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ABSTRACT Radar imaging using multiple input multiple output systems are becoming popular recently.
These applications typically contain a sparse scene and the imaging system is challenged by the requirement
of high quality real-time image reconstruction from under-sampled measurements via compressive sensing.
In this paper, we deal with obtaining sparse solution to near- field radar imaging problems by developing
efficient sparse reconstruction, which avoid storing and using large-scale sensing matrices. We demonstrate
that the ‘‘fast multipole method’’ can be employed within sparse reconstruction algorithms to efficiently
compute the sensing operator and its adjoint (backward) operator, hence improving the computation
speed and memory usage, especially for large-scale 3-D imaging problems. For several near-field imaging
scenarios including point scatterers and 2-D/3-D extended targets, the performances of sparse reconstruction
algorithms are numerically tested in comparison with a classical solver. Furthermore, effectiveness of the fast
multipole method and efficient reconstruction are illustrated in terms of memory requirement and processing
time.

INDEX TERMS Multiple-input-multiple-output radar imaging, near-field imaging, inverse problem, sparse
reconstruction, fast multipole method.

I. INTRODUCTION
Radar imaging has many applications such as subsurface or
behind wall imaging, improvised explosive device detection,
and collision avoidance and has been of interest in the liter-
ature, recently [1]–[4]. For high resolution imaging systems,
planar arrays with a large number of antenna elements is used
and the antenna is generally a multiple-input-multiple-output
(MIMO) array composed of spatially distributed transmitting
and receiving sub-arrays, operating sequentially or simulta-
neously. In many of these applications the target to be imaged
lies in the near field of the antenna array. The spatial diversity
of the sub-arrays, in association with wideband operation,
provides high resolution and image quality with few number
of antennas [5], [6].

A near-field MIMO imaging problem can be numerically
modeled as a linear inverse problem whose solution contains
the position, shape, and reflectivity distribution of the target.
However, the solution is usually not unique due to under-
determined nature of the problem. Besides, ill-posed structure
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of the linear system makes it difficult to reconstruct high
quality images from noisymeasurements. In order to generate
useful images, additional regularization approaches must be
considered [7].

In the last two decades, researchers have developed many
regularization methods to overcome shortcomings of the
inverse problem and yield improvement at the quality of
its solution. One fundamental approach that has been sug-
gested as a regularizer, particularly for compressive sens-
ing (CS)-based imaging settings [8]–[11], [27], [28], [39],
is sparsity constraint. The sparsity constraint provides an
approximate solution that contains few non-zero entries
when compared to its dimension. This approach is also
known as sparse approximation [12], [13] and mathemati-
cally expressed as

max
x
φ (x) subject to Ax = b (1)

where φ is referred to as regularization (or cost) function.
Depending on the choice of φ, reconstruction characteris-
tic of the imaged space varies. The most basic approach is
to generate a maximally sparse representation by selecting
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φ (x) = ‖x‖0 where ‖�‖0 : RN
→ R is `0 ‘‘norm’’, which

gives the number of non-zero entries of a vector in RN .
Orthogonal matching pursuit (OMP) is a greedy method

based on `0 ‘‘norm’’. It approximates a sparse solution by
iteratively selecting a column of the sensing matrix, which
contribute to the sparsity most. The iterations are contin-
ued until a predetermined sparsity level is reached. Stage-
wise orthogonal matching pursuit (StOMP) is another type
of greedy method based on OMP. It simply differs from
OMP by selecting multiple columns at each iteration, namely
stage, which makes it converge faster than OMP. Regularized
orthogonal matching pursuit (ROMP) is a modified form of
OMP that does not possess a threshold value for sparsity level;
instead it selects the columns having similar dot products with
the solution vector. Despite the fact that these methods are
able to converge in very short runtime, they generally do not
offer any guarantee for a sparse solution [14]–[16].Moreover,
the complexity of the search for all possible sparse subsets
is generally exponential in the number of columns, which
makes the solution of (1) with `0 ‘‘norm’’ NP-hard [17].
Greedy methods work under specific conditions and does not
require exhaustive search.

Another useful approach for sparse approximation is to
replace the `0 ‘‘norm’’ with `1-norm, which converts the
inverse problem into a convex optimization problem. Alter-
nating direction method of multipliers (ADMM) is based
on `1-norm and has been used for various imaging prob-
lems [18]–[21]. It is a form of augmented Lagrangian
method (ALM), which handles solution of the optimiza-
tion problem more efficiently by dividing it into smaller
components. ADMM splits primal variables, augments the
Lagrangian of the optimization problem (as in method of
multipliers) and carries out iterative variable minimization
steps. There also exist split augmented Lagrangian shrink-
age algorithm (SALSA) [21], [22] and constrained-SALSAs
(C-SALSA-1/C-SALSA-2) [19]. These techniques transform
the unconstrained expression of the problem into a con-
strained one by performing variable splitting and using an
ALM, specifically ADMM.

