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ABSTRACT

MASSIVE MULTIPLE-INPUT MULTIPLE-OUTPUT COMMUNICATION
SYSTEMS WITH LOW-RESOLUTION QUANTIZERS

Ali Bulut Üçüncü,

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ali Özgür Yılmaz

December 2021, 161 pages

Low resolution analog-to-digital converters (ADC) attracted much attention for their

use in massive multiple-input multiple-output (MIMO) systems due to their low power

consumption and cost. In this thesis, we question whether large number of antennas

present in massive MIMO is sufficient to provide an ultimate performance or addi-

tional sampling in time (temporal oversampling) will provide significant performance

advantages. To begin with, we illustrate the benefits of oversampling in time for up-

link massive MIMO systems with low-resolution ADCs in terms of symbol error

rate (SER) and achievable rate for both single-carrier (SC) and multi-carrier modu-

lation scenarios by deriving analytical bounds and with simulations. We also pro-

pose a sequantial linear minimum-mean-square error (LMMSE) based receiver as a

low-complexity detector, which is much more feasible to implement compared to the

zero-forcing (ZF) detector for temporally oversampled massive MIMO systems. We

also examine and illustrate the benefits of temporal oversampling for quantized mas-

sive MIMO systems under adjacent channel interference caused by the non-linearity

of the quantizers. According to the results that we obtain, it seems that temporal

oversampling can be very beneficial and should always be considered for use in
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quantized massive MIMO. Finally, we examine whether a low-complexity MIMO

detector, which can outperform the existing detectors of similar complexity, can be

proposed even without resorting temporal oversampling. For that purpose, we pro-

pose a near optimal factor-graph based Ungerboeck type detector with bi-directional

decision feedback, along with the derivation of LMMSE channel estimator for quan-

tized wideband SC-MIMO systems. The proposed detector is shown to outperform a

representative detector of comparable complexity from the literature in terms of SER

and achievable rate per user performance metrics.

Keywords: massive MIMO, analog-to-digital converter (ADC), quantization, one-bit,

1-bit, oversampling, performance analysis, channel estimation, low-resolution, up-

link, flat fading, wideband, frequency-selective fading, single-carrier, OFDM, Unger-

boeck, Bussgang decomposition, iterative detector, reduced-state, decision feedback,

zero-forcing, maximal ratio combining, sequantial LMMSE.
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ÖZ

DÜŞÜK ÇÖZÜNÜRLÜKLÜ NİCEMLEYİCİLERE SAHİP KİTLESEL
ÇOK-GİRDİLİ ÇOK-ÇIKTILI HABERLEŞME SİSTEMLERİ

Ali Bulut Üçüncü,

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali Özgür Yılmaz

Aralık 2021 , 161 sayfa

Kitlesel çoklu-girdili çoklu-çıktılı (MIMO) sistemlerinde düşük çözünürlüğe sahip

analogdan-sayısala-dönüştürücülerin (ADC) kullanımı sahip oldukları düşük maliyet

ve güç tüketimlerinden ötürü ilgi uyandırmıştır. Bu tezde düşük çözünürlükteki ADC

içeren kitlesel MIMO sistemlerinde var olan çok sayıda antene ek olarak zamanda

aşırı örnekleme kullanılmasının önemli ölçüde avantaj sağlayıp sağlayamadığı sorgu-

lanmaktadır. Başlangıç olarak tekli-taşıyıcılı ve bir-bitlik ADC kullanılan durumda

aşırı örnekleme yönteminin SER ve erişilebilir oran başarımları açısından ciddi fay-

dalar sağladığı hem analitik olarak elde edilen ifadeler ile hem de yapılan benzetim-

lerle gösterilmektedir. Bunun yanında kitlesel MIMO yapıları için aşırı örnekleme ile

çalışan sıfır-zorlayıcı (ZF) alıcıya nazaran çok daha düşük karmaşıklığa sahip sıralı

doğrusal en küçük karesel hata (LMMSE) tabanlı bir alıcı da önerilmektedir. Ayrıca

nicemlemeli kitlesel MIMO yapıları için nicemleyicilerdeki doğrusalsızlık sonucunda

ortaya çıkan yan bant girişiminin de aşırı örnekleme yöntemi ile bastırılabileceği yine

bu çalışmada irdelenmektedir. Elde edilen bulgular, aşırı örnekleme tekniğinin nicem-

leme altında çalışan kitlesel MIMO yapılarında kullanımının her zaman değerlendi-
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rilmesi gerektiğini göstermektedir. Son olarak nicemleme altındaki kitlesel MIMO

yapıları için aşırı örnekleme tekniği kullanılmadığı durumda literatürde var olan alı-

cılardan daha iyi başarım sağlayan bir alıcı önerilip önerilemeyeceği sorgulanmak-

tadır. Bu amaçla, nicemleme gürültüsü altında çalışan tekli-taşıyıcılı MIMO yapıları

için çarpan çizge tabanlı ve çift yönlü karar geribildirimi yöntemini kullanan, düşük

karmaşıklığa sahip Ungerboeck tipindeki bir alıcı, söz konusu yapılar için LMMSE

tabanlı bir kanal kestirim algoritması ile birlikte önerilmektedir. Önerilen alıcının li-

teratürde benzer karmaşıklığa sahip bir alıcıdan SER ve kullanıcı başına erişilebilir

oran kriterleri açısından daha iyi başarım sağladığı gösterilmektedir.

Anahtar Kelimeler: kitlesel MIMO, analogdan-sayısala-dönüştürücü (ADC), nicem-

leme, bir-bit, aşırı örnekleme, başarım analizi, kanal kestirimi, düşük-çözünürlük,

çıkış-yolu, düz-sönümleme, geniş-bant, frekans-seçici sönümleme, tekli-taşıyıcı, dik-

frekans-bölümlemeli çoğullama, Ungerboeck, Bussgang dönüşümü, yinelemeli alıcı,

indirgenmiş durum, karar geribesleme, sıfır-zorlayıcı, en yüksek oran birleştirme, sı-

ralı LMMSE.
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support during my PhD and for giving birth to our child Uzay.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 FUNDAMENTALS OF QUANTIZED UPLINK MASSIVE MIMO . . . . . 9

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Received Signal Model for Uplink SC-Massive MIMO . . . . . . . . 10

2.3 Received Signal and System Model for Uplink Massive MIMO-OFDM 12

2.3.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Analog-to-Digital Converters . . . . . . . . . . . . . . . . . . 14

2.3.3 The Bussgang Decomposition . . . . . . . . . . . . . . . . . 17

3 OVERSAMPLING IN ONE-BIT QUANTIZED MASSIVE SC-MIMO SYS-
TEMS AND PERFORMANCE ANALYSIS . . . . . . . . . . . . . . . . . 19

xii



3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Motivations to employ temporal oversampling . . . . . . . . . . . . 21

3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Signal Model and CSI Acquisition . . . . . . . . . . . . . . . . . . . 24

3.4.1 CSI Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 SER and Achievable Rate Analysis of Oversampled Massive MIMO . 28

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 UPLINK PERFORMANCE ANALYSIS OF OVERSAMPLED WIDEBAND
MASSIVE SC-MIMO WITH ONE-BIT ADCS . . . . . . . . . . . . . . . 43

4.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . 43

4.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Error Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 SEQUENTIAL LINEAR DETECTION IN ONE-BIT QUANTIZED UP-
LINK MASSIVE SC-MIMO WITH OVERSAMPLING . . . . . . . . . . . 55

5.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Sequential Linear Receiver . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 PERFORMANCE ANALYSIS OF QUANTIZED UPLINK MASSIVE MIMO-
OFDM WITH OVERSAMPLING UNDER ADJACENT CHANNEL IN-
TERFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . 65

xiii



6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4.1 Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.2 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 ADCs with Higher than One-Bit Resolution . . . . . . . . . . . . . . 82

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 A REDUCED COMPLEXITY UNGERBOECK RECEIVER FOR QUAN-
TIZED WIDEBAND MASSIVE SC-MIMO . . . . . . . . . . . . . . . . . 93

7.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 LMMSE Channel Estimation for CP-free Quantized SC-MIMO . . . 99

7.3.1 Low Complexity Approximations for the LMMSE Estimator . 102

7.4 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.1 Bias Compensation . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.2 Message Passing Schedule . . . . . . . . . . . . . . . . . . . 111

7.4.3 Computational Complexity Analysis . . . . . . . . . . . . . . 113

7.5 Performance Metrics and Simulation Results . . . . . . . . . . . . . 114

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiv



APPENDICES

A PROOFS IN CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1 Proof of Lemma 1 and Lemma 2 . . . . . . . . . . . . . . . . . . . . 141
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CHAPTER 1

INTRODUCTION

Communication has always been very critical for mankind since the very early stages

of history. In ancient Greeks and even earlier civilizations, messages sent by human

couriers, dogs or pigeons, signaling certain events by fire or smoke, horns or drums

are well known by the historians [1]. Nevertheless, there were significant limitations

associated with means of communication before the nineteenth century. For example,

the speed of communication was very slow, limited by the speed of human couriers,

dogs or pigeons. Although pigeons have higher speed for the delivery of the mes-

sages compared to other methods, they provided one-way postal service only towards

their home from wherever they are. However, communication using electrical signals

with the invention of telegraph in the nineteenth century has changed the game in

the human communication history. Messages started to be delivered in seconds over

thousands of kilometers. It was followed by the invention of telephone, radio and

television, fax, internet, which made much faster and reliable communication possi-

ble. The invention of mobile phones and popular use of wireless communication have

also been a major milestone in the communication history. It has changed the way

humanity communicate with each other thanks to the flexibility provided by the wire-

less technology. However, the demand for faster and reliable communication does

not diminish due to the unprecedented amount of information created and transferred

each second. In fact, regardless of which period of history is concerned, the following

facts will not change in the field of wireless communications [2]:

• There will always be an increased demand for mobile or fixed wireless through-

put.
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• The amount of the entire electromagnetic spectrum will never increase. And the

most desirable frequency bands that has favorable properties regarding propa-

gation through buildings and obstacles in the communication environment con-

stitute only a small portion of this spectrum.

• Therefore, there will always be pressure on communication engineers to make

inventions that provide higher spectral efficiency.

For communication systems to accommodate both fast and reliable communication

between two communicating nodes with high-spectral efficiency, various techniques

are proposed. Even if the most complex algorithms are employed to enable the fastest

data rates between two communicating nodes, the performance of the communication

systems are limited by environmental and thermal noise and the distortion caused by

communication channel between the communicating terminals, which is referred to

as fading in the communication literature. To overcome the bottleneck caused by

fading, single-input multiple-output (SIMO) systems, in which multiple antennas are

employed at the receiver side are proposed to combat fading. An alternative scheme

that provides diversity as a means to mitigate fading is multiple-input single-output

(MISO) systems, in which space-time block coding techniques are used with multi-

ple antennas are used at the transmitter side. Even if better communication quality

is attained by employing multiple antennas either at the transmitter or receiver side

to combat fading, it can be shown using Shannon capacity theorem that the capacity

of systems having multiple antennas at the transmitter and receiver is limited by the

minimum of the number of antennas at the transmitter or receiver side [3]. To obtain

much higher data rates between a single transmitter and receiver pair through spatial

multiplexing, deploying multiple antennas at the receiver side in addition to the trans-

mitter side, has become very popular in the late 1990s. This scheme is referred to as

point-to-point multiple-input multiple-output (MIMO) in the related literature. With

point-to-point MIMO, independent data streams can be transmitted at the same time

period and the same frequency band. If the MIMO channel is in a rich scattering envi-

ronment, the number of independent data streams that the channel can accommodate

is increased, which results in higher capacity gains over the SIMO, MISO or single-

input single-output (SISO) schemes. However, there are certain limitations associated

with point-to-point MIMO. Firstly, it requires multiple antennas at the user terminal,
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as well as complex radio-frequency (RF) chains per antenna. Therefore, since the

capacity of the MIMO channel increases with the minimum of the number of anten-

nas at the user terminal and the base station, the capacity of point-to-point MIMO is

not scalable, as it may not be feasible to employ very large arrays with complex RF

chains at the user side. Secondly, line-of-sight conditions are stressing when all anten-

nas other than the antennas at the base station in the MIMO system are all confined to

a limited space in a single user terminal [2]. When line-of-sight conditions are domi-

nant, this means that there is no rich scattering environment, thus the capacity of the

MIMO channel does not increase with the number of antennas in the MIMO system.

However, even in the absence of rich scattering environment, multiple-users can be

supported by MIMO systems. Even under line-of-sight cases, independence between

the channels of each user can be attained as shown in [2, Chapter 7], resulting in a

higher capacity for multi-user MIMO. Moreover, compared to point-to-point MIMO,

MU-MIMO has better scalability as increasing the number of users in MU-MIMO is

easier compared to increasing the number of antennas (and RF chains) for a single

user terminal in point-to-point MIMO.

Much more recently, the scaled version of multi-user MIMO, which is referred to as

massive MU-MIMO, in which the number of antennas and users are much higher than

originally considered for multi-user MIMO systems is proposed. The large number of

antennas facilitates very accurate beam alignment, which in turn, results in a highly

spectral and energy efficient communication scheme, owing to the very high multi-

user interference suppression capability without using any dedicated time-frequency

resource for each user. There are also some critical advantages of massive MIMO

compared to conventional MU-MIMO. First of all, due to the limited number of base

station antennas in multi-user MIMO, precoding at the base station in downlink trans-

mission is not sufficient to cancel inter-user interference, thus the capacity achieving

strategy for downlink MU-MIMO requires accurate knowledge of the channel both

by the base station and the user terminals. This requires substantial amount of pilots

transmitted in both directions, resulting in a large overhead for channel estimation

phase. However, in massive MIMO, as precoding in downlink is sufficient to cancel

the multi-user interference, only base station needs to know the channel, not the user

terminals. This reduces the need for two-way pilot transmission, decreasing the pilot
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overhead for channel estimation substantially. Another advantage of massive MIMO

compared to MU-MIMO is the simplicity of signal processing. In MU-MIMO, highly

complex signal processing is required both at the base station and the user equipment

side to obtain an optimal performance. Conversely, close to optimal performance is

possible with very simple linear signal processing at the base station side in massive

MIMO thanks to the channel hardening that occurs when the number of antennas are

large. At the user side, there may be no need for an interference canceling operation as

precoding at the base station will be enough to cancel inter-user interference in most

cases. For all mentioned reasons, massive MIMO seems to be the most promising

scheme to be employed in future communication systems.

Despite the advantages of using a large number of antennas, massive MIMO may

also bring about the limitation to use low cost, simple and power efficient hardware

per antenna. In that respect, use of low-complexity and low-cost analog-to-digital

converters (ADCs) employing a small number of bits has recently been promoted in

massive MIMO systems [4], [5]. Another reason for the use of low precision ADCs is

to limit the overall power consumption of the massive MIMO communication system

employing many ADCs [6]. It was stated in [7] that the addition of each ADC resolu-

tion bit increased the power consumption of ADC by 2 to 4 times considering all ADC

types. Moreover, the power related Walden’s figure of merit for ADCs [8,9] was also

shown to increase substantially for sampling rates higher than 100 MHz in [10]. Since

high sampling frequencies will be the case for millimeter wave (mmWave) communi-

cation scenarios [11], it is reasonable to use low resolution ADCs to limit the power

consumption due to ADCs. Another motivation to use low resolution ADCs is to

limit the data rates that will far exceed the rates supported by common public radio

interface (CPRI) or enhanced CPRI (eCPRI), especially in cloud radio access network

(C-RAN) applications [12]. More specifically, one bit ADCs also have the advantage

of not requiring automatic gain control units and having very low hardware com-

plexity [13, 14], which makes it a more appropriate choice for use in massive MIMO

systems [5].

Even if low-resolution ADCs have the cost and power efficiency advantage, the trade-

off is the increased distortion in the received signal due to quantization noise. There-

fore, the design of detectors that minimize the effect of quantization distortion on
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massive MIMO communication systems becomes an important task.

In this thesis, the main objective is to answer the question whether the large number

of antennas in massive MIMO, which we also refer to as massive sampling in space

in this thesis, is enough to provide an adequate performance in terms of a reliable

communication standpoint in a quantized massive MIMO system. An extension of

this question is whether time-domain oversampling in addition to massive sampling

in space is able to provide significant gains.

In Chapter 3, we propose a detection scheme that performs oversampling in time and

show that significant signal-to-noise ratio (SNR) advantages can be obtained with

temporal oversampling even when such an oversampling is made in addition to the

massive sampling in space which is inherent to the massive MIMO structure. We see

that temporal oversampling provides significant benefits in terms of the error-rate and

achievable rate performance of such systems. We also make the performance analy-

sis by deriving analytical bounds on the symbol error-rate (SER) and achievable rate

performance of oversampled uplink massive MIMO structures with 1-bit quantiza-

tion. The work in Chapter 3 is the first to propose temporal oversampling for

quantized massive MIMO systems and to make its performance analysis.

The proposed detector in Chapter 3 is designed for frequency-flat channels. As prac-

tical channels are mostly frequency-selective, the extension of the work in Chapter

3 to frequency-selective channels is important and presented in Chapter 4. We show

that temporal oversampling is even more beneficial for frequency-selective channels.

Although the advantages observed when temporal oversampling is performed are re-

markable, the zero-forcing (ZF) type detectors proposed in Chapter 3-4 are impracti-

cal, whose complexity grows with the cube of block length. In fact, the main purpose

of the work in Chapter 3-4 is to show how much performance gains are possible

when oversampling is employed, that is, proposing a benchmark detector, rather than

a feasible detector. However, in Chapter 5, we propose a low-complexity sequential

linear minimum-mean-square error (LMMSE) based detector that employs oversam-

pling for one-bit quantized massive MIMO systems. The complexity of the detector

in Chapter 5 changes linearly with block length, which is much less than the com-

plexity of the ZF detector in Chapter 3-4. Despite having much less complexity, the
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performance of the detector in Chapter 5 is very similar to the ZF type detectors in

Chapter 3-4. Therefore, we illustrate in Chapter 5 that the advantages observed with

temporal oversampling can also be obtained with a much lower complexity detec-

tor, making the conclusions associated with the advantages of temporal oversampling

valid also for detectors with reasonable complexity.

Despite the fact that aforementioned advantages of temporal oversampling in time

are promising for quantized massive MIMO systems, the question whether these ad-

vantages will be preserved when there is a source of significant interference from an

adjacent band remains to be answered. In fact, in none of the studies in the litera-

ture that deals with the quantized massive MIMO systems, the effect of an interferer

in an adjacent channel is examined, apart from analyzing whether oversampling in

time will be beneficial for such systems or not. However, such interference can be at

significant levels due to near/far effect in a communication system in which users in

the adjacent frequency band may be much closer to the receiver than the users in the

desired band, thus, their signal may not be adequately suppressed by the receivers in-

tending to extract the signals in the desired band. In fact, having the dynamic range to

mitigate such interference is a key reason for using high-resolution ADCs in current

systems [15]. Since distortion is large with low-resolution ADCs, there is a risk that

such systems are practically nonoperational. In Chapter 5, we try to find the answer

to this question by analyzing the effects of oversampling in time for heavily quantized

and orthogonal-frequency-division multiplexing (OFDM) modulated massive MIMO

systems for an adjacent channel interference (ACI) scenario under frequency selec-

tive fading and channel estimation errors. We also propose an LMMSE based channel

estimation algorithm that takes into account the effect of quantization, oversampling

and the interference from the adjacent band. This study is the first to analyze such

systems with oversampling ADCs under ACI and imperfect channel state infor-

mation (CSI). As a result of the analysis, we show that increasing the number of

antennas or temporal oversampling can be very effective for ACI suppression even

under heavy quantization for massive MIMO systems.

The proposed detectors using temporal oversampling in the aforementioned chapters

are all linear type detectors. However, the optimal detectors for massive MIMO under

quantization need not be linear. In Chapter 6, we propose a non-linear Ungerboeck
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type detector based on a factor graph constructed over a bidirectional decision feed-

back algorithm for quantized massive MIMO systems. With this detector, we try to

find whether we can achieve a better performance compared to the existing receivers

in the literature, by not resorting to any oversampling in time, relying only on the

existence of massive sampling in space for massive MIMO systems, by proposing a

near optimal receiver. We observe that we are also able to propose a detector showing

a better performance compared to the existing detectors of comparable complexity,

even if we do not employ any temporal oversampling.

In summary, the thesis is organized as follows. Chapter 3 provides the details of the

proposed detector structure that employs temporal oversampling and the correspond-

ing performance analysis for one-bit quantized massive MIMO structures under flat

fading. Chapter 4 describes the proposed detector structure for frequency-selective

massive MIMO structures with one-bit ADCs and the corresponding performance

analysis of such systems. Chapter 5 presents a lower complexity alternative detector

to the detectors in Chapter 3 and Chapter 4, which do not experience any performance

degradation despite the complexity reduction. Chapter 6 presents our work making

the performance analysis of quantized massive MIMO systems under adjacent chan-

nel interference with oversampling under perfect or imperfect CSI. Chapter 7 presents

the details of the proposed near optimal Ungerboeck type factor-graph based detec-

tor with bidirectional decision feedback designed for quantized wideband massive

SC-MIMO. Finally, Chapter 8 provides the concluding remarks.

Each chapter (other than Chapters 1-2, which are introductory chapters) in this thesis

covers a material that is either published in a paper or submitted for publication. The

publications associated with each chapter can be listed as follows:

• Chapter 3: A. B. Üçüncü, A. Ö. Yılmaz, "Oversampling in One-Bit Quantized

Massive MIMO Systems and Performance Analysis," IEEE Transactions on

Wireless Communications, vol. 17, no. 12, pp. 7952-7964, Dec. 2018 [16].

• Chapter 4: A. B. Üçüncü, A. Ö. Yılmaz, "Uplink Performance Analysis of

Oversampled Wideband Massive MIMO with One-Bit ADCs," Proceedings of

2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL,

USA, 2018, pp. 1-5 [17].
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• Chapter 5: A. B. Üçüncü, A. Ö. Yılmaz, "Sequential Linear Detection in

One-Bit Quantized Uplink Massive MIMO with Oversampling," Proceedings

of 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL,

USA, 2018, pp. 1-5 [18].

• Chapter 6: A. B. Üçüncü, E. Björnson, H. Johansson, A. Ö. Yılmaz, E. G.

Larsson, "Performance Analysis of Quantized Uplink Massive MIMO-OFDM

With Oversampling Under Adjacent Channel Interference," in IEEE Transac-

tions on Communications, vol. 68, no. 2, pp. 871-886, Feb. 2020 [19]. Con-

ference paper version is published in [20].

• Chapter 7: A. B. Üçüncü, G. M. Güvensen, A. Ö. Yılmaz, "A Reduced Com-

plexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO," in

IEEE Transactions on Communications, vol. 69, no 7, pp. 4921-4936, Jul.

2021 [21].

The commercial rights of the material covered in Chapter 3-5 is under protection with

an issued United-States (US) patent with number US10447504B1 [22].

8



CHAPTER 2

FUNDAMENTALS OF QUANTIZED UPLINK MASSIVE MIMO

In this thesis, a frequency-selective single-cell uplink multi-user massive MIMO sys-

tem with K single-antenna users and M receive antennas with low-resolution ADCs

as in Fig 2.1 is examined.

.

.
.

Figure 2.1: Uplink massive MIMO system with low resolution quantizers.

In a massive MIMO system, the number of antennas M is typically much larger than

the number of users K. A more detailed picture including the sub-blocks generating

the transmitted signals by each user and the sub-blocks associated with each receive

antenna in the massive MIMO system for single-carrier modulation is illustrated in

Fig. 2.2.
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Figure 2.2: Single-carrier multi-user uplink massive MIMO block diagram.

As can be noted in Fig. 2.2, the complex data symbols of each user is fed to the

transmit pulse-shaping filter, which is then upconverted to the carrier frequency and

transmitted as an analog signal. At the receiver side, the “RX filter" block is assumed

to be a pulse matched filter, rather than a channel matched filter, as an analog filter
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implementation of channel matched filter requires an adaptive analog filter whose

impulse response should be changed when the channel is changed, which is quite

complex to implement in practice.

2.1 Notation

The following notation will be used throughout the thesis: b is a scalar, b is a col-

umn vector, bk is the kth element of b, B is a matrix, BT , B∗ and BH represents

the transpose, conjugate and the Hermitian of a matrix B, respectively. Re(.) and

Im(.) takes the real and imaginary parts of their operands and j =
√
−1. 0 and I

corresponds to a zero column vector and identity matrix with appropriate dimension,

respectively. 0K and IK are zero and identity matrices with size K × K. (C)m,n

or [C](m,n) stands for the element of matrix C at its mth row and nth column and

|G| represents the cardinality of the set G. ||.|| represents Euclidean norm, E[.] is the

expectation operator and Pr(.) denotes the probability of the event in its operand.

diag(C) is a diagonal matrix, whose diagonal entries are equal to the diagonal en-

tries of C. Moreover, log2(.) is the base-2 logarithm, ⊗ is the Kronecker product.

Tr[.] is the trace operator. Furthermore, Q(.) is the Q-function, which is defined as

Q(x) = 1√
2π

∫∞
x
e−z2/2dz and Φ(.) is the standard normal cumulative distribution

function (CDF), that is, Φ(x) = 1√
2π

∫ x

−∞ e−z2/2dz. blkToeplitz(C,R) indicates a

block Toeplitz matrix of dimensionM ×K, whose first row block is matrix R of size

Mr ×K and the first column block is matrix C of size M ×Kc.

2.2 Received Signal Model for Uplink SC-Massive MIMO

The baseband equaivalent transmitted single-carrier signal for the kth user can be

expressed as

sk(t) =

N
∑

n=1

xn,kpc(t− (n− 1)T ), (2.1)

where N is the block length, which is the number of symbols that are processed in a

block, pc(t) is the transmit pulse shaping filter impulse response, xn,k is the complex

valued data symbol transmitted by the kth user at the nth symbol interval with unit
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average power so that E[|xk,n|2] = 1 ∀k, n. T is the symbol period.

The baseband equivalent received signal at the mth antenna can be expressed as

rm(t) =

K
∑

k=1

h′m,k(t) ∗ sk(t) + wm(t), (2.2)

where ∗ represents the convolution operation and wm(t) is the filtered additive white

complex Gaussian noise process at the mth antenna, whose each sample is

a CN (0, σ2
m) random variable, where CN (µ, σ2) represents a circularly symmetric

complex Gaussian random variable with mean µ and variance σ2. Moreover, h′m,k(t)

is the continuous-time channel impulse response between the kth user and the mth

antenna. In writing (2.2), it is assumed that the bandpass RF filter and the LPF after

the mixer, which are considered to be an element of the downconversion sub-block

in Fig. 2.2, have a flat response over the frequency bands [fc − Fs/2, fc + Fs/2] and

[−Fs/2, Fs/2], fc being the carrier frequency and Fs being the sampling rate. We

will assume integer multiples of symbol duration T for the channel tap delays in this

thesis, which is also assumed so in many related studies including one of the pioneer

work on quantized massive MIMO [23]. In this case, the received signal in (2.2) can

be reexpressed as

rm(t) =
L−1
∑

ℓ=0

K
∑

k=1

N
∑

n=1

hm,k[ℓ]xn,kpc(t− (n− 1)T − ℓT ) + wm(t) (2.3)

where L is the number of channel taps, and hm,k[ℓ] = hm,k(ℓT ), in which hm,u(t) ,

h′m,u(t) ∗ pc(t). The channel taps hm,k[ℓ] are generally assumed to be zero-mean

circularly symmetric complex Gaussian (CSCG) random variables, corresponding

to a Rayleigh fading scenario, and uncorrelated, that is, E[hm1,k1 [ℓ1]hm2,k2[ℓ2]
∗] =

ρk1 [ℓ1]δ[ℓ1 − ℓ2]δ[k1 − k2]δ[m1 − m2], where ρk[ℓ] is the power-delay profile of the

channel between user k and the receive antennas. This means that we assume a rich

scattering environment with wide-sense stationary uncorrelated scattering (WSSUS)

channel model for the channels between each user and antenna, which is a result of

the assumption that different multipath delays are caused by different scatterers [3].

Moreover, the channels observed by different antennas are also be assumed to be un-

correlated, which is valid when the spacing between the antenna elements are greater

than one half wavelength [3] in a dense scattering transmission medium. Further-

more, in dense isotropic scattering environments, when the users terminals are sepa-
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rated with a distance greater than one wavelength, it is valid to assume uncorrelated

channels observed for each user [2, Section 7.2.1], [24]. Such assumptions for the

channel coefficients are also commonly adopted in many studies [23, 25, 26] analyz-

ing massive MIMO with low-resolution quantizers, among others. However, we also

consider cases of spatially correlated Rayleigh and Rician fading channels in the work

in Chapter 7.

The pulse matched filtered signal at the mth antenna, dm(t), can be expressed as

dm(t) =

L−1
∑

ℓ=0

K
∑

k=1

N
∑

n=1

hm,k[ℓ]xn,kp(t− (n− 1)T − ℓT ) + zm(t), (2.4)

where p(t) = pc(t) ∗ pc(−t) and zm(t) = wm(t) ∗ pc(−t), ∗ denoting the convolution

operation. SR sampling of dm(t) results in a discrete-time signal model consistent

with that in [23] when p(t) is a Nyquist pulse. For the single-carrier scenarios inves-

tigated in this thesis, oversampling schemes in Chapter 3-5, the sampling period for

the received signal dm(t) is shorter than the symbol period T .

2.3 Received Signal and System Model for Uplink Massive MIMO-OFDM

For OFDM, the system model for SC-MIMO in Fig. 2.2 is modified as in Fig. 2.3.
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Figure 2.3: Single-carrier multi-user uplink massive MIMO block diagram.

Regarding the received signal model for SC-MIMO in Section 2.2, one modification

is that the transmitted symbols xn,k in (2.1), (2.3), (2.4) are replaced with the inverse

discrete Fourier transform (IDFT) of the transmitted symbols, namely, x̃n,k, which is

found as

x̃n,k =
ρ√
N

N
∑

u=1

xu,ke
j2π(n−1)(u−1)/N , (2.5)

where n = 1, . . . , N , ρ is the average transmitted power and xu,k correspond to the

transmitted symbol of user k at the uth subcarrier. For simple equalization at the
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receiver side, a CP of length Lcp is added to the beginning of the OFDM symbol

such that x̃n,k = x̃N+n,k for n = −Lcp + 1, . . . , 0. It is required that Lcp ≥ L − 1,

L being the number of channel taps1. Therefore, the time index n in (2.1) will be

from −L + 2 to N . The other modification in (2.1)-(2.4) for OFDM case is that

the symbol period T in single-carrier case is replaced by the sampling period Ts in

OFDM case. The difference of the oversampling scheme investigated for OFDM case

from the single-carrier case in Chapters 3-5 is that the bandwidth of the transmit pulse

shaping filter is also increased for OFDM, while oversampling is performed only at

the receiver side for single-carrier case in Chapter 3-5. It may seem that the total the

total transmission bandwidth for OFDM is also increased with oversampling due to

the transmit pulse-shaping filter bandwidth expansion, creating a trade-off between

the possible advantages of oversampling and transmission bandwidth. However, it

will be explained in Chapter 6 that the transmission bandwidth can be kept the same

with the proposed oversampling scheme also for the OFDM case.

2.3.1 Quantization

The process of converting a continous-time signal, which can take infinitely many

values, to a discrete signal, which can take a finite number of values, is referred to

as quantization, and the device that performs this process is called as quantizer. To

begin with, define the set of quantizer output values as L = {ℓ0, ℓ1, . . . , ℓL′−1}, where

L′ = 2q is the number of possible quantizer output values, q being the number of bits

of the quantizer. Moreover, the quantization thresholds can also be characterized by

the set B = {b0, b1, . . . , bL′}, where −∞ = b0 < b1 < · · · < bL′ = ∞. The

quantization of x ∈ C is characterized by a function Q(.) defined as

Q(x) = ℓf ′(ℜ(x)) + jℓf ′(ℑ(x)), (2.6)

where f ′(ℜ(x)) = k ∈ {0, 1, . . . , L′ − 1} satisfying bk ≤ ℜ(x) < bk+1, which is

defined similarly for the imaginary part of the quantizer input. If the spacing between

the consequtive elements in the quantizer output set L is the same, the quantizer is

a uniform quantizer, and the spacing between the output values are referred to as the

step size ∆ of the quantizer. Otherwise, the quantizer is a non-uniform quantizer.
1 L is increased when the sampling rate (1/Ts) is increased as the delay spread of the channels does not

change with the sampling rate.
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As an example to the uniform quantizers, the possible quantizer output values ℓi =

∆(i − L′/2 + 1/2), i = 0, 1, . . . , L′ − 1, whereas the quantization thresholds bi =

∆
(

i− L′

2

)

, i = 1, 2, . . . , L′ − 1 for a uniform midrise quantizer (b0 = −∞, bL′ = ∞
as previously specified).

For the extreme case of 1-bit quantizer,

f ′ (x) =
∆

2
sgn(x) + j

∆

2
sgn(x), (2.7)

where sgn(.) is the signum function. As a continuous signal at the quantizer output is

mapped to a set of finite levels, the signals at the input and output of the quantizer are

not equal, resulting in a distortion caused by the quantization process. The distortion

caused by the quantization can be less for the non-uniform quantizer, whose quanti-

zation thresholds are adjusted according to the statistics of the input signal, than the

uniform quantizer. The optimal non-uniform quantizer in terms of the mean-squared

quantization error is referred to as a Lloyd-Max quantizer [27, 28]. Uniform quantiz-

ers are considered in this thesis, and the extension to the Lloyd-Max quantizer case is

left fro future work.

2.3.2 Analog-to-Digital Converters

A basic block diagram for an ADC is presented in Fig. 2.4.

Figure 2.4: Analog-to-digital converter block diagram.

