
MALWARE DETECTION USING TRANSFORMERS-BASED MODEL GPT-2

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAZENİN ŞAHİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CYBER SECURITY

NOVEMBER 2021

Approval of the thesis:

MALWARE DETECTION USING TRANSFORMERS-BASED MODEL
GPT-2

submitted by NAZENİN ŞAHİN in partial fulfillment of the requirements for the de-
gree of Master of Science in Cyber Security Department, Middle East Technical
University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics

Assist. Prof. Dr. Cihangir Tezcan
Head of Department, Cyber Security

Assoc. Prof. Dr. Cengiz Acartürk
Supervisor, Cognitive Science Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Cihangir Tezcan
Cyber Security Dept., METU

Assoc. Prof. Dr. Cengiz Acartürk
Cognitive Sciences Dept., METU

Assist. Prof. Dr. İlker Özçelik
Software Engineering Dept., OGU

Date: 17.11.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Nazenin ŞAHİN

Signature :

iii

ABSTRACT

MALWARE DETECTION USING TRANSFORMERS-BASED MODEL
GPT-2

Şahin, Nazenin

M.S., Department of Cyber Security

Supervisor: Assoc. Prof. Dr. Cengiz Acartürk

November 2021, 62 pages

The variety of malicious content, besides its complexity, has significantly impacted
end-users of the Information and Communication Technologies (ICT). To mitigate
the effect of malicious content, automated machine learning techniques have been
developed to proactively defend the user systems against malware. Transformers, a
category of attention-based deep learning techniques, have recently been shown to
be effective in solving various malware problems by mainly employing Natural Lan-
guage Processing (NLP) methods. In the present study, we propose a Transformers
architecture to detect malicious software automatically. We present models based
on GPT-2 (Generative Pre-trained Transformer 2), which performs assembly code
obtained from a static analysis on PE (Portable Executable) files. We generated a pre-
trained model to capture various characteristics of both malicious and benign assem-
bly codes. That improves the model’s detection performance. Moreover, we created
a binary classification model that used preprocessed features to characterize existing
malicious and benign code pieces. The resulting binary classification model distin-
guishes between those code pieces by recognizing novel malware or benign assembly
codes. Finally, we used GPT -2’s pre-trained model to improve detection accuracy.
The experiments showed that a fine-tuned pre-trained model and GPT-2’s pre-trained
model led to accuracy values up to 85.4% and 78.3%, respectively.

Keywords: Malware Detection, Static Analysis, Transformers, GPT-2, NLP

iv

ÖZ

TRANSFORMATÖR TABANLI MODEL GPT-2 KULLANARAK ZARARLI
YAZILIM TESPİTİ

Şahin, Nazenin

Yüksek Lisans, Siber Güvenlik Bölümü Bölümü

Tez Yöneticisi: Doç. Dr. Cengiz Acartürk

Kasım 2021 , 62 sayfa

Zararlı içeriğin çeşitliliği, karmaşıklığının yanı sıra Bilgi ve İletişim Teknolojilerinin
(BİT) son kullanıcılarını önemli ölçüde etkilemiştir. Zararlı içeriğin etkisini azaltmak,
kullanıcı sistemlerini zararlı yazılımlara karşı proaktif olarak savunmak için otoma-
tikleştirilmiş makine öğrenme teknikleri geliştirildi. Dikkate dayalı derin öğrenme
tekniklerinin bir kategorisi olan Transformers’ın, son zamanlarda, Doğal Dil İşleme
(NLP) yöntemlerini kullanarak, çeşitli zararlı yazılım sorunlarını çözmede etkili ol-
duğunu gösterilmiştir. Bu çalışmada, zararlı yazılımları otomatik olarak tespit etmek
için bir Transformers mimarisinin kullanılmasını öneriyoruz. PE (Portable Execu-
table) dosyaları üzerinde statik analizden elde edilen montaj kodları ile GPT-2’ye
(Generative Pre-trained Transformer 2) dayalı modelleri besliyoruz. Hem zararlı hem
de zararsız montaj kodlarının çeşitli özelliklerini yakalamak için önceden eğitilmiş bir
model oluşturduk. Yakalanan bu özellikler modelinin tespit performansını iyileştirir.
Ayrıca, mevcut kötü amaçlı ve zararsız kod parçalarını karakterize etmek için önce-
den işlenmiş özellikleri kullanan bir dil modeli oluşturduk. Böylece, ortaya çıkan dil
modeli, yeni zararlı veya zararsız yazılımların derleme kodlarını tanıyarak bu kod par-
çaları arasında ayrım yapar. Ek olarak, daha iyi tespit doğruluğu elde etmek için GPT
-2’nin önceden eğitilmiş modelini de kullandık. Deneyler, bizim önceden eğitilmiş
modelimiz ve GPT-2’nin önceden eğitilmiş modeli ile ince ayar yapıldığında, tespit
modelinin sırasıyla %85,4 ve %78,3’e doğruluk değerlerine ulaştığını göstermiştir.

Anahtar Kelimeler: Zararlı Yazılım Tespiti, Statik Analiz, Transformatörler, GPT-2,

NLP

v

To my mom, Filiz

vi

ACKNOWLEDGMENTS

First, I would like to thank Assoc. Prof. Dr. Cengiz Acartürk, my supervisor, for his
priceless guidance, continuous support, encouragement, and most of all, his patience
throughout the entire process.

I would like to thank the members of our malware analysis research group, Melih
Şırlancı, and Deniz Demirci, for their support in the scope of this study. I also would
like to thank Mr. Demirci, especially for his encouragement.

Lastly, I truly appreciate my administrator Col. Adnan Gürbüz, who encouraged
me to start this journey. I would like to thank my sister Figen, my brothers Nedim,
Kutluay, Mutlu, and my best friends Barış and İdil for their support throughout every
moment of my life.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 3

1.2 Research Questions and Approach 3

2 BACKGROUND AND RELEVANT WORK 5

2.1 Deep Learning for Natural Language Processing 5

2.1.1 Artificial Neural Networks (ANNs) 7

2.1.2 Feed-forward Neural Networks in NLP 7

2.1.3 Recurrent Neural Network (RNN) in NLP 8

2.1.4 Long Short-Term Memory (LSTM) in NLP 8

2.1.5 Attention Mechanism . 9

viii

2.1.6 Transformers . 14

2.1.7 Transfer Learning . 20

2.1.8 Tokenization for Generative Pre-trained Transformer 2 (GPT-2) 21

2.1.9 Generative Pre-trained Transformer 2 (GPT-2) 22

2.1.10 Hugging Face . 24

2.2 Malware Analysis . 25

2.2.1 What is Malware . 25

2.2.2 Malware Analysis Methods 26

2.2.2.1 Malware Detection Methods 27

2.2.2.2 Machine Learning and Deep Learning Based Methods . 28

2.3 Summary . 31

3 METHODOLOGY . 33

3.1 Approach . 33

3.2 The Datasets . 34

3.2.1 Data Collection . 34

3.2.2 Data Formatting . 34

3.3 The Model . 36

3.3.1 The Environment Setup . 37

3.3.2 Imported Libraries and Modules 37

3.3.3 Pre-trained Model . 39

3.3.4 Binary Classification Model 41

3.4 Summary . 46

4 RESULTS . 47

ix

4.1 Evaluation of the Pre-trained Model 48

4.2 Evaluation of GPT-2’s Pre-trained Model 48

4.3 Comparison of the models . 50

4.4 Discussion . 51

4.5 Open Problems . 52

5 CONCLUSION AND FUTURE WORK 55

5.1 Conclusion . 55

5.2 Limitations and Future Work . 56

REFERENCES . 57

x

LIST OF TABLES

TABLES

Table 2.1 Architecture hyperparameters for the 4 models size based on GPT-2

(M is the abbreviation for million) . 23

Table 3.1 Characteristics of datasets (M is the abbreviation for million) 35

Table 3.2 Sample from the binary classification model dataset (M is the ab-

breviation for million) . 36

Table 3.3 Required Python libraries . 37

Table 3.4 The effects of epochs on validation losses. 46

Table 3.5 The effects of Learning rate on validation losses 46

Table 4.1 The Confusion matrix for reference 47

Table 4.2 F1 Score Calculation of Binary Classification model fine-tuned with

our pretrained model . 50

Table 4.3 Comparison of models based on different pretrained models 50

Table 4.4 Evaluation of our proposed methods with Transformers-based model 52

Table 4.5 Seed value effect on performance 53

xi

LIST OF FIGURES

FIGURES

Figure 2.1 All hidden-layer based on RNN and he
i are encoder block and

hd
i are decoder block. i is an element of N that is the number of words

in the context. (Lam, 2021) . 10

Figure 2.2 Compare RNN/LSTM and Transformers 10

Figure 2.3 C*
K represent query CK in terms of weights Ri sum values, with

weights define by match between query and keys. i and K is element of

N that is the number of words in the context. 11

Figure 2.4 Self-attention (Lam, 2021) . 13

Figure 2.5 Architecture of Transformer (Vaswani et al., 2017) 14

Figure 2.6 Performing h times attention function (Vaswani et al., 2017) . . . 16

Figure 2.7 Sine and cosine graphs of dimensions (Shieber & Rush, 2018)

N=100 . 17

Figure 2.8 Residual blocks (Xiong et al., 2020) 18

Figure 2.9 The left-hand side is MLM architectures attention mechanism.

The right-hand side is LM architectures attention mechanisms (Becker

et al., 2020) . 20

Figure 2.10 Transfer Learning (Becker et al., 2020) 21

Figure 2.11 Vocabulary and their indices . 22

Figure 2.12 Auto-regressive language model (Becker et al., 2020) 23

xii

Figure 2.13 Main blocks of every model in the transformers library (Wolf

et al., 2020) . 25

Figure 3.1 The data processing pipeline 35

Figure 3.2 Sample data for model training 35

Figure 3.3 Pre-trained model based on GPT-2 39

Figure 3.4 Binary classification model based on GPT-2 42

Figure 3.5 Related link: https://huggingface.co/exbert/?model=gpt2 43

Figure 3.6 In layer-7, head-1, all relation of sentence’s tokens 43

Figure 3.7 In layer-7, head-1, all probabilities of "TR" calculate with tokens

on the right and attend to tokens on the right 44

Figure 3.8 Sample layers of GPT2ForSequenceClassification model 45

Figure 4.1 Confusion matrix of our pre-trained model where TN is the num-

ber of true negatives, FN is the number of false negatives, FP is the

number of false positives, and TP is the number of true positives 49

Figure 4.2 Training with GPT-2 pre-trained model 49

xiii

LIST OF ABBREVIATIONS

AI Artificial Intelligent

ANN Artificial Neural Network

API Application Programming Interface

BFE Byte-Pair Encoding

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

GPT-2 Generative Pretrained Transformer 2

LM Language Model

LSTM Long Short-Term Memory

ML Machine Learning

MLM Masked Language Model

MLP Multilayer Perceptron

NLP Natural Language Processing

NN Neural Network

PE Portable Executable

RNN Recurrent Neural Network

xiv

CHAPTER 1

INTRODUCTION

The evaluation of Information and Communication Technologies (ICT) has signifi-
cantly impacted the variety of malicious content besides its complexity in mitigation
methods. Malicious software spread rapidly in networks by the increasing connec-
tivity of new devices such as end-user computers and servers, cloud systems, smart-
phones, and IoT devices. The exponential increase in malware also leads to substan-
tial economic loss. According to Deep Instinct reports, in 2020, the variety of mal-
ware increased by more than three times, and ransomware increased by more than
four times compared to 2019 (Shimon, 2021).

Every day, over 350,000 new malware and potentially unwanted applications (PUA)
are registered by the AV-TEST1 Institute. Approximately 114 million new malicious
programs were developed in 2020, 84.4% targeting Windows operating systems. Nev-
ertheless, this expansion of malware is not bound to specific operating systems. More
specifically, according to McAfee reports, MacOS malware expanded more than four
times in the third quarter of 2020, largely due to a specific malware (aka. malicious
software), namely the EvilQuest ransomware. A Windows operating system ran-
somware, driven by the Cryptodefense engine, grew in volume by 69% in the third
quarter of 2020. In addition, malware developers attack mobile operating systems and
mobile apps due to the significant increase (118% from Q3 to Q4 in 2020, (Samani,
2021)) in the mobile devices market. Linux operating system was not an exception
though with a lesser impact. Overall, Linux malware increased 6% from Q3 to Q4 in
2020. The economic impact of malware has increased to a considerable degree, too.
For instance, Sodinokibi, a well-known ransomware group, claims that they gained
$123 million in 2020 out of ransomware exploitation (Lemos, 2021). The economic
impact of malware is also evident in other reports. For instance, IBM reported that the
average cost of a data breach was $3.86 million in 2020 (Burmester, 2020). A com-
mon method of spread in malware attacks is phishing. As of January 2021, Google
registered more than 2 million phishing sites, showing a 27% annual increase (Rosen-
thal, 2020). More generally, malicious software aims to exploit vulnerabilities in ICT
systems, gain unauthorized access to valuable information assets, or render them un-
usable and ask for ransom, as in ransomware.

There are two approaches, namely static and dynamic, to investigate suspicious files
for malware analysis. In dynamic approaches, the malware analysts gain informa-
tion by executing the suspected files and tracing the execution flow to examine the
function calls. The function calls inform which function is called and which opera-

1 avtest.org: https://www.av-test.org/en/statistics/malware/ (retrieved on 19 Jun 2020)

1

https://www.av-test.org/en/statistics/malware/

tions are performed, so the examiners decide whether files are malicious or not. On
the other hand, in static approaches, the analysts investigate without executing the
files. The disassembler/debugger tools, such as objdump2 and IDA Pro3 have been
used by analysts to disassemble files for obtaining import functions, strings, and as-
sembly codes that may facilitate identifying the attacks (Gandotra et al., 2014). As
in classical malware analysis, pre-trained models and binary classification model also
extract coding patterns from byte codes4, such as byte-sequence n-grams, or assembly
codes5, such as assembly instructions6, (opcodes7 or operands8), opcode sequences.
The models determine whether the patterns are malicious or not using machine learn-
ing techniques and deep learning techniques (Acarturk et al., 2021).

Machine learning techniques, in particular deep learning (DL) techniques are used to
detect malware on various fronts, not only conducting binary classification of soft-
ware as benign or malicious but also classifying malware into known types such as
virus, worm, and trojan. In our study, DL models learn representations (i.e., em-
beddings) from assembly instructions by encoding opcodes and operands. Then they
identify the distance between the embeddings of two instructions to compute their
similarity. The smaller the distance, the more similar functions are to each other.
Deep learning methods are based on defining a language model on assembly instruc-
tions using various methods, such as the Generative Pre-trained Transformer 2 (GPT-
2) (Radford et al., 2019). The assembly language model is trained on various traces to
detect each assembly instruction effect in its context. Next, the binary classification
model transfers the learned knowledge from the assembly language model, viz. the
pre-trained model. This method is fine-tuned by the pre-trained model. The binary
classification model achieves to match syntactic and semantic similarities of assem-
bly instructions with the pre-trained model. Thus, the binary classification model
classifies software as benign or malicious and uses GPT-2 architecture by the similar-
ities, namely binary classification. The transformer (Wolf et al., 2020) processes data
on short-text, i.e., sentence-level tasks such as paraphrase detection and sentiment
analysis, or on short document texts such as reading comprehension and automatic
summarization of news articles, and defines a new state-of-the-art with an attention
mechanism that provides global dependencies between input and output. In summary,
the goal of a Natural Language Processing (NLP) DL model, within the context of
malware analysis, is the quantification of syntactic and semantic characteristics of
software code. The syntactic and semantic similarities are used for the analysis with
real-world security usages, such as vulnerability detection with assembly instructions
(Brumley et al., 2008), exploiting generation with C code (Avgerinos et al., 2011),
tracing malware lineage with assembler instructions (Bayer et al., 2009). We have to
deal with software at assembly instructions during the matching structural or semantic
similarities of instructions for malware detection. However, since the programs are
compiled with various compiler optimizations, they are run in different instruction
set architectures, making it challenging to establish similarities between assembly in-
structions (Pei et al., 2021). Therefore, we used Windows Portable Executable (PE)

2 objdump: http://objdump.com (retrieved on: 20.05.2020)
3 IDA Pro: https://hex-rays.com/ida-pro/ (retrieved on: 20.05.2020)
4 Byte code: Computer source code.
5 Assembly code: Human readable code of executables.
6 Assembly Instructions: Each row of assembly code consisting of opcode and operand.
7 Opcode: opcode is a single instruction that the CPU execute.
8 Operand: operand is a data or memory address used to execute that opcode.

