering of embedded systems
with safety requirements.

Although the authors could not find any solid security
requirements repository model approach based on security
patterns [23], the strong relationship of security patterns
with the reusability and existence of various security patterns
developed by a number of earlier studies makes it necessary
to mention the security patterns in this paper before continu-
ing further. A security pattern describes a recurring security
problem and points out a generic solution for it. While doing
this, the context of the problem can be described by using
an example problem or a situation. Patterns can be used for
secure development, testing as well as defining the security
problems.

Earlier studies had two main goals in general. The first
goal is to allow formal ways for the definition of reusable
knowledge (action, scenario, goal, use-case, policy) and
the second goal is to improve requirements reuse. For
the first goal, either textual or graphical languages were
defined (new language definitions) or already existing ones
were used (such as OWL) as pattern characterization lan-
guages. For the second goal, each individual study pro-
vided a number of patterns that may be specialized in
time by including other behaviors and actions. KAoS [24]
is a tool-based policy services framework that is also the
most mature ontology-based security pattern development
approach. Other examples of pattern-based studies include
Hermoye et al. [20] which defined attack patterns (anti goals)

using real-time linear temporal logic expressions and used
replay attacks to demonstrate. Alrajeh et al. [25] points out
the importance of identification of the attributes related to
software’s environment during the definition of software
requirements. Supaporn et al. [26] used security patterns
to construct a grammar of security requirements. In this
way, the authors expected to define complete and correct
requirements. They used the authorization security pattern to
demonstrate the grammar usage. Another pattern-based secu-
rity representation is Secure Tropos [27]. Tropos [28] is an
agent-oriented software development methodology based on
the clear identification of system actors, resources, goals, and
their dependencies. This methodology is extended by includ-
ing four new concepts to the agent-oriented system definition
mechanism, ‘‘Security Feature’’, ‘‘Protection Objective’’,
‘‘Security Mechanism’’, and ‘‘Threat’’. The existing method-
ologies described in this section before security patterns do
not provide a comprehensive list of categorization items for
a security requirements repository. Riaz and Williams [29]
claimed that security patterns can fill this gap by providing
groups of security patterns focusing on groups of specific
issues.

Some interesting research has been carried out in this area
in recent years. Mazo and Feltus [30] proposed a conceptual
model which relies on dividing security requirements into
simple security patterns. They suggest the use of set theory
later to obtainmore complex requirements. This has a similar-
ity with the current proposal in terms of using simple pieces
to form complex requirements. The drawback of this study
there is no validation of the ideas presented and no demon-
stration of how the security requirements will be composed
of simpler parts. Gonçalves and Silva [31], [32] provided a
design that relies on a more robust framework, RSLingo [33].
They extended the RSLingo requirements specification lan-
guage to define security requirements. Forming high-quality
requirement statements is directly related to the use of nat-
ural language properly. Silva and Savić [34] examined the
use of linguistic patterns to define security requirements
which resulted in better requirements specifications written
more systematically and consistently. One recent advance-
ment on the use of security patterns for reusability is by
Salva and Regainia [35] in which data integration was used
to express software attacks, security principles, and security
patterns. This has a larger scope compared to other secu-
rity pattern studies. Ramadan et al. [36] proposed the use
of a BPMN-based framework extension along with a semi-
automated process to express security requirements. This
allows a graphical representation of security issues alongwith
functional requirements. Another recent approach is the use
of formal methods to verify compositions of security patterns
for Scada systems by Obeid and Dhaussy [37]. An effort is
made by Wirtz and Heisel [38] to bridge the gap between
the functional requirements and security requirements which
provided a template with a form structure to store the relations
of functional and security requirements. Although the model
looks useful when used as a part of a single project, it does

VOLUME 9, 2021 165969

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 1. Strengths and weaknesses of the selected studies.

not provide evidence on the reusability of the stored security
requirements across multiple projects.

The scope of literature review section is limited to earlier
studies which provide a model to reuse security require-
ments information. Some related concepts such as integration
of requirements engineering methodologies with the overall
lifecycle is left out of the scope of this study. Existing similar
studies are elicited based on reusable knowledge. Although,
there may be some secondary reusable information such as
assets, risks, threats, attack types or vulnerabilities in a few
of the presented studies, the focus of this paper is the studies
which have the main reusable information as textual reusable

security requirements or as textual reusable requirement tem-
plates. Thus, other studies which enable repetition of security
related tasks among multiple projects such as a generic risk
assessment methodology, but that do not focus on the reuse
of textual security requirement statements are left out of the
scope of this study.

The authors made a summary of the strengths and weak-
nesses of the proposed method and selected earlier methods
described in the literature section in Table 1. One important
common weakness is the lack of automated support for the
majority of the earlier approaches. This issue was also high-
lighted in the survey study by Souag et al. [4]. Souag et al.

165970 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 1. Context diagram used to find concepts associated with
reusability of security requirements (adapted from [39]).

examined 95 studies that are related to the requirement phase
and contribute to the decision of security requirements in
various ways. Only the 13.6% of these studies had automated
support.

The earlier methods mentioned in this paper, also, lack,
in general, the information where the security requirements
should be used, i.e., they define what should be done to some
extent, but they do not specify enough when and how this
information should be used. Riaz and Williams [29] also
claimed that security patterns are superior to the repository
models, in terms of characterizing the context, where and
when the security requirement should be used. The proposed
model may have some correspondence regarding these ben-
efits of security patterns which will be discussed in later
sections.

III. METHODOLOGY
The study started with two questions, Fig. 2. The first one is
• ‘‘Which structures aim or are more beneficial for storing

reusable security requirements?’’.
• The second one is
• ‘‘What are the sources of requirements to fill these struc-

tures?’’.
• After these initial questions, two secondary questions

turned out.
• ‘‘Are these existing structures adequate?’’
• and
• ‘‘Is there a better and practical way of storing this kind

of data?’’
With the guidance of these questions, the study involved

identifying the structures for storing reusable security
requirements and searching for the sources of requirements
to fill these structures. The study also included evaluating
the adequacy of existing structures and exploring better and
practical ways of storing this kind of data. In order to take
these steps, first, a detailed literature survey was carried
out and existing studies that are suitable or related to the
presented purposewere examined. After this examination, the
advantages and disadvantages of these methods were noted.

Having these research questions, literature review results,
examination results for data sources, and the domain knowl-
edge, the hypothesis ‘‘If a repository structure which is nat-
urally congruent with the security requirement sources is

TABLE 2. Research concepts.

created, using this structure may be expedient for the com-
panies having both their existing security requirement know-
how and available public sources’’ is emerged.

Since forming the aimed structure needed a system engi-
neering type process, a system engineering concept dia-
gram, as shown in Fig. 1, describing the decisions would
be appropriate. The concepts associated with concepts found
in Fig. 1 are provided in Table 2. These concepts helped to
form the final structure of the proposed design. The majority
of the research concepts presented in this table are either
converted to application/system features to cover the stake-
holder requirements or caused a design and/or implementa-
tion decision. The information in this table will also be used
to describe the design decisions more systematically in this
section.

The study is started knowing the group of ‘‘people’’ who
needed and who are responsible to create the main ‘‘arti-
fact’’ ‘‘Security Requirement Statements’’ during the main

VOLUME 9, 2021 165971

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 2. Methodology summary.

‘‘process’’, SRS Preparation as a part of Requirements Engi-
neering tasks in advance. Since this study aims to provide a
‘‘method/technique’’ for reusing the security requirements,
two decisions are made after the literature survey in which
the ‘‘systems of interest’’ are examined in detail, the manner
of reuse and the form of reuse. The manner of reuse is
determined as reuse of ‘‘security requirements as is’’ or ‘‘in a
modified manner’’ and the form of reuse as ‘‘textual secu-
rity requirements’’ and ‘‘textual security requirement tem-
plates’’. Text based requirements have their own advantages
and disadvantages. First of all, text-based requirements allow
the use of many requirement resources, such as books, best
practice documents, standards and earlier SRS documents.
Requirement repositories based on expression ways other
than natural languages require comparatively more time to
prepare.

The main ‘‘concerns’’ related to the decisions of the form
were the availability of the security requirement sources in
this form and the practicality of using the reusable informa-
tion in this manner.