The anti-aliasing filter block filters out the out-of-band (OOB) portion of the received

signal. In Chapters 3-5, we assume that the anti-aliasing filters in the ADCs are

replaced with pulse-matched filters, which also have a similar function of filtering

out the received OOB signals. The anti-aliasing filter block is followed by a sampler

block. In Chapters 3-5, the sampling rate of the sampling block is faster than the

bandwidth of the anti-aliasing filter block, which is performed to reduce the effects of

quantization distortion caused by the following quantizer block of q bits. The details

of the quantizer block following the sampling block are presented in Section 2.3.1.
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For an ideal ADC, the only source of distortion is the quantization distortion due

to the mapping of the continuous input signal to a finite set of discrete levels at the

quantizer output. However, in practice there are additional distortion sources due to

integral and differential nonlinearity, sampling-time jitter, thermal noise [29]. All

these distortions result in an effective signal-to-noise-and-distortion (SNDR) ratio at

the quantizer output. From SNDR, effective number of bits (ENOB) of the ADC can

be calculated according to the following formula [29]:

ENOB =
SNDR[dB] − 1.76

6.02
(2.8)

For the case of an ideal ADC and with a sinusoidal input having an amplitude equal

to the clipping level of the quantizer, the SNDR can be calculated as follows [29]:

SNDR[dB] = 6.02q + 1.76. (2.9)

Therefore, for an ideal quantizer, plugging (2.9) into (2.8), the effective number of bits

can be found to be equal the number of quantizer bits. However, if we add distortion

sources other than the quantization noise for the calculation of SNDR, the effective

number of bits will be lower than the number of ADC bits.

Another important property of the ADCs is their increased power consumption with

the number of resolution bits q. If we increase the number of bits, we have about 6

dB improvement in SNDR per added bit according to (2.9). However, the trade-off

is the increased power consumption. A metric that relates the power consumption,

sampling rate and ENOB is the so-called Walden’s figure of merit (FOMW) defined

as [29]:

FOMW =
Ps

2ENOBfs
, (2.10)

where fs is the sampling rate and Ps is the power dissipation of the ADC. Another

widely adopted metric is the so-called Schreier’s figure of merit (FOMS), defined as
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FOMS ≈ (4ENOB)(100.176)

(

fs
2Ps

)

, (2.11)

Both metrics, namely FOMW and FOMS, imply that the power consumption due to

ADC scales linearly with the sampling rate of the ADC. However, while the power

dissipation is doubled with each extra bit according to FOMW, it is quadrapled ac-

cording to FOMS. A recent figure comparing the two figure of merit measures to

the power dissipation per sampling rate of the real world ADCs presented in Interna-

tional Solid-State Conference (ISSC) and very-large-scale integration (VLSI) circuit

symposium from 1997 to 2019 are provided in Fig. 2.5 [10].

Figure 2.5: Energy (Ps/fs) versus ENOB for ADCs presented in ISSC and VLSI

circuit symposium from 1997 to 2019 [29, Fig. 3.7].

In Fig. 2.5, FOMW is fixed as 10−15J/conversion step, where J stands for the unit

in Joules. It gives the energy required to convert an analog signal to a digital signal

per each extra quantizer output level. The unit for FOMW is in J/conversion step as

Ps/fs is in Joules and 2ENOB is the number of levels in the quantizer. The unit for the

other metric FOMS is also 10−15J/conversion step but it is presented in log domain

in Fig. 2.5. As can be noted from Fig. 2.5, the power dissipated by the ADCs, which

is indicated with Pdiss, changes proportional to 4ENOB for high resolution ADCs

(ADCs with ENOB>11 bits), which is in-line with the Schreier’s figure of merit,

whereas Pdiss scales with 2ENOB for low-to-moderate resolution ADCs. Moreover,

the power consumption of the ADCs grows linearly with the sampling rate for sam-

pling rates above 100 MHz. Therefore, employment of power efficient low-resolution
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ADCs becomes a necessity for communication scenarios with high-bandwidth. In

this thesis, we attempt at answering the question whether we should perform tempo-

ral oversampling with low-resolution ADCs. The fact that increasing the sampling

rate changes the ADC power consumption linearly, as opposed to the quadratic or

quadrupled power consumption increase when the number of resolution bits is in-

cremented, supports our preference of increasing the sampling rate of ADCs in this

thesis instead of increasing the ADC bit resolution.

2.3.3 The Bussgang Decomposition

It is possible to express the input-output relation of a quantizer, in fact of any non-

linear system, with a statistically equivalent linear relation by employing the Buss-

gang decomposition or theorem [30,31]. According to the Bussgang theorem and the

properties of LMMSE estimation, for a pair of zero-mean jointly complex Gaussian

random variables, namely zm and zn, with variances σ2
m and σ2

n, and for rm = g(zm),

where g(.) is any non-linear function, the following relation holds [32], [29]:

Erm,zn[rmz
∗
n] = bmEzm,zn[zm, z

∗
n]. (2.12)

Here, bm = Ezm[g(zm)z
∗
m]/σ

2
m. For a zero-mean jointly complex Gaussian random

vector z , [z1 z2 . . . zN ] with covariance matrix Cz, and r , [r1 r2 . . . rN ], (2.12)

implies that

Crz , E[rz] = BCz, (2.13)

in which, B is a diagonal matrix, with diagonal elements being b1, b2, · · · , bN . Ac-

cording to the Bussgang theorem, the output of the non-linear quantizer can be de-

composed into two elements, one being a linear function of the input and the other

being a distortion that is uncorrelated with the quantizer output, as follows [33]:

r = Bz+ e. (2.14)

It can be shown that if (2.13) holds, the decomposition in (2.14) implies that the distor-

tion term e is uncorrelated with the quantizer output r. Therefore, the special selection

of matrix B in (2.13) according to the Bussgang theorem results in an uncorrelated
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distortion term e with the quantizer output, which according to the fundamentals of

LMMSE estimation implies that the mean squared distortion is minimized. Matrix B

in (2.13) can be calculated for a wide-range of non-linearities, including the case of

quantizers. Owing to its capability to represent input-output relations of non-linear

systems with a statistically equivalent linear relation with elements having closed-

form expressions, the Bussgang decomposition has a wide range of applications for

the analysis of the problems containing non-linear elements [29].
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CHAPTER 3

OVERSAMPLING IN ONE-BIT QUANTIZED MASSIVE SC-MIMO

SYSTEMS AND PERFORMANCE ANALYSIS

In this chapter, we present the performance analysis of one-bit quantized massive

single-carrier MIMO (SC-MIMO) systems with oversampling applied in time-domain.

Beginning with the construction of a signal model for one-bit quantized massive SC-

MIMO systems under flat fading, we make a performance analysis in terms of SER

and acheivable rate per user metrics. We propose an upper bound on SER and a lower

bound on achievable rate. Chapter 3 continues with simulation results, which verify

the accuracy of our analysis and show that temporal oversampling employed in one-

bit quantized massive SC-MIMO systems can provide significant SNR gains. Our

results establish a tradeoff between oversampling rate and number of antennas.

3.1 Related Works

Owing to their low-cost and power efficiency, 1-bit ADCs have been investigated for

various communication schemes. For instance, [6, 14] examined their use in ultra-

wideband systems. Moreover, [34, 35] employed 1-bit ADCs for the communication

systems that operate in mmWave band. There have also been many studies regarding

the use of 1-bit ADCs in MIMO and massive MIMO systems. Some studies related

to our work are the ones that have dealt with achievable rate, capacity and error rate

performance for 1-bit quantized MIMO structures. For example, [36] found closed

form expressions for the achievable rate and SER of 1-bit quantized massive MIMO

systems along with results concerning the impact of imperfect CSI on error rate per-

formance. [37] provided achievable rate curves for quantized MIMO systems based
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on simulation based results. Moreover, [38] dealt with waveform design optimiza-

tion in 1-bit quantized massive MIMO systems in presence of spectral constraints

to maximize the achievable rate, which was calculated empirically, not analytically.

In [39, 40], an analytical expression for the mutual information between the input

and output vector of a quantized MIMO system was provided. However, the numeri-

cal complexity for the calculation of the analytical expression becomes very high for

massive MIMO structures, as the provided analytical expression involves calculation

of the probability mass functions (pmf) for every possible set of transmit and quan-

tized receive vector. In [36], since the mutual information and error rate analytical

expressions were found between a single transmitted data symbol of one of the users

and the estimate of that symbol, these expressions were evaluated in a simpler man-

ner for large number of receive antennas and users. Therefore, we also examine such

performance metrics as in [36] for our analysis. Throughout the rest of the chapter,

the terms mutual information and achievable rate are used interchangeably.

In the aforementioned references [36,37,39,40], the analytical expressions were pro-

vided for the achievable rate of quantized MIMO systems rather than the capacity of

such structures. That is, there was no optimization regarding the input constellation to

maximize mutual information. However, in [41], capacity was found for 1-bit quan-

tized MIMO for the low SNR regime, in which the optimal input constellation was

shown to be QPSK. Moreover, in [23,30,42–47] quantized MIMO capacity was found

using additive quantization noise model (AQNM) with much restraining assumptions

of Gaussian input symbols and quantization noise. However, capacity bounds using

AQNM with Gaussian quantizer noise was proven to be loose at high SNR in [34].

Moreover, the tight bound at low SNR in AQNM is close to the achievable rate calcu-

lated only under the assumption that data symbols have Gaussian distribution, which

also constitutes an upper bound on the capacity when the input symbols are from a

discrete alphabet. In addition, [34] provided a detailed capacity analysis for a wide

range of scenarios with transmitter CSI and 1-bit quantization, in which the capacity

for multiple-input single-output (MISO) channel, infinite SNR capacity of single-

input multiple-output (SIMO) channel, bounds on infinite and finite SNR capacity of

MIMO channel were found and numerical optimization techniques were proposed to

design the capacity achieving input distribution for MIMO channel. The downside of
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the study in [34] is that the proposed optimization based technique to find the optimal

input constellation for 1-bit quantized MIMO systems has to solve 22M optimization

problems, whereM is the number of receive antennas, which is infeasible to solve for

massive MIMO systems with a large number of receive antennas. An alternative tech-

nique to reduce the complexity of solving 22M problems was also proposed in [34],

but the amount of complexity reduction it provides was not discussed. The largest

MIMO system examined in the same study is 8 × 8. Therefore, we limit our focus

to examine the achievable rate of our proposed scheme for 1-bit quantized massive

MIMO systems without optimizing the input constellation.

In the aforementioned studies, the focus was on the achievable rate, capacity, and

error-rate performances of the quantized MIMO structures. Regarding the detec-

tion algorithms in quantized MIMO systems, a modified minimum mean-square-error

(MMSE) receiver was proposed in [44], which was later extended by [48] through

employing a decision feedback equalizer based method for quantized MIMO detec-

tion. Another study [49] formulated the nonlinear MMSE receiver operation as a

high-dimensional complex optimization problem and presented low-complexity nu-

merical methods to simplify the problem while not providing any performance analy-

sis. Moreover, in [50], maximum-likelihood (ML) detector for 1-bit quantized MIMO

was derived and a suboptimal but low complexity ZF detector was shown to maxi-

mize an upper bound on the likelihood function of the received observation vector

for such systems. In the same study, ZF receiver in quantized MIMO structures was

also shown to exhibit comparable error rate performance to the high complexity ML

receiver when the number of receive antennas was over 100, which is a possible case

for massive MIMO scenarios. Owing to its low complexity compared to ML receivers

and competent error rate performance, we also employ a ZF receiver in this chapter.

3.2 Motivations to employ temporal oversampling

By temporal oversampling in time, we refer to a faster than symbol rate (FTSR) sam-

pling at the receiver side. In FTSR sampling, in addition to the samples that are

taken at the symbol rate, the received signal is also sampled between the regular

sampling points sampled at symbol rate. Note that this scheme is an oversampling
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technique applied at the receiver side and should not be confused with the “faster

than Nyquist signalling” technique for which the data bearing pulses are sent faster

than the Nyquist rate at the transmitter side, which results in intersymbol interference

(ISI) between data symbols in time even if the channel is not frequency selective.

Since FTSR sampling creates additional signal space dimension, it can be expected

to yield better estimates for the transmit signal vector in quantized MIMO structures

resulting in better error rate performance. Another intuitive reason to expect a benefit

regarding the performance of 1-bit quantized massive MIMO by employing FTSR

sampling is due to the phenomenon named "stochastic resonance" where interfering

signals enhance recovery of a signal after quantization. By taking additional sam-

ples between the regular sampling points, which include ISI, we expect to recover the

received signal better under quantization.

3.3 Contributions

With the motivations to employ oversampling at the receiver side, for uplink massive

MIMO case, which are mentioned in Chapter 1-2, the following contributions are

presented in this chapter:

• We apply FTSR sampling as a novel technique to obtain better achievable rate

and SER performance for 1-bit quantized uplink massive MIMO systems. By

constructing the signal model for temporally oversampled massive MIMO and

expressing the received signal vector in a compact linear model form in Sec-

tion 3.4, we derive the ZF receiver for temporally oversampled uplink massive

MIMO systems with 1-bit ADCs. The proposed ZF receiver that utilizes tempo-

ral oversampling provides up to 5 dB SNR gain in terms of the SER and mutual

information performance of such systems, both with channel estimation errors

and without. Moreover, we show that we can achieve the same error rate per-

formance at a certain SNR level with FTSR sampling with about 200 antennas

instead of using 400 receive antennas with no FTSR sampling. This signifi-

cantly reduces the required form factor for the massive MIMO array without

any error rate performance degradation which can be important in terms of the
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hardware implementation of such structures. Moreover, as the number of RF

components scale linearly with the number of antennas, the total power con-

sumption will also be decreased. In addition, while ADC power consumption

is quadratically related with the number of ADC bits, it is only linearly related

with oversampling rate [7]. The tradeoff between the total power consumption,

power consumption due to ADCs, number of ADC bits, oversampling rate and

total number of antennas is worth to be examined thoroughly in a future study.

• We propose a channel estimation algorithm for FTSR case based on the Buss-

gang linear minimum mean squared error channel estimate proposed in [30] for

1-bit quantized uplink massive MIMO systems. Moreover, we also consider the

effect of timing error by assuming that the signals from each user arrive at the

receiver side at different time instants.

• We obtain an analytical lower bound on the mutual information between a trans-

mitted symbol and its estimate and an upper bound on SER in 1-bit quantized

uplink massive MIMO structures with FTSR sampling operating with a lin-

ear receiver for the whole SNR range. We compare the simulation based SER

and achievable rate curves with our analytical bounds when ZF and maximal

ratio combining (MRC) receivers are used for 1-bit quantized uplink massive

MIMO systems with FTSR sampling. We also prove that our bounds on SER

and achievable rate are tight at low SNR. Moreover, we observe that the pro-

posed bounds are very close to the results obtained from simulations.

• The bounds that we provide also apply for symbol rate (SR) sampling case,

which was investigated in [36]. We show that our bounds are in better consis-

tency with the simulation results than the approximate analytical expressions

provided in [36] for the SER and achievable rate for 1-bit quantized uplink

massive MIMO structures with ZF type receiver.

• The bounds obtained in this chapter can be found analytically by using arcsine

law without resorting to Monte-Carlo techniques to find the conditional covari-

ance matrix of the quantized receive signal vector as performed in the recent

study [12] for SR sampling case.

In [51,52], analytical expressions for achievable rate were calculated for oversampled
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1-bit quantized SISO case. However, extending them to massive MIMO case results

in expressions that will be very complex to calculate, since it will involve calculation

of joint pmfs for every possible set of input vectors (the number of pmfs to calculate

will be on the order of PL+K , where K is the number of users, P is the order of

constellation, L is the length of the pulse shape in discrete samples). Therefore, we

provide a different analysis for the achievable rate which only requires the calculation

of a single joint pmf of a transmitted data symbol and its estimate.

3.4 Signal Model and CSI Acquisition

We start from the received and pulse-matched filtered signal at the mth antenna in an

SC-MIMO system expressed in (2.4) in Chapter 2. This signal can be written for the

case of flat fading channel as

dm(t) =

K
∑

k=1

N
∑

n=1

cm,kxn,kp(t− (n− 1)T ) + zm(t), (3.1)

where cm,k = hm,k[0] is the channel coefficient between the mth antenna and the kth

user, xn,k is the transmitted data symbol of user k at the nth symbol period, zm(t) and

p(t) is the matched filtered pulse shape and noise, as defined in Chapter 2. For ease

of demonstration, we define a vector y as in

y =
[

[ySR]T [yOS,1]T [yOS,2]T · · · [yOS,β−1]T
]T

1×βMN

, (3.2)

where

ySR =
[

ySR1,1 ySR1,2 · · · ySR1,M ySR2,1 · · · ySRN,M

]T

1×MN

, (3.3)

yOS,b =
[

yOS,b
1,1 yOS,b

1,2 · · · yOS,b
1,M yOS,b

2,1 · · · yOS,b
N,M

]T

1×MN

, (3.4)

b = 1, ..., β − 1 with positive integer oversampling rate β, which is defined as the

ratio of the total number of samples to the samples taken at symbol rate. In (3.3) and

(3.4),

ySRi,m = dm((i− 1)T ), (3.5)
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which corresponds to the samples taken at the symbol rate and

yOS,b
i,m = dm((i− 1)T + bT/β), (3.6)

corresponding to the FTSR samples. Furthermore, we also define vectors x and n as

x =
[

x1,1 x1,2 · · · x1,K x2,1 · · · xN,K

]

1×NK

T

, (3.7)

n =
[

[nSR]T [nOS,1]T [nOS,2]T · · · [nOS,β−1]T
]T

1×βMN

, (3.8)

where

nSR =
[

nSR
1,1 nSR

1,2 · · · nSR
1,M nSR

2,1 · · · nSR
N,M

]T

1×MN

, (3.9)

nOS,b =
[

nOS,b
1,1 nOS,b

1,2 · · · nOS,b
1,M nOS,b

2,1 · · · nOS,b
N,M

]T

1×MN

, (3.10)

b = 1, ..., β− 1, In (3.9) and (3.10), nSR
i,m = zm((i− 1)T ) and nOS,b

i,m = zm((i− 1)T +

bT/β). In this case, (3.1) can be written in matrix-vector form as

y = Hx+ n, (3.11)

where

H =
[

[G0]
T [G1]

T [G2]
T · · · [Gβ−1]

T
]T

, (3.12)

Gb =





















CΛb
0 CΛb

−1 CΛb
−2 · · · CΛb

−(N−1)

CΛb
1 CΛb

0 CΛb
−1 · · · CΛb

−(N−2)

CΛb
2 CΛb

1 CΛb
0 · · · CΛb

−(N−3)
...

. . . . . . . . .
...

CΛb
N−1 CΛb

N−2 · · · CΛb
1 CΛb

0





















MN×NK

, (3.13)

b = 1, ..., β − 1. In (3.13), C is the matrix, whose element at its mth row and the kth

column is equal to cm,k. It corresponds to the channel matrix for symbol rate sampling

case. Moreover, Λn
b is a diagonal matrix of size K ×K whose kth diagonal element

is equal to p(nT + bT/β + ek), where ek is the timing error term associated with the

kth user, which is modeled as a zero mean Gaussian random variable of variance σ2
e ,

independent of the timing errors of the other users. The matrix H in (3.12) can be

25



Figure 3.1: Block diagram for overall system

considered to have two parts, namely the part composed of the matrix G0 and the part

that is consisting of Gb, b = 1, ..., β− 1. The part of H composed of G0 corresponds

to the relation between the transmitted symbols and the SR samples. It becomes a

block diagonal matrix with diagonal elements being the matrix C, if p(t) is selected

as a zero-ISI Nyquist pulse. The remaining part of the matrix H that is composed

of Gb’s for b = 1, ..., β − 1 establishes the relation between the transmitted symbols

and the FTSR samples taken at the receiver side. Regarding the effect of the pulse

shape, if p(t) decays fast in time, which corresponds to a high roll-off factor case

when p(t) is a raised cosine pulse, this will result in the values of the entries of matrix

Gb decreasing fast as they become distant to the main diagonal of matrix Gb.

In the case that 1-bit quantized version of the received signal vector y is taken into

account, the signal model in (3.11) becomes

r = Q(y) = Q(Hx+ n), (3.14)

where Q(y) =sgn(Re(y))+jsgn(Im(y)), sgn(.) being the signum function. Without

loss of generality, we assume MRC or ZF type linear receivers. In that case, the soft

estimate for the transmitted symbol vector x′ can be found as [36, 53]

x′ = Br, (3.15)

where B is a linear receive filter. For MRC and ZF type receivers B = ĤH and B =

(ĤHĤ)−1ĤH , respectively, where Ĥ is the estimate for the oversampled channel

matrix H. The details of how to obtain Ĥ will be discussed in Section 3.4.1. The

hard symbol estimate for the transmitted symbol vector x̂ is found by mapping the

elements of x′ to the minimum distance constellation point. The overall system model

is illustrated with a block diagram in Fig.3.1.
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3.4.1 CSI Acquisition

Owing to the fact that the channel coefficients cm,k and the timing errors associated

with each user are not known at the receiver side, the optimal way to estimate H

requires the joint estimation of the channel coefficients cm,k and the timing errors

ek. In fact, since there is no linear relationship between the timing errors ek and the

unquantized observations, their estimation, even with symbol rate sampling, is not

a straightforward task which is not considered in any of the studies regarding 1-bit

quantized massive MIMO. However, if ek were known, H could be directly found

from C using (3.12) and (3.13). Therefore, instead of the joint estimation of ek’s

and channel coefficients, we propose a suboptimal strategy for the estimation of H

in which ek’s are assumed to be equal to zero although they are not. In such a case,

estimation of matrix H boils down to the estimation of matrix C, whose estimation

from the symbol rate samples is a well studied task [30, 36, 53]. Among the methods

in [30, 36, 53], we adopt the Bussgang-based linear mean squared error (BLMMSE)

channel estimator in [30]. We assume that all users are transmitting pilot sequences

of τ symbols to the receiver, which yields [30]

Ypilot = CΦT +Npilot (3.16)

where Ypilot is a matrix of size M × τ representing the received signal in the pi-

lot symbol transmission phase, composed of symbol rate samples, whose each row

corresponds to the received signal for a certain antenna during the pilot transmission

phase, Φ is the pilot matrix of size τ × K, whose each column corresponds to the

pilot sent by each user and Npilot is the noise matrix, whose elements are indepen-

dent zero mean complex Gaussian random variables with variance σ2
n. It is important

that the pilot sequences transmitted by each user are orthogonal, thus ΦHΦ = τI.

Therefore, DFT vectors can be appropriate selections for the pilot sequences. For

such a selection, Φ is equal to the first K columns of the DFT matrix of size τ × τ .

Denoting V ec(Ĉ) by ĉ
¯
, where V ec(.) is the matrix to vector conversion operator, it

can be found as [30]

ĉ
¯
= Φ̃HF−1

pilotrpilot, (3.17)

where rpilot =
1√
2
Q (V ec (Ypilot)),

Φ̃H = AΦ̄, (3.18)
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in which Φ̄ = Φ⊗ IM and

A =

√

2

π

((

ΦΦH ⊗ Iτ
)

+ σ2
nIML

)−0.5
. (3.19)

Moreover, Fpilot in (3.17) is the quantized received signal covariance matrix for the

pilot phase, which can be found as [30]

Fpilot =
2

π

(

asin
(

Ky(p)
− 1

2 Re(Gy(p))Ky(p)
− 1

2

)

+j asin
(

Ky(p)
− 1

2 Im(Gy(p))Ky(p)
− 1

2

))

, (3.20)

in which Gy(p) =
((

ΦΦH ⊗ Iτ
)

+ σ2
nIML

)

, Ky(p) = diag
(

Gy(p)

)

.

When ĉ
¯

is found from (3.17), which means that Ĉ is obtained, Ĥ can be computed

using (3.12) and (3.13) by replacing zero values for the timing error terms ek.

3.5 SER and Achievable Rate Analysis of Oversampled Massive MIMO

In this section, we derive analytical expressions for the SER and mutual information

for the FTSR sampled and 1-bit quantized uplink massive MIMO. The SER taking

into account the mth element of the transmitted data vector x, namely xm, can be

found as

SER = EH

[

∑

x̂m 6=xm

∑

xm

p(x̂m|xm,H)p(xm)

]

, (3.21)

where x̂m is the hard symbol estimate of the transmitted symbol xm and p(xm) is the

pmf of xm. Although SER in (3.21) is calculated for a single element of x, namely xm,

the SER taking into account all elements of the transmitted data vector x except the

ones that are close to the beginning and the end of the transmitted data block can also

be found using (3.21) since the channel coefficients for different symbol intervals and

users, which are assumed to have the same average transmitted power, have identical

distributions. The reason for the symbols at the edges of the transmitted block may

have different SER values is owing to the fact that the number of FTSR samples that

are supposed to refine the estimates are truncated thus limited for the symbols at the

block edges.
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Considering the structure of x defined in (3.7), if xm is the mth element of x, it

belongs to the kth user, where k = mod (m− 1, K) + 1 and the nth symbol interval,

where n = ⌊m− 1

K
⌋+ 1. Here ⌊ . ⌋ is the floor function that gives the largest integer

less than its operand and mod (a, p) yields the remainder after division of a by p.

Furthermore, the mutual information between the transmitted symbol xm and its hard

estimate x̂m, namely I(xm; x̂m), can be calculated as

I(xm; x̂m) = EH

[

∑

xm

∑

x̂m

p(x̂m|xm,H)p(xm)log2

p(x̂m|xm,H)

p(xm)

]

. (3.22)

To be able to employ (3.21) and (3.22) for SER and mutual information calculation,

the pmf p(x̂m|xm,H) needs to be found. To find p(x̂m|xm,H), we should obtain the

probability density function (pdf) f(x′m|xm,H). For the SR sampling case, it has been

shown that f(x′m|xm,H) can be approximated by a normal distribution whose mean

E[x̂m|xm,H] and variance Var(x̂m|xm,H) has been found approximately [36]. We

will also show that f(x′m|xm,H) can also be approximated by a Gaussian distribu-

tion for the oversampled case and extend the derivation in [36] to find E[x̂m|xm,H].

To find Var(x̂m|xm,H) we use a completely different approach than that in [36],

since the approach in [36] is valid only with SR sampling. The resulting analyti-

cal expression that we derive for the general oversampled case can also be used for

the SR sampling case, which yields SER and mutual information values with better

accuracy than that derived in [36]. The reason is that more terms are taken into ac-

count to find the variance of the normal distributed conditional random variable x̂m

conditioned on xm,H, which will be explained later in this section. Once we find

both E[x̂m|xm,H] and Var(x̂m|xm,H), we can find p(x̂m|xm,H) from f(x′m|xm,H)

using Q-functions. To start with, consider the pth element of the unquantized obser-

vation vector y, namely yp. Using (3.11), it can be expressed as

yp =

NK
∑

j=1

hp,jxj + np, (3.23)

where xj and np are the jth and pth element of transmitted data vector x and n.

Moreover, hp,j is the element of H at pth row and jth column. The mean of yp

conditioned on xm and H can be found as

E[yp|xm,H] = hp,mxm (3.24)
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since E[xj ] = 0 for j 6= m and E[np] = 0. Define vp ,
∑

j 6=m hp,jxj . Since

all xj’s are independent, which makes hp,jxj terms in the vp expression independent

for a given H and each hp,jxj term has a finite variance and zero mean for j 6= m,

the distribution of the random variable vp conditioned on xm and H converges to

Gaussian by the Central Limit Theorem (CLT) [36], [54] as K is considered to be

large. It will be zero mean and its variance σ2
vp =

∑

j 6=m |hp,j|2 since E[|xj|2] = 1.

Considering the definition of vp, (3.23) can be rewritten as

yp = hp,mxm + vp + np. (3.25)

Therefore, the pdf of yp conditioned on xm and H, namely f(yp|xm,H), satisfies

f(yp|xm,H) ≈ 1

πσ2
p,m

exp

(−||yp − µp,m||2
σ2
p,m

)

(3.26)

where µp,m = hp,mxm and σ2
p,m =

∑

j 6=m |hp,j|2 + σ2
n. In addition, when the SNR is

low, that is, when np is dominant, the approximation in (3.26) will be valid, regardless

ofK being large and vp having normal distribution or not. The 1-bit quantized version

of yp can be denoted as rp which corresponds to the pth element of the vector r defined

in (3.14). The mean of rp, which can be represented as µp, conditioned on xm and H

can be found as

µp = (1 + j)κ1p + (−1 + j)κ2p + (1− j)κ3p + (−1− j)κ4p, (3.27)

κ1p = Pr(rp = 1 + j|xm,H), κ2p = Pr(rp = −1 + j|xm,H), κ3p = Pr(rp =

1−j|xm,H), κ4p = Pr(rp = −1−j|xm,H). Considering (3.26), for xm = 1√
2
+ 1√

2
j,

κ1p can be found as

κ1p = Q



−
√
2Re(hp,mxm)

√

σ2
n +

∑

j 6=m |hp,j|2



×Q



−
√
2 Im(hp,mxm)

√

σ2
n +

∑

j 6=m |hp,j|2



 , (3.28)

where Q(.) is the Q-function. The values of κ2p, κ3p and κ4p can be found similarly.

It will be clear shortly where µp values will be used.

At this point, consider the mth element of the soft symbol estimate vector x′, which

can be denoted as x′m. Using (3.15) it can be expressed as

x′m = bT
mr, (3.29)
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where bT
m is a row vector equal to the mth row of the linear receive filter matrix B in

(3.15). (3.29) can be rewritten as

x′m =

MNβ
∑

p=1

bm,prp (3.30)

= sm +

MNβ
∑

p=1

bm,pµp, (3.31)

where sm ,
∑MNβ

p=1 bm,p(rp−µp) and bm,p is the element of receive filter matrix B on

the mth row and pth column. Considering the expression for sm, one can see that it is

composed of a summation of many terms of finite variance. Although there is some

correlation among rp, thus the summation terms, it has been shown in [36] with em-

pirical results that CLT can be applied and sm is approximately normally distributed

with SR sampling. We also make a similar assumption that sm approximately has nor-

mal distribution also for the oversampled case based on our empirical observations so

that

f(x′m|xm,H) ≈ 1

πσ2
x′
m

exp

(

−||x′m − µx′
m
||2

σ2
x′
m

)

, (3.32)

where µx′
m
=
∑MNβ

p=1 bm,pµp, σ2
x′

m

is the conditional variance of x′m and f(x′m|xm,H)

is the pdf of x′m conditioned on xm and H. The assumption that f(x′m|xm,H) is

a Gaussian pdf is valid when M is large, which is the case for a massive MIMO

scenario (in our case, we take M = 400). Assuming that f(x′m|xm,H) is a Gaussian

pdf will result in the analytically calculated I(xm, x̂m) values to be lower than their

exact value, but this effect will be insignificant as M is large. Since µp can be found

from (3.27), we can find the mean of x′m conditioned on xm and H whose expression

is given in (3.32). What remains is to find σ2
x′

m

. Considering (3.30), σ2
x′

m

can be

calculated by using the variance of sum formula [55] as

σ2
x′

m
=

MNβ
∑

p=1

|bm,p|2σ2
rp +

∑

(p,p′),p 6=p′

Cov(bm,prp, bm,p′rp′), (3.33)

where σ2
rp is the variance of the random variable rp and Cov(x, y) = E[xy∗] −

E[x]E[y∗]. Note that the correlation among r ′
p s are explicitly taken into account

in (3.33), which was not considered for the approximate analytical expressions pro-

vided in [36] for SR sampling case. In fact, there exists a correlation between the

observations from different antennas for given H case, which is proven in the follow-

ing proposition.
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Proposition 1: There exists a correlation between the quantized observations from

different antennas when H and xm is given, that is Cov(rp, r
′
p|xm,H) 6= 0∀p 6= p .

Proof:

Cov(yp, y
′
p|xm,H) = E[yp(y

′
p)

∗|xm,H]−E[yp|xm,H]E[y′p|xm,H]∗ (3.34)

=

NK
∑

j=1,j 6=m

hp,jh
∗
p′,j + hp,mh

∗
p′,m|xm|2 − hp,mh

∗
p′,m|xm|2 (3.35)

=
NK
∑

j=1,j 6=m

hp,jh
∗
p′,j 6= 0, (3.36)

which implies that yp and yp′ are also correlated when xm,H are given. As yp and yp′

are shown to be correlated, their quantized versions, namely rp and rp′ , also become

correlated. �

It will be seen in Section 3.6 that this will create significant discrepancy between the

empirical SER or achievable rate results for β = 1 and the analytical expressions

provided in [36]. To find σ2
x′

m

, (3.33) which can be written in a more compact form as

follows:

σ2
x′

m
= bT

mΓrrb
∗
m, (3.37)

where Γrr = E[(r − E[r])(r− E[r])H ] is the covariance matrix for vector r. There-

fore, it will suffice to find an analytical expression for Γrr to calculate σ2
x′

m

. Once

it is calculated, along with the calculated mean value of x′m given xm and H, the

pdf of x′m conditioned on xm and H, f(x′m|xm,H), can be found from (3.32). Us-

ing Q-functions, pmf of the hard symbol estimate p(x̂m|xm,H) can easily be found

from f(x′m|xm,H). When p(x̂m|xm,H) is obtained, SER and mutual information

I(xm, x̂m) can be obtained from (3.21) and (3.22).

To calculate Γrr, we first define the vectors r̃ and ỹ as follows:

r̃ =





Re(r)

Im(r)



 , ỹ =





Re(y)

Im(y)



 . (3.38)

Owing to the approximation in (3.26), each element of y is Gaussian distributed, thus

ỹ is also Gaussian, which makes the arcsine law to be applicable [56] in that respect.
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Therefore, the following matrix equation can be written [45, 56].

Rr̃r̃ =
2

π

[

arcsin
(

diag(Rỹỹ)
− 1

2Rỹỹdiag(Rỹỹ)
− 1

2

)]

. (3.39)

In (3.39), Rr̃r̃ = E[̃rr̃H ] and Rỹỹ = E[ỹỹH ]. However, (3.39) is valid only when

r̃ is zero mean. If r̃ were zero mean we would be able to find Rr̃r̃ from (3.39) and

then find Γrr = Rrr = E[rrH ] from Rr̃r̃. However, assuming that xm = 0, in which

case (3.39) can be used since r̃ will be zero mean, we show in Lemma 1 that the

conditional variance that we find for x
′

m conditioned on xm = 0, which we refer to as

Var(x
′

m|xm = 0,H), is larger than σ2
x′

m

, thus will constitute an upper bound on σ2
x′

m

.

Lemma 1: Var(x
′

m|xm = 0,H) > σ2
x′

m

.

Proof: See Appendix A.1. �

The details for how to find Rỹỹ for the case when xm = 0 to employ (3.39) to obtain

Rr̃r̃ and Var(x
′

m|xm = 0,H) are presented in Appendix A.2. We also show in Lemma

2 that when we replace σ2
x′

m

by Var(x
′

m|xm = 0,H) in (3.32) to find f(x′m|xm,H)

and p(x̂m|xm,H), then utilize (3.21) to find SER, this will constitute an upper bound

on the exact SER value.