2

http://objdump.com
https://hex-rays.com/ida-pro/

files which display malware codes as Intel ×86 assembly instructions, and use disas-
sembler objdump. Moreover, we used the Hugging Face library to implement models.
Hugging Face has an extendable framework and an open-source NLP library used by
global services, including Bing, Apple, and Monzo. 9

1.1 Motivation and Problem Definition

We analyzed the malware detection problem owing to its major impact on informa-
tion systems. Language model and text classification approaches have the potential to
provide solutions to this problem, so we adapted them into the malware detection con-
text. Our decoder-based context-aware network Generative Pre-trained Transformer
2 (GPT-2) language model retains contextual characteristics of syntactic and seman-
tic similarities from the natural language sentences (i.e., short-text) perspective due
to the attention mechanism layers. It is also called the transformers-based language
model. The model provides global dependency on inputs and outputs with attention
mechanisms. We used the next word prediction perspective of GPT-2, a decoder-
based network for binary classification of malware.

We fed into our models with statically collected assembly instructions to do binary
classification. The statistical analysis identifies malicious applications among benign
applications. As there is no need to activate the malware by executing the code to cap-
ture the features, statistical approaches are also less expensive in terms of resources
and time. We disassembled software files that were not obfuscated to obtain assem-
bly codes using static analysis tools. Like the GPT-2 transformers-based model, deep
learning methods allow us to extract relevant features even from complex instructions
of assembly codes. The neural networks also automatically handle feature extraction
instead of manual feature extraction in machine learning. Transformers-based mod-
els also clearly exhibit remarkable results in various state-of-the-art Natural Language
Processing (Tay et al., 2020) and computer vision tasks (Naseer et al., 2021).

We developed a language model on the syntactic and semantic representation of as-
sembly instructions from malicious and benign executable files. This model trans-
ferred its knowledge about the structure of assembly codes, namely transfer base
learning or pre-trained model, to the binary classification model. Hence, the binary
classification model increased discovery capability with the help of the pre-trained
model.

1.2 Research Questions and Approach

The research questions of this study are presented as follows. Firstly, our study inves-
tigates the models that aim to represent the semantics of malware’s assembly code,
specifically focusing on GPT-2. Secondly, it targets conducting comparative evalua-
tions between alternative models while keeping efficient detection performance.

The present study is organised as follows. In Chapter 2, first, we present the back-
9 HuggingFace: https://huggingface.co/ (retrieved on 22.05.2020)

3

https://huggingface.co/

ground to give an idea about the concepts related to our study. Then, we offer the rel-
evant studies in the topics, including malware detection and language model. Chapter
3 describes our approach, datasets, the pre-trained model and binary classification
model, GPT-2 (based on transformers architecture), train and test pipeline, parame-
ters, and the setup of the environment used for training and testing. Chapter 4 reports
the results, compares our pre-trained model and GPT-2’s pre-trained models, and dis-
cusses the results. Finally, in Chapter 5, we present a conclusion, the limitations of
the study, and the future work.

4

CHAPTER 2

BACKGROUND AND RELEVANT WORK

This chapter first presents deep learning (DL) methods used in natural language pro-
cessing (NLP). Then, we describe the tasks performed using NLP. After that, we
briefly summarize artificial neural networks (ANN) and its subsection. Lastly, we
summarize approaches developed for detecting malware.

2.1 Deep Learning for Natural Language Processing

This section introduces deep learning (DL) methods used in natural language pro-
cessing (NLP). NLP is a subcategory of computational linguistics. Linguistics fo-
cus on analyzing aspects of language, such as grammar, semantics, and phonetics,
as well as the methods briefly summarize artificial neural networks (ANN) and its
subsections for studying and modeling them (Contributors, 2019). However, com-
putational Linguistics is concerned with understanding written and spoken language
from a computational perspective. It formulates grammatical and semantic frame-
works for characterizing languages. NLP aims at conducting the design and analysis
of computational algorithms. The methods of NLP address human languages acces-
sible to computers (Eisenstein, 2019). With the development of fast computers and
the emergence of big data, novel findings have become available by processing large
datasets of text by software. In the 1990s, statistical methods and statistical machine
learning began to replace the classical top-down rule-based approaches to analyzing
language. Employing their better results, speed, and strength, the statistical approach
to studying natural language has dominated the field. Nowadays, statistical machine
learning has evolved into deep learning neural networks to infer specific tasks and
develop robust end-to-end systems. The basis of the NLP approach is that it identifies
an argmax function that aims at finding the argument that gives the maximum value
from a target function (Brownlee, 2020).

ν = argmaxβ(x, y, θ) (2.1)

In (2.1), x is the input, an element of a set X, and y is the output, an element of a set
Y(x). β is the scoring function also called the model. It calculates the argmax of β,
meaning that the output ν that gets the best score given the input x. In other words, at
this stage, the goal is to find the appropriate β value. θ is a vector of parameters for β,
which can be conceived as the learning part of the process. ν is the predicted output
(Brownlee, 2020). Thus, most NLP models aim to find the best score function with the

5

best parameters for contexts. One of the key concepts of those models, especially in
terms of artificial neural network (ANN) models known as classical neural networks
rooted in the 50s (Contributors, 2018), is word vectors.Word vectors mean that every
word in our vocabulary is mapped to a vector. The studies do our natural language
analysis in the context of these word vectors. One-Hot Encoding and bag-of-words
(BOW) are simple approaches to how to convert words into vectors. The One-Hot
Encoding labels each unique word in a sentence or a document with an index. Each
vector input is zero except one that is corresponding to its index set to 1. The index
number is the number of different words in a sentence or a document. A more detailed
approach compared to one-hot encoding is called BOW. This detailed approach means
to count the occurrences and co-occurrences of all unique words in a context. Each
part of a context, such as a sentence, is represented by a row in a matrix, where
the columns are unique words of context. These approaches may be successful for
a small number of unique words in the document. The word orders in sequences,
such as sentences or context chunks, do not play a fundamental role, like in sentiment
analysis, because these methods are independent of the word order in the sequences.

Moreover, word vectors usually generate high-dimensional with few non-zero values
that are a problem for many machine learning models. To overcome these problems,
models use word embeddings that are n-dimensional word vectors.

word embedding

The idea of embedding is to embed the word in n-dimensional feature space. The di-
mension of feature space, n, is depended on the task, such as a target word predicted in
context. It also depends on vocabulary and computing capacity. More dimensions of
feature space may improve the accuracy of the tasks; since the word embedding may
capture more aspects of the word. Nonetheless, more dimensions also mean higher
computing effort and time. It is for this reason that some algorithms are developed to
determine the dimensions of feature space correctly. The two popular algorithms for
calculating word embeddings are word2vec and GloVE.

In 2013, (Mikolov et al., 2013) introduced the two word2vec algorithms, which con-
siderably influenced NLP models. To generate word embedding, word2vec uses a tar-
get word given its context, namely skipgram, or context words given a target, namely
continuous bag-of-word (CBOW). In contrast, Glove uses local context windows, in-
cluding global word co-occurrence counts, to generate vectors. Models learn syntac-
tic or semantic similarities between those vectors and try to predict words or context.

In NLP, the feature space is called syntactic and semantic space that occurs simi-
lar words close to each other and more dissimilar words being far from each other.
Machine learning algorithms based on ANN, particularly deep learning (DL) algo-
rithms, want to generate the semantic space by themselves by evaluating the context
of a word. This is more often done as an unsupervised procedure. These sets of vec-
tors, in space, mapped to a large or massive corpus of unlabelled1 documents. Then
ML algorithms learn the relation between vectors.

In the following subsections, from NLP’s perspective, we briefly summarize artificial
neural networks (ANN) and its subsection, feed-forward neural networks and recur-

1 Unlabelled: Unlabelled means to do not need humans interventions, such as reading documents.

6

rent neural network (RNN). Next, we explain transformers and generative pre-trained
transformer 2 (GPT-2) (Radford et al., 2019) architectures primarily used for language
model tasks based on the idea of deep learning currently. Afterward, we introduce a
modern and efficient library, namely the Hugging Face transformers’ library (Wolf
et al., 2020).

2.1.1 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs), as known neural networks, are developed to im-
itate biological neural networks. Just as the units of biological neural networks are
neurons, the units of neural networks are nodes. However, nodes’ functionalities are
simpler than neurons’. It can be said that the nodes are small computing units that
take input vectors and produce a single output value.

ANN is a sub-domain of machine learning, consisting of linked nodes. Each node in
a neural network has a numerical value, named weight, mapped to an input used for
prediction. The networks update weights of links between the nodes, depending on
whether a prediction is an accurate one or not. In other words, the concept of learning
in an ANN is represented by parameter updates. For updating the weight of a link, a
commonly used technique is backpropagation. The network uses weights and inputs
to predict the output and then calculate the actual and predicted output differences,
also called loss. After then, the loss value spreads to all network node values by
backpropagation. Consequently, the network achieves a learnable architecture (M.K.,
2019).

Different neural network architectures are specialized to do different tasks. For ex-
ample, the feed-forward neural network models aim to predict the next word based
on a sequence of apriori words. Furthermore, recurrent neural network (RNN) is
an extended version of the feed-forward neural networks that employ variable-length
sequence input to achieve language modeling and speech recognition tasks. Never-
theless, convolutional neural networks (CNN) perform better on image data in pattern
and image recognition tasks. Briefly, those networks’ performance and success de-
pend on the task on which they are performing.

2.1.2 Feed-forward Neural Networks in NLP

Feed-forward neural networks have two categories depending on the number of lay-
ers, single layer or multi-layer. A single layer feed-forward neural network has an
input layer and output layer. Inputs are passed on to the output layer, and the output
layer produces the results. Otherwise, multi-layer feed-forward neural networks have
three layers: input, hidden, and output. The input layer takes the inputs, the hidden
layer processes the inputs, and the output layer generates the result. The model may
use more than one hidden layer. Each layer has multiple neurons, and their inputs
are fully connected and processed only in the forward direction. E.g., (Bengio et al.,
2003) used simple feed-forward neural networks. The model first learns the word
embeddings in the input layer and hidden layer. In the second step, the output layer
gives probability distribution over all words given a specific context.

7

On the other hand, since feed-forward neural networks use dense vector representa-
tions for words, namely word embedding, neural networks often learn those repre-
sentations with multiple hidden layers. That architecture cause problem such as a
calculation problem of loss value and fixed length of input and output. Besides, both
feed-forward neural networks and word embedding techniques still do not take into
account word order in context. For some NLP tasks, like sentiment analysis, this may
not be a problem. Nonetheless, for other tasks like machine translation, the position
of words in context can not be disregarded.

Recurrent neural networks (RNNs) solve this difficulty with cyclical connections,
unlike the classical feed-forward neural networks. This means that multi-layer per-
ceptrons (MLP), i.e., a feed-forward neural network composed of fully connected
layers, can only map from input to output vectors. Conversely, RNNs provide the
entire history of previous inputs to influence the network output.

2.1.3 Recurrent Neural Network (RNN) in NLP

Recurrent neural network (RNN) is a special artificial neural network that employs
variable-length sequence inputs. In RNN, inputs are converted to vectors with special
techniques, such as word embedding or one-hot encoding techniques. Those vectors
process at nodes. Each node belongs to a network layer at a particular time situation.
At time t, each node’s hidden state h(t) gets its earlier hidden state h(t-1)’s outputs and
the new input vector vt to calculate the current state outputs. Furthermore, the current
state h(t)’s output is transmitted to the next hidden state h(t+1) as an input (Goodfellow
et al., 2016). The recurrently hidden states provide short-term memory for models.

The algorithm has different backpropagation from regular backpropagation in feed-
forward neural networks because of the short-term memory architecture. Each node
of the output is a function of the previous parts of the output, so backpropagation for
the RNNs requires recursive gradient computations. It means that the gradient grows
each step.

A gradient calculates how much the output function changes if the inputs are changed
a little bit. In machine learning algorithms, a gradient calculates the change in all
weight with regard to a loss function, i.e., the difference function between the ex-
pected state function and output state function. The expected and output functions
are mapped weights and inputs at each time. Then recursively compute gradient
causes some difficulties, such as very small gradient values known as exploding and
very big gradient values known as vanishing gradients. They caused a complete loss
of information about long-term dependencies. Long short-term memory (LSTM) net-
works were originated by (Hochreiter & Schmidhuber, 1997) to overcome problems
of long-term dependencies.

2.1.4 Long Short-Term Memory (LSTM) in NLP

Long short-term memory (LSTM) solves the short memory problem,the gradient
problems, by modifying the standard RNN cell structure with a read gate, a write

8

gate, and a forget gate. Those gates provide information that deserves to be saved
or removed. However, each memory unit (read, write and forget gates) affects every
other unit’s memory with learnable parameters, known as weight.

The more advanced version of LSTM is bidirectional long short-term memory net-
works (BiLSTM). Compared to LSTM, BiLSTM can train inputs bidirectional. BiL-
STM is to stack two separate hidden layers. One hidden layer is responsible for the
forward information flow, while another is for the backward information flow. All
information also concatenates the final output. Thus, BiLSTM can access long-time
dependencies in both input directions. Nevertheless, long sequential data is still a
critical problem for LSTM. That means recursively compute gradient may still be a
problem, i.e., exploding/vanishing gradient problem. In addition, while long sequen-
tial data is processed, memory constraints may limit batching across examples.

Conversely, the attention mechanism, particularly self-attention, proposes to process
data in parallel, not sequential. It means that each element of sequential data can
connect with other elements at the same time. Distant items can affect each other’s
output without recurrence. And also, due to transformers, items can attend multiple
times the process.

2.1.5 Attention Mechanism

Attention was first proposed in neural machine translation (NMT) but in many models
uses it, known as encoder-decoder architecture (Bahdanau et al., 2014). It is a prob-
lem for most other NLP tasks, such as text generation and text classification. From in
DL perspective, attention can be interpreted as a vector of importance weights, known
as an attention vector. We estimate using the attention vector how strongly a word is
correlated with other words to predict or infer a word in sentences. We take the sum
of their values weighted by the attention vector as the approach of the target.

In NMT, the attention mechanism allows each hidden state of the decoder in Figure
2.1 hd to see a different and dynamic context, a function of all the encoder hidden
states in Figure 2.1 he. Thus, the attention mechanism maps between source {x1,x2,
...,xn} and target {y1,y2,...,yn}. While context vector controls and learns from an align-
ment between the source and target, it consumes three pieces of information: encoder
hidden state, decoder hidden states, alignment between source and target. The hid-
den states are based on recurrent connections such as RNNs and LSTMs. Alignment
function, aka alignment score function, computes the relation between encoder and
decoder hidden states in the attention layer. In Figure 2.1, {c1,c2,. . . ,cn} are results of
alignment function. There are three main attention mechanisms: Bahdanau attention
(Bahdanau et al., 2014), Luong attention (Luong et al., 2015) provided in several vari-
ants in the original paper, and the transformers’ self-attention (Vaswani et al., 2017).
Their differences lie essentially in their architectures and computations. Bahdanau’s
and Luong’s architectures are based on recurrent connections.

As we explain in previous subsections, passing information forward through an ex-
tended series of recurrent connections, such as RNNs and LSTMs, may cause diffi-
culties in training. On the right side of Figure 2.2, the inherently sequential nature of
recurrent networks limits the use of parallel computational resources. In contrast, on

9

Figure 2.1: All hidden-layer based on RNN and he
i are encoder block and hd

i are

decoder block. i is an element of N that is the number of words in the context. (Lam,

2021)

the left side of Figure 2.2, each hidden state has dependencies on the previous words’
hidden state. The embeddings of the current step are also generated one time step at
a time.

Figure 2.2: Compare RNN/LSTM and Transformers

On the other hand, self-attention network transformers eliminate recurrent connec-
tions and return to architecture recollections of fully connected networks. Therefore,
the right side of Figure 2.2, the architecture processes arbitrarily large contexts in
parallel. There is also no concept of the time step.

Self-Attention Mechanism

Self-attention enables a network to extract and handle information from arbitrarily
large contexts directly. There is no need to pass extracted information through in-
termediate recurrent connections as in RNNs. Thus, no access to information about
inputs beyond the current one. Nevertheless, while processing each item in the input,

10

the model has access to all inputs, including the one under consideration. In short, we
can efficiently parallel both inference, such as question answering and summariza-
tion, and training of language models since the computation performed for each item
are independent of all the other computations.

Figure 2.3: C*
K represent query CK in terms of weights Ri sum values, with weights

define by match between query and keys. i and K is element of N that is the number

of words in the context.

While self-attention extracts and uses information from context, it compares an item
of interest, in Figure 2.3 CK, to a collection of other items, in Figure 2.3 {C1,C2,. . . ,CN},
in the current context. These comparisons reveal the relevance of CK to {C1,C2,. . . ,CN}
in the current context.