One important factor which affected the tasks during the
study is that, the majority of the existing methods lacked
providing ways to collect the corresponding requirements
data, despite including a description of the structure or a pro-
cess to store reusable security requirements. For this reason,
the authors searched sources of security requirement sets to
improve domain knowledge. Some requirement sets existed
in small amounts on some other available documents, such
as SRS files shared on the Internet, and scientific articles,
however, the standards, the vendor sites, and the security
forums discussing security requirements related to a particu-
lar application, architecture, or technology consisted of large

sets of available input for a reusable security requirements
repository.

The ‘‘concepts’’ and ‘‘patterns’’ that are related and are
beneficial for implementation are examined, in parallel to the
identification of ‘‘stakeholders’’ and their needs, concerns,
and priorities as shown in Table 2. The concepts associ-
ated with the stakeholder requirements, and the concerns,
and patterns found out during this examination yielded the
elements of the proposed structure. Specifically, some of
the stakeholder concerns such as ‘‘network requirements’’,
‘‘software requirements’’, ‘‘standards’’, and ‘‘regulations’’
corresponded to some elements in the resulting design. The
tasks of this study included the design of the proposed model,
the establishment of a data structure, implementation of the
search engine tool, using content analysis technologies to
find out keywords. This is followed by an empirical study
design for validation purposes. The empirical study designed
for validation has two parts. In the first part, to examine the
results of using a security repository, a sample repository
library was prepared that is used for two case studies from
two published articles. The aim was not to prepare a com-
plete repository with complete sets of keywords. However,
even having a sample repository was sufficient to demon-
strate the usage and the benefits of the model. In the second
part, a workshop was designed to enable the evaluation of
the proposed model by users from the industry. During this
workshop, a demonstration of the proposed model and all
the mentioned previous models had been made. Following
this, a survey was conducted to enable a comparison of these
methods. The workshop also included an experimental use of
the sample repository for a selected use-case. The experiences
of the workshop attendees were collected and evaluated at

165972 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

the end of the validation section. The details of this empirical
study design are explained in Section 5, after the description
of the proposed model.

The technical decisions of the study were also made gradu-
ally. Initially, the storage media was decided to be a database
rather than an ontology or a taxonomy document for its
wide acceptance and ease of use. However, during the imple-
mentation phase, due to the power of the fourth-generation
languages, Python came forward for this case. For working
with spreadsheet data, the initial structure was normalized
to fit in a spreadsheet design without changing the process
methodology and model elements.

IV. PROPOSED SECURITY SYSTEM
Security experts recommend mechanisms to satisfy
security targets, confidentiality, availability, integrity, and
non-repudiation, of a system, such as authentication and
authorization mechanisms for accessing an asset to ensure
confidentiality or replication and backups to ensure avail-
ability. Threat analysis provide security risks and this effort
ends up with adding special functional or non-functional
security requirements to the system specification. Traditional
risk analysis techniques which include analysis of security
threats, identifying assets and defining security measures
are necessary to provide an overall secure structure for an
application. However, this traditional approach stays at an
upper level during the requirements analysis and may not
be capable of detecting some lower-level security require-
ments. For example, an application architecture that includes
cookie usage should have a statement in its specification, like
‘‘Careful design of cookie contents and removal of sensitive
information are needed because cookies are transferred in
plain text’’. An application which depends on stateful user
sessions should have a statement like ‘‘Application sessions
must be closed automatically after an inactivity period.’’.
If a statement like ‘‘Linux/Unix servers will be used as web
servers.’’ is included in the requirement statements, then it
is good practice to include a statement like ‘‘Login shells on
Linux/Unix machines should be disabled during the deploy-
ment of the system’’. Hundreds of examples like these can
be listed. In fact, almost all application/component features
have their own particular, negligible threats or vulnerabilities,
which can only be prevented by systematically catching
these application/system components, such as depending on
keyword searches.

Software is an ill structured problem, i.e., the problem and
the solution cannot be separated from each other causing
another practical issue. Requirements frequently change or
evolve during development, even later in the development
phase. Therefore, a thorough understanding of the system
under development, which is necessary for the risk analysis,
may not always be possible for the security expert. Even a
minor change of an existing functionality or a newly added
function may lead to a significant vulnerability, which cannot
be easily detected among all the other details of the project.
Therefore, there should be an approach for automatically

determining security requirements when a functional or non-
functional requirement changes or a new functional require-
ment is added, thereby the coevolution of non-security and
security requirements can be achieved.

The third practical problem is identifying security require-
ments in a large amount of text often used in specifying
requirements. Vulnerabilities may be hidden among pages
and pages of text and even a large group of accomplished
security experts may miss subtle requirements. This issue
is similar to code inspection. Even an expert would miss
problematic pieces of code during a visual inspection. Hence
automated tools are used, yet results still demand human
touch and interpretation. Similarly, the security requirements
repository proposed in this work aims to make it easier to
determine and reuse security requirements and ensure com-
prehensive coverage. It does not aim to replace traditional
security risk analysis; it aims to support that. As a result, the
amount of effort and time required for the project develop-
ment can be reduced, while the security is improved.

In the proposed security model, applications or systems
are divided into components or features as a rule. These
components or features do not refer to application modules.
In this article, it is used to define everything that affects the
application or system security. For example, when a new
type of actor starts using an application, it may cause new
vulnerabilities due to the use of different functionality or
different access rights. If the application runs on a particular
operating system, this may cause some vulnerabilities. If the
application has to obey some kind of a regulation, this may
bring in additional kinds of security issues. Various applica-
tion components and features are characterized in this model.

The list of components and features, which will
be called as class types from now on, are: A-Actor,
B-Application Architecture, C-Authentication Mecha-
nisms, D-Access Control Mechanisms, E-Browser, F-Data,
G-Database, H-Functionality, I-Hardware, J-Language,
K-Middleware L-Networks, M-Operating Systems,
N-Payment Systems, O-Physical Protection, P-Protocol,
Q-Regulation, R-Stakeholders, S-User Interface Devices, and
T-Tags.

Each class type is selected with caution due to rela-
tions to vulnerabilities and threats. It is known that differ-
ent actors (A-Actor) may require different security needs
or may cause specific vulnerabilities or threats. Application
architectures (B-Application Architecture) also have inherent
security requirements. For example, a mobile application is
different from a cloud application, or a web-based application
is different from a desktop application. While protecting
the authenticity of the users, each authentication mechanism
(C-AuthenticationMechanism) may bring additional security
requirements. For example, a password-based authentica-
tion system will require an addition of password constraints
definition or automatic control of password strengths. Sim-
ilar to authentication systems, access control mechanisms
(D-Access Control Mechanism) may have their own require-
ments, such as a definition of ownership of assets. Browsers

VOLUME 9, 2021 165973

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

(E-Browser) have security flaws. Some systems re-quire the
use of specific browsers or are designed to be used on specific
versions of the browsers. Knowing the browser types may
result in additional protections specific to the vulnerabilities
of those browsers. Data (F-Data) has its own security require-
ments. For example, personal information, patient health
information, government secrets would cause data specific
security requirements. Similar to the browsers, databases
(G-Database) have their own kind of vulnerabilities, such
as SQL injections and backup storage problems. Specific
functionality (H-Functionality) would require specific care
of security. During the implementation of functions such as
file upload and download, search functions, or privileged
user functions, using security requirements which obey best
practice rules would be very beneficial. Hardware (I- Hard-
ware) may also be the source of some vulnerabilities. Ven-
dor sites publish such vulnerabilities periodically, so such
information may be saved in the repository for later use.
Some development languages (J-Language) are more prone
to security failures than others. For example, script type
languages have known vulnerabilities; other languages such
as Java, PHP have also known vulnerabilities which have to
be dealt with specifically. Middleware (K-Middleware) may
cause problems, such as deployment failures, replication fail-
ures or load balancing failures. Network (L-Network) orig-
inated vulnerabilities would form the largest group among
others. Although operating systems (M-Operating System)
continuously update themselves to improve security, each still
has some specific vulnerabilities which should be dealt with
carefully. This kind of vulnerabilities can be found in Com-
monVulnerabilities and Exposures database, benchmark sites
and operating system vendor publications. Among all other
functionalities, payment systems (N-Payment System) are
given more importance. They are different than other func-
tionalities, as they may require the use of specific devices,
regulations, network transmission protocols or a combina-
tion of them and they are more intriguing to people with
malicious intents. Places which require physical protection
(O-Physical Protection) would require corresponding secu-
rity checks, such as sensor checks and CCTV camera config-
urations. There are many protocols (P-Protocol) which have
specific security requirements, such as cryptographic proto-
cols. Working on such protocols and defining the require-
ments is a time-consuming process and once it is done
such information may be stored in the repository to be used
in similar projects later. Sometimes, software development
agreements force regulations (Q-Regulation) and regulations
force some security requirements. Examples of such pro-
tocols include Computer Fraud and Abuse Act (CFAA),
Foreign Intelligence Surveillance Act (FISA) and Health
Insurance Portability and Accountability Act (HIPAA). Sim-
ilar to protocols, determining requirements for these regula-
tions is also very time consuming and saving them would
result in using less time and more complete security require-
ment sets. Stakeholders (R-Stakeholders) may cause new
security requirements, such as integration and verification