Tikhonov regularization, which is based on `2-norm,
is a simple tool specialized for regularizing ill-posed prob-
lems [23]. Although it regularizes conditioning of prob-
lems, it generally does not offer a sparse solution. In [24],
two sparse reconstruction algorithms are proposed based on
generalized Arnoldi-Tikhonov regularization, approximating
`1-norm and total variation (TV) in terms of `2-norm. These
algorithms can provide a sparse solution for the problem
within fewer iterations than classical Tikhonov regularization
algorithm at the cost of higher relative error.

All the sparse approximation methods mentioned above
attempt to solve the inverse problem through iterative matrix-
vector multiplications, which are equivalent to computing
the (forward) sensing operator and its (backward) adjoint
operator. As the imaging problem gets electrically larger,
solution of the forward problem becomes difficult to store and
requires immense computational resources with complexities

of O(IN 2) and O(N 2) for processing time and memory,
respectively, where N is the number of unknowns and I is
the iteration count. In the literature, therefore, much effort
has been made, searching for methods to reduce computa-
tional complexity of the 3-D imaging problems. For instance,
in [25], authors propose an accelerated algorithm based
on Bayesian learning and approximate message passing to
solve large-scale electrical impedance tomography problem.
Commonly, diagonalizability of the sensing operator and
fast Fourier transforms are exploited for efficient large-
scale sparse reconstruction, for example in optical volumetric
imaging [26] and compressive spectral imaging [27]. Simi-
larly, for wideband near-field radar imaging, in [28], efficient
CS reconstruction is achieved by decomposing the sensing
operator into Fourier transform and sampling operations, and
in [29], sensing operator is computed using an interpolation-
free holographic imaging algorithm that also involves fast
Fourier transforms. These approaches reduce memory usage
and computation time for a near-field radar imaging with a
monostatic configuration.

Here we demonstrate that the ‘‘fast multipole method’’
can be employed within sparse reconstruction algorithms to
efficiently compute the sensing operator and its adjoint (back-
ward) operator, for a general multistatic imaging setting.
The forward part of the radar imaging problem is an
electromagnetic scattering problem and the fast multipole
method (FMM) is a powerful tool to efficiently calculate the
large matrix-vector products for the forward (sensing) opera-
tor. In fact, FMM can be used to calculate the matrix-vector
product without forming the sensing matrix explicitly and has
the ability to decrease the computation time to O(IN 3/2) and
reduce memory requirement to O(N 3/2) [30]–[33].

In this paper, we seek accelerated sparse solution to near-
field multiple-input-multiple-output (MIMO) radar imaging
problem. For this purpose, we initially construct the problem
as a convex optimization problem with sparsity (`1-norm
and TV regularization) and solve it by using the augmented
Lagrangian framework. Then, for large-scale imaging prob-
lems, we propose employing the FMM formulation to effi-
ciently compute the matrix-vector multiplications within the
reconstruction algorithm. Hence, the novelty of this study
is to develop efficient sparsity-based reconstruction methods
that exploit FMM formulation for matrix-vector multiplica-
tions involved, enabling significant reduction in computation
time andmemory requirement. Several numerical simulations
are carried out for 2D and 3D objects as well as point scat-
terers in order to validate the study. The effectiveness of the
FMM is also demonstrated in terms of memory usage and
computation time by comparing it with classical direct and
iterative linear system solvers.

This paper is organized as follows. Section II introduces
imaging configuration and its representation as a linear sys-
tem. In section III, application of the FMM to solution of
inverse problem is described briefly. Section IV presents
mathematical basis of inverse problem. Section V deals with
the algorithmic approaches for numerical solution of the
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FIGURE 1. A plus-shaped 2-D planar MIMO array.

inverse problem. In section VI, numerical simulations carried
out for various near-field imaging scenarios are given and
discussed. Section VII concludes the paper.

II. FORWARD PROBLEM
The construction of the forward problem is the key to estab-
lish the mathematical relation between the reflectivity dis-
tribution of the imaging scene and the measurement data,
and hence is essential for the development of the imaging
algorithm. The solution of the inverse problem can then be
carried out by iterations and this requires solving the forward
problem at each iteration step. Therefore, a fast and robust
algorithm that computes the forward (sensing) operator is
required for efficient and accurate image reconstruction.