One of the easiest forms of comparison is between elements in a self-attention layer is
a dot product. To do dot product, we use word embedding of words. The dot product
results between CK word embedding and {C1,C2,. . . ,CN} word embeddings are gen-
erated weight vector of target word embedding CK, which is [R1, R2,. . . ,RN]. Thus,
self-attention attends to different positions CK of the input sequence {C1,C2,. . . ,CN}
to compute representations, in Figure 2.3 C*

K , of input sequence using the weight
vector of CK. In short, new word embedding C*

K is collection of weight vector and
word embeddings {C1,C2,. . . ,CN}, C*

K=R1C1+ R2C2+. . .+RNCN.

11

The results of the dot product in [R1, R2,. . . ,RN], aka scores, can be negative or
positive numbers-in other words, the scores range from -∞ to ∞. A negative score
indicates that the word embeddings are far in space, so the words are less similar,
whereas, as the outcome is positive, it shows that these words are similar.

The standard SoftMax function σ : RN → [0, 1]N is defined by the formula:

σ(Ri) =
eRi∑N
j=1 e

Rj
for i = 1, ..., N and Ri ∈ [R1, R2, ..., RN] (2.2)

The architecture normalizes with a SoftMax function to use these scores effectively,
range from -∞ to∞. The SoftMax function, in (2.2) formula, takes the score vector
[R1,R2,. . . ,RN] as input. It normalizes inputs into a probability distribution consist-
ing of score vector entry’s probabilities proportional to the exponential of the input
numbers. After applying the function, each component is in the interval [0,1], and the
components add up to one.

This simple mechanism causes to need additional parameters for learning. In Figure
2.3, these new parameters are query, key, and value that have different roles. A self-
attention function maps a query and a set of key-value pairs to an output, where the
query, keys, values, and output are word embeddings. The query is the current focus
of attention, which is used to compute scores against all the other words embeddings.
The key is a being compared to the current focus of attention. Finally, the value is
used to compute the output for the current focus of attention. The query, key, and
value are all generated from the same input embedding X.

Self-Attention Mechanisms With Scaled Dot-Product

In each of these steps, transformers introduce three sets of weights (WQ, WK, WV)
to capture the different roles that input embeddings play. These sets are matrices and
learnable parameters of architecture. They are used to compute linear transforma-
tions of each input, with the resulting values being used in their respective roles in
subsequent calculations.

For each query’s score value defines;

qi=WQxi, ki=WKxi, vi=WVxi, Xi is a part of X input embeddings.

αij = score(xi, xj) =
(qi · kj)√

dk
(2.3)

As the score function defines in general, it gives similarity between xi and xj. xi
elements of queries set, xj is elements of keys set. In (2.3) formula, the results of each
qi dot product to each kj are divided by

√
dk.

The SoftMax may have an extremely small gradient for large input since the larger
input components will correspond to larger probabilities. It is a vanishing gradient
problem that causes to become hard for efficient learning. Accordingly, the square
root of the depth

√
dk scales the dot-product attention. Then, SoftMax is applied and

12

the result is multiplied with vi, to obtain the weight vector of qi.

Given input embeddings of size dm, the dimensionality of these matrices are dq×dm,
dk×dm and dv×dm, respectively. In the original transformer work (Vaswani et al.,
2017), dm was 1024 and 128 for dk , dq and dv.

Figure 2.4: Self-attention (Lam, 2021)

In Figure 2.4, the output of the third element of a sequence is calculated using causal
self-attention. The causal self-attention access only to the next vector vi in the se-
quence of values set.

Self-Attention Mechanism - Parallelism

In (2.4) formula is general form of self-attention that computes on a set of queries
concurrently, packed together into a matrix Q. Keys and Values are also packed to-
gether into matrices K, V, respectively.

Q=WQX, K=WKX, V=WVX

Self − Attention(Q,K, V) = SoftMax(
QKT

√
dk

)V (2.4)

By packing the input embeddings into a single matrix X and taking advantage of
matrix multiplication can be parallelized an entire process. The calculation of the
comparisons in QKT results in the score for each query value to every key-value.
Accordingly, the self-attention mechanism causes global dependencies between input
and output with parallelization. In addition to the self-attention layer, we describe
other features of transformer blocks.

13

2.1.6 Transformers

The transformer, based solely on self-attention mechanisms in NLP, is a new archi-
tecture that aims at solving the encoder-decoder network tasks by long-range depen-
dencies. The encoder-decoder network of transformers avoids recurrence with fully
connected layers,namely feed-forward layers. Transformers also map sequences of
input embeddings to sequences of output embeddings of the same length.

Figure 2.5: Architecture of Transformer (Vaswani et al., 2017)

In Figure 2.5, the left-hand side is the encoder parts of transformer. The right-hand
side is the decoder part of transformer. In Figure 2.5, the encoder maps a sequence
of input to a sequence of continuous representations. Given encoder output, the de-
coder then creates an output sequence for one element at a time. In the decoder
part (auto-regressive part), each step consumes the previously created encoder output
as additional input when producing the next. The transformer encode-decoder sides
have a same structure except for one layer in the decoder, known as masked multi-
head attention. This layer causes a real difference between the two blocks. First, we
describe same layers and features in blocks, then the differences between blocks. The
first same layer is the multi-head attention layer.

Multi-Head Attention

14

The architecture has performed single attention, also named the single-headed at-
tention function, with keys, values, and queries. However, the different words in a
sentence (input embedding) may relate to each other in many different ways simulta-
neously, i.e., words have distinct syntactic, semantic, and discourse relationships with
other words and their arguments in a sentence. According to (Vaswani et al., 2017),
it is difficult for a single transformer block to capture all of the different aspects of
parallel relations among its inputs. Moreover, the model can not learn those parallel
relationships. transformers approach this issue with multi-head self-attention layers,
which reside in parallel layers at the same depth in a model, each with its own set
of parameters. Hence, each head can learn different kinds of relationships that exist
among inputs at the same level of abstraction with these distinct sets of parameters.

When implementing this notion, X input embedding divides into h, that is, the number
of heads. Each head, i, in a self-attention layer is provided with its own set of the
query, key, and value matrices: Wi

Q , Wi
K , Wi

V.These are used to project the inputs to
the layer, xi, distinctly for each head. The output of h heads consists of h embeddings
of the same length.

headi = Self − Attention(W i
QX,W i

KX,W i
VX)

In (2.5) formula, each head output is concatenated and then reduced down to the
original input dimension dm by using another linear projection WO,i.e., element of
h.dv × dm, to the original output dimension.

MultiHead(Q,K, V) = Concat(head1, ..., headh)(W
O) (2.5)

where headi = Self − Attention(W i
QX,W i

KX,W i
VX)

Owing to multi-head attention function, the model attends collectively to information
from different representation subspaces at different positions.

We may deduce in Figure 2.6 that multi-head attention includes several attention lay-
ers (h times) running in parallel. In this way, it captures h times long-term dependen-
cies between elements in an input sequence.

On the other, unlike RNNs, transformer architecture layers, i.e.,multi-head attention
and feed-forward, lose all information about elements’ position in a sequence. Thus,
the architecture can not use information about the relative or absolute positions of the
elements of an input sequence. For solving this issue, the transformer architecture
combines positional embeddings specific to each position in an input embedding.

Positional Encoding

Positional encoding allow the transformer structure to recognize that an input belongs
to which part of the sequence. The original transformer (Vaswani et al., 2017) deter-
mines each word’s position or the distance between different words in the sequence
to generate positional embeddings using multiple sine and cosine functions, as in
formula (2.6).

15

Figure 2.6: Performing h times attention function (Vaswani et al., 2017)

PEpos,2i = sin(pos/100002i/d) (2.6)

PEpos,2i+1 = cos(pos/100002i/d)

d:Dimension size of word embedding, N: Number of word in the sequence, pos:
position of the current word in the sequence in [0, N-1] and i: index of the dimensional
index of word embedding in [0,d].

That is, each dimension of the positional encoding matches a sinusoid. It forms a
geometric progression from 2π to 10000.2 π on the wavelengths. This function would
allow the model to easily learn to attend by relative positions since PEpos+k can be
represented as a linear function of PEpos, for any fixed offset k (Vaswani et al., 2017).

Each position in each dimension,as in Figure 2.7, is mapped to sine and cosine func-
tions that have a different frequency and offset of the wave. Since the sine and cosine
curve only varies between a fixed range, it depends not on the input text length.

As a result, the network introduces new word embedding vectors that take into ac-
count the connection of a given word to its surrounding words. Through the positional
embedding, while words are nearby positional, they will have similar positional em-
beddings and their inner products will be high. In contrast, while words are far apart,
they will have different word positional embeddings and their inner products will be
negative.

Nevertheless, multi-head attention and feed-forward layers also lose their original
word embedding, the union of word embeddings and positional embeddings. The
architecture solves this problem with the residual connection and is followed by nor-
malization. These operations are called add and norm layers.

16

Figure 2.7: Sine and cosine graphs of dimensions (Shieber & Rush, 2018) N=100

Residual Connection

In Figure 2.5 add and norm step, the add refers to a residual connection that adds the
output of the residual connection to the output of the multi-head attention, i.e. original
word embedding, and the norm refers to layer normalization. Residual connection,
aka skip connection, provides knowledge prevention about original embedding (He
et al., 2016). In addition, residual connection bypasses the gradient vanishing or
exploding problem and proposes to solve the model optimization problem from the
perspective of information transfer. It enables the integration and delivery of infor-
mation by adding an identity mapping from the input embeddings to the output em-
beddings, which may ease the optimization (Liu et al., 2021). In deep learning (DL),
optimization algorithms or methods used to change the attributes of the network such
as learning rate 2 and weights to reduce the losses.

Layer Normalization

Transformer places the layer normalization between residual blocks (Vaswani et al.,
2017), as in Figure 2.8.

This architecture has achieved state-of-the-art performance in language modeling (Al-
Rfou et al., 2018). Unsupervised pre-trained models, such as Generative Pre-trained
Transformer 2 (GPT-2), based on the layer normalization between the residual blocks
also show impressive performance in many downstream tasks (Radford et al., 2019).

Layer normalization (LN) normalizes the results of intermediate layers, known as
multi-head attention sub-layer or feed-forward neural network sub-layer, with resid-
ual connection outputs. It means that LN progresses by normalizing and rescaling
the intermediate layer (hidden layer) result to handle the collective optimization of
multiple correlated features. Thus, it enables faster training and can help optimize

2 en.wikipedia.org : https://en.wikipedia.org/wiki/Learning_rate (retrieved on 4 Sep 2021)

17

https://en.wikipedia.org/wiki/Learning_rate

Figure 2.8: Residual blocks (Xiong et al., 2020)

the non-linear transformation. The model also obtains better generalization accuracy
(Xiong et al., 2020). In (Vaswani et al., 2017), LayerNorm function is defined as

LayerNorm(x+ Sublayer(x))

x is outputs of residual connection, and sub-layer is multi-head attention or feed-
forward neural network.

Let x = (x1, x2, . . . , xN) be the word embeddings of an input of size N to normaliza-
tion layers. LayerNorm re-centers and re-scales input x as

LayerNorm(x) = γ · v − µ
σ

+ β

,

in which µ, σ are the mean and standard deviation of the elements in x ,i.e.,

µ =
1

N

N∑
i=1

xi and σ2 =
1

N

N∑
i=1

(xi − µ) (2.1)

scale γ and bias (shift) vector β are parameters.

Therefore, Layernorm uses all of the summed inputs to the activation result of neurons
(features) in a layer to compute the mean and variance for every sub-layers (Al-Rfou
et al., 2018).

LN and skip connection are used techniques to facilitate the optimization of deep
neural networks (Liu et al., 2021). In (Vaswani et al., 2017), the network uses LN and
skip connection, and also Adam optimizer (Kingma & Ba, 2014) with a learning rate
warm-up stage for controlling the gradient since the self-attention mechanism creates

18

unbalanced gradients. In the warm-up stage, the optimization schedule starts with an
extremely small learning rate. The schedule then gradually increases the learning rate
to a pre-defined maximum value in a pre-defined number of iterations (Xiong et al.,
2020). The number of iterations is 4000 in the original paper. Consequently, utilizing
the warm-up stage, the adam optimizer fixes the unbalanced gradients problem by
having different learning rates for each parameter.

In Figure 2.8, in addition to the multi-head attention sub-layer, residual connection
and layer normalization, each transformer layer contains a fully connected network,
which is applied to each position separately and identically.

Position-wise Feed-forward Neural (FFN) Sub-layer

This sub-layer involves two-layer linear transformations with a ReLU activation func-
tion between them. Given a sequence of vectors h1,h2 ..., hn, the computation of a
position-wise FFN sub-layer is defined as:

FFN(hi) = ReLU(hiW
1 + b1)W 2 + b2

W1, W2 weight matrices of each layer and b1,b2 are bias matrices of each layer.

ReLU(x) = max(0, x) (2.7)

Furthermore, ReLU is an activation function. In formula (2.7), the function takes an
unbounded real input and returns a non-linear transformation of that input between 0
and 1 differentiable to the input.

The last common point found from both the encoder and decoder part is the dropout
parameter for regularization. The original paper applies dropout (Srivastava et al.,
2014) to the output of each sub-layer before it is added to the sub-layer input and nor-
malized. In addition, the paper author applies dropout to the sums of the embeddings
and the positional encodings in both the encoder and decoder stacks. For the base
model, they use a rate of Pdrop = 0.1.

In Figure 2.5, the difference between the encoder and decoder stacks are masked
self-attention sub-layer, an extra one linear layer, and SoftMax activation at the end
of the decoder stack. The linear layer is a feed-forward network that gives the rela-
tional score of the words, and SoftMax gives probabilities of words. The main differ-
ence between encoder and decoder blocks is the style of self-attention in the masked
self-attention layer. This layer also causes a difference between encoder-based and
decoder-based transformers variations.

Differences between Encoder-Based and Decoder-Based Transformer

First, to tell the difference between encoder-based and decoder-based transformers,
we should explain the difference between language models (LM) and masked lan-
guage models (MLM). LMs like Generative Pre-trained Transformer 2 (GPT-2), i.e.,
models with a unidirectional architecture, predict the next word on given the previous
words in the input sentence. Utilizing decoder-based blocks, LMs handle input sen-

19

Figure 2.9: The left-hand side is MLM architectures attention mechanism. The right-

hand side is LM architectures attention mechanisms (Becker et al., 2020)

tences from the start of the input to the end of the input (right-hand-side of Figure 2.9).
Instead of predicting the next word, MLMs attempt to predict a masked word selected
randomly from the input (left-hand-side of Figure 2.9, such as "Bidirectional Encoder
Representations from Transformers (BERT)" (Horan, 2021). MLMs are bidirectional
since they access words before and after a current word to predict a word. Therefore,
each encoder block of MLMs consists of a bi-directional self-attention layer. In con-
trast, each decoder block consists of a unidirectional self-attention layer (masked-self
attention). The decoder-based transformer is a stack of decoder blocks followed by
the LM head, and the encoder-based transformer is a stack of encoder blocks followed
by the MLM head (Platen, 2020).

The success of the self-attention mechanism in determining the relationship between
input and output leads to the emergence of new architectures for NLP tasks such as
machine translation, text classification, and summarization. Generating models for
these tasks uses the encoder-based transformer and the decoder-based transformer,
which are based on different styles of self-attention mechanisms. Furthermore, these
transformer-based architectures have different tokenizer styles, models, and architec-
tures’ configuration files. Since we use GPT-2 decoder-based transformer for our
classification task, in the following subsection, we primarily describe the infrastruc-
ture of GPT-2. However, at first, we give brief information about transfer learning
since it allows us to leverage knowledge acquired from related data to improves per-
formance on our classification model based on GPT-2.

2.1.7 Transfer Learning

The availability of large amounts of data and increased computation resources make
it challenging to train models. In NLP, one of the common solutions for this challenge
is Transfer learning that mainly consists of two steps: pre-training and adoption. As
in Figure 2.10, the model is first pre-trained with the source task, and second, the
model is adapted, i.e., is adopted model, to the target task, such as text classification

20

and question answering.

Figure 2.10: Transfer Learning (Becker et al., 2020)

The pre-trained language model holds structural and semantic relations between each
word and every other word in context. The word embedding layer captures morpho-
logical information, and the lower layers capture local syntax in pre-trained models.
On the other hand, the upper layers capture longer-range semantics (Peters et al.,
2018). Pre-trained language models have also been shown to learn logic rules (Kr-
ishna et al., 2018). These rules give us weight parameters of a language model, which
hold long-range semantics of a language. Therefore, to improve the adopted model’s
performance and reduce the training time, the pre-trained models’ weights are em-
ployed as a starting point for the target task rather than building a model from scratch
to solve similar problems. As in Figure 2.10, in transformers-based models, the pre-
trained language model’s gained knowledge, i.e., weights parameters, transfers to the
adopted model during training used for NLP tasks. This phase is called fine-tuning,
which updates the pre-trained representations. The user can use these adopted models
for the designated task.

