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ABSTRACT 

 

AN ALGORITHM FOR DESIGNING NONLINEAR SPRINGS, OR 

NONLINEAR DAMPERS, USING A MECHANICAL FORCE 

GENERATOR AND ITS APPLICATION TO AN AIRCRAFT LANDING 

GEAR 

 

 

 

Yıldız, Fatih 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Reşit Soylu 

 

 

December 2021, 186 pages 

 

The landing gear system is one of the most critical aircraft sub-systems that takes 

part in the landing, taxi and take-off phases of every aircraft. Its main function is the 

absorption of part of aircraft's kinetic energy during landing. There are different 

types of shock absorbers to perform this task. The performance of the shock 

absorbers has developed a lot after the invention of air-oil type shock absorbers. 

However, increasing the performance of these shock absorber elements is still a field 

of research followed by companies and institutions.  

Mechanical Force Generators, on the other hand, are novel over-constrained 

mechanisms that are known for low friction and shaking force properties. A very 

important property of Mechanical Force Generator is being flexible to be designed 

for any required force characteristic. 

This thesis study consist of mainly three sections. Firstly, a design methodology for 

Mechanical Force Generator design is developed. For this design methodology, 

Mechanical Force Generator has been considered for two different purposes: a non-

linear equivalent spring and a non-linear equivalent damper. Then, spring mass 
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damper model was developed for landing gear modeling. This model is validated 

against the results of a test performed by the National Advisory Committee for 

Aeronautics. Using a spring mass damper model, an optimization is sought on the 

landing gear used in this test. The methods and approaches to find the optimum 

spring and damper characteristics are explained. In the last, using the optimum spring 

damper characteristics determined in the optimization, the design of Mechanical 

Force Generator is followed for the landing gear. The applicability and feasibility of 

the design on landing gear are presented and discussed. Throughout the study, special 

properties of Mechanical Force Generator are investigated, and different areas it may 

be utilized are evaluated and recommended at the end of the study. 

 

Keywords: aircraft landing gear, shock absorber efficiency, mechanical force 

generator 
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ÖZ 

 

MEKANİK KUVVET JENERATÖRÜ KULLANILARAK LİNEER 

OLMAYAN YAY VE LİNEER OLMAYAN DAMPER TASARIM 

ALGORITMASI VE UÇAK İNİŞ TAKIMINA UYGULANMASI 

 

 

 

Yıldız, Fatih 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. Reşit Soylu 

 

 

Aralık 2021, 186 sayfa 

 

İniş takımı sistemi, çoğu uçakta bulunan ve uçağın iniş, taksi ve kalkış aşamalarında 

görev alan, en kritik uçak alt sistemlerinden biridir. Bu sistemin ana 

fonksiyonlarından biri, iniş sırasında uçağın kinetik enerjisinin bir bölümünü 

sönümlemektir. Bu görevi yerine getirmek için farklı tiplerde şok sönümleyiciler 

bulunmaktadır. Şok sönümleyicilerin performansı, hava-yağ tipi şok 

sönümleyicilerin bulunmasından sonra çok gelişmiştir. Buna rağmen, şok 

sönümleyicilerin performansının artırılması bugün hala endüstride ve akademide 

araştırmalara konu olmaktadır.  

Mekanik Kuvvet Jeneratörleri düşük sürtünme ve sarsma kuvvetleri ile bilinen ve 

yakın zamanda bulunmuş olan aşırı-kısıtlı mekanizmalardır. Mekanik Kuvvet 

Jeneratörlerinin en önemli özelliklerinden biri istenilen herhangi bir kuvvet 

karakteristiği için tasarlanabilme esnekliğine sahip olmalarıdır. 

Bu tez çalışması ana hatlarıyla üç kısımdan oluşmaktadır. Başlangıçta, Mekanik 

Kuvvet Jeneratörleri için bir tasarım yöntemi önerilmiştir. Bu tasarım yöntemi için 

Mekanik Kuvvet Jeneratörü iki farklı amaçla değerlendirilmiştir: lineer olmayan yay 
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ve lineer olmayan damper. Sonrasında, iniş takımı modellemek için bir yay-damper 

modeli geliştirilmiştir. Geliştirilen bu model National Advisory Committee for 

Aeronautics tarafından gerçekleştirilmiş test sonuçları ile doğrulanmıştır. Bu yay-

damper modeli kullanılarak, testte kullanılmış olan iniş takımı optimize edilmiştir. 

Bu optimizasyon sırasında kullanılan metotlar ve yaklaşımlar açıklanmıştır. Son 

kısımda, optimizasyonda belirlenen optimum yay ve damper karakteristikleri 

kullanılarak Mekanik Kuvvet Jeneratörü tasarımı yapılmıştır. Mekanik Kuvvet 

Jeneratörünün iniş takımı üzerinde uygulanabilirliği ve fizibilitesi sunulmuş ve 

tartışılmıştır. Tez boyunca Mekanik Kuvvet Jeneratörlerinin özel nitelikleri 

araştırılmış, farklı kullanım alanları değerlendirilmiş ve tezin sonunda önerilmiştir. 

 

Anahtar Kelimeler: uçak iniş takımı, şok sönümleyici verimliliği, mekanik kuvvet 

jeneratörü 
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CHAPTER 1  

1 INTRODUCTION  

In this chapter, basic information regarding a Mechanical Force Generator (MFG) 

and a landing gear shock absorber (SA) are provided. The organization and scope of 

the thesis are presented at the end of the chapter. 

1.1 Introduction to Mechanical Force Generator 

An MFG is an over-constrained mechanism proposed by Soylu [1] which transforms 

force or motion in one direction into force or motion in another direction. (see Figure 

1.1) This mechanism has many benefits, such as having small friction forces and 

shaking forces due to the symmetry of the mechanism [1],[2],[3].  

 

Figure 1.1. Mechanical Force Generator [1] 
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Previous studies on MFG have concentrated on using an MFG to increase the energy 

efficiency of an already existing machine [2], [3]. Alternatively, the maximum force 

or maximum torque requirement of the driving actuator may also be reduced [2], [3]. 

In his study, Mencek [4] showed that MFGs provide, theoretically, a substantial 

improvement in the energy efficiency of an already existing machine. However, the 

actual performance of the system may not be as good as theoretically predicted [4].  

Another study performed by Erdinç [3] focused on using an MFG to reduce the 

energy consumption of an existing machine for a given periodic task. In this study, 

the use of MFG resulted in a significant reduction in the machine's energy 

consumption [3]. 

Ekinci [2] improved the previously developed methods to determine the optimum 

power profiles. Supporting his simulations with experiments, Ekinci demonstrated 

that combining an MFG within an existing machine could improve the machine's 

performance by minimizing the maximum torque required to run the task [2]. 

The aforementioned studies on MFG are primarily focused on the optimization of 

the power characteristic and energy consumption of an existing system. This thesis 

study, on the other hand, is focused primarily on creating an equivalent nonlinear 

spring and an equivalent nonlinear damper by using a linear spring and a linear 

damper within MFG. 

1.2 Introduction to Landing Gear Shock Absorbers 

Aircraft design is a multi-disciplinary process that includes aerodynamics, structures, 

avionics, software, and Air Vehicle Systems (AVS). This multi-disciplinary design 

process is broken down into levels to facilitate the design more efficiently. The 

Landing Gear System (LGS) is one of the most critical sub-systems under AVS. 

The purpose of employing a landing gear on an aircraft is to support the aircraft on 

the ground during take-off, landing; and to decelerate the aircraft safely. The landing 

gear damps the kinetic energy and reduces the structural loading experienced by the 
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airframe during landing. Early and lighter aircraft designs generally used landing 

gears that were fixed (non-retractable). However, modern, and heavier aircraft 

designs generally use retractable landing gears in order to improve the aircraft's 

aerodynamic efficiency. Aircrafts with different landing gear configurations are 

presented in Figure 1.2 and Figure 1.3. 

 

Figure 1.2. An aircraft with non-retractable landing gears [5] 

 

Figure 1.3. An aircraft with retractable landing gears [6] 
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The coordinate system used for the aircraft design is presented in Figure 1.4. The 

installation of the landing gear is performed such that wheel rolling direction is 

parallel to aircraft longitudinal, i.e., forward-aft, direction.  

 

Figure 1.4. The coordinate system used for aircraft (A/C) design [7] 

A description of the components of typical landing gear is presented in Figure 1.5. 

Some of the components in this figure are only designed for specific types of aircraft. 

For example, gravel deflectors are specific to the aircraft operating off an unpaved 

runway to avoid foreign object damage. Some of the generic components applicable 

to most modern retractable aircraft landing gears are listed below.  
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Figure 1.5. Nomenclature of landing gear components [8] 

• The trunnion is a structural component of landing gear, which mainly carries 

the vertical loads on the aircraft, such as the vertical reaction load during 

landing or taxying. 

• Drag strut is another structural component of the landing gear that mainly 

carries the loads along the longitudinal direction, such as spin-up and spring-

back loads during landing and braking loads. 

• Side strut is another structural component of the landing gear that mainly 

carries the loads along the lateral direction, such as drift landing loads. 
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• A shock absorber is the most characteristic landing gear component, which 

transfers the ground reaction forces onto the aircraft. Shock absorbers in 

earlier aircraft were made of steel springs or rubbers. However, modern 

aircraft are usually employed with oleo-pneumatic type shock absorbers due 

to their high efficiency. 

• Downlock mechanism provides locking of the retractable gear in the 

extended position to prevent it from collapsing when the aircraft is on the 

ground. 

Shock absorber design of a landing gear is, still, a very important research field. 

Early landing gear designs, such as the ones that exist in World War II aircraft, 

incorporated shock absorbers of different types such as steel spring, rubber spring, 

air type, and liquid spring type [9]. However, development of new technologies on 

changed the trend towards using oleo-pneumatic type shock absorbers, where the air 

is used as spring and oil is used for damping. The advantages of the oleo-pneumatic 

type shock absorbers against earlier design methods are presented in Figure 1.6.  

 

Figure 1.6. Comparison of different types of shock absorbers: efficiency (left), 

efficiency/weight ratio (right) [9] 

In Figure 1.6, the efficiency of different types of landing gears is presented. On the 

right, the figure shows ratings of different types of landing gears, which are obtained 

by dividing efficiency by the dimensionless weight parameter. 

Typical design configurations of an oleo-pneumatic shock absorber can be seen in 

Figure 1.7. The oil and gas are separated in configurations A and A’. The remaining 

configurations B, C, C’, D, and E are mixed type shock absorbers (gas and oil are 
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mixed). The differences in the mixed type of shock absorber configurations are 

dependent on the design details such as sealings, structural layout, and oil/air 

volume. 

 

Figure 1.7. Cross-sectional view of oleo-pneumatic shock absorber configurations 

(oil: red, gas: blue) [10] 

1.3 Introduction to Landing Gear Drop Test 

Aircraft landing gear design is a critical system of the aircraft. Failure of the landing 

gear is not acceptable for the sake of the lives of the flight crew and passengers. 

Thus, the fail-safe principle is followed during the landing gear design so that the 

gear continues functioning until the aircraft comes to the end of its life [11]. In order 

to satisfy the requirements of the aircraft design, loads and conditions that the landing 

gear may encounter during operations of the aircraft are implemented into the design. 

These loads and conditions are mainly the landing loads, the taxying loads, and the 

steering loads.  Landing loads are the primary loads for the design, which affects the 

design significantly; however, the secondary loads also do affect the detailed design 
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of the gear. The taxying and steering loads are the most important input for the 

fatigue life calculations of the landing gear. 

The primary loads must be defined and tested before the aircraft flies for the first 

time, so that the design of the landing gear complies with the aircraft [12]. The so-

called drop test procedure is followed to check the validity and correctness of the 

design. 

The drop test, as the name implies, is performed by dropping the landing gear (that 

is supported with a structure) from a height with a mass at the top of the gear. The 

conditions of the drop test (drop mass, drop height, tire rotation speed) are defined 

in accordance with aircraft landing conditions to simulate the same conditions during 

landing. The scope of the test is limited from the initial touchdown to the settling of 

the dynamic system.  

A landing gear drop test is usually performed for two purposes: validation of 

simulation models and qualification of the design. A generic drop test setup is 

presented in Figure 1.8 [13].  
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Figure 1.8. Drop test setup of a landing gear [13] 

The advantage of a drop test is that it enables the landing gear design to be isolated 

from the aircraft parameters, such as the flexibility of the aircraft fuselage. Thus, it 

enables the standalone model of landing gear to be integrated into the aircraft model. 

Although it is a physical test procedure, modeling a drop test is also a design process 

before realizing a landing gear design. A mathematical model helps to simulate the 

same environment in order to design and optimize a shock absorber for the landing 

gear.  
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A drop test result is mainly evaluated for its three properties: maximum force at the 

shock absorber (𝐹𝑆𝐴,𝑚𝑎𝑥), maximum stroke change of the shock absorber (𝑠̂𝑆𝐴,𝑚𝑎𝑥) 

(see Figure 1.9), and efficiency (𝜂𝑆𝐴). The descriptions of these properties are 

presented in detail in Chapter 4. 

A typical evaluation of a drop test can be observed in Figure 1.9. The initial contact 

starts at 𝑡0. The final time, 𝑡𝑓 is defined as the time where the stroke change, 𝑠̂𝑆𝐴, 

reaches its maximum. The dynamic motion continues until the oscillation of the 

system is damped, where time is 𝑡𝑠. The results between 𝑡𝑓 and 𝑡𝑠 is usually checked 

for the realizability of the design, such as the prevention of a rebound where the 

contact between the tire and the ground is lost. The efficiency of the shock absorber 

is evaluated in the time interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (see Section 4.2.1). 

 

Figure 1.9. A typical drop test result 
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1.4 Scope and Organization of the Thesis 

The objective of the thesis is to design a shock absorber for aircraft landing gear 

using MFGs.  

To achieve this objective, a design methodology for MFG is introduced in Chapter 

3. The use of MFG as a non-linear spring and non-linear damper is investigated. 

General methods to determine the slot shape of MFG for given dimensions and 

desired force characteristics are introduced. Construction of a special spring that may 

be used both in compression and tension is introduced during the derivation of the 

method for non-linear spring. Additionally, special spring cases with quadratic 

stiffness are investigated to bring out the possible opportunities of the use of MFG 

in other applications. Illustrative examples of MFG design as spring and damper are 

performed to explain the method and prove the validity of calculations. 

A spring mass damper model with two degrees of freedom is introduced and 

validated with available test results. Using the reference parameters and conditions 

in test results, an optimization on landing gear shock absorber is performed. The 

objective of this optimization is to find the optimum non-linear spring and damper 

characteristics that result in the optimum shock absorber design. 

In the last chapter, the design of landing gear with MFGs, which is designed against 

optimum spring and damper characteristics, is evaluated. The outcome of the design 

is compared with the shock absorber used in the test. With respect to this comparison, 

the applicability, and feasibility of the use of MFG on landing gear shock absorbers 

are discussed. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In this chapter, a literature review regarding shock absorbers and their efficiency 

optimization is presented.  

2.1 Oleo-Pneumatic Shock Absorbers 

The properties of an oleo-pneumatic shock absorber have been previously explained 

in Section 1.2. There are many design alternatives for an oleo-pneumatic shock 

absorber. Some of these alternatives are investigated and presented in the preceding 

paragraphs. 

Single-Stage Shock Absorber with Fixed Orifice 

Single-stage shock absorbers are the simplest oleo-pneumatic shock absorbers with 

non-linear spring and damper characteristics. 

A single-stage oleo-pneumatic shock absorber with a fixed orifice consists of an air 

chamber that acts as a non-linear spring (according to the gas compression law) and 

a fixed orifice that acts as a non-linear damper (according to the law of fluid 

discharge through an orifice). Typical spring and damper characteristics of the air 

spring and oil damper are depicted in Figure 2.1. 
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Figure 2.1. Single-stage SA with fixed orifice; cross-sectional view (left), example 

spring characteristic (upper-right), damper characteristics (lower-right) [14] 

Dual-Stage Shock Absorber with Fixed Orifice 

A dual-stage shock absorber is obtained by adding a second air chamber to a single-

stage shock absorber. 

A dual-stage shock absorber with a fixed orifice consists of two air chambers that 

act as a non-linear spring according to the gas compression law. The first air chamber 

works until the chamber comes to an end and compresses the second chamber's air. 

The damper characteristics are the same with a fixed orifice. Typical spring and 

damper characteristics of the air spring and oil damper are depicted in Figure 2.2. 
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Figure 2.2. Dual-stage SA with fixed orifice; cross-sectional view (left), example 

spring characteristic (upper-right), damper characteristics (lower-right) [10] 

Single-Stage Shock Absorber with Poppet Valve Orifice 

Shock absorbers with a poppet valve design are the most practical shock absorbers 

because of their ease of design and adjustability. 

A single-stage shock absorber with a poppet valve orifice is similar to a single-stage 

fixed orifice shock absorber as far as the air spring characteristics are concerned. The 

damper characteristic is designed such that it changes with the force inside the shock 

absorber. Typical spring and damper characteristics of the air spring and oil damper 

are depicted in Figure 2.3. 
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Figure 2.3. Single-Stage SA with poppet valve orifice; cross-sectional view (left), 

spring characteristic (upper-right), damper characteristics (lower-right) [10] 

Single-Stage Shock Absorber with Metering Pin 

Shock absorbers with metering pin are the most suitable and optimized shock 

absorbers for obtaining highly non-linear damping characteristics. They are known 

for being reliable and for having low maintenance cost [9]. Efficiency (which will 

be explained later in 4.2.1) of 90% can be achieved with metering pins with several 

drop tests for development of the design [10]. 

The damper characteristic is designed to change with the displacement, as presented 

in Figure 2.4 left, and the velocity of the shock absorber. Typical spring and damper 

characteristics of the air spring and oil damper are depicted in Figure 2.4 [15]. 
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Figure 2.4. Single-stage SA with metering pin; cross-sectional view (left), example 

spring characteristic (upper-right), damper characteristics (lower-right) [15] 

2.2 Shock Absorber Design Optimization 

The design of a shock absorber is focused, mainly, on the damper characteristics; 

because, the spring characteristic of oleo-pneumatic shock absorbers (air spring) 

allow the dampers to absorb most of the energy during compression at landing [9]. 

Dampers, on the other hand, can be classified into two groups; namely, 

active/adaptive dampers and passive dampers. 
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2.2.1 Active/Adaptive Damper Design 

Oleo-pneumatic shock absorbers are the most popular type of shock absorbers today. 

Since 1970s, many studies have focused on implementing closed loop control to 

shock absorbers; leading to various active/adaptive damper designs [16], [17]. One 

of the initial studies was performed by Ghiringhelli [18], who aimed to use semi-

active control for the orifice size (see Figure 2.5). The benefit of using semi-active 

control is that it is simple, lightweight, and safe (compared to fully active control). 

In the simulations, increased landing gear efficiency has been obtained. The test 

results also showed an increase in the performance. However, they are not at the 

same level as the simulation results. The reason for this, probably, is that the control 

equipment utilized in the tests was insufficient for the intended purpose.  

 

Figure 2.5. Active and semi-active control concepts [18] 

In 2003, Mikulowski aimed for an increase in performance using a 

magnetorheological (MR) fluid in the shock absorber [19]. MR fluids have viscosity 

properties that change with the magnetic field. The control strategy was employing 

fully active control by providing feedback to the system (see Figure 2.6). However, 

an increase in the performance was not achieved because of the system's response 

time during the landing impact. In his study, Mikulowski stated that [19] MR fluid 

was able to change its properties in 25 ms, whereas the landing impact typically lasts 

only for 100 ms. 
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Figure 2.6. Mass-spring-damper model with MR damper [19] 

Han has recently revisited the available active shock absorption methods using an 

MR fluid in 2019 [20]. In his study, an optimization is performed by using an MR 

fluid in the shock absorber with the Skyhook damper concept (see Figure 2.7, left) 

for the fully active control. Increased landing gear efficiency has been obtained with 

the use of this active suspension (see Figure 2.7, right). However, experimental 

validation of the study has not been realized. Previously, in his study, Mikulowski 

[19] stated that realization of this application was not possible due to response time 

of the controller. Thus an experimental study is required in order to validate Han’s 

study.  

  

Figure 2.7. Skyhook controller concept (left), comparison of efficiency curves 

(right) [20] 
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2.2.2 Passive Damper Design 

Most oleo-pneumatic shock absorbers utilize passive dampers. The system works in 

the open-loop philosophy; thus, it is optimized for a specific condition or condition 

spectrum. Since aircraft landings occur within a predictable range of conditions, 

passive shock absorbers are suitable for such applications. 

In 2017, Li approached the shock absorber design from a new perspective by 

utilizing an inerter. Inerter is a mechanical element similar to a spring or a damper 

(see Figure 2.8). It has also been referred to be the “missing mechanical element of 

the dynamic systems” [21]. In his study, Li focused on the optimization of the shock 

absorber by adding an inerter to the system [14]. The inerter, however, poses some 

challenges since the elongation of the strut will be limited during landing. This 

limitation may lead to a rebound in the shock strut, which will pose a significant risk 

of unexpected loads on the landing gear and the aircraft.  

 

Figure 2.8. Schematics of two types of inerter; rack and pinion (a), ball screw (b) 

[21] 
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Shi has focused on the optimization of the metering pin design with different profiles 

(see Figure 2.9) in 2019 [22]. The results have shown that optimum solutions can be 

achieved for specific landing conditions (regarding the mass of the aircraft, vertical 

speed during landing etc.). This may be a good approach because, usually, an aircraft 

performs its landing operation within specific mass range [12]. However, the 

production of these complex metering pin configurations needs to be further 

investigated. 

 

Figure 2.9. Metering pin profiles investigated in Shi’s study [22] 
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CHAPTER 3  

3 MECHANICAL FORCE GENERATOR 

In the beginning of this chapter, the position, velocity, and acceleration of the MFG 

are mathematically defined. Then, two different uses of the MFG are investigated: 

one is using a spring inside the MFG to create a non-linear spring, Mechanical Force 

Generator Spring (MFGS), the other is using a damper inside the MFG to create a 

non-linear damper, Mechanical Force Generator Damper (MFGD). Mathematical 

derivations are performed for the MFGS and the MFGD separately to find a general 

solution for MFGS or MFGD for a given force characteristic. The general properties 

of the MFG are explained in Section 3.1. The notation of the MFG defined in Figure 

3.1 is kept as a general notation and is applicable for both MFGS and MFGD. After 

derivation of the slot shape solution, realizability checks are defined to evaluate the 

feasibility of the solution against the design constraints. During derivation of 

methodology for MFGS, the design of an equivalent spring which can create 

compression and tension force is defined. Since MFGS is a mechanism that can be 

designed for non-linear force characteristics, special cases for springs with quadratic 

stiffness are investigated to observe the possible use area of MFGS. Illustrative 

examples for the design of MFGS and MFGD are performed at the end of the chapter 

to explain the design steps clearly and evaluate the validity of the mathematical 

derivations performed at the beginning of the chapter. 

3.1 General MFG Properties 

Overconstrained mechanisms [23] are mechanisms where the actual degree of 

freedom (DoF) is strictly greater than the DoF predicted by the Kutzbach Criterion. 

Mechanical Force Generator is an overconstrained mechanism with 1 DoF [1]. If the 

MFG is designed properly and if the weights of the links are neglected, the reaction 
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forces and reaction moments, acting on the four prismatic joints, that connect the 

MFG to the ground are identically zero (at all times and for all possible motions of 

the MFG) (see Figure 3.1). Therefore, frictional losses and wear at these four joints 

are minimized. Furthermore, the shaking forces and shaking moments transmitted to 

the ground are identically zero (at all times and for all possible motions). 

MFG consists of 9 links. The names and the descriptions of the links are listed below 

(see Figure 3.1). 

1 – Ground: This link is the case that encloses the whole MFG mechanism and 

is treated to be the fixed link. It is connected to Link 2, Link 4, Link 3 and Link 

5 with four prismatic joints. 

Links 2 and 4 – Input Links: These links translate along the 𝑧(1) direction. There 

is a prismatic joint between each input link and the ground link. There are four 

revolute joints between the two input links and the four rollers (Links 6-9). 

Links 3 and 5 – Chamber Links: These links translate along the 𝑥⃗(1) direction. 

Each chamber link is connected to the ground with a prismatic joint. The two 

chamber links are connected to the four rollers with four cam joints (single point 

contact). 

Links 6, 7, 8, and 9 – Roller Links: There is a revolute joint between each roller 

link and an input link. The rollers are connected to the chamber links with four 

cam joints.  

Every link in the MFG has its own body-fixed reference frame denoted by ℱ𝑖 with 

an origin at 𝑂𝑖. ℱ𝑖 is a right-handed reference frame the axes of which are labeled as 

𝑥⃗(𝑖), 𝑦(𝑖) and 𝑧(𝑖). All reference frames are oriented such that they are parallel to ℱ1 

which is the earth fixed reference frame. 𝑖, 𝑗 and 𝑘⃗⃗ denote unit vectors parallel to 

𝑥⃗(1), 𝑦(1) and 𝑧(1), respectively. 
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Figure 3.1. Mechanical Force Generator 

Referring to Figure 3.1, 𝑏1, 𝑏2 and 𝑏3 denote strictly positive scalar dimensions 

measured parallel to the 𝑥⃗(1) axis. 𝑐1, on the other hand, is a strictly positive scalar 

dimension measured parallel to the 𝑧(1) axis. Referring to Figure 3.1 again, 𝑠2, 𝑠3, 

𝑠4 and 𝑠5 are signed scalars which yield the position of Links 2, 3, 4 and 5 (relative 

to Link 1), respectively. 𝑠𝑐ℎ𝑎 and 𝑠𝑀𝐹𝐺 are also signed scalars which are presented 

in Figure 3.1. 

𝑠2, 𝑠3, 𝑠4 and 𝑠5 may be rigorously defined via the following equations.  

𝑠2 = 𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑘⃗⃗         (3.1) 

𝑠3 = −𝑂1𝑂3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑖        (3.2) 

𝑠4 = −𝑂1𝑂4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑘⃗⃗        (3.3) 

𝑠5 = 𝑂1𝑂5
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑖         (3.4) 

The x and z coordinates, in ℱ3, of the center of roller 6, i.e., A, are denoted by 𝑥𝑟 

and 𝑧𝑟, respectively, where 
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 𝑥𝑟 = −𝑂3𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑖        (3.5) 

 𝑧𝑟 = 𝑂3𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑘⃗⃗        (3.6) 

The path of point 𝐴 on Link 3 is the curve 𝑃1 (see Figure 3.1), the defining equation 

of which is given by 

𝑥𝑟 = 𝑓(𝑧𝑟)        (3.7) 

where 𝑓 is a known function. 

It should be noted that MFG is symmetrical with respect to the 𝑥⃗(1) and 𝑧(1) axes. 

Hence, the equations of the paths 𝑃2, 𝑃3 and 𝑃4 (on which roller centers 𝐵, 𝐶 and 𝐷 

are restricted to move) may be obtained by using equation (3.7) and the symmetricity 

of the mechanism. 

In this study, the volume between Link 3 and Link 1 (in which a spring and/or a 

damper may exist) is called to be “chamber” (see Figure 3.1). Similarly, the volume 

between Link 5 and Link 1 is also called to be “chamber”. The stroke of the chamber, 

𝑠𝑐ℎ𝑎, is defined with the following equation. 

𝑠𝑐ℎ𝑎 = 𝑏1 − 𝑏3 − 𝑠3        (3.8) 

There may be physical realizability constraints on 𝑠𝑐ℎ𝑎 which can be represented in 

the form 

𝑙𝑐ℎ𝑎,𝑚𝑖𝑛 ≤ 𝑠𝑐ℎ𝑎 ≤ 𝑙𝑐ℎ𝑎,𝑚𝑎𝑥       (3.9) 

where 𝑙𝑐ℎ𝑎,𝑚𝑖𝑛 and 𝑙𝑐ℎ𝑎,𝑚𝑎𝑥 are specified numbers. 