Lemma 2: If Var(x′m|xm = 0,H) is used in place of σ2
x′

m

the SER value calculated

using (3.21) will yield an upper bound on the actual SER.

Proof: See Appendix A.1. �

Therefore, if we denote the pmf of x̂ conditioned on xm and H that is found using

the upper bound on σ2
x′

m

by pu(x̂m|xm,H), the SER expression in (3.21) can be upper

bounded as

SER ≤ EH

[

∑

x̂m 6=xm

∑

xm

pu(x̂m|xm,H)p(xm)

]

. (3.40)

Next, we prove that I(xm; x̂m) that we calculate using the upper bound on σ2
x′

m

will

yield a lower bound on I(xm; x̂m).

Lemma 3: If Var(x′m|xm = 0,H) is used in place of σ2
x′

m

, I(xm; x̂m) calculated using

(3.22) will yield a lower bound on the actual I(xm; x̂m).

Proof: See Appendix A.3. �
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Then, I(xm; x̂m) in (3.22) can be lower bounded as

I(xm; x̂m)

≥ EH

[

∑

xm

∑

x̂m

pu(x̂m|xm,H)p(xm)log2

pu(x̂m|xm,H)

p(xm)

]

. (3.41)

We also prove that the bounds that we find are tight at low SNR. We prove this by

showing that the variance that we find in our analysis, namely Var(x′m|xm = 0,H),

will converge to the exact value of σ2
x′

m

in Lemma 4, thus pu(x̂m|xm,H) will be equal

to p(x̂m|xm,H). Therefore, the RHS of (3.40) and (3.41) becomes equal to RHS of

(3.21) and (3.22), which means that the bounds in (3.40) and (3.41) are tight.

Lemma 4: Var(x′m|xm = 0,H) −→ σ2
x′

m

when SNR −→ 0

Proof: See Appendix A.4. �

Note that arcsine rule in (3.39) is valid only when the quantizer input is zero mean.

However, the quantizer input is not zero mean for the condition when xm and H are

given. Therefore, Lemma 1-3 in this section are important to resolve this discrepancy.

Utilization of the arcsine rule in (3.39) is critical since it is important to obtain the

matrix Γrr to calculate σ2
x′
m

, which is essential to calculate SER and achievable rate

values. Although we do not arrive at an exact calculation of SER and achievable rate,

with the results in Lemma 1-3, we can utilize the arcsine rule to obtain an upper bound

on SER as in (3.40) and a lower bound on achievable rate as in (3.41). Moreover, it

is also important that the provided bounds will be close to the simulated values for

low SNR as they are proved to be tight in Lemma 4 when SNR is low. Note also that

the bounds provided on the error rate and achievable rate in this section are in fact

approximate bounds owing to the approximations in (3.26) and (3.32).

3.6 Simulation Results

Number of receive antennas (M) and users (K) are taken to be 400 and 20, respec-

tively. Moreover, the block length (N) is selected to be 10 symbols and the oversam-

pling rate (β) is chosen between 1 and 8. The simulation based SER performance

plots for the FTSR sampled massive MIMO with 1-bit quantization is obtained by
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taking the average of 100 channel matrix, noise and symbol vector triplets. The sim-

ulation based mutual information between xm and x̂m is found by approximating the

conditional probabilities involved in (3.22) through Monte-Carlo simulations which

are also performed over 100 channel matrix, noise and symbol vector triplets. For

the analytical SER plots, we find the transition probabilities pu(x̂m|xm,H) in (3.40)

relying on (3.32) and find the analytical SER using (3.40) for a certain channel ma-

trix realization and the averaging with respect to channel matrix is performed over

100 channel matrix realizations. Note that the provided analytical SER calculation is

in fact an upper bound on the actual SER according to Corollary 2. Once the transi-

tion probabilities pu(x̂m|xm,H) are found for a certain channel matrix realization, the

mutual information between xm and x̂m are found using (3.41), which is also aver-

aged over 100 channel matrix realizations. The symbol transmitted in the 5th symbol

interval by the 20th user is considered, which is x100. Therefore, m = 100. Since the

analytical SER is found based on pu(x̂m|xm = x100,H), xm = x100 being one of the

symbols transmitted at the 5th symbol interval, the errors that are made only at the

4th, 5th and the 6th symbol intervals, which are around the center of the transmitted

block of length 10, are taken into account for the empirical SER curves. In fact, this

provides a better characterization of the SER for longer block lengths in comparison

to the case that the errors for the symbols at the block edges are taken into account.

To ensure a reasonable complexity for the calculation of the upper bound on σ2
x′

m

,

the correlation matrices in (3.39) are constructed by only considering the correlation

among the SR samples corresponding to the 5th symbol interval and the neighboring

FTSR samples that are taken half symbol duration before and after the SR sampling

point of the 5th symbol interval since the employed root-raised-cosine (RRC) pulse

is assumed to decay to insignificant levels after 2 symbol durations. The SNR values

on the plots correspond to per-antenna SNR or 1/σ2
m, which is taken the same for all

receive antennas.

The SER performance and achievable rate per user for the MRC receiver is omitted

for the simplicity and conciseness of the thesis. However, the interested reader can

refer to our work [57] for simulation based and analytical SER plots that we derive

in this chapter for the MRC receiver case. In fact, MRC receiver, which performs

fairly well in terms of achievable rate with no quantization [58], suffers from an error
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floor with 1-bit quantization [59] for SR sampling, which also seems to exist for the

FTSR sampling case [57]. The reason to observe worse error rate and achievable rate

performance with FTSR sampling compared to SR sampling for the MRC receiver

case is attributed to the fact that ISI is introduced with oversampling in addition to

the MUI in SR case, both of which cannot be suppressed efficiently with the MRC

receiver (which won’t be the case for ZF type receiver, which is able to suppress ISI

and MUI much better, as to be seen later).

For the ZF type receiver, SER and achievable rate per user plots for oversampling

rate β = 1 and β = 2 are presented in Fig.3.2 and Fig.3.3. In Fig.3.2, the SER

curves that are obtained with Monte-Carlo based simulations for oversampling rates

β = 1 and β = 2 are referred to as empirical β = 1 and β = 2, respectively. SER

curves named as proposed UB (3.40) β = 1 and β = 2 correspond to the proposed

SER upper bound in this chapter, which can be calculated using (3.40), for β = 1

and β = 2. Moreover, the curve with the label “Approximation in [36]" is the SER

plot according to the approximate analytical expression in [36] for the SR sampling

case. The plots with the label “chan. est." corresponds to the plots with BLMMSE

channel estimation, which are plotted with dashed lines, whereas perfect CSI curves

are plotted with solid lines.

Observed from Fig.3.2, oversampling by 2 results in about 2 dB SNR advantage com-

pared to SR sampling case (β = 1 case) either with perfect or imperfect CSI. More-

over, mutual information per user for β = 2 case is considerably above the β = 1

case, which can be inferred from Fig.3.3. Moreover, from Fig.3.2 and Fig.3.3 it can

be inferred that our analytical SER upper bound and achievable rate lower bound are

very close to the simulation values for β = 1 and perfect CSI, much closer than the

analytical SER and achievable rate per user curves based on the expression derived

in [36] for perfect CSI. The reason for the discrepancy between the analytical SER

and achievable rate per user expressions in [36] and the simulated values is owing

to the fact that analytical expressions in [36] do not consider the inter-antenna corre-

lations given xm and H, which we take into account by reflecting these correlations

through the matrix Rỹỹ in (3.39). In fact, we prove in Proposition 1 that the correla-

tion between the received quantized signals from different antennas when the channel

matrix is given is non-zero.
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Figure 3.2: Analytical and simulation based SER vs. SNR curves for M = 400,

K = 20, oversampling rate β = 1, 2 with ZF detector. (ρ = 0.8, QPSK modulation)

τ = K for BLMMSE channel estimation.
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Figure 3.3: Analytical and simulation based achievable rate per user curves for M =

400, K = 20, oversampling rate β = 1, 2 with ZF detector. (ρ = 0.8) τ = K for

BLMMSE channel estimation.
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Figure 3.4: Simulation based SER vs. SNR curves for M = 400, K = 20, for

ρ = 0.22 or 0.8, oversampling rate β = 1, 2, 4, 8 with ZF detector, QPSK modulation.

τ = K for BLMMSE channel estimation.

In Fig.3.2 and Fig.3.3, the proposed upper and lower bounds are also very close to the

simulated values for perfect and imperfect CSI cases for β = 1 or β = 2. In addition,

it can be seen that there is a significant performance difference between the perfect

and imperfect CSI cases in the aforementioned figures, which will also be the case

for the subsequent simulation results. This is owing to the fact that 1-bit quantization

results in a significant distortion in the channel estimates. However, this distortion

can be decreased without an error-floor as long as the training length is increased, as

proven in [30]. Our aim in this study is to show that the advantages with oversampling

persists even when the channel estimates are of low-quality.

We also provide simulation based SER and achievable rate curves for 1-bit quantized

massive MIMO system with ZF type receiver for higher oversampling rates of 4 or 8

in Fig.3.4 and Fig.3.5.

Inferred from Fig.3.4, oversampling by 8 provides about 4 dB SNR gain compared

to SR sampling case for the SER value of 10−3 when roll-off factor ρ = 0.8 for

perfect or imperfect CSI cases. This SNR gain is up to 5 dB when ρ = 0.22, which

is the roll-off factor specified for square RRC filter in UMTS [60]. The reason to
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Figure 3.5: Simulation based achievable rate per user curves for M = 400, K = 20,

for ρ = 0.22 or 0.8, oversampling rate β = 1, 2, 4, 8 with ZF detector. τ = K for

BLMMSE channel estimation.

observe better SER performance when the roll-off factor is decreased is attributed

to the fact that as the roll-off factor gets smaller, the transmitted pulse shape decays

slower so that additional FTSR samples accumulate higher symbol energy compared

to the increase in noise. Another important observation is that the same SNR gain

obtained with oversampling by 4 with ρ = 0.8 can be achieved with oversampling

only by 2 when ρ = 0.22 for perfect or imperfect CSI. Therefore, in terms of error-

rate performances, it seems that it is better to use low roll-off factor RRC pulses with

oversampling, which also reduces the excess bandwidth usage. Another important

observation is that there is no significant difference between the SNR gain obtained

with oversampling by 4 and 8, for both of the roll-off factor cases, thus oversampling

by 4 can be considered to be enough for the investigated scenarios. Moreover, in

Fig.3.5 the achievable rate per user goes above 1.997 bps/Hz at about -14.8 dB for

β = 8 and ρ = 0.22 and perfect CSI, whereas this number is about -10 dB for β = 1,

pointing out an SNR advantage of roughly 5 dB in terms of achievable rate per user.

A similar SNR advantage is also observed for imperfect CSI case in Fig.3.5.

Although FTSR sampling has the aforementioned advantages, it can be stated that
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Figure 3.6: Simulation based SER vs number of receive antennas (M) for oversam-

pling rate β = 1, 2, 4, 8 with ZF detector for SNR=-10 dB,K = 20. (ρ = 0.22, QPSK

modulation) τ = K for BLMMSE channel estimation.

it causes increased signal processing complexity at the receiver side owing to an in-

creased number of samples to be processed. However, if the advantage of oversam-

pling is exploited as decreasing the number of receive antennas without any error rate

performance degradation, the signal processing complexity at the receiver side can be

maintained at feasible levels since the number of samples taken at the receiver side

will be reduced owing to smaller number of receive antennas. In this case, the ad-

vantage will occur as the reduced form factor of the array to be deployed which can

be critical for implementation purposes. To observe the advantage of oversampling

from that viewpoint, SER of the 1-bit quantized MIMO system with ZF receiver is

plotted against the number of antennas for -10 dB SNR level in Fig.3.6 for ρ = 0.22

and various β values.

Observed from Fig.3.6, while we can achieve the SER level of 10−3 for SR sampling

case (for β = 1) with about 300 receive antennas for perfect CSI case, we need about

200 antennas for β = 2 to achieve the same SER level with perfect channel knowl-

edge. This number can fall down to 150 antennas when β = 8. This clearly shows that

oversampling can reduce necessary number of receive antennas significantly without
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Figure 3.7: Simulation based SER vs. SNR curves with channel estimation and timing

errors for M = 200, K = 10, ρ = 0.22, oversampling rate β = 1, 2, 4 with ZF

detector, QPSK modulation. For channel estimation τ = 3K and σe = 0.05T .

performance degradation. A similar reduction in the necessary number of antennas is

observed with oversampling for imperfect CSI case.

To present the impact of timing error, SER performance of 1-bit quantized massive

MIMO system under timing and channel estimation errors is plotted in Fig.3.7 with

the number of antennas M = 200 and K = 10. Perfect CSI and timing cases corre-

spond to solid curves, while imperfect CSI and timing cases are plotted with dashed

curves. The SER curves that are obtained under both imperfect CSI and timing error

are labelled as “chan. est. and timing err.". As can be observed in Fig.3.7, while

about 4 dB advantage is obtained with oversampling by 4 in perfect CSI and timing

cases, this SNR advantage does not change much under channel estimation errors or

when both channel estimation and timing error exist. Therefore, it can be stated that

the SNR advantage obtained with temporal oversampling is maintained under channel

estimation and timing errors.
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3.7 Conclusion

In this chapter, FTSR sampling has been proposed for uplink massive MIMO systems

with 1-bit quantization. Moreover, a BLMMSE channel estimation scheme has been

proposed based on the BLMMSE channel estimation techniques that exist for symbol

rate sampling in literature. With FTSR sampling in such systems, we have observed

that we can achieve about 4-5 dB SNR advantage with the ZF receiver in terms of

SER and achievable rate compared to SR sampling case both with channel estimation

and timing errors and without. We have also observed that we can reduce the required

number of receive antennas significantly (up to %50 percent) by using FTSR sampling

without any performance degradation compared to the SR sampling case with perfect

CSI or with channel estimation. The finding that FTSR reduces the necessary number

of receive antennas to achieve a certain error rate performance for massive MIMO

arrays can be very important in terms of computational complexity and the hardware

implementation that may require limited form factors for the receive antenna array.

In addition to the simulation based observations regarding the advantages of FTSR

sampling in 1-bit quantized massive MIMO systems, we have also derived an upper

bound on SER and a lower bound on the achievable rate for such systems for both

perfect and imperfect CSI. We have also proved that the bounds we provide are tight

for low SNR regime. Furthermore, we have observed that the bounds that we have

derived are close to the simulation based curves. Moreover, the bounds that have been

provided here are also applicable to 1-bit quantized massive MIMO systems with no

FTSR sampling and predict empirical results better than the approximate analytical

curves existing in literature.

In short, we take the first step in this chapter to show the benefits of oversampling

in time for massive MIMO systems with low-resolution quantizers. The results are

quite promising, leading us to analyze such systems with oversampling for frequency-

selective fading channels in the next chapter.
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CHAPTER 4

UPLINK PERFORMANCE ANALYSIS OF OVERSAMPLED WIDEBAND

MASSIVE SC-MIMO WITH ONE-BIT ADCS

4.1 Motivation and Contributions

In this chapter, we extend the receiver in Chapter 3 that works with samples taken

faster than symbol rate such that it can work under frequency-selective fading chan-

nels with single-carrier modulation. As frequency-selective fading is present for

most of the practical channels, investigation of temporal oversampling in frequency-

selective channels is critical. The related works to the content of this chapter are the

same as the ones mentioned in the related works of the study in Chapter 3, thus will

not be repeated.

For the extension to frequency-selective case, we begin with constructing the signal

model for temporally oversampled wideband channels and formulate the ZF detec-

tor accordingly. Then, the performance analysis in terms of SER and achievable

rate of oversampled wideband massive single-carrier MIMO (SC-MIMO) with one-

bit ADCs and ZF detectors are presented. Similar to the flat fading case, analytical

bounds are derived for SER and achievable rate for wideband fading channel. The

analytical bounds are compared to the simulated values in the section devoted to the

simulation results. The analysis and the simulations convey that even more signifi-

cant performance gains can be obtained with temporal oversampling for frequency-

selective channels compared to the flat fading channel case. To sum up, the main

contribution items associated with this chapter are as follows:

• We apply temporal oversampling as a novel technique to mitigate MUI and

inter-symbol interference and obtain better error rate performance for uplink
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wideband massive SC-MIMO systems with 1-bit ADCs. By expressing the

input-output relation for such systems in a simple form as in (4.11), we derive

the ZF detector for oversampled case, which has been shown to perform as good

as an ML receiver for 1-bit quantized MIMO structures [53] with a large num-

ber of receive antennas for the SR sampling case. By employing ZF receiver

with oversampling, we achieve up to 9 dB SNR gain compared to SR sampling

under perfect and imperfect CSI cases. Moreover, we also show that the nec-

essary number of antennas to achieve a certain error rate performance can be

lowered significantly (up to 70% reduction) with temporal oversampling.

• We make the error rate performance analysis for wideband 1-bit quantized up-

link massive MIMO structures with temporal oversampling at the receiver side

for both perfect and imperfect CSI cases. The accuracy of the analysis is veri-

fied by the simulation based results.

4.2 Signal Model

We start from the received and pulse-matched filtered signal at the mth antenna ex-

pressed for SC-MIMO in (2.4) in Chapter 2, which can be rewritten as

dm(t) =

L−1
∑

ℓ=0

K
∑

k=1

N
∑

n=1

hm,k[ℓ]xn,kp(t− (n− 1)T − ℓT ) + zm(t), (4.1)

where hm,k[ℓ] is the ℓth channel tap between the mth antenna and the kth user, xn,k

is the transmitted data symbol of user k at the nth symbol period, zm(t) and p(t)

is the matched filtered pulse shape and noise, as defined in Chapter 2. When p(t)

is a Nyquist pulse, symbol-rate sampling of dm(t) results in a discrete-time signal

model consistent with that in [23], which is one of the fundamental works analyzing

quantized wideband one-bit massive MIMO. We define vector y as

y =
[

[ySR]T [yOS,1]T [yOS,2]T · · · [yOS,β−1]T
]T

1×βMN

, (4.2)

where

ySR =
[

ySR1,1 ySR1,2 · · · ySR1,M ySR2,1 · · · ySRN,M

]T

1×MN

, (4.3)
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yOS,b =
[

yOS,b
1,1 · · · yOS,b

1,M yOS,b
2,1 · · · yOS,b

N,M

]T

1×MN

, (4.4)

b = 1, ..., β − 1 with positive integer β. In (3.3) and (3.4),

ySRi,m = dm((i− 1)T ), (4.5)

which corresponds to the samples taken at the symbol rate and

yOS,b
i,m = dm((i− 1)T + bT/β), (4.6)

corresponding to the FTSR samples. Furthermore, we also define vectors x and n as

x =
[

x1,1 x1,2 · · · x1,K x2,1 · · · xN,K

]

1×NK

T

, (4.7)

n =
[

[nSR]T [nOS,1]T [nOS,2]T · · · [nOS,β−1]T
]T

1×βMN

, (4.8)

where

nSR =
[

nSR
1,1 nSR

1,2 · · · nSR
1,M nSR

2,1 · · · nSR
N,M

]T

1×MN

, (4.9)

nOS,b =
[

nOS,b
1,1 · · · nOS,b

1,M nOS,b
2,1 · · · nOS,b

N,M

]T

1×MN

, (4.10)

b = 1, ..., β− 1, In (4.9) and (4.10), nSR
i,m = zm((i− 1)T ) and nOS,b

i,m = zm((i− 1)T +

bT/β). In this case, (4.1) can be written in matrix-vector form as

y = Hx+ n, (4.11)

where

H =
[

G0 G1 G2 · · · Gβ−1

]T

, (4.12)

in which

Gb =















Γb
1 Γb

0 Γb
−1 · · · Γb

−(N−2)

Γb
2 Γb

1 Γb
0 · · · Γb

−(N−1)
...

. . . . . . . . .
...

Γb
N Γb

N−1 · · · Γb
2 Γb

1















MN×NK

T

, (4.13)

where b = 1, ..., β − 1, Γb
i =

∑L−1
ℓ=0 γ

b
i,ℓCℓ, γbi,ℓ = p((i − 1)T + bT/β − ℓT ) and Cℓ

is the matrix, whose element at its mth row and the kth column is equal to hm,k[ℓ].

45



In the case that 1-bit quantized version of the received signal vector y is taken into

account, the model in (4.11) becomes

r = Q(y) = Q(Hx+ n), (4.14)

where Q(y) =sgn(Re(y)) + jsgn(Im(y)), sgn(.) being the signum function, Re(.)

and Im(.) takes the real and imaginary parts of their operands. Without loss of gen-

erality, we assume ZF type linear receiver. In that case, the soft estimate for the

transmitted symbol vector x′ can be found as [36, 53]

x′ = Br, (4.15)

where B is a linear receive filter. For MRC and ZF receiver, B = ĤH or B =

(ĤHĤ)−1ĤH , respectively, where Ĥ is the estimate of the channel matrix Ĥ. The

hard symbol estimate vector x̂ for the transmitted symbol vector x is found by map-

ping the elements of the soft estimate vector x′ to the minimum distance constellation

point.

In this chapter, we prefer leaving the proposal of a channel estimation algorithm to

a future work, yet we consider the effect of imperfect CSI as follows. We assume

that the ML estimates for the channel matrices Cℓ are estimated somehow. Since ML

estimates are asymptotically Gaussian and unbiased, we construct the estimates for

the Cl matrices by adding independent zero mean (since the estimates are unbiased)

complex Gaussian random variables with variance σ2
h/L to each element of the ma-

trix Cℓ, to form the matrix Ĉℓ. Then, Ĥ can be obtained from Ĉℓ using (4.12) and

(4.13). The reason for division by the number of channel taps L for the variance of the

Gaussian random variables added to each element of Cℓ is to normalize the received

signal power from each user.

4.3 Error Rate Analysis

In this section, we make the error rate analysis for 1-bit quantized uplink wideband

massive SC-MIMO with temporal oversampling at the receiver side. SER for the pth
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element of the transmitted data vector x, namely xp, can be written as

SER = EH





∑

xp

∑

x̂p 6=xp

p(x̂p|xp,H)p(xp)



 , (4.16)

where x̂p is the hard symbol estimate of the transmitted symbol xp and p(xp) is the

probability mass function of xp. The index p is selected to be such that it corresponds

to one of the symbols that is transmitted around the center of the transmitted data

block. In this way, SER that considers all elements of vector x, except the ones that

are transmitted at the beginning and the end of the transmitted data block, will be

similar to the SER of xp since the channel coefficients for different symbol intervals

and users have identical distributions. However, the error rate for the symbols at the

block edges may be different than the symbols that are transmitted around the center

of the block since the number of FTSR samples that refine the estimates at the block

edges will be more limited as compared to the ones that are around the center of the

transmitted data block. Considering the structure of x defined in (4.7), if xp is the pth

element of x, it belongs to the mth user, where m = mod (p− 1, K) + 1 and the nth

symbol interval, where n = ⌊p− 1

K
⌋+1. Here ⌊ . ⌋ is the floor function that gives the

largest integer less than its operand and mod (a, p) yields the remainder after division

of a by p.

To be able to calculate SER using (4.16), p(x̂p|xp,H) needs to be found. In order to

reach a a tractable analysis, we will show that p(x̂p|xp,H) can be approximated well

with a normal distribution. In such a case, p(x̂p|xp,H) will be uniquely defined when

its mean and variance is found.

To start with, considering (4.11), the mth element of y, namely ym, can be expressed

as

ym =
NK
∑

k=1

hm,kxk + nm, (4.17)

where xk and nm are the kth and mth element of transmitted data vector x and n and

hm,k is the element of H at the mth row and kth column. Define zm ,
∑NK

k=1 hm,kxk.

Since all xk’s are independent, which makes hm,kxk terms in the zm expression in-

dependent conditioned on H and xp, and each hm,kxk term has a finite variance, the

distribution of the random variable zm conditioned on xp and H converges to that of

a Gaussian by the CLT [54]. This implies that ym = zm + nm will be Gaussian since
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nm is Gaussian. The conditional mean of ym can be found as

E[ym|xp,H] = hm,pxp (4.18)

since E[xk] = 0 for k 6= p and E[nm] = 0. The conditional variance of ym can also

be written as

V ar[ym|xp,H] =
∑

k 6=p

|hm,k|2 + σ2
n (4.19)

since E[|xk|2] = 1 for k 6= p. Therefore, it can be stated that the probability density

function of ym conditioned on xp and H, namely f(ym|xp,H), satisfies

f(ym|xp,H) ≈ CN (hm,pxp,
∑

k 6=p

|hm,k|2 + σ2
n). (4.20)

The observation after 1-bit quantization, namely rm = Q(ym), corresponds to the

mth element of the vector r defined in (4.14). The conditional mean of rm given xp

and H, which is denoted by µm|p can be expressed as

µm|p = (1 + j)P1m|p + (−1 + j)P2m|p + (1− j)P3m|p + (−1− j)P4m|p, (4.21)

where P1m|p = Pr(rm = 1 + j|xp,H). Similarly, P2m|p = Pr(rm = −1 + j|xp,H),

P3m|p = Pr(rm = 1− j|xp,H), P4m|p = Pr(rm = −1 − j|xp,H). Due to (4.20),

these probabilities can be calculated using the standard error function. The point

where µm|p values will be used will be clear shortly.

Due to (4.15), the pth element of the soft symbol estimate vector x′, which can be

denoted by x′p, can be written as

x′p = bT
p r, (4.22)

where bT
p is the row vector equal to the pth row of the linear receive filter matrix B in

(4.15). (4.22) can be reexpressed as

x′p =

MNβ
∑

m=1

bp,mrm, (4.23)

where bp,m is the element of receive filter matrix B on the pth row and mth column.

Considering the expression for x′p, it is composed of a summation of many terms of

finite variance. Therefore, relying on the Central Limit Theorem, we make the as-

sumption that x′m approximately has normal distribution. This assumption is verified
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with empirical observations in [36] for symbol-rate sampling case. For oversampled

case, the Gaussian assumption has better accuracy as the number of independent ob-

servations in the calculation of x′p increase for higher β. Therefore, it can be stated

that

f(x′p|xp,H) ≈ CN (

MNβ
∑

m=1

bp,mµm|p, σ
2
x′
p|xp

), (4.24)

where σ2
x′
p|xp

is the conditional variance of x′p conditioned on xp. Since bp,m is known

and µm|p can be found from (4.21), the conditional mean of x′p given xp and H whose

expression is given in (4.24) can be calculated. What remains is to find σ2
x′
p|xp

. Con-

sidering (4.23), σ2
x′
p|xp

can be calculated by using the variance of sum formula [55]

as

σ2
x′
p|xp

= bT
pCrrb

∗
p, (4.25)

where Crr = E[(r − E[r])(r − E[r])H|xp,H] is the covariance matrix for vector

r. Therefore, if Crr is calculated, the value of σ2
x′
p|xp

can be found. When σ2
x′
p|xp

is found, along with the calculated mean value of x′p given xp and H, it means that

f(x′p|xp,H) can be found according to (4.24). Once f(x′p|xp,H) is known, the proba-

bility mass function for the hard symbol estimate p(x̂p|xp,H) can be calculated using

Q-functions. Then, SER can be calculated by replacing the calculated p(x̂p|xp,H)

values into the expression in (4.16).

To find Crr, we first define the vectors r′ and y′ as follows.

r′ =





Re(r)

Im(r)



 ,y′ =





Re(y)

Im(y)



 . (4.26)

According to arcsine law, the following equation holds [56].

Rr′r′ =
2

π

[

arcsin
(

diag(Ry′y′)
− 1

2Ry′y′diag(Ry′y′)
− 1

2

)]

. (4.27)

In (4.27), Rr′r′ = E[r′r′H ] and Ry′y′ = E[y′y′H ]. However, (4.27) is valid only when

r′ is zero mean and y′ is Gaussian. It has been discussed that y′ is approximated as

Gaussian as in (4.20). However, r′ is not zero mean. Therefore, we will find a value

for σ2
x′
p|xp

by assuming xp = 0, which implies that r′ is also zero mean, thus (4.27) is

valid. It can be shown that the value of σ2
x′
p|xp

found under this assumption is larger

than the actual σ2
x′
p|xp

, for which xp is non-zero. If this value is used in place of σ2
x′
p|xp

,

to find f(x′p|xp,H) and p(x̂p|xp,H) and the SER is found using (4.16), the calculated
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SER will be higher than the actual value of SER, thus will constitute an upper bound

(UB) for SER. The proof for the validity of this upper bound can be made similar

to the proof made for frequency-flat fading channel case investigated in Chapter 3.

Moreover, the details on how to find Rrr from Rr′r′ and Ry′y′ based on H, data and

noise correlation matrices Rxx and Rnn is also similar to finding Rrr and Rỹỹ in

Chapter 3, whose details are provided in Appendix A.2.

4.4 Simulation Results

Number of users (K) and receive antennas (M) are taken to be 20 and 400, respec-

tively. The block length (N) is selected to be 10 symbols and the oversampling

rate (β) is chosen between 1 and 8. The channel length L is chosen to be either

L = 3 or L = 10. The power-delay profile of the channel is taken as uniform, that is

ρk[ℓ] = 1/L for ℓ = 0, 1, ..., L − 1 and k = 1, 2, ..., K. The simulation based SER

plots are obtained by taking the average of 100 channel matrix, noise and symbol vec-

tor triplets. For the analytical SER plots, we find p(x̂p|xp,H) as decribed in Section

4.3 and find the analytical SER using (4.16) for a certain channel matrix realization

and the averaging with respect to channel matrix is performed over 100 channel ma-

trix realizations. Note that the calculated analytical SER is in fact an upper bound

for the actual SER as mentioned in Section 4.3. The analytical SER is found for the

data symbol that is transmitted in the 5th symbol interval (which is around the middle

of the transmitted block of length 10) by the 20th user. Considering the structure of

vector x in (4.7), this means that xp = x100. The SNR values on the plots are equal to

1/σ2
n.

The SER performance for quantized massive MIMO system with ZF receiver is plot-

ted for β = 1 and β = 2 in Fig. 4.1 when L = 3 and ρ = 0.8 for both perfect and

imperfect CSI cases. In Fig. 4.1, the SER curves that are obtained with Monte-Carlo

based simulations for oversampling rates β = 1 and β = 2 are referred to as β = 1

and β = 2 empirical, respectively. SER curves referred to as “proposed UB β = 1

and β = 2" correspond to the proposed SER UB in this chapter for β = 1 and β = 2,

respectively. The dashed curves with the label “Imperf CSI" are the performance

curves that are obtained under channel estimation errors (for σ2
h = 0.4), whereas the
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Figure 4.1: Analytical and simulation based SER vs. SNR curves for M = 400,

K = 20, oversampling rate β = 1, 2, channel length L = 3, roll-off factor ρ = 0.8

with ZF detector for perfect and imperfect CSI (σ2
h = 0.4).

solid curves correspond to perfect CSI cases. As can be noted in Fig. 4.1, oversam-

pling by 2 provides about 7 dB SNR gain compared to the SR sampling case when

the SNR values required to attain the SER of 10−3 are considered. This SNR gain is

not reduced under channel estimation errors. Moreover, it can also be seen that the

analytical SER curves are very close to the empirical SER curves for all cases.

We also provide simulation based SER curves for higher oversampling rates of 4 or

8, various roll-off factors (for ρ = 0.22 and ρ = 0.8) in Fig. 4.2 for both perfect and

imperfect CSI.

The solid curves in Fig. 4.2 correspond to perfect CSI cases whereas the dashed curves

correspond to imperfect CSI cases. The blue curves are for roll-off factor ρ = 0.8 and

the red curves are for ρ = 0.22. As can be noted from Fig. 4.2, oversampling by 8

provides about 8.5 dB SNR gain compared to SR sampling case for ρ = 0.8 when

the SNR values to maintain a SER of 10−3 are considered. When roll-off factor ρ is

decreased to 0.22, this SNR gain becomes about 9 dB. The reason to observe better

SER performance when the roll-off factor is decreased is attributed to the fact that
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Figure 4.2: Simulation based SER vs. SNR curves for M = 400, K = 20, oversam-

pling rate β = 1, 2, 4, 8 with ZF detector for perfect and imperfect CSI (σ2
h = 0.4).

as the roll-off factor gets smaller, the transmitted pulse shape decays slower so that

additional FTSR samples accumulate higher symbol energy compared to the increase

in noise. The mentioned SNR gains does not diminish for the imperfect CSI case. For

the simplicity and conciseness of the thesis, we did not include the plots for the case

L = 10, but we state that the SNR gains for L = 10 is again up to 9 dB for ρ = 0.22

both for perfect or imperfect CSI cases.

We also present SER versus the number of receive antennas when SNR is fixed as -7

dB for L = 3 and ρ = 0.22 in Fig. 4.3. The solid curves in Fig. 4.3 correspond to

perfect CSI, whereas the dashed curves are for imperfect CSI cases. As can be noted

in Fig. 4.3, while the SER of 10−3 can be achieved with about 400 antennas for SR

sampling case (β = 1), the same SER value can be achieved with only about 190

antennas for β = 2 or with only about 150 antennas for β = 4 or β = 8 in case of

perfect CSI. Under imperfect CSI conditions, SER value of 10−3 can be maintained

by about 650 antennas for SR sampling case, whereas the same SER value is achieved

only with about 300 antennas for β = 2, or with only about 250 antennas for β = 4

or β = 8. Therefore, it can be stated that the number of antennas can be reduced

significantly without performance degredation. This will reduce the form factor of
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Figure 4.3: Simulation based SER vs number of receive antennas (M) for oversam-

pling rate β = 1, 2, 4, 8 with ZF detector for SNR=-7dB under perfect and imperfect

CSI (σ2
h = 0.4).

the antenna array, the power consumption due to RF chains owing to the fact that the

number of RF chains decrease when the number of antennas are reduced.

4.5 Conclusion

In this chapter, temporal oversampling is proposed for uplink massive MIMO sys-

tems with 1-bit quantization and frequency selective channels for both perfect and

imperfect CSI cases. For such systems, we have derived the ZF receiver and showed

that temporal oversampling yields up to 9 dB SNR advantage compared to the SR

sampling case. This is much higher than up to 5 dB SNR gain with oversampling ob-

served for frequency-flat channels. The reason for higher gain in frequency-selective

channels is that the severe quantization caused by one-bit ADC results in a very in-

ferior performance when both ISI and MUI exist compared to the flat-fading case

where only MUI is present. However, as quantization noise is suppressed with over-

sampling, the resulting increased ability to cancel both ISI and MUI (for frequency-
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selective channel) provides a much better performance gain compared to any perfor-

mance improvement attained by the increased ability to cancel only MUI in frequency-

flat fading case.