We describe the architecture of Generative Pre-trained Transformer 2 (GPT-2) since
our language model pre-training (pre-trained language model), custom language model
pre-training (custom pre-trained model), binary classifier fine-tuning (adopted model)
are based on GPT-2. These three type of models have same tokenizer style and same
tokenizer model.

2.1.8 Tokenization for Generative Pre-trained Transformer 2 (GPT-2)

Natural language Processing (NLP) begins with words, corpora, and tokenization.
A collection of texts used to train an NLP model is called corpora, and a simple
definition of words is sequences of letters. Tokenization splits words, sentences, and
corpora into smaller parts according to specific rules that use whitespace characters
or other means. An output of a tokenizer is tokens. Words can be part of a token or
sub-token of a token. The number of distinct tokens is called types.

To obtain word embeddings, in Figure 2.11 tokenization maps tokens to numerical
values. It also collects vocabulary having unique tokens of texts and obtains indices
of vocabulary. Hence, it generates word embeddings using indices. For instance,
suppose that sentence is [mov eax,ebx] then word embedding of the sentences is
[0,2,233].

Tokens depend on an actual tokenizer since all transformer-based models have their

21

Figure 2.11: Vocabulary and their indices

tokenizer styles. GPT-2’s actual tokenizer is based on byte-pair encoding (BPE),
which was introduced in (Sennrich et al., 2015). BPE is a kind of pre-tokenizer
depending on a set of rules to split inputs. In the pre-tokenizer phase, GPT-2 splits
on white-spaces while mapping all the bytes to a set of visible characters. Since it
maps on bytes, the tokenizer uses 256 characters as an initial alphabet. Therefore,
GPT-2 can represent every word, including rare and unknown words, as sequences of
sub-word units with 256 tokens.

GPT-2’s BPE model runs by starting with characters while merging the most fre-
quently seen together, thus creating new tokens. Then, it works iterative to produce
new tokens out of the most frequent pairs it sees in a corpus. For instance, it iterative
counts all symbol pairs and replaces each occurrence of the most frequent pair (‘X,’
‘Y’) with a new symbol ‘XY’. It does so until the vocabulary has attained the desired
vocabulary size that is a hyperparameter of the tokenizer model. In this way, the BPE
model can build words it has never seen using multiple sub-word tokens, thus requir-
ing smaller vocabularies, with fewer chances of having “unk” (unknown) tokens. For
this reason, GPT-2’s BPE model is called the sub-word tokenization model.

2.1.9 Generative Pre-trained Transformer 2 (GPT-2)

This part is based on (Radford et al., 2019). GPT-2 is an open-source artificial in-
telligence (AI). It is created by OpenAI, in February 2019, which is an AI research
and deployment company for artificial intelligence. In open source library have lan-
guage model that Large-scale unsupervised language model GPT-2 trained on a large
dataset containing 8-million web pages including 40 GB of internet text. There are
also models with relatively smaller scales compared to this model,as shown in Ta-
ble 2.1. Moreover, GPT-2 is an extended version of GPT (Openai et al., 2018) with
more than ten times the parameters and trained on more than ten times the amount of
data. It succeeds in state-of-the-art performance on many benchmark language model
tasks. It can perform machine translation, question answering, language generation,
and summarization tasks (Radford et al., 2019).

22

Table 2.1: Architecture hyperparameters for the 4 models size based on GPT-2 (M is

the abbreviation for million)

Parameters Layers Dimension of Input

117 M 12 768

345 M 24 1024

762 M 36 1280

1542 M 48 1600

Figure 2.12: Auto-regressive language model (Becker et al., 2020)

GPT-2 is a decoder-based transformer. Due to the decoder-based structure, GPT-2
is a unidirectional language model based on,shown in Figure 2.12, Autoregressive
language (AR) model (Yang et al., 2019). Given a text sequence X=(x1,...,xT), AR
model factorizes the log-likelihood into a forward sum;

logP (x)=
T∑
t=1

logP (xt|X<t) (2.8)

In this way, (2.8) formula estimates the probability distribution of a text sequence
with an auto-regressive pattern.

The language model has an unsupervised pre-training followed by supervised fine-
tuning for specific NLP tasks, and its training objective is formulated as P(output|input).
On the other hand, instead of the fine-tuning model with specific tasks, GPT-2 aims
at learning multiple tasks using the same unsupervised model through many self-
attention blocks. While the unsupervised model sets without any parameter or ar-
chitecture modification to understand the multiple tasks, this is known as a zero-shot
setting. Utilizing a zero-shot setting, the learning (training) objective is modified to

23

P(output|input, task), so the model produces different outputs for the same input for
various tasks. GPT-2’s perform down-stream tasks in a zero-shot setting. As a result,
GPT-2 is not trained on any of the data specific to any of the tasks, such as transla-
tion, classification, question-answering, and is only evaluated the tasks as a final test
(Radford et al., 2019).

To perform better under the zero-shot setting, training GPT-2 needs enormous data.Hence,
researchers create a new dataset webtext, which contains over 8 million documents
for a total of 40GB of webpages text. During the representation of webtext (tokeniza-
tion process), GPT-2 models use Byte-Pair Encoding. Hence, the unknown character
(<UNK>) infrequently occurs in the webtext tokenization in GPT-2.

Moreover, GPT-2’s model extends the OpenAI GPT model with some improvements.
Larger model GPT-2 has 48 layers and uses 1600 dimensional vectors for word em-
bedding. The layer normalization from the transformer is moved to the input of each
sub-block, and an additional layer normalization is added at the end of the final self-
attention block. A larger vocabulary of 50,257 tokens is used. At initialization, the
weight of residual layers is scaled by (1/

√
N) , where N is the number of residual

layers. Instead of ReLU, GELU is used as an activation function to provide a higher
probabilistic and avoid vanishing gradients problems (Hendrycks & Gimpel, 2020).

2.1.10 Hugging Face

Hugging Face has an extendable framework and an open-source NLP library using
by production. The open-source NLP library name is transformers which opens their
advances to the wider machine learning community. The library is dedicated to sup-
porting transformer-based architectures and facilitating the distribution of pre-trained
models. For this reason, the transformers generates python-based application pro-
gramming interfaces (APIs) for many well-known transformer architectures, such as
BERT, RoBERTa , or GPT-2. These transformer models involve different shapes,
sizes, and architectures. The models also accept input data in different ways. Every
model in the library is fully defined by three building blocks shown in the diagram
in Figure 2.13 a tokenizer such as byte-level BPE based on BPE encoding, a trans-
former such as GPT-2, a head such as language modeling, sequence classification,
and question answering (Wolf et al., 2020).

Everything is shared, and everyone can contribute to the Hugging Face framework,
so it is easy to read, extend, and deploy. Hugging Face organizations also support the
distribution and usage of various pre-trained models in a centralized model hub.

In the following section, we summarize malware analysis and methods, and the ap-
proaches developed for detecting malware.

24

Figure 2.13: Main blocks of every model in the transformers library (Wolf et al.,

2020)

2.2 Malware Analysis

2.2.1 What is Malware

Malware is a code that executes malicious actions. It takes the form of an executable,
a script, or it is embedded in other software. It attempts to violate the system’s or
device’s security policies by executing it on a system or computing device. In this
way, attackers use these violations to steal sensitive information, spy on the infected
system, or take control of the system.

Malware is categorized, such as trojans, viruses, worms, and rootkits, based on their
functionalities and attack vectors used to detect malware. Nevertheless, the malware
authors and attackers try to modify or morph their malware to evade malware detec-
tion. Their standard techniques for evading detection are Polymorphism, Metamor-
phism 3, Encryption, and Packing 4 that are obfuscation techniques. Whether these
techniques are used, two steps are processed to detect malware: feature extraction
and classification/clustering.

The performance of malware detection methods critically depends on these processes.
Firstly, various features are extracted statically, dynamically, or a hybrid to capture
the characteristics of samples. Different features such as opcodes (description of
assembly-code-level operations), byte sequences (description of byte-level contents),
system/APIs calls (analyses of execution traces, disassembly code, and description
of APIs’ executed actions), memory accesses (during malware executions, analyses
of memory), file system (frequency of created-deleted-modified files) and network
traffic (like analyses of incoming, outgoing packets and visited addresses) are be-
ing applied to malware analysis (Akhtar et al., 2015). In the second step, machine
learning (ML) techniques, in particular deep learning (DL) techniques, are used to
automatically categorize samples into different classes/groups based on the analysis
of feature representations (Ye et al., 2017).

3 Polymorphism and Metamorphism: the code changes itself every time it runs.
4 Packing: packed and encrypted malware.

25

2.2.2 Malware Analysis Methods

Malware analysis dissects malware to understand how it works and to find solutions
to eliminate it. There are two fundamental approaches for analysis: static analysis and
dynamic analysis, which have intelligent techniques to extract features representing
files.

Static Analysis

Static analysis is collecting information about the malicious application without run-
ning it. It has two categories as basic and advanced. Basic static analysis is achieved
by extracting all the possible static information inside the file, such as the hash, li-
braries, strings, imported functions, and resources. Therefore, analysts capture a basic
understanding of the functionalities and the behaviors of suspicious files before their
execution. Nevertheless, advanced static analysis, aka code analysis, inspects the bi-
nary file to study each component, still without executing it. The advanced static
analysis also provides more information about the characteristics of malware than
basic analysis.

For dissecting the binary file, one method is to reverse engineer the binary file code
using disassemblers such as IDA, objdump. Through disassemblers, sub-sections,
i.e., different regions and thus types of data, are obtained from the PE file. The PE
format specifies various sections types, such as .text that contains executable code,
.data for initialized variables, and .idata for the import table, for storing information
needed for the program to execute. Malware detection techniques use code patterns
of these disassemblers’ outputs, such as assembly instructions, opcodes sequence, op-
codes frequency, byte n-grams, and n-gram of the opcodes, obtained from malicious
files and benign files. For example, Bilar (Bilar, 2007) determined that the difference
between malware files and benign files was statistically significant in opcode fre-
quency distributions. Furthermore, they used rare opcodes as a predictor for malware
detection.

However, the static analysis fails to discover malware intents owing to different code
obfuscation techniques used by malware authors. Hence, dynamic analysis is suitable
for analysing code obfuscation to inspect different functionalities and behaviors.

Dynamic Analysis

In malware detection, analysts get execution traces from suspicious files during exe-
cution, extract the features from traces and interpret these features to detect malware.
For example, in (Acarturk et al., 2021),researchers constructed a dataset in instruction
format from run trace outputs acquired from dynamic analysis of PE files. They fed
into models with instructions and reached an accuracy beyond 99% with Basic Block
as a Sequence Model (BSM) for malware detection.

However, in dynamic analysis, each malicious file should be run in a controlled envi-
ronment such as sandboxes or virtual machines to protect against possible infections.
That causes to need a specific time to monitor the behavior. The monitoring also re-
quires a high amount of scanning time. Moreover, the secure environment may be
different from a real runtime environment, and the malware may behave differently

26

in the two environments. It is for this reason that the trace of the malware behavior
may be incorrect. In addition, some malware actions are triggered under certain con-
ditions such as system date and time or some particular input by the user, which the
secure virtual environment may not detect (Egele et al., 2012). Consequently, both
static analysis and dynamic analysis use for different problems, so their outputs are
examined in different malware detection methods.

2.2.2.1 Malware Detection Methods

Malware detection approaches are divided into two major categories that consist of
behavior-based and signature-based methods. Each category has advantages and dis-
advantages. We briefly explain them.

Signature-Based Methods

Signature-based detection methods rely on identifying known malware. While a
signature-based detection provider identifies an object as malicious, It adds its sig-
nature to a database of known malware. This database may contain millions of sig-
natures identifying malicious objects. Identifying malicious objects method has been
the main technique used by malware products. Furthermore, it continues the base
approach used by the latest firewalls, email, and network gateways.

Signature-based malware detection technology has several strengths, such as its in-
tegrity, i.e., following all possible execution ways of a given malware, simple to run,
speedy, and widely available. First of all, it provides good protection from the many
millions of older but still active threats. Nonetheless, the signature-based malware
detection technology has disadvantages, such as the inability to recognize newly pro-
duced malware, the unmanageable growth of signature databases, and the trouble-
some signature generation and distribution processes (Souri & Hosseini, 2018).

Behavior-Based Methods

Behavior-based detection concentrates on malware activities as a system is infected.
These malicious actions may be file activities, registry activities, API calls, control
flow graphs (CFGs), and system calls. Therefore, behavior-based detection improves
the detection of new malware variants. Its methods use two ways to classify activ-
ities. The first way includes extracting behavioral characteristics statically from the
malware code. For example, (Preda et al., 2008) presented a technique based on the
structural analysis of binary code that allowed one to identify structural similarities
between different polymorphic worm mutations. The approach was based on the anal-
ysis of a worm’s control flow graph. The second way is to run malware in a sandbox
environment and dynamically monitor its behavior. For instance, system calls estab-
lish malware behavior monitored dynamically and then used for malware detection.
In (Lin et al., 2015), authors defined malware behavior vectors and calculated the co-
sine similarity5 to classify the malware. In this way, their architecture distinguished
the known-type malware with an accuracy of 85.8%. Nonetheless, behavior-based
detection takes a long time, and resources may be intensive as malware or benign

5 Cosine similarity: Cosine similarity is a metric measuring similarity between two non-zero vectors of an
inner product space

27

runs in virtual machines or sandboxes. Furthermore, false positives are often a con-
cern due to the misclassification of benign software since benign and malware may
exhibit similar behaviors.

2.2.2.2 Machine Learning and Deep Learning Based Methods

The rise in new malware variants requires automating malware detection since it can
no longer be detected with human resources. Therefore, automated detection meth-
ods are needed against malicious software with little or no human intervention. For
this reason, the focus of academic studies in malware detection has evolved from tra-
ditional methods(signature-based and behavior-based methods) to machine learning
classification methods since the last decade and, in the previous few years, from ma-
chine learning detection methods to deep learning neural networks. In machine learn-
ing detection methods, the detection process is usually two-step: feature extraction
and classification(supervised learning algorithms)/clustering(unsupervised learning
algorithms). The performance of such malware detection methods critically depends
on the extracted features and the categorization techniques. In the feature extrac-
tion phase, various features such as opcode frequency and sequence, binary strings,
API calls, CFG, and program behaviors are extracted statically and/or dynamically to
capture the characteristics of the file samples (Ucci et al., 2019).

In our study, we discuss the detection of Windows Portable Executable (PE) files.
We decompile executables by obtaining assembly instructions to feed our models.
Programming languages, including assembly instructions, have clear grammar and
syntax. Thus we may treat them as natural language, process by NLP models. We
ultimately may use the experience in modeling the natural languages to model the
assembly languages. We find some pieces of malware to be extensively similar to
each other if they are from the same family. In addition to malware detection, in
malware samples, our approaches can also help us to find consistent patterns and lo-
cate malicious payloads. Numerous recent studies focus on assembly code for feature
extraction. In the second step, intelligent techniques such as classification or cluster-
ing are used to automatically categorize the file samples into different classes/groups
based on the analysis of feature representations.

Training samples, including malware and benign files, are provided to the system in
the classification process. The extracted features representing sample files underlying
characteristics are converted to vectors in the training set. Both the feature vectors
and the class label of each sample (i.e., malicious or benign) are used as inputs for
a classification algorithm (e.g., artificial neural network (ANN), support vector ma-
chines (SVM), logistic regression (LR), naive bayes classifier (NB), decision tree
(DT), boosted tree (BT), and random forest (RT)) (Gibert et al., 2020). By analyzing
the training set, the classification algorithm builds a classification model. Then, new
suspicious file samples representative vectors are presented to the classification model
generated from the training set. Next, the model will classify the new suspicious file
samples based on the extracted feature vectors using the same feature extraction tech-
niques as in the training phase. Moskovitch (Moskovitch et al., 2008) presented a
method for classifying malware based on text categorization techniques. The paper’s

28

authors extracted all n-grams 6 from the training data that are binary code of files, with
n ranging from 3 to 6. Then, they selected the top 5500 features according to their
TF inverse document frequency (TF-IDF) for feature selection7 phase. Afterward,
using the resulting features as input, they trained various algorithms such as an SVM,
NB, ANN, and DT. Their results indicated that greater than 95% accuracy could be
achieved by using their training set. (Shabtai et al., 2012) proposed a framework to
detect malware based on opcode n-gram features with n ranging from 1 to 6. They
performed a wide set of experiments to: identify the best term representation, whether
it was the term frequency (TF) or term frequency-inverse document Frequency, de-
termine the n-gram size, find the optimal K top n-grams and feature selection method
and evaluate the performance of SVM, LR, RF, ANN, DT, NB, and their boosted
versions, BDT and BNB, for n;6 and classifier; RT, best accuracy 95,6% with TF.
Furthermore, (Santos et al., 2010) studied the frequency of opcode sequences. They
studied the frequency of opcode sequences. While they analyzed the relations among
the opcodes to detect variants of known malware families, they employed statistical
information, such as the frequency of appearance of opcode sequences.

