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ABSTRACT

AN ALGORITHM FOR DESIGNING NONLINEAR SPRINGS, OR
NONLINEAR DAMPERS, USING A MECHANICAL FORCE
GENERATOR AND ITS APPLICATION TO AN AIRCRAFT LANDING
GEAR

Yildiz, Fatih
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Resit Soylu

December 2021, 186 pages

The landing gear system is one of the most critical aircraft sub-systems that takes
part in the landing, taxi and take-off phases of every aircraft. Its main function is the
absorption of part of aircraft's kinetic energy during landing. There are different
types of shock absorbers to perform this task. The performance of the shock
absorbers has developed a lot after the invention of air-oil type shock absorbers.
However, increasing the performance of these shock absorber elements is still a field

of research followed by companies and institutions.

Mechanical Force Generators, on the other hand, are novel over-constrained
mechanisms that are known for low friction and shaking force properties. A very
important property of Mechanical Force Generator is being flexible to be designed

for any required force characteristic.

This thesis study consist of mainly three sections. Firstly, a design methodology for
Mechanical Force Generator design is developed. For this design methodology,
Mechanical Force Generator has been considered for two different purposes: a non-

linear equivalent spring and a non-linear equivalent damper. Then, spring mass



damper model was developed for landing gear modeling. This model is validated
against the results of a test performed by the National Advisory Committee for
Aeronautics. Using a spring mass damper model, an optimization is sought on the
landing gear used in this test. The methods and approaches to find the optimum
spring and damper characteristics are explained. In the last, using the optimum spring
damper characteristics determined in the optimization, the design of Mechanical
Force Generator is followed for the landing gear. The applicability and feasibility of
the design on landing gear are presented and discussed. Throughout the study, special
properties of Mechanical Force Generator are investigated, and different areas it may

be utilized are evaluated and recommended at the end of the study.

Keywords: aircraft landing gear, shock absorber efficiency, mechanical force
generator
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MEKANIK KUVVET JENERATORU KULLANILARAK LINEER
OLMAYAN YAY VE LINEER OLMAYAN DAMPER TASARIM
ALGORITMASI VE UCAK INiS TAKIMINA UYGULANMASI

Yildiz, Fatih
Yiiksek Lisans, Makina Miihendisligi
Tez Danigmani: Prof. Dr. Resit Soylu

Aralik 2021, 186 sayfa

Inis takim1 sistemi, cogu ugakta bulunan ve u¢agin inis, taksi ve kalkis asamalarinda
gorev alan, en kritik ucak alt sistemlerinden biridir. Bu sistemin ana
fonksiyonlarindan biri, inis sirasinda ucagin kinetik enerjisinin bir boliimiinii
sonlimlemektir. Bu gorevi yerine getirmek i¢in farkli tiplerde sok soniimleyiciler
bulunmaktadir. Sok  sonlimleyicilerin  performansi, hava-yag tipi sok
sOniimleyicilerin bulunmasindan sonra c¢ok gelismistir. Buna ragmen, sok
sOniimleyicilerin performansinin artirilmasi bugiin hala endiistride ve akademide

arastirmalara konu olmaktadir.

Mekanik Kuvvet Jeneratorleri diisiik stirtiinme ve sarsma kuvvetleri ile bilinen ve
yakin zamanda bulunmus olan asiri-kisith mekanizmalardir. Mekanik Kuvvet
Jeneratorlerinin en Onemli Ozelliklerinden biri istenilen herhangi bir kuvvet

karakteristigi i¢in tasarlanabilme esnekligine sahip olmalaridir.