Moreover, we have also made a performance analysis for such systems both under

perfect and imperfect CSI. The analytically calculated values for the error rate are

observed to be close to simulated values. Moreover, we have also observed that the

required number of receive antennas to maintain a certain error rate performance

can be reduced significantly by temporal oversampling, which in turn reduces the

necessary form factor of the antenna array and the total power consumption.

In short, we have demonstrated in Chapters 3-4 that temporal oversampling has sig-

nificant benefits for one-bit quantized massive MIMO for both frequency-flat and

frequency-selective channels under perfect or imperfect CSI. What remains is to show

that these advantages can be obtained with a detector of feasible complexity, rather

than a very high complexity ZF detector that has been considered in Chapters 3-4.

Such a detector is proposed in the next chapter.
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CHAPTER 5

SEQUENTIAL LINEAR DETECTION IN ONE-BIT QUANTIZED UPLINK

MASSIVE SC-MIMO WITH OVERSAMPLING

In previous chapters, temporal oversampling has been shown to provide significant

advantages in terms of error rate performance for one-bit quantized massive single-

carrier MIMO (SC-MIMO) systems. However, such an advantage is observed with

a zero-forcing type receiver, whose complexity is increasing with N3, N being the

block length, which is defined as the number of data symbols that are processed

in a block, making its implementation for long block lengths not possible. In this

chapter, we propose a low complexity receiver for one-bit quantized uplink massive

SC-MIMO whose complexity increases linearly with block length. At the same time,

the SNR gains provided through temporal oversampling with the high complexity ZF

receiver will be shown to be preserved with the proposed low complexity receiver.

Moreover, due to the sequential structure of the proposed receiver, the delay to esti-

mate the transmitted data symbols can be reduced to LpT from NT , where T is the

symbol duration and Lp is equal to the length of the employed pulse shape, which is

much less than N in general.

5.1 Signal Model

We start from the received and pulse-matched filtered signal at the mth antenna of a

massive SC-MIMO system expressed in (2.4) in Chapter 2. This signal can be written

for the case of flat fading channel as

dm(t) =

K
∑

k=1

N
∑

n=1

cm,kxn,kp(t− (n− 1)T ) + zm(t), (5.1)
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where cm,k = hm,k[0] is the channel coefficient between the mth antenna and the kth

user, xn,k is the transmitted data symbol of user k at the nth symbol period, zm(t)

and p(t) is the matched filtered pulse shape and noise, as defined in Chapter 2. For

demonstration purposes, we define vector y as

y =
[

y1,1 y1,2 · · · y1,M y2,1 · · · yβN,M

]T

1×βMN

, (5.2)

where

yi,m = dm((i− 1)T/β), (5.3)

i = 1, ..., βN , m = 1, ...,M , β being a positive integer oversampling rate, which is

defined as the ratio of the total number of samples to the samples taken at symbol

rate. Furthermore, vectors x and w are also defined as

x =
[

x1,1 x1,2 · · · x1,K x2,1 · · · xN,K

]

1×NK

T

, (5.4)

w =
[

w1,1 w1,2 · · · w1,M w2,1 · · · wβN,M

]T

1×βMN

, (5.5)

where wi,m = zm((i − 1)T/β), i = 1, ..., βN , m = 1, ...,M . In this case, (5.1) can

be written in matrix-vector form as

y = Hx+w, (5.6)

where

H =
[

GT
1 GT

2 GT
3 · · · GT

N

]T

, (5.7)

Gn =





















Cn

γ1nC γ1n−1C γ1n−2C · · · γ1n−N+1C

γ2nC γ2n−1C γ2n−2C · · · γ2n−N+1C
...

...
...

...
...

γβ−1
n C γβ−1

n−1C γβ−1
n−2C · · · γβ−1

n−N+1C





















βM×NK

, (5.8)

Cn =
[

01 02 · · · 0n−1 C 0n 0n+1 · · · 0N−1

]

M×NK

, (5.9)

n = 1, ..., N , γbn = p((n − 1)T + bT/β) and 0n is a zero matrix of size M × K.

Moreover, C is the matrix, whose element at its mth row and the kth column is equal
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to the channel coefficient cm,k. The current form of Cn may be confusing for the

cases when n = 1 and n = N , thus we specify C1 and CN as

C1 =
[

C 01 02 · · · 0N−1

]

M×NK

, (5.10)

CN =
[

01 02 · · · 0N−1 C
]

M×NK

. (5.11)

As can be inferred from (5.8), each Gn matrix can be considered to have two parts,

namely the upper part composed of the matrix Cn and the lower part that is consisting

of γbn coefficients weighting the channel matrix C, b = 1, ..., β − 1. The part of

Gn composed of Cn determines the relation between the transmitted symbols and

the SR samples, whereas the remaining parts of Gn establishes the relation between

the transmitted symbols and additional samples taken between the SR samples due

to oversampling. Note that Cn is composed of a single matrix C and N − 1 zero

matrices, which assumes that there is no ISI between the SR samples, which is a

valid assumption for the narrowband channel case and when zero ISI pulse shapes

are employed.

Under 1-bit quantization of the received signal vector y, the signal model in (5.6)

becomes

r = Q(y) = Q(Hx +w), (5.12)

whereQ(y) =sgn(Re(y))+jsgn(Im(y)), sgn(.) being the signum function. The soft

estimate for the transmitted symbol vector x′ can be found as [36, 53]

x′ = Br, (5.13)

where B is the linear receive filter matrix. MRC and ZF type receivers are given as

B = HH and B = (HHH)−1HH , respectively. The hard symbol estimate vector

x̂ is found by mapping the elements of the soft estimate vector x′ to the minimum

distance constellation point.

In this chapter, we prefer leaving the proposal of a channel estimation algorithm as a

future work. However, we take into account the impact of imperfect CSI as follows.

We presume that the ML estimates for the channel matrix C are estimated with some

method. Owing to the property of the ML estimates being asymptotically Gaussian
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and unbiased [61], we obtain the estimated channel matrix C, namely Ĉ, by adding

independent zero mean (since the estimates are unbiased) complex Gaussian random

variables with variance σ2
h to each element of the matrix C. Then, Ĥ can be obtained

from Ĉ using (5.7) and (5.8). After that, Ĥ can be used to obtain matrix B.

5.2 Sequential Linear Receiver

In this section, we propose a sequential type linear receiver as an alternative to the

linear receiver characterized by matrix B. The reason is that for ZF receiver in Chap-

ter 3, in which case B = (HHH)−1HH , the number of multiplications to obtain B

grows with N3 due to inversion of HHH. This makes the ZF receiver for oversam-

pled uplink massive MIMO computationally prohibitive when the block length in a

data packet goes high. One can propose using MRC receiver instead of ZF receiver,

but it has been shown in [57] that MRC receiver suffers significantly from an error

floor and performs worse in terms of error rate when oversampling is performed com-

pared to the SR sampling case. Therefore, we seek to construct a sequential receiver

that will provide the advantages that come with oversampling as in the linear ZF filter

case and has a complexity that grows linearly with the block length N .

To derive a sequential linear receiver, we make some modifications in the signal model

that we present in Section 5.1 such that the derived receiver does not wait for the

whole quantized observation vector r, which is of size βMN , to be obtained to update

the estimate for the transmitted data symbol vector x. In (5.12), the quantized receive

vector r is expressed as a function of the data symbol vector x. At this point, we define

the observation vector at the time instant n, for which only the first n elements of the

quantized receive vector r are observed, while the remaining βMN − n elements are

not observed yet. We denote this vector by r[n]. In this case, the observation model

can be expressed as

r[n] = Q(H[n]x +w[n]), (5.14)

where

r[n] =
[

r1 r2 · · · rn

]H

, (5.15)

w[n] =
[

w1 w2 · · · wn

]H

, (5.16)
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H[n] =















h[1]H

h[2]H

...

h[n]H















. (5.17)

In (5.17), h[n]H represents the nth row of matrix H, whereas in (5.15) and (5.16),

ri and wi are the ith element of the vectors r and w, respectively. Denoting the soft

estimate of vector x at the time instant n− 1 as x′[n − 1], which is calculated based

on the observation vector at the time instant n − 1, namely r[n − 1], the aim is to

update the estimate x′[n− 1] to x′[n] using rn. Such an estimator can be defined with

the following update equations performed at time instant n.

k[n] =
M[n− 1]ĥ[n]

σ2
n + ĥ[n]HM[n− 1]ĥ[n]

, (5.18)

x′[n] = x′[n− 1] + k[n]
[

rn − ĥ[n]Hx′ [n− 1]
]

, (5.19)

M[n] = [I− k[n]ĥ[n]H ]M[n− 1], (5.20)

where k[n] can be denoted as the Kalman gain vector, M[n] as the MMSE matrix and

ĥ[n]H is the nth row of matrix Ĥ, which represents the estimated version of matrix

H. The execution of the update equations in (5.18)-(5.20) will also be referred to as

the “nth iteration step of the sequential receiver". The size of the Kalman gain vector

k[n] is NK × 1, whereas the size of the MMSE matrix M[n] is NK × NK. When

no data is observed yet, the symbol estimate x̂[n] and the MMSE matrix M[n] should

be initialized using the prior information of the symbol estimates as follows.

x′[0] = E[x] = 0, (5.21)

M[0] = E[xxH ] = I. (5.22)

The equations (5.18)-(5.20) are the update equations for the sequential LMMSE for

the unquantized observation model in (5.6) [61]. We propose this estimation tech-

nique to be directly used with the quantized observations. With such a sequential

estimation scheme, the matrix inversion in the ZF receiver is avoided.

An important advantage of the proposed sequential estimator is its ability to provide

estimates for the data vector without having to wait for all observations taken for the
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whole data processing block (total number of observations for data processing block

is βMN). For example, let the vector for the hard symbol estimates for the symbols

transmitted at pth symbol interval be denoted as x̂p. It can be expressed as

x̂p =
[

x̂(p−1)K+1 x̂(p−1)K+2 · · · x̂pK

]T

, (5.23)

where x̂i corresponds to the ith element of the hard symbol estimate vector x̂ for

the transmitted symbol vector x defined in (5.4). Let the soft estimates for the sym-

bols transmitted in the pth symbol interval at the nth iteration step of the sequential

estimation algorithm be denoted as x
′

[n, p]. It can be written as

x′[n, p] =
[

x′(p−1)K+1[n] x
′
(p−1)K+2[n] · · · x′pK [n]

]T
, (5.24)

where x′i[n] corresponds to the ith element of the vector x′[n]. Assuming that em-

ployed pulse shape decays to insignificant levels after Lp symbol durations, the hard

symbol estimate vector for the symbols transmitted at pth symbol interval x̂p can be

found by mapping the elements in the soft estimate vector for the transmitted symbols

at pth symbol interval at the Mβ(p+Lp)
th iteration step, namely x′[Mβ(p+Lp), p],

to the minimum distance constellation point. In short, we make the hard decisions for

the symbols transmitted at the nth symbol interval, whenever the observations for the

(n + Lp)
th symbol interval is taken. With this scheme, the maximum delay for the

symbol decisions is LpT for all transmitted symbols, while the delay for ZF receiver

can be up to NT , which is in general significantly larger than LpT .

Although the proposed sequential receiver characterized by (5.18)-(5.20) has the men-

tioned advantages, its complexity is still not low. For example, in (5.18), the com-

plexity of the multiplication of matrix M[n−1], whose size is NK×NK, with ĥ[n],

which is a vector of sizeNK×1, grows withN2. Repeating this multiplication for all

iteration steps means that the complexity of the multiplications to estimate vector x at

the end of all iterations grows with N3, since the total number of iterations is βMN .

Therefore, with the presented sequential receiver, the total number of multiplications

still grows with N3 similar to the ZF filter case. To reduce the complexity of the se-

quential receiver, we exploit the fact that the pulse shape decays to insignificant levels

after a certain number of symbol durations (Lp), thus it is not necessary to update all

symbol estimates for every observation. The low complexity version of the sequential

receiver is characterized by the following update equations that are performed at each
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iteration step.

kℓ[n] =
Mℓ[n− 1]ĥℓ[n]

σ2
n + ĥℓ[n]HMℓ[n− 1]ĥℓ[n]

, (5.25)

x′
ℓ[n] = x′

ℓ[n− 1] + kℓ[n]
[

rn − ĥℓ[n]
Hx′

ℓ [n− 1]
]

, (5.26)

Mℓ[n] = [I− kℓ[n]ĥℓ[n]
H ]Mℓ[n− 1], (5.27)

where

x′
ℓ[n] =

[

x′(zn−Lp)K [n] x
′
(zn−Lp)K+1[n] · · ·x′(zn+Lp)K [n]

]T

, (5.28)

ĥℓ[n] =
[

ĥ(zn−Lp)K [n] ĥ(zn−Lp)K+1[n] · · · ĥ(zn+Lp)K [n]
]T

. (5.29)

In (5.28) and (5.29), x′i[n] and ĥi[n] corresponds to the ith element of the vectors x′[n]

and ĥ[n], respectively. Moreover, the index zn specifies the current symbol interval

that the observations are being taken from at the nth iteration of the sequential receiver

and is equal to ⌊(n − 1)/M/β⌋ + 1, where ⌊.⌋ is the floor function that gives the

largest integer less than its operand. In this setting for the sequential receiver, the size

of the Kalman gain kℓ[n] and the MMSE matrix Mℓ[n] becomes (2LpK +1)× 1 and

(2LpK + 1) × (2LpK + 1) and they can be initialized as in (5.21) and (5.22). For

the low complexity version of the sequential receiver characterized by (5.25)-(5.27),

the number of complex multiplications in the update equations (5.25)-(5.27) does not

change with the block lengthN since the sizes of hℓ[n−1], x′
ℓ[n−1] and Mℓ[n−1] are

(2LpK+1)×1, (2LpK+1)×1 and (2LpK+1)×(2LpK+1), respectively, which are

all independent of N . Since there are βMN iterations, the number of multiplications

grows with N compared to N3 for the ZF receiver and the high complexity version

of the sequential receiver characterized by (5.18)-(5.20).

5.3 Simulation Results

Number of users (K) and receive antennas (M) are taken to be 20 and 400, respec-

tively. The block length (N) is selected to be 30 symbols. The roll-off factor (ρ) for

the RRC pulse shape is taken to be 0.22. The parameter Lp is selected to be 4. The

error rate performances of ZF receiver, whose complexity grows withN3, and the low

complexity sequential receiver characterized by its update equations in (5.25)-(5.27)
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Figure 5.1: Simulation based SER vs. SNR curves for M = 400, K = 20, oversam-

pling rate β = 1, 2, 4 with ZF and the proposed sequential receivers for perfect and

imperfect CSI (σ2
h = 0.2).

are obtained by simulations and plotted in Fig. 5.1 for perfect and imperfect CSI cases

when oversampling rates β is from 1 (no oversampling) to 4 (4 times oversampling).

The SNR values on the plots are equal to 1/σ2
n.

The solid curves in Fig. 5.1 and Fig. 5.2 correspond to the curves obtained under per-

fect CSI (σ2
h = 0), whereas the dashed curves are for imperfect CSI case, for which

σ2
h = 0.2. The black curves correspond to the performance of the high complexity

ZF receiver, while the red curves represent the error-rate performance the proposed

low complexity sequential receiver for both figures. As can be noted in Fig. 5.1, over-

sampling with ZF receiver provides up to 4 dB SNR advantage compared to the SR

sampled case for both perfect and imperfect CSI cases when the SNR values to main-

tain a SER of 10−3 are considered, as pointed out in the Chapter 3. More importantly,

the error rate performance of the proposed low complexity sequential receiver in this

chapter is similar to the performance of the complex ZF receiver under both perfect

and imperfect CSI cases. This means that the 4 dB SNR advantage provided by over-

sampling with ZF receiver compared to the SR sampled case is maintained with the

proposed low complexity sequential receiver.
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Figure 5.2: Simulation based SER vs number of receive antennas (M) for oversam-

pling rate β = 1, 2, 4 with ZF and proposed sequential receivers when SNR=-12dB

for perfect and imperfect CSI (σ2
h = 0.2).

We also present SER versus the number of receive antennas when SNR is fixed as

-12 dB in Fig. 5.2. As can be inferred from Fig. 5.2, number of antennas necessary

to maintain a SER of 10−3 can be halved by temporal oversampling with ZF receiver.

This means that by oversampling, the form factor, power consumption and the overall

cost of the MIMO array can be reduced significantly. Moreover, the pronounced

advantages regarding the necessary number of antennas also prevail with the proposed

low complexity receiver as its performance can be observed to be close to the ZF

receiver in Fig. 5.2 for both perfect and imperfect CSI cases.

5.4 Conclusion

It has been shown in existing studies that temporal oversampling in 1-bit quantized

uplink massive MIMO systems can provide significant advantages in terms of error

rate performance and the necessary number of receive antennas required to maintain

a certain error rate. However, the pronounced advantages of temporal oversampling

are observed with a high complexity ZF receiver, whose complexity grows with N3,
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N being the block length, which is not implementable for long block lengths. In this

chapter, a low complexity sequential receiver for temporally oversampled scenario

is proposed whose complexity increases linearly with the block length. It has been

observed that error rate performance of the proposed receiver is close to the perfor-

mance of the complex ZF receiver for both perfect and imperfect CSI cases, thus it

retains the advantages of temporal oversampling with a feasible receiver complexity.

Moreover, the proposed receiver has shorter delay in providing the transmitted data

symbol estimates.
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CHAPTER 6

PERFORMANCE ANALYSIS OF QUANTIZED UPLINK MASSIVE

MIMO-OFDM WITH OVERSAMPLING UNDER ADJACENT CHANNEL

INTERFERENCE

6.1 Motivation and Contributions

In previous chapters, the benefits of temporal oversampling is presented for one-bit

quantized massive MIMO systems. However, the question whether these advantages

will also exist for the case when there is a strong interferer from an adjacent transmis-

sion band should still be answered. In this chapter, we make the performance analysis

of quantized massive MIMO-OFDM structures when there is a strong interferer from

an adjacent band.

The performance of heavily quantized massive MIMO with an interferer in an adja-

cent channel has not been examined in the related literature. However, such interfer-

ence can be at significant levels due to near/far effect in a communication system in

which users in the adjacent frequency band may be much closer to the receiver than

the users in the desired band, thus, their signal may not be adequately suppressed by

the receivers intending to extract the signals in the desired band. In fact, having the

dynamic range to mitigate such interference is a key reason for using high-resolution

ADCs in current systems [15]. Since distortion is large with low-resolution ADCs in

practical use, there is a risk that such systems are practically nonoperational.

The study in this chapter is the first to analyze heavily quantized and OFDM mod-

ulated massive MIMO systems for an adjacent channel interference (ACI) scenario

under frequency selective fading and channel estimation errors. It is also the first to

analyze the performance of oversampling ADCs for such a scenario.
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Other than the investigated scenario being different from the existing studies in the

literature, the difference of this work compared to the aforementioned studies dealing

with the analysis of quantized uplink massive MIMO systems with low-resolution

ADCs are as follows. In [16, 17, 57], temporal oversampling and corresponding per-

formance analysis is performed for an uplink massive MIMO system with one-bit

ADCs in a single-carrier environment and flat fading, which results in a high com-

plexity receiver in terms of baseband signal processing, whereas our study considers

an OFDM system under frequency selective channel with low-resolution ADCs (not

only one-bit), whose receiver complexity is changing almost linearly with oversam-

pling. Another study [23] analyzes massive MIMO structures with one-bit ADCs

under frequency selective fading. In that work, quantization noise is regarded as an

uncorrelated distortion in time and space, which fails to hold when oversampling is

performed or when the number of users or noise variance is not high [26, 30]. How-

ever, it will be seen that our analysis takes into account the temporal and spatial

correlation in the quantization distortion, which enables an accurate analysis. More-

over, [30] provides an analysis for flat fading channels for massive MIMO structures

with one-bit ADCs and provide a short section for the analysis of frequency selective

channel case claiming that extension from flat fading channel case is straightforward.

However, the sizes of the covariance matrices found for the quantized received sig-

nal for frequency selective case are MN × MN , M and N being the number of

antennas and block length (the number of samples in a coherence interval or in pilot

duration). This large size makes their use in the performance analysis and chan-

nel estimation (covariance matrix inverse is used in channel estimation) infeasible in

terms of computational complexity (even their storage in memory during simulations

is problematic) unless the block length or number of antennas is very small, which is

not the case for massive MIMO. There is a similar complexity problem in [26], where

the matrix sizes involved in the calculation of the performance metrics are as large as

MN×MN . This problem is addressed in [25] by combining frequency domain oper-

ation with time domain operation for the calculation of necessary covariance matrices.

However, many important points regarding the construction of the signal model using

Bussgang decomposition or proofs regarding how to find correlation matrices in fre-

quency domain from time domain matrices or vica versa are omitted. Furthermore,

the calculation of a quantization noise covariance matrix in [25, Eqn.28] is valid only
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when the quantization noise is uncorrelated over the time dimension, which does not

hold for very low-resolution ADCs. Although the quantization noise covariance ma-

trix calculation of [25] is shown to provide accurate results in [25], this is mostly due

to the fact that the investigated ADC bit resolution in [25] (6 bits) is rather high. The

more general version taking into account the time domain correlation is provided in

Proposition 3 in this work. Moreover, the effect of system parameters such as the

number of receive antennas or oversampling rate cannot be deduced from the signal-

to-interference-noise-and-distortion ratio (SINDR) expressions in [25, 26], whereas

we provide some approximate expressions for SINDR in Proposition 5, in which the

effect of system parameters can easily be followed. Moreover, the analysis in [25,26]

is only performed for the perfect CSI case, whereas we propose a channel estima-

tion algorithm and include the effect of imperfect CSI in this study. In summary, the

contribution items are as provided below.

• This study is the first to analyze the performance of uplink massive MIMO

systems with low-resolution ADCs in terms of error-rate and ergodic capac-

ity under an ACI scenario. The analysis covers the frequency selective fading

channel conditions. We obtain two types of analytical expressions for SINDR,

one being more precise, whose accuracy is verified with simulations, and the

other being less accurate but able to provide clear insights into the system per-

formance and parameters. We show both analytically and with simulations that

it is possible to combat ACI by increasing the number of receive antennas.

• We analyze the effect of oversampling in such systems and show analytically

that oversampling is also effective to suppress ACI. We also show that signif-

icant performance gains can be obtained by oversampling either with simula-

tions or theoretical analysis.

• We propose an LMMSE based channel estimation algorithm taking into ac-

count the effect of an adjacent channel interferer. The provided analysis is able

to incorporate the effect of imperfect CSI on the system performance.

• We extend our analysis to multi-bit ADCs and discuss whether to increase the

ADC resolution or oversampling rate by making comparisons in terms of error-

rate performance while ADC power consumptions are kept constant.
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Figure 6.1: Multi-user uplink massive MIMO-OFDM block diagram in an interfering

band scenario.

• The analysis in the work is general in that it can also be applied to the scenario

where no ACI is present. For no ACI case, the analysis in the work

– requires much less memory resources than the ones in [26,30] for SINDR

calculations while providing closed-form expressions for quantization noise

covariance matrix for one-bit ADCs as in (6.18) and (6.19) (more details

for this item are mentioned previously),

– takes into account the temporal and spatial correlation for the quantization

noise, which are neglected in [23, 25], among which [23] does not cover

the effect of oversampling,

– can clearly show the impact of system parameters (such as number of an-

tennas, oversampling rate, etc.) and imperfect CSI on the system perfor-

mance unlike [25,26], where no channel estimation technique is proposed.

6.2 System Model

We consider the uplink scenario depicted in Fig. 6.1. It is assumed that K users send

their information to a base station in an OFDM massive MIMO setting through a set

of subcarriers that are assigned to them. This set of subcarriers will be denoted by UD

and will be referred to as the desired band in this script. The desired band users are

illustrated with green background in Fig. 6.1. The receiver side in Fig. 6.1 is a typical

OFDM receiver, in which the ADC block is assumed to have low-resolution in this

study. Another group of I users, whose assigned set of subcarriers is denoted by the
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Figure 6.2: Example plots for the spectrum of the signals at various receiver stages.

set UI , is acting as an interfering source to the users in the desired band. These users

are shaded with red background in Fig. 6.1. The set of subcarriers in UI will also

be referred to as interfering band in the remainder of this study. It should be noted

that although the interference is from an adjacent band, it may not be suppressed

enough due to near/far effect despite all analog filters involved in the down-conversion

stages. Example plots for the spectrum of the signals at various points of a zero

intermediate frequency (IF) receiver are provided in Fig. 6.2, where fc and fi are the

carrier frequencies for the signals at the desired and interfering bands, respectively.

The top left and right plots in Fig. 6.2 represent the power spectral densities (PSD) of

the signals at the radio-frequency (RF) front end (just before the bandpass RF filter

centered at fc, for which the interfering band signal is much stronger compared to the

desired band signal) and at the mixer output (before the low-pass filter (LPF) in the

down-converter), respectively. Such a scenario can be considered as a typical long-

term evolution (LTE) case in which different users are assigned to rectangular areas of

resource blocks or subbands [62]. The discrete-time Fourier transform (DTFT) and

discrete Fourier transform (DFT) of the sampled (but unquantized) signal are also

shown at the bottom two plots in Fig. 6.2, where ωc = 2πfc/Fs, ωi = 2πfi/Fs and

S = N(fi − fc)/(2Fs), Fs being the sampling rate. Moreover, it is also assumed

that the receiver operates at a sampling rate fast enough to cover both the desired and

interfering band to avoid any interference due to aliasing from the interfering band

to the desired band. This is to study the isolated spectral leakage effect from the

interfering to desired band owing to the non-linearity due to low-resolution ADCs, as

ACI due to aliasing will occur even when there is no non-linearity, which is not the
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focus of this work. The sets of users in the desired and interfering band are denoted

by KD = {1, 2, . . . , K} and KI = {K + 1, K + 2, . . . , K + I}, respectively.

6.3 Signal Model

We denote the complex data symbol of a user k transmitted at the uth subcarrier

by s̃k[u], u = 0, 1, . . . , N − 1, where N is the DFT size. Not all subcarriers are

occupied, that is, s̃k[u] = 0 for u /∈ UD when k ∈ KD or u /∈ UI when k ∈ KI ,

as shown in the bottom right of Fig. 6.2. The oversampling rate for the users in

desired and interfering bands, βD and βI , are defined as a ratio of the total number

of subcarriers N to the number of occupied subcarriers, that is, βD , N/|UD| and

βI , N/|UI |. Increasing N while |UD| or |UI | is fixed is termed as “oversampling"

since we consider the case that the OFDM symbol duration NTs is fixed, where Ts is

the sampling period, requiring that the sampling rate (1/Ts) is increased while N is

increased. This also ensures that the transmission bandwidth of the desired channel

users is kept the same when the oversampling rate βD is increased, as the subcarrier

spacing 1/(NTs) and the number of occupied subcarriers |UD| are fixed, which results

in a fixed transmission bandwidth of |UD|/(NTs).

Following those definitions, the discrete-time signal of the kth user at the inverse DFT

(IDFT) output, x̃n,k, can be expressed by using (2.5) in Chapter 2 as

x̃n,k =















ρd√
N

∑

u∈UD
xu,ke

j2π(n−1)u/N if k ∈ KD,

ρi√
N

∑

u∈UI
xu,ke

j2π(n−1)u/N if k ∈ KI ,
(6.1)

for n = 1, . . . , N . Here ρd and ρi are the average transmit power parameters for the

desired or interfering band users. Moreover, data symbols have unit energy, that

is, E[|s̃k[u]|2] = 1. For simple equalization at the receiver side, a CP of length

Lcp is added to the beginning of the OFDM symbol such that x̃n,k = x̃N+n,k for

n = −Lcp + 1, . . . , 0. It is required that Lcp ≥ L− 1, L being the number of channel

taps1.

The received signal at the mth antenna can be written by replacing T by Ts and K by
1 L will be increased when the sampling rate (1/Ts) is increased as the delay spread of the channels does not

change with the sampling rate.
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K + I in (2.2) in Chapter 2 as

rm(t) =

L−1
∑

ℓ=0

K
∑

k=1

N
∑

n=1

hm,k[ℓ]x̃n,kpc(t− (n− 1)Ts − ℓTs) + wm(t), (6.2)

where pc(t) = sinc(t/Ts). It is assumed that the sampling rate of the receiver is

the same as that of the transmitter. As sinc(t/Ts) = 0 for t = nTs for n 6= 0, the

discrete-time received signal at the mth antenna, namely rm[n] = rm(nTs), can be

expressed as follows:

rm[n] = rm(nTs) =

K+I
∑

k=1

L−1
∑

ℓ=0

hm,k[ℓ]sk[n− ℓ] + wm[n], (6.3)

where sk[n] = x̃n+1,k, n = 0, . . . , N − 1, wm[n] = wm(nTs). We assume that the

channel coefficients hm,k[ℓ] have complex Gaussian distribution and are uncorrelated,

that is, E[hm1,k1[ℓ1]hm2,k2 [ℓ2]
∗] = pk1[ℓ1]δ[ℓ1 − ℓ2]δ[k1 − k2]δ[m1 −m2], where pk[ℓ]

is the power delay profile of the channel between user k and the receive antennas

satisfying
∑L−1

ℓ=0 pk[ℓ] = 1 ∀k. The justification behind this assumption is discussed in

Chapter 2. In addition, the noise samples wm[n] are also assumed to be uncorrelated.

A more compact version of (6.3) is

r[n] =
L−1
∑

ℓ=0

H[ℓ]s[n− ℓ] +w[n], (6.4)

where H[ℓ] is an M × (K + I) matrix whose element at the mth row and the kth

column is hm,k[ℓ]. Moreover, s[n] is a column vector whose kth element is sk[n].

Furthermore, w[n] and r[n] are column vectors whose mth element is equal to wm[n]

and rm[n], respectively.

The signal at the output of the one-bit quantizer (the case for the higher bit resolutions

is presented in Section 6.5), namely d[n], can be written in terms of its input, r[n] as

d[n] = sign(Re(r[n])) + jsign(Im(r[n])), (6.5)

where sign(.) is the signum function. The DFT of the quantizer output is also taken to

obtain the input signal to the channel equalization and data detection block, namely

d̃[u], as follows:

d̃[u] =
N−1
∑

n=0

d[n]e−j2πnu/N . (6.6)

How to obtain the data estimates based on d̃[u] will be considered in the next section.
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6.4 Performance Analysis

For a tractable analysis of the non-linear system with one-bit ADCs, the Bussgang

decomposition [30], which enables a linear input-output relation for a non-linear sys-

tem, will be employed. Before that, it is necessary to reexpress (6.4) as

r = Hs +w, (6.7)

r =
[

r [N − 1]T r [N − 2]T · · · r [0]T
]T

, s =
[

s [N − 1]T s [N − 2]T · · · s [0]T
]T

,

w =
[

w [N − 1]T w [N − 2]T · · · w [0]T
]T

, and H is a block circulant matrix of

size NM ×N(K + I) that can be expressed as follows:

H =

































H[0] H[1] · · · H[L− 1] 0 · · · 0

0 H[0] H[1]
. . . . . . . . .

...
...

...
. . . . . . . . . . . . 0

0 · · · 0 H[0] · · · · · · H[L− 1]
...

...
. . . . . . . . . . . . · · ·

H[2] H[1] · · · H[L− 2] · · · H[0] H[1]

H[1] H[2] · · · H[L− 1] · · · 0 H[0]

































(6.8)

This is the MIMO extension of the circulant channel matrix defined for a single-input

single-output (SISO) OFDM scenario in [3]. According to the Bussgang decomposi-

tion [30, 63],

d = Ar+ q, (6.9)

where A = CH
d rC

−1
r , in which Cr = E[r rH ] and Cd rH = E[drH ], Moreover, q is

the equivalent quantization noise vector, d =
[

d [N − 1]T d [N − 2]T · · · d [0]T
]T

.

The size of A is NM ×NM . This choice of A minimizes the variance of the quan-

tizer noise or equivalently makes r uncorrelated with q. For a one-bit quantizer,

assuming zero-mean Gaussian inputs2, the following holds [30]:

A =

√

4

π
diag(Cr)

−0.5 =

√

4

π
diag

(

HRsH
H +NoI

)−0.5
, (6.10)

2 This assumption is approximately true even when the transmitted symbols are from a finite cardinality set
rather than being Gaussian distributed. The ADC input at the mth antenna can be written as sum of Sm

K and
Sm
I , where Sm

K is the sum of K|UD|L independent identically distributed (i.i.d.) signals with finite variance from
the desired band, and Sm

I is the sum of I |UI |L i.i.d. signals from the interfering band. Due to the central limit
theorem, Sm

K and Sm
I converge to Gaussian as K|UD|L and I |UI |L grow large, so does the ADC input Sm

K +Sm
I .

It can be shown by the Berry-Essen inequality that the difference between the CDFs of Sm
K or Sm

I and the CDF
of a Gaussian random variable with the same mean and variance is always less than 0.02, even when K and I are
as low as 4, L = 3 and |UD| or |UI | is 128. Since CDFs are between 0 and 1, an error of 0.02 is negligable. For
higher I |UI |L or K|UD|L, this error will be much less (error decreases with

√

K|UD|L or
√

I |UI |L).
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where Rs = E[ssH ]. Although a closed form expression as in (6.10) is available to

calculate the matrix A, its calculation is not simple, whose complexity is in the order

of N3M2, which is very large for a typical massive MIMO scenario. Therefore, an

alternative low-complexity approach will be presented. Since A is a diagonal matrix,

(6.9) can be modified as

d[n] = A[n]r[n] + q[n], (6.11)

for n = 1, . . . , N , where A[n] is a diagonal matrix with diagonal elements equal to a

set of diagonal elements of A, which are, [(A)n,n (A)n+1,n+1 · · · (A)n+M−1,n+M−1].

Moreover, as r[n] is stationary owing to the addition of the cyclic prefix and A[n] is

diagonal, it can be shown that A[n] = A[n′] , A, ∀n, n′, thus

d[n] = Ar[n] + q[n], (6.12)

A =
√

4/πdiag (Cr[0])
−0.5 is anM×M matrix, where Cr[m] , E

[

r[n]r[n−m]H
]

.