In many cases, very few labeled training samples exist for malware detection. Thus,
researchers have proposed clustering to automatically group malware samples that
demonstrate similar behaviors into different groups. Clustering is the task of group-
ing a set of objects such that objects in a cluster are more similar, such as using
certain distances, to each other than those in other clusters. In the malware detection
studies centering on machine learning clustering, the k-means clustering algorithm is
the most used machine learning clustering algorithm (Ucci et al., 2019). In (Pai et
al., 2016), the researchers applied clustering techniques to the malware classification
problem. They used k-means and expectation maximization algorithms (i.e., unsuper-
vised learning techniques) to compute clusters with the underlying scores based on
Hidden Markov Models. Their results showed that classification accuracy in excess
of 90% was easily achievable. Another work (Nataraj et al., 2011) extracted GIST
features from the grayscale representation of binary content of malware. Their model
was based on the K-nearest neighbor algorithm (K-NN) with the Euclidean distance.
Then, they used this model to classify new executables under one family or another.
In (Santos et al., 2011), researchers used both supervised learning and unsupervised
learning. The method was based on analyzing the appearance of frequency of op-
code sequences to create a semi-supervised 8 machine learning classifier using a set
of labeled and unlabeled data. A few other successful works, in (Zhang et al., 2019)
features were extracted from n-gram opcode sequences. Moreover, five different ma-
chine learning classification algorithms were used to detect and classify ransomware
families. The authors were the first to propose an approach based on static analysis
to classifying ransomware. While they used real datasets, their approach achieved
the best accuracy of 91.43%. In addition, the average F1-measure of the WannaCry
ransomware family was up to 99%, and the accuracy of binary classification was up
to 99.3%. Those studies reached high accuracy values. In (Yewale & Singh, 2016),
the best accuracy was 97% with the RF algorithm. Malware unpacked and disassem-

6 n-gram: n-gram is a contiguous sequence of n items from a given sequence of text
7 feature selection: feature selection is the process of selecting a subset of informative and relevant features

from a larger collection of features for use in model construction.
8 semi-supervised: semi-supervised learning combines both labeled and unlabeled data for feeding models to

gain knowledge

29

bled using UPX9 Unpacker and IDA pro, respectively. Their features were Opcodes
Frequency.

Academicians have ensured active interactions with machine learning algorithms to
learn from and make predictions by features extracted from malicious or benign soft-
ware through machine learning. The usage of computational statistics and mathemat-
ical optimization in algorithms have provided reliable and fast results by learning.
In contrast, the traditional malware detection methods based on machine learning re-
quire human control over feature extraction and feature engineering, leading to time-
consuming machine learning workflow processes. Human intervention also disrupts
the automated detection process (Gibert et al., 2020). At this point, deep learning
techniques, in other words, neural networks, come in popular in malware analysis
because they learn information from data by themselves with reducing human inter-
vention or without feature extraction by humans. Hence, the neural network, which
becomes automatic, shows better results in some malware detection cases. In malware
detection studies using deep learning techniques have various approaches. These
existing methods have two different aspects. First is the recurrent neural networks
(RNN) and their derivations, and convolutional neural networks (CNN); second is
the transformers relying on attention mechanisms. The effectiveness of these meth-
ods depends on the input features extracted from the dataset. CNN is the first neural
network that regards distances in the input or output sequences. It employs feature
extraction by converting malware into images, as CNNs are mainly used for image
recognition. For instance, Krcal et al. (Krčál et al., 2018) treated 20 million unpacked
half megabyte Portable Executable (PEs) as a sequence of bytes and applied a convo-
lutional network for malware detection. The network had four convolutional layers
and four fully connected layers. Instead of a global max-pooling layer, they used a
global mean pooling layer after the convolutional layers. Moreover, their best afford
was 97.1% accuracy. In (Khan et al., 2018), Khan et al. studied GoogleNet and em-
ployed images obtained from opcodes of binary files for five different ResNet models.
They improved images to distinguish between benign and malicious opcode images
with Histogram standardization augmentation and resolution techniques for easy de-
tection. The GoogleNet accuracy ratio was 74.5%, and among ResNet models, the
top accuracy ratio was 88.36%. In (Kumar et al., 2018), The authors classified mal-
ware opcode images employing a model based on CNN. Their model achieved 98%
accuracy in classifying binary files.

The second neural network is RNN. The data collected from malware are put into a
sequential format, as in text classification tasks, to use on RNNs since it shows better
performance on sequential data. The authors of (Jha et al., 2020) focused on step
size as an essential factor with input size using RNN. They tested the model with
three different feature vectors. Their results showed that RNN with word2vec feature
vector achieved the highest area under the curve (AUC) value and a good variance
among the three feature vectors. (Lu, 2019) used opcodes and operands data, which
can be used as features, mapped with different word embedding techniques to word
vectors. The researchers used word embedding results to feed into their models for
malware detection; the work relied on long short-term memory (LSTM), complex
gated RNN architectures with a long-term dependency of features. For malware de-
tection, that model succeeded in an average AUC of 0.99, while for classification, the

9 UPX: UPX is an executable packer for several executable formats.

30

model achieved an average AUC of almost 0.99. Other study that fed their models as
in our study, instruction2vec (Lee et al., 2019) work used both opcode and operand
information to classify malware. They used a nine-dimensional feature vector to re-
semble registers and addresses. They split assembly instructions and encoded each
token as unique index numbers. In their setup, an opcode takes one token, a mem-
ory operand took up to four tokens, including base register, index register, scale, and
displacement. This approach represented information about opcode and operands.

On the other hand, transformer-based models, defined with attention mechanism, for
malware detection are increasing in the literature since data collected from malware
is processed in parallel rather than in a sequential format. The work in (M. Li et
al., 2021) used benign and malicious assembly code obtained from the static content
of an executable. Interpretable MAlware Detector (I-MAD) based on transformers
model combined network components called the Galaxy Transformer network that
identified assembly code at sequences of assembly instructions, sets of sequences of
assembly instructions, and sequences of bytes. It also consolidated their proposed
interpretable feed-forward neural network to provide solutions for its detection re-
sults by measuring the impact of each feature on the prediction. They found 97.7%
accuracy. In another work (Rahali & Akhloufi, 2021), researchers classified different
malware categories by focusing on the source code of Android applications through
static analysis. They used the transformers-based model BERT for the classification
model. In conclusion, they obtained 97.61% accuracy with BERT, yet they achieved
94.05 with LSTM.

2.3 Summary

In this section, we presented background information about malware analysis, neural
networks, natural neural network (NLP), and the relevant works on malware detec-
tion. Malware analysis and NLP are the two main parts of this study. Since we focus
on malware detection by applying NLP techniques, it is crucial to understand certain
parts of malware analysis and NLP. In addition, we explained neural networks in de-
tail, particularly how transformer-based model and generative pre-trained transformer
2 (GPT-2) works since they are the specific methods that we used to model assembly
code. We shared the relevant works related to malware detection, including earlier
statistical approaches and machine learning-based and deep learning-based methods.
In studies use popularly nowadays. In the scope of this study, we investigated the as-
sembly language to apply NLP techniques. Specifically, we collected dissemble Win-
dows executable files and obtained assembly code as our dataset. Next, we performed
the transfer learning (pre-trained) model for fine-tuning on the obtained dataset by ap-
plying GPT-2 architecture and named as our custom pre-trained model. In the second
part, we created a binary classification model architecture. Then, we investigated how
the assembly code format affects the success of the binary classification models based
on GPT-2. In order to succeed in the binary classification models, we used custom
pre-trained model to fine-tune the binary classification models. In the next section,
we present the details of our methodology.

31

32

CHAPTER 3

METHODOLOGY

In this chapter, first, we present our approach to malware detection. Then, we intro-
duce datasets and methodology of data collection, besides adapting data format for
our models. Next, we follow with the introduction of the language model for assem-
bly codes. Finally, we introduce the binary classification model fine-tuning with the
knowledge of the language model.

3.1 Approach

Malware detection methods usually begin with the feature extraction processes, which
perform through static, dynamic, or hybrid analysis. While approaches based on dy-
namic analysis and hybrid analysis work by executing Portable Executable (PE) files
to examine their behavior, the static analysis looks at the content of executable files
without requiring their execution. The static approach of PE files may provide a
large set of significant information such as sections, imports, symbols, and used com-
piler strings. In traditional studies, the methods extract signatures stored in signature
databases from this information via human intervention. Security systems compare
these signatures with the signature of an executable file that the system has newly en-
countered and determine whether the executable is malicious or not. The signature-
based malware detection is straightforward and fast, yet it may be ineffective against
sophisticated malware or overlook relations. Moreover, the database of signatures
grows too quickly to keep up with the growth rate of new malware.

The machine learning (ML) algorithms, in particular deep learning (DL) algorithms,
are deployed to eliminate the drawbacks of traditional malware detection. DL is the
end-to-end learning approach, which refers to training a possibly complex learning
system represented by a single model, a deep neural network (DNN). The network
represents the complete target system, automating feature extraction nearly with no
pre-processing. In our study, we extract assembly code using an open-source dis-
assembler objdump to create an opcode sequence as output. We employ the output
as raw data to build a language model assisted with word embedding, just like pro-
cessing natural language. Utilizing this language model, we aim to adopt polarity
detection methods to identify the intention of an executable file using the labels as
malicious and benign. Therefore, we plan to detect whether it is malicious or benign
with our proposed language model. In the next section, we introduce the datasets
used for developing the models.

33

3.2 The Datasets

At the beginning of work, dataset consisted of benign and malicious executables in
Portable Executable (PE)1 format. Then, we obtained new databases from these exe-
cutables collecting from various sources.

3.2.1 Data Collection

We generated native Win32 PE files from Windows operating systems2 and Com-
mando VM v-2.03. We chose Commando VM over the rest of the versions of Win-
dows OS, because it contains executables compiled using different compilers, such as
Cygwin54 and MinGW65. Malicious executables were downloaded from the VirusShare
website6. Malicious samples included various type of malware such as virus, worm
and trojan.

In our study, we used assembly code obtained from disassembled PE files. The PE
is derived from COFF (Common Object File Format)7, and it contains headers and
sections. Headers, such as PE header and optional header, are the rules that repre-
sent windows loader on how the section should be mapped and loaded into memory.
Sections consist of the data or content. Section content is the actual code that is
required. It contains resources, data and code and other executable information. Dif-
ferent sections hold different kind of data, e.g. code section contains executable code
while .rdata contains read-only data like constants and string literals. We used the
executable code section, namely a .text section, to construct our dataset.

We focused on assembly instructions obtained statically from the collected executa-
bles. In the first step, we disassembled each benign and malicious file to get assembly
instructions contained in the code section. Next, the output were saved in plain text
files. The first dataset comprised of these plain text files merged without labeling
and later used for pre-trained model. The second dataset included rows of assembly
instructions, which were labeled as benign or malicious and later used for the binary
classification model training. The overall processing pipeline is presented in Figure
3.1.

3.2.2 Data Formatting

In the data processing pipeline, we created two different datasets for the present study.
The first dataset consisted of unlabeled 10 M (million) assembly instructions, 5 M

1 PE Format: https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/
inside-windows-win32-portable-executable-file-format-in-detail (retrieved on 20 Sep 2020)

2 (Microsoft Windows 8.1 Pro (OS Build 9600), Microsoft Windows 10 Pro 19.09 (OS Build 18363.418)
3 Commando VM: https://github.com/fireeye/commando-vm(retrieved on 2 Apr 2019)
4 Cygwin: https://www.cygwin.com (retrieved on 20 Sep 2021)
5 MinGW: http://mingw-w64.org (retrieved on 20 Sep 2021
6 VirusShare: https://virusshare.com/ (retrieved on 19 Mar 2019)
7 COFF: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format (retrieved on 13 Sep 2020)

34

https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://github.com/fireeye/commando-vm
https://www.cygwin.com
http://mingw-w64.org
https://virusshare.com/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

Figure 3.1: The data processing pipeline

(million) samples from malicious executables and 5 M samples from benign executa-
bles as shown in Table 3.1.

Table 3.1: Characteristics of datasets (M is the abbreviation for million)

Number of instructions for Malicious Benign Total

model creation (teacher) 5 M 5M 10 M

detection (student) 8 M 8 M 16 M

We used the unlabeled first dataset for creating language model. Figure 3.2 is the
sample rows of merged text.

Figure 3.2: Sample data for model training

35

The second dataset, which we used for binary classification model, consisted of two
text files as benign.txt and malicious.txt. The benign.txt consisted of 8 M (million)
benign assembly instructions, and the malicious.txt contained 8 M malicious assem-
bly instructions. In training phase, we revised the assembly instructions of these
files, as shown in Table 3.2, by labeling them as malicious or benign. Moreover, we
fed models with assembly instructions, e.g. Figure 3.2, composed of opcodes and
operands as conducted in a previous study (Lee et al., 2019). The researchers used a
nine-dimensional feature vector to mimic registers and addresses. They split assem-
bly instructions and encoded each token as unique index numbers. In their setup, an
opcode took one token whereas a memory operand took up to four tokens, including
base register, index register, scale and displacement. This approach represented in-
formation about opcode and operands. However, the reduction of the features such as
encoding all addresses caused more similarity between feature vectors than it should
have (X. Li et al., 2021). Hence, we decided to use all opcodes and operands as they
were.

Table 3.2: Sample from the binary classification model dataset (M is the abbreviation

for million)

Id Content Label

0 jecxz 0x402046 benign

1 dec eax benign

2 add BYTE PTR ds:0x26b800,al benign

3 add BYTE PTR [eax+0x1c],al benign

....

16M-4 sub esp,0xdc malicious

16M-3 mov DWORD PTR [ebp-0x18],eax malicious

16M-2 mov eax,DWORD PTR [ebp-0x24] malicious

16M-1 sub ecx,0x907c8453 malicious

3.3 The Model

This section introduces technical specifications relevant to the models in our study,
including the training and testing environment setup, used libraries and modules, and
details of the pre-trained model training pipeline, binary classification model based
on Generative Pre-trained Transformer 2 (GPT-2) training and testing pipeline. Be-
fore giving the details about the technical parts of study, we should briefly explain
why we prefer to use GPT-2 based on Transformers over other neural network archi-
tectures such as recurrent neural networks (RNN), long short-term memory (LSTM).
The neural network architectures, especially LSTM, are preferred for natural lan-

36

guage processing (NLP) tasks since they perform better than other neural network
architectures like RNN and Convolution Neural Network (CNN). RNN has a short
memory to remember the previous situations, which causes performance problems
while processing long sequences. There are also vanishing and exploding gradient
issues in the standard RNN architecture. LSTM, a special RNN architecture, solves
the gradient problems and improves standard RNN by modifying the cell structure.
However, long sequential data is still a critical problem for LSTM.

In contrast, the transformer processes data more efficiently on short texts. It defines a
new state-of-the-art with an attention mechanism that provides global dependencies
between input and output. By using short text instead of long sequential data, the
transformer-based model deals with gradient problems. A text classification with
neural network GPT-2, based on transformers architecture, approaches the malware
detection problem from an NLP perspective. There are other effective transformer-
based architectures such as RoBERTa, BERT, XLnet 8. We preferred GPT-2 for binary
classification and pre-trained models because of BPE tokenizer and decoder-based
transformers architecture.

3.3.1 The Environment Setup

We used Colaboratory by Google9 , a Jupyter notebook-based runtime environment,
to run code entirely on the cloud. There were 1 GPU(s) available. We used the GPU:
Tesla V100-SXM2-16 GB and training time was limited to 24 hours.

Table 3.3: Required Python libraries

Library Version

Pytorch 1.7.0

Transformers 3.5.1

Matplotlib 3.1.3

Sklearn 0.22.2

3.3.2 Imported Libraries and Modules

In this section, we will give a short explanation of the python libraries, the Hugging
Face libraries and their modules that are used in the scope of our study.

import tokenizers

A tokenizer is generally responsible for preparing the inputs for a model. The Hug-
ging Face library contains tokenizers for all the models. Most tokenizers have a full

8 XLnet, Generalized Autoregressive Pre-training for Language Understanding.
9 Google Collab Pro: allows to write and execute Python in browser.