The minimum and maximum allowable dimensions of the chamber (i.e., 𝑙𝑐ℎ𝑎,𝑚𝑖𝑛 and 

𝑙𝑐ℎ𝑎,𝑚𝑎𝑥) change according to the design case. If a spring is used inside the chamber, 

then  𝑙𝑐ℎ𝑎,𝑚𝑖𝑛 and 𝑙𝑐ℎ𝑎,𝑚𝑎𝑥 will be the minimum and maximum allowable lengths of 

the spring, respectively. If a damper is employed inside the chamber, then 𝑙𝑐ℎ𝑎,𝑚𝑖𝑛 

and 𝑙𝑐ℎ𝑎,𝑚𝑎𝑥 will be the minimum and maximum allowable lengths of the damper, 

respectively.  
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The stroke of the MFG, 𝑠𝑀𝐹𝐺, is defined via the equation 

𝑠𝑀𝐹𝐺 = 𝑠2 = 𝑠4        (3.10) 

There may be physical realizability constraints on 𝑠𝑀𝐹𝐺 which can be represented in 

the following form 

𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 ≤ 𝑠𝑀𝐹𝐺 ≤ 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥      (3.11) 

where 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 and 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥 are specified numbers (see Figure 3.2) 

 

Figure 3.2. The minimum and maximum allowable MFG stroke lengths 
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Figure 3.3. Definition of the clearance parameter 𝑑𝑐𝑙𝑒 

Referring to Figure 3.3, let the allowable region in which the path 𝑃1 may lie be the 

region R (the hatched region). As can be observed from Figure 3.3, the region R is 

defined via the clearance parameter 𝑑𝑐𝑙𝑒, which, later in this study, will be treated as 

a user specified input. Clearly, one can express 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 and 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥 in terms of 

𝑑𝑐𝑙𝑒, yielding 

𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 = 𝑑𝑐𝑙𝑒        (3.12) 

𝑙𝑀𝐹𝐺,𝑚𝑎𝑥 = 𝑐1 − 𝑑𝑐𝑙𝑒        (3.13) 

Hence, equation (3.11) yields 

𝑑𝑐𝑙𝑒 ≤ 𝑠𝑀𝐹𝐺 ≤ 𝑐1 − 𝑑𝑐𝑙𝑒      (3.14) 
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It should be noted that concept of the allowable region R is introduced so that the 

mechanical construction of the MFG is simpler (in the sense that Links 3 and 5, as 

well as Links 2 and 4 can, physically, lie in the same 𝑥⃗(1) - 𝑧(1) plane). If such a 

simplification regarding the mechanical construction of the MFG is not sought for, 

then the constraints introduced due to the allowable region R will not exist (i.e., the 

allowable region R can be as large as required). 

Another user specified input that will be used in this study is 𝛥𝑠𝑀𝐹𝐺, which is defined 

via the equation 

𝛥𝑠𝑀𝐹𝐺 = 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥 − 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛     (3.15) 

3.1.1 Loop Closure Equations 

 

Figure 3.4. Sketch for writing down the loop closure equations 
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As can be observed from Figure 3.1, the mechanism is symmetrical with respect to 

𝑥⃗(1) axis and 𝑧(1) axis. Hence, the Loop Closure Equation obtained by considering 

𝑂1𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ will be identical with the remaining three loop closure equations that will be 

obtained considering 𝑂1𝑂7
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝑂1𝑂8

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ and 𝑂1𝑂9
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

Loop Closure Equation (LCE) obtained via 𝑂1𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗: 

Referring to Figure 3.4, 

𝑂1𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝑠2𝑘⃗⃗ − 𝑏2𝑖 = −𝑠3𝑖 + 𝑧𝑟 𝑘⃗⃗ − 𝑥𝑟𝑖    (3.16) 

By equating the 𝑘⃗⃗ and 𝑖 components in equation (3.16), one obtains 

𝑠2 = 𝑧𝑟        (3.17) 

𝑠3 = 𝑏2 − 𝑥𝑟        (3.18) 

Here, it should be recalled that 𝑥𝑟 and 𝑧𝑟 are related to each other via the equation 

 𝑥𝑟 = 𝑓(𝑧𝑟)        (3.7) 

where 𝑓 is a known function. Since 𝑏2 is a known constant (i.e., a dimension of the 

mechanism), there are three unknowns (namely 𝑠2, 𝑠3, 𝑧𝑟) in equations (3.17) and 

(3.18) (when one considers equation (3.7) as well). Hence, when one of the three 

unknowns is specified, the remaining two unknowns can be solved from equations 

(3.17), (3.18) and (3.7). Therefore, if there is no slippage between Roller 6 and the 

slot, the mechanism consisting of Links 1, 2, 6, and 3 in Figure 3.4 is a 1 degree of 

freedom mechanism. 

Solving 𝑠3, in terms of 𝑠𝑐ℎ𝑎, from (3.8), and solving 𝑠2, in terms of 𝑠𝑀𝐹𝐺, from (3.10) 

and substituting the results into (3.18) and (3.17), one obtains 

𝑠𝑐ℎ𝑎 = 𝑥𝑟 + 𝑏1 − 𝑏3 − 𝑏2       (3.19) 

𝑠𝑀𝐹𝐺 = 𝑧𝑟         (3.20) 
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which involve the 3 unknowns 𝑠𝑐ℎ𝑎, 𝑠𝑀𝐹𝐺 and 𝑧𝑟 (when one considers equation (3.7) 

as well). 

Velocity Loop Equation (VLE) obtained via 𝑂1𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗: 

By taking derivative of equation (3.16) with respect to time, the VLE can be obtained 

as follows 

𝑠̇2𝑘⃗⃗ = −𝑠̇3𝑖 + 𝑧̇𝑟 𝑘⃗⃗ − 𝑥̇𝑟𝑖      (3.21) 

where 

 𝑠̇2 =
𝑑𝑠2

𝑑𝑡
, 𝑠̇3 =

𝑑𝑠3

𝑑𝑡
, 𝑥̇𝑟 =

𝑑𝑥𝑟

𝑑𝑡
, 𝑧̇𝑟 =

𝑑𝑧𝑟

𝑑𝑡
 

Since 𝑥𝑟 is a function of 𝑧𝑟, using the chain rule, 𝑥̇𝑟 can be written as a function of 

𝑧𝑟 and 𝑧̇𝑟 as follows. 

𝑥̇𝑟 =
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̇𝑟 = 𝑓′(𝑧𝑟)𝑧̇𝑟      (3.22) 

where the prime denotes derivative with respect to 𝑧𝑟. Using the 𝑘⃗⃗ and 𝑖 components 

of the VLE given by equation (3.21) and utilizing equation (3.22), the following 

equations are obtained. 

𝑠̇2 = 𝑧̇𝑟        (3.23) 

𝑠̇3 = −𝑥̇𝑟 = −
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̇𝑟       (3.24) 

It should be noted that, when the position of the mechanism is known, there will be 

three generalized velocities (𝑠̇2, 𝑠̇3, 𝑧̇𝑟) in the two equations (3.23) and (3.24). Hence, 

when one of the generalized velocities is specified, the remaining two generalized 

velocities may be solved, linearly, from equations (3.23) and (3.24). 

Note that, by taking time derivatives of equations (3.19) and (3.20), the following 

relations may also be obtained. 

𝑠̇𝑐ℎ𝑎 = 𝑥̇𝑟 =
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̇𝑟       (3.25) 
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𝑠̇𝑀𝐹𝐺 = 𝑧̇𝑟         (3.26) 

Acceleration Loop Equation (ALE) obtained via 𝑂1𝑂6
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗: 

By taking derivative of equation (3.21) with respect to time, the ALE may be 

obtained as follows. 

𝑠̈2𝑘⃗⃗ = −𝑠̈3𝑖 + 𝑧̈𝑟 𝑘⃗⃗ − 𝑥̈𝑟𝑖      (3.27) 

The time derivative of equation (3.22), on the other hand, yields 

𝑥̈𝑟 =
𝑑2𝑥𝑟

𝑑𝑧𝑟
2 𝑧̇𝑟

2 +
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̈𝑟       (3.28) 

Thus, equations (3.27) and (3.28) yield the following two scalar equations 

𝑠̈2 = 𝑧̈𝑟        (3.29) 

𝑠̈3 = −𝑥̈𝑟 = −
𝑑2𝑥𝑟

𝑑𝑧𝑟
2 𝑧̇𝑟

2 −
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̈𝑟     (3.30) 

which involve the generalized accelerations, 𝑠̈2, 𝑠̈3 and 𝑧̈𝑟. 

Note that time derivatives of equations (3.25) and (3.26) yield the following two 

equations. 

𝑠̈𝑐ℎ𝑎 = 𝑥̈𝑟 =
𝑑2𝑥𝑟

𝑑𝑧𝑟
2 𝑧̇𝑟

2 +
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̈𝑟      (3.31) 

𝑠̈𝑀𝐹𝐺 = 𝑧̈𝑟         (3.32) 

Normally, LCE and VLE are sufficient for the purposes of determining the slot shape 

(which is the objective in this study). However, ALE (which would be needed for a 

dynamic force analysis) is also derived in this study for the sake of completion.  

3.2 MFG Spring (MFGS) 

In this study, MFG Spring (MFGS) denotes the mechanism that is obtained from 

MFG, such that it converts two real, linear, identical springs (with a constant 
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stiffness) into two equivalent, virtual non-linear springs. The two linear springs are 

attached between Links 1 and 3; and Links 1 and 5 (see Figure 3.1). The forces 

applied on Links 3 and 5, by the two linear springs, are designated by 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 respectively (see Figure 3.5), where 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 = −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑖       (3.33) 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 = 𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑖        (3.34) 

In equations (3.33) and (3.34): 

𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 = 𝑘𝑐ℎ𝑎(𝑠𝑐ℎ𝑎 − 𝑙𝑓,𝑐ℎ𝑎)     (3.35) 

where 

 𝑙𝑓,𝑐ℎ𝑎 : Free length of the two linear, identical springs 

 𝑘𝑐ℎ𝑎 : Spring constant of the two linear, identical springs 

 

Figure 3.5. Spring forces acting on MFGS 

The real spring inside the chamber works as a 
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• Compression spring  if 𝑙𝑓,𝑐ℎ𝑎 ≥ 𝑠𝑐ℎ𝑎 

• Tension spring  if 𝑙𝑓,𝑐ℎ𝑎 ≤ 𝑠𝑐ℎ𝑎 

Practically, it is necessary to keep the spring always in compression or tension due 

to differences in the nature of the compression and tension springs. Physically, it is 

not possible to use a tension spring as a compression spring due to the hook-like 

attachment at the end of the tension spring (see Figure 3.6).  

 

Figure 3.6. Physical differences between tension and compression springs 

Using the definition of 𝑠𝑐ℎ𝑎 given by equation (3.19), the spring force inside the 

chamber, given by equation (3.35), can be written as follows. 

𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 = 𝑘𝑐ℎ𝑎 ((𝑥𝑟 + 𝑏1 − 𝑏3 − 𝑏2) − 𝑙𝑓, 𝑐ℎ𝑎)    (3.36) 

Alternatively, 𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 can be expressed as 

𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 = 𝑘𝑐ℎ𝑎(𝑥𝑟 − 𝑙 𝑐ℎ𝑎
∗ )       (3.37) 

where 

 𝑙 𝑐ℎ𝑎
∗ = 𝑏2 + 𝑏3 − 𝑏1 + 𝑙𝑓,𝑐ℎ𝑎 

Referring to Figure 3.5, let the force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2, applied on Link 2, be the force which 

is equivalent to the spring force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3. In other words, for rigid body mechanics 
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purposes, one can replace the spring force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 with the equivalent force 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2. Here it should be noted that although the spring force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 is an 

actual force, equivalent force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 is fictitious. Similarly, let the force 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 be a fictitious force which is equivalent to the actual spring force 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5. In this study, the equivalent fictitious forces 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 will 

be represented as follows. 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 𝑘⃗⃗       (3.38) 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 = −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 𝑘⃗⃗       (3.39) 

In equations (3.38) and (3.39), let 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 be defined via the equation 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺](𝑠𝑀𝐹𝐺 − 𝑙0,𝑀𝐹𝐺)    (3.40) 

where 

𝑙0,𝑀𝐹𝐺  : Fictitious free length (a constant parameter) of the two 

fictitious, identical equivalent springs, which are assumed to be attached 

between the 𝑥⃗(1) axis and Link 2; and the 𝑥⃗(1) axis and Link 4 (see Figure 

3.5) 

𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] : Spring coefficient of the two fictitious, identical equivalent 

springs (which is a function of the variable 𝑠𝑀𝐹𝐺) which are assumed to be 

attached between the 𝑥⃗(1) axis and Link 2; and the 𝑥⃗(1) axis and Link 4 (see 

Figure 3.5) 

Here, it should be noted that, 𝑘𝑀𝐹𝐺 [𝑠𝑀𝐹𝐺] is a user-defined function and 𝑙0,𝑀𝐹𝐺 is a 

user-defined parameter which are utilized to define the desired variation of 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 

given by equation (3.40). It should also be noted that from equation (3.40), the value 

of 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 at 𝑠𝑀𝐹𝐺 = 0, 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[0], is given by 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[0] = − 𝑘𝑀𝐹𝐺 [0]  𝑙0,𝑀𝐹𝐺     (3.41) 
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Hence, after selecting the user-defined function 𝑘𝑀𝐹𝐺 [𝑠𝑀𝐹𝐺], the value 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[0] 

can be set to any desired value by selecting the user-defined parameter 𝑙0,𝑀𝐹𝐺 in 

accordance with equation (3.41) (see Figure 3.7). 

 

Figure 3.7. Graphical representation of 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[0] 

Since the MFG spring is a fictitious non-linear spring, its compression and tension 

characteristics do not resemble to a real spring. While the real spring inside the 

chamber is in compression or tension only, the MFG spring may have the ability to 

work in both “compression” and “tension”.  

Note that, since 𝑠𝑀𝐹𝐺 = 𝑧𝑟 from equation (3.20), equation (3.40) yields 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 𝑘𝑀𝐹𝐺[𝑧𝑟](𝑧𝑟 − 𝑙0,𝑀𝐹𝐺)     (3.42) 

It should be noted that the equivalent spring coefficient of the fictitious spring, 𝑘𝑀𝐹𝐺 

(see equation (3.40)), and the force developed in the fictitious spring, 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 (see 

equation (3.40)), have been specified in terms of 𝑠𝑀𝐹𝐺. On the other hand, 𝑠𝑀𝐹𝐺 can 

be expressed in terms of 𝑠2/4 (see Figure 3.5) via the equation 

𝑠𝑀𝐹𝐺 = 𝑠2/4/2        (3.43) 

In equation (3.43), 𝑠2/4 is defined, rigorously, via the equation 
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𝑠2/4 = 𝑂1𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑘⃗⃗        (3.44) 

where 𝑘⃗⃗ is a unit vector parallel to the 𝑧(1) axis. It should be noted that 𝑠2/4 yields 

the relative position (parallel to the 𝑧(1) direction) of Link 2 with respect to Link 4. 

Hence, 𝑠2/4 may be considered to be the fictitious “length” of a fictitious, nonlinear 

spring that is connected between Links 2 and 4. Hence, by replacing 𝑠𝑀𝐹𝐺 that 

appears in equation (3.40) with the right hand side of equation (3.43), one may 

conveniently obtain expressions that yield 𝑘𝑀𝐹𝐺 and 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 in terms of 𝑠2/4. 

3.2.1 MFG Spring Slot Shape Determination 

Suppose that, it is desired to design an MFGS such that the desired variation of the 

equivalent forces 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 (with respect to 𝑠𝑀𝐹𝐺) are specified via 

the user-defined function 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] and the user-defined parameter 𝑙0,𝑀𝐹𝐺. 

Furthermore, suppose that the two identical linear springs to be used in the MFGS 

have also been selected. Hence, the spring constant and the free length of these 

springs (i.e., 𝑘𝑐ℎ𝑎 and 𝑙𝑓,𝑐ℎ𝑎) are also known. Now, by designing the shapes of the 

four symmetrical slots suitably; and by selecting the remaining kinematic 

dimensions of the MFGS appropriately, it is possible to design an MFGS which will 

generate the desired equivalent forces 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4. In this section, an 

algorithm that yields the shapes of slots and kinematic dimensions of the MFGS is 

presented. 

While designing an MFGS, gravitational, inertial and frictional effects are neglected 

in this study. Similarly, gravitational, inertial and frictional effects are also neglected 

while designing an MFGD (see Section 3.3). In the preceding two paragraphs, for a 

specific MFG (with a specific motion and loading), the effects of inertial and 

frictional loads on the power losses are discussed. For the specific cases under 

consideration, it is shown that the inertial and frictional effects are negligible (as 

assumed in this study). In cases where gravitational, inertial and frictional effects are 
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not negligible, they should also be taken into account while designing an MFGS, or 

MFGD. 

Effect of Inertial Loads for an MFG 

One of the comprehensive studies, performed by Mencek in 2015 [4], investigated 

the effect of inertial loads on the power consumption of the actuators that drive an 

MFG. For a specific MFG (with a specific motion and loading), the input and output 

powers are compared for Case A, where the inertial and frictional effects are 

neglected, and Case B, where the inertial effects are taken into account, but the 

frictional effects are neglected (see Figure 3.8). The efficiency of the system is 

evaluated, via simulation, for these cases. The comparison shows that, by taking 

power consumption of Case A as reference (100%), the efficiency of the system is 

obtained as 98.98%. It is proved that, for this specific case, neglecting the inertial 

loads is an acceptable assumption. 

Effect of Frictional Losses for an MFG 

The effect of frictional losses has been investigated by Mencek [4] and Erdinç [3] 

separately. Similar to inertial loads, Mencek performed a comparison between Case 

A, where the inertial and frictional effects are neglected, and Case C, where the 

frictional losses are considered, but the inertial effects are neglected  (see Figure 3.8). 

The comparison shows that, by taking power consumption of Case A as reference 

(100%), the efficiency of the system is obtained as 88.4%. Besides, in his study, 

Erdinç stated that the friction losses in different case studies were 6.2% and 8.9% of 

the total power consumption.  
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Figure 3.8. Results for different cases in Mencek’s study [4] 

Referring to Figure 3.5, neglecting gravitational, frictional and inertial effects, in 

order for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 to be equivalent to the spring force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3, 

the instantaneous powers due to these two forces must be equal to each other at all 

times, i.e., 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 ∙ 𝑣⃗3 = 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 ∙ 𝑣⃗2     (3.45) 

where 𝑣⃗3 and 𝑣⃗2 are the velocities of Links 3 and 2, respectively, given by 

𝑣⃗3 = 𝑠̇𝑐ℎ𝑎𝑖        (3.46) 

𝑣⃗2 = 𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (3.47) 

Substituting equations (3.33), (3.46), (3.38), and (3.47) into equation (3.45), one 

obtains 

−𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑠̇𝑐ℎ𝑎 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑠̇𝑀𝐹𝐺     (3.48) 

where 𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 and 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 are given by equations (3.35) and (3.40), respectively. 
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Similarly, in order for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 to be equivalent to the spring 

force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5, the instantaneous powers due to these two forces must be equal to 

each other at all times, i.e. 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 ∙ 𝑣⃗5 = 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 ∙ 𝑣⃗4     (3.49) 

where 𝑣⃗5 and 𝑣⃗4 are the velocities of Links 5 and 4, given by 

𝑣⃗5 = −𝑠̇𝑐ℎ𝑎𝑖        (3.50) 

𝑣⃗4 = −𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (3.51) 

Substituting equations (3.34), (3.50), (3.39), and (3.51) into equation (3.49), one 

obtains, once more, equation (3.48). Hence, equation (3.48) is, simultaneously, the 

condition for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 to be equivalent to the spring force 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3; and the condition for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 to be equivalent to the 

spring force 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5. 

Using equations (3.37) and (3.42) with equations (3.25) and (3.26), equation (3.48) 

becomes 

−𝑘𝑐ℎ𝑎(𝑥𝑟 − 𝑙 𝑐ℎ𝑎
∗ ) 

𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̇𝑟 = 𝑘𝑀𝐹𝐺[𝑧𝑟](𝑧𝑟 − 𝑙0,𝑀𝐹𝐺)𝑧̇𝑟   

which yields 

−𝑘𝑐ℎ𝑎(𝑥𝑟 − 𝑙 𝑐ℎ𝑎
∗ ) 𝑑𝑥𝑟 = 𝑘𝑀𝐹𝐺[𝑧𝑟](𝑧𝑟 − 𝑙0,𝑀𝐹𝐺)𝑑𝑧𝑟  (3.52) 

The differential equation above is already in separate form and, thus, can be solved 

with direct integration using separation of variables (∫ 𝑓[𝑥]𝑑𝑥 = ∫ 𝑔[𝑦]𝑑𝑦) yielding 

∫ (𝑥𝑟 − 𝑙𝑐ℎ𝑎
∗ )𝑑𝑥𝑟

𝑥𝑟

(𝑥𝑟)𝑖
= ∫ ℎ[𝑧𝑟]𝑑𝑧𝑟

𝑧𝑟

(𝑧𝑟)𝑖
    (3.53) 

where 

ℎ[𝑧𝑟] = −
𝑘𝑀𝐹𝐺[𝑧𝑟]

𝑘𝑐ℎ𝑎
(𝑧𝑟 − 𝑙0,𝑀𝐹𝐺)     (3.54)  
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In equation (3.53), (𝑥𝑟)𝑖 and (𝑧𝑟)𝑖 are the x and z coordinates (in ℱ3) of a user 

selected point 𝑄𝑖 that is required to lie on the path 𝑃1 (see Figure 3.2). Recall that 𝑃1 

is the path, on Link 3, on which the center of Roller 6 is restricted to move. 

Clearly, the lower limits of the integrals, (𝑥𝑟)𝑖 and (𝑧𝑟)𝑖, affect the solution for the 

slot shape center line. So, selecting the limits is important in finding a feasible 

solution for a particular problem. The realizability checks (see Section 3.2.2) are 

always performed after the solution is obtained. However, a convenient selection of 

the lower limits reduces the amount of work spent on these realizability checks. For 

example, it is convenient to select the lower corners of the region R in Figure 3.3 

(i.e. (𝑥𝑟)𝑖 = 𝑑𝑐𝑙𝑒 and (𝑧𝑟)𝑖 = 𝑑𝑐𝑙𝑒 or (𝑥𝑟)𝑖 = 𝑏3 − 𝑑𝑐𝑙𝑒 and (𝑧𝑟)𝑖 = 𝑐1 − 𝑑𝑐𝑙𝑒). 

With this selection, satisfaction of the criterion in given Section 3.2.2 may become 

easier. 

Integrating equation (3.53), one obtains 

𝑥𝑟
2

2
− 𝑥𝑟𝑙𝑐ℎ𝑎

∗ │
𝑥𝑟

 
(𝑥𝑟)𝑖

= 𝑝[𝑧𝑟]│
𝑧𝑟

 
(𝑧𝑟)𝑖

   

which yields 

𝑥𝑟
2

2
−

(𝑥𝑟)𝑖
2

2
− [𝑥𝑟 − (𝑥𝑟)𝑖]𝑙𝑐ℎ𝑎

∗ = 𝑝[𝑧𝑟] − 𝑝[(𝑧𝑟)𝑖]   (3.55) 

where 

𝑝[𝑧𝑟] = ∫ ℎ[𝑧𝑟]𝑑𝑧𝑟       (3.56)  

Now, for simplicity, define the constants 𝐾1, 𝐾2 and 𝐾3 via the following equations 

𝐾1 = (𝑥𝑟)𝑖
2  

𝐾2 = (𝑥𝑟)𝑖𝑙𝑐ℎ𝑎
∗   

𝐾3 = 𝑝[(𝑧𝑟)𝑖]  

Hence, equation (3.55) yields 

𝑥𝑟
2 − 2𝑥𝑟𝑙𝑐ℎ𝑎

∗ − 2𝑝[𝑧𝑟] − 𝐾1 + 2𝐾2 + 2𝐾3 = 0   (3.57) 
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Now, introduce a new function 𝑞[𝑧𝑟], via the equation 

𝑞[𝑧𝑟] = −2𝑝[𝑧𝑟] − 𝐾1 + 2𝐾2 + 2𝐾3  

Now, using the definition of 𝑞[𝑧𝑟], equation (3.57) can be written in the following 

form 

𝑥𝑟
2 − 2𝑥𝑟𝑙𝑐ℎ𝑎

∗ + 𝑞[𝑧𝑟] = 0      (3.58) 

Equation (3.58) is a quadratic equation in 𝑥𝑟. Using this equation, one may obtain 

two solutions for 𝑥𝑟 (in terms of 𝑧𝑟). These two solutions yield two different 𝑃1 

curves (see Figure 3.2), on which the center of Roller 6 is restricted to lie. The two 

solutions of equation (3.58) for 𝑥𝑟, i.e., (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛, are given below. 

(𝑥𝑟)𝑝,𝑛 = 𝑙𝑐ℎ𝑎
∗ ± √Δ[𝑧𝑟]      (3.59) 

where 

Δ[𝑧𝑟] = 𝑙𝑐ℎ𝑎
∗ 2 − 𝑞[𝑧𝑟]  

and (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 are the solutions obtained by using the (+) and (−) signs in 

equation (3.59), respectively. Note that, (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 need to be real numbers, 

which would be true if 

Δ[𝑧𝑟] = 𝑙𝑐ℎ𝑎
∗ 2 − 𝑞[𝑧𝑟] ≥ 0  

for all 𝑧𝑟 in the working range of MFGS. Recalling that 𝑧𝑟 = 𝑠𝑀𝐹𝐺 (see equation 

(3.20)), note that the working range of MFGS is given by 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 ≤ 𝑠𝑀𝐹𝐺 ≤

𝑙𝑀𝐹𝐺,𝑚𝑎𝑥 (see equation (3.11)). 

(𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 given by equation (3.59) yield two different 𝑃1 paths (see Figure 

3.2) on which the center of Roller 6 is restricted to lie. As can be observed from 

equation (3.59), these two paths are symmetrical with respect to the line 𝑥𝑟 = 𝑙𝑐ℎ𝑎
∗ . 

In order to determine whether these 𝑃1 paths lie in the allowable region R presented 

in Figure 3.3, it is necessary to determine the minimum and maximum values of 𝑥𝑟 

which are denoted as (𝑥𝑟)𝑚𝑖𝑛 and (𝑥𝑟)𝑚𝑎𝑥, respectively. In order to determine 
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(𝑥𝑟)𝑚𝑖𝑛 and (𝑥𝑟)𝑚𝑎𝑥, on the other hand, one needs to determine the critical points 

of (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛. These critical points are obtained from the equation 

 
𝑑𝑥𝑟

𝑑𝑧𝑟
= 0 

which is equivalent to 

ℎ[𝑧𝑟] = 0        (3.60)  

where ℎ[𝑧𝑟] is given by equation (3.54). 

Now, let the roots of equation (3.60) be denoted by (𝑧𝑟)1, (𝑧𝑟)2, … , (𝑧𝑟)𝑛. Clearly, 

(𝑥𝑟)𝑚𝑖𝑛 and (𝑥𝑟)𝑚𝑎𝑥 can be obtained by evaluating (𝑥𝑟)𝑝 (or, (𝑥𝑟)𝑛) at the critical 

points obtained from equation (3.60) and at the lower and upper bounds of 𝑧𝑟 (which 

are 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛 and 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥). 

It should be noted that the number of 𝑃1 paths that lie in the allowable region R may 

be zero, or infinitely many. 

Note that the design procedure presented in this section is applicable to the case 

where Link 4 (rather than Link 1) is the ground (see Appendix A). The design 

procedure is also applicable when none of the links in the MFGS, including Link 1, 

is grounded (see Appendix B). 

