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The wave equation obeyed by the extraordinary component of the electric field in a hyperbolic
metamaterial was shown to be a massless Klein-Gordon field living in a flat spacetime with two timelike
and two spacelike dimensions. Such a wave equation, unexpectedly, allows dispersionless propagation
albeit having two spatial dimensions. Here we show that the same equation can be naturally interpreted as a
particularmassiveKlein-Gordon equation with the usual one timelike and two spacelike dimensions in a de
Sitter (dS) background spacetime. The mass parameter of the scalar field is given in terms of the
cosmological constant, Planck constant, and the speed of light asm ¼ ffiffiffiffi

Λ
p

ℏ
c which corresponds to the point

for which the left and right conformal weights of the boundary conformal field theory (CFT) (via the de
Sitter/CFT correspondence) are equal. This particular mass corresponds to the gapless mode in the dS
spacetime for which the dispersion relation is linear in the wave number.
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I. INTRODUCTION

In a (2þ 1)-dimensional flat world, one cannot send
wave pulses without dispersion in a vacuum. That means
any wave pulse will broaden and change shape while
propagating even if all frequencies move at the same wave
speed. Thus two agents in communication will probably
misconstrue their messages unless they are well versed
in the solutions of the wave equation in two spatial
dimensions.
This is in sharp contrast to the (3þ 1)-dimensional

world we are living in: in a vacuum, a light pulse does
not disperse, while in a material medium with a frequency-
dependent refraction index, it does. In fact, in all odd spatial
dimensions (except one dimension), the wave equation
yields dispersionless propagation in a vacuum, while for all
even spatial dimensions it yields a dispersive vacuum. One
spatial dimension is a rather exceptional case: one can
design initial data for which there is no dispersion, but
generically a (1þ 1)-dimensional wave equation is dis-
persive. This dimension-dependent dispersion is called
anomalous dispersion [1].
This was the state of affairs until recently, in a

remarkable work by Bender et al. [2], it was shown that
while the (2þ 1)-dimensional vacuum is dispersive, a

(2þ 2)-dimensional vacuum need not be so. Thus, for
the first time, these authors proved that adding one more
timelike direction can solve the problem of anomalous
dispersion and eliminate the violation of the Huygens’
principle. The way they have shown this is, as we shall
describe below, via the introduction of a modified wave
equation with nonconstant (time-dependent) coefficients
which upon transformation gives the flat space wave
equation in a spacetime with 2þ 2 dimensions. Of course,
one might think that such a solution would be a purely
mathematical construction since an extra time dimension is
not available for purchase; but hyperbolic metamaterials
are. It turns out that an additional effective timelike
dimension appears naturally in a metamaterial with a
hyperbolic dispersion which was introduced in the ground-
breaking work [3]. Smolyaninov and Narimanov showed
that in a nondispersive, nonmagnetic, uniaxial anisotropic
metamaterial the “extraordinary” component of the electric
field obeys a massless Klein-Gordon equation in a flat
(2þ 2)-dimensional spacetime. Considering the works
[2,3] together opens a new window of dispersionless
communication in flatland: all one needs to do is to
consider a hyperbolic metamaterial flatland which effec-
tively is a (2þ 2)-dimensional world.
In this work, we will show that another way to interpret

the wave equation in a hyperbolic metamaterial is to
consider a background de Sitter spacetime with the usual
(i) timelike and (ii) spacelike directions; and in this curved
background spacetime, the extraordinary component of the
electric field obeys a massive Klein-Gordon equation with
the usual ð−;þ;þÞ signature. But the mass parameter of
the scalar field must be tuned to the cosmological constant
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of the background spacetime. This particular tuned mass
yields a gapless mode for which the dispersion relation is
linear in the wave number. Hence we propose another way
to circumvent the anomalous dispersion problem in two
spatial dimensions and restore the Huygens’s principle.
This particular curved background interpretation of the
hyperbolic metamaterial can yield interesting connections
along the line of dS=CFT correspondence [4]. The mass
turns out to yield equal left and right conformal weights in
the boundary conformal field theory.
The layout of the paper is as follows: In Sec. II, we

briefly recapitulate the relevant (2þ 2)-dimensional wave
equation in flat spacetime obeyed by the extraordinary
component of the electric field in a metamaterial. In
Sec. III, we discuss the mapping of the modified wave
equation with nonconstant coefficients to the (2þ 2)-
dimensional flat space equation. In Sec. IV, we show that
the mentioned modified wave equation, which was intro-
duced by guess in an ad hoc manner actually comes from a
scalar field theory in de Sitter spacetime with a tuned mass
parameter. In that section we also show how the surprising
dispersionless propagation is achieved in two spatial
dimensions.