In this study, an ultra-wideband (UWB) near field MIMO
array imaging structure, as introduced in [34], [35], is consid-
ered.We will assume that the data is collected by transmitting
sequentially from each element of the transmit array and
receiving simultaneously by the receiving array elements of
the MIMO array. The imaging structure is depicted in Fig. 1.
A two dimensional plus-shapedMIMO array located in y = 0
plane is used. The receiving antennas are positioned along
the x-axis and their locations are denoted by (xR, 0, zR)while
the transmitting antennas are placed along the z-axis and
their locations are denoted by (xT , 0, zT ). Despite the vector
nature of the scattering phenomenon, we will use a simple
scalar model that is commonly used in the literature [36].
Applying the Born approximation, the scattered field at the
corresponding receiving antenna position due to any scatterer
in the imaging volume (x, y, z) is mathematically expressed
as [30], [31]

s (xT , zT , xR, zR, t) =
∫ ∫ ∫

1
4πRTRR

f (x, y, z) p

×

(
t −

[
RT
c
+
RR
c

])
dxdydz (2)

where p(t) is the transmitted pulse in time domain, c
is speed of light, and f (x, y, z) is the three dimensional

reflectivity distribution function of the target. RT and RR
denote the distances to the point (x, y, z) from the trans-
mitting and the receiving antennas, respectively, and can be
written as

RT =
√
(xT − x)2 + y2 + (zT − z)2, (3)

RR =
√
(xR − x)2 + y2 + (zR − z)2. (4)

By taking temporal Fourier transform of (2), the received
signal can be written in the frequency domain as

s (xT , zT , xR, zR, k) = 4πp (k)
∫ ∫ ∫

e−jkRT

4πRT

e−jkRR

4πRR
f

× (x, y, z) dxdydz (5)

where p(k) is the Fourier transform of the transmitted pulse
with k being the wavenumber.

Considering a computerized image reconstruction pro-
cess, continuous expressions in (2) and (5) can be dis-
cretized by expressing the three dimensional reflectivity
distribution function in terms of voxels, thus, (5) can be
written as:

yTm,Rn,q,kl = p (kl)
NV∑
q=1

e−jkl(RTm,q+Rq,Rn)

4πRTm,qRq,Rn
fq (6)

where NV is number of voxels and fq is reflectivity of the
qth voxel. The transmitting antennas radiate NF discrete fre-
quencies, which are equally spaced by frequency step of1f ,
in the operational bandwidth. RTm,q denotes the distance from
the mth transmitting antenna to the center of the qth voxel
and Rq,Rn denotes the distance from the center of the qth

voxel to the nth receiving antenna. Furthermore, the num-
ber of transmitting and receiving antennas are NT and NR,
respectively.

Note that the scattered field expressed in (6) is obtained by
ignoring multiple reflections among the voxels. The transmit-
ted pulse is assumed to be directly reflected by each voxel to
the corresponding receiving antenna without any contribution
from the rest of the voxels.

The discrete model defines a linear system as given in (7).
The reflectivity values of the voxels are organized in the
vector f in a lexicographic order and the measurements are
listed in the same order in the right-hand-side vector y. The
matrixA ∈ CM×N is the sensing (system) matrix and its total
number of rows M , is equal to NT × NR × NF , whereas the
number of columns N , is equal to NV .

Af = y (7)

The open form of this linear system is given in (8), as
shown at the bottom of the next page.

For the solution of such a linear system using an itera-
tive algorithm, NT × NR × NF × NV multiplications must
be performed for one matrix-vector product. This means
that as the dimension of the unknown vector increases,
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FIGURE 2. Two-stage FMM. (a) 1st stage and (b) 2nd stage.

the solution becomes quite inefficient due to the require-
ments for excessive amount of computational resources and
memory.

III. FAST MULTIPOLE METHOD
In this study, we solve the imaging problem by iterative
methods, where each iteration requires the computation of the
forward operator (multiplication of a vector with the sensing
matrix A) and its adjoint (multiplication of a vector with
the matrix AH ). As expressed in (8), entries of the sensing
matrix A are product of two Green’s functions, which is the
fundamental factor that allows us to use FMM for the solution
of the forward problem through a two stage process. The
first Green’s function represents the path that the transmitted
signal travels from the transmitting antenna to the target and

it is treated by the first stage of FMM. The second Green’s
function represents the propagation of the reflected signal
back to the receiving antenna and the second stage of the
FMM is applied to this part. Details of both stages are given
below.

Note that classical FMM involves three main steps: Aggre-
gation, translation, and disaggregation [30]–[32].

A. THE FIRST STAGE
As depicted in Fig. 2(a), we assume that only one transmitting
antenna operates at a time. The aggregation step, therefore,
is not applied in this stage. The transmitted signal is directly
translated frommth transmitting antenna to the geometric cen-
ter of the imaging domain and then distributed to each voxel
by disaggregation step. This phenomenon is mathematically

4π



p (k1)
e−jk1RT1,1

4πRT1,1

e−jk1R1,R1

4πR1,R1
. . . . . . p (k1)

e−jk1RT1,NV

4πRT1,NV

e−jk1RNV ,R1

4πRNV ,R1
...

...
...

...

p (k1)
e−jk1RT1,1

4πRT1,1

e
−jk1R1,RNR

4πR1,RNR
. . . . . . p (k1)

e−jk1RT1,NV

4πRT1,NV

e
−jk1RNV ,RNR

4πRNV ,RNR
...

...
...

...
...

...
...