3.2.2 MFG Spring Slot Shape Realizability Checks 

The MFGS is a non-linear spring that can be designed with respect to user needs and 

design constraints. The solution found in equation (3.59) is only a mathematical 

solution. This mathematical solution shall be checked against the physical 

dimensions and design constraints of the MFGS. Thus, the following checks shall be 

made on the MFGS dimensions. 

Spring working range check 
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The working range defined here is applicable for the use of a compression spring 

only or a tension spring only. The working range for the use of an equivalent special 

spring (which can work as a tension and compression spring simultaneously) is 

defined in Section 3.2.3.  

The working range of a spring is limited by its shape or mechanical properties. For 

a compression spring, the operating range is limited by the spring shape. Let the 

minimum allowable length of a compression spring be defined as 𝑙𝑠𝑝𝑟,𝑚𝑖𝑛 and the 

maximum allowable length of a compression spring be defined as 𝑙𝑓,𝑠𝑝𝑟, which is the 

free length of the spring, then the following criterion shall be satisfied. 

• 𝑠𝑐ℎ𝑎,𝑚𝑎𝑥 ≥ 𝑠𝑐ℎ𝑎 ≥ 𝑠𝑐ℎ𝑎,𝑚𝑖𝑛  which yields 

𝑙𝑓,𝑠𝑝𝑟 ≥ 𝑠𝑐ℎ𝑎 ≥ 𝑙𝑠𝑝𝑟,𝑚𝑖𝑛       (3.61) 

For a tension spring, the operating range is limited by the strength properties of the 

spring. If the maximum allowable length of the tension spring is defined as 𝑙𝑠𝑝𝑟,𝑚𝑎𝑥 

and the minimum allowable length of a tension spring is defined as 𝑙𝑓,𝑠𝑝𝑟, which is 

the free length of the spring, then the following criterion shall be satisfied. 

• 𝑠𝑐ℎ𝑎,𝑚𝑖𝑛 ≤ 𝑠𝑐ℎ𝑎 ≤ 𝑠𝑐ℎ𝑎,𝑚𝑎𝑥 which yields 

𝑙𝑓,𝑠𝑝𝑟 ≤ 𝑠𝑐ℎ𝑎 ≤ 𝑙𝑠𝑝𝑟,𝑚𝑎𝑥       (3.62) 

3.2.3 Design of an Equivalent Spring, the Generated Spring Force of 

which can Change Direction 

The force generated by a tension spring, 𝐹𝑡𝑒𝑛, is given by 

𝐹𝑡𝑒𝑛 = 𝑘𝑡𝑒𝑛(𝑥𝑡𝑒𝑛 − 𝑙𝑓,𝑡𝑒𝑛)       (3.63) 

where 

 𝑘𝑡𝑒𝑛 : Spring constant of linear tension spring 
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𝑥𝑡𝑒𝑛 : Length of the tension spring 

 𝑙𝑓,𝑡𝑒𝑛 : Free length of the tension spring 

Equation (3.63) is only valid if 

𝑥𝑡𝑒𝑛 ≥ 𝑙𝑓,𝑡𝑒𝑛         (3.64) 

yielding 

 𝐹𝑡𝑒𝑛 > 0 

which implies that the direction of the force provided by a tension spring cannot 

change. 

The force generated by a compression spring is given by 

𝐹𝑐𝑜𝑚 = 𝑘𝑐𝑜𝑚(𝑥𝑐𝑜𝑚 − 𝑙𝑓,𝑐𝑜𝑚)      (3.65) 

where 

 𝑘𝑐𝑜𝑚 : Spring constant of linear compression spring 

𝑥𝑐𝑜𝑚 : Length of the compression spring 

 𝑙𝑓,𝑐𝑜𝑚 : Free length of the compression spring 

Equation (3.65) is only valid if 

𝑥𝑐𝑜𝑚 ≤ 𝑙𝑓,𝑐𝑜𝑚         (3.66) 

yielding 

 𝐹𝑐𝑜𝑚 < 0 

which implies that the direction of the force provided by a compression spring cannot 

change. 

Now, suppose that it is necessary to design a linear spring that generates a spring 

force, the direction of which can change. This can be realized by using a tension 
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spring and compression spring in parallel (see Figure 3.9), such that the lengths of 

the two springs, which are equal, are given by 

𝑥𝑡𝑐 = 𝑥𝑡𝑒𝑛 = 𝑥𝑐𝑜𝑚        (3.67) 

and the free lengths of the two springs satisfy the following two constraints 

𝑙𝑓,𝑡𝑒𝑛 < 𝑙𝑓,𝑐𝑜𝑚        (3.68) 

𝑙𝑓,𝑡𝑒𝑛 ≤ 𝑥𝑡𝑐 ≤ 𝑙𝑓,𝑐𝑜𝑚        (3.69) 

In Figure 3.9, the dashed lines represent the relaxed positions of the springs, while 

the solid lines represent the extended/compressed positions of the springs. 

The net force developed by the two springs in Figure 3.9, 𝐹𝑡𝑐, is clearly given by 

𝐹𝑡𝑐 = 𝐹𝑡𝑒𝑛 + 𝐹𝑐𝑜𝑚        (3.70) 

 

Figure 3.9. Combined use of a tension spring and a compression spring connected 

parallel to each other 



 

 

47 

If equations (3.63), (3.65) and (3.67) are inserted into equation (3.70), the following 

equation is obtained. 

𝐹𝑡𝑐 = 𝑘𝑡𝑒𝑛(𝑥𝑡𝑐 − 𝑙𝑓,𝑡𝑒𝑛)  + 𝑘𝑐𝑜𝑚(𝑥𝑡𝑐 − 𝑙𝑓,𝑐𝑜𝑚)     (3.71) 

which can be arranged in the form 

𝐹𝑡𝑐 = (𝑘𝑡𝑒𝑛 + 𝑘𝑐𝑜𝑚) [𝑥𝑡𝑐 −
𝑘𝑡𝑒𝑛𝑙𝑓,𝑡𝑒𝑛+𝑘𝑐𝑜𝑚𝑙𝑓,𝑐𝑜𝑚

𝑘𝑡𝑒𝑛+𝑘𝑐𝑜𝑚
]     (3.72) 

which can be expressed as 

𝐹𝑡𝑐 = 𝑘𝑡𝑐(𝑥𝑡𝑐 − 𝑙𝑓,𝑡𝑐)        (3.73) 

where 

𝑘𝑡𝑐 = 𝑘𝑡𝑒𝑛 + 𝑘𝑐𝑜𝑚        (3.74) 

𝑙𝑓,𝑡𝑐 =
𝑘𝑡𝑒𝑛𝑙𝑓,𝑡𝑒𝑛+𝑘𝑐𝑜𝑚𝑙𝑓,𝑐𝑜𝑚

𝑘𝑡𝑐
       (3.75) 

and 

 𝑘𝑡𝑐 : Spring constant of the equivalent tension/compression spring 

 𝑙𝑓,𝑡𝑐 : Fictitious free length of the equivalent tension/compression spring 

Assuming that 𝑘𝑡𝑐 and 𝑙𝑓,𝑡𝑐 are specified in the desired manner, equations (3.74) and 

(3.75) constitute two equations with four unknowns (namely 𝑘𝑡𝑒𝑛, 𝑙𝑓,𝑡𝑒𝑛, 𝑘𝑐𝑜𝑚, 

𝑙𝑓,𝑐𝑜𝑚). Hence, it should always be possible to select these four unknowns, from the 

spring catalogs, such that equations (3.74) and (3.75) yield the desired 𝑘𝑡𝑐 and 𝑙𝑓,𝑡𝑐 

values (exactly, or very closely). 

As an illustrative numerical example, the force developed in tension, compression 

and tension/compression spring (i.e., 𝐹𝑡𝑒𝑛, 𝐹𝑐𝑜𝑚 and 𝐹𝑡𝑐, respectively) are presented 

in Figure 3.10.  
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Figure 3.10. Comparison of the force characteristics between tension, compression, 

and tension/compression springs 

The properties of the tension and compression springs used in Figure 3.10 are listed 

in Table 3.1. 

Table 3.1. Spring parameters used in the numerical example 

Spring Parameter Value 

𝑘𝑡𝑒𝑛 [𝑁/𝑚𝑚]  5 

𝑙𝑓,𝑡𝑒𝑛 [𝑚𝑚]  2 

𝑘𝑐𝑜𝑚 [𝑁/𝑚𝑚]  3 

𝑙𝑓,𝑐𝑜𝑚 [𝑚𝑚]  7 

3.3 MFG Damper (MFGD) 

In this study, MFG Damper (MFGD) denotes the mechanism that is obtained from 

MFG, such that it converts two linear, identical dampers (with constant damping 

coefficients) into two equivalent, virtual non-linear dampers. The two linear dampers 
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are attached between Links 1 and 3; and Links 1 and 5 (see Figure 3.1). The forces 

applied on Links 3 and 5, by the 2 linear dampers, are designated by 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3 and 

𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5 respectively (see Figure 3.11), where; 

𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3 = −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝𝑖       (3.76) 

𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5 = 𝐹𝑐ℎ𝑎,𝑑𝑚𝑝𝑖       (3.77) 

In equations (3.76) and (3.77) 

𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 = 𝑏𝑐ℎ𝑎𝑠̇𝑐ℎ𝑎       (3.78) 

where 

 𝑏𝑐ℎ𝑎 : Damping coefficient of the two linear, identical dampers 

 

Figure 3.11. Damper forces acting on MFG 

It should be noted that due to the physical nature of a damper, the damping 

coefficient cannot be smaller than zero, i.e., 

𝑏𝑐ℎ𝑎 > 0 
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Using the definition of 𝑠̇𝑐ℎ𝑎 given by equation (3.25) and equation (3.78), the damper 

force inside the chamber can be written as follows. 

𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 = 𝑏𝑐ℎ𝑎𝑥̇𝑟       (3.79) 

Referring to Figure 3.11, let the force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2, applied on Link 2, be the force 

which is equivalent to the damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3. In other words, for rigid body 

mechanics purposes, one can replace the damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3 with the equivalent 

force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2. Here, it should be noted that although the damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3 

is an actual force, the equivalent  force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 is fictitious. Similarly, let the force 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4, applied on Link 4, be a fictitious force which is equivalent to the actual 

damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5. In this study, the equivalent fictitious forces 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 and 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 will be represented as follows. 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 = 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝𝑘⃗⃗       (3.80) 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 = −𝐹𝑀𝐹𝐺,𝑑𝑚𝑝𝑘⃗⃗       (3.81) 

In equations (3.80) and (3.81): 

𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 = −𝑏𝑀𝐹𝐺[𝑠𝑀𝐹𝐺]𝑠̇𝑀𝐹𝐺     (3.82) 

where 

𝑏𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] : The damping coefficient of the two fictitious, identical 

equivalent dampers (which is a function of the variable 𝑠𝑀𝐹𝐺) which are 

assumed to be attached between the 𝑥⃗(1) axis and Link 2; and the 𝑥⃗(1) axis 

and Link 4 (see Figure 3.11) 

Note that 𝑏[𝑠𝑀𝐹𝐺] > 0 for all possible values of 𝑠𝑀𝐹𝐺 in the domain of its definition. 

Substituting equations (3.20) and (3.26) into equation (3.82), the fictitious non-linear 

damper force can be written as follows. 

𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 = −𝑏𝑀𝐹𝐺[𝑧𝑟]𝑧̇𝑟      (3.83) 
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where 

 𝑏𝑀𝐹𝐺[𝑧𝑟] > 0 

Here, it should be noted that the damping coefficient of the MFGD is defined as a 

function of position.  

It should also be noted that the equivalent damping coefficient of the fictitious 

damper, 𝑏𝑀𝐹𝐺, and the force developed in the fictitious damper, 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 (see 

equation (3.82)) have been specified in terms of 𝑠𝑀𝐹𝐺 and 𝑠̇𝑀𝐹𝐺. Using equation 

(3.43) (𝑠𝑀𝐹𝐺 = 𝑠2/4/2), on the other hand, 𝑠̇𝑀𝐹𝐺 is given by 

𝑠̇𝑀𝐹𝐺 = 𝑠̇2/4/2        (3.84) 

where 𝑠̇2/4/2 is the relative velocity (parallel to the 𝑧(1) direction) of Link 2 with 

respect to Link 4 (see Figure 3.11). Now, by replacing 𝑠𝑀𝐹𝐺 and 𝑠̇𝑀𝐹𝐺 that appear in 

equation (3.82) with the right hand sides of equation (3.43) and equation (3.84), one 

may conveniently obtain expressions that yield 𝑏𝑀𝐹𝐺 and 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 in terms of 

𝑠2/4/2 and 𝑠̇2/4/2. 

3.3.1 MFG Damper Slot Shape Determination 

Suppose that it is desired to design an MFGD such that the desired variation of the 

equivalent forces 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 and 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 (with respect to 𝑠𝑀𝐹𝐺 and 𝑠̇𝑀𝐹𝐺) are 

specified via the user-defined function 𝑏𝑀𝐹𝐺[𝑠𝑀𝐹𝐺]. Furthermore, suppose that the 

two identical linear dampers that are to be used in the MFGD have also been selected. 

Hence, the damping coefficient of these dampers (i.e., 𝑏𝑐ℎ𝑎) are also known. Now, 

by designing the shapes of the four symmetrical slots suitably; and by selecting the 

remaining kinematic dimensions of the MFGD appropriately, it is possible to design 

an MFGD which will generate the desired equivalent damping forces 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 and 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4. An algorithm that yields the shapes of slots and kinematic dimensions 

of the MFGD is presented in this section. 
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Neglecting gravitational, frictional and inertial effects, in order for the fictitious force 

𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 to be equivalent to the damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3, the instantaneous powers 

due to these two forces must be equal to each other at all times, i.e. 

𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3 ∙ 𝑣⃗3 = 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 ∙ 𝑣⃗2     (3.85) 

where 𝑣⃗3 and 𝑣⃗2 are the velocities of Links 3 and 2, respectively, which have been 

given previously as follows. 

𝑣⃗3 = 𝑠̇𝑐ℎ𝑎𝑖        (3.46)  

𝑣⃗2 = 𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (3.47) 

Substituting equations (3.76), (3.46), (3.80), and (3.47) into equation (3.85), one 

obtains 

−𝐹𝑐ℎ𝑎,𝑑𝑚𝑝𝑠̇𝑐ℎ𝑎 = 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝𝑠̇𝑀𝐹𝐺     (3.86) 

where 𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 and 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 are given by equations (3.78) and (3.82), respectively. 

Similarly, in order for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 to be equivalent to the damper 

force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5, the instantaneous powers due to these two forces must be equal to 

each other at all times, i.e. 

𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5 ∙ 𝑣⃗5 = 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 ∙ 𝑣⃗4     (3.87) 

where 𝑣⃗5 and 𝑣⃗4 are the velocities of Links 5 and 4, respectively, which have been 

given previously as follows. 

𝑣⃗5 = −𝑠̇𝑐ℎ𝑎𝑖        (3.50)  

𝑣⃗4 = −𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (3.51)  

Substituting equations (3.77), (3.50), (3.81), and (3.51) into equation (3.87), one 

obtains, once more, equation (3.86). Hence, equation (3.86) is, simultaneously, the 

condition for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,2 to be equivalent to the damper force 
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𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,3; and the condition for the fictitious force 𝐹⃗𝑀𝐹𝐺,𝑑𝑚𝑝,4 to be equivalent to 

the damper force 𝐹⃗𝑐ℎ𝑎,𝑑𝑚𝑝,5. 

Using equations (3.79), (3.83), (3.25), (3.26) and (3.22), equation (3.86) becomes 

𝑏𝑐ℎ𝑎 (
𝑑𝑥𝑟

𝑑𝑧𝑟
)

2
𝑧̇𝑟

2 = 𝑏𝑀𝐹𝐺[𝑧𝑟]𝑧̇𝑟
2   

which, upon simplification, yields   

(
𝑑𝑥𝑟

𝑑𝑧𝑟
)

2
=

𝑏𝑀𝐹𝐺[𝑧𝑟]

𝑏𝑐ℎ𝑎
       (3.88) 

Taking the square root of both sides, one obtains 

𝑑𝑥𝑟

𝑑𝑧𝑟
= ±√

𝑏𝑀𝐹𝐺[𝑧𝑟]

𝑏𝑐ℎ𝑎
       (3.89) 

Recall that 𝑏𝑀𝐹𝐺 > 0 for all possible values of 𝑧𝑟 in the domain of its definition. 

Furthermore, 𝑏𝑐ℎ𝑎 > 0 as well. Hence, it follows that equation (3.89) always yields 

two distinct and real solutions for 
𝑑𝑥𝑟

𝑑𝑧𝑟
. 

Now, let 

𝜎 = ±1  

and define 𝑔[𝑧𝑟] via the equation 

𝑔[𝑧𝑟] = √
𝑏𝑀𝐹𝐺[𝑧𝑟]

𝑏𝑐ℎ𝑎
       (3.90) 

Using the above two definitions and solving 𝑑𝑥𝑟 from equation (3.89), one obtains 

𝑑𝑥𝑟 = 𝜎𝑔[𝑧𝑟]𝑑𝑧𝑟       (3.91) 

The differential equation above is already in separated form and can be solved with 

direct integration using separation of variables (∫ 𝑓[𝑥]𝑑𝑥 = ∫ 𝑔[𝑦]𝑑𝑦) yielding 

∫ 𝑑𝑥𝑟
𝑥𝑟

(𝑥𝑟)𝑖
= ∫ 𝜎𝑔[𝑧𝑟]𝑑𝑧𝑟

𝑧𝑟

(𝑧𝑟)𝑖
      (3.92) 
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In equation (3.92), (𝑥𝑟)𝑖 and (𝑧𝑟)𝑖 are the x and z coordinates (in ℱ3) of a user 

selected point 𝑄𝑖 that it is required to lie on the path 𝑃1 (see Figure 3.2). Recall that 

𝑃1 is the path, on Link 3, on which the center of Roller 6 is restricted to move. 

Clearly, the lower limits of the integrals, (𝑥𝑟)𝑖 and (𝑧𝑟)𝑖, affect the solution for the 

slot shape centerline. So, selecting the limits accurately is essential in finding a 

feasible solution for a particular problem. The realizability checks (see Section 3.3.2) 

are always performed after the solution is obtained; however, a convenient selection 

of this point may reduce the amount of work spent on these realizability checks. For 

example, it is convenient to select the lower corners of the region 𝑅 in Figure 3.3 

(i.e. (𝑥𝑟)𝑖 = 𝑑𝑐𝑙𝑒 and (𝑧𝑟)𝑖 = 𝑑𝑐𝑙𝑒 or (𝑥𝑟)𝑖 = 𝑏3 − 𝑑𝑐𝑙𝑒 and (𝑧𝑟)𝑖 = 𝑐1 − 𝑑𝑐𝑙𝑒) 

which leads to a 3-step algorithm presented at the end of this section. 

Integrating equation (3.92), one obtains 

𝑥𝑟│
𝑥𝑟

 
(𝑥𝑟)𝑖

= 𝜎𝑝[𝑧𝑟]│
𝑧𝑟

 
(𝑧𝑟)𝑖

   

which yields  

𝑥𝑟 = 𝜎(𝑝[𝑧𝑟] − 𝑝[(𝑧𝑟)𝑖]) + (𝑥𝑟)𝑖     (3.93) 

where 

 𝑝[𝑧𝑟] = ∫ 𝑔[𝑧𝑟]𝑑𝑧𝑟 

Since 𝜎 = ±1, equation (3.93) can be rewritten as follows. 

(𝑥𝑟)𝑝,𝑛 = (𝑥𝑟)𝑖 ± (𝑝[𝑧𝑟] − 𝑝[(𝑧𝑟)𝑖])    (3.94) 

where (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 denote the two solutions (in terms of 𝑧𝑟) of the differential 

equation given by equation (3.89). Note that (𝑥𝑟)𝑝 denotes the solution with the (+) 

sign in equation (3.94). (𝑥𝑟)𝑛, on the other hand, denotes the solution with the (−) 

sign. These two solutions for 𝑥𝑟 yield two different 𝑃1 paths (see Figure 3.2), on 

which the center of Roller 6 is restricted to lie. 
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From equation (3.94), it follows that the two 𝑃1 paths thus obtained are symmetrical 

with respect to the line 𝑥𝑟 = (𝑥𝑟)𝑖. Furthermore, since 𝑔[𝑧𝑟] > 0 for all 𝑧𝑟, the 𝑃1 

curve corresponding to (𝑥𝑟)𝑝 will always lie “above” the line 𝑥𝑟 = (𝑥𝑟)𝑖 for 𝑧𝑟 >

(𝑧𝑟)𝑖. The 𝑃1 curve corresponding to (𝑥𝑟)𝑛, on the other hand, will always lie 

“below” the line 𝑥𝑟 = (𝑥𝑟)𝑖. These observations lead to a 3-step algorithm which 

may be used to determine 𝑃1 paths that lie in the allowable region 𝑅 (see Figure 3.3). 

(1) Let 

(𝑥𝑟)𝑖 = 𝑑𝑐𝑙𝑒         (3.95) 

(𝑧𝑟)𝑖 = 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛        (3.96) 

If 

(𝑥𝑟)𝑝│
 
 

𝑧𝑟 = 𝑙𝑀𝐹𝐺,𝑚𝑎𝑥

< (𝑏3 − 𝑑𝑐𝑙𝑒)     (3.97) 

then the path corresponding to (𝑥𝑟)𝑝 lies in the region 𝑅. Note that there may also 

be other 𝑃1 paths that lie in 𝑅 corresponding to the selection 

(𝑥𝑟)𝑖 > 𝑑𝑐𝑙𝑒         (3.98) 

(𝑧𝑟)𝑖 = 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛        (3.99) 

(2) Let 

(𝑥𝑟)𝑖 = 𝑏3 − 𝑑𝑐𝑙𝑒        (3.100) 

(𝑧𝑟)𝑖 = 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛        (3.101) 

If 

(𝑥𝑟)𝑛│
 
 

𝑧𝑟 = 𝑠𝑀𝐹𝐺,𝑚𝑎𝑥

> 𝑑𝑐𝑙𝑒      (3.102) 

then the path corresponding (𝑥𝑟)𝑛 lies in the region 𝑅. Note that there may also be 

other 𝑃1 paths that lie in 𝑅 corresponding to the selection 

(𝑥𝑟)𝑖 < 𝑏3 − 𝑑𝑐𝑙𝑒        (3.103)  
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(𝑧𝑟)𝑖 = 𝑙𝑀𝐹𝐺,𝑚𝑖𝑛        (3.104) 

(3) If steps (1) and (2) of the algorithm yield no allowable paths that lie fully in 

𝑅, then there exists no allowable paths, 𝑃1, that lie in 𝑅. 

3.3.2 MFG Damper Slot Shape Realizability Check 

The working range of a damper is limited by its shape in terms of displacement. In 

this study, the allowable minimum and maximum working strokes of a damper are 

defined as 𝑙𝑑𝑚𝑝,𝑚𝑖𝑛 and 𝑙𝑑𝑚𝑝,𝑚𝑎𝑥, respectively. Hence, in order to prevent a 

clash/contact at the damper, the following criterion should be satisfied. 

𝑙𝑑𝑚𝑝,𝑚𝑎𝑥 ≥ 𝑠𝑐ℎ𝑎 ≥ 𝑙𝑑𝑚𝑝,𝑚𝑖𝑛       (3.105)  

Since 𝑠𝑐ℎ𝑎 is defined as 𝑠𝑐ℎ𝑎 = 𝑏1 − 𝑏3 − 𝑠3 in equation (3.8) and 𝑠3 is defined as 

𝑠3 = 𝑏2 − 𝑥𝑟 in equation (3.18), equation (3.105) can be written as follows. 

𝑙𝑑𝑚𝑝,𝑚𝑎𝑥 − 𝑏1 + 𝑏2 + 𝑏3 ≥ 𝑥𝑟 ≥ 𝑙𝑑𝑚𝑝,𝑚𝑖𝑛 − 𝑏1 + 𝑏2 + 𝑏3  (3.106) 

3.4 Quadratic Equivalent Springs 

The solutions obtained in Section 3.2 are general solutions and applicable for any 

spring case. An example of slot shape determination and spring properties evaluation 

is performed for a quadratic spring characteristic of MFGS in Section 3.4.1. 

Examples of different spring characteristics are investigated in this section to 

evaluate the possible benefits of using MFGS for different purposes. 

Let the MFGS have a quadratic fictitious spring coefficient given by 

𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 𝑘2𝑠𝑀𝐹𝐺
2 + 𝑘1𝑠𝑀𝐹𝐺 + 𝑘0    (3.107) 

and let the fictitious free length of the MFGS be 𝑙0,𝑀𝐹𝐺.  

Referring to Figure 3.5, recall that 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 𝑘⃗⃗ and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 =

−𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 𝑘⃗⃗ are the forces applied by the fictitious spring on Links 2 and 4, 
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respectively. Hence, the forces applied by Links 2 and 4 on the fictitious spring will 

have the same magnitude (i.e., 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟) in the opposite direction. Hence, the energy 

stored in the MFGS is defined with the following equation. 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 ∫ −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

𝑙0,𝑀𝐹𝐺
    (3.108) 

In equation (3.108), the coefficient 2 is due to the fact that both of the forces 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 do contribute to the work done. The minus sign in equation 

(3.108), on the other hand, is because of the fact that the directions of the two forces 

applied on the spring and the directions of the displacements (i.e., 𝑑𝑠𝑀𝐹𝐺 and 

−𝑑𝑠𝑀𝐹𝐺) are opposite. 

Referring to equations (3.40) and (3.108), note that 

−2(𝐹𝑀𝐹𝐺,𝑠𝑝𝑟) =
𝑑𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
      (3.109) 

Now, let 𝑠𝑀𝐹𝐺 = (𝑠𝑀𝐹𝐺)𝑐𝑟 denote a critical point of 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 which is obtained by 

solving the equation 

−2(𝐹𝑀𝐹𝐺,𝑠𝑝𝑟) =
𝑑𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
= 0     (3.110) 

for 𝑠𝑀𝐹𝐺. Note that 𝑠𝑀𝐹𝐺 = (𝑠𝑀𝐹𝐺)𝑐𝑟 will correspond to an equilibrium point. 

Furthermore, let 𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] (namely, the equivalent stiffness corresponding to 

𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺]) be defined via the equation below. 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 0.5
𝑑2𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
2 =

𝑑(−𝐹𝑀𝐹𝐺,𝑠𝑝𝑟)

𝑑𝑠𝑀𝐹𝐺
    (3.111) 

Note that by differentiating −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 (given by equation (3.40)) with respect to 

𝑠𝑀𝐹𝐺, one obtains 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = −
𝑑𝑘𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
(𝑠𝑀𝐹𝐺 − 𝑙0,𝑀𝐹𝐺) − 𝑘𝑀𝐹𝐺  (3.112) 

which yields 𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] when 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] and  𝑙0,𝑀𝐹𝐺 are given. 
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Whether the equilibrium point given by equation (3.110) is stable or not, on the other 

hand, will depend upon whether 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 has a minimum, a maximum, or an 

inflection point at 𝑠𝑀𝐹𝐺 = (𝑠𝑀𝐹𝐺)𝑐𝑟. In order to determine the nature of the critical 

point 𝑠𝑀𝐹𝐺 = (𝑠𝑀𝐹𝐺)𝑐𝑟, one may use the higher order derivative test, which yields 

the following results. 

(i) If 𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟] < 0, then (𝑠𝑀𝐹𝐺)𝑐𝑟 corresponds to a maximum of 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟. Therefore, the equilibrium point corresponding to (𝑠𝑀𝐹𝐺)𝑐𝑟 is 

unstable. 

(ii) If 𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟] > 0, then (𝑠𝑀𝐹𝐺)𝑐𝑟 corresponds to a minimum of 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟. Therefore, the equilibrium point corresponding to (𝑠𝑀𝐹𝐺)𝑐𝑟 is 

stable. 