37

python implementation, or a fast implementation relies on the rust library. In modern
language model, the rust-tokenizer offers high-performance tokenizers (Wolf et al.,
2020).

from tokenizers import ByteLevelBPETokenizer

The ByteLevelBPETokenizer model is a full python implementation model and based
on byte-pair encoding algorithms. Output of the model are such as ids, type_ids,
tokens, attention_mask, special_tokens_mask. They are used for various purposes.
E.g., some models’ goal is to classify pairs of sentences using ids, attention_mask.

from transformers import GPT2TokenizerFast

GPT2TokenizerFast model is a fast-implementation model backed by Hugging Face’s
tokenizers library, whose output is only ‘ids’. The fast implementation allows signif-
icant speed-up for doing batched tokenization.

from transformers import GPT2Config

GPT2Config is the configuration class and creates the configuration file of a GPT2Model
according to the specified arguments, defining the GPT-2 model architecture.

from transformers import GPT2LMHeadModel

GPT2LMHeadModel class is utilized a left-to-right language model (auto-regressive
model).

from transformers import LineByLineTextDataset

LineByLineTextDataset, which splits data into chunks, returns as each line is in-
terpreted as a document. It has block_size hyperparameters. When determining
block_size length, we must be careful not to overstep a line length.

from transformers import DataCollatorForLanguageModeling

DataCollatorForLanguageModeling is used for language model. If inputs are not all
of the same lengths, data collators have dynamically padded to the maximum length.
mlm hyperparameter handles masked language model (MLM) when the mlm flag
option is True, and the auto-regressive language model (LM) no mlm flag option is
False.

from transformers import Trainer, TrainingArguments

The Trainer class provides an API for feature-complete training and eval loop, de-
fined in Pytorch10 and optimized for Transformers. The TrainingArguments is the
subset of the arguments which depends on the training loop. We define the trainer
hyperparameters according to database and training purposes.

Import torch

The module is a python package. It provides tensor computation with strong GPU
acceleration and a deep neural network based on a reverse-mode automatic differen-

10 Pytorch : https://pytorch.org (retrieved on: 21.01.2019)

38

https://pytorch.org

tiation used to compute gradients and happens to be used by backpropagation.

from sklearn.metrics import accuracy_score, classification_report

The sklearn.metrics module implements classification reports and it calculates accu-
racy score to measure classification performance.

from Transformers Import set_seed, adamw, get_linear_schedule_with_warmup,
GPT2ForSequenceClassification

set_seed hyperparameter uses for reproducibility. Adamw11 is an optimizer used
for training. Get_linear_schedule_with_warmup create the learning rate scheduler.
GPT2ForSequenceClassification is a transformer-based model for a sequence classi-
fication using the last token to do the classification.

3.3.3 Pre-trained Model

This study builds a pipeline to take the dataset, processes the data for the model and
trains it with the neural network. To construct the pipeline, we implemented it on
Python 3.7.11 by using Pytorch and Hugging Face open-source libraries. In the fol-
lowing subsection, we give details of the pipeline12. As discussed in the datasets sec-
tion, we merge the assembly instructions extracted from PE files named as merged.txt.
We use merged.txt to feed language model based on GPT-2, as in Figure 3.3.

Figure 3.3: Pre-trained model based on GPT-2

Language Training Pipeline

We use run_language_modeling.py13 script to create a custom pre-trained mode. Firstly,
we needed to define a merging rule of language (merges.txt) and a language dictionary
(vocab.json). For creating those files, we used ByteLevelBPETokenizer, a byte-level
encoding tokenizer.

11 Adamw: https://arxiv.org/abs/1711.05101
12 The script will be shared upon request: https://github.com/nazeninsahin/Malware-Detection-GPT. (retrieved

on: 20.08.2021)
13 Script: https://github.com/huggingface/transformers/blob/master/examples/legacy/run_language_modeling.

py (retrieved on: 25.06.2021)

39

https://arxiv.org/abs/1711.05101
https://github.com/nazeninsahin/Malware-Detection-GPT
https://github.com/huggingface/transformers/blob/master/examples/legacy/run_language_modeling.py
https://github.com/huggingface/transformers/blob/master/examples/legacy/run_language_modeling.py

In the first stage, to create those files, ByteLevelBPETokenizer’s parameters are cus-
tomized: vocabulary size (dictionary size) as 50257, minimum frequency of the to-
kens as two, sentences (assembly instructions) and special tokens. Special tokens are
composed of beginning of the sentence (<bos>) token, end of the sentence (<eos>)
token,the unknown token (<unk>),the padding token (<pad>) and the mask token
(<mask>). Models learn information about short-texts via special tokens. For ex-
ample, the model stops generating more words if the architecture runs into a special
end-of-sentence (<eos>) token. Alternatively, the architecture uses (<unk>) token
for representing an out-of-vocabulary token14. After feeding with unlabeled assembly
instructions corpora (merged.txt) to the ByteLevelBPETokenizer, the tokenizer builds
merges.txt and vocab.json.

Tokenization

ByteLevelBPETokenizer firstly splits the training data into words that is pre-tokenization
phase of ByteLevelBPETokenizer, and in GPT-2 architecture, pre-tokenization is de-
fined by space tokenization. After pre-tokenization, a set of unique words are pro-
duced, and the frequency of each unique word contained in the training data is deter-
mined, such as (..,(DWORD, 300),(eax, 572),(ebx,519),..). Next, ByteLevelBPETok-
enizer creates a base vocabulary including all symbols, such as [..., D, W, O, R, D,...],
and in the set of unique words, such as DWORD. Furthermore, it learns merging rules
to build a new symbol, such as OR, from two symbols of the base vocabulary, such
as (O, R). It does until the vocabulary reaches the desired vocabulary size (50257).

For example, the ByteLevelBPETokenizer starts with two symbol characters (O R)
to reach the DWORD opcode word since it calculates that the letters O and R are
frequently together in the language, using the frequencies of the characters or sub-
words. Then, to obtain DWORD tokens’ merge rules, a new token OR are added to
the base vocabulary(vocab.json), and to keep the merge rule, (O R) pair are added to
merges.txt. Next, the architecture determines that W and OR are frequently together;
it adds WOR to the vocab.json and (W OR) pairs to the merges.txt file. It does so
until DWORD opcode is achieved.

Parts of vocab.json;(.,"OR":269,"WOR":270,"WORD":271,"DWORD":272,"int":273,.)

Parts of merges.txt; (..,a x, m o, mo v, O R, W OR, WOR D, D WORD, i n, in t ..)

To illustrate, we tokenize ("sub eax,DWORD PTR [eax]") sentence with ByteLevel-
BPETokenizer. The output is as follows:

tokens=(’sub’, ’Ġeax’, ’,’, ’DWORD’, ’ĠPTR’, ’Ġ[’, ’eax’, ’]’)15 and input ids= [352,
277, 16, 272, 264, 265, 280, 65]

Consequently, the byte level tokenizer creates vocab.json consisting of all symbols
obtained from the set of unique words and merges.txt consisting of a list of the most
frequent tokens ranked by frequency. Thus, we can follow run_language_modeling.py
scripts for generating the pre-trained model. Here, we defined a tokenizer of our pre-
trained model with vocab.json and merges.txt.

14 Special tokens: https://huggingface.co/transformers/main_classes/tokenizer.html(retrieved on: 25.06.2021)
15 The model knows spaces between tokens using Ġ

40

https://huggingface.co/transformers/main_classes/tokenizer.html

Utilized Gpt-2 Models

For the tokenization of the pre-trained model, we used GPT2TokenizerFast because
of its performance. The Hugging Face library has two types of tokenizers that are
GPT2TokenizerFast and GPT2Tokenizer. Those tokenizers are also used for deter-
mining maximum sequence lengths. We determined the maximum sequence length
of assembly instructions as 45 tokens using GPT2TokenizerFast. In addition, we set
vocab.json and merges.txt to the pre-trained model’s tokenizer.

Next, we defined a configuration file that had hyperparameters of the pre-trained
model of GPT-2. They were vocabulary size 50257, number of hidden layers 12, di-
mensionality of the embeddings and hidden states 768, number of attention heads for
each attention layer 12, activation function gelu instead of relu. The dropout prob-
ability for all fully connected layers, the dropout ratio for the embeddings, and the
dropout ratio for the attention was 0.1. In the layer normalization layers, the epsilon
was 1e-05. All hyperparameters of model was default values of GPT-2, which was
117 M hyperparameters. (M is the abbreviation for million). While we fine-tuned the
binary classification model, we used this same configuration file.

After defining the configuration file with the default configuration of GPT-2, we ini-
tialized the model with GPT2LMHeadModel16. Finally, as in Figure 3.3, we obtained
an auto-regressive model based on a left-to-right language model for the trainer. In
addition, we set the mask language model (mlm) as false (unmasked model) because
our aim was to predict the next word on given the previous words in the input sen-
tence. Hence, the pytorch_model.bin file including model’s weights and config.json
file including configuration hyperparameters were created to be used for improving
fine-tune binary classification model.

Parameters for Language Model

We determined that the maximum length of sentences was 128 tokens as sentence’s
maximum length was 45. 128 was the smallest value of a maximum length in GPT-2
LM architecture. Moreover, we selected that the per_device_train_batch_size param-
eter as 32, which depended on the batch size per GPU for training. On Google collab
pro GPU, we trained with 32 and 64. In addition, 32 gave less loss value than 64.

3.3.4 Binary Classification Model

We constructed GPT-2 based-model for the classification of benign and malicious
sentences, namely assembly instructions, using Hugging Face transformers. In ad-
dition, to improve the classification phase, we used our custom pre-trained model’s
knowledge.

Binary Classification Model Train and Test Pipeline

Following a similar approach we adopted in pre-trained model, for creating binary
classification model, we build a pipeline to take the dataset, prepare the data for

16 GPT2LMHeadModel: https://huggingface.co/transformers/model_doc/gpt2.html (retrieved on: 25.06.2021)

41

https://huggingface.co/transformers/model_doc/gpt2.html

Figure 3.4: Binary classification model based on GPT-2

modeling, and train and test the neural network. To construct the pipeline, we imple-
mented it on Python 3.7.11 by using Pytorch and Hugging Face open-source libraries.
In the following subsection, we give the details of the pipeline.

As discussed in the datasets section, we extracted the assembly instructions from
benign and malicious PE files named as benign.txt and malicious.txt. We used be-
nign.txt and malicious.txt to feed binary classification model based on GPT-2 as in
Figure 3.4. We labeled the sentences in benign.txt and malicious.txt as malicious
or benign at the next stage, i.e., we labeled malicious sentence lines with 0 and be-
nign sentence lines with 1. Thus, we returned texts with their associated labels. We
illustrated a row from the database as follows:

dataset.texts[0]=[sub eax,DWORD PTR [eax]] dataset.labels[0]=0

To construct a binary classification model, we loaded three essential parts of the GPT-
2 transformer: model configuration file, model tokenizer and an actual model. We
specialized these parts for malware detection.

We set the label number field as two with the purpose of classifying files as benign
or malicious. Our custom pre-trained model’s config.json file is defined as the con-
figuration file of the binary classification model. We also defined vocab.json and
merges.txt files as the binary classification model’s tokenizer. After creating the to-
kenizer, we introduced the special tokens of GPT-2 to the tokenizer. Since the last
token of the input sequence contained all the information required in the prediction
in GPT-2, we set the tokenizer to pad the left side of sentences, and its pad token was
|<endoftext>|. Hence, we used that information for the classification task. Then, in
the tokenizer step, since training times depended on the length of sentences, we first
tokenized each sentence of the benign and malicious and added |<endoftext>|. While
the length of the sentences was shorter than the maximum sequence length of 45, the
tokenizer padded sequences with eos and encoded them. Thus, as the model did not
have to truncate the encoded sequence during the training, it sped up.

One of the dataset row; label: 0, text: [sub eax,DWORD PTR [eax]]

One of the encoded row; Its Label Tensor -> 0 Its Attention Mask Tensor -> [0, 0, 0,

42

0, 0,
1, 1, 1, 1, 1, 1, 1, 1]

Its input ids Tensor -> [50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255,
50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255,
50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255, 50255,
50255, 50255, 50255, 50255, 50255, 50255, 50255, 337, 278, 16, 272, 264, 265,
284, 65]

Tensor is just a generic n-dimensional array to be used for numeric computation.
Attention mask argument dictates to the model which tokens should be included to
and which should not. Input ids are numerical representations of token sequence that
is used as input by the model (Wolf et al., 2020).

For example, due to the Hugging Face library, GPT-2 model obtained weight param-
eters from layer seven by these input ids as follows;

Figure 3.5: In layer 7, all relation of sentence’s tokens with all heads 17

Figure 3.6: In layer-7, head-1, all relation of sentence’s tokens

17Related link: https://huggingface.co/exbert/?model=gpt2

43

Figure 3.7: In layer-7, head-1, all probabilities of "TR" calculate with tokens on the

right and attend to tokens on the right

On the left-hand side of Figure 3.5, we see all relationships of tokens on 12-head
(multi-head) columns employing a self-attention mechanism. In all layers, tokens on
the left multi-heads attend to tokens on the right multi-heads, as in layer-7. Figure 3.6
shows the relationship of tokens on the first left-head-attention of the architecture and
attend to the first right-head-attention of the architecture. In Figure 3.7, the architec-
ture calculates the relation of "TR" with other tokens on the first left-head-attention
and accompanies results on the first right-head-attention. Therefore, the architecture
also calculates the probabilities of previous tokens of "TR" and probabilities of next
tokens of "TR", such as the probability of "," next token of "TR" is 0.12 and proba-
bility of "_" next token of "TR" is 0.07.

Furthermore, we constructed binary classification model by adding a classification
layer to the GPT2Model, known as GPT2ForSequenceClassification, as in Figure
3.8. The new model’s configuration file was the config.json, and the model initialized
with the pytorch_model.bin loading weights associated with the pre-trained model.
Next, we trained the model with word embedding and positional embedding obtained
from the tokenizer. The classification layer was a densely connected layer with a
single output node. To calculate weights during the training, every deep learning
model needs a loss function and an optimizer. Since GPT2ForSequenceClassification
focuses on classifying samples into two categories and model’s output is a probability
(a single-unit layer with a sigmoid activation), GPT2ForSequenceClassification is
used as the BinaryCrossentropy18 loss function. Lastly, we configured the model to
use an optimizer. We defined optimizer with adamw implementing adam algorithm
with weight decay fix in Pytorch. Weight decay is used to prevent overfitting, which
keeps the weights as small as possible and prevents the weights from growing out of
control. Thus, the network avoids exploding gradients. Before the training phase, we
created the learning rate scheduler (Mihaila, 2020).

Splitting data into training, validation and testing sets

18 BinaryCrossEntropy: BinaryCrossEntropy is used to compute the cross-entropy loss between true labels and
predicted labels

44

Figure 3.8: Sample layers of GPT2ForSequenceClassification model

In this step, we separated the dataset into three parts named training, validation, and
testing to use during the training and testing process. When we split data into three
parts, we preferred the accepted common opinion: separating 60% of the dataset for
training, 20% of the dataset for validation, and 20% of the dataset for testing. Up
to that point, we performed operations for taking the data from text files into python
data structures and preparing the data for the training and testing phase.

Parameters for Training and Testing Processes

In order to find the best values for the parameters’ learning rate for adamw and epoch
in the language model task, we tried several different values. So, we trained two,
three, and four epochs. In three epochs, the model found better accuracy and lower
loss value than in two epochs. Also, accuracy and loss results were almost the same
for three epochs and four epochs using learning rate value 2e-5, as the results shown
in Table 3.4.

Hence, we decided epochs number is three because of reducing the training time.
While we examined learning rate values, we decided learning rate value was 2e-5
(e=2.71828). As we selected the learning rate to 3e-5 or 5e-5, network accuracy
decreased, and loss results increased as the results shown in Table 3.5.

45

Table 3.4: The effects of epochs on validation losses.

Epochs Loss Values Accuracy %

1. 0.40393 0.83902

2. 0.39112 0.84732

3. 0.37708 0.85402

4. 0.37691 0.85407

Table 3.5: The effects of Learning rate on validation losses

Learning Rate Loss Values Accuracy %

5e-5 0.42397 0.79802

3e-5 0.39819 0.82732

2e-5 0.37708 0.85402

After the experiments, the binary classification model achieved 85.4% accuracy with
a validation loss of 0.37708.

3.4 Summary

In this section, we presented the technical specifications of our methodology, partic-
ularly our approach, the dataset collection process, the dataset format, the datasets,
the neural network training environment, required libraries and modules, the model
pipeline, and the parameters used in the model process. Concisely, we built the pre-
trained model on assembly code. Then, we used our pre-trained model for the fine-
tuning of the binary classification model to achieve better detection. We used NLP
language model techniques to classify assembly codes from malicious and benign
files. To create language models on assembly codes, we applied GPT-2 based on
transformers. We used modules from Pytorch and Hugging Face libraries on the
Python programming language and modules from the torch, Transformers, Sklearn,
and Matplotlib libraries to implement our approach. Lastly, we presented the values
tried on the parameters required in the training and testing process.

46

CHAPTER 4

RESULTS

In this chapter, we present the results of the training and detection performances the
binary classification model fine-tuning with our pre-trained model and Generative
Pre-trained Transformer 2’s (GPT-2’s) pre-trained model.

