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ABSTRACT

ANTICIPATION IN COLLECTIVE MOTION OF ROBOT SWARMS

Boz, İhsan Caner
M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Ali Emre Turgut

Co-Supervisor: Prof. Dr. Cristián Huepe

December 2021, 85 pages

Recent technological advancements made the implementation of swarms of UAVs

possible. As they face more complex situations each day, collective motion models

rise in importance. In this thesis, a collective motion model for self-propelled agents

with anticipative action is given. It is shown that using anticipated positions in the

attraction-repulsion mechanism brings a new interaction term that depends on veloc-

ities. The noise-induced order-disorder phase transition of this model is compared

with two other well-known collective motion models: Active-Elastic model and Vic-

sek model. The comparison shows that anticipation aligns the headings of the agents.

Therefore, the anticipation horizon can be adjusted to help robot swarms accomplish

certain tasks. For example; better braking performance and preventing pileup in case

of a sudden stop, or squeezing through a narrow passage without losing order. Sen-

sors used in the robot swarms are mostly position-based. Since velocity information

is required for the anticipative model, a Kalman Filter that takes equations of motion

into consideration is designed to improve the position measurements and supply ve-

locity and heading information. Particle-based simulations are done for the proposed

model with the designed filter. Then, the model and the filter are implemented in
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the Crazyswarm platform, which is used for flying a swarm of Bitcraze Crazyflie 2.x

quadcopter UAVs. In the experiments, control commands of the agents are created

by their own Kalman Filter, which uses noisy measurements and the motion model

information. Experiments with the real UAVs show that the swarm is able to pass

through a narrow passage with the proposed anticipative motion model.

Keywords: collective motion, swarm robotics, anticipatory systems, Kalman filter
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ÖZ

SÜRÜ ROBOTLARIN MÜŞTEREK HAREKETİNDE BEKLENTİ

Boz, İhsan Caner
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Emre Turgut

Ortak Tez Yöneticisi: Prof. Dr. Cristián Huepe

Aralık 2021 , 85 sayfa

Son teknolojik gelişmeler İHA sürülerinin uygulanabilmesini mümkün kılmıştır. Sü-

rülerin her geçen gün daha karmaşık durumlarla karşılaşması, müşterek hareket mo-

dellerinin önemini arttırmaktadır. Bu tezde, kendinden hareketli ajanlar için beklentili

eylemi olan müşterek hareket modeli verilmiştir. Çekme-itme işleyişinde beklenen

konumu kullanmanın hızlara bağlı yeni bir etkileşim terimi getirdiği gösterilmiştir.

Modelin gürültü ile uyarılmış düzen-düzensizlik faz geçişi, şu iki iyi bilinen müşterek

hareket modeli ile karşılaştırılmıştır: Active-Elastic model ve Vicsek model. Karşılaş-

tırma, beklentinin ajanların yönlerini hizaladığını göstermiştir. Böylece, beklenti ufku

ayarlanarak robot sürülerinin bazı görevleri tamamlamasına yardım edilebilir. Örnek

olarak, daha iyi fren performansı ile zincirleme kazaların önlenmesi, veya dar bir ge-

çitten sıkışarak ve düzeni kaybetmeden geçilebilmesi verilebilir. Beklentili modelde

hız bilgisi gerektiği için, pozisyon ölçümlerini iyileştiren, hız ve yön bilgisi sağlayan,

ve hareket denklemlerini dikkate alan bir Kalman Filtresi tasarlanmıştır. Önerilen mo-

del ve tasarlanan filtre ile parçaçık bazlı benzetimler yapılmıştır. Daha sonra, model

ve filtre, Bitcraze Crazyflie 2.x dört pervaneli helikopter İHA sürüsünü uçurmaya
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yarayan Crazyswarm ortamında uygulanmıştır. Deneylerde, ajanların kontrol komut-

ları kendi Kalman Filtreleri tarafından gürültülü ölçümler ve hareket modeli bilgisi

kullanılarak üretilmiştir. Gerçek İHAlar ile yapılan deneyler sürünün dar bir geçitten

önerilen beklentili model ile geçebildiğini göstermiştir.

Anahtar Kelimeler: müşterek hareket, sürü robotiği, beklentili sistemler, Kalman filt-

resi
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CHAPTER 1

INTRODUCTION

Complex systems are composed of many interacting systems, and their behavior may

not be predicted by analyzing only the microscopic interactions. Cellular automata

are an example of complex systems. Initial states and interaction rules are defined

at the start, and there may not be a closed-form solution for finding the future states

of the system. Collective motion is another example of complex system behavior,

which is widely observed in living organisms. Members of the group act upon the

limited information available to them, yet the outcome is an organized group that

moves collectively and reacts to changes in the environment.

Collective motion is a popular research topic since it both helps to explain the phe-

nomenon seen in nature, and gives a way to move physical agents in an orderly fash-

ion in the real world. Most of the collective motion models use attraction-repulsion or

heading alignment mechanisms, or a mixture of both. Mainly, these mechanisms de-

pend on the current state of the swarm. However, anticipation is an important concept

in decision-making. Following Rosen’s definition in [2], anticipatory systems can es-

timate their future states with the use of a predictive model, and uses these estimates

in their decisions in the current time. For instance, [3] shows how the anticipated

position of a moving object is created at the retina level, so that the delays associ-

ated with the slow transduction of information to the brain do not affect the animal’s

ability to capture moving objects.

Arguably, traffic is a form of collective motion, and many facts about the importance

of anticipation can be derived from it. For instance, brake lights are activated when

a car decelerates, and the driver at the back anticipates that distance with the front

car will decrease and presses the brake pedal. Thus, with the help of the brake light,
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braking action of the rear car will start before the cars get close. In [4], 343 taxis

were equipped with a third brake light that pulses more frequently as the deceleration

amount increases. Data gathered from the 10-month long experiment show that taxis

with third brake light had a 60.6% reduction in the rear-end collision rate. It can be

argued that taxi drivers were sensitive to the new arrangements and drove cautiously

because of the Hawthorne effect [5], which refers to the tendency of the participants

in an experiment to behave differently due to being observed. However, it is claimed

that this effect does not apply here because collisions are due to the cars that follow

the taxis, which are not the participants in the experiment. Also, the frontal collision

rate of the taxis with the third brake light was the same as the control group, which

means that the control and the experimental groups behave similarly. In [6], drivers

with varying degrees of experience participated in driving simulations with different

scenarios, such as chain-breaking due to a slow tractor or a vehicle cutting in front.

It is reported that experienced drivers make more anticipatory actions, which help to

prevent an accident.

With regard to these examples, anticipation is an interesting concept to study in the

scope of collective motion. Active-Elastic model [7][8] is a well-studied collective

motion model that uses only relative positions in the attraction-repulsion mechanism.

Anticipation can be implemented into this model by using anticipated positions, in-

stead of the current positions. In this thesis, this novel model is proposed as Active-

Elastic-Anticipation (AEA) model. This implementation brings a new interaction

term that depends on the relative velocities. Thus, there is a new parameter to adjust,

in order to achieve better performance in certain scenarios. For example, similar to the

brake lights, the relative velocity dependent term brings better braking performance

and prevents multi-robot collisions. Moreover, robots can adjust their orientation de-

pending on the anticipated positions and squeeze through a narrow passage without

losing order.

Anticipative interaction is introduced to the AEA model with a linear damper. Since

dampers are used in the model, relative velocity information of the agents are re-

quired. Acquiring this information may not be an easy task, since most measurement

systems for UAVs are position-based; such as Ultra-wideband positioning systems,

motion capture systems, or LIDARs. Acquiring relative velocity information from the
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position measurements by differentiation is also not feasible unless the measurement

noise is exceptionally low. Therefore, using a method to improve the information

at hand is essential. Extended Kalman Filter (EKF) is used for fusing sensor mea-

surements and system model to get better estimates of the relative velocity, relative

position and orientation of the agents. There are many studies on collective local-

ization, in which agents communicate with each other for improved state estimation.

However, in this study, it is assumed that no communication exists between agents

and only on-board sensors are utilized. This assumption might be more suitable to

explain the behavior of simpler organisms.

Noise and order characteristics of the proposed model are analyzed and compared

with other well-known collective motion models. An EKF design that takes mo-

tion equations into consideration is given. The designed filter uses self-position,

self-orientation, and relative positions of the neighbors, which are readily available

in UAV systems. Performance of the model with the designed filter is evaluated

with particle-based simulations. Then, model and the filter is implemented in the

Crazyswarm platform, which is used to simulate and fly Bitcraze Crazyflie quad-

copter UAVs. Implementation is verified with the simulation mode and then real

flight tests are conducted with Crazyflie 2.x UAVs.

This thesis has six chapters, including this first Introduction chapter. In Chapter 2,

literature survey of collective motion models, anticipation in collective motion mod-

els and state estimation in multi-agent systems are given. In Chapter 3, the definition

of the Active-Elastic-Anticipation model is given. Also, the design of the Extended

Kalman Filter for this model is explained there. In Chapter 4, details about the ex-

perimental setups and results of the conducted analyses are given. In Chapter 5, the

methodology and results are discussed; possible improvements and future work are

also given. Lastly, in Chapter 6, all of the work given in the thesis is concluded.
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CHAPTER 2

LITERATURE SURVEY

Collective motion is observed widely in living organisms, such as birds [9], fish [10]

and bacteria [11]. It is also observed in inanimate objects when external excitation

is applied [12] [13]. Creating artificial systems that can achieve collective motion

based on simple interactions is a popular research area. One of the oldest and well-

known collective motion model is Reynolds Boid model [14]. Reynolds model has

3 rules: collision avoidance, velocity matching, and flock centering. The model suc-

cessfully simulates flocks of bird-like objects called boids. The rules of the model are

illustrated in the Figure 2.1.

(a) Separation (b) Alignment (c) Cohesion

Figure 2.1: Visual depiction of the Reynolds model rules. The gray area shows the

local interaction region of the focal agent. (a) Separation: Boids avoid collision with

each other. (b) Alignment: Boids match their velocity to the neighboring boids.

(c) Cohesion: Boids try to move towards the center of the boids in their locality.

Reprinted from [1]

Another well-known collective motion model that influenced many works in the field

is the Vicsek model [15]. Vicsek model is an orientation-based model, each agent

adjusts its heading to the average heading of the agents in its locality. Agents are self-
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propelled and have the same speed. In a similar manner, the Cucker-Smale model

[16] [17] shows that agents can reach a consensus in the direction of movement by

aligning their velocity vectors with their neighbors. Unlike the Vicsek model, strength

of the interactions in the Cucker-Smale model depends on the proximity of the agents.

There are many modified versions of both the Vicsek model and the Cucker-Smale

model. In the original Vicsek model, the distance between the agents will grow if

they are placed in an infinite arena, especially under noise. In [18], an attraction-

repulsion term is added to aid this problem. [19] added a repulsion-only term to the

Cucker-Smale model, to avoid collision between the agents. There is also a model

based solely on pairwise attraction-repulsion mechanism, called the Active-Elastic

(AE) model [7][8]. In the AE model, agents know only the position of their neighbors

relative to themselves.

Following Rosen’s definition in [2], anticipatory systems can estimate their future

states with the use of a predictive model and use these estimates in their decisions in

the current time. Anticipation is an important concept for correct decision-making

and task execution. For instance, in [3] authors showed how the anticipated posi-

tion of a moving object is created at the retina level, so that delays associated with

slow transduction of information to the brain do not affect the animal’s ability to cap-

ture moving objects. Most of the well-known collective motion models use only the

current state of the group but there are studies on anticipation in collective motion.

As described in the previous chapter, anticipation is a useful concept and there are

studies on anticipation in collective motion. In [20], an angular velocity dependent

term is added to the Vicsek model. Hence, this new model uses the expected angu-

lar positions in a later time, rather than the current angular positions. Depending on

the coefficient of the angular velocity term, swarming or spinning states are observed.