It is still hard to find Cr[0] in the time domain using (6.4) as there exists correlation

between the time domain symbols s[n] due to oversampling. It will also be more

convenient to work in the frequency domain as the final detection of the data symbols

will be performed in that domain, thus any SINDR expression to be used in the anal-

ysis should be found for the frequency domain observations. Therefore, the analysis

continues by taking the DFT of both sides of (6.12), yielding

d̃[u] = Ar̃[u] + q̃[u], (6.13)

where r̃[u] has a simple expression that can be found by using (6.4) and considering

the circulant property of the channel convolution matrix due to the addition of the

cyclic prefix as

r̃[u] =























ρd
√
NH̃[u]s̃[u] + w̃[u], if u ∈ UD,

ρi
√
NH̃[u]s̃[u] + w̃[u], if u ∈ UI ,

0 otherwise,

(6.14)

where s̃[u] , [s̃1[u] s̃2[u] · · · s̃K+I [u]], u = 0, 1, . . . , N − 1. Moreover, r̃[u] =
∑N−1

n=0 r[n]e−j2πnu/N , H̃[u] =
∑N−1

n=0 H[n]e−j2πnu/N , w̃[u] =
∑N−1

n=0 w[n]e−j2πnu/N .

Next, we define Cr̃[u] , E

[

r̃[u]̃r[u]H
]

. Since E[̃r[u]̃r[u′]H ] = 0 for u 6= u′, Cr[m]

can be found according to the following proposition.
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Proposition 2: Cr[m] can be computed from Cr̃[u] as

Cr[m] =
1

N2

N−1
∑

u=0

Cr̃[u]e
j2πmu/N . (6.15)

Proof: See Appendix B.1. �

Cr[m] can be calculated by taking the IDFT of Cr̃[u], which can be found using (6.14)

as

Cr̃[u] =























ρ2dNH̃[u]H̃[u]H +NNoI, if u ∈ UD,

ρ2iNH̃[u]H̃[u]H +NNoI, if u ∈ UI ,

0, otherwise.

(6.16)

What remains is to find the covariance matrix of the quantization distortion q̃[u],

namely Cq̃[u] = E[q̃[u]q̃[u]H ]. Consider the quantization noise vector q in (6.9).

Cq = E[q qH ] is given by

Cq = Cd −ACrA
H . (6.17)

The matrix sizes in (6.17) are MN ×MN , which can be very large, and require vast

amount of memory resources for the computations (for instance, with M = 64, N =

1024, each matrix in (6.17) requires about 32 GB space for double precision number

format). Such large matrices are also present in the studies [26, 30]. Therefore, an

alternative method will be proposed to work with matrices of feasible sizes. From

the block Toeplitz structure of Cq and the fact that A is a diagonal matrix, it can be

shown that

Cq[m] = Cd[m]−ACr[m]AH , (6.18)

Cd[m] =
4

π

(

asin
(

Dr[m]−
1
2 Re(Cr[m])Dr[m]−

1
2

)

+ j asin
(

Dr[m]−
1
2 Im(Cr[m])Dr[m]−

1
2

))

,
(6.19)

where Dr[m] = diag (Cr[m]) and m = 0, 1, . . . , N − 1. (6.19) is a result of the

arcsine law [64]. Note that the matrix sizes in (6.18) and (6.19) are M ×M and the

memory requirement to hold the matrices in (6.18) is N times smaller compared to

(6.17). Moreover, it can be noted that the temporal and spatial correlation of quan-

tization noise is taken into account since Cq[m] can be calculated for m 6= 0 using
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(6.18) and is not necessarily a diagonal matrix. Now that every matrix in (6.18) is

known, Cq[m] can be calculated. The next step is to find Cq̃[u] = E[q̃[u]q̃[u]H ] from

Cq[m], which is performed in the following proposition.

Proposition 3: Cq[u] can be computed from Cq[m] as

Cq[u] = DFTN,u {Γ[m]} +DFTN,u {Γ[m]}∗ −NCq̃[0], (6.20)

where Γ[m] , (N −m)Cq[m] and DFTN,u {Γ[m]} =
∑N−1

m=0 Γ[m]e−j2πmu/N .

Proof: See Appendix B.2. �

6.4.1 Data Detection

For data detection, ZF combining is applied to the DFT output d̃[u] to obtain data

estimates x̂[u] as

x̂[u] = B̂[u]d̃[u], (6.21)

for u ∈ UD. In (6.21), B̂[u] =
(

Ĥ[u]HĤ[u]
)−1

Ĥ[u]H , where Ĥ[u] is the estimate

for H̃[u]. The details about the channel estimation is provided in Section 6.4.2. Using

(6.13), (6.14) and (6.21), the kth element of x̂[u], namely x̂k[u], can be found as

x̂k[u] = gk[u] + ik[u] + nk[u] + qk[u], (6.22)

where

gk[u] = gk[u]
′s̃k[u], nk[u] = b̂k[u]

HAw̃[u], qk[u] = b̂k[u]
Hq[u], (6.23)

ik[u] = ρd
√
N

[

∑

z 6=k,z∈KD

b̂k[u]
HAĥz[u]s̃z[u] +

∑

z 6=k,z∈KD

b̂k[u]
HAẽz[u]s̃z[u]

]

,

(6.24)

where gk[u]′ = ρd
√
N b̂k[u]

HAh̃k[u]. In (6.22), gk[u] corresponds to the signal part,

whereas, ik[u] term in (6.22) contains the interference from other users (the left sum-

mation in the ik[u] expression) and the distortion caused by imperfect CSI (the right

summation in the ik[u] expression). Furthermore, nk[u] and qk[u] correspond to the

distortion caused by thermal noise and quantization, respectively. Moreover, b̂k[u]
H

is the kth row of the ZF combiner B̂[u]. Furthermore, h̃k[u] and ĥk[u] are equal to
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the kth column of the matrices H̃[u] and Ĥ[u], respectively. In addition, ẽk[u] corre-

sponds to the kth column of the channel error matrix H̃[u]− Ĥ[u].

A lower bound on the ergodic capacity per user, for which the receiver has access to

the side information Ĥ , {Ĥ[0], Ĥ[1], . . . , Ĥ[N − 1]}, an SINDR expression for the

data symbol of kth user at the uth subcarrier, namely γk[u], which is defined in [2, eq.

(2.46)], is found using (6.22)-(6.24) in the following proposition.

Proposition 4: A lower bound on the ergodic capacity per user, treating Ĥ as side

information, denoted by R, can be calculated as

R =
1

K|UD|
EĤ

{

K
∑

k=1

∑

u∈UD

log2 (1 + γk[u])

}

, (6.25)

where

γk[u] ,
|E[gk[u]′|Ĥ]|2

Var
[

gk[u]′|Ĥ
]

+ Var
[

ik[u] + nk[u] + qk[u]|Ĥ
]

=
ρ2dN |b̂k[u]

HAĥk[u]|2
Ik[u] +Nk[u] +Qk[u]

, (6.26)

Ik[u] = ρ2dN
∑

z 6=k,z∈KD

[

|b̂k[u]
HAĥz[u]|2 +Kσ2

eρ
2
d||b̂k[u]

HA||2
]

, (6.27)

Nk[u] = NNo||b̂k[u]
HA||2, Qk[u] = b̂k[u]

HCq[u]b̂k[u], (6.28)

when Ĥ is the LMMSE channel estimate. In (6.27), σ2
e is the LMMSE channel esti-

mation error variance, which is as defined in Section 6.4.2.

Proof: See Appendix B.3. �

Moreover, to find the bit error rate (BER) for gray coded P -ary phase shift keying

modulation (PSK with modulation size P ), we approximate x̂[u] as a complex Gaus-

sian random variable, so that [3]

BER ≈ 1

K|UD|
EĤ

{

K
∑

k=1

∑

u∈UD

2

log2(P )
×
(

1− Φ
(

√

γk[u]log2(P )sin
( π

P

)))

}

.

(6.29)
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The BER calculation formula in (6.29) is applicable for a multi-band interference en-

vironment, as the calculation of the SINDR γk[u] involves the received power from

any interfering band. As detailed in Footnote 1 of Section 6.3, the approximation

error in assuming Gaussian inputs for the quantizer is very limited, thus R and the

BER expressions in (6.25) and (6.29) calculated using γk[u] in (6.26) are expected

to approximate the simulation based results precisely (γk[u] is the precise SINDR

expression mentioned in Section 6.1). Although (6.25) and (6.29) are useful to cal-

culate the ergodic capacity and BER, they are not able to provide clear insights into

the system performance and system parameters such as M , N or ρ2d/ρ
2
i . Therefore,

we propose a more tractable approximation of γk[u] in Proposition 5, in which the

conditioning on Ĥ will be dropped. From an information theoretic view, this will

correspond to the case that the channel estimates are used to perform ZF combining

by a first party, but the channel estimate knowledge is not conveyed to a second party,

which performs error correction decoding on the ZF output without the knowledge

of channel estimates [2]. The corresponding use-and-then-forget ergodic capacity

bound, namely R′, is found in the following proposition.

Proposition 5: Use-and-then-forget ergodic capacity bound R′ can be computed as

R′ =
1

K|UD|
K
∑

k=1

∑

u∈UD

log2 (1 + γ′k[u]) , (6.30)

γ′k[u] =
|E[gk[u]′]|2

Var[gk[u]′] + Var[ik[u] + nk[u] + qk[u]]

≈ ρ2d(1− σ2
e)(M −K)G2

(Kσ2
eρ

2
dG

2 + 2− 4/π +NoG2)
, (6.31)

in which G = 2/
√
π ((|UD|Kρ2d + |UI |Iρ2i ) /N +No)

−0.5
. The approximation error

goes to zero as L gets larger and |UD| + |UI | approach to N (as oversampling rates

gets lower) when ρ2d ≈ ρ2i .

Proof: See Appendix B.4. �

Note that there is no need for any Monte-Carlo based simulation to obtain γ′k[u],

since it can be calculated by just plugging the system parameters into the right-

most expression in (6.31). γ′k[u] can be used in place of γk[u] in (6.29) or in (6.30)
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to calculate BER and achievable rate, again without any Monte-Carlo simulations

(as averaging over Ĥ is already performed by analysis to obtain γ′k[u]). Owing to

the simple form of γ′k[u] in (6.31), insights into the system performance and pa-

rameters can be obtained as follows. From Proposition 5, it is obvious that it is

always possible to increase the SINDR by increasing the number of antennas M .

The impact of the oversampling rate can be deduced by considering the case |UD|
and |UI | are fixed as the block length N increases which by definition is equiva-

lent to an increase in the oversampling rates βI and βD. It can be shown that γ′k[u]

is increasing with N by considering γ′k[u] = ρ2d(M − K)(1 − σ2
e)γk[u], where

γk[u] = G2/ (2− 4/π + (No +Kσ2
eρ

2
d)G

2). Since G and G2 are increasing with

N , it follows that γk[u] = G2/ (2− 4/π + (No +Kσ2
eρ

2
d)G

2) also increases withN ,

which in turn means that γ′k[u] increases with N . The channel estimation error will

be calculated in (6.43) in the next section, which can similarly be shown to decrease

with the oversampling rates.

6.4.2 Channel Estimation

In this section, the details of channel estimation under quantization will be presented.

There are many channel estimation techniques for massive MIMO systems with low-

resolution ADCs [12, 23, 36, 53, 59]. In none of those studies, a channel estimation

scheme under ACI is discussed. In this study, we will propose an LMMSE channel

estimation based on Bussgang decomposition. The estimation technique is an exten-

sion of the channel estimation technique in [23]. For the channel estimation phase,

orthogonal pilot sequences are transmitted at some of the subcarriers involved. The

set of subcarriers for which pilot signals are transmitted is denoted by UP . Moreover,

it will be assumed that the interferers at the adjacent channel band will be transmit-

ting data symbols from a finite cardinality set through the subcarriers in UI during

the channel estimation phase of the users in the desired band. The transmitted time

domain pilot signal of the kth user of length Np, where k ∈ KD, can be expressed as

follows:

pk[n] =















ρp
√

Np

∑

u∈UP
θ̃k[u]e

j2πnu/Np, if k ∈ KD,

ρi
√

Np

∑

u∈UI
s̃k[u]e

j2πnu/Np, if k ∈ KI ,
(6.32)
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θ̃k[u] =











0, if (u mod K) + 1 6= k,
√
Kejφk[u], if (u mod K) + 1 = k.

(6.33)

Here, the phases ejφk[u] are known by the base station. The selection of these phases

affect the estimation performance. They are selected from the uniform distribution

as suggested in [23] since when they are selected as constant, that is, when ejφk[u] =

C ∀k, u, the transmitted signal by kth user pk[n] 6= 0 only when n = µNp/, µ ∈ Z.

Otherwise, pk[n] = 0. This means that users do not transmit anything most of the

time, which limits the average transmit power due to the peak power limitation of

the power amplifiers in the transmitter side. Introduction of non-constant phases, one

example of which is when they are selected from uniform distribution (0, 2π), avoids

this problem. Since the channel convolution matrix is circulant due to CP, the received

signal at the mth antenna and the uth subcarrier can be expressed as follows:

ỹm[u] =











ρp
√

NpK
∑

k∈KD
h̃m,k[u]θ̃k[u] + zm[u], if u ∈ UP ,

ρi
√

NpK
∑

k∈KI
h̃m,k[u]s̃k[u] + zm[u], if u ∈ UI ,

(6.34)

where s̃k[u]’s for u ∈ UI , k ∈ KI represent the random data symbols transmitted by

the interfering band users, h̃m,k[u] is the element of matrix H̃[u] at itsmth row and kth

column, and zm[n] represents the additive white noise term at themth receive antenna

of spectral density NpNo. Due to (6.33), it can be written that

ỹm[u] =











ρp
√

NpKh̃m,f(u)[u]e
jφf(u)[u] + z[u], if u ∈ UP ,

ρi
√

NpK
∑

k∈KI
h̃m,k[u]s̃k[u] + z[u], if u ∈ UI ,

(6.35)

where f(u) = (u mod K) + 1. Defining the quantized observation vector vm[n] ,

sign(Re{ym[n]}) + jsign(Im{ym[n]}) in time domain, the quantized observation

ṽm[u] in the frequency domain can be expressed as

ṽm[u] =

Np−1
∑

u=0

vm[n]e
j2πnu/Np . (6.36)

Here ym[n] is the IDFT of ỹm[u]. Defining v[n] , [v1[n] v2[n] · · · vM [n] ]T and

y[n] , [ y1[n] y2[n] · · · yM [n] ]T , it can be written that

v[n] = A′y[n] + q′[n], (6.37)
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where the selection A′ =
√

4/πdiag (Cy[0])
−0.5 makes the quantization noise q′[n]

to be uncorrelated with the unquantized observation vector y[n]3. Let y , [y[N −
1]T y[N − 2]T . . . y[0]T ]T . For the simplicity of the channel estimation part, Cy is

approximated as

Cy = HRpH
H +NoI ≈

(

1/Np(ρ
2
p|UP |K + ρ2i |UI |K) +No

)

I, (6.38)

where Rp = E[ppH ], in which, p = [p[N − 1]T p[N − 2]T . . . p[0]T ]T , where p[n]

is an M × 1 column vector whose kth element is pk[n]. Without the approximation,

MN ×MN matrix Cy will be non-diagonal in general, which implies that MN ×
MN quantization noise covariance matrix will be non-diagonal. This will require

taking the inverse of such a large matrix for LMMSE channel estimation as in [30]

for frequency selective channel, which is computationally exhaustive. However, the

approximation error goes to zero as L grows large which can be shown similarly as

performed for Cr[0] in Appendix B.4. Such an approximation is also adopted in [23].

Taking the DFT of the quantized observation vector v[n], it is found that

ṽ[u] = G′ỹ[u] + q̃′[u], (6.39)

where G′ = 2/
√
π
(

(ρ2p|UP |K + ρ2i |UI |I)/Np +No

)−0.5
. (6.39) along with (6.35)

implies that

ỹm[u] = ρpG
′√NpKhm,f(u)[u]e

jφf(u)[u] +G′zm[u] + pm[u], (6.40)

where u ∈ UP and pm[u] is the mth element of the DFT of p[n]. It can be seen from

(6.40) that the observation ỹm[vK + k − 1], when the noise terms are omitted, is a

phase rotated and scaled version of the channel coefficient h̃m,k[vK+k−1] for user k,

sampled with a sampling period ofK, as f(vK+k−1) = (vK+k−1 mod K)+1 =

k. These samples will be denoted by ȟm,k[v] , h̃m,k[vK + k − 1]. According to the

Nyquist sampling theorem, if Np satisfies

Np ≥ KL, (6.41)

it is possible to obtain the channel coefficients without any aliasing. Again for the

simplicity of the channel estimation part, the covariance matrix of q′[n] will be ap-

proximated as a diagonal matrix (2 − 4/π)I, with approximation error going to

3 Here, the quantizer inputs are again assumed to be Gaussian due to the same reasoning discussed in Foot-
note 1 of Section 6.3.
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zero as L grows large for low oversampling rates and ρ2p ≈ ρ2i as discussed in Ap-

pendix B.4. Under this approximation, the LMMSE estimate for the channel coeffi-

cient h̃m,k[vK + k − 1], namely h̃m,k[vK + k − 1]∗, is found as

h̃m,k[vK + k − 1]∗ =
e−jφk[vK+k−1]ỹm[vK + k − 1]

ρpG′
√

NpK
(

1 +No/(ρ2pK) + Pq/
(

ρ2pK (G′)2
)) , (6.42)

where the quantization distortion variance Pq = E[|pm[u]|2] ≈ 2 − 4/π. Here, the

channel estimation error σ2
e can also be found as

σ2
e = 1− 1

ρp
√

NpK
(

1 +No/(ρ2dK) + Pq/
(

ρ2dK (G′)2
)) . (6.43)

The parameter σ2
e will be used in the performance analysis of the investigated uplink

system model in this work for imperfect CSI and the results from the analysis will

be compared to the simulated results. As can be noted in (6.42), for the kth user,

we only have the channel coefficients estimates for ȟm,k[v] , hm,k[vK + k − 1]∗,

sampled with a period of K. To obtain the remaining channel coefficients, ȟm,k[v]

can be upsampled by K. There are many possibilities to upsample ȟm,k[v]. The one

adopted in this study is the spline interpolation [65].

The most important parameter through which the ACI is taken into account in the

proposed channel estimation method is through the factor G′ in (6.42). By definition,

G′ decreases with increasing total ACI power ρ2i |UI |I/Np. The distortion caused by

the quantization can be regarded to have two components, the additive quantization

noise distortion q̃′[u] and the magnitude distortion G′ in (6.39). Under the aforemen-

tioned approximations, the power of the additive quantization noise q̃′[u] does not

change with the ACI power. However, as G′ decreases with increasing ACI power,

the power of the signal part G′ỹ[u] in (6.39) diminishes, resulting in a reduced signal

power compared to the quantization noise power. Therefore, a worse estimation error

performance can be expected. This can also be interpreted from (6.43). The channel

estimation error variance σ2
e in (6.43) increases as G′ decreases with increasing ACI

power. Regarding how the estimator combats with the degredation due to ACI can

be inferred from (6.42). Neglecting the Pq/(ρ
2
pK(G′)2) term in the denominator in

(6.42), it can be stated that as the ACI power is increased, which in turn decreases

G′ and reduces the signal component G′ỹ[u] in (6.39), the estimator tries to cancel

this effect by multiplying the observation by 1/G′ (note the G′ factor in the denomi-
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nator in (6.42)). However, such a normalization (multiplication by 1/G′ when G′ is

smaller than 1) results in the enhancement of the quantization noise q̃′[u], thus the

cancellation of the magnitude distortion G′ should be balanced with the quantization

noise enhancement. This balancing is performed through the Pq/ρ
2
pK(G′)2 factor in

the estimator in (6.42).

6.5 ADCs with Higher than One-Bit Resolution

In this section, the details for the performance analysis for quantizers with more than

one-bit resolution is presented. To begin with, we define the set of quantizer output

values L = {ℓ0, ℓ1, . . . , ℓL′−1}, where L′ = 2q is the number of possible quantizer

output values q being the number of ADC bits. Moreover, the quantization thresholds

can also be characterized by the set B = {b0, b1, . . . , bL′}, where −∞ = b0 < b1 <

· · · < bL′ = ∞. The quantization function Q(.) is a point in the function space

C

M → ΥM , where CM denotes the complex vector space of dimension M and Υ =

L × L is the set of possible quantizer output values (the cartesian product L × L
represents the combination of the outputs of the pair of ADCs quantizing the real and

imaginary parts of the received signals separately). The ith element of the quantizer

output, namely Q(x)i, where M × 1 quantizer input vector x can be expressed as

Q(x)i =
(

ℓf ′(Re(xi)), ℓf ′(Im(xi))

)

, (6.44)

where f ′(Re(x)) = d ∈ {0, 1, . . . , L′ − 1} which satisfies bd ≤ Re(x) < bd+1. Simi-

larly f(Im(x)) = c ∈ {0, 1, . . . , L′−1} which satisfies bc ≤ Im(x) < bc+1. As an ex-

ample, the possible quantizer output values ℓi = ∆(i−L′/2+1/2), i = 0, 1, . . . , L′−
1, whereas the quantization thresholds bi = ∆

(

i− L′

2

)

, i = 1, 2, . . . , L′−1 for a uni-

form midrise quantizer (b0 = −∞, bL′ = ∞ as previously specified).

An important point in the design of the quantizer is the selection of the step size ∆. In

fact, AGC will dynamically adjust the gain of the input signal to ADC according to the

received signal power in order that it fits the input signal range of the ADC. This will

correspond to the approach in this study in which the step size is selected according

to the received signal power levels, which is assumed to stay nearly the same over a

coherence interval. This will result in a fixed step size during a coherence interval,
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enabling a tractable analysis.

There are two main considerations in the design of the step size ∆. If the step size is

selected to be small for the average received signal power level, the probability that

the input signal is clipped will be high and cause a distortion, referred to as overload

distortion. On the other hand, if a large step size is preferred to avoid clipping or

overload distortion, this will result in a granular distortion, causing a large range of

input signal level to be mapped to the same level. Therefore, step size should be

selected properly to balance the aforementioned granular and overload distortions.

The amount of the two distortions will affect the validity of the assumptions in the

performance analysis, as will be discussed in the subsequent parts of this section.

To begin with the analysis, matrix A in (6.12) should be evaluated. According to

Bussgang decomposition, A = Cd[n]r[n]C
−1
r[n], where Cd[n]r[n] = E[d[n]r[n]H] and

Cr[n] = E[r[n]r[n]H]. For the example case of midrise uniform quantizer with Gaus-

sian inputs4 [25],

A =
∆√
π
diag (Cr[0])

−0.5 ×
2q−1
∑

i=1

exp
(

−∆2
(

i− 2q−1
)2

diag (Cr[0])
−0.5
)

. (6.45)

As Cr[0] in (6.45) can be found using Proposition 2, matrix A can be calculated using

(6.45) for multi-bit quantizer case. What remains is the calculation of the covariance

matrix of the quantization noise Cq[u]. The difficulty with the calculation of this

matrix stems from the fact that there is no closed form expression for the relation

between the quantizer input and output covariance matrices for multi-bit quantizers as

for the one-bit quantizer in (6.19), which was referred to as the arcsine law. However,

a diagonal approximation can be made, for which all non diagonal entries of the

covariance matrix Cd[0] are assumed to be zero and the mth diagonal entry of Cd[0],

namely E [|dm[n]|2], can be found as follows:

E
[

|dm[n]|2
]

= 2

L′−1
∑

i=0

ℓ2iPr (bi ≤ Re(rm) < bi+1)

= 2

L′−1
∑

i=0

ℓ2i

(

Φ
(√

2bi+1/σrm

)

− Φ
(√

2bi/σrm

))

, (6.46)

4 The multi-bit quantizer input is also assumed to be Gaussian, which is accurate owing to the same reasoning
discussed in Footnote 1 of Section 6.3.
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where σ2
rm is the mth diagonal element of diag(Cr[0])m,m corresponding to the quan-

tizer input variance at the mth antenna and Pr(.) denotes the probability of the event

in its operand. In (6.46), it is assumed that the quantizer input has a Gaussian distri-

bution4. We will denote the diagonal matrix whose diagonal entries are equal to the

diagonal entries of Cd[0] as Cdiag
d [0]. After finding Cdiag

d [0] from (6.46), the diagonal

approximation for the Cq[0], namely Cdiag
q [0], can be found from (6.18) as

Cdiag
q [0] = Cdiag

d [0]−Adiag(Cr[0])A
H. (6.47)

The covariance matrices of quantization noise for nonzero lags, namely Cdiag
q [m],

m 6= 0, are also assumed to be zero for multi-bit quantizers, which means that the

correlation in time for the quantization noise is assumed to be zero. This assumption

fails to be valid for very low ADC resolutions [26] or for high oversampling rates, as

discussed in Appendix B.4, yet, it provides progressively more accurate results as the

number of quantization bits is increased [26], when clipping or overload distortion

occurs with low probability. To ensure this, we will choose the step size ∆ small

enough as will be discussed shortly. After finding Cdiag
q [0], Cq[u] for the diagonal

approximation case, which is referred to as Cdiag
q [u], can be found using Proposition 3

as follows:

Cdiag
q [u] = DFTN,u {Γ[m]} +DFTN,u {Γ[m]}∗ −NCq̃[0]

= NCq̃[0], (6.48)

as it is assumed for multi-bit quantizers that Γ[m] = (N − m)Cq[m] ≈ (N −
m)Cdiag

q [m] = 0 for m 6= 0. Then, Cdiag
q [u] can be used to find the SINDR ex-

pression in Proposition 4, which can be employed to find the error-rate performance

using (6.29). To ensure that the overload distortion is negligible, we adjust the step

size ∆ as follows:

∆ = 2Amax/L
′, (6.49)

where the maximum quantizer output level Amax is adjusted as Amax =
√

G/2 (1− Φ (Pc/2)), where G is as defined in Proposition 5, which corresponds to

the average received power and Pc is the desired probability that a clipping occurs.

Obviously, the received signal is also assumed to be Gaussian distributed in the ad-

justment of the step size, which is an accurate assumption according to Footnote 1.

The clipping probability will be chosen as a small number, owing to its impact on the
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validity of the diagonal approximations involved in the analysis. Imperfect CSI case

for multi-bit quantizer is left for future work.

To see the effect of oversampling, number of ADC bits and number of antennas on

the SINDR for the multi-bit quantizer case, the parameter G in (6.31) can be found

using (6.45) as

G =
∆√
π
(λ)−0.5

2q−1
∑

i=1

exp
(

−∆2
(

i− 2q−1
)2

(λ)−0.5
)

, (6.50)

where λ = (|UD|Kρ2d + |UI |Iρ2i ) /N + No. The SINDR expression in (6.31) will

be the same for the multi-bit quantizer case except that the parameter G in (6.31) is

found according to (6.50) and the quantization noise variance Var[qk[u]] will also be

another constant less than 2 − 4/π, which is decreasing with the number of ADC

resolution bits, but will not change with the number of antennas or the oversampling

rate. As mentioned before, increasing N while |UD| and |UI | are fixed corresponds

to an increase in the oversampling rates. In such case, G is increased as λ decreases

with N . Therefore, the same discussion that SINDR γ′k[u] increases with G or the

oversampling rates for one-bit ADC also applies for the multi-bit quantizer. More-

over, due to the (M − K) factor in (6.31), it is also possible to increase SINDR by

increasing the number of antennas M . Furthermore, since the step size ∆ decreases

when the number of ADC bits is increased, this corresponds to an increase in G ac-

cording to (6.50), and a decrease in the quantization noise variance Var[qk[u]], which

in turn results in an increase in the SINDR γ′k[u] in (6.31). Therefore, it can be stated

that SINDR will increase when the oversampling rates, number of antennas and ADC

bits are increased for the multi-bit quantizer case, in line with the intuition.

6.6 Simulation Results

For the simulations, unless otherwise stated, the number of receive antennas is M =

64, whileK = I = 4. Some other parameters areN = 1024, L = 10 and UD = {N−
150, N − 149, . . . ,−1, 1, 2, . . . , 150} (|UD| = 300), while UI = {250, 251, . . . , 549}
(|UI | = 300), which makes the oversampling rates βD = βI ≈ 3.41. The data

symbols are QPSK modulated. Subcarrier spacing is 15 kHz as in LTE, with a trans-

mission bandwidth of |UD|/(NTs) = 4.5 MHz for the desired channel, which does
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Figure 6.3: BER vs. SIR in (a) and R vs. SIR in (b), M = 64, K = I = 4, 1-bit

ADC, perfect CSI.

not change with the sampling rate. Furthermore, the noise variance parameter No is

normalized such that ρ2d/No = 4 dB to take ρ2d as unity. The type of the multi-bit

quantizers is uniform midrise, for which Pc = 1%. The power delay profile is taken

as uniform, that is, p[l] = 1/L for 0 ≤ ℓ < L. In the plots, the analytical curves

for which the SINDR calculation is made based on Proposition 4 are referred to as

“Analytical Tight Approx.", indicated with dashed lines. Moreover, the curves for

which the SINDR is calculated based on Proposition 5 are named “Analytical Ap-

prox.", indicated with circles in Fig. 6.3a and with solid lines in Fig. 6.3b. As the

first case, we change the block length N , when all other parameters are fixed (except

L which should be directly proportional to N) for the perfect CSI condition. The

BER vs signal-to-interference ratio (SIR or ρ2d/ρ
2
i ) curves are presented in Fig. 6.3a.

Note that a single ρ2d/ρ
2
i for each data point does not imply that the average received

power for every band (desired or interference band) or subcarrier/user is the same

for a given channel realization due to (6.14). In Fig. 6.3a, the simulated values are

indicated with solid lines. As can be noted in the three curves grouped as M = 64

curves on the right hand side of Fig. 6.3a, the analytical calculations based on Propo-

sition 4 and (6.29) are in good agreement with the simulated values. Moreover, the

approximate analytical curves based on Proposition 5 generally follow the simulated

curves. In addition, we see that increasing the oversampling rate (equivalently in-

creasing the block length while the number of occupied subcarriers is fixed) and the
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number of antennas M are useful to combat ACI. We can observe up to 5 dB SIR

gain by increasing the oversampling rate from βd ≈ βi = 3.41 (N = 1024, L = 10)

to βd = βi ≈ 13.65 (N = 4096, L = 40) when the SIR levels to achieve a target BER

of 10−3 is considered. Significant SIR gains are also observed in Fig. 6.3a when M

is increased as expected from the analysis.

For the same simulation setting, the ergodic capacity in terms of bits per channel

use (bpcu) per user calculated using (6.25) are plotted in Fig. 6.3b. An SIR gain

more than 5 dB is observed with increasing oversampling rate when the SIR lev-

els to achieve an ergodic capacity of 3 bpcu per user are compared. Moreover, it

should be noted that the approximate analytical curve based on Proposition 5 is close

to the tight approximation curve in Proposition 4 for N = 1024, a relatively low

oversampling rate case, verifying that the approximation in Proposition 5 is accu-

rate for low oversampling rates and when L is large5. Furthermore, it can be no-

ticed that the approximate curve based on Proposition 4 yields higher BER for low

SIR values or lower BER for high SIR values. The reason for this is as follows.

For low SIR values, it can be shown that each element of Cq[m] will be the sam-

ples of an aliased sinc pulse (m being the sample index) centered around m = 0,

all samples being real valued as UD is symmetrical around the zeroth subcarrier.

Since the values of the tails of the sinc pulse is much lower than that of its main

lobe, it is reasonable to assume that Cq[m] ≈ 0 when |m| > N/|UD| , W , as

2N/|UD| is the null-to-null bandwidth of the sinc pulse). Therefore, Γ[m] ≈ 0 for

|m| > W . As Cq[m] = Cq[−m], Γ[m] = Γ[−m], and |UD| ≫ 4, DFTN,u {Γ[m]} ≈
∑W

m=−W Γ[m]e−j2πmu/N =
∑W

m=−W Γ[m]cos(2πmu/N) > Γ[0]. Since the approx-

imation assumes that Γ[m] = 0 for m 6= 0 and
∑W

m=−W Γ[m] > Γ[0], the quantiza-

tion noise covariance matrix calculated using Proposition 3 under this assumption has

lower values compared to its exact version, resulting in a higher SINDR calculation

than the exact values. For the low SIR case, it can be shown that each element of

Cq[u] will mostly be concentrated inside the interfering band (for u ∈ UI ) and the

quantization noise in the desired band is due to the tails of sinc2 pulses, making the

variance of the quantization noise in the desired band limited less than the assumed

5 In fact, R′ should be compared to a slightly modified version of R in (6.25), for which the outer expectation
is taken inside the logarithm, but the values obtained for this version are very similar to the values obtained for R
in (6.25), thus not shown in Fig. 6.3b for the simplicity of the plot.
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Figure 6.4: Performance plots for imperfect CSI, 1-bit ADC in (a),(b),(c) and multi-

bit ADC in (d).

quantization distortion value. The poor performance for the low SIR case is mostly

due to the magnitude distortion caused by the matrix A in (6.12).

Simulations for the imperfect CSI case are also carried out. The pilot sequence length

is taken to be N whereas the set of subcarriers for pilot signals is selected as UP =

UD ∪ {N − 152, N − 151, 151, 152}. The noise spectral density No in the channel

estimation phase is also normalized such that ρ2p/No = 4 dB to take ρp = 1. The BER

vs SIR plots are presented in Fig. 6.4a. As can be noted in Fig. 6.4a, the analytical

BER curves obtained based on the SINDR calculation in Proposition 4 are very close

to the simulated results. Moreover, while the approximate analytical curve is not as

close to the simulated values as the "Analytical Tight Approx." curves, it can follow
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the error rate curves in general. Moreover, it can also be deduced from Fig. 6.4a

that the 5 dB SIR gain achieved with oversampling for the perfect CSI case can also

be attained under imperfect channel knowledge when the error rates to achieve a

BER value of 10−3 is considered. In fact, it is even more than 5 dB (about 6.5 dB)

for imperfect CSI. This is because oversampling also enhances channel estimation

quality which in turn results in a better error rate performance even further for the

one-bit quantized system with imperfect CSI. Comparing the perfect and imperfect

CSI BER curves in Fig. 6.3a and Fig. 6.4a, we observe about 6.5 dB SIR loss due

to channel estimation error. This is not an unexpected value, as it is known that the

normalized channel estimation mean squared error converges to -4.4 dB for infinite

training power with one-bit ADCs [30], resulting in a similar SIR loss according to

(6.31). The remaining 2.1 dB loss is due to the finite training power, which is close

to the SNR loss of about 2 dB for a MIMO setting with infinite ADC resolution [66].