Bu tez calismasi ana hatlariyla ii¢ kissmdan olusmaktadir. Baslangigta, Mekanik
Kuvvet Jeneratorleri igin bir tasarim yontemi onerilmistir. Bu tasarim yontemi i¢in

Mekanik Kuvvet Jeneratorii iki farkli amagla degerlendirilmistir: lineer olmayan yay

Vil



ve lineer olmayan damper. Sonrasinda, inis takimi1 modellemek i¢in bir yay-damper
modeli gelistirilmistir. Gelistirilen bu model National Advisory Committee for
Aeronautics tarafindan gergeklestirilmis test sonuglari ile dogrulanmistir. Bu yay-
damper modeli kullanilarak, testte kullanilmis olan inis takimi optimize edilmistir.
Bu optimizasyon sirasinda kullanilan metotlar ve yaklagimlar agiklanmigtir. Son
kisimda, optimizasyonda belirlenen optimum yay ve damper karakteristikleri
kullanilarak Mekanik Kuvvet Jeneratorii tasarimi yapilmistir. Mekanik Kuvvet
Jeneratoriiniin inis takimi {izerinde uygulanabilirligi ve fizibilitesi sunulmus ve
tartisitlmistir. Tez boyunca Mekanik Kuvvet Jeneratorlerinin 6zel nitelikleri

arastirilmis, farkli kullanim alanlar1 degerlendirilmis ve tezin sonunda onerilmistir.

Anahtar Kelimeler: ugak inis takimi, sok soniimleyici verimliligi, mekanik kuvvet

jeneratorii
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CHAPTER 1

INTRODUCTION

In this chapter, basic information regarding a Mechanical Force Generator (MFG)
and a landing gear shock absorber (SA) are provided. The organization and scope of

the thesis are presented at the end of the chapter.

1.1 Introduction to Mechanical Force Generator

An MFG is an over-constrained mechanism proposed by Soylu [1] which transforms
force or motion in one direction into force or motion in another direction. (see Figure
1.1) This mechanism has many benefits, such as having small friction forces and
shaking forces due to the symmetry of the mechanism [1],[2],[3].
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Figure 1.1. Mechanical Force Generator [1]



Previous studies on MFG have concentrated on using an MFG to increase the energy
efficiency of an already existing machine [2], [3]. Alternatively, the maximum force
or maximum torque requirement of the driving actuator may also be reduced [2], [3].
In his study, Mencek [4] showed that MFGs provide, theoretically, a substantial
improvement in the energy efficiency of an already existing machine. However, the

actual performance of the system may not be as good as theoretically predicted [4].

Another study performed by Erding [3] focused on using an MFG to reduce the
energy consumption of an existing machine for a given periodic task. In this study,
the use of MFG resulted in a significant reduction in the machine's energy
consumption [3].

Ekinci [2] improved the previously developed methods to determine the optimum
power profiles. Supporting his simulations with experiments, Ekinci demonstrated
that combining an MFG within an existing machine could improve the machine's

performance by minimizing the maximum torque required to run the task [2].

The aforementioned studies on MFG are primarily focused on the optimization of
the power characteristic and energy consumption of an existing system. This thesis
study, on the other hand, is focused primarily on creating an equivalent nonlinear
spring and an equivalent nonlinear damper by using a linear spring and a linear
damper within MFG.

1.2 Introduction to Landing Gear Shock Absorbers

Aircraft design is a multi-disciplinary process that includes aerodynamics, structures,
avionics, software, and Air Vehicle Systems (AVS). This multi-disciplinary design
process is broken down into levels to facilitate the design more efficiently. The
Landing Gear System (LGS) is one of the most critical sub-systems under AVS.

The purpose of employing a landing gear on an aircraft is to support the aircraft on
the ground during take-off, landing; and to decelerate the aircraft safely. The landing

gear damps the kinetic energy and reduces the structural loading experienced by the



airframe during landing. Early and lighter aircraft designs generally used landing
gears that were fixed (non-retractable). However, modern, and heavier aircraft
designs generally use retractable landing gears in order to improve the aircraft's
aerodynamic efficiency. Aircrafts with different landing gear configurations are

presented in Figure 1.2 and Figure 1.3.

www.shutterstock.com - 12933040

Figure 1.2. An aircraft with non-retractable landing gears [5]

Figure 1.3. An aircraft with retractable landing gears [6]



The coordinate system used for the aircraft design is presented in Figure 1.4. The
installation of the landing gear is performed such that wheel rolling direction is
parallel to aircraft longitudinal, i.e., forward-aft, direction.