Therefore, the swarm can be ordered to move collectively or stay around a point with-

out stopping altogether by changing the coefficient of the anticipative term. [21] is a

distinct paper that proposes a discrete, lattice-based model with asynchronous posi-

tion update rules. Even though the model is not based on an explicit alignment rule,

position update of the agents depends on the anticipated positions of their neighbors.

The model can successfully achieve collective motion, and results are in line with

the empirical study conducted on soldier crabs. In [22], it was demonstrated that in-
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clusion of anticipation converts the simple harmonic oscillator to a damped harmonic

oscillator. Thus, it was shown that anticipation in an attraction-repulsion based model

can be modeled by adding a linear damper in parallel to the spring. Also, energy dis-

sipation brought by the damping term is analyzed. A thorough mathematical analysis

of anticipation in systems reacting to radial potentials can be found in [23]. The im-

portance of alignment brought by the anticipation is demonstrated. [24] proposes a

model called the Active-Elastic-Alignment model, which is an extension of the AE

model. In the Active-Elastic-Alignment model, springs are connected to the arms

that extend from the center of the agents. It was shown that as the length of the arms

increase, interaction of the agents becomes dominantly alignment-based. This paper

has great importance for this thesis, since the model proposed in this thesis is also

based on the AE model, and extending arms are homologous to using anticipated

positions.

In a real-world implementation of a collective motion model, agents rely on noisy

sensor measurements or communication to acquire required information. In gen-

eral, obtaining the heading information of other agents is not an easy task. [25] is a

study on a communication strategy for heading control of a swarm of physical robots.

Robots used in the experiments are the Foot-bot robots that were developed within

the Swarmanoid project [26]. In this study, robots rely on a communication system

to obtain the heading and relative positions of the neighboring robots. [27] is an ex-

tensive study on disruptive effects which arise in the realization of collective motion

models. Real quadcopter UAVs equipped with Global Positioning System (GPS) are

used in the study. UAVs communicate their position and velocity measurements to be

able to calculate the control outputs. [28] presents a computer vision algorithm that

provides range and bearing for robot swarms. A marker with specific features is de-

signed to be placed on each robot in the swarm. The appearance of this marker makes

range and bearing calculations possible. In these studies, either communication or a

specific system is used to find the heading of the neighboring robots.

There are studies for improving state estimation in multi-agent systems by fusing the

information coming from multiple agents. In [29], a Kalman Filter in decentralized

form is used to fuse the measurements from different agents to improve the localiza-

tion accuracy. This method requires the communication of sensor measurements. In
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[30], also a Kalman Filter that improves the localization accuracy is used but only

state estimates of the agents are broadcasted. In [31], 2 different methods for relative

localization using only relative distances between agents are proposed but again these

methods also require communication between agents.

In this thesis, a novel collective motion model with anticipative action is proposed

and the model is named as Active-Elastic-Anticipation model. An Extended Kalman

Filter (EKF) is designed to estimate the states of the focal agent and its neighbors,

which are used in the equations of motion of the proposed model. The contribution

of the thesis is two-fold. First, anticipation is added to the well-known AE model by

simply adding a linear damper in parallel to the linear spring that exists in the model.

The noise-induced phase transition of the model is analyzed and compared with the

AE model and the Vicsek model. Second, an EKF design that estimates the heading

information of the neighbors without communication or any specific arrangement is

given. Estimation performance is improved by using motion equations of the model

in the filter design.
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CHAPTER 3

METHODOLOGY

3.1 Background

In this section, two well-known Collective Motion models that are important in the

development of the Active-Elastic-Anticipation model are introduced: Active-Elastic

model and Vicsek model. Active-Elastic model interactions depend on positions,

whereas Vicsek model interactions depend on headings. This fundamental distinc-

tion is best visualized with the phase transition diagram, which is described in the

following subsections.

3.1.1 Interaction Networks

In the study of complex systems, the dynamics of multiple interacting components

are typically analyzed using one of two different modeling approaches: agent-based

or network-based. If the components can be characterized as particles moving in a

physical or abstract space and interactions depend on their positions, the system is

best described using agent-based approaches. Alternatively, if the components can

be characterized as nodes in a network, with internal states that evolve by interact-

ing through their connections, it is best described using network-based approaches.

Both types of models have been widely used to analyze the self-organized collective

dynamics observed in a broad range of complex systems.

In this thesis, interactions between the agents are described with static interaction

networks. The main interaction topologies used in this thesis are Nearest-neighbor

(NN) networks, random Erdős–Rényi (ER) networks, and random Scale-Free (SF)
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networks. Each type has a distinct degree distribution, as shown in the plots of the

number of nodes with a given number of connections presented in Figure 3.1. These

networks are later combined to study the dynamics of the model when interacting

through different superpositions of their topologies.

In order to compare the dynamics resulting from various interaction topologies under

equivalent conditions, the total number of agents (nodes) N and the total number of

links K should be kept constant over all connectivity structures. This also ensures

that the average number of connections per node K/N is constant, although other

statistical quantities may change as a result of the different degree distributions of the

networks.

3.1.1.1 Nearest-neighbor network

In the NN network, agents are connected to their first neighbors in their starting po-

sition. K value depends on the given N and starting positions. Agents on the corners

and sides may have a lower number of connections, but most of the agents have the

same number of connections.

3.1.1.2 Erdős-Rényi network

Starting with N nodes with no connection, a pair of nodes (i, j) is randomly selected

and connected, unless i = j or they are already connected. This process is continued

until there are K links. Then, a breadth-first search is made to check network con-

nectivity. If all agents are visited in the search, then the network is connected; there

are no disconnected sub-networks. If the network is not connected, it is discarded and

the process starts over.
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Figure 3.1: Degree distributions of the three types of interaction networks imple-

mented in this thesis (Nearest Neighbour, Erdős-Rényi, and Scale-Free) for a regular

square lattice system with 9 × 9 = 81 agents and 272 connections. Each plot shows

the number of agents that have a given number of interactions with other agents. In

the Nearest Neighbour network (red dots), connections are determined by the number

of immediate neighbors in a square lattice, here 3, 5, or 8 for agents in the corners,

sides, or bulk, respectively. In the Erdős-Rényi network (blue squares), the degree

distribution must be Poissonian, as approximated by the implemented case displayed.

Finally, in Scale-Free networks (× and + signs) the degree distribution must follow

a power-law, here well approximated by the Modified Scale Free connectivity case

(which was generated by manually correcting the Rounded Scale Free case), despite

the finite and discrete nature of the system.
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3.1.1.3 Scale-Free network

In the SF topology, linked agents are selected at random, as in the ER topology, but

the resulting degree distribution must follow a power law of the form

nk = C kb. (3.1)

Here, nk is the number of agents with k connections, C is a constant prefactor, and b

is the law’s exponent, which is always negative [32, 33].

In a finite and discrete system, k can only have integer values within a certain range,

which is defined to be from kmin to kmax. The minimum number of connections per

agent, kmin, is set to be 2 in all created networks. At the other end of the distribution,

another restriction is kmax ≤ N − 1, because self-connections or more than one con-

nection between two nodes are not allowed. Finally, in order to generate SF networks

with predetermined N andK values, the following two expressions must be satisfied:

kmax∑
k=kmin

nk = N (3.2)

kmax∑
k=kmin

nk k = K. (3.3)

In principle, for any given exponent b a solution can be found for C and kmax that sat-

isfies both expressions. In practice, however, the problem has additional constraints

that make it slightly more complicated. Indeed, the nk values resulting from equation

(3.1) must be rounded to the nearest integer and they cannot be smaller than 1. Thus,

both constraints can be imposed by modifying the degree distribution, redefining it as

nk =

 round(C kb) if C kb ≥ 1

1 if C kb < 1,
(3.4)

where round(·) is the function that rounds to the nearest integer.

The problem is now reduced to finding values for C and kmax that satisfy equations

(3.2) and (3.3), using the nk function defined in (3.4). Given that kmax and all nk

values must be integers, however, there is typically no exact solution for this system.

Thus, it is solved as an optimization problem, finding the C and kmax values that
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minimize the difference between the left- and right-hand sides of equations (3.2) and

(3.3). The corresponding objective function J is defined as the weighted sum of the

squared error with respect to the target N and K values, which is defined as Ntgt and

Ktgt. Thus, the objective function is defined as

J = WN(Nopt −Ntgt)
2 +WK(Kopt −Ktgt)

2 (3.5)

Here, Nopt and Kopt are the optimization variables while WN and WK are the man-

ually tuned weights. To favor the convergence to the correct number of agents, WN

is chosen as 10 and WK as 1. Results do not depend significantly to the exact choice

of these values. Figure 3.1 presents an example of the resulting nk values, labeled

Rounded Scale Free. Finally, kmax is increased or decreased as needed to exactly

match the required total number of nodes N and then a few connections may be

added or removed by hand to have exact K in total, so that all constraints are met. An

example of the final nk values is displayed in the curve labeled Modified Scale Free in

Figure 3.1. It confirms that the final degree distribution still follows an approximate

power law. It is observed that Modified Scale Free is almost identical to the Rounded

Scale Free distribution, showing that the required final manual adjustments are mini-

mal. It is also noted that, for the b = −2 case displayed here, kmax is low enough for

the distribution not to include a long flat region with nk = 1 at high k values. This is

one of the reasons why b is set as −2 in most simulations below.

Once the exact degree distribution is computed, each node is associated with the

corresponding number of links at random, starting from the nodes with the highest

degree. As in the ER case, the network is checked for full connectivity.

3.1.1.4 Network superposition method

In this thesis, combinations of the network topologies defined above are considered.

To this end, a superposition protocol that interpolates between a NN network and

either an ER or an SF random network is devised, as a function of a topological

control parameter p ∈ [0, 1]. For p = 0, the exact NN structure is recovered; and for

p = 1, one of the two random networks (ER or SF) with the same number of nodes
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and links is obtained. In addition, by setting 0 < p < 1, it is possible to interpolate

between NN and ER topologies or between NN and SF topologies. The proposed

superposition protocol is defined as follows. First, a NN network of a given size is set

up, which determines the values of the total number of nodes N and the total number

of connectionsK. Then, a realization of one of the two types of random networks (ER

or SF) with N nodes and K links is generated. Finally, these networks are combined

by first deleting pK links from the NN network and (1−p)K links from the ER or SF

network at random, and then superimposing the two resulting structures. Resulting

network is checked for full connectivity.

3.1.2 Active-Elastic Model

Active-Elastic model is a position-based collective motion model introduced in [7][8].

Agents move in 2D plane and they are connected to each other with linear springs.

Equations of motion for the Active-Elastic model are given in two following equa-

tions:

˙⃗xi(t) = v0 n̂i(t) + α
[
F⃗i(t) · n̂i(t)

]
n̂i(t) (3.6)

θ̇i(t) = β
[
F⃗i(t) · n̂⊥

i (t)
]
+ η ξi(t). (3.7)

Here, n̂i(t) and n̂⊥
i (t) are the unit vectors that point parallel and perpendicular to the

heading of the agent i at time t, respectively. α and β are coefficients that relate force

to linear and angular velocities, respectively. v0 is the self-propulsion speed. ξ is a

uniform distributed random variable whose boundaries are −1/2 and 1/2. η is the

noise intensity coefficient and is used to control the intensity of applied noise. Force

vector calculation is given in Equation 3.8 as:

F⃗i(t) =
∑
j∈Si

−κ(|r⃗ij| − lij)
r⃗ij
|r⃗ij|

(3.8)

where r⃗ij = x⃗j − x⃗i and κ is the spring constant. The set Si contains all agents that

agent i interacts with. Usually, these differential equations are integrated with Euler’s

method with a time step ∆t.
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3.1.3 Vicsek Model

In the Vicsek model, agents move at a constant speed. The focal agent adjusts its

heading to the average headings of the agents it is interacting with including its own

heading. Agents that are in a given range interact with each other, thus the interaction

network changes dynamically. However, in this thesis, only static networks are used,

thus the interaction links between agents do not change. Therefore, there is no need

to simulate the change in the positions of the agents. This version of the Vicsek model

is referred to as Vicsek-Network (VN) model in [34]. Also, the same implementation

was introduced in [35] as Vectorial Network model.