Moreover, to compare the proposed channel estimation algorithm with an existing

method of comparable complexity in [23], which neither considers the effect of ACI

nor employs oversampling for channel estimation, we made simulations to obtain the

BER performance of our system with N = 1024 which uses the channel estimates

obtained with the channel estimation method in [23]. The corresponding BER curve

is labeled as “Channel Est. [13] Sim. N=1024" in Fig. 6.4a. As can be noted, a

significant performance loss is observed if the channel estimation method in [23] is

used instead of our method.

In addition to the BER curves, the ergodic capacity curves for imperfect CSI are also

presented in Fig. 6.4b. As can be noted in Fig. 6.4b, more than 5 dB SIR advantage

can be obtained with temporal oversampling when the SIR levels to achieve a target

ergodic rate per user value of 3 bpcu/user are compared. Moreover, the “analytical

approximate" curve can generally follow the “tight approximation" curve. The reason

for the approximate ergodic capacity curve is not as close to the tight approximation

curve for N = 1024 as in the perfect CSI case is due to the additional approximation

error stemming from the assumptions involved in the proposed channel estimation

scheme, distorting the orthogonality of the channel estimates and the estimation er-

rors.

Regarding the performance with higher-order modulations, BER vs. SIR plots for

89



8-PSK and imperfect CSI are presented in Fig. 6.4c. As can be expected, worse BER

performance is observed compared to QPSK. An error floor is observed since quan-

tization and thermal noise exist even if the interference power is zero (infinite SIR).

Moreover, a significant BER performance advantage is obtained with oversampling.

The tight approximation based on Proposition 4 closely approximates the simulated

values while the approximate curves based on Proposition 4 provides accurate values

for low oversampling rates as expected from the discussion in Appendix B.4.

The error rate curves are also plotted for multi-bit quantizers (up to 3-bits) in Fig. 6.4d.

As can be noted in Fig. 6.4d, the simulated values are very close to the analytical BER

curves which are based on the SINDR calculation in Proposition 4. In Fig. 6.4d, the

oversampling rate increases from 1024 to 4096 (L from 10 to 40) towards left for all

quantization resolutions (1 bit to 3 bits). However, it should be noted that for 2-bit

quantizer, there are two cases, eitherN = 1024 andN = 2048, while there is only the

BER curve for N = 1024 for 3-bit quantizer. As can also be noted in Fig. 6.4d, the

simulated values are in perfect agreement with the analytical values, even for the 2-bit

quantizer, thus, it can be stated that the assumption of uncorrelated quantization noise

in time is accurate unless the ADC resolution is as low as one bit (the quantization

noise correlation in time is taken into account for the one-bit ADC case).

In order to make fair comparisons between the cases presented in Fig. 6.4d, we will

try to equate the power consumptions of the various quantization resolution and over-

sampling rate cases. It is assumed that the power consumption of an ADC is propor-

tional to 2q, that is, the power consumption is doubled for single bit addition. This

assumption is verified to be accurate in various studies [7, 8]. It is also assumed that

ADC power consumption grows linearly with oversampling rate as in [8].

Equating the power consumptions, the first cases to be compared are 1-bit ADC with

N = 2048 and 2-bit ADC with N = 1024. As can be noted in Fig. 6.4d, ACI

supression in the 1-bit ADC withN = 2048 case is better compared to the 2-bit ADC

withN = 1024 case for BER values higher than 10−2, while the 2-bit ADC withN =

1024 case is slightly better for BER values lower than 10−3. Therefore, it can be stated

that 1-bit ADC with N = 2048 is preferable over a 2-bit ADC with N = 1024, as it

provides better BER values and the complexity of a 1-bit ADC is significantly lower
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(there is no need for an AGC unit in a 1-bit ADC, die area is doubled with every bit

increase for flash ADCs; and component matching requirements are also doubled with

every bit increase for flash, sucessive approximation (SAR) or pipelined ADCs [67]).

Moreover, the time it takes to complete a conversion (conversion time) is also doubled

with every bit of increase for integrating ADCs, while the conversion time scales

linearly with number of bits for SAR or pipelined converters [67]. Therefore, by

oversampling with a 1-bit ADC, while we achieve better error rate performance than

2-bit ADCs, when total power consumptions are kept equal, we also have advantages

regarding ADC complexity and conversion time.

We can also compare other two cases, one is the performance of 1-bit ADC with

N = 4096 and the other is 2-bit ADC with N = 2048, as their power consumptions

are equal. We see from Fig. 6.4d that their performances are nearly equal for BER

values lower than 10−2, while the 2-bit ADC with N = 2048 case has about 1.5 dB

SIR advantage for the BER value of 10−3. The design engineer should be considering

whether it is worth to have 1.5 dB SIR advantage to use 2-bit ADCs, which have the

aforementioned disadvantages regarding implementation complexity and conversion

time compared to the 1-bit ADCs.

The remaining performance comparison is between 3-bit ADCs with N = 1024 and

2-bit ADCs with N = 2048, as their power consumptions are equal. We can see

that we have about 4 dB SIR advantage with 3-bit ADC. However, again, it should

also be considered that such an SIR gain does not come for free, as 2-bit ADCs are

much more advantageous compared to 3-bit ADCs in terms of die area, component

matching circuitry and conversion time, thus 2-bit ADCs with oversampling can be a

choice compared to 3-bit ADCs despite the SIR disadvantage.

6.7 Conclusions

In this work, we have presented a performance analysis for an uplink massive MIMO-

OFDM system with low-resolution oversampling ADCs under frequency selective

fading in an interfering adjacent channel interference scenario for perfect or imperfect

receiver CSI. The analysis arrived at two important expressions, one of which gives
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very accurate results but limited insights, the other giving noticeable approximation

errors but much clearer insights into the dependence of system performance on the

system parameters. We have shown both with analysis and simulations that adjacent

band interference can be suppressed by increasing the number of antennas or the

oversampling rate. Moreover, we discussed whether to use lower-resolution ADCs

with higher oversampling rates or higher-resolution ADCs with lower oversampling

rates comparing their error rate performances while their power consumptions are

equated.
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CHAPTER 7

A REDUCED COMPLEXITY UNGERBOECK RECEIVER FOR

QUANTIZED WIDEBAND MASSIVE SC-MIMO

7.1 Motivation and Related Work

In this chapter, we question whether we can design a detector with superior perfor-

mance compared to the existing detectors in the literature for quantized single-carrier

massive MIMO (SC-MIMO) with comparable complexity. We especially investigate

whether such a detector can be designed without resorting to any overesampling in

time. To this end, we propose a novel iterative receiver for quantized CP-free uplink

wideband SC-MIMO for uncorrelated or correlated Rayleigh and Rician fading chan-

nels. This detector utilizes an efficient message passing algorithm based on Bussgang

decomposition, reduced state sequence estimation and Ungerboeck factorization. In

this way, it achieves remarkable complexity reduction and exhibits significant perfor-

mance advantages compared to the existing quantized SC-MIMO receivers from the

literature. We also derive linear minimum mean-square-error channel estimator for

cyclic-prefix (CP) free SC-MIMO under frequency-selective channel.

For the proposed channel estimation (CE) algorithm in this chapter, we concentrate

on a linear and low complexity method for quantized frequency-selective MIMO,

which can work with single-carrier (SC) modulation. The reason to select SC over

OFDM for the proposed CE and data detection algorithms is that SC is superior to

OFDM for systems having nonlinearities, such as quantized MIMO [68, 69], ow-

ing to its lower peak-to-average power ratio (PAPR) [70] and robustness to carrier-

frequency-offset (CFO) errors [71]. Having lower PAPR is critical for systems with

non-linear elements [72, 73], where [73] demonstrates the advantages of SC over
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OFDM for MIMO systems with nonlinear elements. Even for unquantized linear sys-

tems, there are many recent studies that motivate the use of SC especially for MIMO

structures [72–74], owing to its advantages related to channel equalization and spec-

tral efficiency. In addition to the aforementioned advantages, the SC framework in the

study in this chapter does not require any CP in constrast to conventional multi-carrier

modulation schemes such as OFDM.

Numerous channel estimation (CE) algorithms in quantized flat-fading MIMO are

mentioned in the survey paper [75]. However, frequency-flat channel assumption is

not practical for wideband transmission [23]. As quantization is a non-linear opera-

tion, the extension of flat fading CE techniques to frequency-selective channels is not

straightforward. Therefore, there are many works proposing various CE algorithms

for frequency-selective quantized MIMO [23, 30, 69, 76–81]. Among them, [76] pro-

poses a CE method to estimate sparse frequency-selective channels for orthogonal

frequency division multiplexing (OFDM) modulation. More recently, [23] proposed

a CE technique for frequency-selective MIMO-OFDM, without any sparsity assump-

tion on the channel. In [23], quantization noise is assumed to be independent and

identically distributed. This assumption is only accurate when the number of channel

taps or users are large. In contrast, [30] takes into account the correlation in quan-

tization noise by deriving the linear minimum mean-square-error (LMMSE) channel

estimate. Another study [77] proposes a low-complexity CE algorithm based on ap-

proximate message-passing, showing some performance improvement compared to

LMMSE channel estimation. However, the aforementioned CE techniques [23,30,77]

require OFDM and a cyclic-prefix (CP), which may decrease the spectral efficiency

significantly if the number of channel taps L is large. The same OFDM or CP limita-

tion also exists for the CE techniques in [69,78–81]. In short, for all of the aforemen-

tioned CE methods, at least one of the following limitations exists: the requirement of

OFDM or a CP [23,30,69,76–81], the requirement of a sparse channel [69,76,78–80].

Regarding data detection in quantized massive MIMO, there are also a vast number

of studies in the literature, some of which are mentioned in the survey paper [75].

However, as mentioned before, frequency-flat channel assumption is not a practical

assumption. Therefore, [49, 81–90] advocate various data detectors for quantized

massive MIMO systems under frequency-selective fading. Among those work, [49,
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81, 82] propose data detectors for quantized massive MIMO but they are limited to

OFDM modulation, which requires a CP. They are also highly complex compared

to the proposed detector in this chapter (see Table 7.1 for details). Although lower

complexity detectors compared to the highly complex maximum a posteriori (MAP)

detector in [49] are also proposed in the same study, they are shown to provide an

inferior performance compared to a much lower complexity per subcarrier LMMSE

data equalization method [88].

Owing to the aforementioned advantages of SC systems over OFDM, there are many

studies proposing SC frequency-domain equalization (SC-FDE) detectors in quan-

tized MIMO. To start with, [83] proposes a generalized approximate message-passing

(GAMP) based detector. However, the number of nonlinear operations per iteration

of the proposed receiver in [83] is 5MNO+PKN , where O is a number between 80

and 100, P is the modulation order, M is the number of antennas, K is the number

of users and N is the data packet length, which can be compared to the number of

subcarriers Nc of the multi-carrier modulation schemes. As the number of antennas

M in massive MIMO is large, 5MNO becomes a very large number. Moreover, the

number of iterations for GAMP based methods to converge is typically about 10 itera-

tions [82], whereas the proposed detector in this chapter will be observed to converge

in about I = 2 iterations in most cases. This means a prohibitive complexity for the

detector in [83] for massive MIMO. Moreover, [84] also advocates a GAMP based

receiver, but its complexity grows withN2, which can also be very high. Another SC-

FDE and GAMP based detector is proposed in [85]. Nevertheless, the detector in [85]

is limited to spatial modulation, which is not a commonly used technique. Lately, [86]

proposed various iterative detectors with feasible complexity for quantized massive

MIMO.

Despite being superior to OFDM for quantized MIMO, there is still a CP overhead in

SC-FDE. Therefore, [87,88,91] have recently proposed detectors that can work with-

out a CP for quantized single-carrier MIMO (SC-MIMO) under frequency-selective

fading. However, their complexity is very high compared to the proposed detector in

this chapter (see Table 7.1 for details).

More recently, a maximum-likelihood sequence estimator for CP-free one-bit wide-
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Table 7.1: Comparison of existing works with the proposed items in this chapter.

band massive SC-MIMO has been proposed in [90]. The computational complexity

of the detector in [90] grows with PL, resulting in excessive complexity for large L.

In the same study, the necessity of a decision feedback equalization based reduced-

state detector is also mentioned as a future work. Such a detector is proposed in this

chapter. Through decision feedback equalization, the number of states in the data

detection algorithm can be reduced from PL down to P by making decisions about

the past and future symbols according to the available observations. In this way, we

reduce the detection complexity such that it grows linearly with L, instead of PL.

All aforementioned schemes are compared and contrasted with the proposed detector

in this chapter in Table 7.1 with advantageous (disadvantageous) properties shaded in

green (red). As the computational complexity analysis for the related works is limited

to only some of the system parameters, we are only able to compare the complexity

growth of the proposed detector with respect to those parameters. For simplicity, we

are taking the terms in the complexity growth expressions with the largest powers of

the parameters in comparison as they will be determining the complexity growth when

parameters used in the comparisons are large. The complexity growth associated with

the proposed detector in this chapter are indicated inside parentheses in Table 7.1.

Note that M and N can be as large as 256 [92] and 1024 [26] in massive MIMO,

respectively. For detailed comparisons, the reader can refer to the aforementioned

discussions. Among the detectors of comparable complexity, the ones proposed in

[86] and [89] are the only detectors without limitations such as slow convergence or

spatial modulation requirement. We prefer [86] over [89] as the benchmark algorithm,

the reasons of which will be discussed in the sequel.
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7.1.1 Contributions

The main contribution items of the study in this chapter are as follows:

• It is the first study to derive LMMSE channel estimator for CP-free quantized

SC-MIMO.

• The proposed detector is one of the few detectors in the literature that can work

without CP in quantized (one or multi-bit) massive SC-MIMO, which can be

important for a feasible spectral efficiency. In the literature, the detectors work-

ing without CP has a complexity growth with PL, whereas the complexity of

the proposed detector grows linearly with L.

• The proposed detector is the first reduced state Ungerboeck-type detector with

bidirectional decision feedback structure working in wideband MIMO even for

the unquantized case.

• The proposed detector provides significant error-rate performance advantages

over the benchmark detector [86] from the literature.

For benchmark detector selection, the ones with comparable complexity to our de-

tector are [86] and [89]. We prefer [86] over [89] as the benchmark detector even if

there is a CP overhead in [86] (thus it is spectrally inefficient). The reason is that the

performance of the algorithm proposed in [89] may be inferior to the algorithm in the

much recent study [86] due to the inter-carrier interference caused by the lack of CP

in [89].

7.2 System Model

In this chapter, a frequency-selective single-cell uplink massive MIMO system with

K single-antenna users and M receive antennas with low-resolution ADCs is exam-

ined. The unquantized received signal at the mth antenna can be written by replacing

T by the sampling rate Ts in (2.2) in Chapter 2 as

rm(t) =

L−1
∑

ℓ=0

K
∑

k=1

N
∑

n=1

hm,k[ℓ]xn,kpc(t− (n− 1)Ts − ℓTs) + wm(t), (7.1)
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where pc(t) = sinc(t/Ts). It is assumed that the sampling rate of the receiver is

the same as that of the transmitter. As sinc(t/Ts) = 0 for t = nTs for n 6= 0, the

discrete-time received signal at the mth antenna, namely ym[n] = rm(nTs), can be

expressed as follows:

ym[n] =
K
∑

k=1

L−1
∑

ℓ=0

√

ρk[ℓ]h
′
m,k[ℓ]xk[n− ℓ] + wm[n], (7.2)

where xk[n] = xn+1,k, n = 0, . . . , N − 1, wm[n] = wm(nTs), L is the number of

channel taps, and h′m,k[ℓ] = hm,k[ℓ]/
√

ρk[ℓ]. The channel taps h′m,k[ℓ] are gener-

ally assumed to be zero-mean unit variance circularly symmetric complex Gaussian

(CSCG) random variables, corresponding to a Rayleigh fading scenario, and uncor-

related, that is, E[h′m1,k1
[ℓ1]h

′
m2,k2

[ℓ2]
∗] = δ[ℓ1 − ℓ2]δ[k1 − k2]δ[m1 −m2]. Moreover,

ρk[ℓ] is the power-delay profile (PDP) of the channel between the receive antennas

and the kth user, satisfying
∑L

ℓ=1 ρk[ℓ] = 1, ∀k. The justification behind the uncorre-

lated channel assumption is discussed in Chapter 2. However, we will also examine

the case where there is a spatial correlation between the channels observed by differ-

ent antennas and Rician fading, in which the channels are consisting of a combination

of a line-of-sight (LoS) path and a small-scale fading component, which is recently

examined for massive MIMO in [93]. Let hk[ℓ] be the channel vector associated with

the lth channel tap of the kth user, whose mth element is h′m,k[ℓ]. For Rician fading

and a spatially correlated case, hk[ℓ] can be modelled as a realization of the CSCG

distribution with mean ξk[ℓ] and covariance matrix Rk[ℓ] [93], which can be found

as [24, 94]

Rk[ℓ] =

∫ π

−π

̺ℓk(θ)q(θ)q(θ)
Hdθ (7.3)

where ̺ℓk(θ) is the angular power profile of the ℓth channel tap of user k and q(θ) is

the steering vector of the antenna array. For uniform-linear array (ULA) with half-

wavelength antenna separation, q(θ) = [1 ejθ . . . ej(M−1)θ], where θ = πsin(φ), φ

being the angle of arrival. For a uniform power distribution, restricted between θℓk,1

and θℓk,2, Rk[ℓ] in (7.4) can be approximated for ULA with half-wavelength antenna

separation as [94]

Rk[ℓ] ≈ q(µℓ
θ,k)q(µ

ℓ
θ,k)

H ⊙D(σℓ
θ,k), (7.4)

where ⊙ represents Hadamard product, µℓ
θ,k = (θℓk,1 + θℓk,2)/2, σℓ

θ,k = |θℓk,1 − θℓk,2|,
[D(θ)](m,n) = sinc ((m− n) θ/(2π)). Here, θℓk,1 and θℓk,2 can be found from mean
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arriving angle φℓ
k and angular spread ςℓk as θℓk,1 = πsin(φℓ

k−ςℓk/2) and θℓk,2 = πsin(φℓ
k+

ςℓk/2). Moreover, the mean vector can be found as ξk[ℓ] =
√

κk[ℓ]q(µ
ℓ
θ,k) [93], where

κk[ℓ] is the Rician factor, determining the relative power of the LoS path compared

to the non LoS paths for the ℓth channel tap of user k. If a Rician fading scenario

is considered, ρk[ℓ] is scaled with 1/(1 + κk[ℓ]) to ensure unit received power from

each user. Regarding the correlation of the channels of different users and channel

taps, as the users and the scatterers resulting from different clusters (corresponding to

different channel taps) are physically separated by multiple wavelengths in general,

the channels of different users and channel taps can be well modelled as statistically

uncorrelated [24, 93]. Thermal noise samples wm[n] are assumed as independent

identically distributed (i.i.d) zero-mean CSCG random variables with variance No.

Moreover, xk[n] in (7.2) is the transmitted symbol by user k at nth time index, with

average symbol energy Es = E[|xk[n]|2], ∀k, n. (7.2) can be rewritten as

y[n] =
L−1
∑

ℓ=0

H[ℓ]J[ℓ]x[n− ℓ] +w[n], (7.5)

where J[ℓ] is a K × K diagonal matrix, whose kth diagonal is
√

ρk[ℓ], and H[ℓ] is

the MIMO channel matrix, whose element at its mth row and the kth column is equal

to h′m,k[ℓ]. Moreover, y[n], w[n] and x[n] are vectors, whose mth and kth elements

are equal to ym[n], wm[n], and xk[n], respectively. The quantized received signal can

also be expressed as

r[n] = Q(y[n]), (7.6)

where Q(.) is the function mapping the input of the quantizer to its output. For 1-bit

quantizer, Q(.) = sign (Re (.)) + jsign (Im (.)), sign(.) being the sign function.

7.3 LMMSE Channel Estimation for CP-free Quantized SC-MIMO

In this section, the expression for the LMMSE channel estimate for quantized CP-free

SC-MIMO systems will be derived. In the channel estimation phase, we assume that

each user transmits pilot signals simultaneously. Under such a scenario, the received

signal in (7.5) can be reexpressed as

y(p) = (X⊗ IM)h+w, (7.7)
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where

y(p) ,
[

y[0]T y[1]T · · ·y[τ − 1]T
]T
,

w ,
[

w[0]T w[1]T · · ·w[τ − 1]T
]T
,

X , [X1 X2 · · ·XK ] ,

h ,

[

(

h(1)
)T (

h(2)
)T · · ·

(

h(K)
)T
]T

,

h(k) ,

[

(

h(k)[0]
)T (

h(k)[1]
)T · · ·

(

h(k)[L− 1]
)T
]T

,

in which τ is training length, h(k)[ℓ] is the kth column of H[ℓ], [Xk](m+1,n+1) ,
√

ρk[n]xk[m− n], where xk[m], m = 0, 1, . . . , τ − 1, is the transmitted pilot of user

k, and n = 0, 1, . . . , L− 1.

To obtain a linear and simple channel estimator, we utilize the Bussgang decomposi-

tion [32], through which a statistically equivalent linear operator can be found for any

nonlinear function [31]. According to the Bussgang decomposition, r(p) = Q(y(p))

can be written as

r(p) = A(p)y(p) + q(p). (7.8)

Note that (7.8) is also valid for oversampled signals [19, 26, 86]. The only difference

that arise with oversampling is that the effect of the employed pulse-shape should be

included in (7.5) while constructing the signal model as performed in [16]. However,

this case is left as a future work. We denote the cross-covariance matrix between

y(p) and r(p) by Cy(p)r(p) and the autocovariance matrix of y(p) by Cy(p) . When A(p)

is selected as A(p) = CH
y(p)r(p)

C−1
y(p) , the distortion term q(p) in (7.8) is minimized.

Equivalently, q(p) is made uncorrelated with y(p). In order to find the LMMSE chan-

nel estimator, two critical quantities that should be found are matrix A(p) and the

autocovariance matrix of q(p), namely Cq(p) . We will find these terms for two differ-

ent cases, one being the one-bit and the other being the multi-bit quantizer case. We

denote A(p), Cq(p) and the autocovariance matrix of r(p) for one-bit quantizer case by

A(p,1), C1
q(p) and C1

r(p)
and for multi-bit quantizer case by A(p,m), Cm

q(p) and Cm
r(p)

,

respectively. In this case,

A(p) = A(p,1)χq +A(p,m)(1− χq), Cr(p) = C1
r(p)
χq +Cm

r(p)
(1− χq),

Cq(p) = C1
q(p)χq +Cm

q(p)(1− χq), (7.9)
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where q is the number of quantizer bits and χq is an indicator function, defined as

χq = 1 if q = 1 and χq = 0, otherwise. The matrices A(p,1), A(p,m), C1
q(p) and Cm

q(p)

are all found for one-bit or multi-bit quantizer cases in (C.1), (C.2), (C.7) and (C.8) in

Appendix C.1. Now that they are found, the quantized signal r(p) can be found using

(7.7), (7.8), (7.9) and (C.1) for one-bit or (7.7), (7.8), (7.9) and (C.2) for multi-bit

quantizer case as

r(p) = (BX⊗ IM)h+ (B⊗ IM)w + q(p), (7.10)

where B = χqB1 + (1−χq)Bm, in which B1 and Bm are as found in Appendix C.1.

Define the total effective noise at the quantizer output as Γ , (B⊗ IM)w + q(p).

Its covariance matrix CΓ can be found using (C.7) and (7.10) for one-bit quantizer or

using (C.8) and (7.10) for multi-bit quantizer as

CΓ = F⊗ IM , (7.11)

where F = NoBBH + χqE1 + (1 − χq)Em, E1 and Em are as found in Ap-

pendix C.1. As effective noise covariance matrix is found, we can apply a whitening

filter, C−1/2
Γ = F−1/2 ⊗ IM , to obtain

z(p) , C
−1/2
Γ r(p) = (PX⊗ IM)h+ n, (7.12)

where P = F−1/2B and n = (P⊗ IM)w + C
−1/2
Γ q(p), whose covariance matrix

Cn = IMτ . To derive the LMMSE estimator, we also need to find whether h and

n are uncorrelated. It has been shown in [30, Appendix A] that for any quantized

LMMSE channel estimation based on Bussgang decomposition, the quantization dis-

tortion term, which is referred to as q(p) in this chapter, is uncorrelated with the chan-

nel, implying that n is also uncorrelated with h as w is also uncorrelated with h. In

this case, Cz(p) , E[z(p)z(p)
H
] and Cz(p)h , E

[

z(p)hH
]

can be found as

Cz(p) = (X′ ⊗ IM)Ch

(

X′ ⊗ IM
)H

+ IMτ , Cz(p)h = (X′ ⊗ IM)Ch, (7.13)

X′ , PX, Ch is the auto-covariance matrix of h. Consequently, the LMMSE

channel estimate for CP-free quantized wideband SC-MIMO, namely ĥ
LMMSE

, can

be found using (7.13) as

ĥ
LMMSE

= CH
z(p)h

C−1
z(p)

z(p)

= Ch (X
′ ⊗ IM)

H
(

(X′ ⊗ IM)Ch

(

X′ ⊗ IM
)H

+ IMτ

)−1

z(p). (7.14)
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Note that in (7.14), inverting an Mτ ×Mτ matrix may not be computationally fea-

sible. In what follows, we obtain a much lower complexity channel estimator by

taking the channel covariance matrix as identity. Such a selection of covariance ma-

trix is appropriate when the channel is uncorrelated or when we do not have any prior

knowledge on the channel covariance matrix thus take it as identity. The resulting

estimate corresponds to the least-squares channel estimate for uncorrelated channel

and high signal-to-quantization noise ratio case. To obtain this lower complexity es-

timator, corresponding to the exact LMMSE estimator for uncorrelated channels, we

define X′′ , X′ ⊗ IM . Then, (7.14) can be rewritten by replacing Ch with identity

matrix as

ĥ
LMMSE

= X′′H
(

X′′X′′H + IMτ

)−1

z(p). (7.15)

Employing Woodbury matrix identity [95], (7.15) can be reexpressed as

ĥ
LMMSE

=
(

(X′′)
H
X′′ + IMKL

)−1

(X′′)
H
z(p)

=
((

(X′)
H
X′ ⊗ IM

)

+ IMKL

)−1

(X′′)
H
z(p)

=
(

(

XHPHPX+ IKL

)−1 ⊗ IM

)

(PX⊗ IM)Hz(p). (7.16)

Taking the inverse of a KL ×KL matrix in (7.16) is much less complex than taking

the inverse of an Mτ ×Mτ matrix in (7.14), as τ ≥ KL in general (for orthogonal

pilot assignment to users τ ≥ KL [23]). This complexity, along with the complexity

to obtain F−1/2, is much less than the LMMSE estimator derived in [30] for quantized

MIMO-OFDM. The estimator derived in [30] requires both a CP and the computation

of the inverse of an Mτ ×Mτ matrix. This is a large matrix as M is large in massive

MIMO and τ ≥ KL in general. Mean-square-error (MSE) matrix for ĥ
LMMSE

can

also be calculated as

CLMMSE
ĥ

= E
[(

ĥ
LMMSE − hLMMSE

)(

ĥ
LMMSE − hLMMSE

)H]

= IMKL −
(

(

XHPHPX+ IKL

)−1 ⊗ IM

)

(

XHPHPX⊗ IM
)

. (7.17)

7.3.1 Low Complexity Approximations for the LMMSE Estimator

In this section, we will show that an even lower complexity approximation for

LMMSE channel estimate exists under some conditions. One of those condi-

tions is XXH being diagonally dominant. This happens when the pilots assigned
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to different users are nearly orthogonal and the autocorrelation function of the

transmitted pilot sequence of all users is close to an impulse function, that is,
∑L−1

n=0

√

ρk[n]
√

ρk′[n]xk[m − n]x∗k′ [m
′ − n] ≈ Uδ[m − m′]δ[k − k′], where U is

a multiplicative constant. This approximation is accurate when users transmit ran-

domly generated complex symbols as pilot sequences and KL is large. Another

condition for LMMSE channel estimate to have a lower complexity approximation

is signal-to-noise ratio (SNR) being low. For both cases (for low SNR or when XXH

is diagonally dominant) Cy(p) =
(

XXH ⊗ IM
)

+ NoIMτ is diagonally dominant,

thus C1
q(p) can be approximated using (C.3)-(C.6) as a diagonal matrix as

C1
q(p) ≈ (2− 4/π) IMτ . (7.18)

This means that the overall effective noise becomes uncorrelated also for the one-

bit quantized case. Then, the complexity of the calculation of the whitening filter

C
−1/2
Γ = F−1/2 ⊗ IM is reduced significantly as F is diagonal for uncorrelated ef-

fective noise. This makes P = F−1/2B a diagonal matrix as B is a diagonal matrix,

reducing the complexity in calculating (7.16).

A further reduction in the complexity of the LMMSE channel estimator is possible

by assuming that (XXH + NoIτ) is a constant diagonal matrix. This is an accurate

assumption when SNR is low. Even if SNR is not low, it is valid to assume that the

diagonal elements of XXH , which are equal to the average received power at each

antenna, does not change over the pilot symbol transmission phase for most cases. If

the magnitude of the transmitted complex pilot symbols are always the same, which is

the case for DFT pilot sequences or any sequence generated randomly from a phase-

shift keying (PSK) type modulation, this assumption is exactly correct. Otherwise,

the approximation error caused by this assumption goes to zero asKL becomes large.

With this assumption, B1 and Bm in (C.1) and (C.2) can be approximated as

B1 =
√

4/πdiag(XXH +NoIτ )
−0.5 ≈ g1Iτ , Bm ≈ gmIτ , (7.19)

where g1 =
√

4/(π(Pr)), in which Pr , KEs + No is the average received power

and

gm =
√

∆2/ (πPr)×
2q−1
∑

i=1

exp
(

−∆2
(

i− 2q−1
)2
/
√

(Pr)
)

. (7.20)

Along with (C.8) and (7.18), this implies that

P = F(−1/2)B ≈ (d+ g2No)
(−1/2)gIτ , (7.21)
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where g = g1χq + gm(1− χq) and d = (2− 4/π)χq + dm(1− χq), in which

dm =
∆2

2
(2q − 1)2 − g2(Pr)

− 4∆2
2q−1
∑

i=1

(

i− 2q−1
)

×
(

1−Q
(√

2(i− 2q−1) (Pr)
−1/2

))

. (7.22)

Then, the LMMSE estimator in (7.16) and MSE expression in (7.17) can be approxi-

mated as

ĥ
LMMSE ≈

(

(

c2XHX+ IKL

)−1 ⊗ IM

)

(cX⊗ IM)Hz(p), (7.23)

CLMMSE
ĥ

≈ IMKL −
(

(

c2XHX+ IKL

)−1 ⊗ IM

)

(

c2XHX⊗ IM
)

, (7.24)

where c = g/
√

d+ g2No. By approximating XXH as a constant diagonal matrix

(with diagonal entries being KEs + No), which is an accurate assumption under the

conditions mentioned above, expressions of even lower complexity to calculate can

be written from (7.14) as

ĥ
LMMSE ≈ c (X⊗ IM)H z(p)

c2EsK + 1
,CLMMSE

ĥ
≈
(

1− c2
(

XHX⊗ IM
)

c2EsK + 1

)

, (7.25)

which are very simple expressions not involving any matrix inversions.

7.4 Data Transmission

For the data transmission phase, the quantized received signal can be rewritten using

(7.5) as

r(d) = Q
(

y(d)
)

= Q (Hx+w) , (7.26)

where

y(d) ,
[

y[0]T y[1]T · · ·y[N + L− 2]T
]T
,

w ,
[

w[0]T w[1]T · · ·w[N + L− 2]T
]T
,

H , blkToeplitz(Hc,Hr),

x ,
[

x[0]T x[1]T · · ·x[N − 1]T
]T
, (7.27)

Hc ,

[

H
′

[0]T H
′

[1]T · · · H′

[L− 1]T 0 · · ·0
]T

,

Hr ,

[

H
′

[0] 0 · · · 0
]

,H
′

[ℓ] = H[ℓ]J[ℓ], (7.28)
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in which N is the data packet length and the sizes of the matrices Hc and Hr are

(N +L−2)M×K and M×NK, respectively. Note that despite the same or similar

notations are used for the data/pilot and noise vectors for the channel estimation and

data transmission signal models for simplicity, they are completely independent of

each other. Using Bussgang decomposition [32], (7.26) can be reexpressed as

r(d) = A(d)Hx+A(d)w + q(d), (7.29)

where A(d) can be found by replacing Cy(p) in (C.1)-(C.2) with Cy(d) , EsHHH +

NoIM(N+L−2). Moreover, the quantizer distortion term covariance matrix for one-bit

quantized case, namely C1
q(d) , can be found by replacing Cy(p) and A(p,1) in (C.3) and

(C.4) with Cy(d) and A(d), respectively. The quantizer distortion term autocovariance

matrix for multi-bit quantized case, namely Cm
q(d) , can also be obtained by replacing

Cy(p) , A(p,m) and IMτ in (C.8) with Cy(d) , A(d) and IM(N+L−2), respectively. Further-

more, when the channel coefficients are i.i.d. unit variance random variables, all diag-

onal elements of HHH , which correspond to received average signal power, converge

toKEs whenKL goes large. The reason for this convergence is the same as discussed

previously for the pilot transmission phase. In addition, when KL is large or for low

SNR, it is again straightforward to show that HHH + NoIM(N+L−2) is a diagonally

dominant matrix with diagonal entries converging toKEs+No. Even for the spatially

correlated channel case, diagonal elements will converge to KEs + No according to

the Weak Law of Large Numbers as the channels observed by different users and dif-

ferent channel taps are still uncorrelated, although the diagonal dominance may be

affected. In this case (when HHH + NoIM(N+L−2) ≈ (KEs + No)IM(N+L−2)), by

employing the modified versions of (C.1), (C.3), (C.4), (C.2), (C.8) for data transmis-

sion phase (with the aforementioned modifications such as replacing Cy(p) by Cy(d)),

A(d) and Cq(d) can be approximated as

A(d) ≈ gIM(N+L−2), Cq(d) ≈ dIM(N+L−2). (7.30)

The aforementioned assumptions, implying an uncorrelated quantizer noise assump-

tion, are observed to be accurate even when the SNR is high and the number of users

are as low as K = 4 and L = 1 for i.i.d. channel coefficients [30, Fig. 4]. In fact,

K and L values will be much larger in general, resulting in very low approximation

errors.
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Based on (7.29) and (7.30), a minimum distance performance metric can be con-

structed as

Λ
(

r, Ĥ,x
)

= γ1exp
(

−||r− Ĥx||2
)

, (7.31)

where γ1 is a multiplicative constant, r = r/
√

d+ g2No, Ĥ = gĤ/
√

d+ g2No.