requirements. Finally, some user interface devices (S-User
Interface Devices) such as keyboards, handheld devices, and
smartphones have specific security requirements. Besides the
other categories found in the repository, it will be valuable
to attach some labels to the application or system, because
some concepts are hard to characterize as an application
or system component. ‘‘Requires Cryptology’’, ‘‘Uses Audit
Mechanism’’ are examples of tags (T-Tag) defined so far in
this study. These tags refer to particular types of security
requirements for a project. Selection of these features or com-
ponents has been made in the wake of examining common
security problems. They include most of the common sources
of security problems covered in security books, articles, and
web indexed lists. These component sets can be extended by
the users of the repository model by including new class types
as the technology evolves.

Reusable security frameworks mostly rely on find-
ing requirements and preserving the relations between
them. In the proposed model, security requirements and
non-security requirements are segregated, since the secu-
rity requirements are usually specified after non-security
requirements. Unless non-security requirements have been
defined, the effort for defining security requirements can-
not bring about concrete results. Therefore, the first step of
using this repository is to define non-security requirements.
Non-security requirements are isolated into two subsections;
non-security non-functional requirements and non-security
functional requirements. Whenever new requirements are
included in the requirements document (SRS), the repository
can be queried multiple times for new security requirements.
The distinction of functional and non-functional require-
ments has been made in both security and non-security
requirement parts on purpose to impel the user of the repos-
itory to proper sources. Requirements engineers or system
analysts perform the requirement engineering steps so as to
accumulate all the non-security requirements. This article
does not deal with the details of the requirements engineering
processes, whose methodology can be tailored according to
the project.

The sample queries listed below demonstrate how security
definition sources can be used to fill in a repository and
how the stored information can be queried based on applica-
tion/system features or corresponding keywords which may
appear in non-security requirement definitions.
• Security requirements related to some specific vulnera-

bilities/threats
• Security requirements related to databases or a specific

database type, such as Oracle or DB2
• Security requirements which were defined in the last year

or from a specific reference
• Security requirements related to system administra-

tors/cloud user
• Security requirements related to ATM payments, file

transfer or password reset functionalities
• Security requirements related to ATM user interface

devices or keyboards

165974 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 3. Top level relationships of the repository model elements.

• Security requirements specific to PHP development lan-
guage
• Security requirements assigned ‘‘Token’’ or ‘‘Default

Passwords’’ tags
• Security requirements related to HIPAA standard or

TCP-IP protocol
• What are the non-functional security requirements

(which may possibly correspond to managerial decisions)
• What are the functional security requirements (which

may possibly correspond to technical solutions).
If the strengths and weaknesses of the proposed model

are further examined, Common Criteria appears powerful
due to international acceptance as a standard and providing
an evaluation platform. However, its requirement sets are
very generic and have to be tailored and worked on prior to
actual use in a real project. In addition, to include support
for the security requirements of new technologies, consen-
sus of broader organizations is required. While determining
requirement sets, CC does not take advantage of existing SRS
files and does not relate non-security requirements to security
requirements.

A. REPOSITORY TERMINOLOGY IN RELATION TO
COMMON CRITERIA
Before going further on the repository model, the authors
decided that using some of the Common Criteria (CC) terms
to explain the approach of this article will make it easier to
understand it, for the type of audience who has experience
and/or knowledge on CC. CC uses the term component to
describe the smallest selectable set of elements on which
requirements may be based. This definition is very parallel to
the term application/system component/feature term used in
this paper. Another important term used in CC is the target
of evaluation (TOE) term. TOE is the combination of sets
of software, firmware, hardware and environmental devices
which are subject to security evaluation. In CC, TOE may be
in diverse forms, like a document or an installed software.
In this approach, it is required that at least TOE specifica-
tions should be in a document format to further work on it.
It corresponds to the system/application term in this model.

CC separates the sufficiency checks and correctness checks
for a TOE. In this repository approach, existence of the
necessary requirement statement is the target of evaluation.
This requirement statement may be related to the sufficiency
of a countermeasure or a correctness or both. If the neces-
sary statements are found in the repository, then this would
result in both correct and sufficient countermeasures for a
vulnerability.

CC uses the terms packages and protection profiles for the
sets of security requirements. Packages may contain security
functional requirements, SFR’s or security assurance require-
ments, SAR’s. These packages are intended to be reusable.
In fact, the information that are stored in the repository are
the security functional requirements and security assurance
requirements. Protection profiles refer to the requirements
which are related not to a TOE, but to a class of a TOE,
such as firewalls, smartcards, etc. These protection profiles
are typically written by user communities seeking consensus
for a requirement, developer of the TOE or a government or
large organization as part of an audit process.

At the first look, this model may seem like lacking a
protection profile classification to identify the already clas-
sified requirements. In this model, the requirements were
taken out of packages or protection profiles and stored in
the repository. They were indexed using lower-level terms,
components. Indexing these requirement sets in this way
increases reusability. Moreover, the tag field can also be used
to keep the protection profile information.

Security target, which is the last term taken from the CC,
is used to describe the security objectives for the TOE and its
operational environment. In order to decide on the security
target, the security problems should be identified, security
objectives should be decided on and so on. This repository
model does not include any such process to identify necessary
objectives, protection profiles and the resulting security tar-
get for a system/application. These requirement engineering
practices are excluded to avoid forcing the user to a particular
methodology or process. As mentioned earlier, the authors
recommend that the users of this repository should continue
using their existing requirement engineering practices in par-
allel to the repository during the identification of the security
objectives for a system/application.

In this model, the TOE or system/application is identi-
fied together with its related non-TOE software, hardware
or firmware. This is also recommended by the CC. Appli-
cation/system components in the proposed model can have
networking elements, hardware elements, elements related to
other software classes, etc. Without knowing its environment,
necessary security countermeasures can not be installed for a
system/application.

B. EXPLANATION OF THE REPOSITORY USING A CLASS
DIAGRAM
The class diagram of the model can be seen in Fig. 9. Non-
security requirements form ‘‘Reference’’ part of the repos-
itory, which is shown in pink color in the figure. These

VOLUME 9, 2021 165975

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 4. Timeline of proposed repository related activities.

non-security requirements should be the basis to capture the
security requirements. To use the knowledge stored in the
Reference part, the ‘‘Dictionary’’ and ‘‘Library’’ parts of
the repository should be filled with data. Each non-security
requirement may be the reason of the presence for one or
more application/system component/feature in the selected
set. These relations of non-security requirements to appli-
cation/system components/features are captured by search-
ing the application/system component/feature name from the
requirements document and as a second step searching for
application/system component/feature specific keywords in
the requirement documents to capture more subtle applica-
tion/system component definitions. The definition of ‘‘Ref-
erence Part’’ requires the start of a new project, so definition
of ‘‘Dictionary’’ and ‘‘Library’’ parts related data can be
earlier in time. However, unless ‘‘Reference’’ data is defined,
nobody can actually start benefiting from the repository.
A timeline of these activities is provided in Fig. 4. In Table 3,
examples of functional (services provided by the system) and
non-functional requirements (constraints on these services)
and the captured application/system features are shown.