Orientation update equation of the VN model is given in Equation 3.9,

θi[k + 1] = angle

(∑
j∈Si

n̂j[k]

)
+ ηξi[k] (3.9)

where n̂j[k] is the unit vector of agent j at time step k that points towards its heading

direction. The set Si contains all agents that agent i interacts with. Therefore, angle(.)

function with the sum of unit vectors in the argument gives the average orientation in

the Si. The noise term, ξ is a uniform distributed random variable, with the bound-

aries of −1/2 and 1/2. η can be adjusted to obtain desired noise intensity. η = 0

corresponds to no noise, whereas η = 2π corresponds to fully random motion.

3.1.4 Phase Transition

Phase transition diagrams are usually linked with an order parameter and they depict

different phases of a system. In a simplified way, if the transition has a discontinu-

ity in the first derivative, it is called first-order transition. Water to ice transition is

an example of the first-order phase transition. Likewise, if the transition has a dis-

continuity in the second derivative, it is called second-order transition. Paramagnetic

to ferromagnetic phase transition is an example of the second-order phase transition.

The type of the transition can be inferred from the phase transition diagram and the

noise-induced phase transition behavior of a collective motion model can be used for

classification.
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3.2 Active-Elastic-Anticipation Model

Active-Elastic-Anticipation (AEA) model is the novel model and the main contribu-

tion of this thesis. This model presents a way to add anticipation to the AE model, by

using the expected positions instead of the current positions.

Taylor Series expansion can be used to find an approximate value of the position in a

future time. Expansion of the anticipated position is given in Equation 3.10.

x(t+ τ) = x(t) + τ ẋ(t) + τ 2
ẍ(t)

2!
+ τ 3

...
x (t)

3!
+ . . . (3.10)

The first-order extrapolation of the current position can be obtained by neglecting the

higher-order terms. Approximate position after time τ , or anticipated position by the

agent, is given in Equation 3.11.

x(t+ τ) ≈ x(t) + τ ẋ(t),

≈ x(t) + τv(t)
(3.11)

It can be seen that using the anticipated position brings a new term that is proportional

to velocity. By choosing anticipation time amount as τ , the interaction force of the

AE model transforms into Equation 3.12. The AE model force equation was given in

Equation 3.8.

Fij = −κ(|r⃗ij|+ τ |v⃗ij| − lij)

= −κ(|r⃗ij| − lij)− κτ |v⃗ij|
(3.12)

This new force term that depends on velocity can be modeled with a linear damper

with a damping coefficient of κτ . Interaction force applied on agent i for the AEA

model is given in equation 3.13, where b equals to κτ .

F⃗i(t) =
∑
j∈Si

(−κ(|r⃗ij| − lij)− b|v⃗ij|)
r⃗ij
|r⃗ij|

(3.13)
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Figure 3.2: Two agents connected with a damper

This proposed model is most similar to the Active-Elastic-Alignment model in [24].

There are two main differences in the force calculation between the model proposed

in this thesis and the Active-Elastic-Alignment model. First of all, in this work, the

anticipated position is found by linear extrapolation of the current position with a

fixed time length. In the Active-Elastic-Alignment model, the interaction point has

a fixed distance from the center of the agent, which is equivalent to the anticipated

position. Since the velocity of the agents can change, fixed-time anticipation may dif-

fer from fixed-length anticipation. Secondly, in the Active-Elastic-Alignment model,

interaction elements are connected to the extending arms. Therefore, the direction of

the force depends on the anticipated positions. In this work, direction of the force is

calculated with the current positions.

In the AE model, positions and orientations of the agents follow two equations of

motion that were given in Equations 3.6 and 3.7. It can be seen that the velocity

equation depends on the force, and force in the AEA model is also dependent on

velocity due to the damper term. An example is given to demonstrate how this can

pose a problem. Suppose two agents are connected only with a damper, as shown in

Figure 3.2. For ease of calculations, agents are restricted to move in one dimension,

and the spring is removed. Therefore, orientation dynamics are removed and velocity

update equations for each agent are given in Equation 3.14.

ẋ1 = v0 − αb(ẋ1 − ẋ2)

ẋ2 = v0 − αb(ẋ2 − ẋ1)
(3.14)

This system has only one solution, where velocity of the agents are equal to the self-

propulsion speed, ẋ1 = ẋ2 = v0. Therefore, the velocity of the agents can not change

and agents would not be interacting with each other through the damper as intended.
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The system can be discretized with the zero-order hold method to evaluate how the

velocity update equation would behave in the simulations. The discrete state-space

representation of the system is given in Equation 3.15.

vk+1
1

vk+1
2

 =

−αb αb

αb −αb

vk1
vk2

+

1
1

 v0 (3.15)

For the system to be stable, magnitude of the eigenvalues of the state matrix should be

smaller than one (or poles of the system should be inside the unit circle). Therefore,

as seen in Equation 3.16, αb product should be smaller than 0.5. Agents change their

velocity depending on the changes in the relative velocity. If the reaction is bigger

than the perturbation, which means the magnitude of the eigenvalue is bigger than 1,

perturbations grow.

eig

−αb αb

αb −αb

 = {−2αb, 0} (3.16)

This method works as long as b value is chosen to be smaller than the stability thresh-

old, for a given α value. This puts a tight limit on the values that can be chosen for

the damper coefficient.

In short, the AE model agents have no inertia and their velocity can change instanta-

neously. The velocity update equation depends on the velocities when the damper is

introduced to the model, and the stability problem mentioned above occurs.

The proposed solution to this problem is to include inertia in the model. A propor-

tional controller, given in Figure 3.3, is used to control the velocity of the agents in the

AEA model. Agents can not reach their desired velocity (vd) instantly, but an error

signal is formed from the desired and the current velocities. The amount of accelera-

tion depends on this error signal and the proportional gain. This kind of approach can

be found in multi-agent motion model studies. [36] proposes a model for microscopic

traffic flow, called the Optimal Velocity model. In this model, each agent accelerates

proportional to the difference between the target and the current velocity, which is

also a proportional control scheme.
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Figure 3.3: Proportional velocity controller used in the AEA model

The effect of the proportional velocity controller on the increase of the margin for

stability is demonstrated with an example. The new differential equation governing

the motion of the first agent in Figure 3.2 is given in Equation 3.17.

vd = v0 − αb(ẋ1 − ẋ2)

ẍ1 = Kacc(vd − ẋ1)
(3.17)

The discrete version of the Equation 3.17 is given in Equation 3.18.

vk+1
1 = vk1 +Kacc

(
v0 − αb(vk1 − vk2)− vk1

)
∆t (3.18)

The discrete state-space representation of the system given in Figure 3.2 is given in

Equation 3.19.

vk+1
1

vk+1
2

 =

(1−Kaccαb∆t−Kacc∆t) Kaccαb∆t

Kaccαb∆t (1−Kaccαb∆t−Kacc∆t)

vk1
vk2


+

1
1

Kaccv0∆t

(3.19)

The eigenvalues of the state matrix are:
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1−Kacc∆t

1− 2Kaccαb∆t−Kacc∆t

There are multiple parameters that affect the eigenvalues. If ∆t is chosen as 0.1, the

same as the previous studies on the AE model, then, from the first eigenvalue, it can

be seen that proportional gain Kacc should not be larger than 20 for the system to

be stable. The upper bound for αb can be extracted from the second eigenvalue. By

choosing Kacc as 1 for instance, αb should be smaller than 19/2. This means b value

can be chosen to be 19 times higher for the same α value, compared to the system

without inertia.

Building upon the previous analyses, the AEA model equations are given in Equation

3.20.

F⃗i(t) =
∑
j∈Si

(−κ (|r⃗ij| − lij)− b|v⃗ij|)
r⃗ij
|r⃗ij|

vd(t) = v0 − α
(
F⃗i(t) · n̂i(t)

)
⃗̈xi(t) = Kacc

(
vd(t)− |⃗̇xi(t)|

)
n̂i(t)

θ̇i(t) = β
[
F⃗i(t) · n̂⊥

i (t)
]
+ η ξi(t).

(3.20)

3.3 Extended Kalman Filter Implementation

The AEA model includes linear dampers, thus agents need to know the velocity dif-

ference relative to the connected agents. Mostly, relative velocity measurements are

not available in swarm systems unless a specific measurement system is available.

Velocity calculation from the derivative of the position measurements is not feasible

because the derivative operation would amplify the measurement noise, and obtained

velocity information would be too noisy to use. A Low-Pass-Filter can be used to

smooth the data, but it would bring a time delay. Instead, a Kalman Filter can be used

to estimate the states of the model. Kalman Filter fuses the system model information

with the measurements and creates better estimates of the states. Equations of motion
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for the AEA model are nonlinear, therefore Extended Kalman Filter (EKF) should be

used instead of the standard Kalman Filter.

3.3.1 Formulation

There are many different sources on EKF formulation but [37] is followed in this

thesis.

The model of the system is given by a set of first-order nonlinear differential equa-

tions.

ẋ = f(x) +w

z = h(x) + v
(3.21)

where x is the state array and z is the measurement array. w and v are zero-mean

random processes. The process noise and the measurement noise matrices are given

in Equation 3.22.

Q = E(wwT )

R = E(vvT )
(3.22)

Discrete measurement noise matrix Rk is a diagonal matrix filled with the error vari-

ances of the measurement sources. Q matrix is a diagonal matrix filled with the

spectral density of the white process noise sources. Since system dynamics and mea-

surement functions may be nonlinear, their Jacobians are used in the EKF equations.

Also, the fundamental matrix is found with first-order approximation. First-order

approximation is sufficient because it is used in covariance and Kalman gain calcula-

tions, not in state propagation.

F =
∂f(x)

∂x

∣∣∣
x=x̂

H =
∂h(x)

∂x

∣∣∣
x=x̂

Φk ≈ I + FTs

(3.23)
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The discrete process noise matrix can be found using the following integration.

Qk =

∫ Ts

0

Φ(τ)QΦT (τ)dτ (3.24)

Using the definitions above, covariance matrices and Kalman gains are calculated.

Mk = ΦkPk−1Φ
T
k +Qk

Kk = MkH
T (HMkH

T +Rk)
−1

Pk = (I −KkH)Mk

(3.25)

Then, state estimate x̂k is constructed using the a priori state estimate x̄k (or predicted

state estimate), Kalman gains, and the measurements.

ˆ̇xk−1 = f(x̂k−1)

x̄k = x̂k−1 + ˆ̇xk−1Ts

x̂k = x̄k +Kk(zk − h(x̄k))

(3.26)

3.3.2 Implementation

An EKF design is given for an agent that is connected to its 6 neighbors. The AEA

model agents move only in the direction of their current orientation, there is no side-

slip. Therefore, it is suitable to use the unicycle model and define the states as carte-

sian positions, velocity and orientation.

xi =


xi

yi

vi

θi

 (3.27)

The focal agent (i = 1) requires the states of all agents, to be able to adjust its velocity

and orientation. Therefore, the state array that is estimated by the Kalman Filter is a
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28-by-1 array, filled with the states of the 7 agents.

x = [x1 x2 x3 x4 x5 x6 x7]
′ (3.28)

In this work, the focal agent measures its own position and orientation, and also the

relative positions of the other agents. Other types of sensors that measure relative

velocities or angular rates could be considered; but measuring only own position,

own orientation and relative positions is a reasonable approach. Since measurements

are directly states, partial derivatives used in the H matrix are static values. Definition

of the H matrix for this implementation is given in Equation 3.29.