...

p (k1)
e
−jk1RTNT ,1

4πRTNT ,1

e
−jk1R1,RNV

4πR1,RNV
. . . . . . p (k1)

e
−jk1RTNT ,S

4πRTNT ,S

e
−jk1RS,RNR

4πRS,RNR
...

...
...

...
...

...
...

...

p (kl)
e
−jklRTNT ,1

4πRTNT ,1

e
−jklR1,RNV

4πR1,RNV
. . . . . . p (kl)

e
−jklRTNT ,S

4πRTNT ,S

e
−jklRS,RNR

4πRS,RNR



·



f1
...
...
...

fNV


=



y1
...
...
...

yM


(8)
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expressed as

yTm,q,kl ,FMM =
∫
Tτ,m

(
kl, û,RTm

)
Dq
(
kl, û, rq

)
fqd û

(9)

where

Tτ,m
(
k, û,RTm

)
=

jk

(4π )2

τ∑
t=0

jt (2t + 1) h(1)t

× (k |RTm|)Pt
(
û · R̂Tm

)
(10)

Dq
(
kl, û, rq

)
= ejkl û·rq (11)

The quantities in (10) and (11) are referred to as the trans-
lation function and the disaggregation function, respectively,
where τ is the order of truncation for the translation function,
h(1)t (x) is the spherical Hankel function of the first kind and
t th order, and Pt (x) is the Legendre polynomial of order t .
The excess bandwidth formula (EBF) is used to determine
the truncation order [37], [38].

Integration is over a unit sphere and it is implemented
numerically by using Gauss-quadrature rule. The sample
points for the integration along elevation and azimuth axes are
determined by using the truncation order. Note that as many
translation functions as the number of transmitting antennas
are required at this stage.

The number of operations carried out in this stage is
NT ×NV ×NF since (9) must be repeated for each voxel and
receiving antenna positions as well as each frequency steps.

B. THE SECOND STAGE
Fig. 2(b) demonstrates that the scattered signals (excluding
the multiple reflections) from every voxel of the target is
re-collected at geometric center of the image volume in
aggregation step. The total signal is then translated back to
geometric center of the receiving antennas, and, the received
signal is redistributed among the receiving antennas through
disaggregation step. Mathematical expression of this stage is
given as follows

yrq,Rr ,rn,kl ,FMM =
∫
Aq
(
kl, û, rq

)
Tτ
(
kl, û,Rr

)
×Dn

(
kl, û, rn

)
fqd û (12)

where

Aq
(
kl, û, rn

)
= ejkl û·rn (13)

is the aggregation function, Rr is the distance from the center
of the image volume to the geometric center of the receiving
antennas, rq is the distance from qth voxel to the center of
the image volume, and rn is the distance from geometric
center of the receiving antennas to the nth receiving antenna.
This stage lasts shorter than the first stage since it contains
only one translation. Note that (12) must be repeated for
each voxel position, receiving antenna position and frequency
steps. Hence, the total number of operations required in this
stage is NV × NR × NF .

The above explanations describe how the forward (sensing)
operator is computed using FMM formulation. The same
procedure can also be applied for the computation of the
adjoint (backward) operator by simply exchanging order of
the stages, i.e., in the 1st stage, aggregation, translation and
disaggregation operations are carried out, while translation
and disaggregation operations are performed in the 2nd stage.

Consequently, FMM reduces the overall operations needed
for the evaluation of a single matrix-vector product to
(NT+NR)×NV ×NF as compared to classical direct mulipli-
cation, which requires NT × NR × NV × NF operations. This
reduction leads to an efficient solution in terms of processing
time and memory for the solution of imaging problems where
relatively large antenna arrays are used.

IV. INVERSE PROBLEM
This section deals with estimation of reflectivity distribution
of the imaged scene from measurements using the MIMO
array. The reflectivity of a physical object is generally a
smooth function and its values at neighboring points are
highly correlated along down- and cross-range directions,
which allows it to be represented in a sparse form when an
appropriate regularization function φ (f) is introduced [40].
The sparsity-inducing regularization problem is formulated
in unconstrained form as

min
f

1
2
‖Af− y‖22 + λφ (f) (14)

where λ > 0 is regularization parameter, which controls the
sparsity and determines the trade-off between the regulariza-
tion and data fidelity [14]. In particular, λ should be increased
as signal-to-noise ratio (SNR) decreases. An alternative form
is the constrained problem of

minf φ (f) subject to ‖Af− y‖2 ≤ ε (15)

where ε is error tolerance, which is introduced when the
measurement data is noisy and its value is estimated using
SNR of the received signal. In (14) and (15), φ (�) acts as
a transform operator, which can be selected with respect to
the physical characteristic of the imaged scene, e.g., it can
be selected as `1-norm (‖f‖1) for point scatterers with weak
background, whereas common choice for two- and three-
dimensional extended targets is discrete gradient operator of
the following form