Another part of the repository is the ‘‘Dictionary’’, which is
indicated using blue color in Fig. 9. The requirements defined
in ‘‘Reference’’ part should be related to the security require-
ments already saved in the repository’s ‘‘Library’’ part. ‘‘Dic-
tionary’’ contains the names of distinctive types of possible
user profiles, different operating systems, distinctive authen-
tication mechanisms and access control systems, which are
known or expected to have security vulnerabilities. Filling in
the dictionary part is the relatively easy part of building the
repository and it does not take an excessive amount of time.
It requires security and system knowledge. Yet, once it is
complete, maintenance does not require an excess of exertion.
This part would not change much from project to project.

In Fig. 9, it can be seen that application/system features are
partitioned into different groups. These components/features
are all related to the main application/system in some way.
An application/system may be related to one or more appli-
cation system components and an application/system com-
ponent may be related to one or more application. Once the
‘‘Reference’’, ‘‘Dictionary’’ and ‘‘Library’’ parts are filled in,
the best possible application/system components, class types
selected from ‘‘Dictionary’’ part of the repository will be
used to capture actual security requirement templates from
‘‘Library’’ part.

‘‘Library’’ part of the repository, shown using the green
color in Fig. 9, is where security requirements templates are
stored. The requirements are expressed using short sentences
in natural language. The security requirement templates are
called ‘‘Requirement Template’’ instead of ‘‘Requirement’’
only. The reason is the requirements are expected to have
parts to be adopted/ changed/specialized before using in the
‘‘New Project’’. It is up to the user to mark or not mark such
parts using special characters such as ‘‘<, >’’ or ‘‘||’’.
Every application/system feature may have its particular

weaknesses, or it might be directly associated to a known kind
of security vulnerability. So as to resolve these vulnerabilities
or threats, a security requirement ought to be added to the
repository. Filling in this part of the repository is a time con-
suming and continuous process. The repository is expected to
grow with each new project. The requirements can be related
to one or more application/system features in the library part
of the repository. These relations should also be stored in
the system. Once the vulnerability or the actual threat is
defined, other template-based models such as the CC can be
used to get an advantage of its already written templates in
a formal manner. Books, vendor sites, best practice guides,
standards, and precaution sets from risks analysis studies

165976 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 3. Functional and non-functional requirements and related application/system features.

can be the source for this part. As the number of resources
increase, library will grow. Requirement statements can be
filtered based on creation date, source/origin, and creator.
These fields can also be used to delete old requirement state-
ments which belong to old dates or expired sources. Once
the ‘‘Library’’ part of the repository is completed, security
requirements, which will resolve the issues for a new project
can be gathered through relating the non-security require-
ments to the security requirements over application/system
features. The most effortless approach to do this is search-
ing the application/system features in the SRS document.
This search can be done automatically or manually. Nat-
ural language processing tools have been used before on
SRS documents to increase reusability and automate system
design [40].

Sometimes, the exact name of the ‘‘Dictionary’’ element
in the SRS document cannot be found during a manual
search or programmatically. For example, in the SRS file
there may not be a term called ‘‘Bell La Padula Access Con-
trol Mechanism’’ or ‘‘Multilevel Access Control System’’,
but instead a different wording might have been used such
as ‘‘There should be a security access control mechanism
which is based on clearance.’’ Therefore, in order to catch
the actual application/system components, searching only for
application/system components from the ‘‘Reference’’ part
is not enough. Having a set of keywords related to applica-
tion/system features, security subjects, domains or technolo-
gies will both improve the search results and the quality of the
security sets elicited from the Security Requirements Repos-
itory. For this reason, a new class called ‘‘Keyword’’ is added
to the repository in the second version of this model. In the
UML diagram, it can be seen that every application/system
component may have one or more keywords. For the major-
ity of the application/system components, these keywords
may simply be anonymous, or similar terms or abbreviations
for a technology that may help to discover the requirement
related to that specific application/system component such
that Windows-Microsoft Windows, IDS - Intrusion Detection
System - Intrusion detection and Prevention System. For

other technologies holding a set of keywords which com-
monly exist in the textual descriptions of that technology may
help discoveries, such as Biometric Authentication -Retina-
Iris, Cryptographic Function-Hash-Key Length, and Physical
Protection-ISO 27001:2013 -Fence-Camera. Besides com-
mon knowledge, a more formal approach such as calculating
the exact frequency of occurrence of each word in a techni-
cally accepted document covering the subject, and then, using
manual inspection to make a choice of keyword sets related
to the chosen subject, or using concept map diagrams such
as Leximancer [41] for the latter group would be beneficial.
In Fig. 4, generation and use of application/system compo-
nents and keywords is included in the timeline of activities.

C. NORMALIZED REPOSITORY STRUCTURE AND PYTHON
BASED REPOSITORY SEARCH ENGINE
As described in the methodology section, the data structure
shown in Fig. 9 in the Appendix Section was transferred to
a spreadsheet design. Top-level relationships of this diagram
are provided in Fig. 3. In this design, the functional and non-
functional non-security requirements, ‘‘Reference Part’’ is
expected to be in a txt file. Fig. 5 (a) presents a sample storage
of the ‘‘Dictionary Part’’. Fig. 5 (b) represents the information
structure related to the ‘‘Library Part’’. In Fig. 5 (a) there are 5
classes, each having a variable number of instances. For some
of the classes and instances, the sets of keywords are assigned.
In Fig. 5(b), Requirement 1 is associated with all instances of
the first class, Requirement 3 is associated with Instance 1
and Instance 3 of the second class, and Requirement 8 is
associated to all instances of second class and only instance
two of the third class.

Table 7 in the Appendix Section includes the repository
search engine Python code. Shortly, the search engine creates
a dictionary of class-instance associations. It also holds the
instance-keyword associations in another structure. It checks
the existence of all the words from the available Reference
document holding the non-security requirements, and stores
the result in a Boolean dictionary. Later, it reads all the
reusable requirements from the Library Part into a dataframe.

VOLUME 9, 2021 165977

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 5. Spreadsheet design which suits repository model and can be parsed via the search engine.

Using this data-frame and the existence dictionary, it forms
a document holding a list in the form Class Name-Instance
Name-Requirement Text. During requirement engineering
practices, the user can use the list provided by the tool, elicit
the requirements to build the final list of necessary security
requirements.

V. EMPIRICAL STUDY DESIGN FOR VALIDATION
The empirical study designed for validation had two parts.
In the first part, to examine the results of using a security
repository, a sample repository library was prepared using
various resources. Then, this repository was used to deter-
mine security requirements for two case studies selected from
two published articles. The aimwas not to prepare a complete
repository with complete sets of keywords. However, even
having a sample repository was sufficient to demonstrate the
usage and the benefits of the model.

In the second part, a workshop was designed to enable the
evaluation of the proposed model by participants from the
industry.

Potential threats to the validity of the validation study are
related to biased or incorrect selection of validation resources
and participants and the participants’ own bias. In order to
eliminate these threats, the sample repository which will be
described in the following section is formed using not a single
source but multiple sources from different origins. Although
the workshop which is part of the validation is a time taking
process with multiple stages, the number of participants is
kept moderately high having different level of experiences.
Bias of the participants during the surveys are eliminated by
keeping the proposed system and all the other compared sys-
tems completely anonymous. The details of the preparation,
selection, conduction and evaluation for the validation study
are described in the following sections.

165978 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

A. PREPARING A SAMPLE SECURITY REPOSITORY
The sample repository consisted of the library part of
the requirements with selected application/system fea-
tures, and keyword sets and the security requirements
related to the application/system features from the library
part. On Github a project named ‘‘Security-Requirements-
Repository-Through-Application-System-Components-and-
Keywords’’ was created to store sample repository
information, the case study inputs and outputs. The list
of selected application/system components for the sample
repository can be found on this Github project∗. Keyword sets
were generated by word frequency analysis. As specified in
the Introduction Section, preparing a full security repository
is beyond the scope of this article.