Ha =


1 0 0 0

0 1 0 0

0 0 0 1


Hb =

1 0 0 0

0 1 0 0



H =



Ha 0 0 0 0 0 0

−Hb Hb 0 0 0 0 0

−Hb 0 Hb 0 0 0 0

−Hb 0 0 Hb 0 0 0

−Hb 0 0 0 Hb 0 0

−Hb 0 0 0 0 Hb 0

−Hb 0 0 0 0 0 Hb



(3.29)

There can be two different approaches to the EKF design for this problem. First, it can

be approached as a standard tracking problem. Then, there would be no information

about the interactions between agents, therefore system dynamics matrix and state

propagation would be straightforward. Second, by taking the network interactions

into account, the system dynamics matrix would be filled with the correct partial

derivatives and states of the focal agent would be propagated accordingly.
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3.3.2.1 Filter with no model information

Equations of motion for the system with no model information are given in Equation

3.30.

ẋi = vi cos θi + w1

ẏi = vi sin θi + w1

v̇i = w3

θ̇i = w4

(3.30)

Cartesian positions are iterated using velocity and orientation. However, position

errors due to disturbances or imperfect velocity command execution are expected.

Thus, white process noise w1 is added to both position update equations. Derivatives

of the velocity and orientation do not depend on other states or a known input but

it is known that velocity and orientation are subject to change. Thus, white process

noises, w3 and w4, are added to the model.

Partial derivatives of an agent’s states depend only on its own states. Therefore, F

matrix is a block diagonal matrix that consists of blocks from each agent.

Fi =


0 0 cos θi −vi sin θi
0 0 sin θi vi cos θi

0 0 0 0

0 0 0 0


∣∣∣
xi=x̂i

F = blkdiag(F1,F2,F3,F4,F5,F6,F7)

(3.31)

Since F matrix is a block diagonal matrix and Q matrix is a diagonal matrix filled

with the process noise values, Qk is also a block diagonal matrix. The recommended

approach is evaluating the Equation 3.32 symbolically once, and substituting the vari-

ables in each calculation step, rather than doing the integration in each step.

Qk =

∫ Ts

0

Φ(τ)QΦT (τ)dτ (3.32)
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3.3.2.2 Filter with model information

In this implementation, network interactions between the focal agent and other agents

are considered. Equations of motion for the focal agent are given in Equation 3.33.

ẋ1 = v1 cos θ1 + w1

ẏ1 = v1 sin θ1 + w1

v̇1 = Kacc(v0 + αF ∥ − v1) + w3,1

θ̇1 = βF⊥ + w4,1

(3.33)

w3,1 and w4,1 are the white process noise sources for the focal agent. Equations of

motion for the other agents are same as the no model case.

Partial derivatives for this model require tedious calculations. First, partial derivatives

of v1 with respect to all states is given.

∂v̇1 = Kaccα∂F
∥ −Kacc∂v1 (3.34)

It can be seen that partial derivatives of v1 are related to the partial derivatives of

parallel force F ∥. Only the partial derivative with respect to self velocity has an

additional term, which equals to Kacc. Therefore, partial derivatives of the parallel

force are focused.

The total force is the sum of spring force and damper force. Calculations of both

force components are given in Equation 3.35.

F ∥ = F
∥
spring + F

∥
damper

F
∥
spring = κ(d1n − 1)(u⃗1 · u⃗link,1n)

F
∥
damper = b(vn(u⃗n · u⃗link,1n)− v1(u⃗1 · u⃗link,1n))(u⃗1 · u⃗link,1n)

(3.35)

The distance term and the unit vectors used in Equation 3.35 are defined in Equation

3.36.
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ūn =

cos θn
sin θn


ū⊥n =

− sin θn

cos θn


ūlink,1n =

x2 − x1

y2 − y1

 /d1n
d1n = ((xn − x1)

2 + (yn − y1)
2)

1
2

(3.36)

In this formulation, distances are mainly used in the scaling of the unit vectors. There-

fore, partial derivatives of the distances are neglected for simplicity.

Positional derivatives of the parallel force are given in Equation 3.37.

∂F
∥
spring

∂xn
= κ cos θ1(1−

1

d1n
)

∂F
∥
spring

∂yn
= κ sin θ1(1−

1

d1n
)

∂F
∥
damper

∂xn
=

b

d1n
((u⃗1 · u⃗link,1n)(vn cos θn − v1 cos θ1)

+ cos θ1(vn(u⃗n · u⃗link,1n)− v1(u⃗1 · u⃗link,1n)))

∂F
∥
damper

∂yn
=

b

d1n
((u⃗1 · u⃗link,1n)(vn sin θn − v1 sin θ1)

+ sin θ1(vn(u⃗n · u⃗link,1n)− v1(u⃗1 · u⃗link,1n)))

∂F ∥

∂x1
= −

N∑
n=2

∂F ∥

∂xn

∂F ∥

∂y1
= −

N∑
n=2

∂F ∥

∂yn

(3.37)

Velocity derivatives of the parallel force are given in Equation 3.38.
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∂F
∥
damper

∂vn
= b(u⃗1 · u⃗link,1n)(u⃗n · u⃗link,1n)

∂F
∥
damper

∂v1
= b

N∑
n=2

−(u⃗1 · u⃗link,1n)2
(3.38)

Orientation derivatives of the parallel force are given in Equation 3.39.

∂F
∥
spring

∂θ1
= κ

N∑
n=2

(1− 1

d1n
)(u⃗⊥1 · u⃗link,1n)

∂F
∥
damper

∂θn
= bvn(u⃗1 · u⃗link,1n)(u⃗⊥n · u⃗link,1n)

∂F
∥
damper

∂θ1
= b

N∑
n=2

(vn(u⃗n · u⃗link,1n)(u⃗⊥1 · u⃗link,1n)− 2v1(u⃗
⊥
1 · u⃗link,1n)(u⃗1 · u⃗link,1n))

(3.39)

Then, partial derivatives of θ1 are calculated.

θ̇1 = βF⊥

∂θ̇1 = β∂F⊥
(3.40)

Similar to the relation between v1 and the parallel force, θ1 derivatives are related to

the perpendicular force, F⊥.

F⊥ = F⊥
spring + F⊥

damper

F⊥
spring = κ(d1n − 1)(u⃗⊥1 · u⃗link,1n)

F⊥
damper = b(vn(u⃗n · u⃗link,1n)− v1(u⃗1 · u⃗link,1n))(u⃗⊥1 · u⃗link,1n)

(3.41)

Positional derivatives are given in Equation 3.42.
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∂F⊥
spring

∂xn
= −κ sin θ1(1−

1

d1n
)

∂F⊥
spring

∂yn
= κ cos θ1(1−

1

d1n
)

∂F⊥
damper

∂xn
=

b

d1n
((u⃗⊥1 · u⃗link,1n)(vn cos θn − v1 cos θ1)− sin θ1(vn(u⃗n · u⃗link,1n)

− v1(u⃗1 · u⃗link,1n)))
∂F⊥

damper

∂yn
=

b

d1n
((u⃗⊥1 · u⃗link,1n)(vn sin θn − v1 sin θ1) + cos θ1(vn(u⃗n · u⃗link,1n)

− v1(u⃗1 · u⃗link,1n)))

∂F⊥

∂x1
= −

N∑
n=2

∂F⊥

∂xn

∂F⊥

∂y1
= −

N∑
n=2

∂F⊥

∂yn

(3.42)

Velocity derivatives are given in Equation 3.43.

∂F⊥
damper

∂vn
= b(u⃗⊥1 · u⃗link,1n)(u⃗n · u⃗link,1n)

∂F⊥
damper

∂v1
= −b

N∑
n=2

(u⃗⊥1 · u⃗link,1n)(u⃗1 · u⃗link,1n)
(3.43)

Orientation derivatives are given in Equation 3.44.

∂F⊥
spring

∂θ1
= −κ

N∑
n=2

(1− 1

d1n
)(u⃗1 · u⃗link,1n)

∂F⊥
damper

∂θn
= bvn(u⃗

⊥
1 · u⃗link,1n)(u⃗⊥n · u⃗link,1n)

∂F⊥
damper

∂θ1
= b

N∑
n=2

(−vn(u⃗n · u⃗link,1n)(u⃗1 · u⃗link,1n) + v1((u⃗1 · u⃗link,1n)2

− (u⃗⊥1 · u⃗link,1n)2))

(3.44)

All of the calculations above are used to fill the 3rd and 4th rows of the F matrix.

Other elements are same as the case with no interaction model.
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Since the F matrix is not a block diagonal matrix anymore, calculation of Qk is even

more tedious. The recommended approach is to evaluate the integral by symbolic

calculation once, then use the evaluated partial derivatives accordingly in the con-

struction of Qk in each filter iteration.
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CHAPTER 4

EXPERIMENTAL ANALYSIS

4.1 Particle-based Simulations

4.1.1 Active-Elastic and Vicsek-Network Model Results

Multiple simulations are carried out for the VN and AE models, using interaction

topologies that interpolate either between NN and ER networks or between NN and

SF networks.

In order to reduce the parameter space, the same AE model parameters are used in all

runs, setting α = 0.01, β = 0.12, v0 = 0.002, and κ = 5 while integrating Equations

3.6 and 3.7 with a timestep of ∆t = 0.1. These are the same parameters used in [7],

which were shown to produce rapid and reliable self-organization into the aligned

state for systems with NN interaction topologies. The parameter space for the VN

model is not restricted, since Equation 3.9 only depends on the noise intensity η and

has no additional parameters.

All systems are arranged in a square lattice configuration. Three different system

sizes are considered: a small system consisting of 1024 agents (arranged in a 32× 32

lattice) with 3906 connections, an intermediate system of 10000 agents (100 × 100

lattice) with 39402 connections, and a large system of 90000 agents (300 × 300 lat-

tice) with 358202 connections. Given that reaching a well-converged statistically

stationary state has different computational cost for different system sizes, models,

and network structures; the number and duration of the runs are varied accordingly.

These additional simulation details are thus reported for each case in the correspond-

ing figure caption. To evaluate the order in the group, the polarization order metric
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given in [15] is used. Calculation of the order metric, ψ, is given in Equation 4.1.

ψ ≈ 1 means the headings of the agents are aligned with each other and the group

is moving collectively. Conversely, ψ ≈ 0 means headings are randomly distributed

in the group and the group is in disorder. In all simulation results presented in this

subsection, the swarm is initialized in the fully aligned state (ψ = 1).

ψ =
1

N

∣∣∣∣∣
N∑
i=1

n̂i

∣∣∣∣∣ (4.1)

For each model, topology, and system size, the degree of order achieved as a function

of the angular noise η is studied. Then, the critical noise ηc of the order-disorder

transition is identified to analyze how it depends on the topology.

Once all agents are placed in a rectangular lattice (as in Figure 4.1) and the network

topology is defined, the lij values are set to lij = ∥x⃗j(0)− x⃗i(0)∥, corresponding to

the initial distances between agents i and j. This way, there would be no elastic forces

at t = 0 and that all stresses would be produced later by the self-propulsion dynamics.

4.1.1.1 Phase transition diagrams

Phase transition diagrams that display the order metric ψ as a function of noise inten-

sity η for different topologies are presented, first in simulations of the VN model and

then of the AE model. Each point in these phase transition diagrams is the result of

averaging the mean ψ values of multiple runs. For p > 0, each one of these runs are

performed on a different random superposition of a NN network and a random ER or

SF interaction network, which remained fixed throughout the simulation. The degree

distributions of all the random SF networks considered in this section are generated

using a b = −2 exponent.

Figure 4.2a displays the phase transition diagrams for the VN model, with interaction

topologies interpolating between NN and random ER network structures, whereas

Figure 4.2b displays the corresponding diagrams with topologies interpolating be-

tween NN and random SF networks. The interpolating parameter p controls the topol-

ogy, with p = 0 corresponding to the NN case and p = 1 to the random case.