4.1 Evaluation Criteria

After creating model, we investigated how successful model was. Therefore, we
evaluated the models’ performances based on the F1 score and Accuracy, following
the common practice in the previous work. F1 score and Accuracy, computed on
confusion matrices are among the most popular chosen metrics in binary classification
tasks. F1 provides a single score that balances both the concerns of Precision and
Recall in one number (Hand et al., 2021). Precision and Recall values are calculated
according to Table 4.1. The number of True Positive circumstances and the number
of False Negative circumstances are TP, FN respectively. FP is the number of False
Positive circumstances, and TN is the number of True Negative circumstances.

Table 4.1: The Confusion matrix for reference

Actual Label

Predicted

Label

True Positive(TP) False Negative(FN) Recall

False Positive(FP) True Negative(TN)

Precision F1

Precision measures the ratio of accurately recognized positive cases against all posi-
tive predicted cases. It is formulated as :

Precision =
TP

TP + FP

Recall measures the ratio of accurately recognized positive cases from all actual pos-
itive cases. It is formulated as :

47

Recall =
TP

TP + FN

F1 score is the harmonic mean of Precision and Recall. Hence, this score takes both
false positives and false negatives into account. F1 is usually more beneficial if you
have an uneven class distribution, whereas Accuracy works properly if false negatives
and false positives have similar costs.

F1 =
(2 ∗ Precision ∗Recall)
Precision+Recall

Accuracy is the ratio of the number of accurately classified samples to the overall
number of samples.

ACC =
(TP + TN)

TP + TN + FP + FN

4.1 Evaluation of the Pre-trained Model

We conducted a total of 11 experiments for the binary classification model. Ini-
tially, we experimented with three values for minimum frequency and three values
for epochs for creating pre-trained models. Therefore, we obtained six different pre-
trained models. Next, we fine-tuned the binary classification models with these pre-
trained models. In addition, we experimented with four values for epochs, three val-
ues for learning rate in these binary classification models. The number of correctly
and incorrectly classified samples obtained is displayed in a confusion matrix (Figure
4.1) for the binary classification model with the best detection performance.

In the confusion matrix, the number of true negatives TN refers to accurately rec-
ognized instructions as benign, whereas TP’s number of true positives refers to accu-
rately recognized instructions as malicious. The number of false positives FP displays
benign instructions recognized as malicious. In contrast, the number of false nega-
tives FN displays malicious instructions recognized as benign.

All scores are in Table 4.2. Precision is as 82.6%, and Recall is as 89.7%. F1 rate is
as 86% and Accuracy rate is as 85.4%.

4.2 Evaluation of GPT-2’s Pre-trained Model

We downloaded the ’gpt2’ pre-trained model from the Hugging Face library for fine-
tuning the binary classification model. We used the same hyperparameters given the
best results on our pre-trained model. Thus, we conducted an experiment (Figure
4.2).

48

Figure 4.1: Confusion matrix of our pre-trained model where TN is the number of true

negatives, FN is the number of false negatives, FP is the number of false positives,

and TP is the number of true positives

Figure 4.2: Training with GPT-2 pre-trained model

49

Table 4.2: F1 Score Calculation of Binary Classification model fine-tuned with our

pretrained model

Performance

Metrics
Formules Results

Precision TP
TP+FP

1435738
1435738+301072

= 0.826

Recall TP
TP+FN

1435738
1435738+164690

= 0.897

F1 2∗Precision∗Recall
Precision+Recall

1.4818
1.723

= 0.86

Precision is as 82.7%, and Recall is as 70.8%. F1 rate is as 76.2% and Accuracy rate
is as 78.3%.

4.3 Comparison of the models

The most significant information that we can infer from Table 4.3 is that the specially
pre-trained model outperforms GPT-2’s pre-trained model. The main difference be-
tween two proposed model is the pre-trained models. The first binary classification
model is fine-tuned with our pre-trained model. The second one is fine-tuned with

Table 4.3: Comparison of models based on different pretrained models

Model Precision (%) Recall (%) F1 (%) ACC (%)

Our custom pre-trained 82.6 89.7 86 85.4

gpt2 pre-trained 82.7 70.8 76.2 78.3

50

gpt2, which is a GPT-2’s pre-trained model. Both of them are fed with assembly
instructions as sentences and both have the same hyperparameters. The first model
achieves an 86% F1 score to include meaningful information and patterns. Neverthe-
less, the second architecture also achieves an 76.2% F1 score. In summary, the results
of the final experiments on the two models suggest that fine-tuning with assembly
language parameters(our pre-trained model) seems more efficient than GPT-2’s pre-
trained model on detecting malware. Despite the insufficient GPU memory, binary
classification looks to be successful with 86% F1 score, as well.

4.4 Discussion

However, these techniques face two challenges. The first challenge is to model the full
semantics behind malware or benign software assembly code. The second is to pro-
vide explainable results while keeping efficient detection performance. Models have
various approaches identifying different feature representations and different kinds
of classification algorithms for these challenges. The most studied and used classi-
fication algorithms are listed as random forest (RF), support vector machine (SVM),
and decision tree (DT) algorithms. Those algorithms are designed as shallow learn-
ing architectures that learn from pre-defined features. Though they are successful in
malware detection, shallow learning architectures are still insufficient in malware de-
tection since feature engineering, feature learning, and feature representation require
data by humans. Therefore, we need high-level machine learning (ML) architectures
such as deep learning (DL) to utterly avoid the feature engineering phase. The main
strength of deep learning architectures is understanding the meaning of data regard-
less of its large amounts. Furthermore, it can automatically fine-tune the derived
meaning with new data without expert knowledge, automatically providing detection
tasks.

In academic studies, DL architectures are currently researched to identify malicious
and benign software, and classified malicious files according to their corresponding
families. Researchers propose various architectures and methods, such as convo-
lutional neural networks (CNNs), recurrent neural networks (RNNs), and attention
mechanisms. CNNs, the first architecture of DL, are popularly used in advance mal-
ware detection methods. In most of the CNN methods proposed in the literature,
such as (Krčál et al., 2018), and (Kumar et al., 2018) opcode sequences or assembly
instructions of malicious and benign software are converted into images. Next, the
neural network is trained on those images. Recurrent neural networks (RNNs) work
on sequential data to extract patterns that are serving the data. It delivers better on
tasks including long sequential data such as speech recognition and natural language
classification. For instance, (Jha et al., 2020) shows that the RNN model is effectively
detecting malware with opcodes sequence. Another long sequential data processor is
long short-term memory (LSTM), a specialized RNN architecture. The studies in
the literature that employs LSTM such as (Lu, 2019) for malware detection purposes
focus on opcode sequences instead of the whole assembly code. The transformer pro-
cesses data significantly on short-text and defines a new state-of-the-art with an at-
tention mechanism that provides global dependencies between input and output. The
work in (M. Li et al., 2021) used benign and malicious assembly code obtained from

51

the static content of an executable. Their model, Interpretable MAlware Detector
(I-MAD) based on transformers, combined a network component called the Galaxy
Transformer network that recognized assembly code at the basic block(a sequence
of assembly instructions), assembly function (a set of basic blocks), and executable
levels (a sequence of bytes). Its feed-forward neural network provided interpretations
for its detection results by quantifying the impact of each feature for the prediction.
In another work (Rahali & Akhloufi, 2021) employed a transformer-based model
"Bidirectional Encoder Representations from Transformers (BERT)" for malware de-
tection. Researchers focused on the source code of Android applications with static
analysis to classify different malware categories. BERT’s pre-trained models use a
compound of masked language model objective and next sentence prediction on a
large corpus, including the Toronto Book Corpus and Wikipedia. However, we used
decoder transformers "Generative Pre-trained Transformer 2 (GPT-2)" instead of en-
coder transformers BERT because of its success in predicting the next word given the
previous words. Our decoder-based, context-aware networks use the attention mech-
anism layers to retain contextual characteristics from a natural language sentences
perspective. We quantified assembly instructions as sentences. We constructed our
pre-trained model based on GPT-2 architecture to learn syntax and semantics repre-
sentations of opcodes and operands in assembly instructions. We also built a binary
classification model based on GPT-2. This model was fine-tuned with our pre-trained
model to detect malware,namely our model. We then built another binary classifica-
tion model based on GPT-2 and fine-tuning it with GPT-2’s pre-trained model gpt2,
namely gpt2. Since BERT is commonly used in literature, we next created a binary
classification model based on BERT and fine-tuned it with the pre-trained model bert-
base-uncase, namely bert-base-uncase. Finally, we compared these three models. As
shown in Table 4.4, the binary classification model based on GPT-2 that was fine-
tuned with our pre-trained model gave better results than others.

Table 4.4: Evaluation of our proposed methods with Transformers-based model

Pre-trained Models Data Format ACC (%)

bert-base-uncase Assembly Instructions 77.6

gpt2 Assembly Instructions 78.3

our model Assembly Instructions 85.4

4.5 Open Problems

While studying the recent articles and working on our study, we have noticed that
some points can be considered as challenges in the malware detection domain. The
first challenge is the datasets used in the research. Since the studies related to the
malware domain do not have common or benchmark datasets, each research tried
to create their dataset as described in Section 3.2. We got robust insights using our

52

dataset, which included multiple data sets, but there will always be a limit to what
we can infer from an experimental study. For instance, multiple data sets may not be
independent and may have similar biases. There is also the quality issue, which is a
particular issue in deep learning datasets. The need for the quantity of data limits the
amount of quality checking that can be done. The issues that need special attention
are briefly summarized in the recently published article (Lones, 2021) on this aspect.
Our experiments tried to ensure that our models produced healthy and comparable
results by changing the ratios and places of the training set, test set, and validation
sets. Firstly, while developing the model, we used the same seed value as the training
set, test set, and validation set to separate the dataset. Thus, we ensured that we
got the same environment for reproducibility1 with set_seed(123)2. After our model
matured, we used different seed values to obtain different dataset samples as training
and validation sets.

We experimented with four different values (42, 82, 123, 176) for seed value and
inspected the change in the accuracy of the binary classification model as in table 4.5.
We can see that results are around 85.4% accuracy. Moreover, 0.35% difference in
accuracy could be entirely explained by just a seed difference.

Table 4.5: Seed value effect on performance

Experiments seed values F1(%) Acc(%)

1. 42 0,860028109 85.5

2. 82 0,860001704 85.1

3. 123 0,860011608 85.4

4. 176 0,859001307 84.7

Mean F1:0.859762432 Mean:Acc:85,175

Another challenges, the authors describe multiple ways to extract features and apply
multiple machine learning models in the literature. For this reason, we described and
used transformers-based models. We adopted the Deep Neural network model, i.e.,
GPT-2 models fine-tuning with our custom pretrained model and gpt-2 GPT-2’s pre-
trained model, and BERT model fine-tuning with bert-base-uncase. In conclusion, we
obtained remarkable results with an 86% F1 score and 85.4% accuracy in literature.

1 https://en.wikipedia.org/wiki/Reproducibility
2 https://huggingface.co/transformers/main_classes/trainer.html

53

https://en.wikipedia.org/wiki/Reproducibility
https://huggingface.co/transformers/main_classes/trainer.html

54

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Threats from malicious software have grown day by day in terms of complexity and
number. Hence, researchers have developed automated methods to detect and clas-
sify malware in order to defend information systems instead of manually analyzing
them in a time-consuming effort. In early times, machine learning-based malware
analysis methods solved this issue using statistical methods and machine learning
(ML) methods. However, those algorithms do not afford fully automated methods.
In contrast, deep learning (DL) neural networks mimic the learning process better
and provide smarter and faster tools. Although deep neural networks have mainly
resulted in notable performance gains for learning, a careful comparison between
different approaches may be challenging. In general, since all approaches focus on
long-term dependency,time and memory size become critical for long-term depen-
dency. Transformers-based models have reasonable solutions for these challenges.
They especially achieve state-of-the-art results in natural language understanding and
produce efficient solutions. Their successful applications are mainly processing short-
texts on multiple head architectures, each with a single self-attention mechanism. The
multi-head attentions provide global dependencies between input and output with the
position-wise feed-forward networks layers. Moreover, short-text also finds a much
better solution for vanishing/exploding gradient problems. In addition, transformer-
based architectures’ (e.g. XLnet, GPT-2, GPT-3) success results from mainly being
pre-trained models.

In this study, we proposed a generative approach to classify malicious and benign
software. We worked on assembly language since the assembly code provides ac-
curate information for obtaining the critical coding patterns. We implemented our
strategy on static analysis data and focused on opcodes and operands instead of just
opcodes due to the attention mechanism. First, we modeled to grab the full semantics
behind the assembly code with a pre-trained model based on GPT-2. Next, we pro-
vided explainable results while keeping effective detection performance with labeled
code. We modeled binary classification with the transformers-based model GPT-2
with malicious and benign assembly codes. Furthermore, we fine-tuned the binary
classification model with the pre-trained model to improve the detection performance.
We selected optimum parameter values for our neural network architectures based on
our experimental results. The resulting accuracy rate (85.4%) shows that it is possi-
ble to classify malicious and benign assembly codes by GPT-2 with the pre-trained
model.

55

We experimented with that binary classification model fine-tuned with our pre-trained
model based on GPT-2 and GPT-2 architecture’s pre-trained model gpt2. As a result
of this approach, we achieved more successful results with our pre-trained model. In
addition, in 3 epochs, we trained our binary classification model with 8 million lines
and model accuracy was 82.1%. While we trained it with 12 million lines, it was
83.9%. When we fed it with 16 million lines, the success of the prediction made by
our binary classification model on data has reached 85.4%. Therefore, we believe that
our models may give better results with more powerful memory and GPU.

5.2 Limitations and Future Work

Transformer-based architectures exhaust the computational and memory resources
too much since transformer-based architectures yield the best result when they can
replicate the data across GPUs. The significant limitation of the study is not having
adequate memory resources.

Some aspects of this study can be further improved and optimized in the future. Fu-
ture research should train in transformers-based architecture we choose and different
transformer-based architectures, such as GPT-3 and transformer XL, with more effi-
cient memory resources for advancing detection. Future research should address im-
provements in the data processing pipeline, developing an API with the disassembler
of x86 Windows executable files to automatically disassemble when encountering a
new malware. The models update their parameters on multiple GPUs in parallel with
the API. Thus, there is no need for human intervention. Future research should also
address moving our current detection process from the code level to the file level, and
should also apply our proposed method for classifying different types of malware,
such as worms, trojan horses, at the OS level both for desktop and mobile operating
systems. We also may focus on specific malware like spyware and crypto miners to
obtain better detection results. The neural network architecture, GPT-2, allows us to
create black-box models because of the incomprehensible internal logic of the hid-
den layers. So, as in every other study using deep neural networks, having a black
box at the model level limits this study. While we can always search for better hy-
perparameters, there is no common method to do this. In this study, while we were
designating parameters required for the language model, we tried several values and
picked the best ones that showed the best performance on our data. However, in deep
learning research, different datasets can result in different outcomes between similar
studies through these assumptions. Hence, opaque hyperparameters are limited to this
study. As a result, the nature of deep neural network architectures poses a limitation.
Moreover, in deep learning, the specified parameters’ studies might be limited to the
dataset used in the corresponding research. In this respect, future research should fo-
cus on explainable deep learning. A future success delivered in this subject may also
allow us to eliminate such architectural and dataset-related limitations.