(iii) If 𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟] = 0 and 
𝑑𝑘̂𝑀𝐹𝐺

𝑑𝑠𝑀𝐹𝐺
[(𝑠𝑀𝐹𝐺)𝑐𝑟] ≠ 0, then (𝑠𝑀𝐹𝐺)𝑐𝑟 

corresponds to an inflection point of 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟. Therefore, the equilibrium 

point corresponding to (𝑠𝑀𝐹𝐺)𝑐𝑟 is marginally-stable (which is 

considered to be unstable). 

3.4.1 Special Cases of a Quadratic, Non-Linear Spring 

The MFGS was previously introduced as a fictitious non-linear spring. If one defines 

the force characteristic required from a spring, then the MFGS can be designed to 

satisfy that requirement. The flexibility of this definition may enable further ideas 

about the use of MFGS. Thus, some special spring characteristics are investigated in 

this section. The force created at MFGS was previously defined in equation (3.40) 

as follows. 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺](𝑠𝑀𝐹𝐺 − 𝑙0,𝑀𝐹𝐺)    (3.40)  

Again, it shall be noted that, 𝑘𝑀𝐹𝐺 is fictitious spring coefficient of that fictitious 

spring. However, some important properties of a spring are solely defined with the 

stiffness of that spring which is defined as 
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𝑘̂𝑀𝐹𝐺 =
𝑑(𝐹𝑀𝐹𝐺,𝑠𝑝𝑟)

𝑑𝑠𝑀𝐹𝐺
       (3.113) 

Thus, five special spring cases are defined and investigated for their special 

properties. 

The following set of parameters have been used to find a solution. 

Table 3.2. Coefficients of the spring coefficient given by equation (3.107) 

Spring Case 𝑘2 [𝑁/𝑚𝑚3] 𝑘1 [𝑁/𝑚𝑚2] 𝑘0 [𝑁/𝑚𝑚] 𝑙0,𝑀𝐹𝐺  [𝑚𝑚] 

1 1 1 200 10 

2 1 20 -100 10 

3 0 2 -50 10 

3.4.1.1 Spring Case 1 

The spring coefficient corresponding to the first spring is 

𝑘𝑀𝐹𝐺,1 = 𝑠𝑀𝐹𝐺
2 + 𝑠𝑀𝐹𝐺 + 200 𝑁/𝑚𝑚    (3.114) 

Accordingly, the spring force in Case 1 is 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,1 = (𝑠𝑀𝐹𝐺
2 + 𝑠𝑀𝐹𝐺 + 200)(𝑠𝑀𝐹𝐺 − 10) 𝑁   (3.115) 

Taking derivative of −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,1 w.r.t. 𝑠𝑀𝐹𝐺 (as explained in equation (3.111)), 

equation (3.115) yields 

𝑘̂𝑀𝐹𝐺,1 = −3𝑠𝑀𝐹𝐺
2 + 18𝑠𝑀𝐹𝐺 − 190 𝑁/𝑚𝑚   (3.116) 

As presented in Figure 3.12, spring stiffness is less than zero for all 𝑠𝑀𝐹𝐺, i.e.,  

𝑘̂𝑀𝐹𝐺,1[𝑠𝑀𝐹𝐺] < 0 for any 𝑠𝑀𝐹𝐺     (3.117) 
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Figure 3.12. Spring stiffness for Spring Case 1 

Taking the integral of −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,1, one can obtain the energy stored in the spring 

such that 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 ∫ −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

𝑙0,𝑀𝐹𝐺
, defined in equation (3.108), as 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,1 = −
(𝑠𝑀𝐹𝐺−10)2(𝑠𝑀𝐹𝐺

2 +8𝑠𝑀𝐹𝐺+440)

2000
 𝐽𝑜𝑢𝑙𝑒    (3.118) 

Now, solving 
𝑑𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
= 0 given by equation (3.110), one obtains only one critical 

point for case 1 as 

(𝑠𝑀𝐹𝐺,1)
𝑐𝑟

= 10 𝑚𝑚       (3.119) 

Using the higher order derivative test, one can determine 

𝑘̂𝑀𝐹𝐺,1 [(𝑠𝑀𝐹𝐺,1)
𝑐𝑟

] = −310 𝑁/𝑚𝑚 < 0    (3.120) 

Thus, (𝑠𝑀𝐹𝐺,1)
𝑐𝑟

= 10 𝑚𝑚 is an unstable equilibrium point which can be observed 

from 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,1 plot in Figure 3.18. 
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3.4.1.2 Spring Case 2 

The spring coefficient corresponding to the second spring is  

𝑘𝑀𝐹𝐺,2 = 𝑠𝑀𝐹𝐺
2 + 20𝑠𝑀𝐹𝐺 − 100 𝑁/𝑚𝑚     (3.121) 

Accordingly, the spring force in Case 2 is 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2 = (𝑠𝑀𝐹𝐺
2 + 20𝑠𝑀𝐹𝐺 − 100)(𝑠𝑀𝐹𝐺 − 10) 𝑁  (3.122) 

Taking the derivative w.r.t. 𝑠𝑀𝐹𝐺, equation (3.122) yields 

𝑘̂𝑀𝐹𝐺,2 = −3𝑠𝑀𝐹𝐺
2 − 20𝑠𝑀𝐹𝐺 + 300 𝑁/𝑚𝑚   (3.123) 

As presented in Figure 3.13, spring stiffness may acquire negative or positive values. 

 

Figure 3.13. Spring stiffness for Spring Case 2 

Taking the integral of −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2, one can obtain the energy stored in the spring 

such that 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 ∫ −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

𝑙0,𝑀𝐹𝐺
, defined in equation (3.108), as 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,2 = −
(𝑠𝑀𝐹𝐺−10)2(3𝑠𝑀𝐹𝐺

2 +100𝑠𝑀𝐹𝐺−100)

6000
 𝐽𝑜𝑢𝑙𝑒   (3.124) 
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Now, solving 
𝑑𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
= 0 given by equation (3.110), one obtains three critical 

points for case 2 as 

(𝑠𝑀𝐹𝐺,2)
𝑐𝑟,1,2,3

= −24.14, 4.14, 10 𝑚𝑚    (3.125) 

Using the higher order derivative test, one can determine 

𝑘̂𝑀𝐹𝐺,2 [(𝑠𝑀𝐹𝐺,2)
𝑐𝑟,1

] = −965.4 𝑁/𝑚𝑚 < 0   (3.126) 

𝑘̂𝑀𝐹𝐺,2 [(𝑠𝑀𝐹𝐺,2)
𝑐𝑟,2

] = 165.8 𝑁/𝑚𝑚 > 0    (3.127) 

𝑘̂𝑀𝐹𝐺,2 [(𝑠𝑀𝐹𝐺,2)
𝑐𝑟,3

] = −200 𝑁/𝑚𝑚 < 0    (3.128) 

Thus, (𝑠𝑀𝐹𝐺,2)
𝑐𝑟,1

= −24.14 𝑚𝑚 and (𝑠𝑀𝐹𝐺,2)
𝑐𝑟,3

= 10 𝑚𝑚 are unstable 

equilibrium points which can be observed from 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,2 plot in Figure 3.18, where 

(𝑠𝑀𝐹𝐺,2)
𝑐𝑟,2

= 4.14 𝑚𝑚 is a stable equilibrium point. 

3.4.1.3 Spring Case 3 

The third case represents linear spring characteristics, since 𝑘2 is zero. Hence, the 

spring coefficient corresponding to the third spring is 

𝑘𝑀𝐹𝐺,3 = 2𝑠𝑀𝐹𝐺 − 50 𝑁/𝑚𝑚     (3.129) 

Accordingly, the spring force in Case 3 is 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,3 = (2𝑠𝑀𝐹𝐺 − 50)(𝑠𝑀𝐹𝐺 − 10) 𝑁    (3.130) 

Taking derivative w.r.t. 𝑠𝑀𝐹𝐺, equation (3.130) yields 

𝑘̂𝑀𝐹𝐺,3 = −4𝑠𝑀𝐹𝐺 + 70 𝑁/𝑚𝑚     (3.131) 

As presented in Figure 3.14, spring stiffness is a linear curve that may acquire 

negative or positive values. 
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Figure 3.14. Spring stiffness for Spring Case 3 

Taking the integral of −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,3, one can obtain the energy stored in the spring 

such that 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 ∫ −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

𝑙0,𝑀𝐹𝐺
, defined in equation (3.108), as 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,3 = −
(𝑠𝑀𝐹𝐺−10)2(2𝑠𝑀𝐹𝐺−65)

1500
 𝐽𝑜𝑢𝑙𝑒     (3.132) 

Now, solving 
𝑑𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
= 0 given by equation (3.110), one obtains two critical points 

for case 3 as 

(𝑠𝑀𝐹𝐺,3)
𝑐𝑟,1,2

= 10, 25 𝑚𝑚      (3.133) 

Using the higher order derivative test, one can determine 

𝑘̂𝑀𝐹𝐺,3 [(𝑠𝑀𝐹𝐺,3)
𝑐𝑟,1

] = 30 𝑁/𝑚𝑚 > 0    (3.134) 

𝑘̂𝑀𝐹𝐺,3 [(𝑠𝑀𝐹𝐺,3)
𝑐𝑟,2

] = −30 𝑁/𝑚𝑚 < 0    (3.135) 

Thus, (𝑠𝑀𝐹𝐺,3)
𝑐𝑟,1

= 10 𝑚𝑚 is a stable and (𝑠𝑀𝐹𝐺,3)
𝑐𝑟,2

= 25 𝑚𝑚 is an unstable 

equilibrium point which can be observed from 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,3 plot in Figure 3.18. 
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3.4.1.4 Spring Case 4 

In this case study, an MFGS-4-gr (see Figure A.1 in Appendix A) which can act as 

a high-static-low-dynamic-stiffness (HSLDS) spring [24], [25] will be designed. 

Referring to Figure A.1, 𝑚𝐿 denotes the mass of a load that is placed on Link 2 

(which is assumed to be a vibration isolation table), and 𝑔 denotes the gravitational 

acceleration. 𝐿 is the vertical distance between 𝑂2 and 𝑚𝐿; and 𝑠𝑀𝐹𝐺,𝑒𝑞 is the value 

of 𝑠𝑀𝐹𝐺 such that Link 2 in Figure A.1 is in static equilibrium. 𝐻, on the other hand, 

denotes horizontal line, attached rigidly to the ground, which is the reference line for 

gravitational potential energy (due to the mass 𝑚𝐿). 

In the previous 3 cases, 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 has been defined via equation (3.40) by specifying 

the user defined function 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] and the user defined parameter 𝑙0,𝑀𝐹𝐺. Note 

that, in order to define 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 it is not necessary to use equation (3.40). In other 

words, one could define 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 directly as a function of 𝑠𝑀𝐹𝐺 which is the method 

that will be adapted in this case study. Now, considering equations (A.1) and (A.11) 

in Appendix A, let the desired 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 be given via the equation 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 𝑐(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)
𝑛

+ 𝑚𝐿𝑔  (3.136) 

In equation (3.136), 𝑐 is a constant such that 

𝑐 < 0         (3.137) 

and 𝑛 is an odd, positive integer such that  

𝑛 ≥ 3         (3.138) 

i.e., 𝑛 = 3, 5, 7, … etc. Recall that 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 is the force applied on 

Link 2 by the fictitious spring. Hence, the force applied on the fictitious spring by 

Link 2 is −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 = −𝐹𝑀𝐹𝐺,𝑠𝑝𝑟. Hence, the energy stored in the spring is 

given by 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 ∫ (−𝐹𝑀𝐹𝐺,𝑠𝑝𝑟)𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

𝑠𝑀𝐹𝐺,𝑒𝑞
    (3.139) 
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which, upon substituting equation (3.136), yields 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = 2 [−
𝑐

𝑛+1
(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)

𝑛+1
− 𝑚𝐿𝑔(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)] (3.140) 

The multiplier 2 in front of the integral on the right hand side of equation (3.139) is 

due to the fact that when 𝑠𝑀𝐹𝐺 increases by an amount of 𝑑𝑠𝑀𝐹𝐺, the displacement 

(in the 𝑘⃗⃗ direction) of the application point of 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 (i.e., point 𝑂2) will be 

2𝑑𝑠𝑀𝐹𝐺. 𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺], on the other hand, is given by 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] =
𝑑(−𝐹𝑀𝐹𝐺,𝑠𝑝𝑟)

𝑑𝑠𝑀𝐹𝐺
      (3.141) 

which, upon substituting equation (3.136), yields 

 𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = −𝑐𝑛(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)
𝑛−1

    (3.142) 

Note that, considering equations (3.139) and (3.141), one obtains 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 0.5
𝑑2𝐸𝑀𝐹𝐺,𝑠𝑝𝑟

𝑑𝑠𝑀𝐹𝐺
2       (3.143) 

Now, differentiating equation (3.142) with respect to 𝑠𝑀𝐹𝐺 twice, one obtains 

𝑘̂𝑀𝐹𝐺
′ [𝑠𝑀𝐹𝐺] =

𝑑𝑘̂𝑀𝐹𝐺

𝑑𝑠𝑀𝐹𝐺
= −𝑐(𝑛 − 1)𝑛(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)

𝑛−2
  (3.144) 

𝑘̂𝑀𝐹𝐺
′′ [𝑠𝑀𝐹𝐺] =

𝑑2𝑘̂𝑀𝐹𝐺

𝑑𝑠𝑀𝐹𝐺
2 = −𝑐(𝑛 − 2)(𝑛 − 1)𝑛(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)

𝑛−3
 (3.145) 

where, 𝑘̂𝑀𝐹𝐺
′ [𝑠𝑀𝐹𝐺] denotes the first, 𝑘̂𝑀𝐹𝐺

′′ [𝑠𝑀𝐹𝐺] denotes the second derivative of 

𝑘̂𝑀𝐹𝐺 with respect to 𝑠𝑀𝐹𝐺. 

Let, now, the horizontal, stationary line 𝐻 (see Figure A.1) be the reference line for 

gravitational potential energy. Hence, the gravitational potential energy due to the 

mass 𝑚𝐿, 𝐸𝑔, will be given by 

𝐸𝑔 = 2𝑚𝐿𝑔(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)     (3.146) 
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Hence, the total potential energy of the system (due to fictitious spring and the 

gravitational potential energy due to the mass 𝑚𝐿), 𝑃𝐸, will be 

𝑃𝐸 = 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 + 𝐸𝑔       (3.147) 

which, upon substituting equations (3.140) and (3.146), yields 

𝑃𝐸 = −2
𝑐

𝑛+1
(𝑠𝑀𝐹𝐺 − 𝑠𝑀𝐹𝐺,𝑒𝑞)

𝑛+1
     (3.148) 

Now, consider the following numerical values for 𝑚𝐿, 𝑔, 𝑛, 𝑐 and 𝑠𝑀𝐹𝐺,𝑒𝑞. 

𝑚𝐿 = 1 𝑘𝑔         

𝑔 = 9.807 𝑚/𝑠2          

𝑛 = 3         (3.149) 

𝑐 = −3 𝑁/𝑐𝑚3         

𝑠𝑀𝐹𝐺,𝑒𝑞 = 8 𝑐𝑚    

Using the above randomly selected numerical values, equations (3.136), (3.140), 

(3.142), (3.144), (3.145), (3.146) and (3.148) yield 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 10 − 3(𝑠𝑀𝐹𝐺 − 8)3 𝑁     (3.150) 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟 = −20(𝑠𝑀𝐹𝐺 − 8) + 1.5(𝑠𝑀𝐹𝐺 − 8)4 𝑁𝑐𝑚  (3.151) 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 9(𝑠𝑀𝐹𝐺 − 8)2 𝑁/𝑐𝑚     (3.152) 

𝑘̂𝑀𝐹𝐺
′ [𝑠𝑀𝐹𝐺] = 18(𝑠𝑀𝐹𝐺 − 8) 𝑁/𝑐𝑚2     (3.153) 

𝑘̂𝑀𝐹𝐺
′′ [𝑠𝑀𝐹𝐺] = 18 𝑁/𝑐𝑚3      (3.154) 

𝐸𝑔 = 20(𝑠𝑀𝐹𝐺 − 8) 𝑁/𝑐𝑚      (3.155) 

𝑃𝐸 = 1.5(𝑠𝑀𝐹𝐺 − 8)4 𝑁/𝑐𝑚      (3.156) 

respectively, where 𝑠𝑀𝐹𝐺 is measured in centimeters. 



 

 

67 

In Figure 3.15, 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟, 𝑃𝐸, 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟, 𝑘̂𝑀𝐹𝐺, 
𝑑𝑘̂𝑀𝐹𝐺

𝑑𝑠𝑀𝐹𝐺
 and 

𝑑2𝑘̂𝑀𝐹𝐺

𝑑𝑠𝑀𝐹𝐺
2  are plotted as a 

function of 𝑠𝑀𝐹𝐺 (for the data set given in equation (3.149)). As can be observed 

from the plot of 𝑃𝐸 in part b, potential energy is minimum at the equilibrium position 

given by 𝑠𝑀𝐹𝐺 = 𝑠𝑀𝐹𝐺,𝑒𝑞 = 8 𝑐𝑚. Hence, 𝑠𝑀𝐹𝐺 = 𝑠𝑀𝐹𝐺,𝑒𝑞 = 8 𝑐𝑚 is a stable 

equilibrium point. As can be observed from the plot of 𝑘̂𝑀𝐹𝐺 in part d, 𝑘̂𝑀𝐹𝐺 = 0 at 

this stable equilibrium position. Furthermore, in the vicinity of the equilibrium 

position 𝑘̂𝑀𝐹𝐺 is positive, but “close” to zero. 

 

Figure 3.15. Plots of: a) 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟, b) 𝑃𝐸, c) 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟, d) 𝑘̂𝑀𝐹𝐺, e) 𝑘̂𝑀𝐹𝐺
′ , f) 𝑘̂𝑀𝐹𝐺

′′  as 

a function of 𝑠𝑀𝐹𝐺 
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Note that, the 𝑘̂𝑀𝐹𝐺 curve will be more “flat” around the equilibrium position as 𝑛 

gets larger. In Figure 3.16, plots of 𝑘̂𝑀𝐹𝐺 are compared for cases of 𝑛 = 3 and 𝑛 =

5. Other than 𝑛, the numerical data used to obtain these plots are identical with the 

numerical data given by equation (3.149), except the unit of 𝑐 is “𝑁/𝑐𝑚5” for 𝑛 =

5. 

 

Figure 3.16. Comparison of 𝑘̂𝑀𝐹𝐺 plots for 𝑛 = 3 and 𝑛 = 5 

Figure 3.17, on the other hand, shows the effect of the parameter 𝑐 on the 𝑘̂𝑀𝐹𝐺 curve. 

In this figure, plots of 𝑘̂𝑀𝐹𝐺 are compared for the cases of 𝑐 = −3 𝑁/𝑐𝑚3 and 𝑐 =

−0.5 𝑁/𝑐𝑚3. Other than 𝑐, the numerical data used to obtain these plots are identical 

with the numerical data given by equation (3.149). 
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Figure 3.17. Comparison of 𝑘̂𝑀𝐹𝐺 plots for 𝑐 = −3 and 𝑐 = −0.5 

3.4.2 Comparison of Spring Cases 

In Figure 3.18, the properties of different fictitious springs are plotted as a function 

of displacement, 𝑠𝑀𝐹𝐺. The first row of plots is the spring stiffness curves, 𝑘̂𝑀𝐹𝐺. At 

the second row, the force characteristic of the corresponding MFGS is plotted. These 

force characteristics are obtained according to the equation (3.40) and are dependent 

on the fictitious free length of the MFGS. The energy stored in MFGS is calculated 

and plotted in the third row of Figure 3.18, which is defined in equation (3.108). 
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Figure 3.18. Properties of MFGS for Special Spring Cases 
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3.5 Design Examples of MFG 

Theoretical solution for the design of an MFG for a spring and a damper is 

mathematically performed in Sections 3.2 and 3.3 previously. Examples of MFGS 

and MFGD design for given dimensions and properties of damper and spring are 

explained in this section. 

3.5.1 Illustrative Example for MFGS 

A step-by-step example of slot shape determination of MFGS for given parameters 

has been presented in this section. Note that all dimensions and spring properties in 

this section are arbitrarily selected. The units are used for the sake of convenience. 

Assume that a spring with non-linear characteristics, so called an equivalent spring, 

is desired. Let that spring have the desired force characteristics, 𝐹𝑑𝑒𝑠, same with the 

Spring Case 2 defined in Section 3.4.1 as follows. 

𝑘𝑑𝑒𝑠[𝑠𝑑𝑒𝑠] = 𝑠𝑑𝑒𝑠
2 + 20𝑠𝑑𝑒𝑠 − 100 𝑁/𝑚𝑚    (3.157) 

𝑙0,𝑑𝑒𝑠 = 10 𝑚𝑚       (3.158) 

where 

𝑙0,𝑑𝑒𝑠  : Fictitious free length of the desired equivalent spring 

𝑘𝑑𝑒𝑠[𝑠𝑑𝑒𝑠] : Spring coefficient of the desired equivalent spring 

𝑠𝑑𝑒𝑠  : Length of the desired spring 

Referring to equation (3.40), force characteristic of such spring, 𝐹𝑑𝑒𝑠, can be defined 

as 

𝐹𝑑𝑒𝑠[𝑠𝑑𝑒𝑠] = (𝑠𝑑𝑒𝑠
2 + 20𝑠𝑑𝑒𝑠 − 100)(𝑠𝑑𝑒𝑠 − 10) 𝑁   (3.159)  

which is presented in Figure 3.19. 
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Figure 3.19. Desired force characteristics of equivalent spring (Spring Case 2) 

It is assumed that the spring defined in equation (3.159), has a working envelope 

between 𝑠𝑑𝑒𝑠 = −40 𝑚𝑚 to 𝑠𝑑𝑒𝑠 = 40 𝑚𝑚. 

Let this equivalent spring defined in equation (3.159), be designed using an MFG 

with the following dimensions, 

𝑏1 = 100 𝑚𝑚        (3.160) 

𝑏2 = 65 𝑚𝑚        (3.161) 

𝑏3 = 50 𝑚𝑚        (3.162) 

𝑐1 = 100 𝑚𝑚        (3.163) 

𝑑𝑐𝑙𝑒 = 10 𝑚𝑚       (3.164) 

and a spring with the following characteristics. 

𝑘𝑐ℎ𝑎 = 4000 𝑁/𝑚𝑚       (3.165) 

𝑙𝑓,𝑐ℎ𝑎 = 25 𝑚𝑚       (3.166)  
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Referring to Figure 3.3, an MFG with dimension defined in equations (3.160), 

(3.161), (3.162) and (3.163) would have the allowable region presented in Figure 

3.20. 

 

Figure 3.20. Allowable region 𝑅 for MFGS 

Referring to equation (3.14) (𝑑𝑐𝑙𝑒 ≤ 𝑠𝑀𝐹𝐺 ≤ 𝑐1 − 𝑑𝑐𝑙𝑒), the stroke of the MFG, 

𝑠𝑀𝐹𝐺, shall be in accordance with the following equation. 

10 𝑚𝑚 ≤ 𝑠𝑀𝐹𝐺 ≤ 90 𝑚𝑚      (3.167)  

The force characteristics defined in Spring Case 2 is not suitable to design an MFGS 

directly because 𝑠𝑀𝐹𝐺 has a working envelope starting from 10 𝑚𝑚 as defined in 

equation (3.167). However, the working envelope defined in the Spring Case 2 starts 

from 𝑠𝑑𝑒𝑠 = −40 𝑚𝑚 (see Figure 3.19). Thus, the working envelope defined in 𝑠𝑑𝑒𝑠 

domain needs to be shifted to be assumed as 𝑠𝑀𝐹𝐺 to design the MFGS. Thus, the 

non-linear force characteristics of MFGS is defined by making the following change 

in 𝐹𝑑𝑒𝑠 (see equation (3.159)). 

𝑠𝑑𝑒𝑠 = 𝑠𝑀𝐹𝐺 − 50 𝑚𝑚      (3.168)  
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If equation (3.168) is plugged in equation (3.159), one obtains 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[𝑠𝑀𝐹𝐺] = (𝑠𝑀𝐹𝐺
2 − 80𝑠𝑀𝐹𝐺 + 1400)(𝑠𝑀𝐹𝐺 − 60) 𝑁 (3.169)  

where the spring coefficient and fictitious free length of the spring would be as 

𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 𝑠𝑀𝐹𝐺
2 − 80𝑠𝑀𝐹𝐺 + 1400 𝑁/𝑚𝑚   (3.170) 

𝑙0,𝑀𝐹𝐺 = 60 𝑚𝑚       (3.171) 

The spring coefficient of the MFGS, i.e., 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺], is presented in Figure 3.21. 

 

Figure 3.21. Spring coefficient of the MFGS 

Thus, the MFGS that is wanted to be designed would have a force characteristic as 

presented in Figure 3.22.  
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Figure 3.22. Force characteristics of MFGS 

Referring to equation (3.111), one could determine the spring stiffness of the MFGS 

as 

𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = −3𝑠𝑀𝐹𝐺
2 + 280𝑠𝑀𝐹𝐺 − 6200   (3.172) 

plotted in Figure 3.23. 

 

Figure 3.23. Spring stiffness of MFGS, 𝑘̂𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] 
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The equilibrium points of this MFGS can be found using equation (3.110), in which 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 = 0 at these points, can be found as follows. 

(𝑠𝑀𝐹𝐺)𝑐𝑟,1 = 25.858 𝑚𝑚        

(𝑠𝑀𝐹𝐺)𝑐𝑟,2 = 54.142 𝑚𝑚      (3.173) 

(𝑠𝑀𝐹𝐺)𝑐𝑟,3 = 60 𝑚𝑚        

Using the spring stiffness found in equation (3.172), the equilibrium points found in 

equation (3.173) can be tested for stability by plugging the points defined by equation 

(3.173) into equation (3.172) as 

𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟,1] ≅ −965.7 𝑁/𝑚𝑚 < 0      

𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟,2] ≅ 165.7 𝑁/𝑚𝑚 > 0    (3.174) 

𝑘̂𝑀𝐹𝐺[(𝑠𝑀𝐹𝐺)𝑐𝑟,3] = −200 𝑁/𝑚𝑚 < 0     

Thus, (𝑠𝑀𝐹𝐺)𝑐𝑟,2 is a stable equilibrium point where (𝑠𝑀𝐹𝐺)𝑐𝑟,1 and (𝑠𝑀𝐹𝐺)𝑐𝑟,3 are 

unstable equilibrium points. 

Furthermore, the energy stored in MFGS, 𝐸𝑀𝐹𝐺,𝑠𝑝𝑟, is found by using equation 

(3.108) and plotted with in Figure 3.24 with the equilibrium points indicated as 

follows. 
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Figure 3.24. Energy stored in MFGS 

So, as the dimensions of the MFGS and properties of the spring installed inside the 

chamber are given, slot shape can be determined for the equivalent spring in equation 

(3.169). Referring to equation (3.52), the equilibrium of instantaneous power is 

obtained as follows. 

−4000(𝑥𝑟 − 40) 𝑑𝑥𝑟 = 𝑧𝑟
2 − 80𝑧𝑟 + 1400(𝑧𝑟 − 60)𝑑𝑧𝑟  (3.175) 

Rearranging the terms, the integral of equation (3.175) can be obtained as follows 

∫ (𝑥𝑟 − 40)𝑑𝑥𝑟
𝑥𝑟

20
= ∫ ℎ[𝑧𝑟]𝑑𝑧𝑟

𝑧𝑟

20
     (3.176)  

where 

ℎ[𝑧𝑟] = −
𝑧𝑟

2−80𝑧𝑟+1400

4000
(𝑧𝑟 − 60)     (3.177)  

The limits of the integrals in equation (3.176) are selected as (𝑥𝑟)𝑖 = 20 and (𝑧𝑟)𝑖 =

20 in a sensible manner with respect to the allowable region 𝑅 defined in Figure 

3.20. 