φ =

DxDy
Dz

 (16)

where Dx , Dy, and Dz corresponds to difference operators
along x-, y-, and z-axis, respectively. This operation is called
total variation (TV ) of the unknown and leads to a reconstruc-
tion where sharp edges and rapidly changing structures are
preserved on the reconstructed image [40]. The mathematical
expression of three-dimensional TV is [18]

TV (|f|) =
∑
i,j,k

|∇ (|f|)| , (17)
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|∇ (|f|)| =
√
Dx (|f|)2 + Dy (|f|)2 + Dz (|f|)2 (18)

and

Dx (|f|) = |f [i+ 1, j, k]| − |f [i, j, k]| ,

Dy (|f|) = |f [i, j+ 1, k]| − |f [i, j, k]| ,

Dz (|f|) = |f [i, j, k + 1]| − |f [i, j, k]| (19)

where f[i, j, k] denotes the reflectivity belonging to the i, j,
k th voxel of the imaging scene.

ADMM [13], [14], [16]
1. Set k = 0, choose µ > 0, z0, d0
2. repeat
3. xk+1 = argmin

f
‖Af− y‖22 +

µ
2 ‖f− zk − dk‖22

4. zk+1 = soft
(
fk+1 + dk , λρ

)
5. dk+1 = dk − fk+1 + zk+1
6. k ← k + 1
7. until some stopping criterion is satisfied.

C-SALSA-2 [14]
1. Set k = 0, choose µ > 0, z(1)0 , z(2)0 , d(1)0 , d(2)0
2. repeat
3. rk = 8H(z

(1)
k + d(1)k )+ AH

(
z(2)k + d(2)k

)
4. xk+1 =

(
8H8+ AHA

)−1
rk

5. z(1)k+1 = soft
(
8fk+1 − d(1)k , 1

µ

)

6. z(2)k+1 = y+


Afk+1 − d(2)k − y, if

∥∥∥Afk+1 − d(2)k − y
∥∥∥
2
≤ ε

ε

(
Afk+1 − d(2)k − y

)
∥∥∥Afk+1 − d(2)k − y

∥∥∥
2

, if
∥∥∥Afk+1 − d(2)k − y

∥∥∥
2
> ε

,

7. d(1)k+1 = d(1)k −8f k+1 + z(1)k+1
8. d(2)k+1 = d(2)k − Afk+1 + z(2)k+1
9. k ← k + 1
10. until some stopping criterion is satisfied.

V. RECONSTRUCTION ALGORITHMS
We have considered two convex optimization based algo-
rithms for sparse reconstruction, namely, ADMM and
C-SALSA-2 and they are explained in the following
subsections.

A. ADMM
One approach to solve the problem in (14) is to employ the
ADMM whose algorithmic steps are given above. In each
iteration of the algorithm, f and z vectors are updated in
order by applying alternating minimization of augmented
Lagrangian.

In a large-scale imaging problem, 3rd step is computation-
ally most demanding part of the algorithm, since it solves
a minimization problem. Here we solve this minimization
problem iteratively with an inner iteration (e.g. using conju-
gate gradient least squares (CGLS)), where multiplication of
a vector with the sensing matrix A and its Hermitian AH is
efficiently carried out through FMM.

In the literature, the optimal value of λ is found by a
searchmethod (e.g. cross-validation), which requires solution
of (14) multiple times to obtain its best value [40], [42]. This
increases the computation time by the number of trials for
different λ values. This is another reason to employ the FMM
formulation to accelerate the algorithm.

B. C-SALSA-2
In [19], C-SALSA is proposed to solve the constrained
sparsity-regularized problem in (15) by adding an indicator
function to its objective function, which basically transforms
it into an unconstrained problem. Then, resulting problem is
transformed into another problem by variable splitting and
it is solved by ADMM. The parameter selection is simpler
in the constrained problem since (15) does not possess the
regularization parameter λ.

The algorithmic steps for C-SALSA-2 are given above.
As can be seen, 3rd, 4th, 6th, and 8th steps of C-SALSA-2
involve the product of a vector with the sensing matrix A
and its Hermitian AH . Here we compute these operations
efficiently using FMM as described in Section III. The com-
putationally most demanding step of the algorithm is the 4th

step where the inverse of
(
8H8+ AHA

)
is calculated. This

step can be rewritten as a matrix equation in fk+1(
8H8+ AHA

)
fk+1 = 8H (8fk+1)+ AH (Afk+1) = rk

(20)

and since rk is known from the 3rd step, the linear system of
equations in (20) can be solved iteratively again, enabling to
incorporate efficient implementations of multiplications with
A or AH .
For an imaging problem with an unknown vector of high

dimension, solving (20) iteratively is still not feasible by
forming the large-scale sensing matrix and computing the
necessary matrix-vector products. Here, we accelerate this
computation by applying two consecutive FMMs to obtain
AH (Afk+1), i.e., 1st FMM is for Afk+1 and 2nd FMM is for
AH (�), which provide a great reduction in computation of 4th

step. Furthermore, in practice, the discrete gradient operators
(Dx , Dy, and Dz) are also not required to be formed explicitly
since they can be computed by filtering the unknown vector
with appropriate derivative kernels, e.g.