56

REFERENCES

Acarturk, C., Sirlanci, M., Balikcioglu, P. G., Demirci, D., Sahin, N., & Kucuk, O. A.
(2021). Malicious code detection: Run trace output analysis by lstm. IEEE
Access, 1–1. https://doi.org/10.1109/access.2021.3049200

Akhtar, Z., Micheloni, C., & Foresti, G. L. (2015). Biometric liveness detection: Chal-
lenges and research opportunities. IEEE Security & Privacy, 13(5), 63–72.
https://doi.org/10.1109/msp.2015.116

Al-Rfou, R., Choe, D., Constant, N., Guo, M., & Jones, L. (2018). Character-level
language modeling with deeper self-attention. arXiv:1808.04444 [cs, stat].
https://arxiv.org/abs/1808.04444

Avgerinos, T., Cha, S. K., Hao, B. L. T., & Brumley, D. (2011). Aeg: Automatic
exploit generation. kilthub.cmu.edu. https://doi.org/10.1184/R1/6468296.v1

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. https://arxiv.org/abs/1409.0473

Bayer, U., Comparetti, P., Hlauschek, C., Kruegel, C., & Kirda, E. (2009). Scalable,
behavior-based malware clustering. https://sites.cs.ucsb.edu/~chris/research/
doc/ndss09_cluster.pdf

Becker, C., Hahn, N., He, B., Jabbar, H., Plesiak, M., Szabo, V., To, X.-Y., Yang,
R., & Wagner, J. (2020). Modern approaches in natural language processing.
https://compstat-lmu.github.io/seminar_nlp_ss20/transfer-learning-for-nlp-
i.html

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., Ca, J., Kandola, J., Hofmann, T.,
Poggio, T., & Shawe-Taylor, J. (2003). A neural probabilistic language model.
Journal of Machine Learning Research, 3, 1137–1155. https://www.jmlr.org/
papers/volume3/bengio03a/bengio03a.pdf

Bilar, D. (2007). Opcodes as predictor for malware. International Journal of Elec-
tronic Security and Digital Forensics, 1(2), 156. https : / /doi .org /10 .1504 /
ijesdf.2007.016865

Brownlee, J. (2020). What is argmax in machine learning? https://machinelearningmastery.
com/

Brumley, D., Poosankam, P., Song, D., & Zheng, J. (2008). Automatic patch-based
exploit generation is possible: Techniques and implications. https://doi.org/
10.1109/SP.2008.17

Burmester, S. (2020). The rising cost of a data breach in 2020. https://www.ibm.com/
blogs/ibm-anz/the-rising-cost-of-a-data-breach-in-2020/

57

https://doi.org/10.1109/access.2021.3049200
https://doi.org/10.1109/msp.2015.116
https://arxiv.org/abs/1808.04444
https://doi.org/10.1184/R1/6468296.v1
https://arxiv.org/abs/1409.0473
https://sites.cs.ucsb.edu/~chris/research/doc/ndss09_cluster.pdf
https://sites.cs.ucsb.edu/~chris/research/doc/ndss09_cluster.pdf
https://compstat-lmu.github.io/seminar_nlp_ss20/transfer-learning-for-nlp-i.html
https://compstat-lmu.github.io/seminar_nlp_ss20/transfer-learning-for-nlp-i.html
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://doi.org/10.1504/ijesdf.2007.016865
https://doi.org/10.1504/ijesdf.2007.016865
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
https://www.ibm.com/blogs/ibm-anz/the-rising-cost-of-a-data-breach-in-2020/
https://www.ibm.com/blogs/ibm-anz/the-rising-cost-of-a-data-breach-in-2020/

Contributors, W. (2018). Artificial neural network. https: / /en.wikipedia .org/wiki /
Artificial_neural_network

Contributors, W. (2019). Linguistics. https://en.wikipedia.org/wiki/Linguistics

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated
dynamic malware-analysis techniques and tools. ACM Computing Surveys,
44(2), 1–42. https://doi.org/10.1145/2089125.2089126

Eisenstein, J. (2019). Introduction to natural language processing. The Mit Press.

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A
survey. Journal of Information Security, 05(02), 56–64. https://doi.org/10.
4236/jis.2014.52006

Gibert, D., Mateu, C., & Planes, J. (2020). The rise of machine learning for detection
and classification of malware: Research developments, trends and challenges.
Journal of Network and Computer Applications, 153, 102526. https://doi.org/
10.1016/j.jnca.2019.102526

Goodfellow, I., Bengio, Y., & Courville, A. (2016). "sequence modeling: Recurrent
and recursive nets" in deep learning. The Mit Press.

Hand, D. J., Christen, P., & Kirielle, N. (2021). F*: An interpretable transformation
of the f-measure. Machine Learning, 110, 451–456. https://doi.org/10.1007/
s10994-021-05964-1

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual
networks. arXiv:1603.05027 [cs]. https://arxiv.org/abs/1603.05027

Hendrycks, D., & Gimpel, K. (2020). Gaussian error linear units (gelus). arXiv:1606.08415
[cs], 4. https://arxiv.org/abs/1606.08415

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Horan, C. (2021). Unmasking bert: The key to transformer model performance. https:
//neptune.ai/blog/

Jha, S., Prashar, D., Long, H. V., & Taniar, D. (2020). Recurrent neural network for
detecting malware. Computers & Security, 102037. https://doi.org/10.1016/j.
cose.2020.102037

Khan, R. U., Zhang, X., & Kumar, R. (2018). Analysis of resnet and googlenet mod-
els for malware detection. Journal of Computer Virology and Hacking Tech-
niques, 15(1), 29–37. https://doi.org/10.1007/s11416-018-0324-z

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv.org.
https://arxiv.org/abs/1412.6980

Krčál, M., Ondřejšvec, Jašek, O., & Avast, M. (2018). Deep convolutional malware
classifiers can learn from raw executables and labels only. https://openreview.
net/pdf?id=HkHrmM1PM

58

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Linguistics
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1007/s10994-021-05964-1
https://doi.org/10.1007/s10994-021-05964-1
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1606.08415
https://doi.org/10.1162/neco.1997.9.8.1735
https://neptune.ai/blog/
https://neptune.ai/blog/
https://doi.org/10.1016/j.cose.2020.102037
https://doi.org/10.1016/j.cose.2020.102037
https://doi.org/10.1007/s11416-018-0324-z
https://arxiv.org/abs/1412.6980
https://openreview.net/pdf?id=HkHrmM1PM
https://openreview.net/pdf?id=HkHrmM1PM

Krishna, A., Santra, B., Bandaru, S. P., Sahu, G., Sharma, V. D., Satuluri, P., & Goyal,
P. (2018). Free as in free word order: An energy based model for word seg-
mentation and morphological tagging in sanskrit. arXiv:1809.01446 [cs], 2.
https://arxiv.org/abs/1809.01446

Kumar, R., Xiaosong, Z., Khan, R. U., Ahad, I., & Kumar, J. (2018). Malicious code
detection based on image processing using deep learning. Proceedings of the
2018 International Conference on Computing and Artificial Intelligence - IC-
CAI 2018. https://doi.org/10.1145/3194452.3194459

Lam, W. (2021). Seem 5680. https://www1.se.cuhk.edu.hk/~seem5680/

Lee, Y., Kwon, H., Choi, S.-H., Lim, S.-H., Baek, S. H., & Park, K.-W. (2019).
Instruction2vec: Efficient preprocessor of assembly code to detect software
weakness with cnn. Applied Sciences, 9(19), 4086. https://doi.org/10.3390/
app9194086

Lemos, R. (2021). Ransomware, phishing will remain primary risks in 2021. https:
/ / www. darkreading . com / threat - intelligence / ransomware - phishing - will -
remain-primary-risks-in-2021/d/d-id/1340256

Li, M., Fung, B. C., Charland, P., & Ding, S. H. (2021). I-mad: Interpretable malware
detector using galaxy transformer. Computers & Security, 108, 102371. https:
//doi.org/10.1016/j.cose.2021.102371

Li, X., Yu, Q., & Yin, H. (2021). Palmtree: Learning an assembly language model
for instruction embedding. arXiv:2103.03809 [cs]. https://doi.org/10.1145/
3460120.3484587

Lin, Y.-D., Lai, Y.-C., Lu, C.-N., Hsu, P.-K., & Lee, C.-Y. (2015). Three phase be-
havior based detection and classification of known and unknown malware.
Security and Communication Networks, 8(11), 2004–2015. https://doi.org/10.
1002/sec.1148

Liu, F., Ren, X., Zhang, Z., Sun, X., & Zou, Y. (2021). Rethinking skip connection
with layer normalization in transformers and resnets. https://arxiv.org/pdf/
2105.07205.pdf

Lones, M. (2021). How to avoid machine learning pitfalls: A guide for academic
researchers. arXiv:2108.02497 [cs]. https://arxiv.org/abs/2108.02497

Lu, R. (2019). Malware detection with lstm using opcode language. arXiv:1906.04593
[cs]. https://arxiv.org/abs/1906.04593

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. https://arxiv.org/abs/1508.04025

Mihaila, G. (2020). Gpt2 finetune classification george mihaila. https : / / gmihaila .
github.io/tutorial_notebooks/gpt2_finetune_classification/

59

https://arxiv.org/abs/1809.01446
https://doi.org/10.1145/3194452.3194459
https://www1.se.cuhk.edu.hk/~seem5680/
https://doi.org/10.3390/app9194086
https://doi.org/10.3390/app9194086
https://www.darkreading.com/threat-intelligence/ransomware-phishing-will-remain-primary-risks-in-2021/d/d-id/1340256
https://www.darkreading.com/threat-intelligence/ransomware-phishing-will-remain-primary-risks-in-2021/d/d-id/1340256
https://www.darkreading.com/threat-intelligence/ransomware-phishing-will-remain-primary-risks-in-2021/d/d-id/1340256
https://doi.org/10.1016/j.cose.2021.102371
https://doi.org/10.1016/j.cose.2021.102371
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1002/sec.1148
https://doi.org/10.1002/sec.1148
https://arxiv.org/pdf/2105.07205.pdf
https://arxiv.org/pdf/2105.07205.pdf
https://arxiv.org/abs/2108.02497
https://arxiv.org/abs/1906.04593
https://arxiv.org/abs/1508.04025
https://gmihaila.github.io/tutorial_notebooks/gpt2_finetune_classification/
https://gmihaila.github.io/tutorial_notebooks/gpt2_finetune_classification/

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. https://arxiv.org/pdf/1310.
4546.pdf

M.K., H. (2019). Backpropagation step by step. https://hmkcode.com/

Moskovitch, R., Stopel, D., Feher, C., Nissim, N., & Elovici, Y. (2008). Unknown
malcode detection via text categorization and the imbalance problem. IEEE
Xplore. https://doi.org/10.1109/ISI.2008.4565046

Naseer, M., Khan, S., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2021).
Transformers in vision: A survey. arXiv:2101.01169 [cs]. https://arxiv.org/
abs/2101.01169

Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011). Malware images.
Proceedings of the 8th International Symposium on Visualization for Cyber
Security - VizSec ’11. https://doi.org/10.1145/2016904.2016908

Openai, A., Openai, K., Openai, T., & Openai, I. (2018). Improving language un-
derstanding by generative pre-training. https : / / cdn .openai . com/ research -
covers/language-unsupervised/language_understanding_paper.pdf

Pai, S., Troia, F. D., Visaggio, C. A., Austin, T. H., & Stamp, M. (2016). Clustering
for malware classification. Journal of Computer Virology and Hacking Tech-
niques, 13, 95–107. https://doi.org/10.1007/s11416-016-0265-3

Pei, K., Xuan, Z., Yang, J., Jana, S., & Ray, B. (2021). Trex: Learning execution se-
mantics from micro-traces for binary similarity. arXiv:2012.08680 [cs]. https:
//arxiv.org/abs/2012.08680

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettle-
moyer, L. (2018). Deep contextualized word representations. https : / / arxiv.
org/abs/1802.05365

Platen, P. V. (2020). Transformer based encoder and decoder models. https://huggingface.
co/blog/

Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. (2008). A semantics-based ap-
proach to malware detection. ACM Transactions on Programming Languages
and Systems, 30(5), 1–54. https://doi.org/10.1145/1387673.1387674

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Lan-
guage models are unsupervised multitask learners. https://cdn.openai.com/
better - language - models / language _ models _ are _ unsupervised _ multitask _
learners.pdf

Rahali, A., & Akhloufi, M. A. (2021). Malbert: Using transformers for cybersecurity
and malicious software detection. arXiv:2103.03806 [cs]. https://arxiv.org/
abs/2103.03806

Rosenthal, M. (2020). Must-know phishing statistics: Updated 2020. https:/ /www.
tessian.com/blog/phishing-statistics-2020/

60

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://hmkcode.com/
https://doi.org/10.1109/ISI.2008.4565046
https://arxiv.org/abs/2101.01169
https://arxiv.org/abs/2101.01169
https://doi.org/10.1145/2016904.2016908
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1007/s11416-016-0265-3
https://arxiv.org/abs/2012.08680
https://arxiv.org/abs/2012.08680
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://huggingface.co/blog/
https://huggingface.co/blog/
https://doi.org/10.1145/1387673.1387674
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2103.03806
https://arxiv.org/abs/2103.03806
https://www.tessian.com/blog/phishing-statistics-2020/
https://www.tessian.com/blog/phishing-statistics-2020/

Samani, R. (2021). https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-
2021.html

Santos, I., Brezo, F., Nieves, J., Penya, Y. K., Sanz, B., Laorden, C., & Bringas, P. G.
(2010). Idea: Opcode-sequence-based malware detection. Lecture Notes in
Computer Science, 5965, 35–43. https://doi.org/10.1007/978-3-642-11747-
3_3

Santos, I., Sanz, B., Laorden, C., Brezo, F., & Bringas, P. G. (2011). Opcode se-
quence based semi supervised unknown malware detection. Computational
Intelligence in Security for Information Systems, 6694, 50–57. https://doi.org/
10.1007/978-3-642-21323-6_7

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare
words with subword units. arXiv.org. https://arxiv.org/abs/1508.07909

Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012). Detecting
unknown malicious code by applying classification techniques on opcode pat-
terns. Security Informatics, 1(1). https://doi.org/10.1186/2190-8532-1-1

Shieber, S., & Rush, A. (2018). The annotated transformer. https://nlp.seas.harvard.
edu/2018/04/03/attention.html

Shimon, O. (2021). Cyber threat report on 2020 shows increases across all malware
types. https://www.deepinstinct.com/2021/02/11/cyber- threat- report-on-
2020-shows-triple-digit-increases-across-all-malware-types/

Souri, A., & Hosseini, R. (2018). A state of the art survey of malware detection ap-
proaches using data mining techniques. Human-centric Computing and Infor-
mation Sciences, 8(1). https://doi.org/10.1186/s13673-018-0125-x

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56), 1929–1958. http://jmlr.org/papers/
v15/srivastava14a.html

Tay, Y., Research, G., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient trans-
formers: A survey efficient transformers: A survey. https://arxiv.org/pdf/2009.
06732.pdf

Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques
for malware analysis. Computers and Security, 81, 123–147. https://doi.org/
10.1016/j.cose.2018.11.001

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention is all you need. https://arxiv.org/abs/
1706.03762

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., & et al. (2020). Huggingface’s transformers:
State-of-the-art natural language processing. arXiv:1910.03771 [cs]. https :
//arxiv.org/abs/1910.03771

61

https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://doi.org/10.1007/978-3-642-11747-3_3
https://doi.org/10.1007/978-3-642-11747-3_3
https://doi.org/10.1007/978-3-642-21323-6_7
https://doi.org/10.1007/978-3-642-21323-6_7
https://arxiv.org/abs/1508.07909
https://doi.org/10.1186/2190-8532-1-1
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://www.deepinstinct.com/2021/02/11/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types/
https://www.deepinstinct.com/2021/02/11/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types/
https://doi.org/10.1186/s13673-018-0125-x
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/2009.06732.pdf
https://arxiv.org/pdf/2009.06732.pdf
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2018.11.001
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y.,
Wang, L., & Liu, T.-Y. (2020). On layer normalization in the transformer ar-
chitecture. arXiv:2002.04745 [cs, stat]. https://arxiv.org/abs/2002.04745

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). Xl-
net: Generalized autoregressive pretraining for language understanding. arXiv.org.
https://arxiv.org/abs/1906.08237

Ye, Y., Li, T., Adjeroh, D., & Iyengar, S. S. (2017). A survey on malware detection
using data mining techniques. ACM Computing Surveys, 50(3), 1–40. https:
//doi.org/10.1145/3073559

Yewale, A., & Singh, M. (2016). Malware detection based on opcode frequency. https:
//doi.org/10.1109/ICACCCT.2016.7831719

Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., & Sangaiah, A. (2019). Clas-
sification of ransomware families with machine learning based on n gram of
opcodes. Future Generation Computer Systems, 90, 211–221. https://doi.org/
10.1016/j.future.2018.07.052

62

https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/1906.08237
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ICACCCT.2016.7831719
https://doi.org/10.1109/ICACCCT.2016.7831719
https://doi.org/10.1016/j.future.2018.07.052
https://doi.org/10.1016/j.future.2018.07.052

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Research Questions and Approach

	Background and Relevant Work
	Deep Learning for Natural Language Processing
	Artificial Neural Networks (ANNs)
	Feed-forward Neural Networks in NLP
	Recurrent Neural Network (RNN) in NLP
	Long Short-Term Memory (LSTM) in NLP
	Attention Mechanism
	Transformers
	Transfer Learning
	Tokenization for Generative Pre-trained Transformer 2 (GPT-2)
	Generative Pre-trained Transformer 2 (GPT-2)
	Hugging Face

	Malware Analysis
	What is Malware
	Malware Analysis Methods
	Malware Detection Methods
	Machine Learning and Deep Learning Based Methods

	Summary

	Methodology
	Approach
	The Datasets
	Data Collection
	Data Formatting

	The Model
	The Environment Setup
	Imported Libraries and Modules
	Pre-trained Model
	Binary Classification Model

	Summary

	Results
	Evaluation of the Pre-trained Model
	Evaluation of GPT-2's Pre-trained Model
	Comparison of the models
	Discussion
	Open Problems

	Conclusion and Future Work
	Conclusion
	Limitations and Future Work

	REFERENCES