For p = 0, the same curve is displayed in both plots. It appears to show a continuous
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Figure 4.1: Simulation snapshot of a 9× 9 agent system with its corresponding con-

nectivity diagram. The blue arrows show the positions and orientations of the agents

and the lines represent their interactions. The displayed interaction topology is the

superposition of a nearest neighbor network (green links) and a homogeneous ER

random network (red links). The displayed state presents partial alignment, with

agents mostly heading upwards.

transition from an aligned to a disordered state.

The curves with intermediate values of p in Figure 4.2 show that a few random non-

local interactions (with ER or SF topology) are enough to significantly increase the

critical noise, and therefore the resilience to noise of the system. This is not surpris-

ing, since a small fraction of long-range interactions is expected to strongly increase

system integration, and thus resilience to noise, as it has been shown for small-world

networks [38]. In addition, the plots show that long-range links with SF topology

increase more effectively the resilience to noise than those with ER topology. This

is also consistent with expectations, since in SF networks the mean distance between

nodes is significantly reduced [39], which improves the convergence of the distributed
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Figure 4.2: Phase transition diagrams of the VN model with different interaction

topologies, ranging from NN (p = 0.0) to ER (p = 1.0) networks in Panel (a) and

from NN (p = 0.0) to SF (p = 1.0) networks with b = −2 in Panel (b). The

transition appears as continuous for all cases. A larger fraction of random long-range

connections (either ER or SF) increases the critical noise. Each point results from 8

runs (each one with a different random superposition of a NN and a random ER or

SF network) of 5 × 105 timesteps per noise value, for an intermediate system size

(N = 100× 100).

average consensus protocol that underlies the VN model, thus producing higher criti-

cal noise values.

Figure 4.3a presents the phase transition diagrams for the AE model with topologies

interpolating between NN and random ER networks, whereas Figure 4.3b displays

the corresponding diagrams with topologies interpolating between NN and random

SF networks. Here again, p is the interpolating parameter.

In this model, the transition appears to be first-order for all values of p. This is con-

sistent with previous results obtained in the p = 0 case [7], where it was shown that

the ordered and disordered branches can co-exist for a range of η values close to the

critical noise. As explained at the beginning of this section, only the ordered branch is

found (in the bistable region), because all simulations are started from a fully aligned

(ψ = 1) initial condition. When a small fraction of long-range random connections

is included, for p = 0.2, a significant increase in the resilience to noise is observed.

In the ER case, the critical noise then continues to increase with p, as in the previ-
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Figure 4.3: Phase transition diagrams of the AE model with different interaction

topologies, ranging from NN (p = 0.0) to ER (p = 1.0) networks in Panel (a),

and from NN (p = 0.0) to SF (p = 1.0) networks with b = −2 in Panel (b). All

transitions appear to be discontinuous. For each one, only the upper solution branch

is displayed. In contrast to the VN case presented in Fig. 4.2, the critical noise only

increases monotonically with the fraction of random long-range connections in Panel

(a), while it decreases for p > 0.6 in Panel (b). Each point results from 40 runs (each

one with a different random superposition of a NN and a random ER or SF network)

of 106 timesteps per noise value, for an intermediate system size (N = 100× 100).

ously presented VN case, which is consistent with the aforementioned expectation

that more long-range interactions favor system integration. In the SF case (Figure

4.3b), however, the critical η starts decreasing for p >∼ 0.6, so resilience to noise is

maximized for intermediate values of p. This is surprising, since it implies that in-

cluding more long-range interactions can hinder system cohesion. Also, fully random

SF topology (p = 1) displays an even lower critical noise value, which contradicts

the common notion that SF networks should improve system integration by reducing

the mean distance between nodes [39].

4.1.1.2 Critical noise as a function of topological structure

The critical noise value ηc is presented here as a function of the topological control

parameter p, for all the phase transition diagrams presented above and for other sys-

35



0 0.2 0.4 0.6 0.8 1

p

3.2

3.4

3.6

3.8

4

4.2

4.4
C

ri
ti
c
a

l 
N

o
is

e
 (

C
)

N = 32x32

N = 100x100

N = 300x300

(a)

0 0.2 0.4 0.6 0.8 1

p

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

C
ri
ti
c
a

l 
N

o
is

e
 (

C
)

N = 32x32

N = 100x100

N = 300x300

(b)

Figure 4.4: Critical noise ηc as a function of the topological control parameter p for

the VN model with different system sizes. The parameter p interpolates between

NN and ER random networks in Panel (a), and between NN and SF (with b = −2)

random networks in Panel (b). As the fraction of random, long-range connections is

increased, the critical noise increases in both cases. Small system (N = 32× 32): 40

runs of 2 × 105 timesteps per noise value. Intermediate system (N = 100 × 100): 8

runs of 5× 105 timesteps per noise value. Large system (N = 300× 300): 8 runs of

105 timesteps per noise value.

tem sizes. In order to do this, first an objective criteria must be defined for computing

the transition point from the numerical data.

For the VN model, given that the transition appears as continuous, a standard method

for detecting the critical noise in second-order phase transitions is used. ηc is identi-

fied as the point where the variance of the order metric ψ is maximized. To interpolate

between the discrete simulated values of η, the η value with the highest Var(ψη) (the

variance of the order metric over all runs performed with noise level η) and the two

adjacent η values are selected. Then, ηc is computed as the location of the maximum

of a quadratic curve that passes through the three corresponding (η,Var(ψη)) points.

For the AE model, since in this case the transition is discontinuous, ηc is defined as the

point where the ordered solution ceases to exist. The critical noise level is computed

as the midpoint between the highest η value at which an ordered solution is identified

and the next tested value of η, for which no ordered stationary state could be found.

Using these criteria, critical noise ηc is computed for three different system sizes in
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Figure 4.5: Critical noise ηc as a function of the topological control parameter p for

the AE model with different system sizes. The parameter p interpolates between

NN and ER random networks in Panel (a), and between NN and SF (with b = −2)

random networks in Panel (b). The ER case displays higher ηc for higher p values, as

in Fig. 4.4. In the SF case, however, the maximum ηc is reached here at intermediate p

values. Small system (32×32): 40 runs of 106 timesteps per noise value. Intermediate

system (100 × 100): 40 runs of 106 timesteps per noise value. Large system (300 ×
300): 8 runs of 5× 105 timesteps per noise value.

each model and topology considered.

Figure 4.4 displays ηc as a function of p for the VN model, with p interpolating

between NN and ER networks in Panel (a) and between NN and SF networks in

Panel (b). As previously discussed, the same behavior is observed in both cases: the

resilience to noise increases with p (i.e., with the fraction of random connections).

The only exception is the N = 32 × 32 case in Panel (a), where strong finite size

effects appear to reduce the resilience to noise as p approaches 1. In both cases, it

should be noted that the benefit of adding more random links starts saturating for

larger p.

Figure 4.5 shows ηc as a function of p for the AE model. When p interpolates between

NN and ER networks, as shown in Panel (a), the resilience to noise increases with p

in a way similar to the VN case. However, it should be noted that ηc appears to

grow linearly with p for p ≥ 0.4 in all system sizes, without starting to saturate as

37



in the VN case. When p interpolates between NN and SF networks, in Panel (b), the

resilience to noise increases initially with p, but then decreases as p approaches 1.

This reduction of the critical noise for larger p values is seen to depend on system

size, with ηc becoming smaller at p = 1 in bigger systems.

The reduced resilience to noise for a larger fraction of random SF connections ob-

served above in the AE model appears to be a consequence of the overabundance

of nodes with low degree. This is because nodes with low degree are more easily

excitable by noise, since they represent weakly coupled components of the elastic

network that mediates the interactions in the AE model. This is also consistent with

the decrease of resilience in larger systems, since the fraction of nodes with few con-

nections increases with N . In order to test this hypothesis, the relationship between

critical noise and the exponent of the degree distribution in SF interaction networks

is analyzed in the next part.

4.1.1.3 Critical noise as a function of scale-free exponent

Here, simulations of the AE model interacting through fully random (p = 1) SF

topologies are considered, and relationship between the critical noise and the expo-

nent b of the degree distribution in Equation 3.4 is analyzed.

Figure 4.6a shows the different degree distributions that is implemented in the inter-

mediate (N = 100×100) system size. In order to keep N and K constant, kmax must

be increased for higher values of |b| , which extends the nk = 1 region where the

distribution is flat.

For each exponent b, multiple simulations of the AE model are performed, using dif-

ferent realizations of a SF interaction network with the corresponding degree distribu-

tion. Figure 4.6b presents the resulting phase transition diagrams. The inset displays

the respective critical noise values as a function of b. For all SF exponents consid-

ered, a discontinuous order-disorder transition is found, as in the previously explored

b = −2 case. The figure shows that ηc is reduced as the slope of the distribution

becomes steeper. This implies that the resilience to noise decreases as b becomes

more negative, that is, as the fraction of nodes with a low number of connections is
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Figure 4.6: Simulation details and results of the AE model analysis of the relationship

between the critical noise and the SF interaction network exponent. Panel (a) presents

the different degree distributions, with various b exponents, that are implemented in

the fully random (p = 1) SF interaction networks considered. Each b corresponds to a

different slope in this log-log plot. Panel (b) displays the resulting phase transition di-

agrams for each of these distributions. The inset shows the critical noise as a function

of b. It is observed that ηc decreases for steeper distribution slopes. All simulations

are carried out in an intermediate size system (N = 100 × 100), performing 16 runs

of 2× 105 timesteps per b value.

increased, in agreement with the hypothesis in the previous part.

4.1.2 Active-Elastic-Anticipation Model Simulations

Particle agent model simulations are conducted for the AEA model, in order to un-

cover its novel properties and similarities to AE and VN models. Agents are placed

in a bounding hexagon (that lies in a 2D infinite space) with triangular tessellation.

This method is chosen over the square tessellation used in the previous analyses, be-

cause initial distance (lij) between all neighbors is same. Agents inside the swarm

have 6, agents on the sides have 4, and agents at the corners have 3 connections. For

a given number of agents per side value l, the number of agents in the swarm equals

to N = 3l2 − 3l + 1.
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Parameters used in the AEA model simulations are α = 0.004, β = 0.12, v0 =

0.002, and κ = 5; while integrating Equation 3.20 with timestep ∆t = 0.1. Damper

coefficient, b, is set according to the scenario. Same order metric given (ψ) in the

previous subsection (Equation 4.1) is used for evaluating the order in the group for

AEA model analyses.

Figure 4.7 displays the initial positions, initial orientations, and fixed Nearest-Neighbor

Network links between the agents.

Figure 4.7: Initial positions, initial NN links, random and aligned initial orientations,

for a hexagon with 6 agents on the sides.

4.1.2.1 Phase Transition Diagrams

Phase transition diagrams that display the order metric ψ as a function of noise inten-

sity η are presented. Effect of damper coefficient b and topological control parameter

p is studied. Only random network considered for the AEA model is the ER random

network.
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Figure 4.8: AEA model ψ timeseries, for p = 0 and b = 0. The black dashed line

represents the half point and the red circle is the supremum of the remaining data.

Figure 4.9: AEA model ψ timeseries, for p = 0 and b = 150. The black dashed line

represents the half point and the red circle is the supremum of the remaining data.

For the AEA model with NN network, evolution of the order metric for b = 0 is given

in Figure 4.8, and for b = 150 is given in Figure 4.9. To be able to get the steady-state

order value for a given noise intensity, the first half of the iterations are discarded.

Then, the maximum order metric value captured in the ensemble of all remaining

data is recorded and displayed in the phase transition diagram for the respective noise

intensity value.
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Figure 4.10: Phase transition diagrams of the AEA model with NN network for dif-

ferent b values. Each point results from 40 runs of 106 timesteps per noise value, for

a system size N = 1141.

Figure 4.10 presents the phase transition diagrams for the AEA model with the NN

network (p = 0). For each noise intensity (η) value in the phase transition diagram,

40 simulations with 106 simulated time steps are done. 3 different damper coefficient

values are studied: b = [0, 50, 150].