00 00 % g Z4/0

Figure 1.4. The coordinate system used for aircraft (A/C) design [7]

A description of the components of typical landing gear is presented in Figure 1.5.
Some of the components in this figure are only designed for specific types of aircraft.
For example, gravel deflectors are specific to the aircraft operating off an unpaved
runway to avoid foreign object damage. Some of the generic components applicable

to most modern retractable aircraft landing gears are listed below.
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Figure 1.5. Nomenclature of landing gear components [8]

The trunnion is a structural component of landing gear, which mainly carries
the vertical loads on the aircraft, such as the vertical reaction load during
landing or taxying.

Drag strut is another structural component of the landing gear that mainly
carries the loads along the longitudinal direction, such as spin-up and spring-
back loads during landing and braking loads.

Side strut is another structural component of the landing gear that mainly

carries the loads along the lateral direction, such as drift landing loads.



e A shock absorber is the most characteristic landing gear component, which
transfers the ground reaction forces onto the aircraft. Shock absorbers in
earlier aircraft were made of steel springs or rubbers. However, modern
aircraft are usually employed with oleo-pneumatic type shock absorbers due
to their high efficiency.

e Downlock mechanism provides locking of the retractable gear in the
extended position to prevent it from collapsing when the aircraft is on the
ground.

Shock absorber design of a landing gear is, still, a very important research field.
Early landing gear designs, such as the ones that exist in World War 1l aircraft,
incorporated shock absorbers of different types such as steel spring, rubber spring,
air type, and liquid spring type [9]. However, development of new technologies on
changed the trend towards using oleo-pneumatic type shock absorbers, where the air
is used as spring and oil is used for damping. The advantages of the oleo-pneumatic

type shock absorbers against earlier design methods are presented in Figure 1.6.
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Figure 1.6. Comparison of different types of shock absorbers: efficiency (left),
efficiency/weight ratio (right) [9]
In Figure 1.6, the efficiency of different types of landing gears is presented. On the
right, the figure shows ratings of different types of landing gears, which are obtained
by dividing efficiency by the dimensionless weight parameter.

Typical design configurations of an oleo-pneumatic shock absorber can be seen in
Figure 1.7. The oil and gas are separated in configurations A and A’. The remaining

configurations B, C, C’, D, and E are mixed type shock absorbers (gas and oil are



mixed). The differences in the mixed type of shock absorber configurations are
dependent on the design details such as sealings, structural layout, and oil/air

volume.

Figure 1.7. Cross-sectional view of oleo-pneumatic shock absorber configurations
(oil: red, gas: blue) [10]

1.3 Introduction to Landing Gear Drop Test

Aircraft landing gear design is a critical system of the aircraft. Failure of the landing
gear is not acceptable for the sake of the lives of the flight crew and passengers.
Thus, the fail-safe principle is followed during the landing gear design so that the
gear continues functioning until the aircraft comes to the end of its life [11]. In order
to satisfy the requirements of the aircraft design, loads and conditions that the landing
gear may encounter during operations of the aircraft are implemented into the design.
These loads and conditions are mainly the landing loads, the taxying loads, and the
steering loads. Landing loads are the primary loads for the design, which affects the

design significantly; however, the secondary loads also do affect the detailed design



of the gear. The taxying and steering loads are the most important input for the

fatigue life calculations of the landing gear.

The primary loads must be defined and tested before the aircraft flies for the first
time, so that the design of the landing gear complies with the aircraft [12]. The so-
called drop test procedure is followed to check the validity and correctness of the
design.