II. EXTRAORDINARY COMPONENT OF THE
ELECTRIC FIELD IN A METAMATERIAL AS A
MASSLESS SCALAR FIELD IN 2+ 2 DIMENSIONS

In [3], it was shown that, in a material with properties
as described in the Introduction section above, and with
a dielectric permitivity tensor ε ¼ diagðεx; εx; εzÞ, the
extraordinary component of the electric field satisfies the
massless Klein-Gordon equation

1

c2
∂2φ

∂t2 ¼ 1

εx

∂2φ

∂z2 þ
1

εz

�∂2φ

∂x2 þ
∂2φ

∂y2
�
: ð1Þ

For εx < 0 and εz > 0, one has an indefinite metamaterial
with interesting optical properties. See [5] for a nice review.
Clearly in this case the massless Klein-Gordon equation (1)
lives in a flat four-dimensional space with the signature
ð−;−;þ;þÞ. Spacetimes with two timelike directions
appear in some higher dimensional theories [6]. Having
only two spatial dimensions at our disposal, the question
arises if light pulses can propagate without dispersion in
this space.

III. MODIFIED WAVE EQUATION WITH
NONCONSTANT COEFFICIENTS

The lore for linear wave equations in a spacetime with
even number of spatial dimensions and a single time
dimension is that they have anomalous dispersion even
though all the frequencies propagate with the same speed
and hence all chromatic dispersion is eliminated. This
obstruction to keeping a pulse’s shape intact would be

somewhat a disadvantage for the use of effectively 2D
materials. But it was shown that Eq. (1) is equivalent to a
modified wave equation as given by Eq. (3) in [2] which is
of the form

∂2u
∂τ2 −

1

τ

∂u
∂τ þ

1

τ2
u ¼ c2

�∂2u
∂X2

þ ∂2u
∂Y2

�
: ð2Þ

Note that, in contrast to the discussion in [2], we are using
different coordinates in (1) and (2) to make the correspon-
dence clear. Equivalence of Eqs. (1) and (2) follows in three
steps: with the identifications uðτ; X; YÞ ≔ τvðτ; X; YÞ, (2)
becomes

∂2v
∂τ2 þ

1

τ

∂v
∂τ ¼ c2

�∂2v
∂X2

þ ∂2v
∂Y2

�
: ð3Þ

Then defining a two-dimensional vector time variable
τ⃗ ≔ ðα; βÞ, the left-hand side of the last equation is the
radial part of the Laplacian in 2D, hence in the Cartesian
ðα; βÞ coordinates, (3) becomes

1

c2

�∂2v
∂α2 þ

∂2v
∂β2

�
¼ ∂2v

∂X2
þ ∂2v
∂Y2

: ð4Þ

To match (1) and (4), we set α ¼ τ, β ¼ ffiffiffiffiffiffiffijϵxj
p

z
c, X ¼ ffiffiffiffi

ϵz
p

x,
Y ¼ ffiffiffiffi

ϵz
p

y, and v ¼ φ. With these identifications and
considering an initial nonzero disturbance having a vanish-
ing derivative as the other initial condition, one has a
dispersionless propagation [2]. It will be clear why this
equation yields dispersionless propagation in the next
section.

IV. SCALAR FIELD IN DE SITTER SPACETIME
WITH A TUNED MASS PARAMETER

Let us now show that the modified wave Eq. (2) (which
was introduced by guesswork) and its 2 × 2 space massless
Klein-Gordon version (1) is equivalent to a minimally
coupled massive Klein-Gordon equation with a tuned mass
in a (2þ 1)-dimensional de Sitter background. Consider
the de Sitter metric in Poincaré coordinates

ds2 ¼ l2

c2τ2
ð−c2dτ2 þ dX2 þ dY2Þ; ð5Þ

where l is the dS radius related to the positive cosmological
constant as Λ ¼ 1

l2. It is a maximally symmetric space with
the Ricci tensor given as Rμν ¼ 2Λgμν. (In three dimensions
the Riemann and the Ricci tensor carry the same amount of
information, hence the full curvature is determined by the
Ricci tensor.) In this background, consider a minimally
coupled massive scalar field [7]
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I ¼ −
1

2

Z
d3X

ffiffiffiffiffiffi
−g

p �
∂μΦ∂μΦþ

�
mc
ℏ

�
2

Φ2

�

¼ −
1

2

Z
d3X

�
l
cτ

�
−

1

c2
_Φ2 þ ð∂iΦÞ2

�
þ l3

cℏ2τ3
m2Φ2

�
;