For b = 0, there is no anticipatory interaction between agents as in the case of the AE

model. The only difference with the AE model is the existence of inertia. The phase

transition diagram shows that the order metric stays high until the η = 40◦ value, and

then declines sharply. Therefore, the AEA model with zero damper coefficient can

achieve collective motion up to a critical noise value and its phase transition is first-

order. This result shows that the inclusion of inertia in the AEA model does not hinder

the collective motion ability and did not change the phase transition characteristics
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when compared to the AE model.

For b = 150 case, phase transition characteristic seems to be continuous and it is

similar to the alignment-based VN model rather than the position-based AE model.

And for b = 50 case, the transition characteristic seems to be a mixture of the AE

model and the VN model. This result is in line with the expectations. As the damper

coefficient increases, which means the anticipation horizon is increasing, alignment-

based interactions become dominant to position-based interactions. Therefore, phase

transition characteristics switch gradually from first-order to second-order.
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Figure 4.11: Distributions of order metric timeseries for different b and η values

Figure 4.11 gives the histograms of the order metric timeseries that are used in the

construction of the phase transition diagram in Figure 4.10, for different noise and b

values. It can be seen that for b = 0, the distribution is bi-modal, two peaks are appar-

ent in the graph and the intensity of the ordered peak decreases as the noise intensity

increases. When b is increased to 50, tails of the curves are elongated. At b = 150,

the distribution is unimodal and the peak can be at any order value. These results con-
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clude that as the anticipation horizon increases, interactions between agents become

more alignment-based.

Phase transition analyses with different p values that interpolates between NN and ER

random networks is conducted for the AEA model. In the damper coefficient anal-

yses, a hexagon shape is preferred since it gives equal distances between all neigh-

boring agents. However, agents in the bulk have 6 connections, which lowers the

links per agent (K/N ) ratio, compared to the square lattice with 8 connections. Cre-

ating a fully random network that is connected would be more difficult and created

networks would have a significant amount of agents with only 1 link because the ex-

pected value of the Poissonian distribution would shift from 8 to 6. Hence, for the p

analyses, agents are put in a square lattice with 8 connections, similar to the analyses

for the AE and VN models.

Figure 4.12 depicts the phase transition diagrams with p interpolating between the

NN network and the ER random network. Number of agents in the system is 4900

(N = 70× 70). Each point in the diagrams results from 20 runs of 4× 105 timesteps

per noise value. For p > 0, each one of these runs is performed on a different random

superposition of a NN network and a random ER network, which remained fixed

throughout the simulation. Also, each simulation has a different noise generator seed.

For b = 0 case, results are similar to the AE model. As p increases, resilience to noise

increases. For b = 50 and b = 150, networks with long-range links perform better

than the NN network against the noise. However, the fully random network performs

worse than the interpolated network.

4.1.2.2 Narrow passage scenario

The new design parameter, b, opens up new possibilities for accomplishing tasks.

Anticipation brings alignment-based interactions, therefore more fluid-like motion is

expected, compared to the no anticipation case.

Passing through a narrow passage can be used as a qualitative example. Figure 4.13

shows the results of the p = 0, b = 0 case and Figure 4.14 shows the results of the

p = 0, b = 150 case (same as the case ’a’ and case ’c’ in Figure 4.11, respectively),
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Figure 4.12: AEA model phase transition diagrams for different b values with p inter-

polating between NN and ER random networks.

in a simulation where agents initially go towards a narrow passage with zero noise.

In the no-anticipation case shown in Figure 4.13, agents could not pass through the

passage. A consensus in the direction of movement is not reached, thus the swarm

could not shrink in size and then agents turn back from the passage. In Figure 4.14,

the swarm contracted in size in an orderly manner and passed to the other side easily.

In this example, the only difference is the addition of anticipation.

In order to study the effect of anticipation in passing through a narrow passage sce-

nario, multiple simulations with varying parameters are conducted. A hexagon swarm

with 8 agents on the sides is placed in the arena. The length of the swarm in the y-axis
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Figure 4.13: AEA model with no anticipation - passing through a narrow passage

scenario

is 7
√
3 and this value is set as one normalized width, denoted as wn. Two circular

obstacles with r = 15 are placed in x = 15 and the separation between them varies

from 0.7 to 0.9 normalized width. Noise intensity is set as 20◦, which is below the

critical noise for any configuration, and 40 different simulations with different noise

generator seeds are done for each case. Damper coefficient values used in the simula-

tions are 0, 10, 50, 150 and 450. Runs that can reach the other side (x = 30) without

any collision are regarded as successful and elapsed times of the successful runs are

recorded.

In the trials, it was observed that swarms with p > 0 mostly fail to pass through the

passage because long-range links prevent the swarm to constrict. Therefore, only the

NN network is considered for this scenario.
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Figure 4.14: AEA model with anticipation - passing through a narrow passage sce-

nario

Figure 4.15 gives the ratio of the successful runs for different b and wn values. No

anticipation case (b = 0) has %0 success with 0.7wn and %10 success with 0.8wn.

With a small increase in b from 0 to 10, success ratio in 0.8wn jumps from %10 to

%60. It can be seen that as b increases, success ratio increases for any wn. Also, only

b = 450 case has non-zero success ratio for 0.7wn.

Figure 4.16 gives the mean and standard deviations of the elapsed times of the suc-

cessful runs given in Figure 4.15. Regardless of the b value, means of the elapsed

times increase as the width of the passage decreases. This is reasonable, since the

smaller gap may be interpreted as larger friction to the swarm. Also, as b increases,

means of the elapsed times decrease for any wn value. These results support the argu-

ment that as b (or anticipation horizon) increases, more fluid-like motion is observed.

Also, anticipation helps the swarm in passing through a narrow passage task.
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Figure 4.15: Success ratios of passing through the passage scenario, for different b

and wn values.

4.1.2.3 Reflecting from a wall scenario

Long-range links prevent the swarm to constrict and are not helpful in the narrow

passage task. However, they can be helpful in other ways. Long-range links decrease

the mean distance between nodes, thus they can improve the speed of information

transfer between the agents.

Figure 4.17 depicts the order metric timeseries for reflecting from a wall scenario. A

swarm with 169 agents and 462 NN links is used in the simulations. There are no

anticipation and with anticipation cases, and also p = 0.01 with anticipation case. 40

different networks are used for the random network case. NN links are not broken

as the random links are added, to remove the possibility of collision. This would not

affect the results since the number of random links added to the system is only 5.

Mean of the lowest order metric and the respective time is shown with a cross. It can

be seen that no anticipation case (b = 0) has the lowest order metric value, which

means that it has the maximum discrepancy in the alignment between the parts of the
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Figure 4.16: Mean and standard deviation of the elapsed times of the successful runs,

for different b and wn values.

swarm. The case with anticipation has a better lowest order metric value. The agents

respond to changes without waiting for a position displacement to occur, thus they

align better within a shorter time. Runs with random links have the best response

time and highest alignment. Even though only 5 links are added, improvement is sig-

nificant: order metric drops to 0.87 at most. Agents have a high degree of alignment,

whether they are at the front or back.
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Figure 4.17: Order metric ψ values as a function of the time step, for different con-

figurations in reflecting from a wall scenario.
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4.2 Analysis of the Extended Kalman Filter for the AEA Model

In this section, the results of the experiments with EKF are given. First, performances

of EKFs with and without model information are compared. Then, narrow passage

experiment is conducted for a swarm with every agent running their own EKF to

create motion commands.

As described in the EKF design, agents measure cartesian positions of their own and

connected agents. In the experiments given in this section, the standard deviation of

the position measurement is 3 centimeters. Also, agents measure their own orienta-

tion and the standard deviation of this measurement is 5 degrees. The measurement

sampling period is 0.05 seconds (20 Hz as sampling frequency), which is the same

period of simulation time-step.

Position measurements are used as initial values of the position state estimates. For

velocity and orientation states, self-propulsion speed and orientation measurements

are used. Position measurement standard deviations are used to initialize the position

elements of the state covariance matrix. Initial standard deviation values used in the

state covariance matrix for velocity and orientation states are v0/2 and 45◦, respec-

tively. Velocity and orientation process noise values for the focal agent are chosen 20

times smaller than the ones for the neighbors because the model of the focal agent is

more accurate.

4.2.1 Comparison of the EKFs with and without Model Information

Extended Kalman Filter designs with and without model information are compared in

this subsection. The self-propulsion speed of the agents in phase transition analyses

is 0.002m/s. This value is very low for a real robot. It is raised to 1m/s and other

parameters are adjusted to accommodate this change. Rest of the parameters are as

follows: α is 0.5, β is 0.12, κ is 5, b is 25 and Kacc is 0.1.

To evaluate the performance of the filters, one benchmark scenario is used. In this sce-

nario, 7 agents move towards an obstacle and bounce off from it. Snapshots from the

scenario are given in Figure 4.18. To be able to compare both designs, they should
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Figure 4.18: Snapshots from bouncing off from an obstacle scenario.

be tested in the same scenario with the same measurement set. Therefore, for this

analysis, Kalman Filter estimations are not used in the calculation of motion com-

mands because filters would create different motion commands, and then scenarios

for each filter would be different. The AEA model with zero noise is used to update

the positions and orientations of the agents.

Figure 4.19 gives the real and estimated values of velocity and orientation of the agent

in the center. It can be seen that the filter without the model information tracked the

states with a significant delay, compared to the filter with the model information.

Position estimates are not given because positions are measured states and their esti-

mates are close to the real values.

Figure 4.20 gives the state estimation errors and covariance matrix bounds of the filter

of the center agent. In this plot, it is easier to see the effect of delay in the filter without

model information. Even though the covariance bands for both filters are very close,

state errors go further out of the covariance bands for the filter without the model

information, which is also an indicator of modeling errors. The process noise can be

increased to accommodate for unmodeled effects. Then, states would converge faster,
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Figure 4.19: Velocity and orientation estimates of the agent in the center

but error bands would be larger. Considering these findings, it is reasonable to use the

filter with model information.

Figure 4.21 gives estimation errors and covariance bands of the center agent’s filter,

for all states of its neighbors. As mentioned in the experimental setup, process noise

for the velocity and orientation states of neighbors is higher. Covariance bands for

states of neighbors are larger compared to the states of the focal agent.
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Figure 4.20: Position, velocity and orientation estimation errors of the filters with

no information and with model information. Blue color is used for the filter with no

information and red color is used for the filter with model information. Dashed lines

represent the covariance bands calculated by the filters.
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Figure 4.21: Estimation errors in states of the neighbors.
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4.2.2 Narrow Passage Scenario with Extended Kalman Filter

Performance of the AEA model with the designed EKF is evaluated with a narrow

passage scenario. A swarm with 19 agents goes toward a narrow passage, with a

self-propulsion speed of 0.3m/s. Every agent runs its own EKF and creates motion

commands using the estimates of its EKF. Separation between the obstacles is equal

to 0.8 normalized width. 2 different configurations are tested: b = 0 and b = 10. Rest

of the parameters are as follows: v0 is 0.3, α is 0.1, β is 0.4, κ is 10 and Kacc is 0.1.

Figure 4.22 gives the snapshots from the simulation with no anticipation. Interference

of the errors and delays created by the filters of each agent is not tolerated. Collective

motion is lost and collisions are observed.
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Figure 4.22: Snapshots from the scenario with no anticipation (b = 0).