With taking the integral, equation (3.176) yields 
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𝑥𝑟
2 − 40𝑥𝑟 + 𝑞[𝑧𝑟] = 0      (3.178) 

where 

 𝑞[𝑧𝑟] = −2𝑝[𝑧𝑟] − 𝐾1 + 2𝐾2 + 2𝐾3  

𝑝[𝑧𝑟] = −
𝑧𝑟

4

16000
+

7𝑧𝑟
3

600
−

31𝑧𝑟
2

40
+ 21𝑧𝑟    

𝐾1 = 400  

𝐾2 = 800  

𝐾3 =
580

3
  

Referring to equation (3.59), two solutions are obtained as follows 

(𝑥𝑟)𝑝,𝑛 = 40 ± √Δ[𝑧𝑟]      (3.179) 

where 

Δ[𝑧𝑟] = 1600 − 𝑞[𝑧𝑟]  

The two solutions for the slot shapes obtained in equation (3.179), are presented in 

Figure 3.25. Since the selected limits of the integral in equation (3.176), i.e., (𝑥𝑟)𝑖 =

20 and (𝑧𝑟)𝑖 = 20 are on (𝑥𝑟)𝑛, (𝑥𝑟)𝑝 is not the solution to this problem. 
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Figure 3.25. Solutions for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 (for (𝑥𝑟)𝑖 = 20, (𝑧𝑟)𝑖 = 20) 

If one applies the solutions found in equation (3.179), to the allowable region 𝑅 of 

MFGS defined in Figure 3.20, one can observe that the slot shape center line sits 

inside the allowable region. 

 

Figure 3.26. (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 on MFGS with selection of (𝑥𝑟)𝑖 = 20, (𝑧𝑟)𝑖 = 20 
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Since the solution for the slot shape is found in equation (3.179) as 𝑥𝑟 as function of 

𝑧𝑟, if one takes derivative of (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛, one can obtain the velocity influence 

coefficient of the MFGS, i.e., 
𝑑𝑥𝑟

𝑑𝑧𝑟
 which relates 𝑧̇𝑟 with 𝑥̇𝑟 as in equation (3.22), 

respectively as (
𝑑𝑥𝑟

𝑑𝑧𝑟
)

𝑛
 and (

𝑑𝑥𝑟

𝑑𝑧𝑟
)

𝑝
. The velocity influence coefficients for (𝑥𝑟)𝑝 and 

(𝑥𝑟)𝑛 are presented in Figure 3.27. 

 

Figure 3.27. Velocity influence coefficient, 
𝑑𝑥𝑟

𝑑𝑧𝑟
, for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 

Note that, (𝑥𝑟)𝑛 is the feasible solution for an MFGS with the given dimensions. 

Thus, the position and velocity properties of the mechanism are investigated with 

respect to (𝑥𝑟)𝑛. 

Position and velocity analysis of the MFGS is performed referring to position LCEs 

and VLEs defined in (3.19), (3.20), (3.25) and (3.26). Using (𝑥𝑟)𝑛 as the kinematic 

dimension of the system, solutions for those LCEs and VLEs are obtained as follows. 

𝑠𝑐ℎ𝑎 = (𝑥𝑟)𝑛 + 𝑏1 − 𝑏3 − 𝑏2      (3.180) 

𝑠𝑀𝐹𝐺 = 𝑧𝑟         (3.181) 
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𝑠̇𝑐ℎ𝑎 = 𝑥̇𝑟 =
𝑑𝑥𝑟

𝑑𝑧𝑟
[𝑧𝑟]𝑧̇𝑟      (3.182) 

𝑠̇𝑀𝐹𝐺 = 𝑧̇𝑟         (3.183) 

𝑠𝑐ℎ𝑎 and 𝑠𝑀𝐹𝐺 are determined with respect to 𝑧𝑟 for 𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 < 𝑠𝑀𝐹𝐺 < 𝑠𝑀𝐹𝐺,𝑚𝑎𝑥 in 

Figure 3.28. 𝑠̇𝑐ℎ𝑎 and 𝑠̇𝑀𝐹𝐺 evaluated with respect to 𝑧𝑟 with taking 𝑠̇𝑀𝐹𝐺 as unit 

velocity (𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠) in Figure 3.29. 

 

Figure 3.28. Position analysis of the example MFGS 
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Figure 3.29. Velocity analysis of the example MFGS for 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠 

The power input due to 𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 is defined as 

𝑃𝑐ℎ𝑎,𝑠𝑝𝑟 = −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑠̇𝑐ℎ𝑎       (3.184) 

while the power input due to 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 is defined as 

𝑃𝑀𝐹𝐺,𝑠𝑝𝑟 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑠̇𝑀𝐹𝐺       (3.185) 

As a final check, the power inputted due to spring inside the chamber, 𝑃𝑐ℎ𝑎,𝑠𝑝𝑟, and 

power inputted due to MFGS, 𝑃𝑀𝐹𝐺,𝑠𝑝𝑟, are compared. 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 and −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 are 

presented in Figure 3.30 with respect to 𝑠𝑀𝐹𝐺. 𝑠̇𝑐ℎ𝑎 was also presented in Figure 3.29 

with respect to 𝑠𝑀𝐹𝐺 (note that 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠). 
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Figure 3.30. 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 and −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 w.r.t. 𝑠𝑀𝐹𝐺 

Referring to equation (3.184) and equation (3.185), if “−𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 in Figure 3.30” is 

multiplied with “𝑠̇𝑐ℎ𝑎 in Figure 3.29”, “𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 in Figure 3.30” will be obtained 

(remember that 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠). 

3.5.2 Illustrative Example for MFGD 

Note that all dimensions and damper properties in this section are arbitrarily selected. 

The units are used for the sake of convenience. 

Assume that an equivalent damper with non-linear characteristics is desired. Let the 

damper have the force characteristics, 𝐹𝑑𝑒𝑠, defined as follows. 

𝐹𝑑𝑒𝑠 = −𝑏𝑑𝑒𝑠[𝑠𝑑𝑒𝑠]𝑠̇𝑑𝑒𝑠      (3.186) 

where 

𝑏𝑑𝑒𝑠[𝑠𝑑𝑒𝑠] : Damping coefficient of the desired equivalent damper 

(function of variable 𝑠𝑑𝑒𝑠) 

𝑠𝑑𝑒𝑠  : Length of the desired damper 
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𝑠̇𝑑𝑒𝑠  : Velocity of the desired damper 

and  

𝑏𝑑𝑒𝑠[𝑠𝑑𝑒𝑠] = 𝑠𝑑𝑒𝑠
2 − 120𝑠𝑑𝑒𝑠 + 4000 𝑁/𝑚𝑚/𝑠   (3.187) 

The damping coefficient of the desired damper, i.e., 𝑏𝑀𝐹𝐺[𝑠𝑑𝑒𝑠], is presented in 

Figure 3.31. 

 

Figure 3.31. Damping coefficient of the desired equivalent damper 

The force generated at this damper is a function of both the displacement and the 

velocity of the equivalent damper, as can be seen in Figure 3.32. 
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Figure 3.32. Desired force characteristics of the equivalent damper  

Suppose that the equivalent damper with the force characteristics given by equation 

(3.186), is to be designed by using an MFG with the following dimensions. 

𝑏1 = 100 𝑚𝑚        (3.188) 

𝑏2 = 55 𝑚𝑚        (3.189) 

𝑏3 = 50 𝑚𝑚        (3.190) 

𝑐1 = 100 𝑚𝑚        (3.191) 

𝑑𝑐𝑙𝑒 = 10 𝑚𝑚       (3.192) 

Furthermore, let the damping coefficients of the “real” dampers be given by 

𝑏𝑐ℎ𝑎 = 8000 𝑁/𝑚𝑚/𝑠      (3.193) 

Referring to Figure 3.3, an MFG with the dimensions defined by equations (3.188), 

(3.189), (3.190) and (3.191) would have the allowable region presented in Figure 

3.33. 
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Figure 3.33. Allowable region 𝑅 for MFGD 

Clearly, the desired force characteristic, 𝐹𝑑𝑒𝑠, can be taken to be equal to 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 

without any modifications. In the MFGS example, the desired force characteristic is 

re-defined inside the MFGS working envelope. For the MFGD example, the desired 

force characteristics are defined as general and applicable for use in the design of 

MFGD directly. Thus, 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 and 𝑠𝑀𝐹𝐺 can be defined as follows. 

𝑠𝑑𝑒𝑠 = 𝑠𝑀𝐹𝐺        (3.194) 

where equations (3.186) and (3.187) yield 

𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 = −(𝑠𝑀𝐹𝐺
2 − 120𝑠𝑀𝐹𝐺 + 4000 )𝑠̇𝑀𝐹𝐺   (3.195) 

The work done by the MFGD (from 𝑠𝑀𝐹𝐺 = 0 to 𝑠𝑀𝐹𝐺 = 𝑠𝑀𝐹𝐺) can be calculated 

via the following equation. 

𝑊𝑀𝐹𝐺,𝑑𝑚𝑝 = 2 ∫ 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝𝑑𝑠𝑀𝐹𝐺
𝑠𝑀𝐹𝐺

0
    (3.196) 
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If one assumes 𝑠̇𝑀𝐹𝐺 to be constant and using equation (3.195), equation (3.196) 

yields 

𝑊𝑀𝐹𝐺,𝑑𝑚𝑝[𝑠𝑀𝐹𝐺] = 2𝑠̇𝑀𝐹𝐺 ∫ −(𝑠𝑀𝐹𝐺
2 − 120𝑠𝑀𝐹𝐺 + 4000 )𝑑𝑠𝑀𝐹𝐺

𝑠𝑀𝐹𝐺

0
 (3.197) 

For instance, for 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, by using equation (3.197), the work 

done (energy absorbed) by the MFGD is obtained as presented in Figure 3.34. 

 

Figure 3.34. Energy absorbed by MFGD for 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠 

When the dimensions of the MFGD and the properties of the damper installed inside 

the chamber are given, the slot shape of the equivalent damper generating the force 

defined by equation (3.195) may be obtained. Using equation (3.193) and (3.195), 

equation (3.86), yields 

−8000𝑠̇𝑐ℎ𝑎
2 = −(𝑠𝑀𝐹𝐺

2 − 120𝑠𝑀𝐹𝐺 + 4000 )𝑠̇𝑀𝐹𝐺
2    (3.198) 

which, upon substituting 𝑠𝑀𝐹𝐺 = 𝑧𝑟 (see equation (3.20)), and using equations (3.25) 

and (3.26), yields 

(
𝑑𝑥𝑟

𝑑𝑧𝑟
)

2
=

(𝑧𝑟
2−120𝑧𝑟+4000 )

8000
     (3.199) 

Taking square root of both sides, equation (3.199) yields 
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𝑑𝑥𝑟

𝑑𝑧𝑟
= ±√(𝑧𝑟

2−120𝑧𝑟+4000 )

8000
      (3.200) 

Now, let 

𝜎 = ±1  

and 

𝑔[𝑧𝑟] = √(𝑧𝑟
2−120𝑧𝑟+4000 )

8000
      (3.201) 

Therefore, equation (3.200) yields 

𝑑𝑥𝑟 = 𝜎𝑔[𝑧𝑟]𝑑𝑧𝑟       (3.202) 

In accordance with equation (3.92), equation (3.202) yields  

∫ 𝑑𝑥𝑟
𝑥𝑟

(𝑥𝑟)𝑖
= ∫ 𝜎𝑔[𝑧𝑟]𝑑𝑧𝑟

𝑧𝑟

(𝑧𝑟)𝑖
      (3.203) 

which, in accordance with equation (3.94) yields 

(𝑥𝑟)𝑝,𝑛 = (𝑥𝑟)𝑖 ± (𝑝[𝑧𝑟] − 𝑝[(𝑧𝑟)𝑖])    (3.204) 

where 

 𝑝[𝑧𝑟] = ∫ 𝑔[𝑧𝑟]𝑑𝑧𝑟 = ∫ √(𝑧𝑟
2−120𝑧𝑟+4000 )

8000
𝑑𝑧𝑟 

(1) Now, using equations (3.95) and (3.96), let 

(𝑥𝑟)𝑖 = 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚       (3.205) 

(𝑧𝑟)𝑖 = 𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 = 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚      (3.206) 

therefore, equation (3.204) gives the following two solutions. 

(𝑥𝑟)𝑝 = 10 + (𝑝[𝑧𝑟] − 𝑝[10])     (3.207) 

(𝑥𝑟)𝑛 = 10 − (𝑝[𝑧𝑟] − 𝑝[10])     (3.208) 
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The two solutions given by equations (3.207) and (3.208) are presented in Figure 

3.35. 

 

Figure 3.35. Solutions for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 (for (𝑥𝑟)𝑖 = 10, (𝑧𝑟)𝑖 = 10) 

Note that the condition defined by equation (3.97) yields 

(𝑥𝑟)𝑝│
 
 

𝑧𝑟 = 90
= 37.454 < 40      (3.209) 

and therefore, (𝑥𝑟)𝑝 is a solution that lies in the allowable region 𝑅 as presented in 

Figure 3.36. 
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Figure 3.36. (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 on MFGD with selection of (𝑥𝑟)𝑖 = 10, (𝑧𝑟)𝑖 = 10 

(2) Now, using equations (3.100) and (3.101) let 

(𝑥𝑟)𝑖 = 𝑏3 − 𝑑𝑐𝑙𝑒 = 40 𝑚𝑚       (3.210) 

(𝑧𝑟)𝑖 = 𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 = 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚      (3.211) 

Therefore, equation (3.204) gives the following two solutions. 

(𝑥𝑟)𝑝 = 40 + (𝑝[𝑧𝑟] − 𝑝[10])     (3.212) 

(𝑥𝑟)𝑛 = 40 − (𝑝[𝑧𝑟] − 𝑝[10])     (3.213) 

The two solutions given by equations (3.212) and (3.213) are presented in Figure 

3.37. 
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Figure 3.37. Solutions for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 (for (𝑥𝑟)𝑖 = 40, (𝑧𝑟)𝑖 = 10) 

Note that the condition defined by equation (3.102) yields 

(𝑥𝑟)𝑛│
 
 

𝑧𝑟 = 90
= 12.546 > 10      (3.214) 

and therefore, (𝑥𝑟)𝑛 is a solution that lies in the allowable region 𝑅 as presented in 

Figure 3.38. 
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Figure 3.38. (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 on MFGD with selection of (𝑥𝑟)𝑖 = 40, (𝑧𝑟)𝑖 = 10 

Note that two different solution sets have been found corresponding to two different 

selections for (𝑥𝑟)𝑖 and (𝑧𝑟)𝑖. The solution for (𝑥𝑟)𝑖 = 10, (𝑧𝑟)𝑖 = 10, given by 

equations (3.207) and (3.208), will be utilized in the rest of the calculations. 

The velocity influence coefficient of the MFGD, 
𝑑𝑥𝑟

𝑑𝑧𝑟
 (which relates 𝑧̇𝑟 with 𝑥̇𝑟 as in 

equation (3.22) (𝑥̇𝑟 =
𝑑𝑥𝑟

𝑑𝑧𝑟
𝑧̇𝑟)), has been obtained in equation (3.200) and plotted for 

(𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 in Figure 3.39. 
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Figure 3.39. Velocity influence coefficient, 
𝑑𝑥𝑟

𝑑𝑧𝑟
, for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 

Note that in the calculations the position and velocity analysis of the mechanism will 

be performed using (𝑥𝑟)𝑝 in accordance with equations (3.19), (3.20), (3.25) and 

(3.26). Hence, using (𝑥𝑟)𝑝 as the kinematic dimension of the system, one obtains 

𝑠𝑐ℎ𝑎 = (𝑥𝑟)𝑝 + 𝑏1 − 𝑏3 − 𝑏2      (3.215) 

𝑠𝑀𝐹𝐺 = 𝑧𝑟         (3.216) 

𝑠̇𝑐ℎ𝑎 = (𝑥̇𝑟)𝑝 =
𝑑(𝑥𝑟)𝑝

𝑑𝑧𝑟
[𝑧𝑟]𝑧̇𝑟      (3.217) 

𝑠̇𝑀𝐹𝐺 = 𝑧̇𝑟         (3.218) 

𝑠𝑐ℎ𝑎 and 𝑠𝑀𝐹𝐺 that have been thus obtained are plotted with respect to 𝑧𝑟 for 

𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 < 𝑠𝑀𝐹𝐺 < 𝑠𝑀𝐹𝐺,𝑚𝑎𝑥 in Figure 3.40. Variations of 𝑠̇𝑐ℎ𝑎 and 𝑠̇𝑀𝐹𝐺 with 

respect to 𝑧𝑟 (by with taking 𝑠̇𝑀𝐹𝐺 as unit velocity (𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠)) are plotted in 

Figure 3.41.  
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Figure 3.40. Position analysis of the example MFGD 

 

Figure 3.41. Velocity analysis of the example MFGD for 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠 

The power input due to 𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 is defined as 

𝑃𝑐ℎ𝑎,𝑑𝑚𝑝 = −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝𝑠̇𝑐ℎ𝑎       (3.219) 

while the power input due to 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 is defined as 
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𝑃𝑀𝐹𝐺,𝑑𝑚𝑝 = 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝𝑠̇𝑀𝐹𝐺       (3.220) 

𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 and −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 are presented in Figure 3.42 with respect to 𝑠𝑀𝐹𝐺.  

 

Figure 3.42. 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 and −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 w.r.t. 𝑠𝑀𝐹𝐺 

As a final check, 𝑃𝑐ℎ𝑎,𝑑𝑚𝑝 and 𝑃𝑀𝐹𝐺,𝑑𝑚𝑝 are compared. Referring to equation (3.219) 

and equation (3.220), if “−𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 in Figure 3.42” is multiplied with “𝑠̇𝑐ℎ𝑎 in Figure 

3.41”, “𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 in Figure 3.42” will be obtained (remember that 𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠). 

The previous statement is true for all allowable 𝑠𝑀𝐹𝐺 values. 
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CHAPTER 4  

4 LANDING GEAR SHOCK ABSORBER MODELLING AND OPTIMIZATION 

At the beginning of this chapter, a 2 DoF model of landing gear drop test is presented. 

Test results and model results available on the commercial research “NACA TN 

2755 – Analysis of landing-gear behavior”, which was released by the National 

Advisory Committee for Aeronautics (NACA), have been used as a reference to 

validate the model used in this thesis. The mathematical model in NACA TN 2755 

is referred to as the “NACA Model”. On the other hand, 2 DoF mathematical model, 

referred to as the “Thesis Model”, is also prepared for use in the thesis. The model 

used in the thesis is compared to the NACA model, and the differences are discussed. 

The assumptions and simplifications of the drop test model are described. 

In the second part of this chapter, using the Thesis Model, optimization of shock 

absorber characteristics has been presented. The optimization is performed for the 

same test parameters (i.e., mass properties, vertical speed during initial contact) used 

in NACA TN 2755 and compared to the results. Different optimization methods are 

evaluated in terms of their effectiveness in achieving the optimum solution and 

optimization time. 

4.1 Modeling Landing Gear Drop Test 

The landing gear drop test and its purpose were explained in Section 1.3. The landing 

gear drop test modeling is a primary means to analyze the achievability for the design 

goal of high efficiency and low force before manufacturing and testing an actual 

aircraft landing gear.  

Firstly, the 2 DoF Thesis Model used in the optimization is introduced. Then, the 

validity of this model is presented with respect to test results in NACA TN 2755. 



 

 

98 

4.1.1 2 DoF Model 

The drop test, by its name, is performed by dropping the landing gear from a height 

with a mass at the top of the gear, which represents the aircraft mass. The scope of 

the analysis and the optimization is limited from the initial touchdown to the settling 

of the dynamic system. In a normal drop test procedure, the tire is rotated to simulate 

the approach of the aircraft to the runway in a longitudinal direction [26]. However, 

for research purposes, the landing gear is installed vertically, and the tire rotation is 

not included to isolate the research on shock absorber characteristics [15]. 

Assumptions in the Thesis Model: 

• The internal friction of the shock absorber is neglected because it was proven 

in NACA TN 2755 that a simplified model (friction is neglected) gives nearly 

the same result with a model with friction (see Figure 4.1). 

 

Figure 4.1. Response time history of simplified NACA model [15] 

• There are two assumptions for the tire. First, the tire spring characteristic is 

assumed as linear, where the effect of the assumption is negligible [15]. Also, 
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the damping of the tire, so called hysteresis, is neglected because of its 

negligible effect on the results. The effects of both assumptions on the results 

are presented in Figure 4.2.  

 

Figure 4.2. Time history of NACA Model for different tire assumptions [15] 

• The flexibility of the landing gear is neglected. Since the landing gear is 

placed vertically in the test setup, the flexibility of the landing gear does not 

affect the load on the shock absorber spring and damper [15]. 

• The wing lift force acting on the aircraft body is assumed to be equal to 

aircraft weight [9], [15], because aircraft landings occur at a steady approach 

to the landing area. Thus, the aircraft descends at a constant velocity where 

the forces on the aircraft are balanced. This requires the wing lift during 

landing to be equal to aircraft weight. 

• As it is practiced in other landing gears, there is not any shock loading on the 

landing gear during the initial contact of the tire to the ground. 

With the assumptions above, a drop test can be modeled as a 2 DoF simplified spring-

mass-damper system without impairing the validity of the shock absorber (see 
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Section 4.1.3. Validation of 2 DoF Model w.r.t Test Results), as presented in Figure 

4.3. 

 

Figure 4.3. Simplified 2 DoF representation of landing gear drop test 

The elements of the mass-spring-damper system above are explained as follows. 

 𝑚1 : The upper mass that represents the aircraft load on the landing gear 

and mass of upper assembly of the shock absorber 

 𝑚2 : The lower mass that represents the unsprung mass of the landing 

gear 

 𝑘𝑆𝐴 : The spring coefficient of the shock absorber 

 𝑏𝑆𝐴 : The damping coefficient of the shock absorber 

 𝑘𝑡𝑖𝑟𝑒 : The spring coefficient of the tire 

 𝑏𝑡𝑖𝑟𝑒 : The damping coefficient of the tire 

 𝐿𝐼𝐹𝑇 : Force acting on the upper mass due to wing lift 
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There are 4 points taken as reference on the shock absorber, as presented in Figure 

4.3. Shock absorber upper end, 𝑂1, is the point where one end of the SA spring and 

damper is attached. On the other hand, shock absorber lower end, 𝑃2, is the other end 

of the SA spring, and the damper is attached. The third reference point is attached at 

the tire center as 𝑂2. Earth fixed reference frame, ℱ0, is attached to the ground 

surface with an origin at 𝑂0. Dimensions measured from these reference points are 

explained as follows. 

𝑧1 = 𝑂0𝑂1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑘⃗⃗         (4.1) 

𝑧2 = 𝑂0𝑂2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑘⃗⃗        (4.2) 

ℎ2 = 𝑂2𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑘⃗⃗         (4.3) 

𝑠𝑆𝐴 = 𝑂2𝑂1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ∙ 𝑘⃗⃗        (4.4) 

It shall be noted that the damping properties of the tire are neglected during the 

evaluation of shock absorber characteristics because the damping forces of aircraft 

tires are in the order of 0.1% of the spring forces. A typical damping coefficient of 

a tire can be assumed as follows [27]. 

𝑏𝑡𝑖𝑟𝑒 = 𝑘𝑡𝑖𝑟𝑒/(1000/𝑠)      (4.5) 

Thus, taking equation (4.5) into account, the effect of tire damping is negligible. The 

equations of motion for the system in Figure 4.3 are derived in Section 4.1.2 as 

follows. 

4.1.2 Equations of Motion for 2 DoF Mass Spring Damper Model 

The equation of motion that is specific to the scope of the thesis is defined in this 

section. 

The free-body diagram of the upper mass is presented in Figure 4.4. The total force 

acting on the upper mass due to shock absorber is defined as 

𝐹𝑆𝐴 = 𝐹𝑆𝐴,𝑠𝑝𝑟 + 𝐹𝑆𝐴,𝑑𝑚𝑝      (4.6) 
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where 

𝐹𝑆𝐴,𝑠𝑝𝑟  : Spring force of the shock absorber 

𝐹𝑆𝐴,𝑑𝑚𝑝 : Damper force of the shock absorber 

 

Figure 4.4. Free-body diagram of the upper mass 

With respect to the assumption, the force exerted on the upper mass due to wing lift 

is defined as 

𝐹𝐿𝐼𝐹𝑇 = (𝑚1 + 𝑚2)𝑔       (4.7) 

The spring and damper forces exerted by the shock absorber are defined as 

𝐹𝑆𝐴,𝑠𝑝𝑟 = 𝑘𝑆𝐴(𝑙0,𝑆𝐴 − 𝑠𝑆𝐴)      (4.8) 

𝐹𝑆𝐴,𝑑𝑚𝑝 = −𝑏𝑆𝐴𝑠̇𝑆𝐴       (4.9) 

where 

 𝑙0,𝑆𝐴 : Length of the shock absorber at the initial contact 

 𝑠𝑆𝐴 : Stroke length of the shock absorber  

 𝑠̇𝑆𝐴 : Stroke velocity of the shock absorber 
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The initial length of the shock absorber is length related to the arrangement of the 

shock absorber assembly and is measured as the length at the initial contact. The 

stroke length and the velocity of the shock absorber are defined as follows. 

𝑠𝑆𝐴 = 𝑧1 − 𝑧2 − ℎ2       (4.10) 

𝑠̇𝑆𝐴 = 𝑧̇1 − 𝑧̇2        (4.11) 

Thus, the equation of motion for the upper mass can be written as 

𝑚1𝑧̈1 = 𝐹𝐿𝐼𝐹𝑇 + 𝐹𝑆𝐴,𝑠𝑝𝑟 + 𝐹𝑆𝐴,𝑑𝑚𝑝 − 𝑚1𝑔    (4.12) 

which yields 

𝑚1𝑧̈1 = 𝐹𝐿𝐼𝐹𝑇 + 𝑘𝑆𝐴(𝑙0,𝑆𝐴 + ℎ2 + 𝑧2 − 𝑧1) − 𝑏𝑆𝐴(𝑧̇1 − 𝑧̇2) − 𝑚1𝑔 (4.13) 

The free-body diagram of the lower mass is presented in Figure 4.5. The forces acting 

on the lower mass come from the inertial load of the mass and the forces exerted by 

the shock absorber and the tire to the mass. The description of these forces is as 

follows. 

𝐹𝑡𝑖𝑟𝑒,𝑠𝑝𝑟 : Spring force of the tire 

 

Figure 4.5. Free-body diagram of the lower mass 
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The force exerted on the lower mass by the tire is defined as; 

𝐹𝑡𝑖𝑟𝑒,𝑠𝑝𝑟 = 𝑘𝑡𝑖𝑟𝑒𝑠𝑑𝑒𝑓       (4.14) 

where 

 𝑠𝑑𝑒𝑓 : Deflection of the tire from the initial contact  

The deflection of the tire is a measure defined with the outer radius of the tire and is 

defined as follows. 

𝑠𝑑𝑒𝑓 = 𝑟𝑡𝑖𝑟𝑒 − 𝑧2       (4.15) 

where 

 𝑟𝑡𝑖𝑟𝑒 : Outer radius of the tire 

Thus, the equation of motion for the lower mass can be written as 

𝑚2𝑧̈2 = −𝐹𝑆𝐴,𝑠𝑝𝑟 − 𝐹𝑆𝐴,𝑑𝑚𝑝 − 𝑚2𝑔 + 𝐹𝑡𝑖𝑟𝑒,𝑠𝑝𝑟   (4.16) 

which yields 

𝑚2𝑧̈2 = −𝑘𝑆𝐴(𝑙0,𝑆𝐴 + ℎ2 + 𝑧2 − 𝑧1) + 𝑏𝑆𝐴(𝑧̇1 − 𝑧̇2) − 𝑚2𝑔 + 𝑘𝑡𝑖𝑟𝑒(𝑟𝑡𝑖𝑟𝑒 − 𝑧2) (4.17) 

Using the equations of motion in (4.13) and (4.17), a Simulink model is prepared, 

and the results of the 2 DoF Model are compared to test results given in NACA TN 

2755.  