To prepare the repository, several sources were used.
Initially, some SRS files [42]–[44] were considered. The
requirement sets obtained in this way, however, were insuf-
ficient to be taken as a base. This observation also supports
the initial opinion that writing a good SRS which has all the
necessary security requirements is a very time consuming and
difficult task. Next, the CC security documents [7], [8] were
examined resulting with requirements that are very generic
and requiring some extra work before usage in an SRS.
However, the requirement templates from the CC were added
to the sample repository and related to application/system
components to the library part. Finally, some books [45]–[49]
focusing on information security were used. Mostly, hand-
books related to well-known security problemswere selected,
as they were already targeting most of the known security
threats and providing the requirement statements to resolve
them. As a result, 422 security requirement items were stored
in this security repository.

B. SELECTION OF SAMPLE REQUIREMENT SETS FOR
COMPARISON
Designing a new software requirement scenario as a case
study subject to show the advantages of the proposed solu-
tion would possibly include a positive bias for the proposed
model. Therefore, the authors queried the literature to find
published sets of requirements which include both functional
and non-functional requirements and has a length which is
suitable for validation purposes. As a result of this query,
two published articles were found, which are summarized in
the next section. Although, it is not claimed that the given
requirement sets are the results of detailed analyses, they
were found useful for applying the proposed model to see
the difference it makes. The time and effort spent for the
security requirements analysis were not mentioned in these
articles. Knowing that even in real life SRS documents, the
security requirement analysis results may be limited, caus-
ing either incomplete requirement sets or very high-level
abstraction leaving the details to the design phase of the
project, it seemed to be not wrong to use the scenarios and
corresponding requirements sets from selected articles for
validation purposes.

The first case study was the ‘‘CrowdRequire’’. For this
case, an analysis of the requirements of a Crowdsource
application, named CrowdRequire [43] was made. This is
a platform that supports requirements engineering using the
crowdsourcing concept. In the paper named ‘‘CrowdRequire:
A Requirements Engineering Crowdsourcing Platform’’,
functional and nonfunctional requirements are provided.
However, these requirements did not convey much detail,
since their motivation was not preparing security require-
ments, which was expected. Github project lists the func-
tional and non-functional requirements taken from the
CrowRequire article [50].

The second case study was ‘‘Internet of Things Appli-
cation’’ [51]. In the article named ‘‘A survey on Internet
of Things’’, Alqassem and Svetinovic [52] made a detailed
analysis of the Internet of Things subject. They have also
published an article named ‘‘A Taxonomy of Security and
Privacy Requirements for the Internet of Things’’ [52].

C. DESIGN OF THE VALIDATION WORKSHOP
The workshop was planned like a lecture related to frame-
works and techniques for identifying security requirements.
Evaluation workshop had three main parts. In the first part,
the demographics information of the attendees was queried,
including their experience on both requirements analysis
methods and on information security concepts.

In the second part of the workshop, comparison of the
security-focused requirement analyses methods was made.
In this part, six security requirements methods were described
to the attendees briefly, including their highlights, basic steps,
and key points, sequentially through the use of power point
slides. After the description of eachmethod, five points Likert
scale questions were asked to the attendees separately for
each method.

In order to avoid causing a positive or negative bias for any
of the methods, no information was given related to the actual
names, origins, and creators of the methods including the
proposed method. An order number and a short description
were assigned for each method for identification. For exam-
ple, the Common Criteria based method was just pronounced
as ‘‘Method 2: Use of a Generic Requirements Framework’’,
the proposed method was pronounced as ‘‘Method 4: Use
of a Requirements Framework’’ so on. To enable a compar-
ison of the methods and the techniques they use, detailed
information on these frameworks and techniques were shared
with the participants, during a one-hour presentation session.
This information included the techniques for data collect-
ing, searching, retrieving, classification, and elicitation; the
description of the data used and or stored for each method;
community and tool supports (if exists); information related
to standards supporting each method (if exist); key points and
highlights; graphical illustrations, such as graphs describing
data or repository structures, or workflow showing phases of
the techniques.

As a base method for comparison, the traditional require-
ments engineering lifecycle with no requirements repository

VOLUME 9, 2021 165979

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

or reuse was also included under the name of the tradi-
tional method. All of the participants were familiar with
traditional requirements analysis methods and use-case based
techniques. Only very few of them had little familiarity with
the OWL data structures and tools. About, half of the atten-
dees also had familiarity with the Common Criteria standard
as an international security evaluation standard. The rest of
the requirement reuse based methods including the proposed
method were unknown for the participants.

In the third part of the workshop, application of the pro-
posed method was carried out in the computer laboratory.
The description of the first case study topic, a set of sample
keywords, and a sample repository were given to the users
and users were requested to apply the steps of the proposed
method to the sample case in about 60 minutes. Prior to the
application of the method, the steps of the proposed method
were described to the participants again in two sessions. 29
participants (14 and 15 participants from session one and
two) formed ten groups of 2 to 3 members and each group
independently applied the proposed method and submitted
their results. After this workshop, each attendee was asked to
answer questions related to the applicability of the proposed
method and their experience independently from other group
members.

D. WORKSHOP PARTICIPANTS
The participants were all professionals taking evening edu-
cation in a non-thesis graduate program that targets working
individuals in the field. Respondents were working either in
private sector or as civil servants in governmental depart-
ments with varying experience levels. The workshop has been
conducted with 29 participants. The participants had varying
levels of work experience, 51.7% junior, 31% senior, 10.3%,
6.9% owner or partner. The 34.4% of the participants were
female, and 65.5% were male. All of them were working in
IT companies besides their graduate studies. Fig. 6 shows the
summary of their experiences in the IT sector, in information
security area and in requirements engineering area.

VI. RESULTS
A. FIRST CASE STUDY RESULTS: USAGE OF SECURITY
REPOSITORY ON CROWDREQUIRE WITH COMPARISON
For the first case study, the aim was to find the keywords
matching the predefined application components and then the
set of security requirements from the repository using these
components. Table 4 shows the keyword analysis results,
related to components, how the requirements are handled in
the original document and the suggested security require-
ments, for the first case study.

B. SECOND CASE STUDY RESULTS: USAGE OF SECURITY
REPOSITORY ON INTERNET OF THINGS APPLICATION
CROWDREQUIRE WITH COMPARISON
For this case study, the keywords and new application/system
components were identified and compared with the results of

Alqassem and Svetinovic [52]. The aim was to extend their
outcomes with the assistance of a security repositorymodeled
in the proposed way. The original security requirements for
this case (existed in Github project) were selected after a
detailed vulnerability analysis and elicitation explained in the
Alqassem and Svetinovic’s [52] article. From the problem
definition article, the keywords were selected. Using the
keywords, the corresponding application/system components
listed in Table 5 were obtained. Evaluation was made based
on two factors. The first is whether the application/system
component was new to the sample repository or it already
existed. This shows how a sample repository grows. The
second is whether the security requirements corresponding
to the keywords and application components have already
existed in the original security requirement set or not. This
shows the degree of success of the proposed method.

C. RESULTS OF METHOD COMPARISONS IN THE
WORKSHOP
For the comparison of the methods six questions were
designed with five-point Likert scales. Fig. 7 shows the
questions and mean values for all the answers given by all
participants.

One sample one sided paired t-tests were made for all 29
records in a single group to measure the significance of the
differences of the mean values between method 4 (proposed
method) and the other methods at 90% and 95% significance
levels. Looking at the statistical results, in terms of suitability
of handling security requirements, the proposed method is
similar to the other methods except for the traditional method.
Regarding all other listed criteria, such as the capability of
using previous requirements, or feasibility of completion in
the time allotted, the proposed method had significant advan-
tages over other methods at 95% or 90% levels with a few
pair-to-pair comparison exceptions.

The key findings of validation questionnaire are as follows:

• The suitability of proposed method (Method 4) for small
companies has been found quite high as proposed by the
authors.

• The only method which has higher suitability for small
companies than the proposed method (Method 4) was
the traditional requirements elicitation method (Method
1) which is logical, because it requires no repository
preparation, thus, less resource.

• Completion in the time allotted was found the most
feasible for the proposed method (Method 4). This result
is in line with the authors’ initial claims and indicate that
the participants have found that the proposed method
(Method 4) as practical and easy to use.