Figure 4.23 gives the snapshots from the simulation with anticipation. It can be seen

that the swarm successfully passes through the passage. Overshoots in the control of

orientation and velocity disappeared, compared to the case with no anticipation. Filter

errors and covariance bands of the agent in the center are given in Figure 4.24. State

estimation errors are in reasonable bounds and covariance calculation of the filter is

in agreement with the errors.
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Figure 4.23: Snapshots from the scenario with anticipation (b = 10).
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Figure 4.24: Position, velocity, and orientation estimation errors of the EKF of the

center agent, for b = 10 case. Dashed lines represent the covariance bands calculated

by the filter.
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4.3 Real Robot Experiments

Crazyflie 2.x quadcopter UAVs are developed by Bitcraze AB [40]. It is an agile

platform that weighs only 27 grams. It is used in many studies in the literature, and

a multitude of open-source tools can be found for simulating and modeling the plat-

form. 6 Crazyflies are used in the experiments in this thesis. 3 of the Crazyflies

are version 2.1 and the other 3 are version 2.0. Each Crazyflie has an identification

number for correct radio communication and starting position. Other than that, iden-

tification numbers have no significance for the experiments. Figure 4.25a gives a

photograph of the Crazyflie 2.0 quadcopter UAV used in the experiments, and Figure

4.25b shows the 6 Crazyflies on the ground with their numbers.

(a) (b)

Figure 4.25: (a) A photograph of the Bitcraze Crazyflie 2.0 quadcopter UAV used in

the experiments. (b) 6 Crazyflie robots on the ground. Enumeration of the robots is

given in red.

Experiments with Crazyflie robots are conducted in METU ROMER UAV Labora-

tory. There is a Vicon Vantage [41] motion capture system in the laboratory. The

system consists of 12 cameras and comes with Vicon Tracker 3.9 software for moni-

toring and calibration. Infrared reflecting markers are placed on each Crazyflie robot

and the system tracks the position of these markers. It is compatible to use with the

Crazyswarm platform. The laboratory with the Vicon Vantage motion capture system

and 6 Crazyflie robots can be seen in Figure 4.26a. 3D perspective view of the test
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arena from the Vicon Tracker software is given in Figure 4.26b.

(a) (b)

Figure 4.26: (a) Laboratory with the Vicon Vantage motion capture system and

Crazyflie robots. (b) 3D perspective view of the test arena from the Vicon Tracker

software

4.3.1 Crazyswarm Simulations

Crazyswarm [42] platform is used to fly Crazyflie robots, manage communication

with agents and handle motion capture hardware outputs with ease. Crazyswarm

platform has a simulation mode, in which the same algorithm that is developed to

fly real Crazyflie robots can be tested. In simulations, measurements are created by

adding a specified Gaussian noise to the simulated positions and orientations. By

switching the measurement source to the real hardware, the same algorithm tested

out in the simulation mode can be used to fly real Crazyflie robots.

Narrow passage experiments are repeated with 6 Crazyflie robots in Crazyswarm sim-

ulations. It is important to do the simulations first since design errors or software bugs

are going to be captured in the simulations. Only successful experiments are repeated

with real Crazyflie robots.

After take-off, Crazyflie robots move to their starting position, which is a pentagon

with a side length of 0.8m. Enumeration of the agents can be seen in Figure 4.25b.

Agent number 4 is addressed as the center agent. Distance between agents 3 and 5 is

1.3m, which is denoted as one normalized width (wn) for Crazyflie experiments. The
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(a) On the ground (b) Take-off (c) Starting Position

Figure 4.27: Obstacles are shown in red, Crazyflie robots are shown in blue and their

shadow after take-off is shown in gray. (a) 6 robots start from a pentagon formation.

(b) robots take off from the ground and hover. (c) After take-off, robots are moved to

the starting position.

swarm goes toward a narrow passage with a self-propulsion speed of 0.3m/s. There

are 2 pillar-shaped obstacles with r = 1m inside the arena, which are placed on the x

axis. Figure 4.27 depicts the simulation arena and the take-off sequence of the robots.

Every agent runs its own EKF and creates motion commands using the estimates of

its EKF. For the simulations, the standard deviation of the position measurement is

3 cm. Also, agents measure their own orientation and the standard deviation of this

measurement is 5◦. 2 different configurations are tested: no anticipation (b = 0) and

with anticipation (b = 10). Rest of the parameters are as follows: α is 0.1, β is 0.4, κ

is 10 and Kacc is 0.1.

Figure 4.28 gives the snapshots from the simulation without anticipation. Separation

between obstacles is 0.7wn. The swarm passes through the passage but loses its

order, errors created by the filters of the agents are not tolerated. Figure 4.29 gives

the snapshots from the simulation with anticipation. Separation between obstacles

is 0.7wn. Now, the swarm passes through the passage successfully. There are no

oscillations in the positions and orientations.
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Figure 4.28: Crazyswarm simulation without anticipation. Separation between obsta-

cles is 0.7wn.
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Figure 4.29: Crazyswarm simulation with anticipation. Separation between obstacles

is 0.7wn.
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4.3.2 Experiments with real Crazyflie Robots

To try out the algorithm with the real Crazyflie robots, a few changes have been made.

Position measurement source is switched from simulation to the Vicon motion capture

system. Since the model is in 2D, the velocity command in the vertical direction is

zero. A proportional altitude controller is implemented, so that expected drift in the

altitude would not pose a problem. Due to a hardware failure or a software error,

collisions may happen or erroneous commands may lead robots to the walls. The

safety system is triggered when the distance between two agents gets smaller than

0.3m or gets larger than 2m, or any agent is out of the arena boundaries. If any of

these conditions are met, all robots are landed immediately.

To identify the real system, a constant 0.3m/s velocity command in +y direction is

given to all Crazyflies. Velocity and orientation data derived from the motion capture

system is shown in Figure 4.30. Jumps in the velocity data are due to the sampling

made by the Crazyswarm platform. It can be seen that agents reach their velocity

setpoint in around 1 second. Also, velocity and orientation deviations are observed

due to process disturbances. These disturbances are expected in the experiments with

real robots.
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Figure 4.30: Velocity and orientation of the agents in the constant velocity scenario,

derived from the motion capture system.

Then, the narrow passage scenario with anticipation, for 0.85wn and 0.7wn is con-

ducted with real robots. All agents create motion commands using the estimates of
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their own EKF. Trajectories of the third and fifth agents for constant velocity, 0.85wn

and 0.7wn cases are given in Figure 4.31. Also, Figure 4.32 gives the photographs

from the experiment and visualization made by the Vicon Tracker software for the

0.7wn case. It can be seen that the swarm constricts as much as needed depending on

the obstacle positions and passes to the other side successfully.
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Figure 4.31: Trajectories of the third and fifth agents for constant velocity, 0.85wn

and 0.7wn cases.

Velocity and orientation states derived from the motion capture system and estimated

by the EKF are given in Figure 4.33, for the center agent in 0.7wn scenario. All state

estimation errors and covariance bands of the EKF of the center agent are given in

Figure 4.34. Data derived from the motion capture system is used as the ground truth.

Errors of the state estimations are higher than the particle agent and Crazyswarm sim-

ulations, but a discrepancy due to process disturbance is expected as shown in Figure

4.30. Covariance bands calculated by the EKF are consistent with the estimation

errors.

Lastly, an experiment is conducted to test the performance of the filter in a scenario

where the orientations of the agents change rapidly. In this experiment, agents bounce

off a wall. Figure 4.35 gives the photographs from the experiment and visualizations

made by the Vicon Tracker software. Trajectories of the agents can be seen in Figure

4.36.

Velocity and orientation states of the center agent in bouncing off a wall scenario,

derived from the motion capture system measurements and EKF estimates, are given
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in Figure 4.37. Orientation of the center agent starts at 60◦ and goes to −50◦ after

bouncing off the wall. The EKF tracks the velocity and orientation states adequately.

All state estimation errors and covariance bands of the EKF of the center agent are

given in Figure 4.38. Data derived from the motion capture system is used as the

ground truth. Estimation errors in the orientation states are higher than the narrow

passage scenario but it does not pose a problem to the cohesiveness of the swarm.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: Snapshots from the 0.7wn case. Left panels are photographs from the

real experiment, and right panels are visualizations from the Vicon Tracker software.
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Figure 4.33: Velocity and orientation states of the center agent in 0.7wn scenario.

Data derived from the motion capture system measurements is shown in black and

estimation by the EKF of the center agent is shown in red.
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Figure 4.34: State estimation errors and covariance bands of the EKF of the center

agent, for 0.7wn scenario. Left panels are for the states of the center agent and right

panels are for the states of its neighbors.

67



(a) (b)

(c) (d)

(e) (f)

Figure 4.35: Snapshots from the bouncing off a wall scenario. Left panels are pho-

tographs from the real experiment, and right panels are visualizations from the Vicon

Tracker software.
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Figure 4.36: Trajectories of the agents in bouncing off a wall experiment. Red dashed

lines give the individual trajectories and blue solid line gives the trajectory of the

center of the swarm. Starting points are denoted with ’o’ and final points are denoted

with ’x’.
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Figure 4.37: Velocity and orientation states of the center agent in bouncing off a wall

experiment. Data derived from the motion capture system measurements is shown in

black and estimation by the EKF of the agent is shown in red.
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Figure 4.38: State estimation errors and covariance bands of the EKF of the center

agent, in bouncing off a wall experiment. Left subplots are for the states of the center

agent and right subplots are for the states of its neighbors.
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CHAPTER 5

DISCUSSION

In this chapter, results of the experiments are discussed. Also, methodology and

the experimental setup are criticized. First, particle agent model simulation results

are studied. Then, EKF design and results are discussed. Lastly, simulations and

experiments with Crazyflie quadcopter UAVs, which bring the AEA model and the

EKF to the real world, are discussed.

5.1 Active-Elastic and Vicsek-Network Model Results

The presented results show that the structure of the interaction network affects very

differently the resilience to noise of the ordered state in the VN model and the AE

model. In the VN case, a larger fraction of random links with either Poissonian or

power-law degree distribution always increases the critical noise. In the AE case,

similar results are obtained only when interpolating between NN and random ER net-

work topologies. When interpolating instead between NN and random SF networks, a

larger fraction of random links can reduce the critical noise. As mentioned above, this

is contrary to the common intuition that more long-range connections tend to improve

the collective behavior of networked systems by decreasing the mean topological dis-

tance between nodes, which improves the system-wide propagation of information.

This is believed to be especially true when these connections follow a SF topology,

because this connectivity further reduces the mean distance between nodes.

A heuristic explanation of this phenomenon can be deduced from the difference in

the self-organization mechanism that leads to collective motion in each model. The

self-organizing dynamics of the VN model is based on a distributed average con-
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sensus process, where local orientation averages of the consensus variable propagate

directly through the network. In the AE model, however, only the positional infor-

mation is propagated through the network, while the consensus variable is still the

orientation. This suggests that the self-organizing mechanism for the AE model must

be different. Indeed, as detailed in [7, 8], the AE model self-organizes by focus-

ing the self-propulsion energy into low-energy modes, through a combination of a

well-known property of all elastic systems and the coupling (imposed by its dynam-

ical equations) between the elastic forces and the individual heading directions. It is

well known that higher energy modes dampen at a faster rate than slower ones in all

elastic systems, because their higher rigidity produces higher oscillation frequencies

that dissipate faster. The AE model is an active elastic system, however, where each

agent is also continuously injecting energy at the individual level through its self-

propulsion term, so motion cannot dampen out. Instead, the elastic forces will tend to

steer agents away from the higher modes, which require more energy to excite. The

self-propulsion energy will thus be channeled to lower and lower modes, until the first

(rotational) mode or the zero (translational) mode is reached and collective motion is

achieved.

This explains why SF networks can lead here to weaker ordered states. Previous

works had only considered homogeneous elastic systems with NN interactions, in

which low-energy elastic modes correspond to large scales of coherent motion. In

complex, networked elastic systems, however, this correspondence does not hold,

since there can be highly localized and disordered low-energy modes that do not

correspond to any large-scale collective dynamics. In particular, the SF networks

have an overabundance of agents with few connections, and therefore low elastic

constraints, which results in multiple disordered low energy modes. For example,

there will be a majority of agents with only two links, which can be easily excited at

very low energy levels.