4.1.3 Validation of 2 DoF Model w.r.t Test Results 

In NACA TN 2755, a landing gear drop test has been performed and mathematically 

modeled. As presented in Figure 4.6, the landing gear in the test is vertically 

mounted, and several measurements have been taken from the test setup. 
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Figure 4.6. Landing gear drop test setup used for validation [15] 

The type and accuracy of these test measurements are defined in Table 4.1 [15]. 

Table 4.1. Accuracy of test measurements 

Measurement Type Unit Accuracy 

Upper mass acceleration (𝑧̈1) g ±0.2 

Force on upper mass (𝐹𝑆𝐴) N ±2224 

Lower mass acceleration (𝑧̈2) g ±0.3 

Vertical velocity at ground contact (𝑉𝑉) m/s ±0.03048 

Upper mass velocity during impact (𝑧̇1) m/s ±0.1524 

Upper mass displacement (𝑧1) m ±0.01524 

Lower mass displacement (𝑧2) m ±0.00914 

Shock absorber stroke (𝑠𝑆𝐴) m ±0.00914 

Shock absorber velocity (𝑠̇𝑆𝐴) m/s ±0.01524 

Time after contact s ±0.003 
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The test setup properties are defined in Table 4.2. 

Table 4.2. Test setup parameters 

Parameter Value Unit 

Upper mass (𝑚1) 1093.61 kg 

Lower mass (𝑚2) 59.42 kg 

Vertical velocity at ground contact (𝑉𝑉) 2.7 m/s 

The outer radius of tire (𝑟𝑡𝑖𝑟𝑒) 0.3429 m 

 

Sign and conventions in NACA TN 2755 landing gear model are different from their 

use in this thesis study. Signs and conventions of mass spring damper model used in 

NACA TN 2755 can be seen in Figure 4.7.  

 

Figure 4.7. NACA TN 2755 mass spring damper model [15] 

The sign and conventions used in NACA Model are related with the signs and 

conventions used in Thesis Model as follows. 
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𝑧1 = (𝑧1)0 − 𝑧1       (4.18) 

𝑧2 = (𝑧2)0 − 𝑧2       (4.19) 

𝑧1̇ = −𝑧̇1        (4.20) 

𝑧2̇ = −𝑧̇2        (4.21) 

Since the variables of the system are defined differently from the definitions used in 

the thesis study, the initial conditions of NACA model are defined independently 

from dimensions of the system as 𝑧1 = 0 and 𝑧2 = 0 such that only the change in the 

parameters has been taken into consideration. Also, there is not any additional 

information on the dimensions of the test setup as well.  

The initial conditions of the NACA Model are defined in Table 4.3. 

Table 4.3. Initial conditions NACA Model 

Parameter Initial Condition Unit 

𝑧1 0 m 

𝑧2 0 m 

𝑧1̇ 2.7 m/s 

𝑧2̇ 2.7 m/s 

 

Thus, by taking the initial conditions defined in Table 4.3, and by using equations 

(4.18), (4.19), (4.20) and (4.21), the initial conditions of the Thesis Model simulation 

are presented in Table 4.4. 

 

 

 

 

 



 

 

108 

Table 4.4. Initial conditions of Thesis Models 

Parameter Initial Condition Unit 

𝑧1 (𝑧1)0 m 

𝑧2 (𝑧2)0 m 

𝑧̇1 −2.7 m/s 

𝑧̇2 −2.7 m/s 

 

The initial conditions used for 𝑧1 and 𝑧2 in Thesis Model are defined as arbitrary 

constants, i.e., (𝑧1)0 and (𝑧2)0. This definition does not have any effect on the results 

because the evaluation of the results is performed with respect to change in the 

parameters.  

To perform an adequate assessment with respect to the analysis and test results 

presented in NACA TN 2755, evaluation parameters are defined with respect to signs 

and conventions used in Figure 4.3 and initial conditions defined in Table 4.4. In 

general, the negative of a change in a parameter after initial contact (𝑡0) is defined 

with designation with a hat (   ̂) on top of the parameter. The reason for taking the 

negative of the change is to correlate the results from the Thesis Model with NACA 

Model on the same domain. 

𝑧̂1 = (𝑧1)0 − 𝑧1       (4.22) 

𝑧̂2 = (𝑧2)0 − 𝑧2       (4.23) 

𝑠̂𝑆𝐴 = (𝑧1)0 − (𝑧2)0 − ℎ2 − 𝑠𝑆𝐴     (4.24) 

where 

 𝑧̂1 : Upper mass displacement 

 𝑧̂2 : Lower mass displacement 

 𝑠̂𝑆𝐴 : Shock absorber stroke displacement 
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Sign and conventions used for velocity and acceleration of the system are based on 

the same initial conditions. Thus, a further definition is not required. 

A drop test analysis has been performed with 2 DoF Model using the same 

parameters defined in NACA TN 2755 (see Table 4.2) with respect to initial 

conditions defined in Table 4.4. The results of the test are in the time domain, in 

which the time of the test and simulation is from 𝑡0 = 0 𝑠 to 𝑡 = 0.16 𝑠. For the 

analysis, the shock absorber characteristics of the NACA shock absorber are defined 

used. Since the shock absorber forces used in NACA are not defined same as the 

spring and damper forces defined in equations (4.8) and (4.9), equations of motion 

in (4.12) and (4.16) have been used, instead of equations (4.13) and (4.17). Thus, the 

spring force and damper force of NACA shock absorber are defined as 

𝐹𝑆𝐴,𝑠𝑝𝑟,𝑁𝐴𝐶𝐴 = 𝑝𝑎0
𝐴𝑎 (

𝑣0

𝑣0−𝐴𝑎𝑠̂𝑆𝐴
)

𝑛𝑝

     (4.25) 

𝐹𝑆𝐴,𝑑𝑚𝑝,𝑁𝐴𝐶𝐴 =
𝑠̇𝑆𝐴

|𝑠̇𝑆𝐴|

𝜌𝐴ℎ
3

2(𝐶𝑑𝐴𝑛)2 𝑠̇𝑆𝐴
2      (4.26) 

where the definition and values of the parameters are listed in Table 4.5. 

Table 4.5. NACA shock absorber parameters [15] 

Parameter Value Unit 

Air pressure in strut when 𝑠̂𝑆𝐴 = 0 (𝑝𝑎0
) 299922 N/m2 

Air volume in strut when 𝑠̂𝑆𝐴 = 0 (𝑣0) 0.001 m3 

Pneumatic area (𝐴𝑎) 0.0054 m2 

Polytropic constant (𝑛𝑝) 1.12  

Damper fluid density (𝜌) 869.15 kg/m3 

Hydraulic area (𝐴ℎ) 0.0044 m2 

Coefficient of discharge (𝐶𝑑) 0.9  

Net orifice area (𝐴𝑛) 5.187 × 10−5 m2 
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The shock absorber spring and damper characteristics of NACA test setup defined 

with equations (4.25) and (4.26) is calculated with the parameters listed in Table 4.5 

and presented in Figure 4.8. 

 

Figure 4.8. NACA test setup shock absorber characteristics 

Furthermore, the tire spring stiffness used in the NACA Model and the Thesis Model 

is defined as follows. 

𝑘𝑡𝑖𝑟𝑒 = 283380 𝑁/𝑚      (4.27) 

Test results, NACA Model analysis results, and Thesis Model analysis results are 

compared to check the validity of the thesis model in Figure 4.9, Figure 4.10, Figure 

4.11, and Figure 4.12. Results of the test are defined as discrete point data (not 

continuous) in the reference documentation [15]. The test results are presented as 

scattered data in figures. Since the reference documentation consists of mathematical 

modeling of the drop test and analysis results of this mathematical model (NACA 

Model), the analysis result is included in figures with a dashed-dotted line ( − ∙ ). 

Furthermore, the results of the analysis performed with the 2 DoF Model (Thesis 

Model), which is used in this thesis, are presented in figures with a continuous line. 
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Figure 4.9. Comparison of 𝐹𝑆𝐴 between Test Results, NACA Model and Thesis 

Model 

 

Figure 4.10. Comparison of 𝑧̈̂2 between Test Results, NACA Model and Thesis 

Model 
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Figure 4.11. Comparison of 𝑠̇̂𝑆𝐴 and 𝑧̇̂1 between Test Results, NACA Model and 

Thesis Model 

 

Figure 4.12. Comparison of 𝑠̂𝑆𝐴, 𝑧̂1 and 𝑧̂2 between Test Results, NACA Model 

and Thesis Model 

The comparison of NACA test results, NACA Model results, and Thesis Model 

results show that the model used in the thesis qualitatively yields the same result. 
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The data presented above are not processed as criteria in this thesis. Thus, an error 

calculation is not performed for those parameters one by one. However, the error of 

the model is evaluated with respect to the scope of the optimization. 

As it will be explained further in Section 4.2.1, 𝐹𝑆𝐴 vs. 𝑠̂𝑆𝐴 between 𝑡0 to 𝑡𝑓 is the 

scope of the optimization in this thesis. The test results are only available for the time 

from 𝑡0 = 0 𝑠 to 𝑡𝑓 = 0.16 𝑠. However, the scope of optimization in 4.2.1 requires 

𝑡𝑓 to be higher than 0.16 𝑠. Thus, comparison of NACA Model and Thesis Model is 

performed with respect to the scope of optimization. 

NACA Model and Thesis Model have been run from 𝑡0 = 0 𝑠 to 𝑡 = 0.25 𝑠. Thus, 

using the NACA Model results and Thesis Model results which have been presented 

in Figure 4.13, the error between NACA Model and Thesis Model has been 

calculated. The error calculation is performed by taking NACA Model results as the 

reference. 

 

Figure 4.13. NACA Model and Thesis Model results of 𝐹𝑆𝐴 vs. 𝑠̂𝑆𝐴 in 𝑡 = [0,0.25] 

and test result of 𝐹𝑆𝐴 vs. 𝑠̂𝑆𝐴  in 𝑡 = [0,0.16]  



 

 

114 

As it is explained later in Section 4.2.1, efficiency calculated from the results is the 

scope of this thesis study. Thus, efficiencies calculated both in NACA Model and 

Thesis Model are compared as follows. 

𝜂𝑁𝐴𝐶𝐴 = %78.26       (4.28) 

𝜂𝑇ℎ𝑒𝑠𝑖𝑠 = %80.92       (4.29) 

Taking the NACA Model as the reference, the relative error can be calculated as 

follows. 

𝜀𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
|80.92−78.26|

78.26
× 100 = %3.4    (4.30) 

4.2 2 DoF Model Response Optimization 

A landing gear drop test is modeled using test results from NACA TN 2755 in 

Section 4.1. So, using the same test conditions, optimization has been performed to 

find the optimum shock absorber spring, 𝐹𝑆𝐴,𝑠𝑝𝑟, and damper, 𝐹𝑆𝐴,𝑑𝑚𝑝, 

characteristics. The methods of approach to the optimization are described, and the 

selection of optimization algorithm is explained. The optimum spring and damper 

characteristics are presented at the end of the section. 

The optimization study is performed using the “Thesis Model” in Section 4.1. The 

equations of motion were determined for the system previously. The dynamic 

behavior of the mass-spring-damper system is implicitly dependent on the position, 

velocity, and acceleration of the system. Also, the objective is purely dependent on 

the dynamic response of the system. Thus, the optimization of this problem is called 

as response optimization. 

The optimization is based on the parameters defined in Table 4.6. Since the problem 

is non-linear and the response of the system defines the objectives, search-type 

optimization methods are used as means for this problem, which is later explained in 

Section 4.2.2.2. Search type optimization requires the search region to be bounded; 
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otherwise, there are infinite parameters to evaluate for the optimization. The 

previously designed shock absorber characteristics, which were used in the test, are 

also known. The boundaries of the parameter search pool are defined using the 

known parameters of the legacy shock absorber in NACA TN 2755 for the initial 

determination. Different optimization methods require different ways to determine 

the boundaries. Thus, the determination of boundaries is explained for each method 

for the selection of parameters in 4.2.2.1. 

Table 4.6. Optimization reference parameters 

Parameter Value Unit 

𝑚1 1093.61 kg 

𝑚2 59.42 kg 

𝑟𝑡𝑖𝑟𝑒 0.3429 m 

𝑘𝑡𝑖𝑟𝑒 283380 N/m 

𝐹𝐿𝐼𝐹𝑇 11307 N 

(𝑧1)0 (𝑧1)0 m 

(𝑧2)0 (𝑧2)0 m 

(𝑧̇1)0 −2.7 m/s 

(𝑧̇2)0 −2.7 m/s 

4.2.1 The objective of the optimization 

There is a single objective within the scope of this thesis study.  

• Maximize the shock absorber efficiency (𝜂𝑆𝐴) 

A typical drop test result is explained under Section 1.3. Introduction to Landing 

Gear Drop Test. The shock absorber force evaluated during the optimization is 

defined, previously in equation (4.6), as follows. 

𝐹𝑆𝐴 = 𝐹𝑆𝐴,𝑠𝑝𝑟 + 𝐹𝑆𝐴,𝑑𝑚𝑝       (4.6) 
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The total change in the shock absorber stroke is another parameter to evaluate the 

shock absorber efficiency. Displacement of the shock absorber stroke is previously 

defined in equation (4.24) as follows.  

𝑠̂𝑆𝐴 = (𝑧2)0 + ℎ2 − 𝑠𝑆𝐴      (4.24)  

The efficiency of the shock absorber is dependent on the parameters of 𝐹𝑆𝐴 and 𝑠̂𝑆𝐴. 

The maximum value of 𝐹𝑆𝐴 and 𝑠̂𝑆𝐴 are limited by constraints independent from the 

efficiency. Shock absorber efficiency is generally a requirement on the design and is 

defined with the following equation [9]. 

𝜂𝑆𝐴 =
∫ 𝐹𝑆𝐴𝑑𝑠̂𝑆𝐴

𝑠̂𝑆𝐴,𝑚𝑎𝑥
0

𝑠̂𝑆𝐴,𝑚𝑎𝑥𝐹𝑆𝐴,𝑚𝑎𝑥
       (4.31) 

The efficiency of the shock absorber is a means to determine how much of the total 

energy is absorbed by the shock absorber at the first oscillation of the drop. This is 

the energy under the load-deflection curve. The first oscillation is limited by [𝑡0, 𝑡𝑓], 

where 

 𝑡0 : Time at the tire contacts to the ground (𝑡0 = 0 for this study) 

 𝑡𝑓 : Final time (the stroke displacement, 𝑠̂𝑆𝐴, reaches its maximum) 

Knowing the two properties 𝐹𝑆𝐴,𝑚𝑎𝑥, 𝑠̂𝑆𝐴,𝑚𝑎𝑥 and having the results as 𝐹𝑆𝐴(𝑡) and 

𝑠̂𝑆𝐴(𝑡), one can obtain the efficiency of a shock absorber by dividing the energy 

absorbed by the shock absorber (blue hatch) with the theoretical total energy 

absorption capability (yellow hatch) in Figure 4.14. 
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Figure 4.14. Efficiency evaluation of a drop test result 

The single objective function used in the thesis, which is designated with 𝐽, is defined 

as follows. 

𝐽[𝐹𝑆𝐴, 𝑠̂𝑆𝐴] = 𝜂𝑆𝐴       (4.32) 

The efficiency of the previous shock absorber used in NACA TN 2755 is calculated 

using equation (4.31) as follows. 

𝜂𝑆𝐴,𝑁𝐴𝐶𝐴 = %78.26       (4.33) 

This value will be taken as the reference to evaluate the effectivity of optimization 

in Section 4.3. 

4.2.2 Methods used in the optimization 

The selection of decision variables and optimization search methods are explained 

in this section. Method for selection of decision variables affects the size of the 

search pool for the variables. The optimization search method, on the other hand, 
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does heavily influence the cost of the optimization (i.e., time, CPU power) and the 

effectiveness of finding the optimum solution. Comparison and the selection of the 

methods used in this thesis study are described in the following sections. 

The optimization of the response is based on finding the optimum damper and spring 

characteristics that give the best objective result. The optimum damper and spring 

characteristics are found by fitting a damper and spring characteristics for every 

optimization iteration and evaluating the system's response. The approach for the 

determination of those characteristics is explained in the following section. 

4.2.2.1 Selection of Decision Variables 

The selection of decision variables for this problem is investigated from two different 

aspects: effect on optimization time and simplicity for determination of search 

region. Three different approaches to select the decision variables have been 

investigated. Method 1 and Method 2 are based on fitting a polynomial, 𝑃[𝑥], to 

determine the optimum spring and damper characteristics, where 

 𝑃[𝑥] = 𝑘𝑆𝐴[𝑠̂𝑆𝐴] for spring as 𝑥 = 𝑠̂𝑆𝐴 

and  

𝑃[𝑥] = 𝑏𝑆𝐴[𝑠̇𝑆𝐴] for damper as 𝑥 = 𝑠̇𝑆𝐴 for Optimization Approach 1 and  

𝑃[𝑥] = 𝑏𝑆𝐴[𝑠̂𝑆𝐴] for damper as 𝑥 = 𝑠̂𝑆𝐴 for Optimization Approach 2 

Method 3 is based on defining a piecewise linear function, 𝐹[𝑥], for optimum spring 

and damper characteristics similar to Methods 1 and 2, except it is not a polynomial 

but a piecewise linear curve. 
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4.2.2.1.1 Method 1: Decision Variables of 𝒄𝒊 

In this method, coefficients of polynomials are selected as decision variables. The 

procedure for an optimization using these variables is presented in Figure 4.15 as 

follows. 

 

Figure 4.15. Optimization procedure using 𝑐𝑖 as decision variables 

In this method, the search pool is very large as  

𝑐𝑖 = −1 × 106 − 1 × 106  

|𝑐𝑖| = 1 × 10−13 − 1 × 106  

Using the search pool, a polynomial is constructed, such as 

𝑃[𝑥] = 𝑐3𝑥3 + 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0  

In this procedure, as presented in Figure 4.15, firstly “n+1” number of coefficients 

are selected from the search pool, and an nth order polynomial is defined using 𝑐𝑖’s. 
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Then, the polynomial is checked if it is inside the feasible region. The feasible region, 

on the other hand, is defined based on the 𝐹𝑆𝐴,𝑚𝑎𝑥 and 𝑠̂𝑆𝐴,𝑚𝑎𝑥 values determined 

with the test results. 𝑃[𝑥]𝑚𝑎𝑥 is manually defined in relation with 𝐹𝑆𝐴,𝑁𝐴𝐶𝐴,𝑚𝑎𝑥 and 

𝑠̂𝑆𝐴,𝑚𝑎𝑥 or 𝑠̇𝑆𝐴,𝑚𝑎𝑥. As presented in Figure 4.16, the optimization proceeds with a 

polynomial inside the feasible region while a polynomial outside the feasible region 

is eliminated, and a new polynomial is defined. 

 

Figure 4.16. Polynomial feasibility check 

The drawback of this procedure is the necessity of checking a very large number of 

polynomials against the feasible region and the difference of the order of magnitude 

between the polynomial coefficients. Thus, the method is inefficient in terms of 

finding a feasible solution and the cost of time. 

4.2.2.1.2 Method 2: Decision Variables of 𝒚𝒊 (using “polyfit” command) 

In this method, 𝑦 coordinates of points, which a polynomial will be fitted through, 

are defined as decision variables. The “polynomial curve fitting” command of the 

MATLAB tool is used for this method. The procedure for an optimization using these 

variables is presented in Figure 4.17 as follows. 
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Figure 4.17. Optimization procedure using 𝑦𝑖 as decision variables for “polyfit” 

In this procedure, 𝑥 coordinates for “n+1” points are defined by the user (𝑥 

coordinates are evenly distributed in this study). Then, 𝑦𝑖’s are selected by 

optimization algorithm from corresponding search pool of each. The search pool is 

initially manually defined with the NACA shock absorber characteristics using the 

results in the report. In the next step, the optimization will fit an nth order polynomial 

using user selected 𝑥𝑖 and algorithm selected 𝑦𝑖 values as follows. 

𝑃[𝑥] = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡([𝑥1, 𝑥2, … , 𝑥𝑛+1], [𝑦1, 𝑦2, … , 𝑦𝑛+1], 𝑛)  

Then, the polynomial is checked if it is inside the feasible region. The feasible region, 

on the other hand, is defined based on the 𝐹𝑆𝐴,𝑚𝑎𝑥 and 𝑠̂𝑆𝐴,𝑚𝑎𝑥 values determined 

with the test results. 𝑃[𝑥]𝑚𝑎𝑥 is manually defined in relation with 𝐹𝑆𝐴,𝑁𝐴𝐶𝐴,𝑚𝑎𝑥 and 

𝑠̂𝑆𝐴,𝑚𝑎𝑥 or 𝑠̇𝑆𝐴,𝑚𝑎𝑥 as presented in Figure 4.18.  

The optimization proceeds with a polynomial inside the feasible region while a 

polynomial outside the feasible region is eliminated, and a new polynomial is 

defined.  
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Figure 4.18. Polynomial feasibility check 

After the maximization of the efficiency, the search pool is checked against the 

optimum 𝑦𝑖 parameters. If any of 𝑦𝑖 parameters coincide with the boundary of its 

own search pool; then, the search pool is re-defined manually by user, as presented 

in Figure 4.19. 

 

Figure 4.19. Re-defining search pool for 𝑦𝑖 

There is only a minor drawback of this method compared to Method 3: the 

polynomial sometimes goes out of the feasible region. However, the occurrence of 

this instance is rare compared to Method 1. Method 2 is the most feasible approach 

for selecting the parameters quickly and with an average cost of time. 
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4.2.2.1.3 Method 3: Decision Variables of 𝒚𝒊 (using “piecewise” command) 

In this method, 𝑦 coordinates of points, which a piecewise linear function will be 

created with, are defined as decision variables. The “piecewise function” command 

of the MATLAB tool is used for this method. The procedure for an optimization 

using these variables is presented in Figure 4.20 as follows. 

 

Figure 4.20. Optimization procedure using 𝑦𝑖 as decision variables for “piecewise” 

In this procedure, 𝑥 coordinates for “n+1” points are defined by the user (𝑥 

coordinates are evenly distributed in this study). Then, 𝑦𝑖’s are selected by 

optimization algorithm from corresponding search pool of each. The search pool is 

initially manually defined with the NACA shock absorber characteristics using the 

results in the report. In the next step, the optimization code will create piecewise 

linear function using user selected 𝑥𝑖 and algorithm selected 𝑦𝑖 values as follows. 

𝐹[𝑥] = 𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒([𝑥1, 𝑥2, … , 𝑥4], [𝑦1, 𝑦2, 𝑦3, 𝑦4])  

After the maximization of the efficiency, the search pool is checked against the 

optimum 𝑦𝑖 parameters. If any of 𝑦𝑖 parameters coincide with the boundary of its 
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own search pool; then, the search pool is re-defined manually by user, as presented 

in Figure 4.21. 

 

Figure 4.21. Re-defining search pool for 𝑦𝑖 

This method provides the advantage of a reduction in computation time; however, 

the discontinuity of the curves defined in this method requires a polynomial to be 

fitted at the end of the solution, which results in a deviation from the optimum 

solution. 

Comparing all methods, Method 2 is the most viable approach for this optimization 

problem; because the time and CPU power required for Method 2 are better than 

Method 1. Method 3 also processes the optimization in a short time, but since it is 

not a proper way to define spring and damper characteristics, a polynomial fit after 

the optimization is required, which deviates from the optimum solution.  

4.2.2.2 Optimization search method 

The optimization problem in this study is a single objective non-linear response 

optimization. Before starting the optimization case, an evaluation is performed 

against the effectiveness of different optimization methods on this type of problem 

and objective function. 

Using objective function defined in equation (4.32), and the Thesis Model with 

parameters defined in Table 4.6. Optimization reference parameters, an optimization 
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is performed. Method 2: Decision Variables of 𝒚𝒊 (using “polyfit” command) in 

Section 4.2.2.1 used as a method for selection of parameters for the optimization. 

The best pair of 𝑦𝑖 values were searched that, a first order polynomial (a linear curve) 

is fit through.  

The evaluation is performed using the Response Optimization tool in Simulink, 

which is a part of the Global Optimization Toolbox of MATLAB/Simulink. The 

result and time of different optimization search methods have been compared in 

Table 4.7.  

Table 4.7. Comparison of search methods and algorithms 

Optimization 

Method 

Algorithm/ Search 

Method 

Objective 

(Higher is better) Time 

Gradient-Descent 

Active Set 0.8487 37 sec 

Interior Point 0.8479 15 min 

Sequential Quad. 

Programming 
0.8487 43 sec 

Pattern Search 

Positive Basis N+1 0.8686 16 min 

Positive Basis 2N 0.8718 20 min 

Genetic Algorithm 0.8869 1 hour 

Simplex Search Simplex Search 0.8542 15 min 

 

The comparison of three different optimization methods shows that Pattern Seach is 

better than the other optimization methods in finding the best solution for the 

problem defined in this thesis study. Pattern Search in MATLAB/Simulink has three 

different search algorithm to achieve the solution. The first two methods are the 

modified versions of the fundamental basis of the pattern search: Positive Basis N+1 

and Positive Basis 2N [28]. The Genetic Algorithm (GA) is a deviation from 

traditional pattern search methods as it is a metaheuristic inspired by the natural 

selection which the selection of the parameters is performed by the method itself 
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inside the search region [29]. However, the selection method for the parameters is 

defined by the user, such as population, mutation, and crossover.  

The evaluation of these optimization methods has been performed for a very large 

search region. Thus, it is normal for the GA to perform a first-order polynomial 

optimization in 1 hour. In previous studies on landing gear shock absorber response 

optimization, the effectiveness of genetic algorithm optimization was also 

acknowledged as the most efficient response optimization method [22].  

In summary, the Genetic Algorithm is selected as the search method for this 

optimization problem. 

4.2.3 The constraints of the optimization 

Any optimization problem has its own constraints in terms of finding a solution. 

Those constraints can be the design limitations of the problem, physical limitations, 

and boundary improvement to reduce the time required to achieve the best solution. 

The constraints used for the optimization problem in this study are defined as 

follows. 

Physical Constraints: 

• The change in the stroke of the shock absorber shall not have negative values 

for all 𝑡 values. The intent of the constraint is to prevent the shock absorber 

from going beyond the extended position, which physically is not possible. 

𝑠̂𝑆𝐴(𝑡) > 0     𝑓𝑜𝑟     [𝑡0, 𝑡𝑠] 

where 

 𝑡𝑠 : Settling time (the time which drop test system settles, i.e., 𝑠̇𝑆𝐴 = 0) 

• The force at the damper shall have positive values for positive velocity 

values, negative values for negative velocity values. The constraint intends 
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to limit the design such that the solution is physically possible, that it does 

not store energy, and does not do positive work against the environment. 

𝐹𝑆𝐴,𝑑𝑚𝑝(𝑡) > 0     𝑓𝑜𝑟     𝑠̇𝑆𝐴(𝑡) > 0 

𝐹𝑆𝐴,𝑑𝑚𝑝(𝑡) < 0     𝑓𝑜𝑟     𝑠̇𝑆𝐴(𝑡) < 0 

Design Constraints: 

• The total force at the shock absorber shall be smaller than 30 𝑘𝑁. The 

constraint intends to limit the maximum force that can be exerted from the 

shock absorber to the aircraft. The results in NACA Model have been used 

as the reference [NACA TN 2755]. 

|𝐹𝑆𝐴(𝑡)| < 30000 𝑁     𝑓𝑜𝑟     [𝑡0, 𝑡𝑠] 

• The total change on the shock absorber stroke shall be smaller than 165 mm. 