[
−1 0 1

]
, along all

directions.

VI. NUMERICAL RESULTS
Several near-field imaging problems are considered to inves-
tigate the performance of augmented Lagrangian approach
and the related algorithms described above. As sketched
in Fig. 3(a), a plus-shaped MIMO array is used in our
imaging scenarios, containing equally spaced 30 transmit-
ting antennas and 30 receiving antennas. Aperture of the
array is 0.725 m × 0.725 m and spacing between the anten-
nas is 0.025 m. The target is located 0.55 m away from
the center of the array (which is assumed to be the nine
point scatterers depicted in Fig. 3(b)). Operational frequency
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FIGURE 3. (a) Plus-shaped MIMO array, (b) dimensions of the imaging
setup.

bandwidth ranges from 7 GHz to 13 GHz with 7 frequency
steps of 1 GHz. It must be noted that number of frequency
steps are deliberately kept low so that we can analyze how
the algorithms and the sparsity constraint perform for under-
determined nature of the problems.

For such imaging setup, theoretical cross-range resolution
is related to the wavelength at the center frequency λc, dis-
tance to the targetR, and aperture width of the array in orthog-
onal dimensions. On the other hand, down-range resolution is
determined by speed of light and the operational bandwidth.
Vertical (along z-axis) and horizontal (along x-axis) cross-
range ‘‘Rayleigh’’ resolutions are given by

δx =
λcR

LT ,x + LR,x
(21)

and

δz =
λcR

LT ,z + LR,z
, (22)

respectively. LT ,x and LR,x are widths of the transmitting
and receiving arrays along x-axis, whereas LT ,z and LR,z
are widths along z-axis [34]. The down-range ‘‘Rayleigh’’
resolution is given by

δy =
c
2B
. (23)

The down-range resolution of the setup shown in Fig. 4(a)
is 0.025 m. The cross-range resolutions calculated by (28)
and (22) are equal to 0.025 m and they correspond to the
definition of ‘‘Rayleigh resolution’’, which can be written as

Rayleigh Resolution = k × Null-to-Null Width

× of Point Spread Function (24)

where the point spread function (PSF) is response of imaging
setup to a point scatterer and k is a subjective constant which
is typically 0.5 or 1.0. Since theMIMOarray has a rectangular
aperture, it is selected as 1.0 in this study. Note that this
definition is valid for high SNR cases. On the other hand, for
very low SNR cases, Cramér-Rao bound must be considered,
however, it is not included in this study.

We considered three target scenarios and numerically sim-
ulated them in MATLAB using a workstation with Intel(R)
Xeon(R) CPU E5-2650 2.60 GHz processor and 128 GB
RAM. For comparing the performance of the sparsity-
inducing algorithms (ADMM and C-SALSA-2), conven-
tional CGLS is also implemented.

In our simulations, the signal power is defined as

S = NTNRNF

 1
NV

NV∑
q=1
fq 6=0

fq
R2Tm,qR

2
Rn,q

 (25)

where the term in the parenthesis is the average return power
from the image scene. The total power is given by NTNRNF
times this quantity, because we are using NT transmitters, NR
receivers, and NF frequency steps. Note that this definition
strongly depends on the shape and reflectivity distribution of
the target, since averaging is done over non-empty voxels.

Quality of the results are estimated with respect to peak
signal-to-noise ratio (pSNR) of reconstructed reflectivity
images, defined by

pSNR = 10log10

(
MAX2

I

MSE

)
(26)

where, MAXI is maximum voxel value of reconstructed
reflectivity image and MSE is mean squared error which can
be simply defined as the mean of the square of the difference
between the noise-free m× n reference image I and Î , which
is the image reconstructed from the noisy measurement as

MSE =
1
mn

m∑
i=1

n∑
j=1

[
I (i, j)− Î (i, j)

]2
. (27)

Note that all simulations given below are carried out with
30 dB input SNR.

A. POINT SCATTERERS
In the first scenario, the scene contains an array of 9 point
scatterers located on a grid of 0.025 m on each side on the
y = 0.55 m plane. The reflectivity level of the point scatterer
at the center is set to 0.5, whereas all other scatterers have
a reflectivity of 1. Fig. 4(a) shows actual reflectivities of the
scatterers for this scenario. The images are reconstructed by
solving (14) using the developed efficient ADMM approach
with FMM. Here ‖f‖1 is used as regularization function.
Note that this problem can also be solved by the developed
C-SALSA-2 approach with the same regularization function,
however, we preferred using ADMM in order to demonstrate
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FIGURE 4. Imaging results for the first scenario: (a) Actual reflectivity of the point scatterers, (b) CGLS reconstruction, and (c) sparsity-based
reconstruction by ADMM. The reconstructions are realized with the developed FMM-based approaches and normalized by the largest value,
therefore, they share the same colorbar.