The discussion above helps understanding why disordered modes can be easily ex-

cited by noise in the AE model with SF interactions. This in turn justifies the lower

critical noise that is observed for the AE model as more random SF interaction links

are included, and when considering SF interaction networks that are larger or have

steeper degree distributions.
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5.2 Active-Elastic-Anticipation Model Simulation Results

Phase transition diagrams, which consist of the order metric (ψ) with respect to noise

intensity (η), are useful for the classification of the collective motion models. Phase

transition of the AE model is sharp and has a discontinuity in the first-order deriva-

tive. Therefore, the transition is classified as first order. For the VN model, order

transitions to disorder continuously and it has a discontinuity in the second-order

derivative. Therefore, the transition is classified as second order. Equations of mo-

tion for the AE model are position-based and for the VN model are orientation-based.

This difference between the models is reflected in the phase transition diagram.

In Figure 4.10, the same analysis is conducted for the AEA model with different

damper coefficient (b) values. First of all, for b = 0 case, the only difference between

the AE model and the AEA model is inertia. The AEA model agents have inertia

and their velocity can not change instantly. However, the behavior of the model with

respect to the noise intensity is not different from the AE model. This is an important

outcome because it proves that the addition of inertia did not create diverse compli-

cations and the AEA model behaves similarly to the well-established AE model. In

this work, velocity is controlled with a proportional controller, and inertia is lumped

with the proportional gain. A high proportional gain is helpful for reaching the veloc-

ity setpoint faster but as revealed in the eigenvalue analysis, it may bring oscillations

and also instability after a certain point. On the other hand, a low gain makes the

agents insensitive to the velocity commands. This would disrupt the consensus dy-

namic in the swarm and order would be lost. This parameter allows the design of

velocity dynamics that are more suitable to the physical robots, as long as the limits

are considered.

As the damper coefficient increases, the anticipation horizon increases and therefore

velocity-based interactions are expected to be stronger. When the damper coefficient

is increased to 50, the transition to disorder is not sharp as it was in the b = 0 case.

And for b = 150 case, the transition is much similar to the VN model. Also, Figure

4.11 shows that bi-modality is lost as the anticipation horizon increases. These results

show that interactions become predominantly orientation-based when the anticipation

horizon is increased.
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Phase transition diagrams of the AEA model for different damper coefficient b and

topological control parameter p values are given in Figure 4.12. Similar analyses are

conducted for AE and VN models and critical noise ηc is presented as a function of

p. Criteria for identifying the critical noise differs for the AE model and the VN

model, since their phase transition characteristics are different. For the AEA model,

b parameter allows the continuous transition between first-order and second-order

systems. Therefore, either separate criteria should be chosen for each b value, or a

single criterion that can be justified for all b values should be created. Setting up

critical noise criteria and critical noise analysis for the AEA model is left as future

work. Still, the AEA model with b = 0 diagram shows that long-range interactions

increase the resilience to noise, same as the AE model. For b = 50 and b = 150,

networks with long-range interactions have better resilience against noise compared

to the NN network. However, it can be seen that fully random network (p = 1)

has performed worse than the interpolated network (p = 0.4). This kind of effect

is also displayed in the p analysis for the AE model with the SF network. Detailed

investigation of this result is a valuable future work topic to better understand the

AEA model.

The anticipation parameter opens up a new dimension in the design space. Figure

4.13 and Figure 4.14 shows a scenario where anticipation is beneficial. It can be

seen that the AEA model is more suitable when the task is to go through a narrow

passage. For a fair comparison, the spring constants of the models are the same, the

only difference is the addition of anticipation.

A systematic analysis is conducted to show the effect of b in a narrow passage sce-

nario. Figure 4.15 shows the success ratio as a function of b, in different passage

widths. The ratio of the successful runs for 0.8wn case increases significantly as

b value grows. When the separation between obstacles is reduced to 0.7wn, only

b = 450 is able to successfully pass through. As the hexagon shape with the NN

network is compressed, links between agents become more parallel to their orienta-

tion. Therefore, their ability to repel each other in the constrained direction decreases

and rows of the swarm fold onto themselves. This experiment can be repeated with a

square lattice with 8 connections. Also, instead of the static NN network, a proximity-

based dynamic network can be also used, such as the one in the original Vicsek model.
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This way, the swarm can be designed to exhibit more fluid-like motion, which can be

helpful for the swarm to assume the shape of the constraining environment. Nonethe-

less, it can be seen that anticipation is beneficial in passing through the passage task.

Figure 4.16 gives the mean and standard deviation of the elapsed times of the suc-

cessful runs. The swarm bumps into the walls of the obstacle more as the passage

width decreases. This creates velocity fluctuations in the group, which in turn re-

duces the mean velocity towards the exit. Therefore, for the same b value, mean

elapsed time increases as the passage width decreases. For the same passage width,

increasing b decreases the mean elapsed time. As b increases, velocity fluctuations be-

come smaller, and the swarm passes through the passage with more fluid-like motion

and less friction with the obstacles.

Shrinking the swarm to a smaller size would create significantly more displacement

in the long-range links, compared to the displacement in the links between the neigh-

bors. For this reason, long-range links prevent the swarm to shrink and are not use-

ful in the narrow passage scenario. However, long-range links decrease the mean

distance between nodes and in turn bring faster information transfer in the swarm.

Figure 4.17 gives the order metric ψ in the reflecting from a wall scenario. It can be

seen that anticipation improves both the response time and the lowest order metric

value. This result is in line with the brake light analogy for anticipation. Agents re-

act to the velocity change immediately and response time is improved. Additionally,

aligning effect of the anticipation helps with keeping the order metric high. Case with

anticipation and 5 long-range links has the shortest response time and highest order

metric. 40 different networks are used, to randomize the location of the long-range

links in the case with anticipation and 5 long-range links. On average, they have the

shortest response time and the order metric drops only to 0.87. With the NN network,

agents in the front change their orientations, and the changes are transmitted towards

the back of the group with the neighboring links. During this process, agents at the

front and agents at the back may have different orientations, thus the order metric has

a low value. With only 5 long-range links, the mean distance between the nodes is

much shorter and all agents in the swarm have high alignment with each other.

75



5.3 Extended Kalman Filter Design and Results

Since there are linear dampers in the model, agents need to know the relative veloc-

ities and headings of the other agents. However, most of the measurement systems

for robots are position-based. The majority of the robot swarm implementations in

the literature depend on communication to obtain the heading information. In this

thesis, an EKF that uses position and self-heading measurements is designed. This

way, heading and velocity state estimates are constructed without communication or

a specific measurement system.

Type of the filter used in this thesis is the Extended Kalman Filter. The EKF requires

the partial derivatives of the state matrix with respect to the current states. In the

formulation, partial derivatives of the agent to agent distance with respect to the po-

sitions are neglected because they are mostly used in the scaling of the unit vectors.

Proposed implementation works adequately, but there are other filtering techniques

that are used when the system of interest has a highly nonlinear system or measure-

ment model. Unscented Kalman Filter (UKF) and Particle Filter are good examples.

Comparing the performance of the UKF to the existing EKF is an interesting topic

for future work.

Figure 4.18 depicts a scenario where agents bounce off an obstacle. The scenario

is designed this way so that the velocities of the agents change rapidly. Figure 4.19

shows the rapid change in velocity and orientation. Figure 4.20 shows that the filter

with the model information performs better than the generic filter. Estimation errors

in the states of the neigbors are given in Figure 4.21. The current design is satisfactory

for this scenario, but process noise values can be adjusted for a better fit in a different

scenario.

Snapshots from the narrow passage scenario where every agent creates motion com-

mands using its own EKF estimations are given in Figures 4.22 (no anticipation) and

4.23 (with anticipation). When motion commands are created by the EKFs of the

agents, the model with no anticipation loses its order and collisions occur. Errors

of the agents do not damp out, they interfere and amplify each other. However, the

model with anticipation has no such problem, the swarm passes through the passage

76



with ease. Anticipation is not only helpful for the passage scenario, it also helps with

damping out the disturbances created by the agents in the swarm. State estimation

errors and covariance bands of the center agent for the b = 10 case are given in Fig-

ure 4.24. Orientation and position state estimations are better than the measurements.

Velocity state estimation has no bias and the variance is tolerable.

5.4 Real Robot Experiments

Crazyswarm [42] platform has a Python API for writing complex algorithms easily

for the Bitcraze Crazyflie 2.x quadcopters. The AEA model and the designed EKF

are implemented in Python and the written algorithm is evaluated on the Crazyswarm

platform’s simulation mode. Figure 4.28 gives similar findings to the EKF analysis

with particle agent simulations, the model with no anticipation can not stay cohe-

sive when commands are created from the EKFs of the agents. However, the model

with anticipation given in Figure 4.29 passes through without losing order or having

collisions.

Real Crazyflie robots are subject to process disturbances; they can not stay perfectly

still at a point or they can not fly in a perfectly straight line. The system model of

the EKF assumes that the agent would move in its current orientation. However, a

quadcopter is a holonomic system and disturbances may create movements in any di-

rection. This can be detrimental to the performance of the EKF. The swarm is ordered

to move with a constant velocity in a constant direction, and the actual velocities and

orientations of the agents are given in Figure 4.30. The same amount of deviation is

expected in the experiments with the EKF. Also, care must be taken when the velocity

is smaller because disturbances would affect the orientation more.

Narrow passage experiments with passage widths 0.85wn and 0.7wn are conducted

with real Crazyflie robots. Robots pass between two virtual objects with the proposed

anticipative collective motion model. Photographs from the experiment and top view

from the Vicon tracker software are given in Figure 4.32. Each agent uses position and

self-heading measurements and creates motion commands using the erroneous state

estimations. There is also process disturbance on each agent. Nonetheless, designed
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EKF is able to guide the real Crazyflie robots through the passage collectively.

To further prove that the anticipative motion model and the EKF works, another

experiment where the orientations of the agents change rapidly is conducted. Pho-

tographs from the experiment and top view from the Vicon tracker software are given

in Figure 4.35. State estimation errors and covariance bands of the EKF of the center

agent are given in Figure 4.38. Even though the errors in orientation estimations are

higher than the narrow passage scenario, the swarm is still coherent and able to reflect

from the wall collectively.

Overall, it can be said that anticipation is helpful for the stability of the swarm and

its advertised properties hold in the Crazyswarm simulations and real flight tests. The

concept of the anticipative collective model with agents running EKF to create motion

commands is proven with real flight tests.
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CHAPTER 6

CONCLUSIONS

In this thesis, a novel anticipative collective motion model, which is named as Active-

Elastic-Anticipation model, is proposed. The phase transition diagram of this model

is compared with 2 other well-known collective motion models: position-based Active-

Elastic model and heading-based Vicsek model. The comparison shows that antici-

pation brings a new term that depends on the relative velocities of the agents and this

term aligns the headings of the agents. With the help of anticipation, the swarm was

able to pass through a narrow passage. The anticipative term in the AEA model de-

pends on the relative velocities of the agents. Since most of the measurement systems

are position-based, acquiring the velocity and orientation information of the other

agents is not an easy task. An Extended Kalman Filter that takes the equations of

motion for the AEA model into consideration is designed to estimate the velocity and

heading states of the agents in the swarm. The designed filter allows the implementa-

tion of the proposed model in the real world with basic sensors. Also, when motion

commands of the agents come from their own EKF, the system without anticipation

is not able to stay cohesive. Anticipation helps damp out the oscillations created by

the estimation errors of the EKFs. The proposed model and the designed filter are im-

plemented in the Crazyswarm platform, which is used for flying and simulating the

Crazyflie 2.x quadcopter UAVs. The same benefits of the anticipative effect are suc-

cessfully displayed in the simulations in the Crazyswarm platform and the designed

EKF worked adequately. Then, real flight tests with Crazyflie UAVs are conducted

and results were similar to the simulations. Using all of the concepts proposed in this

thesis, UAVs that use simple measurements were able to run EKF and collectively

move with an anticipative model to pass through a narrow passage in the real world.
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