The drop test, as the name implies, is performed by dropping the landing gear (that
IS supported with a structure) from a height with a mass at the top of the gear. The
conditions of the drop test (drop mass, drop height, tire rotation speed) are defined
in accordance with aircraft landing conditions to simulate the same conditions during
landing. The scope of the test is limited from the initial touchdown to the settling of

the dynamic system.

A landing gear drop test is usually performed for two purposes: validation of
simulation models and qualification of the design. A generic drop test setup is

presented in Figure 1.8 [13].



Figure 1.8. Drop test setup of a landing gear [13]

The advantage of a drop test is that it enables the landing gear design to be isolated
from the aircraft parameters, such as the flexibility of the aircraft fuselage. Thus, it

enables the standalone model of landing gear to be integrated into the aircraft model.

Although it is a physical test procedure, modeling a drop test is also a design process
before realizing a landing gear design. A mathematical model helps to simulate the
same environment in order to design and optimize a shock absorber for the landing

gear.



A drop test result is mainly evaluated for its three properties: maximum force at the
shock absorber (Fs4 1mqx), maximum stroke change of the shock absorber (854 max)
(see Figure 1.9), and efficiency (ns4). The descriptions of these properties are

presented in detail in Chapter 4.

A typical evaluation of a drop test can be observed in Figure 1.9. The initial contact
starts at t,. The final time, ¢, is defined as the time where the stroke change, Sgy4,
reaches its maximum. The dynamic motion continues until the oscillation of the
system is damped, where time is ¢,. The results between ¢ and t, is usually checked
for the realizability of the design, such as the prevention of a rebound where the
contact between the tire and the ground is lost. The efficiency of the shock absorber

is evaluated in the time interval ¢ty < t < t; (see Section 4.2.1).

Y
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Fg,(t) [N]

Y

t =1y Ssa(t) [m]

SSA,max

Figure 1.9. A typical drop test result
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1.4 Scope and Organization of the Thesis

The objective of the thesis is to design a shock absorber for aircraft landing gear
using MFGs.

To achieve this objective, a design methodology for MFG is introduced in Chapter
3. The use of MFG as a non-linear spring and non-linear damper is investigated.
General methods to determine the slot shape of MFG for given dimensions and
desired force characteristics are introduced. Construction of a special spring that may
be used both in compression and tension is introduced during the derivation of the
method for non-linear spring. Additionally, special spring cases with quadratic
stiffness are investigated to bring out the possible opportunities of the use of MFG
in other applications. Illustrative examples of MFG design as spring and damper are

performed to explain the method and prove the validity of calculations.

A spring mass damper model with two degrees of freedom is introduced and
validated with available test results. Using the reference parameters and conditions
in test results, an optimization on landing gear shock absorber is performed. The
objective of this optimization is to find the optimum non-linear spring and damper
characteristics that result in the optimum shock absorber design.

In the last chapter, the design of landing gear with MFGs, which is designed against
optimum spring and damper characteristics, is evaluated. The outcome of the design
is compared with the shock absorber used in the test. With respect to this comparison,
the applicability, and feasibility of the use of MFG on landing gear shock absorbers

are discussed.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a literature review regarding shock absorbers and their efficiency

optimization is presented.

2.1 Oleo-Pneumatic Shock Absorbers

The properties of an oleo-pneumatic shock absorber have been previously explained
in Section 1.2. There are many design alternatives for an oleo-pneumatic shock
absorber. Some of these alternatives are investigated and presented in the preceding

paragraphs.

Single-Stage Shock Absorber with Fixed Orifice

Single-stage shock absorbers are the simplest oleo-pneumatic shock absorbers with

non-linear spring and damper characteristics.