• The OWL based method (Method 5) has been found to
be the least feasible in terms of time consumption. The
reason for this may be the fact that the participants were
not familiar with OWL-based tools and techniques.

• The second least feasible method was the Common Cri-
teria based repository (Method 2), due to its complicated
structure.

165980 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 6. Workshop participants’ experiences on relevant fields.

FIGURE 7. Results of method comparisons.

• In terms of lack of dependence on historical threat
data, the proposed method (Method 4) has been found
to be the lowest. The proposed method does neither
have an explicit focus on threat data or threat anal-
ysis, nor a claim of being independent of historical
threat data. However, the existence of the repository and
selected application/system components/features even-
tually resulted in the idea of dependency of the previous
threat data on the participants.

• In terms of suitability of addressing the requirements,
the proposed method (Method 4) has the highest score
followed by the Common Criteria based model (Method
2) and the method proposed by SEI (Method 3).

• The capability of using previous software requirements
has also been found the highest for the proposed method
(Method 4). Although some of the other methods also
included the reuse of previous requirements, this result
indicates that the participants have found the data struc-
ture of the proposed method easy and most suitable to
store and retrieve the requirements.

• The proposed method (Method 4) has the second lowest
score in terms of having a long learning period after
traditional requirement analysis.

D. RESULTS OF PROPOSED MODEL APPLICATION
EXPERIENCE IN THE WORKSHOP
The results of applying the proposed model to the sample
case are shown in Fig. 8. The results are quite promising and

show that participants have understood, benefited from, and
applied the proposed model effectively for the sample case.
The submitted keywords, component lists, and requirement
sets for each group in 10 separate files were also examined
and scored by the authors in order to determine the effective-
ness of the proposed model and the limitations of the sample
security requirements set. The summary of numerical results
of using sample repository is shown Table 6.

Key points related to application of proposed method are
as follows:
• The difficulties of the application of the method in the

first session have been observed by the authors and this
resulted in a better explanation of some issues during the
second session.

◦ The explanation of the steps of the proposed model has
been improved after the first session.

◦ Limitations of the sample repository such as not having
enough requirement sets for each component type in the
Excel file, has also been better explained to the attendees
of the second session.

• A better understanding of the method and limitations
of the workshop resulted in a higher average score for the
majority of the comparison metrics for the groups of the
second session.
• The attendees of the second session gave more positive

answers to the third part of the survey compared to the
attendees of the first group.

VOLUME 9, 2021 165981

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 4. Keyword analysis results for ‘‘Crowdrequire’’ [50].

165982 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 5. Keyword analysis results for the problem definition of Internet of Things [51].

FIGURE 8. Workshop results of application of proposed method.

• Since the provided sample repository was not com-
plete, all groups were consistently able to offer the necessary
requirement statements related to some parts, such as the web

server, but were not able to offer much for some other parts
which were missing in the sample repository. This result may
indicate that all the groups understood and used the technique

VOLUME 9, 2021 165983

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 6. Workshop numerical results.

in a similar way and achieved similar results independent of
each other.
• Very few of the attendees were able to offer new require-

ment statements for the sample case due to the limited time,
which is reasonable because initial forming of the require-
ment statements requires a time taking process.

VII. DISCUSSION
In this part, design decisions, limitations, and the detailed
results of using the proposed method are depicted. The
proposed model stores text-based requirement statements in
natural language. The number of requirements presented or
expressed in those ways in such earlier studies does not
exceed ten at most, missing many important security issues.
With the proposed repository, using the mentioned resources
was relatively easier due to the already mentioned benefits of
text-based requirements. Hence, even the sample repository
created for the demonstration purpose included 422 require-
ment statements, handling numerous security issues.

The repository has a structure which guides the user about
what kind of information to be reused. This structure enforces
the reuse of various kind of requirements. Thus, the reused
information is not limited to a small common set such as,
requirements related to the user authentication or cryptogra-
phy implementation.

Flexibility is an advantage of the proposed model. The
model allows definition of requirements in any precision
level. Requirements stored in the repository can be as generic
as the Common Criteria case, but it is also possible to store
specific requirements coming from other acceptable sources,
which has been the case for the sample repository. The con-
sistency of the requirement statements is important for high
reusability. Since multiple sources are planned to fill in the
repository, it may be difficult to achieve the same level of
consistency for all the requirement statements. For example,
the requirement statements taken from the Common Criteria
documents include ‘‘assignment’’ parts; other sources include
parenthesis which indicates parts that should be filled in by
the users. Repository creators may decide on a representation
for these situations. The use of repository also allows group-
ing the requirements according to their functionality, such as
in authentication and access control. This grouping mecha-
nism would also help to resolve inconsistencies which would

otherwise cause vulnerabilities. Including additional infor-
mation, besides the actual security requirement statements,
is also beneficial to increase the usability of the repository.
In the sample repository, the rationale of the requirement is
included in parenthesis for this purpose.

Creation of a sample repository and application of the
model for two cases pointed out two important concerns.
Multiple reputable sources of security requirements should
be used when forming the repository, because each source
has its own strengths and there is a necessity to be care-
ful when using and selecting the keywords. Although some
ways have been offered to easily ameliorate the genera-
tion of keyword sets, the selection of keywords for specific
application/system components may be subjective. Reposi-
tory creator team should be taught to eliminate meaningless
keywords and improve the remaining ones.

In the results section, demonstration was made for both
case studies, showing that the existence of a security repos-
itory in the proposed model can make significant improve-
ments on the original security requirement sets. In the first
case, although the original requirement set lacked details,
it pointed out the necessity of top level confidentially, access
control, integrity, prevention of data loss and availability
requirements. Original requirement analysis lacked a detailed
security analysis, which is usually the case in real life due to
limited resources or time. Usually, functional requirements
are worked on more properly than security requirements dur-
ing the SRS phase. Security requirements are only declared
using some fundamental set of sentences and are expected
to be improved in later phases of the project. As a result
of the application of the proposed method, some security
requirements from the sample repository were offered, result-
ing in a detailed set of security requirements covering some,
probably not all, important security issues. In the second case,
a manual keyword analysis was made which resulted in a very
large set of possible application/system components. Next,
original requirement sets have been checked to see if they
meet all the security needs. This analysis showed that even
detailed security analysis results may lack important security
requirements and the usage of the repository handles these
situations effectively.

Even using a few resources found online allowed us to cre-
ate and improve the repository by adding some very important
application/system components and corresponding security
requirements during the process. For an organization which
works on different IT problems continuously, and repeatedly,
creating such a repository with certain quality would be rela-
tively straightforward.

In terms of usability of the proposed system, during the
workshop, the attendees managed to find out keywords and
corresponding application system features. Later, Excel pro-
gram filtering feature was used to find the requirements
corresponding the application/system components. Even this
limited functionality allowed the completion of the workshop
for all groups. Having the tool support, repository search
engine, boosted the usability of the overall system.

165984 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

FIGURE 9. Class diagram for the proposed model.

Going into the details of using the sample repository,
in order to compose associations with the components, it may
be necessary to defragment the original requirement phrases
to a level which better associate with the application/system
components. For example, a requirement which points out
the privacy of multiple data types may be fragmented to
associate with each data source independently. The rela-
tion of requirement statements to some components may
not be absolute for some requirement statements. For such
situations, to be on the safe side, during the preparation
of the sample repository, such requirements were associ-
ated with the appropriate components and the decision of
including or excluding was left to the requirements elicita-
tion phase. For example, the requirement of enabling backup
of the security information was associated with all types
of access control systems. However, ACL systems which
do not store such information may not have to implement
this requirement. This decision is left to the users of the
repository.

An important finding achieved during the preparation
of the sample repository was that the Tag class was also
useful to point out security targets, such as confidentially
and integrity, although initially it was designed to be used

for relations which were not application/system compo-
nents/features. Some requirement statements may have high
associations to security targets. For example, the associ-
ation to integrity is clear for some requirements point-
ing out the necessary data integrity checks during data
entry. While preserving the associations with security tar-
gets using the Tag class, new associations to user interface
devices, data types or data entry related functionalities can be
built.