The constraint intends to limit the total landing gear length for installation 

purposes during the gear retracts into the aircraft fuselage. The results in 

NACA Model have been used as the reference [NACA TN 2755]. 

𝑠̂𝑆𝐴(𝑡) < 160 𝑚𝑚     𝑓𝑜𝑟     [𝑡0, 𝑡𝑠] 

• There shall be a preload at the shock absorber spring when the shock absorber 

stroke is zero. This is a rule of thumb for a landing gear design to prevent the 

stiction of the shock absorber surface during the initial rebound [9]. Previous 

shock absorber design is used as a reference. 

𝐹𝑆𝐴,𝑠𝑝𝑟(𝑡) ≥ 1500 𝑁     𝑓𝑜𝑟     𝑠̂𝑆𝐴(𝑡) = 0 

Search Improvement Constraints: 

• The shock absorber stroke shall have an increasing value from the initial 

contact to the maximum stroke. The dynamic response of the system shall be 

single-valued for the time of interest of the objective. Any indeterminate 

motion of the system between this time of interest is not considered to be 
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acceptable. This constraint has been implemented to prevent the improper 

solutions which have been encountered at the initial optimization runs. 

𝑠̇𝑆𝐴(𝑡) > 0     𝑓𝑜𝑟     [𝑡0, 𝑡𝑓] 

4.3 Optimization Approaches and Results 

The optimization is performed with the fitting of polynomials with different orders 

using Method 2 described in Section 4.2.2.1. Two different approaches to the 

optimization of the problem are explained. Results for different approaches and 

different orders of polynomial fittings are compared. The order of the polynomial, 

𝑛, has been increased for both optimization approaches as long a better objective 

result is obtained. The drop test simulation results of the Thesis Model, which was 

presented in Section 4.1.3, are used as a reference to present the success of the 

optimization. These results are designated as “Reference” in optimization results. 

4.3.1 Optimization Approach 1: 𝒃𝑺𝑨 as function of 𝒔̇𝑺𝑨 

Shock absorbers are mechanical components which the coefficient of damping of 

these components is generally a function of the velocity [30]. Thus, the first approach 

to this optimization problem has assumed the damping coefficient of the damper to 

be a function of the velocity, i.e., 𝑏𝑆𝐴(𝑠̇𝑆𝐴). Referring to Method 2: Decision 

Variables of 𝒚𝒊 (using “polyfit” command) in Section 4.2.2.1, the optimum 

polynomial that represents the spring and damper characteristics is tried to be found 

by changing the coordinates that the polynomial passes through. 

Decision variables of the optimization: 

𝑦1, 𝑦2, … , 𝑦𝑛+1    

used in 

𝑃[𝑥] = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡([𝑥1, 𝑥2, … , 𝑥𝑛+1], [𝑦1, 𝑦2, … , 𝑦𝑛+1], 𝑛)  
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where  

 𝑃[ ] = 𝑘𝑆𝐴[ ] and 𝑥 = 𝑠̂𝑆𝐴 for spring 

𝑃[ ] = 𝑏𝑆𝐴[ ] and 𝑥 = 𝑠̇𝑆𝐴 for damper 

 𝑛 = 1,2,3 

 𝑥𝑖 = 𝑖 ×
𝑥𝑛+1

𝑛
 

where 

 𝑥𝑛+1 = 0.16 𝑚 for spring 

𝑥𝑛+1 = 3 𝑚/𝑠 for damper 

Objective function: 

𝐽[𝐹𝑆𝐴, 𝑠̂𝑆𝐴] = max(𝜂𝑆𝐴)      (4.34) 

Optimization input parameters 

 𝑚1, 𝑚2, 𝑟𝑡𝑖𝑟𝑒, 𝐹𝐿𝐼𝐹𝑇, (𝑧1)0, (𝑧2)0, (𝑧̇1)0, (𝑧̇2)0 as defined in Table 4.6. 

4.3.1.1 Optimization Approach 1: Results for 𝒏 = 𝟏  

Fitting a polynomial passing through 2 points results in, 𝑛 = 1, a 1st order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̇𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 1st order polynomial fitting are presented in 

Figure 4.22. 
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Figure 4.22. 1st order polynomial fitting of; 𝑏𝑆𝐴(𝑠̇𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right)  

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.23. 

 

Figure 4.23. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 1  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 
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𝜂𝑆𝐴,𝑂𝐴1𝑛1
= %86.9       (4.35) 

where 

 𝑂𝐴𝑖 : Optimization Approach i 

 𝑛𝑖 : ith order polynomial 

4.3.1.2 Optimization Approach 1: Results for 𝒏 = 𝟐 

Fitting a polynomial passing through 3 points results in, 𝑛 = 2, a 2nd order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̇𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 2nd order polynomial fitting are presented in 

Figure 4.24. 

 

Figure 4.24. 2nd order polynomial fitting of; 𝑏𝑆𝐴(𝑠̇𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.25. 
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Figure 4.25. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 2  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 

𝜂𝑆𝐴,𝑂𝐴1𝑛2
= %90.44       (4.36) 

4.3.1.3 Optimization Approach 1: Results for 𝒏 = 𝟑 

Fitting a polynomial passing through 4 points results in, 𝑛 = 3, a 3rd order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̇𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 3rd order polynomial fitting are presented in 

Figure 4.26. 
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Figure 4.26. 3rd order polynomial fitting of; 𝑏𝑆𝐴(𝑠̇𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.27. 

 

Figure 4.27. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 3  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 
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𝜂𝑆𝐴,𝑂𝐴1𝑛3
= %90.37       (4.37) 

4.3.2 Optimization Approach 2: 𝒃𝑺𝑨 as function of 𝒔̂𝑺𝑨 

As mentioned in the previous section, the coefficient of damping is usually a function 

of velocity. However, there are such dampers that their coefficient of damping are a 

function of displacement and velocity at the same time or function of displacement 

only [9]. Since MFG design is suitable to define the coefficient of damping as a 

function of displacement, an optimization approach has been followed by taking both 

𝑘𝑆𝐴 and 𝑏𝑆𝐴 as function of displacement, i.e. 𝑘𝑆𝐴(𝑠̂𝑆𝐴), 𝑏𝑆𝐴(𝑠̂𝑆𝐴). Referring to 

Method 2: Decision Variables of 𝒚𝒊 (using “polyfit” command) in Section 4.2.2.1, 

the optimum polynomial that represents the spring and damper characteristics is tried 

to be found by changing the coordinates that the polynomial passes through. 

Decision variables of the optimization: 

𝑦1, 𝑦2, … , 𝑦𝑛+1    

used in 

𝑃[𝑥] = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡([𝑥1, 𝑥2, … , 𝑥𝑛+1], [𝑦1, 𝑦2, … , 𝑦𝑛+1], 𝑛)  

where  

 𝑃[ ] = 𝑘𝑆𝐴[ ] and 𝑥 = 𝑠̂𝑆𝐴 for spring 

𝑃[ ] = 𝑏𝑆𝐴[ ] and 𝑥 = 𝑠̂𝑆𝐴 for damper 

 𝑛 = 1,2,3 

 𝑥𝑖 = 𝑖 ×
𝑥𝑛+1

𝑛
 

where 

 𝑥𝑛+1 = 0.16 𝑚 for spring and damper 

Objective function: 
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𝐽[𝐹𝑆𝐴, 𝑠̂𝑆𝐴] = max(𝜂𝑆𝐴)      (4.38) 

Optimization input parameters 

 𝑚1, 𝑚2, 𝑟𝑡𝑖𝑟𝑒, 𝐹𝐿𝐼𝐹𝑇, (𝑧1)0, (𝑧2)0, (𝑧̇1)0, (𝑧̇2)0 as defined in Table 4.6. 

4.3.2.1 Optimization Approach 2: Results for 𝒏 = 𝟏  

Fitting a polynomial passing through 2 points results in, 𝑛 = 1, a 1st order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̂𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 1st order polynomial fitting are presented in 

Figure 4.28. 

 

Figure 4.28. 2nd order polynomial fitting of; 𝑏𝑆𝐴(𝑠̂𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.29. 
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Figure 4.29. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 1  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 

𝜂𝑆𝐴,𝑂𝐴2𝑛1
= %86.33       (4.39) 

4.3.2.2 Optimization Approach 2: Results for 𝒏 = 𝟐 

Fitting a polynomial passing through 3 points results in, 𝑛 = 2, a 2nd order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̂𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 2nd order polynomial fitting are presented in 

Figure 4.30.  
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Figure 4.30. 2nd order polynomial fitting of; 𝑏𝑆𝐴(𝑠̂𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.31. 

 

Figure 4.31. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 2  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 
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𝜂𝑆𝐴,𝑂𝐴2𝑛2
= %91.82       (4.40) 

4.3.2.3 Optimization Approach 2: Results for 𝒏 = 𝟑 

Fitting a polynomial passing through 4 points results in, 𝑛 = 3, a 3rd order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̂𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 3rd order polynomial fitting are presented in 

Figure 4.32. 

 

Figure 4.32. 3rd order polynomial fitting of; 𝑏𝑆𝐴(𝑠̂𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.33. 
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Figure 4.33. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 3  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 

𝜂𝑆𝐴,𝑂𝐴2𝑛3
= %94.05       (4.41) 

4.3.2.4 Optimization Approach 2: Results for 𝒏 = 𝟒 

Fitting a polynomial passing through 5 points results in, 𝑛 = 4, a 4th order 

polynomial. Optimum damping coefficient, 𝑏𝑆𝐴(𝑠̂𝑆𝐴), and optimum spring 

coefficient, 𝑘𝑆𝐴(𝑠̂𝑆𝐴), obtained with the 4th order polynomial fitting are presented in 

Figure 4.34 
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Figure 4.34. 4th order polynomial fitting of; 𝑏𝑆𝐴(𝑠̂𝑆𝐴) (left), 𝑘𝑆𝐴(𝑠̂𝑆𝐴) (right) 

Effectivity of the optimization is evaluated with a comparison of a “drop test in 

Thesis Model with optimum spring/damper characteristics” with respect to a “drop 

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”. 

The available test results of NACA TN 2755 are also presented in this comparison, 

as presented in Figure 4.35. 

  

Figure 4.35. Thesis Model drop test simulation with NACA SA characteristics, and 

optimum SA characteristics for 𝑛 = 4  

The efficiency of the shock absorber using the optimum spring/damper 

characteristics is calculated using equation (4.31) as follows. 
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𝜂𝑆𝐴,𝑂𝐴2𝑛4
= %94.45       (4.42) 

4.3.3 Comparison of Optimization Approches 

Two different optimization approaches are described in Sections 4.3.1 and 4.3.2. The 

same objective is aimed at both approaches. Both approaches are performed under 

the same optimization constraints. 

The objective function, 𝜂𝑆𝐴, i.e., efficiency, is evaluated based on 𝑠̂𝑆𝐴 as defined 

below.  

𝜂𝑆𝐴 =
∫ 𝐹𝑆𝐴𝑑𝑠̂𝑆𝐴

𝑠̂𝑆𝐴,𝑚𝑎𝑥
0

𝑠̂𝑆𝐴,𝑚𝑎𝑥𝐹𝑆𝐴,𝑚𝑎𝑥
       (4.31)  

The results of two optimization approaches are listed in Table 4.8. 

Table 4.8. Optimization Approach comparison 

Approach 
Objective Function 

[𝜂𝑆𝐴] 

Increase w.r.t. 

𝜂𝑆𝐴,𝑁𝐴𝐶𝐴(%78.26) 

OA1, 𝑛 = 1 %86.9 %11.04 

OA1, 𝑛 = 2 %90.44 %15.56 

OA1, 𝑛 = 3 %90.37 %15.47 

OA2, 𝑛 = 1 %86.33 %10.31 

OA2, 𝑛 = 2 %91.82 %17.33 

OA2, 𝑛 = 3 %94.05 %20.18 

OA2, 𝑛 = 4 %94.45 %20.69 

 

As seen in Table 4.8, OA 2 is better than OA 1 in terms of giving a better solution 

for the objective. In OA 1, there is not any further increase in the efficiency after 

𝑛 = 2, where the increase for the OA 2 stop at 𝑛 = 3. In general one may expect the 

efficiency to go %100 if the order of the polynomial goes infinity. However, this is 

not applicable to the definition of this problem; because to achieve a %100 
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efficiency, the 𝐹𝑆𝐴 is required to be equal to 𝐹𝑆𝐴,𝑚𝑎𝑥 for 𝑡 > 0. Thus, it means 𝐹𝑆𝐴 is 

defined as step result in time domain, and this requires 𝑏𝑆𝐴 or 𝑘𝑆𝐴 to be defined as 

step functions (or infinity at 𝑡 = 0). Furthermore, it does not necessarily mean for 

the efficiency to be increasing with the increasing order of the polynomial. Even with 

the use of an active damping system, the efficiency of the shock absorber was 

increased to %94.5 [20]. Thus, it is not expected from a passive design to have better 

efficiency than an active design. 

In summary, referring to Table 4.8, spring/damper characteristics for Optimization 

Approach 2 for 𝑛 = 4 is found as the optimum solution to the problem. 
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CHAPTER 5  

5 APPLICATION OF MFG ON LANDING GEAR SHOCK ABSORBER 

The use of MFG on a landing gear shock absorber is investigated in this chapter. The 

design of MFGS and MFGD for a given condition was previously described in 

Section 3. Separately, an optimization is performed on existing landing gear design 

inputs to obtain the optimum spring and damper characteristics. Thus, MFGs will be 

designed to act as a non-linear spring and a non-linear damper with the optimum 

characteristics. 

The application of MFG on landing gear is evaluated from two aspects: theoretical 

achievability of the solution and feasibility of the MFG installation on a landing gear.  

5.1 Design Concept 

MFG is a mechanism that consists of planar motion. The landing gear shock absorber 

also performs planar displacement. The initial idea of the application of MFG on a 

landing gear shock absorber is realized by allowing the MFG’s displacement in z-

direction inside the shock absorber, in which the shock absorber also performs 

displacement in the same direction. The initial concept is depicted in Figure 5.1. 
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Figure 5.1. Sketch of the installation of MFG on landing gear 

A landing gear shock absorber has a cylindrical design for its easy production, low 

friction, and better hydraulic fluid sealing properties. Thus, the initial application 

concept causes inefficient use of a cross-sectional area of the shock absorber. To use 

the circular cross-section of the shock absorber more efficiently, a new concept of 

MFG installation is introduced, in which there are two MFGs using the same input 

links. The application of two MFGs at the same time is illustrated in Figure 5.2. 
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Figure 5.2. Installation of MFGS and MFGD at the same MFG 

This application has the benefits of reducing the load on an MFG and using the MFGs 

for different purposes at the same time, such as one is MFGS, and the other is MFGD. 

With the design concepts introduced above, different options are evaluated in the 

following sections. 

An MFG system with optimum spring and damper characteristics determined in 

Section 4.3 is designed in this section.  

Let the optimum spring and damper characteristics be presented here as follows. 
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Figure 5.3. Optimum spring force and spring coefficient 

 

Figure 5.4. Optimum damper force and damping coefficient 

The design of the MFGs will be handled separately for spring and damper. 

5.2 Design of MFGS 

The optimum spring characteristic of the shock absorber (see Figure 5.3) is defined 

as follows. 

𝑘𝑆𝐴[𝑠̂𝑆𝐴] = 2.43 × 10−6𝑠̂𝑆𝐴
4 − 4.45 × 10−4𝑠̂𝑆𝐴

3 …  

+2.83 × 10−2𝑠̂𝑆𝐴
2 + 0.146𝑠̂𝑆𝐴 + 39.21 𝑁/𝑚𝑚   (5.1) 

𝐹𝑆𝐴,𝑠𝑝𝑟 = 𝑘𝑆𝐴[𝑠̂𝑆𝐴]𝑠̂𝑆𝐴       (5.2) 
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Firstly, the spring for the chamber of this MFGS shall be selected. Requirements of 

this chamber spring shall be specified, so a correct selection can be performed. The 

spring inside the chamber shall store the same amount of potential energy that will 

be stored at the MFG, which means the potential energy stored at the SA spring. This 

can be determined via the energy graph of the shock absorber spring, which obtained 

via 

𝐸𝑆𝐴,𝑠𝑝𝑟[𝑠̂𝑆𝐴] = ∫ 𝐹𝑆𝐴,𝑠𝑝𝑟[𝑠̂𝑆𝐴]𝑑𝑠̂𝑆𝐴
𝑠̂𝑆𝐴

0
     (5.3)  

 

Figure 5.5. Energy stored at shock absorber spring 

Evaluating equation (5.3) for 𝑠̂𝑆𝐴 = 160𝑚𝑚, one will find that the energy stored at 

the SA spring is equal to 𝐸𝑆𝐴,𝑠𝑝𝑟[160] = 685.47 𝐽𝑜𝑢𝑙𝑒 as presented in Figure 5.5.  

Since the MFG consists of two chambers that store energy, the energy needs to be 

stored in one chamber is defined as follows. 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,𝑐ℎ𝑎 =
𝐸𝑆𝐴,𝑠𝑝𝑟[𝑠̂𝑆𝐴]

2
=

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟[𝑠𝑀𝐹𝐺]

2
    (5.4) 

Thus, the following condition shall be satisfied for the selected spring of 

compression type as 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,𝑐ℎ𝑎[𝑙𝑠𝑝𝑟,𝑚𝑖𝑛] =
1

2
𝑘𝑐ℎ𝑎(𝑙𝑠𝑝𝑟,𝑚𝑖𝑛 − 𝑙𝑓,𝑠𝑝𝑟)

2
> 342.75 𝐽𝑜𝑢𝑙𝑒 (5.5)  
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and for a selected spring of tension type as 

𝐸𝑀𝐹𝐺,𝑠𝑝𝑟,𝑐ℎ𝑎[𝑙𝑠𝑝𝑟,𝑚𝑎𝑥] =
1

2
𝑘𝑐ℎ𝑎(𝑙𝑠𝑝𝑟,𝑚𝑎𝑥 − 𝑙𝑓,𝑠𝑝𝑟)

2
> 342.75 𝐽𝑜𝑢𝑙𝑒 (5.6)  

where 

 𝑙𝑠𝑝𝑟,𝑚𝑖𝑛 : Minimum length of a compression spring (catalog value) 

 𝑙𝑠𝑝𝑟,𝑚𝑎𝑥 : Maximum length of a tension spring (catalog value) 

 𝑙𝑓,𝑠𝑝𝑟  : Free length of the selected spring (catalog value) 

𝑘𝑐ℎ𝑎   : Spring constant of the chamber 

Here, it should be noted that, 𝑘𝑐ℎ𝑎 may not be the spring constant of one spring. The 

chamber may consist set of springs that work in parallel. Which yields 

𝑘𝑐ℎ𝑎 = 𝑛𝑠𝑝𝑟𝑘𝑠𝑝𝑟       (5.7) 

where 

 𝑛𝑠𝑝𝑟 : Quantity of springs in a chamber 

𝑘𝑠𝑝𝑟  : Spring constant 

 

Figure 5.6. Dimensions of a chamber volume 
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As presented in Figure 5.6, a set of springs can be installed inside the chamber. The 

installation of these spring in parallel is performed such that the maximum number 

of springs are installed inside the chamber as presented in Figure 5.7. 

 

Figure 5.7. Example of determination number of springs inside the chamber 

The number of springs is taken into account during the selection of the spring w.r.t. 

equation (5.5) or equation (5.6). For the application of the optimum SA design, some 

of the dimensions for the MFGs, which have been identified in Figure 5.6 and Figure 

3.5, are determined to start the design. According to the satisfaction of the design, 

the dimensions are adjusted. 

𝑐1 = 200 𝑚𝑚        (5.8) 

𝑑3 = 50 𝑚𝑚        (5.9) 

The compression type of spring is thought to be the initial preference due to the small 

installation envelope requirement. A spring may be designed for given requirements; 

however, springs in the market, which have been already produced, are searched 

from the internet [31]. The stock numbers of these springs can be found in Appendix 

C. The candidate springs and their properties are presented in Table 5.1. 
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Table 5.1. Candidate spring properties 

Spring 

ID 

Outer 

Diameter 

[mm] 

𝑙𝑓,𝑠𝑝𝑟 

[mm] 

𝑘𝑠𝑝𝑟 

[N/mm] 

Max 

Deflection 

[mm] 

𝑛𝑠𝑝𝑟 
𝑘𝑐ℎ𝑎 

[N/mm] 

𝐸𝑠𝑝𝑟[𝑙𝑠𝑝𝑟,𝑚𝑖𝑛] 

[Joule] 

CS1 48.412 65.786 426.83 7.872 8 3414.64 105.8 

CS2 31.344 50.8 373.13 7.059 12 4477.56 111.56 

CS3 41.275 41.402 526.61 6.403 9 4739.49 97.16 

CS4 24.994 62.738 414.21 6.078 32 13254.7 244.8 

CS5 37.287 55.626 1385.57 4.28 10 13855.7 126.91 

CS6 33.325 28.702 547 3.693 12 6564 44.76 

CS7 45.237 36.576 338.22 4.143 8 2705.76 23.22 

 

Considering the energy storage capabilities, CS4 stands out as a potential candidate 

compared to the other springs, but it still does not satisfy the criterion given in 

equation (5.5). Thus, an adjustment on the dimensions is required. Previously given 

in equation (5.8) and equation (5.9), 𝑐1 and 𝑑3 dimensions are defined as follows. 

𝑐1 = 200 𝑚𝑚        (5.10) 

𝑑3 = 75 𝑚𝑚        (5.11) 

Thus, equation (5.5) can be calculated for CS4 as follows 

𝐸𝑠𝑝𝑟,𝐶𝑆4[𝑙𝑠𝑝𝑟,𝑚𝑖𝑛] =
1

2
(48 × 414.2)(56.66 − 62.738)2 = 367.2 𝐽𝑜𝑢𝑙𝑒 (5.12)  

Let an MFGS be designed using the spring selected above. It shall be noted that the 

shock absorber and the MFG displacements shall be related to each other correctly 

to design against the correct requirements. The total displacement of the shock 

absorber is defined as 160 𝑚𝑚. Thus the total displacement between Link 2 and 

Link 4 of the MFGs shall be 160 𝑚𝑚 as 

𝑠2/4,𝑚𝑎𝑥 − 2𝑑𝑐𝑙𝑒 = 160 𝑚𝑚      (5.13) 

which yields 
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𝑠𝑀𝐹𝐺,𝑚𝑎𝑥 − 𝑑𝑐𝑙𝑒 = 𝑠2/4,𝑚𝑎𝑥/2 − 𝑑𝑐𝑙𝑒 = 80 𝑚𝑚    (5.14) 

If one evaluates the dimensions of the MFGS, one can observe that the total 

displacement of Link 2 and Link 4 would be small with respect to 𝑐1 as presented in 

Figure 5.8. 

 

Figure 5.8. Evaluation of total displacement of MFG w.r.t. SA 

This is mainly due to requirement of storing high amount of energy inside small 

installation envelope.  

First, the spring coefficient and force defined in equation (5.1) and equation (5.2) 

shall be re-defined in 𝑠𝑀𝐹𝐺 domain, instead of 𝑠̂𝑆𝐴, to allow a design inside the 

allowable region. If one selects the clearance parameters as 

𝑑𝑐𝑙𝑒 = 10 𝑚𝑚       (5.15) 

then 

𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 ≥ 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚      (5.16) 

Thus, a change needs to be performed on 𝑠̂𝑆𝐴 to design the MFG. The following 

change will satisfy the requirement to stay inside the allowable region. 

𝑠̂𝑆𝐴 = 160 − (𝑠2/4 − 2𝑑𝑐𝑙𝑒) = 160 − (2𝑠𝑀𝐹𝐺 − 2𝑑𝑐𝑙𝑒)  (5.17) 

which yields 
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𝑠̂𝑆𝐴 = 180 − 2𝑠𝑀𝐹𝐺       (5.18) 

If the equation (5.18) is plugged in equation (5.2), one obtains the spring force as 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟[𝑠𝑀𝐹𝐺] = 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺](𝑠𝑀𝐹𝐺 − 90)    (5.19) 

where 

𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = −1.94 × 10−5𝑠𝑀𝐹𝐺
4 + 4.81 × 10−3𝑠𝑀𝐹𝐺

3 …  

−0.412𝑠𝑀𝐹𝐺
2 + 13.952𝑠𝑀𝐹𝐺 − 174.856 𝑁/𝑚𝑚   (5.20) 

The spring force of the MFGS defined in equations (5.19) and (5.20) is presented in 

Figure 5.9.  

 

Figure 5.9. MFGS force of optimum shock absorber spring 

Furthermore, one needs to decide on the other dimensions of the MFGS. Knowing 

the spring’s maximum deflection property, the width of Link 3 (𝑏3) can be defined 

as presented in Figure 5.10. 
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Figure 5.10. Determination of required 𝑏3 

Taking the total travel deflection into consideration, since the clearance value is 

selected as 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚, one obtains 𝑏3 as 

𝑏3 = 26.078 𝑚𝑚       (5.21) 

The free length of the spring is known from Table 5.1 as 

𝑙𝑓,𝑠𝑝𝑟 = 62.738 𝑚𝑚       (5.22) 

If minimum space allocation is desired from the MFGS, 𝑏1 can be determined in 

relation with 𝑙𝑓,𝑠𝑝𝑟 as long as the selections of integral limits (see Page 40) are 

performed to benefit the most out of the allowable region. Thus, referring to Page 40 

and Figure 5.11 (𝑠𝑐ℎ𝑎 = 𝑙𝑓,𝑠𝑝𝑟), 𝑏1 may be defined as 

𝑏1 = 𝑙𝑓,𝑠𝑝𝑟 + 𝑏3 − 𝑑𝑐𝑙𝑒 + 𝑏2       (5.23) 

or 

𝑏1 = 𝑙𝑓,𝑠𝑝𝑟 + 𝑑𝑐𝑙𝑒 + 𝑏2       (5.24) 
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Note that any selection of 𝑏1 in accordance with equation (5.23) or equation (5.24) 

restricts the selection of integral limits for equation (3.55).  

 

Figure 5.11. Determination 𝑏1 in relation with 𝑙𝑓,𝑠𝑝𝑟 

Referring to equation (5.23), 𝑏1 is defined as 

𝑏1 = 62.738 + 26.078 − 10 + 𝑏2 = 78.816 + 𝑏2   (5.25) 

Lastly, the length of the arm of Link 2 should be determined. If one takes the 

movement of Link 3 into account, referring to Figure 5.11 and Figure 5.10, one can 

define 𝑏2 as follows 

𝑏2 = 𝑏3 − 𝑑𝑐𝑙𝑒 + 𝑏4/2      (5.26) 

where 

 𝑏4 : Diameter of Link 2 

Determination of 𝑏4 diameter requires further strength analysis/calculation and 

material information; however, this is out of the scope of this thesis study. Thus, 𝑏4 

is assumed as 

𝑏4 = 10 𝑚𝑚        (5.27) 
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Referring to equation (5.26) and equation (5.27), one can define 𝑏2 and effectively 

𝑏1 (see equation (5.25)) as 

𝑏2 = 26.078 − 10 + 10/2 = 21.078 𝑚𝑚    (5.28) 

𝑏1 = 78.816 + 21.078 = 99.894 𝑚𝑚    (5.29) 

With respect to dimensions given in equations (5.10), (5.15), (5.21), (5.28) and 

(5.29), the MFGS is plotted in MATLAB environment as assembled. The layout of 

the MFGS is presented in Figure 5.12. 