Here Ĥ is the estimated version of the channel matrix H, which is found by using

(7.27) and (7.28) such that H[ℓ] in (7.28) is replaced by its estimate Ĥ[ℓ]. Matrix Ĥ[ℓ]

can be constructed by replacing the elements of H[ℓ], which is defined in (7.5), with

the corresponding the LMMSE channel coefficient estimates obtained with (7.16),

(7.23) or (7.25) in Section 7.3. The metric in (7.31) corresponds to the ML metric

when the effective noise term (gw) + q(d) has a Gaussian distribution. It has been

pointed out in [45,96,97] that the Gaussian assumption for the effective noise (gw)+

q(d) yields accurate results, especially for low SNR, even for 1-bit quantizer. With this

finding, it can be stated that the effective noise (gw)+q(d) can also be approximated

as Gaussian for higher quantization resolutions. The reason is that the (gw) term in

the effective noise dominates for higher quantizer resolution as g gets closer to 1 and

the power of quantizer noise q(d) decreases. Therefore, there are many studies that

approximates the quantization noise as Gaussian [45, 96–101].

We continue by rewriting the minimum distance metric in (7.31) as

Λ
(

r, Ĥ,x
)

= γ2exp
(

2Re
(

rHĤ x
)

− xHĤ
H
Ĥ x

)

. (7.32)

To obtain the optimal estimates based on (7.32), there are various approaches. One is

to filter r by a channel matched filter (CMF) followed by a noise whitening filter in the

Forney method [102]. The complexity of this method can be high due to whitening

filter, thus an alternative method based on Ungerboeck observation model can be

adopted [102]. In the Ungerboeck observation model, the minimum distance metric

is constructed directly from the unwhitened CMF output, namely v , Ĥ
H
r. Taking

v as the observation vector, the metric in (7.32) can be rewritten as

Λ
(

r, Ĥ,x
)

= γ2exp
(

2Re
(

vHx
)

− xHGx
)

, (7.33)

where

G , Ĥ
H
Ĥ , blkToeplitz(Gc,Gr),
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in which

Gr = [G[0] G[1] · · · G[L− 1] 0 · · · 0] ,

Gc = (Gr)H ,

G[ℓ] , g2/(d+ g2No)
L−1−ℓ
∑

k=0

Ĥ
′

[k + ℓ]HĤ
′

[k],

Ĥ
′

[ℓ] , Ĥ[ℓ]J[ℓ].

With these definitions, the minimum distance metric in (7.33) can be computed re-

cursively as

ln(Λ(.)) =
N−1
∑

n=0

(

K
∑

k=1

[

κnk(vk[n], xk[n])− φn
k(xk[n], s

n
k)

−
K
∑

k′=1,k′<k

ψn
k,k′(xk[n], s

n
k , xk′[n], s

n
k′)

]

)

, (7.34)

where Λ(.) = Λ
(

r, Ĥ,x
)

, vk[n] is the (Kn + k)th element of v, and snk is the state

vector of user k at the nth time instant, which can be expressed as

snk = [xk[n− 1] · · · xk[n− J ]] . (7.35)

As can be noted in (7.35), although we need to have L− 1 elements in snk for optimal

sequence estimation, the number of elements in the state vector in (7.35), namely J ,

can be selected to be less than L − 1, to reduce the complexity of the detector. This

can be done by constructing surviving paths based on the proposed Ungerboeck-type

reduced state sequence estimation (U-RSSE) with bidirectional decision feedback al-

gorithm for MIMO, the details of which will be provided in the sequel. The functions

κnk(.), φ
n
k and ψn

k,k′(.) in (7.34) are also defined as

κnk(.) , 2Re {(v∗k[n])xk[n]} − x∗k[n][G[0]](k,k)xk[n], (7.36)

φn
k(.) , 2Re {ζk,k[n]} , ψn

k,k′(.) , 2Re
{

x∗k′ [n][G[0]](k′,k)xk[n] + ζk,k′[n] + ζk′,k[n]
}

,

(7.37)

where ζk,k′[n] =
∑min(L−1,n)

ℓ=1 x∗k[n][G[ℓ]]H(k,k′)xk′ [n− ℓ]. Here, κnk(.) can be regarded

as the CMF output, φn
k(.) calculates the self-interference due to ISI, while ψn

k,k′(.)

corresponds to the interference caused by the other users to user k. The metric in
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(7.34) can be redefined taking into account the a priori probabilities of the transmitted

data symbols as

ln

(

Λ

(

{xk[n], snk , v
n
k}∀k,n

))

∝
N−1
∑

n=0

K
∑

k=1

{

ln
(

Pr
(

s0k
))

+ κnk (vk[n], xk[n])− φn
k (xk[n], s

n
k)

+ ln
(

T n
k

(

xk[n], s
n
k , s

n+1
k

))

+ ln (Pr ({xk[n]}))

−
K
∑

k′=1,k′<k

ψn
k,k′ (xk[n], s

n
k , xk′[n], s

n
k′)

}

, (7.38)

where Pr({xk[n]}) and Pr (s0k) are the a priori probabilities of the data symbol

xk[n] and the initial state vector s0k. Moreover, ln(.) takes the natural logarithm, and

T n
k

(

xk[n], s
n
k , s

n+1
k

)

is the trellis indicator function, which is equal to 1 if a transition

from snk to sn+1
k is possible with the data symbol being xk[n]. Otherwise, it is equal to

zero. The proposed factor graph (FG) constructed for the calculation of (7.38) is pre-

sented in Fig. 7.1. As can be noted in Fig. 7.1, there are cycles of length 6. Although

the existence of cycles in the FG in Fig. 7.1 result in approximate computation of a

posteriori probabilities (APP) of each transmitted symbol, the approximation errors

due to cycles are known to be negligable if the length of the cycles are greater than

4 [103]. As can also be noted in Fig. 7.1, the state vector snk and the data symbol xk[n]

are merged into a single variable node in order to increase the cycle length, which is

known as streching in the literature [104].

Based on the FG in Fig. 7.1, a novel reduced complexity quantization-aware

Ungerboeck-type message passing algorithm with bidirectional decision feedback

(QA-UMPA-BDF) detector is proposed. The proposed detector is characterized by

the following message update rules based on the sum-product algorithm (SPA) frame-

work:

Λf,n+1
k

(

sn+1
k

)

= ln

(

∑

∼{sn+1
k } exp

(

Λf,n
k (snk) + ln(T n

k (.))

− φn
k (.) + V n

k (xk[n], s
n
k)
)

)

, (7.39)
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Surv�v�ng paths for

Figure 7.1: Proposed factor graph corresponding to the calculation of the metric in

(7.38).
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Λb,n
k (snk) = ln

(

∑

∼{snk}
exp
(

Λb,n+1
k

(

sn+1
k

)

+ ln (T n
k (.))

− φn
k (.) + V n

k (xk[n], s
n
k)
)

)

, (7.40)

On
k (xk[n], s

n
k) = Λf,n

k (snk) + Λb,n+1
k

(

sn+1
k

)

+ ln (T n
k (.))− φn

k (.) , (7.41)

V n
k (xk[n], s

n
k) = ln (Pr ({xk[n]})) + κnk (.) +

K
∑

{l=1, l 6=k}
µn
l,k (xk[n], s

n
k) , (7.42)

µn
k′,k (xk[n], s

n
k) = ln

(

∑

{xk′ [n],s
n
k′
} exp

(

znk′,k (xk′[n], s
n
k′)− ψn

k,k′ (.)
)

)

, (7.43)

znk,k′ (xk[n], s
n
k) = On

k (xk[n], s
n
k) + V n

k (xk[n], s
n
k)− µn

k′,k (xk[n], s
n
k), (7.44)

where
∑

∼{x} is defined as the sum over all variables excluding x. Note that we calcu-

late messages in log-domain to avoid numerical issues stemming from large numbers

as multiplications performed in SPA are reflected as summations in log domain in

(7.39)-(7.44). For further avoidance of numerical issues, the max-log approxima-

tion [105] is used for (7.39), (7.40) and (7.43) as

Λf,n+1
k

(

sn+1
k

)

≈ max
{Sn

k}

(

Λf,n
k (snk) + ln(T n

k (.))− φn
k (.) + V n

k (xk[n], s
n
k)
)

, (7.45)

Λb,n
k (snk) ≈ max

{sn+1
k }

(

Λb,n+1
k

(

sn+1
k

)

+ ln(T n
k (.))− φn

k (.) + V n
k (xk[n], s

n
k)
)

,

(7.46)

µn
k′,k (xk[n], s

n
k) ≈ max

{xk′ [n],s
n
k′
}
(

znk′,k (xk′[n], s
n
k′)− ψn

k,k′ (.)
)

. (7.47)

7.4.1 Bias Compensation

Owing to the state reduction and the pre-cursor ISI that remains after CMF op-

eration, an anti-causal interference appears. As a result, U-RSSE suffers from

correct path loss even when there is no noise and multi-user interference, as pointed

out for unquantized single-input single-output (SISO) systems [106]. This interfer-

ence results in a bias affecting the tentative decisions in a survivor map. This bias has

to be corrected in the forward surviving path construction. With such a correction,

the surviving path for the states of the kth user can be constructed as

x̂k[n− J ](snk) = arg max
xk[n−J ]

[

Λf,n
k (Sn

k ) + φn
k (.) + V n

k (.)− βn−J
k (snk , xk[n− J ])

]

,

(7.48)
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where βn−J
k (.) is the bias correction term. The bias correction term can be calculated

by extending the bias derivation made in [106] for SISO case to multi-user case as

βn−J
k (snk , xk[n− J ]) =2Re

{

K
∑

k′=1

n−J
∑

l1=n−L+2

L−1
∑

l2=n−l1+1

[

x∗k[l1](s
n
k)[G[l2]](k,k′)

× x̃k′[l1 + l2]

]}

, (7.49)

where x∗k[l1](s
n
k) for l1 < n − j can be found from the surviving paths constructed

using (7.48) at the previous time instants. Moreover, x̃k′ [l1+l2] can also be found from

the hard tentative decisions about future symbols, obtained in the previous iterations

(what is meant by “iterations" will be detailed in Section 7.4.2). The bias term is also

simplified for the full decision feedback case (when no state is used, that is, when

J = 0) as

βn
k (xk[n]) = 2Re

{

K
∑

k′=1

[

L−1
∑

l2=1

x∗k[n][G[l2]](k,k′)x̃k′ [n+ l2]

]}

, (7.50)

since the terms of the outer summation with index ℓ1 6= n − J = n in (7.49) can be

omitted as the maximization is over xk[n] in (7.48) for J = 0.

The marginalized version of the metric in (7.38) can be calculated in the termination

step as

ln

(

Λ

(

xk[n], s
n
k , {vnk}∀k,n

))

=
∑

Sn
k

[V n
k (.) +On

k (.)− βn
k (s

n
k , xk[n])] , (7.51)

with the corresponding data symbol estimates maximizing the metric in (7.38) given

as

x̂k[n] = arg max
{xk[n]}

∑

sn
k

[V n
k (xk[n], s

n
k) +On

k (xk[n], s
n
k)− βn

k (s
n
k , xk[n])] . (7.52)

7.4.2 Message Passing Schedule

Owing to the cycles existing in the FG in Fig. 7.1, there is no unique message pass-

ing schedule for SPA operation. Therefore, we employ a serial schedule as in [104]

for updating the messages. The proposed scheduling for forward recursion in time-

domain is presented in Algorithm 1.
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Algorithm 1 QA-UMPA-BDF, forward recursion in time-domain
Input: MF output v and correlation metric G.

Initialization: Initialize all messages znk′,k, µn
k′,k, V n

k , On
k , Λf,n

k , Λb,n
k as zero.

1: for n = 0 : 1 : N − 1 do

2: for k = 1 : 1 : K do

3: Update On
k (.) using (7.41).

4: end for

5: Forward recursion in user domain:

6: for k = 1 : 1 : K do

7: for k′ = 1 : 1 : k − 1 do

8: Update µn
k′,k using (7.47).

9: end for

10: Update the term V n
k (.) using (7.42).

11: for k′ = k + 1 : 1 : K do

12: Update znk,k′ using (7.44).

13: end for

14: end for

15: Backward recursion in user domain:

16: for k = K : −1 : 1 do

17: for k′ = K : −1 : k + 1 do

18: Update µn
k′,k using (7.47).

19: end for

20: Update the term V n
k (.) using (7.42).

21: for k′ = k − 1 : −1 : 1 do

22: Update znk,k′ using (7.44).

23: end for

24: end for

25: Update the time-domain forward messages:

26: for k = 1 : 1 : K do

27: Update Λf,n+1
k (.) using (7.45).

28: Calculate bias term βn−J
k (snk , xk[n− J ]) using (7.49)

or (7.50).

29: Update surviving paths x̂k[n− J ](snk) using (7.48).

30: end for

31: end for 112



When the forward recursion in time-domain in Algorithm 1 ends, the same procedure

is performed as the backward recursion in time-domain, except that the time index

at the outermost for-loop in Algorithm 1 will be from N − 1 to 0, the operation in

line 27 will be replaced by an update of Λb,n
k using (7.46), and the lines 28-29 will

not be performed. Completion of forward and backward recursions in time-domain

constitutes an iteration of QA-UMPA-BDF. Although various choices can be made

for stopping criteria, the one adopted in this study is the completion of a predefined

number of iterations. The initialization step in Algorithm 1 should only be performed

for the forward recursion in time-domain at the first iteration.

Algorithm 1 has all details about how the messages in the FG in Fig. 7.1, which de-

picts the fundamental structure of the QA-UMPA-BDF algorithm, will be updated

according to which schedule and equations among (7.39)-(7.47). Moreover, Algo-

rithm 1 also specifies at which point of QA-UMPA-BDF algorithm, bias compen-

sation and surviving path construction will be made according to which equations

among (7.48)-(7.50). Therefore, it can be seen as the main description of an iteration

of the QA-UMPA-BDF algorithm. After the necessary number of iterations of QA-

UMPA-BDF algorithm is reached, the final data symbol estimates are found using

(7.51)-(7.52).

7.4.3 Computational Complexity Analysis

The computational complexity per iteration of the proposed QA-UMPA-BDF detector

can be found by analyzing (7.39)-(7.49). For the complexity analysis we consider the

max-log approximations for (7.39), (7.40) and (7.43), which are (7.45), (7.46), (7.47).

The complexity (number of flops) to calculate the messages per single iteration of the

proposed detector is provided in Table 7.2, in which P is the modulation size.

Table 7.2: Computational complexity of the QA-UMPA-BDF detector per iteration.

(7.41) (7.42)-(7.44) (7.45), (7.46) (7.47) (7.48), (7.49)

Complexity O
(

NP (J+1)KL
)

O
(

NP (J+1)K2L
)

O
(

NP (J+1)K
)

O
(

NP 2(J+1)K
)

O
(

NP (J+1)K2L
)

As can be noted, the computational complexity per iteration can be as high as

O
(

NP 2(L+1)K
)

if reduced state estimation is not employed (when J = L−1). How-
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ever, the computational complexity can be reduced to O (NPK2) + O (NP 2K) +

O (NPK2L) for J = 0, which changes linearly with N , L, and quadratically with

K and P . The complexity to calculate CMF output v and the correlation metric

G are O (NMKL) and O (MK2L). Therefore, the total complexity of the QA-

UMPA-BDF detector is O (INP 2K)+O (INPK2L)+O (NMKL)+O (MK2L),

where I is the number of iterations. The computational complexity of the represen-

tative benchmark algorithm that we compare the proposed QA-UMPA-BDF detector,

namely the “Robust MMSE" in [86, Eqn.(27)], is O (MKN log2(N))+O (NMK)+

O (NMK2)+O (NK3)+O(NKP ), which grows withK3. Therefore, the proposed

QA-UMPA-BDF detector for J = 0 has lower complexity compared to the bench-

mark detector, especially when K is large. We will also show in Section 7.5 that

the proposed detector can converge in about I = 2 iterations for most of the cases.

Therefore, the number of iterations does not increase the proposed detector complex-

ity to a significant degree. Detectors other than the “Robust MMSE" detector are also

proposed in [86]. However, their performance is considered to be inferior compared

to “Robust MMSE" detector [86, Fig.12,13], thus “Robust MMSE" is chosen as the

benchmark detector.

7.5 Performance Metrics and Simulation Results

To assess the performance of the proposed LMMSE channel estimator, normalized

MSE (nMSE) will be used as a metric. The nMSE taking into account the channel

coefficients multiplied by the PDP can be found as [107]

nMSE =
Tr
[

ΩCLMMSE
ĥ

ΩH
]

Tr [ΩChΩH ]
=

Tr
[

ΩCLMMSE
ĥ

ΩH
]

MK
, (7.53)

where Ω is a diagonal matrix whose (ML(k − 1) +Mℓ + 1)th to (ML(k − 1) +

Mℓ +M)th diagonal elements are all equal to
√

ρk[ℓ]. CLMMSE
ĥ

can be found from

(7.17), (7.24) or (7.25). For the data detector performance metric, we use uncoded bit-

error-rate (BER) and average mismatched achievable rate (AIR) per user [108]. Av-

erage mismatched AIR is a suitable metric to assess the performance of mismatched

detectors employing approximate APPs for detection, as the exact APPs cannot be

calculated due to the cycles in the FG in Fig. 7.1 and Gaussian effective noise ap-
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proximations. The mismatched average AIR per user can be expressed as [108]

AIR = Ex,H

[

1

NK

K
∑

k=1

N−1
∑

n=0

[

log2(P )− log2

(
∑

x′

k
[n]∈Ax

p̃(v|x′k[n])
p̃(v|x̂k[n] = xk[n])

)]]

, (7.54)

where Ax is the set of all possible constellation points, xk[n] is the correct value of

the transmitted symbol, and p̃(v|xk[n]) are the approximate APPs which are found

using (7.52) as

p̃(v|xk[n]) ∝
∑

sn
k

exp (V n
k (xk[n], s

n
k) +On

k (xk[n], s
n
k)− βn

k (xk[n], s
n
k)) . (7.55)

Throughout the simulations, we will mostly concentrate on the performance compar-

ison between the proposed QA-UMPA-BDF detector and the representative robust

MMSE detector [86] from the literature. As the reduced state length of the QA-

UMPA-BDF detector is set as J = 0, the representative detector has a comparable

complexity to QA-UMPA-BDF detector. We will see that the proposed detector out-

performs the representative detector in all cases, even if their complexities are similar

and the QA-UMPA-BDF detector provides a higher spectral efficiency, due to the ab-

sence of a cyclic-prefix. Unless otherwise stated, M = 100, the PDP of the transmis-

sion channel is COST-207 typical delay profile for suburban and urban areas [109].

The number of channel taps L = 32, with the power ratio of the first and the last

taps being 30 dB and N = 1024. The number of iterations for the QA-UMPA-BDF

detector is selected as I = 2. The pilot symbols are created as random complex

numbers from QPSK modulation. Eb , Es/log2(P ) corresponds to the bit-energy.

LMMSE channel estimates and MSE values are found based on (7.23) and (7.24).

The step size of the quantizer is selected to optimally to minimize quantization noise

as in [78]. The channel type is uncorrelated Rayleigh fading channel in all simula-

tions except Fig. 7.4. For correlated channel cases, the antenna array type is assumed

to be ULA, the mean arriving angles φℓ
k are chosen from a uniform distribution be-

tween −45 and 45 degrees, and the angular spread is taken as ςℓk = 2 degrees. For

Rician fading case (Fig. 7.4b), the Rician factor κk[ℓ] = 10 dB, which is the case

corresponding to an average of 100 meters distance to the base station from the user

terminals and the scattering clusters [93]. Moreover, for Rician fading L = 5 instead

of L = 32, as spatial correlation with Rician fading is mostly observed in mmWave

scenarios, for which the number of taps is small in general.
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To determine the necessary training length for the channel estimation, the nMSE or

BER vs. the training length (τ ) performances are obtained as in Fig. 7.2. In Fig. 7.2a,

0 5 10 15 20 25

Training Length (  KL)

10-4

10-3

10-2

10-1

100

nM
S

E
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(b) BER vs. training length,K = 5, 10, 15, 20,

Eb/No = 0 dB, 16-QAM.

Figure 7.2: nMSE (a) and BER (b) vs. training length (τ ).

it seems that we have lower nMSE values when the number of users are increased.

This is owing to the fact that the horizontal axis is provided as a multiple of KL,

implying that the training length is higher for the same value of the horizontal axis if

the number of users is higher. Since longer training length implies a higher received

pilot energy and the pilots of users are nearly orthogonal, this results in lower nMSE

for the channel estimates. We also observe in Fig. 7.2a that if we need to have a nMSE

level less than 10−1, τ ≥ 5KL will be an adequate choice for the proposed LMMSE

channel estimator for one-bit quantizer, although this number is much less for higher

bit resolutions. However, we can also say that there is a decreased improvement for

nMSE if the training length τ > 5KL for any bit resolution. Nevertheless, observing

nMSE alone may not be enough to foresee how the error-rate performance of the

proposed detector changes with the training length. Therefore, BER vs. training

length is also obtained for 16-QAM modulated data symbols as in Fig. 7.2b. As can

be noted in Fig. 7.2b, for 1 and 2 bits, there is a significant error-floor advantage

of the proposed detector compared to the Robust MMSE detector [86] for all cases.

Moreover, we can see that with very low resolution quantizers (1 or 2 bits), increasing

τ more than 5KL is not very effective for decreasing BER. Therefore, we will set

τ = 5KL when q = 1, 2. For q = 3, we will set τ = 3KL as the corresponding

nMSE values close to 10−2 observed in Fig. 7.2, are considered to be adequate. For
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q > 3, τ will be selected as 2KL in the subsequent simulations, all performed under

imperfect channel state information (CSI).

In Fig. 7.3, we compare the BER performance of the proposed QA-UMPA-BDF and

the Robust MMSE [86] detectors for either QPSK with q = 1 or 16-QAM with

q = 2. We also include the performance of a genie aided detector, which is referred

to as “Genie Aided Det." in all figures. This detector calculates the metric in (7.38)

for an xk[n] assuming that all other symbols are perfectly known so that ISI and MUI

terms in (7.38) are also calculated perfectly1. Genie aided detector performance is

mainly limited by thermal and quantization noise.
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Figure 7.3: BER vs. Eb/No for QPSK, q = 1 (a) or 16-QAM, q = 2 (b)

As can be observed in Fig. 7.3a, the QA-UMPA-BDF detector has better performance

compared to the representative benchmark detector for all number of user values (for

K = 5, 10, . . . , 25), despite being spectrally more efficient due to the CP free trans-

mission. If the modulation type is changed to 16-QAM, the SNR advantage of QA-

UMPA-BDF is up to 5 dB as can be noted in Fig. 7.3b. Moreover, the QA-UMPA-

BDF performance is always very close to genie-aided detector performance with only

2 iterations, which is the case in most of the subsequent simulations.

We also investigate the error-rate performance of the QA-UMPA-BDF detector un-

der spatially correlated channel in Fig. 7.4. For spatially correlated Rayleigh fading

channel in Fig. 7.4a, the SNR advantage over the benchmark detector is observed as

1 Genie aided detector uses perfect bidirectional decision feedback while constructing surviving paths in (7.48)
and bias terms in (7.49). For unquantized case and perfect CSI, the performance of this detector corresponds to
matched filter bound [106].
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even more (5.5 dB vs. 5 dB for uncorrelated Rayleigh fading case). This can be at-

tributed to the noise amplification effect due to an ill-conditioned matrix inversion in

the benchmark receiver for spatially correlated case. In addition, despite the severe

losses in diversity and multi-user interference suppression capability of the antenna

array due to channel correlation, we see that the performance loss compared to un-

correlated channel case is less than 1 dB for K = 5. This verifies that the errors in the

approximations in Section 7.3-7.4 relying on the diagonal dominance of HHH and

diagonal Cq(p) are limited for the correlated channel case. Moreover, we also present

BER performance of QA-UMPA-BDF for correlated Rician fading in Fig. 7.4b. As

can be noted, QA-UMPA-BDF outperforms the benchmark detector for all cases, with

an SNR advantage up to 6 dB.
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Figure 7.4: BER vs. Eb/No for spatially correlated channel case.

Note that, we assumed perfect knowledge of the PDP of the channel in the channel

estimation phase. The reason is that the channel coefficients h′m,k[ℓ] change much

faster due to small scale fading compared to the PDP of the channel, whose estimation

is easier and do not require much overhead. In fact, it is shown that it is possible to

estimate them without any additional pilots [23, 110]. That is the reason why they

are widely assumed to be perfectly known in many different studies such as [23, 30].

However, we also want to demonstrate the effect of unknown PDP on the proposed

channel estimation and detection performance by assuming a uniform PDP while

constructing matrix X for the channel estimation using (7.25) although the actual

PDP is COST-207 PDP. For this case, nMSE can be calculated analytically with an
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expression similar to (7.53). The results in Fig. 7.2a (only for K = 20) and Fig. 7.3b

(only for K = 5, 10, 20) are obtained for this unknown PDP case as in Fig. 7.5a,

b. In Fig. 7.5a, we can see that training length must be increased a little, owing to

0 5 10 15 20 25
Training Length (  KL)

10-4

10-3

10-2

10-1

100

nM
S

E

Unknown pdp
Perfectly known pdp

(a) nMSE vs. τ , Eb/No = 0 dB, K = 20,

unknown PDP, Rayleigh.

-15 -10 -5 0 5

E
b
/N

o
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R
 (

16
-Q

A
M

)

QA-UMPA-BDF, unknown pdp
Genie-Aided Det., unknown pdp
Robust MMSE, unkwon pdp
QA-UMPA-BDF, perfectly known pdp

~5 dB

K=5,10,20
~1 dB

(b) BER vs. Eb/No for 16-QAM, q = 2, un-

known PDP, Rayleigh.

Figure 7.5: Simulation results for unknown PDP.

the discrepancy between the assumed and the actual PDP, although the performance

loss diminishes as the training length or the number of bits is increased. To see the

performance loss in terms of Eb/No, we present the BER performances for 16-QAM

and q = 2 in Fig. 7.5b. As noted in Fig. 7.5b, the performance loss due to unknown

PDP is limited to ∼ 1 dB, while the performance difference of ∼ 5 dB between the

benchmark detector and QA-UMPA-BDF observed in Fig. 7.3b is preserved.

As the next simulation scenario, we plot the error-rate performances for fixed K but

varying q in Fig. 7.6. For all cases, QA-UMPA-BDF again has better performance.

The performance gap between the two detectors is widened for 16-QAM. For QPSK

and 16-QAM, performance improvement is not much for q > 2 and q > 3, respec-

tively. Two iterations is again observed to be sufficient for QA-UMPA-BDF detector

to match genie-aided detector performance.

In the next simulation setting, the BER performances are observed for various mod-

ulation sizes (16-QAM, 8-PSK, 4-PSK, BPSK) in Fig.7.7. QA-UMPA-BDF again

exhibits better performance compared to the benchmark detector for all modulation

types, with significant performance difference for 16-QAM modulation. The reason

to observe different BER for BPSK and QPSK is due to the correlation in the noise
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Figure 7.6: BER vs. SNR K = 15, q = 1, 2, 3, 4, 5,∞ for QPSK (a), 16-QAM (b).

statistics stemming from the nonlinear quantizer. Such BER performance difference

between BPSK and QPSK under quantization is also reported in [111].
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Figure 7.7: BER vs. SNR for P = 16, 8, 4, 2, K = 10, q = 1 (a) and q = 2 (b).

We also obtain per user AIR vs. SNR curves for q = 1 and q = 2 in Fig. 7.8. In

Fig. 7.8a, QA-UMPA-BDF detector asymptotically provides an AIR about 2.8 bit per

channel use (bpcu) for q = 1 with 8-PSK, close to the maximum AIR of 3 bpcu for

8-PSK. With 64-QAM, AIR can be asymptotically up to 3.5 bpcu for q = 1. For

q = 2, we can see from Fig. 7.8b that up to 5.5 bpcu can be achieved with 64-QAM,

close to the maximum AIR value of 6 bpcu for 64-QAM. This implies that a proper

code with rate 5.5/6 can provide very small BER values for 64-QAM.
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Figure 7.8: Per user AIR vs. Eb/No, K = 10, q = 1 (a), q = 2 (b).

In the next simulation setting, we obtain the total AIR instead of per user AIR as

a function of the number of users (K) in Fig. 7.9 when Eb/No = 0 dB, M = 50,

I = 7, L = 128 with uniform PDP as a challenging ISI channel scenario. The key

takeaways from Fig. 7.9 are as follows:

• Strong total AIR performance is observed with QPSK even with q = 2 and

a very loaded case of 60 users, which is more than the number of antennas

(maximum possible total AIR for 60 users is 120 bpcu with QPSK). Total AIR

always rises with increasing K.

• For 8-PSK, total AIR is better than QPSK for all q, if not similar. For q = 4

maximum total AIR is achieved even with K = 60. Total AIR always rises

with increasing K.

• For q < 4 with 16-QAM, total AIR always increase with K. For q = 4, 5,∞,

the maximum total AIR is observed for K ≈ 45, 53, 57. For q > 4, total AIR

increase withK ifK < 55, which indicates a competent performance. Depend-

ing on the number of bits and users, 16-QAM has better total AIR performance

than QPSK or 8-PSK in many cases.

• 64-QAM has superior total AIR performance compared to other modulation

types for q > 4 and K < 35. For higher K and lower q, smaller modulation

orders provide better total AIR in some cases. The maximum total AIR of about

200 bpcu is similar to that of 16-QAM.
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PDP.
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For the final simulation cases, we present the BER performance for Eb/No = 0 when

the number of channel taps are varied in Fig. 7.10a. Moreover, AIR per user vs. num-

ber of ADC bits performance for Eb/No = 0 dB, K = 25, and I = 7 is presented in

Fig. 7.10b. In Fig. 7.10a, it can be seen that the proposed QA-UMPA-BDF detector
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Figure 7.10: BER vs. number of channel taps L (a) or per user AIR vs. number of

bits q (b).

has a very robust BER performance to the changes in the number of channel taps.

It can cancel ISI in time-domain effectively even when the number of channel taps

is as large as 128, with no significant additional complexity (note that the complex-

ity of QA-UMPA-BDF was increasing linearly with L when J = 0). It also always

has better performance compared to the representative detector. From the results in

Fig. 7.10b, it can be stated that 64-QAM can be employed with maximum possible

AIR if q > 5, while the maximum possible AIR is achieved for q > 2 with 16-QAM.

Moreover, as 64-QAM provides higher AIR per user values, it can be preferred to

other modulation sizes for K = 25 when used with outer channel coding.

7.6 Conclusions

In this chapter, we proposed an LMMSE channel estimation and a low-complexity

quantization-aware message passing detector based on bidirectional decision feed-

back. The proposed detector has very low complexity compared to the existing work
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in the literature for highly dispersive channels with large number of channel taps,

thanks to its reduced state sequence estimation capability. Under imperfect CSI, the

proposed QA-UMPA-BDF detector is observed to outperform (significantly for some

cases) a representative detector from the literature with comparable complexity but

lower spectral efficiency due to its requirement to use CP. In short, we see that we are

able to propose a detector than can perform better than the existing detectors in the

literature having comparable complexity, even without resorting to any oversampling

in time.
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CHAPTER 8

CONCLUSION

In this thesis, the main objective is to find an answer to the question whether large

number of antennas in massive MIMO is sufficient to obtain an adequate performance

in terms of a reliable communication standpoint when low-resolution ADCs are em-

ployed. A related question is whether oversampling in time (or temporal oversam-

pling) will provide a significant performance gain for massive MIMO systems with

low-resolution ADCs.

To obtain answers for the above questions, we start with investigating the benefits

of temporal oversampling in one-bit quantized massive MIMO systems with ana-

lytical tools and simulations. We show by deriving analytical performance bounds,

whose accuracy is verified by simulations, that oversampling creates significant per-

formance advantages when it is employed with one-bit quantized massive MIMO

systems. Based on the results in this chapter, we state that having large number of

antennas without resorting to any oversampling in time can be regarded as a missed

opportunity since temporal oversampling enhance performance with low complexity.

In Chapter 4, we extend the work in Chapter 3 to frequency-selective channels as

most practical channels of interest are frequency-selective. We see that the conclu-

sions drawn for frequency-flat channels in Chapter 3 do not change for frequency-

selective channels. We also observe that the advantages observed with the application

of temporal oversampling are even more apparent for frequency-selective channels

compared to frequency-flat channels.

Although the advantages observed when temporal oversampling is performed are re-

markable, the ZF type detectors proposed in Chapter 3-4 are impractical, whose com-
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plexity grows with the cube of block length. This may make the conclusions regarding

the advantages of temporal oversampling drawn in Chapters 3-4 questionable. There-

fore, we propose a low-complexity detector in Chapter 5 having linear complexity

growth with the block length. Despite having much less complexity, the performance

of the detector in Chapter 5 is very similar to the ZF type detectors in Chapter 3-

4. Therefore, we illustrate in Chapter 5 that the advantages observed with temporal

oversampling can also be obtained with a much lower complexity detector, making

the conclusions associated with the advantages of temporal oversampling valid also

for detectors with reasonable complexity.

Despite the fact that aforementioned advantages of temporal oversampling in time

are promising for quantized massive MIMO systems, the question whether these ad-

vantages will be preserved when there is a source of significant interference from an

adjacent band remains to be answered. In Chapter 6, we tried to find the answer to

this question by making the performance analysis of quantized massive MIMO un-

der adjacent channel interference when temporal oversampling is applied. Moreover,

we employed OFDM modulation in that chapter, whereas single-carrier modulation

was considered in the previous chapters. With the performance analysis presented in

Chapter 6, whose accuracy is verified by simulations, we show that temporal over-

sampling provides significant gains in terms of compensating for any performance

loss due to adjacent channel interference caused by low-resolution quantizers. There-

fore, it is also meaningful to resort to the temporal oversampling technique also when

significant adjacent channel interference is present in quantized massive MIMO.

In the aforementioned chapters, we try to find an answer whether oversampling in

time has benefits for massive MIMO when significant quantization noise is present.