Another finding was also related to the Tag class. This
Tag class was used to indicate use-cases whenever appli-
cable. As mentioned earlier about the requirements which
are related to security targets, some requirements have high
relations to use-cases. For such requirements building asso-
ciations to use-cases over the Tag class may also be bene-
ficial. In the sample repository, use cases, such as session
timeout, system login, and secure recovery were pointed
out explicitly. Use of Tags to point out use-cases causes
some resemblances to security patterns which explicitly point
out the situations where the security solutions should be
applied. One other resemblance to security patterns is due
to grouping the requirement sets using application/system
components. Security patterns have been categorized using

VOLUME 9, 2021 165985

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

TABLE 7. Code for repository search engine.

many criteria to form groups of patterns so far in numerous
studies.

Using Application Architecture class to store sub architec-
tural decisions, such as the use of cookies or use of data entry

165986 VOLUME 9, 2021

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

forms, besides the high-level architectural types, such as the
desktop application or web-based application, allowed clas-
sification of some particular requirements better, increasing
the possible reusability during the preparation of the sample
repository.

The proposed system has a few limitations some of which
are inherent limitations due to the nature of the process, and
others due to the design decisions. The proposed model does
not include risk factors, risk analysis, and risk management.
Risk analysis can be made using various methods at different
levels in different organizations. This activity has not been
included in the model on purpose to achieve simplicity and to
allow the use of the model together with existing risk analysis
techniques in an organization.

The proposed repository-based security requirement solu-
tion, similar to the mentioned studies in the literature review
section does not guarantee completeness. The completeness
of the security requirements should be checked together with
the completeness of non-security requirements using existing
requirements engineering practices. Customer evaluation and
group decision-making techniques should be used to eval-
uate the completeness of both the repository items and the
resulting security requirements. The number of the available
attributes characterizing the security requirements is also a
criteria of completeness for such kind of repository models.

Besides the completeness, the quality of the requirement
statements from the sample repository can be questioned.
The requirement sentences taken from the referenced sources
were used as is in the paper to achieve a high level of ethical
engagement. However, at least some of the sentences from the
sample repository should be worked on to reduce the redun-
dancy, increase uniformity and provide a consistent abstrac-
tion level for a real-world case. Some requirements from the
sample repository should also be improved by adding a ‘‘such
that’’ clause and should be continued with the exact details of
the requirement in a real-world case.

Existing tool support can be carried to the web as a
future task, to enable a crowdsourcing repository approach
project. As the number of users of this repository increases,
more sources can be included and the speed of growth may
accelerate. One technological way of doing this is creating
a SharePoint portal application. In the case of using a web
interface with multiple users, editorial functionally, such as
approving/rejecting the suggested keywords and requirement
sets can be included for better functionality in the future.

VIII. CONCLUSION
In general, the efforts to characterize security requirements
for a new software/system start from scanning possible secu-
rity risks of the software/system. In order to do that, require-
ments engineers or system architects determine the threats
to the system. In any case, it is challenging to find all the
risks, at the broader view, of the software/system. This is one
of the main reasons why security is not handled properly in
most of the projects. The proposed model divides the sys-
tem/software in a uniqueway to provide easy associationwith

security requirement sources. Moreover, it is demonstrated
and tested using two different case studies from published
academic work and a sample repository. The results show that
in the absence of proposed requirements repository, critical
requirement statements would be missing from the listed
requirements.

As future work, a public security repository can be cre-
ated by cooperating with IT companies, which already have
extensive SRS libraries. In the long term, it may provide a
platform if a shared repository exists among developers doing
similar projects. This cooperation with IT companies can
likewise bring about better SRS libraries for them for internal
usage. Some other useful attributes can also be added to the
repository design, such as vulnerability analysis levels or
function point measurements for different security solutions.
Making more analysis on keyword sets and security concept
diagram methods may result in finding new relationships
among security concepts and this may also improve the data
structure model of the repository.

Generation of keywords through the use of concept seed
from any valuable security related source can be automated
in the future. The generated concepts can be used to check
existence of necessary concepts in an SRS, even without
continuing with the definition of application/system compo-
nents. However, mapping the resulting concepts to applica-
tion/system components automatically requires some extra
work which has not been done in this study. This may also
be achieved by using a rule-based engine system for some
extent.

APPENDIX
See Figure 9 and Table 7.

REFERENCES
[1] ISO/IEC/IEEE International Standard—Systems and Software

Engineering—Life Cycle Processes—Requirements Engineering, IEEE
Comput. Soc., Washington, DC, USA, 2018.

[2] F. Al-Hawari, M. Al-Zu’bi, H. Barham, and W. Sararhah, ‘‘The GJU
website development process and best practices,’’ J. Cases Inf. Technol.,
vol. 23, no. 1, pp. 21–48, Jan. 2021.

[3] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, ‘‘A sys-
tematic review of security requirements engineering,’’ Comput. Standards
Interfaces, vol. 32, no. 4, pp. 153–165, 2010.

[4] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, ‘‘Reusable knowl-
edge in security requirements engineering: A systematic mapping study,’’
Requirements Eng., vol. 21, no. 2, pp. 251–283, Jun. 2016.

[5] Information Technology—Security Techniques—Evaluation Criteria for IT
Security—Part 1: Introduction and General Model, ISO/IEC, Geneva,
Switzerland, 2014.

[6] (Jun. 2016). Common Criteria. [Online]. Available: https://www.
commoncriteriaportal.org/

[7] Information Technology—Security Techniques—Evaluation Criteria for IT
Security—Part 2: Security Functional Requirements, ISO/IEC, Geneva,
Switzerland, 2014.

[8] Information Technology—Security Techniques—Evaluation Criteria for IT
Security—Part 3: Security Assurance Requirements, ISO/IEC, Geneva,
Switzerland, 2014.

[9] D. Mellado, E. Fernandez-Medina, and M. Piattini, ‘‘A common criteria
based security requirements engineering process for the development of
secure information systems,’’ Comput. Standards Interfaces, vol. 29, no. 2,
pp. 244–253, 2007.

VOLUME 9, 2021 165987

F. Özdemir Sönmez, B. Günel Kılıç: Reusable Security Requirements Repository Implementation

[10] M. Saeki and H. Kaiya, ‘‘Security requirements elicitation using method
weaving and common criteria,’’ in Proc. Int. Conf. Model Driven Eng.
Lang. Syst., Berlin, Germany, 2008, pp. 185–196.

[11] M. Amutio, J. Candau, and J. A. Mañas, ‘‘MAGERIT—Versión 3.0.
Metodología de análisis y gestión de riesgos de los sistemas de informa-
ción. Libro II-catálogo de elementos,’’ Edita, Madrid, España, 2012.

[12] A. Toval, J. Nicolás, B. Moros, and F. García, ‘‘Requirements reuse
for improving information systems security: A practitioner’s approach,’’
Requirements Eng., vol. 6, no. 4, pp. 205–219, Jan. 2002.

[13] J. Lasheras, R. Valencia-García, J. T. Fernández-Breis, and A. Toval,
‘‘Modelling reusable security requirements based on an ontology frame-
work,’’ J. Res. Pract. Inf. Technol., vol. 41, no. 2, p. 119, 2009.

[14] B. C. Zapata, J. L. Fernández-Alemán, A. Toval, and A. Idri, ‘‘Reusable
software usability specifications for mHealth applications,’’ J. Med. Syst.,
vol. 42, no. 3, pp. 1–9, Mar. 2018.

[15] D. Firesmith, ‘‘Specifying reusable security requirements,’’ J. Object Tech-
nol., vol. 3, no. 1, pp. 61–65, 2004.

[16] C. Raspotnig, P. Karpati, and A. L. Opdahl, ‘‘Combined assessment
of software safety and security requirements: An industrial evaluation
of the CHASSIS method,’’ in Research Anthology on Artificial Intelli-
gence Applications in Security. Hershey, PA, USA: IGI Global, 2021,
pp. 666–693.

[17] A. Zuccato, N. Daniels, and C. Jampathom, ‘‘Service security requirement
profiles for telecom: How software engineers may tackle security,’’ in
Proc. 6th Int. Conf. Availability, Rel. Secur., Vienna, Austria, Aug. 2011,
pp. 521–526.