FIGURE 5. Imaging results for the hexagon-shaped target: (a) Actual reflectivity of the hexagonal target, (b) CGLS reconstruction, and
(c) sparsity-based reconstruction by C-SALSA-2. The reconstructions are realized with the developed FMM-based approaches and normalized
by the largest value, therefore, they share the same colorbar.

applicability of FMM in different sparse reconstruction algo-
rithms. The images are formed on y = 0.55 m plane with
a resolution of 2 mm in both directions, resulting in a total
of 2601 pixels. The reconstructions are normalized by the
largest value and corresponding images obtained by CGLS
and ADMM are given in Fig. 4(b) and Fig. 4(c), respectively.

The results show that the theoretical cross range
‘‘Rayleigh’’ resolutions can be achieved by solving the
problem with ADMM. On the other hand, CGLS cannot
provide a focused image under the same conditions, which
emphasize the superior focusing performance of sparsity-
based reconstruction. The relative reflectivity levels of the
point scatterers in the image reconstructed by ADMM are
closer to the actual values as compared to the results of CGLS.

The quality of the reconstructed images is quantitatively
evaluated by calculating their pSNRs, which are 12.36 dB
and 42.17 dB for CGLS and ADMM, respectively. In compu-
tational image formation, pSNR lower than 20 dB is accepted
to be low-quality while pSNR higher than 40 dB is considered
to be almost excellent quality [39]. Hence, the calculated
pSNRs and difference between them indicate that ADMM
performs more effectively for the reconstruction of a sparse
scene compared to the conventional CGLS.

B. EXTENDED TARGETS
For the reconstruction of extended targets, two differ-
ent cases are considered: (i) a 2-D hexagonal target and
(ii) 3-D concentric cylinders. The developed efficient
C-SALSA-2 algorithm with FMM is used to reconstruct the
images that are given in this subsection. TV of the magnitude
is used as the regularization function.

1) HEXAGONAL TARGET
The actual reflectivity of the hexagonal target is illustrated in
Fig. 5(a). The target is a planar structure of size 0.4m× 0.4m
located at y = 0.55 m plane, and the image is constructed
using 4 mm by 4 mm pixels, which makes 10201 pixels
in total. Reflectivity level distribution of the target is non-
uniform, i.e., reflectivity of the outer part is 1, whereas it
is 0.6 for the inner parts except for the U-shaped section,
which has a reflectivity of 0.4. The measurements are sim-
ulated using the discrete model given in (7) and the reflec-
tivity images are reconstructed by CGLS and C-SALSA-2.
Fig. 5(b) and Fig. 5(c) respectively shows the normalized
reconstructions obtained by CGLS and C-SALSA-2, where
the color scale shows the magnitude of the reflectivity distri-
bution of the imaging scene along x- and z-directions.
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FIGURE 6. Imaging results for the concentric cylinders. The left, the middle and the right columns sketch actual reflectivity of the
cylinders, CGLS reconstruction and sparsity-based reconstruction with C-SALSA-2, respectively. All reconstructions are realized with the
developed FMM-based approaches normalized by the largest value, therefore, they share the same colorbar. The first, the second, and
the third rows shows the images, belonging to the y = 0.525 m, y = 0.55 m, and y = 0.575 m slices, respectively.

The results demonstrate that the characteristics of the
hexagonal target such as the edges where the reflectiv-
ity rapidly changes and the U-shaped section is blurry,
when the image is reconstructed using CGLS. On the
other hand, solving with C-SALSA-2 provides a well-
focused image, containing all details of the target.

Furthermore, the background that does not contain any
scatterer is clearer in the reconstructed image obtained by
C-SALSA-2. The pSNR values for CGLS and C-SALSA-2
are calculated as 22.95 dB and 36.23 dB, respec-
tively, which mathematically support our observations.
For one matrix-vector product, efficient computation time
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is measured as ∼54.9 seconds, while memory usage is
∼1.07 GBytes.

2) CONCENTRIC CYLINDERS
In the last scenario, we considered a 3-D object that is
formed by three concentric cylinders, lying along the range
direction between y = 0.525 m and y = 0.575 m planes.
Left column of Fig. 6 provides the actual reflectivity of the
cylinders at three different cross-sections on y = 0.525 m,
y = 0.55 m, and y = 0.575 m planes. The radii of the
cylinders are, from outer to inner, 6 cm, 4 cm, and 2 cm,
respectively, and corresponding reflectivities are 1, 0.6, and
0.2. The imaging volume is roughly digitized such that it
is confined to a volume of 0.4 m × 0.4 m × 0.25 m with
voxel size of 8 mm × 8 mm × 2.5 mm, giving 28611 vox-
els in total. The reflectivity distribution of the imaging vol-
ume is reconstructed by applying CGLS and C-SALSA-2
on (7) and the resulting images of the 3-D object are pro-
vided by 2-D images for the corresponding cross-sections.
The normalized reflectivity images obtained by CGLS and
C-SALSA-2 are depicted in the middle and right columns of
Fig. 6, respectively.