ð6Þ

where in the second line we inserted the metric (9) and
defined _Φ≡ ∂Φ

∂τ ; ∂iΦ ¼ ð∂XΦ; ∂YΦÞ. Then variation of the
action (6) with respect to Φ yields

l
cτ

�
−

1

c2
Φ̈þ 1

c2τ
_Φþ ∂2Φ

�
−

l3

cℏ2τ3
m2Φ ¼ 0; ð7Þ

which is just the massive Klein-Gordon equation written
covariantly as ð□ − ðmc

ℏ Þ2ÞΦ ¼ 0 where □ is the
d’Alembert operator in the dS background and
∂2 ¼ ∂2

∂X2 þ ∂2
∂Y2. The first order of business is to obtain

the modified wave equation (2) from (7); for this purpose
we must identify the mass parameter of the Klein-Gordon
field as

m ¼ ℏ
lc

¼
ffiffiffiffi
Λ

p ℏ
c
; ð8Þ

and setΦ ¼ u. So, rather remarkably, the (2þ 1)-dimensional
modifiedwave Eq. (2) introduced in [2] is related to apparently
different wave equations: one is the massless Klein-Gordon
Eq. (1) that describes the extraordinary component of the
electric field in a flat spacetime with ð−;−;þ;þÞ signature,
and the other is the massive Klein-Gordon equation with a
tuned mass in (2þ 1)-dimensional de Sitter spacetime. These
equations circumvent the anomalous dispersion problem that
inflicts all spacetimes with an even number of spatial
dimension.
Let us explore further what special feature arises for the

tuned mass (8) in de Sitter space. For this purpose, we
consider Fourier mode type solutions, from which a wave
packet can be constructed. To simplify the resulting
equation, we define a new time coordinate t by setting
τ ≔ l

c e
−ct

l . Then the de Sitter metric takes the form

ds2 ¼ −c2dt2 þ aðtÞ2ðdX2 þ dY2Þ; ð9Þ

with aðtÞ ≔ e
ct
l . Then (7) becomes

−Φ̈ − 2
_a
a
_Φþ c2

a2
∂2Φ −

c4m2

ℏ2
Φ ¼ 0: ð10Þ

Consider one single Fourier mode which can be taken as
(we shall deal with the reality of the scalar field in a
moment)

Φðt; X; YÞ ≔ fk⃗ðtÞ
aðtÞ eik⃗·X⃗; ð11Þ

with X⃗ ≔ ðX; YÞ. Inserting this into (10), one arrives at a
harmonic oscillator equation

f̈k⃗ þ ω2

k⃗
fk⃗ ¼ 0; ð12Þ

where the dispersion relation reads

ω2

k⃗
¼ −

c2

l2
þ c4m2

ℏ2
þ k2c2

a2
: ð13Þ

So generically the group velocity vig ¼ ∂ωk⃗∂ki depends on k
and every mode moves with a different speed leading to
dispersion; this includes the m ¼ 0 modes. The only
exception is the modes with the tuned mass m ¼ ℏ

lc, for
which all the modes are gapless ωk⃗ ¼ kc

a as in the case of a
massless particle in flat spacetime. The group velocity and
the phase velocity are equal to each other and they are
independent of k⃗. So the tuned mass parameter in de Sitter
background is akin to the massless mode in flat spacetime.
A wave packet pulse will not lose its shape when propa-
gating from one point to another. For completeness let us
write the generic solution to (10) as

Φðt; X; YÞ ¼
Z

d2k⃗
2πa

ðck⃗fk⃗ðtÞeik⃗·X⃗ þ c�
k⃗
fk⃗ðtÞe−ik⃗·X⃗Þ; ð14Þ

where we have taken care of the reality of the scalar field;
ck⃗ are arbitrary complex constants.
Let us note that (7) was studied in detail in [4] in planar

coordinates in the context of defining a dual conformal field
theory in the future boundary of bulk dS3 with a massive
scalar field. For a unitary conformal field theory in this two-
dimensional boundary, the bulk scalar field corresponds to
boundary operators with real weights which is possible
only if the mass of the scalar field satisfies 0 < m < ℏ

lc. The
conformal weights of the 2D Euclidean unitary boundary

conformal field theory are given as h� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2l2m2

ℏ2

q
.

We have now seen that the tuned mass (8) remains outside
the unitarity region and corresponds to the degenerate
case of hþ ¼ h−. The crucial point is that this particular
massive Klein-Gordon equation in the bulk describes a
hyperbolic metamaterial in which there is no anomalous
dispersion.

V. CONCLUSIONS

We have shown that the extraordinary component of the
electric field in a metamaterial which is known to obey a
wave equation in a flat (2þ 2)-dimensional space, which
was shown to be equivalent to a modified wave equation
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with time-dependent coefficients, naturally arises as a
particular massive scalar field in a (2þ 1)-dimensional
de Sitter spacetime. The mass parameter of the scalar field
yields gapless modes and the dispersion relation between
the angular frequency and the wave number is linear
resulting in a dispersionless propagation. It is important
to realize that this happens in de Sitter spacetime and not in
anti-de Sitter spacetime as the minus sign in the first term of
(13) is important. It is likely that this metamaterial presents

and example of the dS=CFT conjecture but identification of
the two-dimensional conformal field theory corresponding
to the hyperbolic metamaterial in this context is an out-
standing problem.
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