 

Figure 5.12. MFGS installation layout 

Given the dimensions, the allowable region is defined as presented in Figure 5.13. 
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Figure 5.13. Allowable region R on Link 3 

Thus, given the dimensions and spring chamber properties referring to the solution 

derived in Section 3.2.1, the solution is found for this MFGS design. As previously 

described while using equation (5.23) for the dimensions of the MFGS, the point that 

slot shape centerline passes through is selected as described on Page 40. As a 

reminder, the selection of the point, as presented in Figure 5.13, yields 

(𝑥𝑟)𝑖 = 16.078 𝑚𝑚       (5.30) 

(𝑧𝑟)𝑖 = 10 𝑚𝑚       (5.31) 
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Figure 5.14. Solutions for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 (for (𝑥𝑟)𝑖 = 16.078, (𝑧𝑟)𝑖 = 10) 

As presented in Figure 5.14, (𝑥𝑟)𝑝 is the solution for this problem. Thus, taking 

(𝑥𝑟)𝑝 as the solution, the position analysis is performed as presented in Figure 5.15. 

 

Figure 5.15. Position analysis of MFGS design 
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𝑠̇𝑐ℎ𝑎 and 𝑠̇𝑀𝐹𝐺 evaluated with respect to 𝑧𝑟 with taking 𝑠̇𝑀𝐹𝐺 as unit velocity (𝑠̇𝑀𝐹𝐺 =

1 𝑚𝑚/𝑠) in Figure 5.16. 

 

Figure 5.16. Velocity analysis of MFGS design 

Finally, 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 and −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 are presented in Figure 5.17 with respect to 𝑠𝑀𝐹𝐺. 

𝑠̇𝑐ℎ𝑎 was also presented in Figure 5.16 with respect to 𝑠𝑀𝐹𝐺 (note that 𝑠̇𝑀𝐹𝐺 =

1 𝑚𝑚/𝑠). 

 

Figure 5.17. 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 and −𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 w.r.t. 𝑠𝑀𝐹𝐺 
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Referring to equation (3.48), if “−𝐹𝑐ℎ𝑎,𝑠𝑝𝑟 in Figure 5.17” is multiplied with “𝑠̇𝑐ℎ𝑎 

in Figure 5.16”, “𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 in Figure 5.17” will be obtained (remember that 𝑠̇𝑀𝐹𝐺 =

1 𝑚𝑚/𝑠). 

5.3 Design of MFGD 

The optimum damper characteristic of the shock absorber (see Figure 5.3) is defined 

as follows. 

𝑏𝑆𝐴[𝑠̂𝑆𝐴] = 9.35 × 10−8𝑠̂𝑆𝐴
4 − 3.92 × 10−5𝑠̂𝑆𝐴

3 …  

+7.35 × 10−3𝑠̂𝑆𝐴
2 − 0.627𝑠̂𝑆𝐴 + 26.34 𝑁/𝑚𝑚/𝑠    (5.32) 

𝐹𝑆𝐴,𝑑𝑚𝑝 = −𝑏𝑆𝐴[𝑠̂𝑆𝐴]𝑠̇𝑆𝐴      (5.33) 

For the design of MFGD, some of the dimensions determined in Section 5.2 are used. 

The dimensions that were determined previously and which will be used in MFGD 

design are defined as follows. 

𝑐1 = 200 𝑚𝑚        (5.34) 

𝑏1 = 99.894 𝑚𝑚       (5.35) 

Dampers are not standard elements such as springs. The design of a damper changes 

according to its application [30]. Thus, the damping coefficient inside the chamber 

will be determined as the outcome of the MFGD design. So, the remaining 

dimensions of the MFGD are “carefully” determined by own choice to have a 

sensible design, in which the links do not clash with each other. 

Firstly, the clearance of the allowable region is selected the same with MFGS as 

𝑑𝑐𝑙𝑒 = 10 𝑚𝑚       (5.36) 

Similarly to MFGS, the damping constant and damper force shall be re-defined in 

𝑠𝑀𝐹𝐺 domain, instead of 𝑠̂𝑆𝐴, to allow a design inside the allowable region. Thus, 

referring to equation (3.32), the following condition shall be satisfied. 
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𝑠𝑀𝐹𝐺,𝑚𝑖𝑛 ≥ 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚      (5.37) 

Thus, a change needs to be performed on 𝑠̂𝑆𝐴 to design the MFG. The following 

change will satisfy the requirement to stay inside the allowable region. 

𝑠̂𝑆𝐴 = 160 − (𝑠2/4 − 2𝑑𝑐𝑙𝑒) = 160 − (2𝑠𝑀𝐹𝐺 − 2𝑑𝑐𝑙𝑒)  (5.38) 

which yields 

𝑠̂𝑆𝐴 = 180 − 2𝑠𝑀𝐹𝐺       (5.39) 

Since the damping force is function of velocity, the velocity of shock absorber 

damper, 𝑠̇𝑆𝐴, must be related to the velocity of MFGD input link, 𝑠̇𝑀𝐹𝐺. This 

relationship is defined as follows. 

𝑠̇𝑆𝐴 = 2𝑠̇𝑀𝐹𝐺        (5.40) 

If equations (5.39) and (5.40) are plugged in equation (5.33), one obtains the 

damping force as 

𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 = −𝑏𝑀𝐹𝐺[𝑠𝑀𝐹𝐺]𝑠̇𝑀𝐹𝐺     (5.41) 

where 

𝑏𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] = 2.99 × 10−6𝑠𝑀𝐹𝐺
4 − 4.5 × 10−4𝑠𝑀𝐹𝐺

3 …  

+3.5 × 10−2𝑠𝑀𝐹𝐺
2 − 1.568𝑠𝑀𝐹𝐺 + 42.54 𝑁/(𝑚𝑚/𝑠)   (5.42) 

The spring used in MFGS limits the dimensions of the chamber. Since the damper is 

not a standard component, the minimum and maximum dimensions of the damper 

inside the chamber are defined by the author for MFGD design. Yet, the realization 

of this damper design is out of scope in this thesis study. The minimum and 

maximum dimensions of the damper are defined as 

50 𝑚𝑚 ≥ 𝑠𝑐ℎ𝑎 ≥ 25 𝑚𝑚       (5.43)  

If minimum space allocation is desired from the MFGD, 𝑏3 can be determined in 

relation to the total length change of the chamber, as 

Δ𝑠𝑐ℎ𝑎 = 25 𝑚𝑚        (5.44)  
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Figure 5.18. Determination of required 𝑏3 

Taking the total damper travel into consideration and referring to Figure 5.18, since 

the clearance value is selected as 𝑑𝑐𝑙𝑒 = 10 𝑚𝑚, one obtains 𝑏3 as 

𝑏3 = 45 𝑚𝑚        (5.45) 

 

Figure 5.19. Determination 𝑏2 in relation with 𝑠𝑐ℎ𝑎,𝑚𝑖𝑛 position 
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Lastly, the length of the arm of Link 2 should be determined. If one takes the 

movement of Link 3 into account, referring to Figure 5.19 and Figure 5.18, one can 

define 𝑏2 as follows 

𝑏2 = 𝑏3 − 𝑑𝑐𝑙𝑒 + 𝑏4/2      (5.46) 

where, same as MFGS,  

𝑏4 = 10 𝑚𝑚        (5.47) 

Referring to equation (5.46) and equation (5.47), one can define 𝑏2 as 

𝑏2 = 45 − 10 + 10/2 = 40 𝑚𝑚     (5.48) 

With respect to dimensions given in equations (5.34), (5.35), (5.36), (5.45) and 

(5.48), the MFGD is plotted in MATLAB environment as assembled. The layout of 

the MFGD is presented in Figure 5.20. 

 

Figure 5.20. MFGD installation layout 

Given the dimensions, the allowable region is defined as presented in Figure 5.21. 
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Figure 5.21. Allowable region R on Link 3 

The point that slot shape centerline passes through is selected as described on Page 

55. As a reminder, the selection of the point, as presented in Figure 5.21, yields 

(𝑥𝑟)𝑖 = 35 𝑚𝑚       (5.49) 

(𝑧𝑟)𝑖 = 10 𝑚𝑚       (5.50) 

Before starting to design a slot shape, the last necessary parameter is the damping 

coefficient of the chamber. Since the energy absorption of the chamber damper is a 

function of not only the position but also the velocity, the damper requirements inside 

the chamber could not be determined, such as spring. Thus, using the selections in 

equations (5.49) and (5.50), with trial and error, the damper coefficient inside the 

chamber is determined as  

𝑏𝑐ℎ𝑎 = 108.9 𝑁/(𝑚𝑚/𝑠)      (5.51) 

The damper coefficient is determined such that all working envelope of the damper, 

defined in equation (5.43), will be used. 

Thus, given the dimensions and damper chamber properties referring to a solution 

derived in Section 3.3.1, the solution is found for this MFGD design. 
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Figure 5.22. Solutions for (𝑥𝑟)𝑝 and (𝑥𝑟)𝑛 (for (𝑥𝑟)𝑖 = 45, (𝑧𝑟)𝑖 = 10) 

Referring to equation (3.102) and as presented in Figure 5.22, (𝑥𝑟)𝑛 is the solution 

for this problem. Thus, taking (𝑥𝑟)𝑛 as the solution, the position analysis is 

performed as presented in Figure 5.23. 

 

Figure 5.23. Position analysis of MFGD design 
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𝑠̇𝑐ℎ𝑎 and 𝑠̇𝑀𝐹𝐺 are evaluated with respect to 𝑧𝑟 with taking 𝑠̇𝑀𝐹𝐺 as unit velocity 

(𝑠̇𝑀𝐹𝐺 = 1 𝑚𝑚/𝑠) in Figure 5.24. 

 

Figure 5.24. Velocity analysis of MFGD design 

Finally, 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 and −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 are presented in Figure 5.25 with respect to 𝑠𝑀𝐹𝐺. 

𝑠̇𝑐ℎ𝑎 was also presented in Figure 5.24 with respect to 𝑠𝑀𝐹𝐺 (note that 𝑠̇𝑀𝐹𝐺 =

1 𝑚𝑚/𝑠). 

 

Figure 5.25. 𝐹𝑀𝐹𝐺,𝑑𝑚𝑝 and −𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 w.r.t. 𝑠𝑀𝐹𝐺 
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Referring to equation (3.86), if “−𝐹𝑐ℎ𝑎,𝑑𝑚𝑝 in Figure 5.25” is multiplied with “𝑠̇𝑐ℎ𝑎 

in Figure 5.24”, “𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 in Figure 5.25” will be obtained (remember that 𝑠̇𝑀𝐹𝐺 =

1 𝑚𝑚/𝑠). 

5.4 Comparison of Design with Previous Shock Absorber Design 

The concept of using MFG for a shock absorber design is explained initially at the 

beginning of this chapter. An MFGS and an MFGD have been designed using the 

optimum shock absorber characteristics defined in section 4.3. Thus, taking the 

dimensions of the previous shock absorber (the shock absorber in NACA TN 2755 

tests) as a reference, the dimensions of the MFGS and MFGD design will be 

evaluated compared. 
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Figure 5.26. Shock absorber used in NACA tests [15] 

Referring to Figure 5.26, the piston diameter of shock absorber assembly of NACA 

SA is given as 

 𝐷𝑆𝐴,𝑝,𝑁𝐴𝐶𝐴 = 75.58 𝑚𝑚      (5.52) 

and outer diameter and length of the shock absorber assembly of NACA SA can be 

measured as 

𝐷𝑆𝐴,𝑜𝑢𝑡,𝑁𝐴𝐶𝐴 ≅ 112 𝑚𝑚      (5.53) 

𝐿𝑆𝐴,𝑁𝐴𝐶𝐴 ≅ 515 𝑚𝑚       (5.54) 
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The installation of the MFGS and MFGD on the same link was previously explained 

in Section 5.1. Referring to Figure 5.2, the top view for the installation of MFGs with 

respect to dimensions determined previously is presented in Figure 5.27. 

 

Figure 5.27. Installation of MFGS and MFGD, top view 

During the installation of the mechanisms, some dimensions are required to be 

changed to prevent Link 3 of MFGS and Link 3 of MFGD from clashing. Thus, 𝑏1 

is changed as  

𝑏1 = 160 𝑚𝑚        (5.55) 

and 𝑏2 for MFGS and MFGD is changed accordingly. 

The side view of the installation of MFGs is given in Figure 5.28. 
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Figure 5.28. Installation of MFG, side view 

Using the MFG assembly presented in Figure 5.27 and Figure 5.28, a landing gear 

assembly is prepared to compare with the shock absorber used in NACA. This 

assembly is presented in Figure 5.29. 
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Figure 5.29. Shock absorber designed with MFG 

Referring to Figure 5.29, the piston diameter of shock absorber assembly of shock 

absorber with MFG is defined as 

 𝐷𝑆𝐴,𝑝,𝑀𝐹𝐺 = 75 𝑚𝑚       (5.56) 

and outer diameter and length of the shock absorber assembly with MFG is estimated 

(by giving credit to the thickness of structural parts) as 

𝐷𝑆𝐴,𝑜𝑢𝑡,𝑀𝐹𝐺 ≅ 400 𝑚𝑚      (5.57) 
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𝐿𝑆𝐴,𝑀𝐹𝐺 ≅ 740 𝑚𝑚       (5.58) 

5.5 Dicussion on Design Outcome 

At the beginning of this chapter, optimum shock absorber characteristics are taken 

as a reference to begin the design. Using a real spring, design of a real MFGS is 

aimed to check the feasibility and applicability of MFG’s use on an aircraft landing 

gear. On the other hand, the damper design is aimed to be kept feasible.  

After the design of the MFGS and MFGD, it has been observed that the travel of the 

MFG links (Link 3 and Link 5) are very small compared to the travel of the input 

links (Link 2 and Link 4). The main cause of this difference is keeping the shock 

absorber dimensions as small as possible to have a feasible shock absorber design 

that may fit inside the aircraft. The big difference between link travels causes the 

force transmission, from Links 3 and 5 to Links 2 and 4, to be very inefficient. 

Furthermore, inefficient force transmission may cause oversizing of components of 

MFG. On the other hand, even the smallest installation envelope is aimed, the shock 

absorber dimensions are resulted to be very big to install inside an aircraft.  
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CHAPTER 6  

6 CONCLUSION 

6.1 Summary 

At the beginning of the thesis study, an introduction is performed to provide 

information about the general properties that are referred throughout the study. The 

Mechanical Force Generator and its particular properties are featured. Information 

on shock absorber design and aircraft landing gear design is introduced to give an 

understanding of the basis of the problem. The drop test procedure, which is widely 

used during the verification and modeling of aircraft landing gear design processes, 

is summarized. Guidance on the evaluation of the test results is performed.  

Since shock absorber design of aircraft landing gear is a very specialized area, a 

literature review on shock absorber design is performed in Chapter 2. Being the 

commonly used design, the oleo-pneumatic type shock absorbers are described. 

Research is performed related to the problem defined at the beginning of the thesis 

study. Research studies on shock absorber efficiency are summarized and evaluated.  

In Chapter 3, a design methodology for Mechanical Force Generator is developed. 

General properties and the components of a Mechanical Force Generator are 

described. Kinematic chains that will help the design of the slot shape of Mechanical 

Force Generators are defined. Loop closure equations are determined using these 

kinematic chains. Equations used in position and velocity analysis, which is 

applicable to any Mechanical Force Generator design, are defined. The use of 

Mechanical Force Generator as a non-linear spring and a non-linear damper are 

investigated. Two methods are introduced, for non-linear spring and non-linear 

damper, to determine the slot shape of the Mechanical Force Generator for any given 

parameters and force characteristics as a requirement. The assumptions used in these 
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methods are defined. The methods are mathematically presented step by step and 

clearly explained. As side information, the construction of a special spring, which 

may work both as a compression spring and a tension spring, is explained. Referring 

to the non-linear property of a Mechanical Force Generator Spring, properties of 

special spring cases with a quadratic coefficient are investigated. At the end of the 

chapter, examples of the slot shape determination are performed for Mechanical 

Force Generator Spring and Mechanical Force Generator Damper. For the given 

dimensions and force characteristics, the slot shapes are mathematically determined, 

the results and slot shapes are illustrated. With these examples, the mathematically 

derived methods are proven to be valid before their use in Chapter 5. 

In Chapter 4, optimization of landing gear shock absorber characteristics is aimed. 

To perform this optimization, a spring mass damper model with 2 degrees of freedom 

is introduced. The validity of this model is evaluated with respect to a more detailed 

model prepared by the National Advisory Committee for Aeronautics which is 

prepared with test data. After the model and its equations of motion are explained, 

the objective of the optimization is defined. The optimization is sought to find the 

optimum spring coefficient and damper coefficient that will perform the best 

objective for the drop test conditions and parameters defined in the model used as a 

reference for model validation. Different methods to represent the non-linear 

characteristics of spring and damper are evaluated. As a result of this evaluation, “nth 

order polynomial fitting passing through n+1 point” is chosen as the method. The 

constraints of the optimization are defined to limit the optimization for real and 

feasible solutions. At the end of the chapter, two different approaches to define the 

damper coefficient are followed: a damper coefficient as a function of velocity and 

a damper coefficient as a function of position. The results of different approaches are 

presented and evaluated. The definition of damper coefficient as a function of 

position gave better results and was taken as a reference for Mechanical Force 

Generator design for landing gear shock absorber. 

In the last chapter, the design concept to install a Mechanical Force Generator Spring 

and a Mechanical Force Generator Damper on landing gear is introduced. Firstly, 
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using real springs, the spring part of the shock absorber was designed. Then, using 

the dimensions determined during spring design, the damper part of the shock 

absorber is designed. At the end of the chapter, the design of the shock absorber is 

compared with the shock absorber previously used in the reference documentation 

of the optimization. Evaluating the design of Mechanical Force Generators in this 

chapter and comparing the shock absorber design with the previous design, it is 

observed that the use of Mechanical Force Generator is not feasible for aircraft 

landing gear. Due to the very limited installation area of aircraft landing gear, the 

design ended up in very small force transmission angles, which causes inefficient 

use of space envelope. On the other hand, even the smallest installation envelope is 

aimed, the dimensions of the shock absorber resulted in larger than the previous 

shock absorber. 

6.2 Conclusion and Recommendation 

The Mechanical Force Generators are very flexible in terms of obtaining the desired 

spring and damper characteristics. Throught the study, it has been observed that these 

mechanisms are so flexible in design so that the system behaviour is not similar to 

usual springs or usual dampers. It is recommended for the future studies that the 

mechanical force generator itself does not require a fictitious property such as spring 

constant. So, the system design can purely focus on the force input and output to the 

mechanism. 

On the other hand, when assembled, the mechanism required very large space 

envelope to operate for the shock absorber application. Space envelope is one of the 

major constraints of air vehicle design. Besides,  a mechanical system with large 

number of component is not preferred in aeropace application due to their reliability 

and maintainability requirements. Thus, application of Mechanical Force Generator 

on landing gear shock absorbers is not feasible. 

 



 

 

176 

Referring to special spring cases described in Section 3.4.1, there may be different a 

uses of Mechanical Force Generators istead of aerospace industry. Since the 

mechanism requires large space envelope and large scaled systems such as 

construction or heavy duty machines can be good application fields of Mechanical 

Force Generators. Taking those application areas into consideration, evaluating 

Mechanical Force Generator as vibration isolators is a recommended field of study 

for future researches. 
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APPENDICES 

A. Spring Forces in MFGS when Link 4 is the Ground 

Let MFG-4-gr denote the mechanism that is obtained from the MFG presented in 

Figure 3.1 by letting Link 1 to be free to move; and by making Link 4 to be the 

ground (i.e., Link 4 is not able to move). In other words, MFG-4-gr is obtained from 

MFG by using the method of kinematic inversion. Similar to MFGS, let 2 linear 

springs be attached between Links 1 and 3; and Links 1 and 5 of MFG-4-gr, yielding 

the mechanism which will be called to be MFGS-4-gr in this study. Similar to MFGS, 

MFGS-4-gr converts two real, linear, identical springs (with a constant stiffness) into 

an equivalent, virtual, nonlinear spring that is assumed to be attached between Links 

2 and 4. Note that the virtual spring connects Link 2 to the ground (since Link 4 is 

fixed in MFGS-4-gr). 

Furthermore, let the forces applied on Links 3 and 5 (by the 2 linear springs) be 

designated as 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 which are given by equations (3.33) and (3.34), 

respectively. Furthermore, let the force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟, applied on Link 2, be the 

force which is equivalent to the 2 spring forces 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5. In other 

words, for rigid body mechanics purposes, one can delete the 2 spring forces 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3, 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5; and use the equivalent force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 given by 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 𝑘⃗⃗     (A.1) 

instead (see Figure A.1). Here it should be noted that although the spring forces 

𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 are actual forces, the equivalent force 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 is 

fictitious. 

In Figure A.1, 𝑚𝐿 denotes the mass of a load that is placed on Link 2; and 𝑔 denotes 

gravitational acceleration. 𝐿 is the vertical distance between 𝑂2 and 𝑚𝐿; and 𝑠𝑀𝐹𝐺,𝑒𝑞 

is constant. 𝐻 denotes a horizontal line attached rigidly to the ground. Note that, 𝑚𝐿, 
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𝑔, 𝐿, 𝑠𝑀𝐹𝐺,𝑒𝑞 and 𝐻 are not referred to in this Appendix. These symbols will be 

referred to in Section 3.4.1.4 while discussing spring case 4. 

Neglecting gravitational, frictional and inertial effects, in order for the fictitious force 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 to be equivalent to the two spring forces 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5, the 

instantaneous power due to 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 must be equal to the sum of the 

instantaneous powers due to 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 at all times, i.e., 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 ∙ 𝑣⃗2 = 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 ∙ 𝑣⃗3 + 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 ∙ 𝑣⃗5  (A.2) 

where 𝑣⃗2, 𝑣⃗3 and 𝑣⃗5 are the absolute velocities of Links 2, 3 and 5, respectively, 

given by 

𝑣⃗2 = 𝑣⃗1 + 𝑣⃗2/1       (A.3) 

𝑣⃗3 = 𝑣⃗1 + 𝑣⃗3/1       (A.4) 

𝑣⃗5 = 𝑣⃗1 + 𝑣⃗5/1       (A.5) 

In equations (A.3) – (A.5), 𝑣⃗1 denotes the absolute velocity of Link 1. Furthermore, 

𝑣⃗2/1, 𝑣⃗3/1 and 𝑣⃗5/1 are the relative velocities, with respect to Link 1, of Links 2, 3 

and 5, respectively, where 

𝑣⃗1 = 𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (A.6) 

𝑣⃗2/1 = 𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (A.7) 

𝑣⃗3/1 = 𝑠̇𝑐ℎ𝑎𝑖        (A.8) 

𝑣⃗5/1 = −𝑠̇𝑐ℎ𝑎𝑖        (A.9) 

Substituting equations (A.1), (3.33), (3.34) and equation (A.3) – (A.8) into equation 

(A.2), and simplifying, one obtains 

−𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑠̇𝑐ℎ𝑎 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟𝑠̇𝑀𝐹𝐺    (A.10) 

Now, comparing equation (A.10) with equation (3.48), it follows that 



 

 

183 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟     (A.11) 

Hence, the design procedure (for determination of the slot shape for MFGS) 

presented in Section 3.2.1 is also applicable for the determination of the slot shape 

for MFGS-4-gr. In order to apply the design procedure in Section 3.2.1 for MFGS-

4-gr, one needs to replace 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟 in equation (3.40) with 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟. Indeed, 

the user defined function 𝑘𝑀𝐹𝐺[𝑠𝑀𝐹𝐺] and the user defined parameter 𝑙0,𝑀𝐹𝐺 that 

appear in equation (3.40) should be selected such that the equivalent spring force 

𝐹𝑀𝐹𝐺,𝑠𝑝𝑟,2,4−𝑔𝑟[𝑠𝑀𝐹𝐺] is generated in the desired manner. 

 

Figure A.1. Spring forces acting on MFGS-4-gr 
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B. Spring Forces in MFGS when there are no Grounded Links 

Let MFG-no-gr denote the kinematic chain from which the MFG mechanism 

presented in Figure 3.1 is obtained. In other words, none of the links, including Link 

1, is grounded in MFG-no-gr. Similar to MFGS, let two linear springs be attached 

between Links 1 and 3; and Links 1 and 5 of MFG-no-gr, yielding the kinematic 

chain which will be called to be MFGS-no-gr in this study. Similar to MFGS, MFGS-

no-gr converts two real, linear, identical springs (with a constant stiffness) into an 

equivalent, virtual, nonlinear spring that is assumed to be attached between Links 2 

and 4. Let the spring forces acting on MFGS-no-gr be as presented in Figure 3.5 

where the definition of the forces 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3, 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5, 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 are 

identical with the definitions that are used in Section 3.2. 

Neglecting gravitational, frictional and inertial effects, in order for the fictitious 

forces 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 to be equivalent to the two spring forces 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 

and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5, the sum of the instantaneous powers due to the fictitious forces 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 and 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 must be equal to the sum of the instantaneous powers due 

to the real forces 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 and 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 at all times, i.e., 

𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,2 ∙ 𝑣⃗2 + 𝐹⃗𝑀𝐹𝐺,𝑠𝑝𝑟,4 ∙ 𝑣⃗4 = 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,3 ∙ 𝑣⃗3 + 𝐹⃗𝑐ℎ𝑎,𝑠𝑝𝑟,5 ∙ 𝑣⃗5 (B.1) 

where 𝑣⃗2, 𝑣⃗3, 𝑣⃗4 and 𝑣⃗5 are the absolute velocities of Links 2, 3, 4 and 5, respectively, 

given by 

𝑣⃗2 = 𝑣⃗1 + 𝑣⃗2/1       (B.2) 

𝑣⃗3 = 𝑣⃗1 + 𝑣⃗3/1       (B.3) 

𝑣⃗4 = 𝑣⃗1 + 𝑣⃗4/1       (B.4) 

𝑣⃗5 = 𝑣⃗1 + 𝑣⃗5/1       (B.5) 

In equations (B.2) – (B.5), 𝑣⃗1 denotes the absolute velocity of Link 1 which is not 

necessarily zero (as opposed to MFGS). Furthermore, 𝑣⃗2/1, 𝑣⃗3/1, 𝑣⃗4/1 and 𝑣⃗5/1 are 
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the relative velocities with respect to Link 1, of Links 2, 3, 4 and 5, respectively, 

where 

𝑣⃗2/1 = 𝑠̇𝑀𝐹𝐺 𝑘⃗⃗        (B.6) 

𝑣⃗3/1 = 𝑠̇𝑐ℎ𝑎𝑖        (B.7) 

𝑣⃗4/1 = −𝑠̇𝑀𝐹𝐺 𝑘⃗⃗       (B.8) 

𝑣⃗5/1 = −𝑠̇𝑐ℎ𝑎𝑖        (B.9) 

Substituting equations (B.2) – (B.9) into equation (B.1), and simplifying, one obtains 

−𝐹𝑐ℎ𝑎,𝑠𝑝𝑟𝑠̇𝑐ℎ𝑎 = 𝐹𝑀𝐹𝐺,𝑠𝑝𝑟𝑠̇𝑀𝐹𝐺     (B.10) 

which is identical with equation (3.48). Hence, the design procedure (for 

determination of the slot shape for MFGS) presented in Section 3.2.1 is also 

applicable for the determination of the slot shape for MFGS-no-gr. 
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C. Spring Catalogue Detail Information 

Spring Stock Part Numbers 

Spring 

ID 
Stock Part Number 

CS1 PC9195-48412-4750-OT-65786-CG-N-MM 

CS2 PC6858-31344-6000-MW-50800-CG-N-MM 

CS3 PC7925-41275-4000-MW-41402-CG-N-MM 

CS4 PC6350-24994-8000-MW-62738-CG-N-MM 

CS5 PC9525-37287-4750-MW-55626-CG-N-MM 

CS6 PC6350-33325-3500-MW-28702-CG-N-MM 

CS7 PC6655-45237-3000-HD-36576-CG-N-MM 
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