The slices in Fig. 6(b), Fig. 6(e), and Fig. 6(h) show that
it is not possible to attain well-focused reconstruction by
CGLS e.g., the concentric cylinders are blurry and reflectivity
changes are not exactly how they should be. Conversely,
as can be clearly seen in Fig. 6(c), Fig. 6(f), and Fig. 6(i), the
reconstructions by C-SALSA-2 results visibly more accurate
images in terms of reflectivity distribution and contrast tran-
sitions between the cylinders. Besides, the calculated pSNRs
for CGLS and C-SALSA-2 reconstructions are 22.87 dB
and 36.50 dB, respectively, which support our observations.
Besides, efficient computation time and memory requirement
per matrix-vector product respectively take ∼162.7 seconds
and 3.1 GBytes.

We further investigate the performance of FMM-based
sparse reconstruction method for different input SNR values.
To do this, we repeated the simulations of the concentric
cylinders with C-SALSA-2 and CGLS, each time decreasing
the input SNR gradually from 50 dB to 0 dB and measuring
the pSNR values of the reconstructed reflectivity images.
Fig. 7 plots the pSNRs as a function of input SNR value for
both C-SALSA-2 and CGLS. As can be seen, C-SALSA-2
can still provide pSNR above 20 dB although the input SNR
is about 5 dB. On the other hand, conventional CGLS cannot
handle noise presence as well as C-SALSA-2 due to the lack
of regularization term and its pSNR continuously decreases
after the input SNR gets lower than 25 dB. Fig. 8 shows
the reconstructions obtained by CGLS and C-SALSA-2 for
the hexagonal target when different input SNR values are
applied.

Finally, we analyzed the computational performance of
FMM. As stated earlier, the sparsity-based reconstruction
algorithms require solving multiple forward problems at each
iteration. Direct computation of the forward problems with
N unknowns leads to immense computational burden for

FIGURE 7. Performance of FMM-applied sparsity-based reconstruction
with C-SALSA-2 and CGLS for the concentric cylinders under different
input SNRs.

FIGURE 8. Reconstructions obtained by CGLS and C-SALSA-2 for different
input SNR values. (a) CGLS reconstruction for 30 dB input SNR (pSNR =

23.36 dB). (b) C-SALSA-2 reconstruction for 30 dB input SNR (pSNR =

36.15 dB). (c) CGLS reconstruction for 10 dB input SNR (pSNR = 8.12 dB).
(d) C-SALSA-2 reconstruction for 10 dB input SNR (pSNR = 33.42 dB). All
reconstructions are realized with the developed FMM-based approaches
and normalized by the largest value, therefore, they share the same
colorbar.

large imaging problems due to the per-iteration complexity
of O(N 2). On the other hand, FMM calculates the matrix-
vector product in a group-by-group manner (see Section III
for our grouping method), hence, reduces the computational
complexity to O(N 3/2) for both processing time and memory
at each iteration.

The efficiency of FMM is also demonstrated by simulating
the same target scenario with different number of antennas.
Fig. 9 plots processing time (in seconds) andmemory require-
ment (in Mbytes) as a function of total number of antennas
(i.e., NT = NR). As proposed, FMM outperforms the direct
matrix-vector product above a specific number of antennas,
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FIGURE 9. Comparison of the FMM and direct matrix-vector product in terms of (a) processing time and (b) memory.

whichwe call crossover point, in terms of processing time and
memory. Note that this crossover point depends on several
things that must be considered, i.e., type of application, how
the forward (sensing) operator is implemented, truncation
order of the FMM, etc.

VII. CONCLUSION
In this paper, we solve near-field imaging problems and seek
sparse solution for them. AMIMO radar configuration is con-
sidered for the imaging and corresponding forward problem
is implemented using Born approximation. Then, the problem
is discretized and turned into a linear system of equations, the
structure of which is exploited to apply a two stage FMM,
thus, large-scale problems can be solved in an efficient way.
The problems are solved by two sparsity-inducing algorithms
(ADMM and C-SALSA-2) in conjunction with appropriate
regularization functions (`1-norm and TV ) according to the
properties of the imaged scene and reflectivity characteris-
tics of the targets. We validated our approach by a series
of numerical tests conducted in comparison with a classical
solver. Results demonstrate that well-focused images can be
constructed for different type of near-field imaging scenar-
ios, ranging from point scatterers to 3-D continuous targets,
despite low input SNR. When FMM is applied to the solution
of the problem, quality of the reconstructions can still be
preserved. Furthermore, as the dimensions of the problem
increases, which is number of antennas in our case, FMM
makes the solution very efficient in terms of processing time
and memory requirement.
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