We believe that we have obtained meaningful results supporting the fact that over-

sampling in time provides significant advantages. However, in Chapter 7, we question

whether it is possible to obtain a detector that does not resort to any oversampling in

time but provides superior performance compared to the existing detectors for quan-

tized massive MIMO with comparable complexity. For that purpose, we propose a

near optimal low-complexity factor-graph based detector. The proposed detector can

work under frequency-selective channels and has a linear complexity growth with

the number of channel taps, despite working with single-carrier modulation and not

126



requiring a cyclic-prefix. We show that the proposed detector can outperform the

representative detectors in the literature in most of the investigated scenarios.

In summary, we investigated possible advantages that can be attained by temporal

oversampling for quantized massive MIMO in this thesis. We have shown analyti-

cally and numerically that temporal oversampling can provide significant advantages

in terms of error-rate and achievable rate performance of quantized massive MIMO

without incurring significant additional computational complexity. Therefore, we

state that temporal oversampling technique should always be considered in the de-

sign of massive MIMO systems with low-resolution quantizers. However, even with-

out any oversampling, by making use of an efficient Ungerboeck type detector, we

have shown that it is possible to obtain better performance compared to the existing

detectors for quantized massive MIMO in the literature.
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APPENDIX A

PROOFS IN CHAPTER 3

A.1 Proof of Lemma 1 and Lemma 2

In this part of the Appendix, σ2
x′

m

≤ Var(x′m|xm = 0,H) will be shown in Corollary

1 and the proof that if Var(x′m|xm = 0,H) is used in place of σ2
x′

m

in (3.32) to

find f(x′m|xm,H) and p(x̂m|xm,H), and then (3.21) is utilized to find SER, this will

constitute an upper bound on the exact SER value will be shown in Corollary 2.

Lemma 5: σ2
x′

m

is a monotonic function of any element of the vectors Re(µy) and

Im(µy), where µy = E[y], when the any arbitrary element of the vectors Re(µy)

and Im(µy) are in either (0,∞) or (−∞, 0).

Proof: If there is no such monotonicity as in the lemma statement, there will be two

different values of µy, namely µ
1
y

and µ
2
y

such that σ2
x′

m

(µ1
y
) = σ2

x′

m

(µ2
y
) for the

specified intervals for µy in the lemma statement. From the mean value theorem this

implies that the gradient of σ2
x′

m

in (3.37) with respect to the mean vector µy should

be equal to zero for some bm. From (3.37), this requires

bT
m∇1

µyp

(Γrr)b
∗
m = 0 (A.1)

and

bT
m∇2

µyp

(Γrr)b
∗
m = 0 (A.2)

for all p = 1, 2, · · · , MNβ, where ∇1
µyp

(Γrr) and ∇2
µyp

(Γrr) are the matrices that

are formed by taking the first and the second elements of the element-wise complex

gradient vector of the matrix Γrr with respect to vector µyp
= [µR

yp+jµ
I
yp µ

R
yp−jµI

yp],

where µR
yp = Re(E[yp]) and µI

yp = Im(E[yp]), respectively. In (A.1) and (A.2), there

are a total of 2MNβ equations to be satisfied since (A.1) and (A.2) should hold for
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all p = 1, 2, · · · , MNβ. However, the solution space that consists of the possible

values of the vector bm has a dimension of at most L, L being the dimension of the

sample space of bm (note that the elements of bm are functions of the channel matrix

H, thus they are random entities). In Lemma 6, it will be shown that there exists a

p value such that all diagonal elements of the matrices ∇1
µyp

(Γrr) or ∇2
µyp

(Γrr) are

nonzero for the specified interval for µy in the lemma statement. In such a case, the

dimension of the solution space that consists of the possible values of bm will be less

than L. Since the dimension of the sample space of bm is L, which is greater than

the dimension of the solution space, the set of possible values of bm satisfying (A.1)

and (A.2) has zero probability. Therefore, the lemma statement holds with probability

one. �

Lemma 6: There exists a p value such that all diagonal elements of the matrices

∇1
µyp

(Γrr) and ∇2
µyp

(Γrr) are nonzero for bounded and nonzero µy.

Proof: Consider the first diagonal element of the matrix Γrr, namely σ2
r1

, the variance

of r1, which is equal to 2−E[r1]E[r
∗
1]. Since r1 = rR1 + jrI1, the variance of r1

becomes 2−E[rR1 + jrI1]E[r
R
1 − jrI1] = 2−E[(rR1 )]

2 −E[(rI1)]
2. Assuming that rR1

and rI1 have normal distribution, E[(rR1 )] can be found as

E[(rR1 )] =

∫ ∞

0

1
√

2πσ2
yR1

exp

(

−
(yR1 − µyR1

)2

2σ2
yR1

)

dyR1

−
∫ 0

−∞

1
√

2πσ2
yR1

exp

(

−
(yR1 − µyR1

)2

2σ2
yR1

)

dyR1

= Q

(

−µyR1

σ2
yR1

)

−
(

1−Q

(

−µyR1

σ2
yR1

))

= 2Q

(

−µyR1

σ2
yR1

)

− 1, (A.3)

where yR1 is the real part of y1, whose mean and variance are denoted as µyR1
and

σ2
yR1

. E[(rI1)] can also be found similarly by replacing yR1 terms by yI1 in (A.3). Now

consider the complex gradient ∇µyp
(σ2

r1) = [∇1
µyp

(σ2
r1) ∇2

µyp
(σ2

r1)]
T when p = 1. It

can be found as [112]
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∇µy1
(σ2

r1
) =

1

2





1 −j
1 j













∂(σ2
r1
)

∂µR
y1

∂(σ2
r1)

∂µI
y1









. (A.4)

Since σ2
r1
= 2−E[rR1 ]

2 − E[rI1]
2, (A.3) implies

∂(σ2
r1
)

∂µR
y1

=
−2∂(E[(rR1 )])

∂µR
y1

+
−2∂(E[(rI1)])

∂µR
y1

= − 4
√

2πσ2
yR1

exp

(

−
µ2
yR1

2σ2
yR1

)

(A.5)

since −2∂(E[(rI1)])

∂µ
yR1

= 0 and ∂Q(x)
∂x

= 1√
2π
exp

(

−x2

2

)

. Similarly,
∂(σ2

r1
)

∂µI
y1

can be obtained

as

∂(σ2
r1)

∂µI
y1

= − 4
√

2πσ2
yI1

exp

(

−
µ2
yI1

2σ2
yI1

)

. (A.6)

From (A.4), (A.5) and (A.6) it can be stated that ∇µy1
(σ2

r1
) −→ 0 if and only if both

µR
y1

and µI
y1

goes to ±∞. The proof is essentially the same for the other diagonal

elements of the matrix Γrr. �

Lemma 7: σ2
x′

m

is a monotonically decreasing function of the real (imaginary) part

of any arbitrary element of the bounded vector µy, namely µ
i
y
, when 0 <

Re(µi
y
) < ∞ (0 < Im(µi

y
) < ∞) or a monotonically increasing function of the real

(imaginary) part of µi
y

when −∞ < Re(µi
y
) < 0 (−∞ < Im(µi

y
) < 0)

Proof: Let Re(µi
y
) −→ ±∞. This requires E[|xm|] −→ ∞ since E[xk] = 0 for k 6= m,

and the noise is also zero mean. In such case, the observation vectors y and r become

deterministic since the interference due to xk k 6= m, which corresponds to ISI and

MUI, and the receiver noise becomes insignificant. Therefore, σ2
x′

m

−→ 0. Similarly,

σ2
x′

m

−→ 0 also when Im(µi
y
) −→ ±∞. The proof holds for all i values. This implies

that σ2
x′

m

(µy = 0) ≥ σ2
x′

m

(Re(µi
y
) −→ ±∞̃) or σ2

x′

m

(µy = 0) ≥ σ2
x′

m

(Im(µi
y
)

−→ ±∞̃) ∀i. Along with Lemma 5, this proves the lemma statement. �

Corollary 1: σ2
x′

m

≤ Var(x′m|xm = 0,H)

Proof: Due to Lemma 7, the maximum value of σ2
x′

m

is at the point where µy = 0

which is only possible for given xm = 0 case. �
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Corollary 2: If Var(x′m|xm = 0,H) is used in place of σ2
x′

m

the SER value calculated

using (3.21) will yield an upper bound on the actual SER.

Proof: Since Var(x′m|xm = 0,H) ≥ σ2
x′

m

due to Corollary 1, it follows

that Var(x̂m|xm = 0,H) > Var(x̂m|xm,H). Therefore, when Var(x̂m|xm = 0,H)

is used in place of Var(x̂m|xm,H), the values calculated for p(x̂m|xm,H) in (3.21)

when x̂m 6= xm will be higher than their actual values, which will result in a higher

SER than the actual SER. �

A.2 The Details to Obtain Rỹỹ

To begin with, Rỹỹ can be expressed as

Rỹỹ =





RRe(y) Re(y) RRe(y) Im(y)

RIm(y) Re(y) RIm(y) Im(y)



 , (A.7)

where RRe(y) Re(y) = E[Re(y) Re(y)H ], RRe(y) Im(y) = E[Re(y) Im(y)H ],

RIm(y)Re(y) = E[Im(y) Re(y)H] and RIm(y) Im(y) = E[Im(y) Im(y)H ]. RRe(y)Re(y)

in (A.7) can be obtained as

RRe(y) Re(y) =E
[

Re(y) Re(y)H
]

=E

[

1

2
(H∗x∗ + n∗ +Hx+ n)

× 1

2
(H∗x∗ + n∗ +Hx+ n)H

]

=
1

4

[

HRxxH
H +H∗R∗

xxH
T +Rnn +Rnn

∗] , (A.8)

where Rxx = diag(1, · · · , 1, 0, 1, · · · , 1) is anNK×NK matrix whosemth diagonal

element is taken to be zero since xm is assumed to be zero to find the upper bound on

σ2
x′

m

. Moreover, Rnn is the noise correlation matrix which can be expressed as

Rnn =





diag(σ2
n, · · · , σ2

n) RNos

R∗
Nos diag(σ2

n, · · · , σ2
n)





MNβ×MNβ

, (A.9)

144



where

RNos

= σ2
n





















diag((α1
0)

2)M diag((α1
−1)

2)M · · · diag((α1
−(N−1))

2)M

diag((α1
1)

2)M diag((α1
0)

2)M · · · diag((α1
−(N−2))

2)M

diag((α1
2)

2)M diag((α1
1)

2)M · · · diag((α1
−(N−3))

2)M
...

. . . . . .
...

diag((α1
(N−1))

2)M diag((α1
N−2)

2)M · · · diag((α1
0)

2)M





















, (A.10)

for β = 2, which can be found similarly for arbitrary β. In (A.10), αm
i = g(iT +

mT/β) and diag((α1
i )

2)M is an M ×M diagonal matrix whose diagonal elements

are equal to the square of α1
i . Similarly, RIm(y) Im(y), RRe(y) Im(y) and RIm(y) Re(y) can

be found as

RIm(y) Im(y) =
1

4

[

HRxxH
H +H∗R∗

xxH
T +Rnn +R∗

nn

]

, (A.11)

RRe(y) Im(y) =
−1

4j

[

HRxxH
H −H∗R∗

xxH
T +Rnn −R∗

nn

]

, (A.12)

RIm(y) Re(y) =
1

4j

[

HRxxH
H −H∗R∗

xxH
T +Rnn −R∗

nn

]

. (A.13)

Using (A.8)-(A.13), the matrix on the right-hand side (RHS) of (A.7) can be found

to obtain Rỹỹ. After that, (3.39) can be employed to find Rr̃r̃. To be able to employ

(3.37), Γrr needs to be found which is equal to Rrr for the zero mean case, for which

we find an upper bound on σ2
x′

m

. In order to obtain Rrr from Rr̃r̃ we express Rr̃r̃ as

Rr̃r̃ =





RRe(r)Re(r) RRe(r) Im(r)

RIm(r)Re(r) RIm(r) Im(r)



 . (A.14)

Since r = Re(r) + j Im(r), Rrr can be found as

Rrr =RRe(r)Re(r) +RIm(r) Im(r)

− jRRe(r) Im(r) + jRIm(r)Re(r).
(A.15)

The terms on the right-hand side of (A.15) can be found from (A.14).

145



A.3 Proof of Lemma 3

Denote p(x̂m = xm|xm,H) = pm. When H(x|y) denotes the conditional entropy of

x conditioned on y, by definition of mutual information

I(xm; x̂m) = EH [H(x̂m|H)−H(x̂m|xm,H)] . (A.16)

Given that xm is transmitted, there are three cases that x̂m 6= xm owing to QPSK type

modulation. Denote the probabilities of these three events as pme1, pme2 and

pme3. Therefore, pm + pme1 + pme2 + pme3 = 1. Consider H(x̂m|xm,H). When we

use the method of Lagrange multipliers to maximize H(x̂m|xm,H) with respect to

pm, pme1, pme2 and pme3, the only solution that makes the gradient of the Lagrangian

zero is the case when pm = pme1 = pme2 = pme3 = 1/4, which is the global maxi-

mum point ofH(x̂m|xm,H) [113]. For a given xm case that is nonzero and finite, this

can only occur when σ2
x′

m

−→ ∞. Since there is no other point that can make the gra-

dient of the Lagrangian with respect to the vector [pm pme1 pme2 pme3] zero, there is a

unique local maximum of H(x̂m|xm,H) which occurs only when σ2
x′

m

−→ ∞. There-

fore, H(x̂m|xm,H) must be an increasing function of σ2
x′

m

. Moreover, H(x̂m|H) in

(A.16) does not depend on σ2
x′

m

because x̂m conditioned on H will be zero mean

since there is no conditioning on xm, thus it can take any QPSK symbol value with

equal probability regardless of the value of σ2
x′

m

. Hence, it follows that I(xm; x̂m) is

a decreasing function of σ2
x′

m

. Therefore, if we replace σ2
x′

m

by Var(x′m|xm = 0,H),

which is greater than the actual σ2
x′

m

, I(xm; x̂m) that we find will be lower than the

actual I(xm; x̂m).

A.4 Proof of Lemma 4

SNR −→ 0 requires σ2
n −→ ∞ when the average transmitted power of the users is

nonzero. In this case, according to (A.8) and (A.11-A.13), RRe(y)Re(y) ≈ Rnn +

Rnn
∗, RIm(y) Im(y) ≈ Rnn + Rnn

∗, RRe(y) Im(y) ≈ Rnn − Rnn
∗ and RIm(y) Re(y) ≈

Rnn −Rnn
∗, none of which depends on the given value of xm. Therefore, since Rỹỹ

depends only on RRe(y) Re(y), RRe(y) Im(y), RIm(y) Re(y) and RIm(y) Im(y), it also does

not depend on the given value of xm when SNR −→ 0. Hence it follows that Rr̃r̃, thus

Rrr does not depend on xm from (3.39). Moreover, when σ2
n −→ ∞, this will result
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in κ1p −→ 0.25, κ2p −→ 0.25, κ3p −→ 0.25, κ4p −→ 0.25, ∀p according to (3.28). In this

case, µp −→ 0 owing to (3.27) ∀p. This implies that E[y] −→ 0, thus E[r] −→ 0. When

E[r] −→ 0, Γrr −→ Rrr. Therefore, since Rrr does not depend on the given value of

xm, Γrr also does not, which results in σ2
x′

m

being independent of the given value of

xm according to (3.37) when SNR −→ 0.
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APPENDIX B

PROOFS IN CHAPTER 6

B.1 Proof of Proposition 2

Direct computation yields

Cr[m] = E
[

r[n]r[n−m]H
]

= E

[

1

N2

N−1
∑

u=0

N−1
∑

u′=0

r̃[u]r̃[u′]Hej2πnu/Ne−j2π(n−m)u′/N

]

(B.1)

=
1

N2

N−1
∑

u=0

E
[

r̃[u]r̃[u]H
]

ej2πnu/Ne−j2π(n−m)u/N

(B.2)

=
1

N2

N−1
∑

u=0

Cr̃[u]e
j2πmu/N . (B.3)

Here (B.1) holds by definition, (B.2) is because E
[

r̃[u]r̃[u′]H
]

= 0 for u 6= u′ as the

data symbols of the users are independent and (B.3) also holds by definition. �
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B.2 Proof of Proposition 3

Cq[u] can be found from Cq[m] as

Cq[u] = E
[

q[u]q[u]H
]

=
N−1
∑

m=0

N−1
∑

m′=0

E
[

q̃[m]q̃[m′]H
]

e−j2πmu/Nej2πm
′u/N (B.4)

=
N−1
∑

m=0

N−1
∑

m′=0

Cq[m−m′]e−j2π(m−m′)u/N (B.5)

=
N−1
∑

ℓ=−(N−1)

(N − |ℓ|)Cq[ℓ]e
−j2πℓu/N (B.6)

=

[

N−1
∑

ℓ=0

(N − ℓ)Cq[ℓ]e
−j2πℓu/N +

N−1
∑

ℓ=0

(N − ℓ)Cq[ℓ]
∗ej2πℓu/N

]

(B.7)

= DFTN,u {Γ[ℓ]} +DFTN,u {Γ[ℓ]}∗ −NCq̃[0]. (B.8)

Here (B.4),(B.5) hold by definition and due to stationarity of q[m]. A change of

variable (ℓ = m−m′) is introduced in (B.6). (B.7) holds since Cq[ℓ]
∗ = Cq[−ℓ]. �

B.3 Proof of Proposition 4

When γk[u] is as defined in (6.26), the fact that R in (6.25) is a lower bound er-

godic capacity follows from [2, eq. (2.46)], since the conditions E[wk[u]|Ĥ] =

E[s̃k[u]
∗wk[u]|Ĥ] = E[ĝk[u]

′s̃k[u]
∗wk[u]|Ĥ] = 0, wherewk[u] , ik[u]+nk[u]+qk[u],

hold for LMMSE channel estimate Ĥ. E[gk[u]′|Ĥ] in the numerator of γk[u] expres-

sion can be found as follows:

E
[

gk[u]
′|Ĥ
]

= E
[

ρd
√
N b̂k[u]

HAh̃k[u]||Ĥ
]

(B.9)

= E
[

ρd
√
N b̂k[u]

HAĥk[u]||Ĥ
]

+ E
[

ρd
√
N b̂k[u]

HAẽk[u]||Ĥ
]

(B.10)

= ρd
√
N b̂k[u]

HAĥk[u], (B.11)
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where the last step is owing to the fact that LMMSE channel estimates are unbiased

thus the estimation errors are zero-mean. Var
[

ĝk[u]
′|Ĥ
]

can also be found as follows:

Var
[

ĝk[u]
′|Ĥ
]

= Var
[

ρd
√
N b̂k[u]

HAĥk[u] + ρd
√
N b̂k[u]

HAẽk[u]|Ĥ
]

(B.12)

= Var
[

ρd
√
N b̂k[u]

HAẽk[u]|Ĥ
]

(B.13)

= ρ2dN b̂k[u]
HAE

[

ẽk[u]ẽk[u]
H
]

AHb̂k[u] (B.14)

= ρ2dNσ
2
e ||b̂k[u]

HA||2, (B.15)

where (B.15) follows from the fact that the LMMSE channel estimation errors are un-

correlated with the channel estimates, hence with the ZF matrix row vectors. More-

over,

Var[ik[u] + nk[u] + qk[u]|Ĥ] =Var
[

ik[u]|Ĥ
]

+ Var
[

nk[u]|Ĥ
]

+ Var
[

qk[u]|Ĥ
]

.

(B.16)

(B.16) is due to uncorrelatedness of the thermal and quantization noise with every

other term. The uncorrelatedness of the quantization noise with the other terms is due

to the Bussgang decomposition; matrix A is selected to make r[n] to be uncorrelated

with q[n] in (6.12) and this also holds for the frequency domain terms as DFT is a

unitary transformation which preserves inner products. Moreover, Var
[

ik[u]|Ĥ
]

can

be derived as follows:

Var
[

ik[u]|Ĥ
]

(B.17)

=ρ2dNVar

[

∑

z 6=k,z∈Kd

b̂k[u]
HAĥz[u]s̃z[u] +

∑

z 6=k,z∈Kd

b̂k[u]
HAẽz[u]s̃z[u]

∣

∣

∣

∣

Ĥ

]

(B.18)

=ρ2dN

[

∑

z 6=k,z∈Kd

|b̂k[u]
HAĥz[u]|2 +

∑

z 6=k,z∈Kd

b̂k[u]
HAE

[

ẽz[u]ẽz[u]
H
]

AHb̂k[u]

]

(B.19)

=ρ2dN

[

∑

z 6=k,z∈Kd

|b̂k[u]
HAĥz[u]|2 +

∑

z 6=k,z∈Kd

b̂k[u]
HAσ2

eA
Hb̂k[u]

]

(B.20)

=ρ2dN

[

∑

z 6=k,z∈Kd

|b̂k[u]
HAĥz[u]|2 + σ2

e(K − 1)||b̂k[u]
HA||2

]

(B.21)

where (B.19) is follows from the fact that the channel estimation errors for all users

are also uncorrelated with each other and with ZF matrix row vectors. Moreover,
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(B.20) is due owing to the fact that estimation errors for all channel coefficients are

the same due to (6.43). It is also straightforward to show that Var
[

nk[u]|Ĥ, s̃k[u]
]

=

Nk[u], Var
[

qk[u]|Ĥ, s̃k[u]
]

= Qk[u]. �

B.4 Proof of Proposition 5

Denote the mth element of Cr[0] by Cr[0]m,m, which can be calculated as

Cr[0]m,m = E





∣

∣

∣

∣

∣

L−1
∑

ℓ=0

K+I
∑

k=1

hm,k[ℓ]sk[n− l] + wm[n]

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

H



 (B.22)

=

L−1
∑

ℓ=0

K+I
∑

k=1

Gk|hm,k[ℓ]|2 +No, (B.23)

Gk = (|UD|ρ2d) /N if k ∈ KD or Gk = (|UI |ρ2i ) /N if k ∈ KI . Owing to Chebyshev

inequality,

Pr [|Cr[0]m,m − µ| ≥ ǫ] ≤ Var[Cr[0]m,m]

ǫ2
∀m, (B.24)

where µ , EH [Cr[0]m,m] = (|UD|Kρ2d + |UI |Iρ2i ) /N + No, Pr[ξ] denote the

probability of an event ξ and Var[Cr[0]m,m] is the variance of Cr[0]m,m with re-

spect to H, which is equal to 3G2
k/L. Since Var[Cr[0]m,m] is decreasing with L,

for any ǫ > 0 we can find L > 0 such that Pr [|Cr[0]m,m − µ| ≥ ǫ] = 0, thus

Cr[0]m,m converge in probability to µ. Therefore, the error in the approximation

Cr[0]m,m ≈ (|UD|Kρ2d + |UI |Iρ2i ) /N+No converge to zero in probability as L grows

large (goes to infinity). This implies that

A =
2√
π
diag (Cr[0])

−0.5

→ 2√
π

((

|UD|Kρ2d + |UI |Iρ2i
)

/N +No

)−0.5
I = GI, (B.25)

as L grows large (convergence is represented by → symbol). It can similarly be

shown that Cr[0]m,i ≈ 0 for m 6= i as L grows large since EH [Cr[0]m,i] = 0 as

hm,k[l], hi,k[l], wm[n] and wi[n] are uncorrelated for m 6= i. The numerator of the
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γk[u]
′ expression can be found as

|E [gk[u]
′] |2 =

∣

∣

∣

∣

E
[

ρd
√
N b̂k[u]

HAĥk[u]
]

∣

∣

∣

∣

2

(B.26)

≈
∣

∣

∣

∣

ρd
√
NGE

[

b̂k[u]
Hĥk[u]

]

∣

∣

∣

∣

2

(B.27)

= |ρd
√
NG|2 = ρ2dNG

2, (B.28)

where the approximation in (B.27) is due to the approximation in (B.25), and (B.28)

is owing to ZF combining. What remains is to find the denominator terms of γk[u]′ as

follows:

Var[gk[u]
′] + Var[wk[u]] =Var[gk[u]

′] + Var[ik[u]] + Var[nk[u]] + Var[qk[u]],

(B.29)

Var[nk[u]] = E[|b̂k[u]
HAw̃[u]|2]

≈ G2E
[

b̂k[u]
Hw̃[u]w̃[u]Hb̂k[u]

]

= G2E
[

Tr
[

w̃[u]w̃[u]Hb̂k[u]b̂k[u]
H
]]

= G2Tr
[

E
[

w̃[u]w̃[u]H
]

E
[

b̂k[u]b̂k[u]
H
]]

= G2NNoE
[

Tr
[

b̂k[u]b̂k[u]
H
]]

= G2NNoE
[

||b̂k[u]||2
]

≈ G2NNo

(M −K)(1− σ2
e)
, (B.30)

where in the last step, the approximation E
[

||b̂k[u]||2
]

≈ 1/ ((M −K)(1− σ2
e)), is

used, whose proof can be found in [2]. Var[qk[u]] can be found similarly as

Var[qk[u]|s̃k[u]] ≈ N(2 − 4π)/
(

(M −K)
(

1− σ2
e

))

, (B.31)

under the approximationCq[u] ≈ N(2−4π)I, which is accurate under two conditions.

The first is when L is large, for which the approximation Cr[0] ≈ GI has been shown

to be accurate, which along with (6.18) and (6.19) implies that Cq[0] ≈ (2 − 4/π)I

is accurate. The second condition is when the oversampling rates are low and when

ρ2d ≈ ρ2i , in which case it can be shown that the approximation Cr[ℓ] ≈ 0 for ℓ 6= 0 is

accurate, which implies along with (6.18) and (6.19) that the approximation Cq[ℓ] ≈
0 for ℓ 6= 0 is accurate. Then, it follows from Proposition 3 that the approximation

Cq[u] ≈ N(2 − 4/π) is accurate. For the proof of the approximation Cr[ℓ] ≈ 0 for
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ℓ 6= 0 being accurate for low oversampling rates, consider the received signal vector

at the mth antenna, namely rm , [rm[0] rm[1] . . . rm[N − 1]]T . It can be written as

rm = Hms + wm, where Hm is a block circulant channel matrix whose uth row is

equal to the (mu)th row of H and wm is a vector whose uth element is equal to the

(mu)th element of w. Moreover, defining s̃ , (FN ⊗ IK+I )̃s, where ⊗ represents

the Kronecker product, FH
N is the N × N DFT matrix, the autocorrelation of rm

conditioned on Hm, namely Crm , E[rmr
H
m|Hm], can be found as

Crm = HmPHH
m +NoI, (B.32)

where P , FHE[̃ss̃H ]F and FH = (FH
N⊗IK+I). When ρ2d ≈ ρ2i = ρ2, the magnitude

of the element of matrix P at its mth row and nth column, denoted by |Pm,n|, can be

written as

|Pm,n| =
∣

∣

∣

∣

∣

ρ2

N

N−1
∑

u=0

E
[

|s̃k[u]|2
]

e−j2πℓu/N

∣

∣

∣

∣

∣

(B.33)

(*)
=

∣

∣

∣

∣

∣

∣

−ρ
2

N

∑

u/∈(UD∪UI)

E
[

|s̃k[u]|2
]

e−j2πℓu/N

∣

∣

∣

∣

∣

∣

(B.34)

<
ρ2

N
(N − |UD| − |UI |), (B.35)

where k is the user index determined by the value of m and ℓ = m − n. More-

over, the equality (*) holds when ℓ 6= 0. Since mth diagonal element of P, namely

Pm,m = ρ2/N ∀m, the ratio of the magnitude of any non-diagonal element of P to

any diagonal element is bounded by (N − |UD| − |UI |). Therefore, as |UD| + |UI |
approaches N , which occurs in a low oversampling rate scenario, the error in ap-

proximating P as a diagonal matrix goes to zero. In this case, Crm , whose each

element is a weighted summation of the channel coefficients hm,k[ℓ], converges to

EHm
[Crm] = EHm

[

HmH
H
m

]

P +NoI = (K + I)P +NoI as L grows large, which

can be shown rigorously following similar steps as in (B.22)-(B.24). Since the proof

is the same ∀m, the error in approximating Crm matrices as a diagonal matrices ∀m,

equivalently approximating Cr[ℓ] ≈ 0 for ℓ 6= 0 or Cq[u] ≈ N(2 − 4/π)I, goes

to zero as L grows large and as |UD| + |UI | approaches N (which is a case for low

oversampling rates) when ρ2d ≈ ρ2i .
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The proof continues with obtaining Var [ik[u]] as follows:

Var [ik[u]] = ρ2dNVar

[

∑

z 6=k,z∈Kd

b̂k[u]
HAĥz[u]s̃z[u] +

∑

z 6=k,z∈Kd

b̂k[u]
HAẽz[u]s̃z[u]

]

(B.36)

≈G2ρ2dN
∑

z 6=k,z∈Kd

E
[

|b̂k[u]
Hh̃z[u]|2

]

+
∑

z 6=k,z∈Kd

G2ρ2dNE
[

|ẽz[u]Hb̂k[u]|2
]

(B.37)

Here, E
[

|b̂k[u]
Hh̃z[u]|2

]

= 0 ∀z 6= k due to ZF combining and

E
[

|ẽz[u]Hb̂k[u]|2
]

= E
[

Tr
[

b̂k[u]b̂k[u]
H ẽz[u]ẽz[u]

H
]]

= Tr
[

E
[

b̂k[u]b̂k[u]
H
]

E
[

ẽz[u]ẽz[u]
H
]

]

(B.38)

= σ2
eE
[

||b̂k[u]||2
]

≈ σ2
e

(M −K)(1− σ2
e)
, (B.39)

where (B.38) is due to the uncorrelatedness of the channel estimation error ẽk[u] with

the channel estimate ĥz[u], hence with b̂z[u]. Using (B.37) and (B.39), it can be

written that

Var [ik[u]] = Var [gk[u]
′ + ik[u]] ≈

G2ρ2dN(K − 1)σ2
e

(M −K)(1− σ2
e)
. (B.40)

Similarly, Var [gk[u]′] can be found as

Var [gk[u]
′] ≈ σ2

e(M −K)/(1− σ2
e). (B.41)

Then, from (B.29), (B.30), (B.31), (B.40) and (B.41) it follows that

Var[gk[u]
′]+Var[̂ik[u] + n̂k[u] + q̂k[u]]

≈ G2NNo +N(2 − 4/π) +G2ρ2dNKσ
2
e

(M −K)(1− σ2
e)

, (B.42)

which implies the proposition statement along with (B.28). �
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APPENDIX C

PROOFS IN CHAPTER 7

C.1 Derivation of A(p,1), A(p,m), C1
q(p) , Cm

q(p)

For a one-bit quantizer, assuming zero-mean Gaussian inputs1, the following holds

[19]:

A(p,1) =
√

4/πdiag(Cy(p))−0.5

=
√

4/πdiag
((

XXH ⊗ IM
)

+NoIMτ

)−0.5

= B1 ⊗ IM , (C.1)

where B1 =
√

4/πdiag(XXH +NoIτ )
−0.5. For multi-bit midrise uniform quantizers

with Gaussian inputs1, A(p,m) can be obtained as [19],

A(p,m) =
∆√
π
diag(Cy(p))−0.5

×
2q−1
∑

i=1

exp

(

−∆2
(

i− 2q−1
)2

diag
(

Cy(p)

)−0.5
)

= Bm ⊗ IM , (C.2)

where ∆ is the quantizer step size and Bm can be found as

Bm =
∆√
π
diag

(

XXH +NoIτ
)−0.5

×
2q−1
∑

i=1

exp
(

−∆2
(

i− 2q−1
)2

diag
(

XXH +NoIτ
)−0.5

)

1 This approximation is accurate even when the transmitted symbols are not Gaussian. The input of the ADC
at the mth antenna can be written as a sum of KL i.i.d. finite variance random variables. Owing to the central
limit theorem (CLT), this summation converge to Gaussian as KL grows large. According to the Berry-Essen
inequality, the difference between the standard normal cumulative distribution function (CDF) and the CDF of the
signal (excluding the thermal noise part) at quantizer input (normalized such that it becomes unit variance) is less
than 0.037 if KL > 100. Since there is also the Gaussian thermal noise, KL can be much less for an accurate
Gaussian approximation (even KL = 16 is sufficient as shown in [114, Fig.4]).
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The auto-covariance matrix of the distortion term at the quantizer output q(p) for one-

bit quantizer case, namely C1
q(p) , can be expressed using (7.8) as

C1
q(p) = C1

r(p)
−A(p,1)Cy(p)

(

A(p,1)
)H

, (C.3)

where C1
r(p)

can be found using arcsine law [64] as

C1
r(p)

=
4

π

(

asin
(

Dy(p)
− 1

2 Re{Cy(p)}Dy(p)
− 1

2

)

+ j asin
(

Dy(p)
− 1

2 Im{Cy(p)}Dy(p)
− 1

2

))

, (C.4)

where Dy(p) = diag
(

Cy(p)

)

. Plugging Cy(p) =
(

XXH ⊗ IM
)

+ NoIMτ =
(

XXH +NoIτ
)

⊗ IM in (C.4), one can find that

C1
r(p)

= Cη ⊗ IM , (C.5)

Cη =
4

π

(

asin
(

Ky(p)
− 1

2 Re{Gy(p)}Ky(p)
− 1

2

)

+ j asin
(

Ky(p)
− 1

2 Im{Gy(p)}Ky(p)
− 1

2

))

, (C.6)

Gy(p) =
(

XXH +NoIτ
)

, Ky(p) = diag
(

Gy(p)

)

. Then, it follows from (C.1), (C.3)

and (C.5) that

C1
q(p) = E1 ⊗ IM , (C.7)

where E1 = Cη − B1

(

XXH +NoIτ
)

BH
1 . For multi-bit quantizer case, Cq(p) =

Cm
q(p) , where Cm

q(p) can be approximated as a diagonal matrix as [19]

Cm
q(p) ≈

∆2

2
(2q − 1)2IMτ −A(p,m)diag

(

Cy(p)

)

(A(p,m))H

− 4∆2
2q−1
∑

i=1

(

i− 2q−1
)

×
(

1−Q
(√

2(i− 2q−1)diag(Cy(p))−1/2
))

=Em ⊗ IM , (C.8)

where Em can be found by plugging Cy(p) =
(

XXH +NoIτ
)

⊗ IM in (C.8) and

using (C.2) as

Em ≈∆2

2
(2q − 1)2Iτ −Bmdiag

(

XXH +NoIτ
)

Bm
H

− 4∆2

2q−1
∑

i=1

(

i− 2q−1
)

×
(

1−Q
(√

2(i− 2q−1)diag
(

XXH +NoIτ
)−1/2

))

.

(C.9)
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