[18] I. Omoronyia, G. Sindre, T. Stalhane, S. Biffl, T. Moser, and W. Sunindyo,
‘‘A domain ontology building process for guiding requirements elicita-
tion,’’ in Requirements Engineering. Berlin, Germany: Springer, 2010,
pp. 188–202.

[19] C. Salinesi, E. Ivankina, andW. Angole, ‘‘Using the RITA threats ontology
to guide requirements elicitation: An empirical experiment in the banking
sector,’’ in Proc. 1st Int. Workshop Manag. Requirements Knowl., Munich,
Germany, Sep. 2008, pp. 11–15.

[20] L. A. Hermoye, A. V. Lamsweerde, and D. E. Perry. (2014).A Reuse-Based
Approach to Security Requirements Engineering. [Online]. Available:
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-reuse.pdf

[21] B. Hamid, ‘‘A model-driven approach for developing a model repository:
Methodology and tool support,’’ Future Gener. Comput. Syst., vol. 68,
pp. 473–490, Mar. 2017.

[22] B. Hamid and J. Perez, ‘‘Supporting pattern-based dependability engineer-
ing via model-driven development: Approach, tool-support and empirical
validation,’’ J. Syst. Softw., vol. 122, pp. 239–273, Dec. 2016.

[23] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering, West Sussex, U.K.: Wiley, 2006.

[24] J. M. Bradshaw, A. Uszok, M. Breedy, L. Bunch, T. C. Eskridge,
P. J. Feltovich, M. Johnson, J. Lott, and M. Vignati, ‘‘The KAoS policy
services framework,’’ in Proc. 8th Cyber Secur. Inf. Intell. Res. Workshop,
Oak Ridge, TN, USA, 2013, pp. 1–4.

[25] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, ‘‘Adapting requirements
models to varying environments,’’ in Proc. ACM/IEEE 42nd Int. Conf.
Softw. Eng., Seoul, South Korea, Jun. 2020, pp. 50–61.

[26] K. Supaporn, N. Prompoon, and T. Rojkangsadan, ‘‘An approach: Con-
structing the grammar from security pattern,’’ in Proc. 4th Int. Joint Conf.
Comput. Sci. Softw. Eng., Hong Kong, 2007, pp. 1–8.

[27] H. Mouratidis and P. Giorgini, ‘‘Secure Tropos: A security-oriented exten-
sion of the Tropos methodology,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 17,
no. 2, pp. 285–309, Apr. 2007.

[28] P. Siswahyudi, T. A. Kurniawan, and V. Sugiarto, ‘‘Agent-orientedmethod-
ologies comparison: A literature review,’’ Adv. Sci. Lett., vol. 24, no. 11,
pp. 8710–8716, Nov. 2018.

[29] M. Riaz and L. Williams, ‘‘Security requirements patterns: Understanding
the science behind the art of pattern writing,’’ in Proc. 2nd IEEE Int. Work-
shop Requirements Patterns, Chicago, IL, USA, Sep. 2012, pp. 29–34.

[30] R. Mazo and C. Feltus, ‘‘Framework for engineering complex security
requirements patterns,’’ inProc. 6th Int. Conf. IT Converg. Secur. (ICITCS),
Prague, Czech Republic, Sep. 2016, pp. 1–5.

[31] L. P. Gonçalves and A. R. da Silva, ‘‘Towards a catalogue of reusable
security requirements, risks and vulnerabilities,’’ in Proc. 27th Int. Conf.
Inf. Syst. Develop., Lund, Sweden, 2018, pp. 1–12.

[32] L. Goncalves and A. R. da Silva, ‘‘A catalogue of reusable security con-
cerns: Focus on privacy threats,’’ in Proc. IEEE 20th Conf. Bus. Informat.
(CBI), Vienna, Austria, Jul. 2018, pp. 52–61.

[33] D. de Almeida Ferreira and A. R. da Silva, ‘‘RSLingo: An informa-
tion extraction approach toward formal requirements specifications,’’ in
Proc. 2nd IEEE Int. Workshop Model-Driven Requirements Eng., Lisbon,
Portugal, Sep. 2012, pp. 39–48.

[34] A. R. D. Silva and D. Savić, ‘‘Linguistic patterns and linguistic styles for
requirements specification: Focus on data entities,’’ Appl. Sci., vol. 11,
no. 9, pp. 4119–4152, 2021.

[35] S. Salva and L. Regainia, ‘‘Using data integration to help design more
secure applications,’’ in Proc. Int. Conf. Risks Secur. Internet Syst., Dinard,
France, 2017, pp. 83–98.

[36] Q. Ramadan, D. Strüber, M. Salnitri, J. Jürjens, V. Riediger, and S. Staab,
‘‘A semi-automated BPMN-based framework for detecting conflicts
between security, data-minimization, and fairness requirements,’’ Softw.
Syst. Model., vol. 19, no. 5, pp. 1191–1227, Sep. 2020.

[37] F. Obeid and P. Dhaussy, ‘‘Formal verification of security pattern com-
position: Application to SCADA,’’ Comput. Informat., vol. 38, no. 5,
pp. 1149–1180, 2019.

[38] R. Wirtz and M. Heisel, ‘‘Managing security risks: Template-based spec-
ification of controls,’’ in Proc. 24th Eur. Conf. Pattern Lang. Programs,
Irsee, Germany, 2019, pp. 1–13.

[39] G. Müller, ‘‘Systems engineering research methods,’’ in Proc. Conf. Syst.
Eng. Res., Atlanta, GA, USA, 2013, pp. 1–10.

[40] A. Tripathy and S. K. Rath, ‘‘Application of natural language processing in
object oriented software development,’’ in Proc. Int. Conf. Recent Trends
Inf. Technol., Chennai, India, Apr. 2014, pp. 1–7.

[41] Leximancer, ‘‘Leximancer,’’ Brisbane, QLD, Australia, 2019. [Online].
Available: https://info.leximancer.com/

[42] T. Davison, A. Gregory, T. Parker, and E. Waller, ‘‘Software requirements
specification (SRS) iMedLife personal medical record application for the
iPhone,’’ Comput. Sci. Eng.,Michigan State Univ., East Lansing,MI, USA,
2009.

[43] J. Ciliberti, E. Hoyt, B. Mack, J. Lewis, and J. Zalewski, ‘‘Florida Gulf
Coast University digital hospital and medical information system,’’ Com-
put. Inf. Syst. Program College Bus., Florida Gulf Coast Univ., Fort Myers,
FL, USA, Tech. Rep., 2015.

[44] R. Shah, ‘‘Analyzing and dissecting Android applications for
security defects and vulnerabilities,’’ Blueinfy, Ahmadabad, India,
Tech. Rep., 2011.

[45] R. Anderson, Security Engineering. Hoboken, NJ, USA: Wiley, 2008.
[46] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Software

Security Testing—Identifying Software Security Flaws. London, U.K.:
Pearson, 2006.

[47] R. Subramanian, Computer Security, Privacy, and Policies: Current
Issues, Challenges, and Solutions. Calgary, AB, Canada: Idea Group,
2008.

[48] C. Jones, Software Engineering Best Practices: Lessons From Successful
Projects in the Top Companies. New York, NY, USA: McGraw-Hill,
2009.

[49] M. S. Merkow and L. Raghavan, Secure and Resilient Software: Require-
ments, Test Cases, and TestingMethods. Boca Raton, FL, USA: CRCPress,
2011.

[50] A. Adepetu, K. A. Ahmed, Y. Al Abd, A. A. Zaabi, and D. Svetinovic,
‘‘CrowdREquire: A requirements engineering crowdsourcing platform,’’
in Proc. AAAI Spring Symp., Wisdom Crowd, Stanford, CA, USA, 2012,
pp. 1–6.

[51] S. Agrawal and D. Vieira, ‘‘A survey on Internet of Things,’’Abakós, vol. 1,
no. 2, pp. 78–95, May 2013.

[52] I. Alqassem and D. Svetinovic, ‘‘A taxonomy of security and pri-
vacy requirements for the Internet of Things (IoT),’’ in Proc. IEEE
Int. Conf. Ind. Eng. Eng. Manage., Selangor, Malaysia, Dec. 2014,
pp. 1244–1248.

165988 VOLUME 9, 2021