A single-stage oleo-pneumatic shock absorber with a fixed orifice consists of an air
chamber that acts as a non-linear spring (according to the gas compression law) and
a fixed orifice that acts as a non-linear damper (according to the law of fluid
discharge through an orifice). Typical spring and damper characteristics of the air

spring and oil damper are depicted in Figure 2.1.
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Figure 2.1. Single-stage SA with fixed orifice; cross-sectional view (left), example
spring characteristic (upper-right), damper characteristics (lower-right) [14]

Dual-Stage Shock Absorber with Fixed Orifice

A dual-stage shock absorber is obtained by adding a second air chamber to a single-

stage shock absorber.

A dual-stage shock absorber with a fixed orifice consists of two air chambers that
act as a non-linear spring according to the gas compression law. The first air chamber
works until the chamber comes to an end and compresses the second chamber's air.
The damper characteristics are the same with a fixed orifice. Typical spring and

damper characteristics of the air spring and oil damper are depicted in Figure 2.2.
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Figure 2.2. Dual-stage SA with fixed orifice; cross-sectional view (left), example
spring characteristic (upper-right), damper characteristics (lower-right) [10]

Single-Stage Shock Absorber with Poppet VValve Orifice

Shock absorbers with a poppet valve design are the most practical shock absorbers

because of their ease of design and adjustability.

A single-stage shock absorber with a poppet valve orifice is similar to a single-stage
fixed orifice shock absorber as far as the air spring characteristics are concerned. The
damper characteristic is designed such that it changes with the force inside the shock
absorber. Typical spring and damper characteristics of the air spring and oil damper

are depicted in Figure 2.3.
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Figure 2.3. Single-Stage SA with poppet valve orifice; cross-sectional view (left),
spring characteristic (upper-right), damper characteristics (lower-right) [10]

Single-Stage Shock Absorber with Metering Pin

Shock absorbers with metering pin are the most suitable and optimized shock
absorbers for obtaining highly non-linear damping characteristics. They are known
for being reliable and for having low maintenance cost [9]. Efficiency (which will
be explained later in 4.2.1) of 90% can be achieved with metering pins with several
drop tests for development of the design [10].

The damper characteristic is designed to change with the displacement, as presented
in Figure 2.4 left, and the velocity of the shock absorber. Typical spring and damper
characteristics of the air spring and oil damper are depicted in Figure 2.4 [15].
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Figure 2.4. Single-stage SA with metering pin; cross-sectional view (left), example
spring characteristic (upper-right), damper characteristics (lower-right) [15]

2.2 Shock Absorber Design Optimization

The design of a shock absorber is focused, mainly, on the damper characteristics;
because, the spring characteristic of oleo-pneumatic shock absorbers (air spring)
allow the dampers to absorb most of the energy during compression at landing [9].
Dampers, on the other hand, can be classified into two groups; namely,

active/adaptive dampers and passive dampers.
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2.2.1 Active/Adaptive Damper Design

Oleo-pneumatic shock absorbers are the most popular type of shock absorbers today.
Since 1970s, many studies have focused on implementing closed loop control to
shock absorbers; leading to various active/adaptive damper designs [16], [17]. One
of the initial studies was performed by Ghiringhelli [18], who aimed to use semi-
active control for the orifice size (see Figure 2.5). The benefit of using semi-active
control is that it is simple, lightweight, and safe (compared to fully active control).
In the simulations, increased landing gear efficiency has been obtained. The test
results also showed an increase in the performance. However, they are not at the
same level as the simulation results. The reason for this, probably, is that the control

equipment utilized in the tests was insufficient for the intended purpose.

SERVOVALVE ORIFICE
REGULATOR

Full Semiactive

Figure 2.5. Active and semi-active control concepts [18]

In 2003, Mikulowski aimed for an increase in performance using a
magnetorheological (MR) fluid in the shock absorber [19]. MR fluids have viscosity
properties that change with the magnetic field. The control strategy was employing
fully active control by providing feedback to the system (see Figure 2.6). However,
an increase in the performance was not achieved because of the system's response
time during the landing impact. In his study, Mikulowski stated that [19] MR fluid
was able to change its properties in 25 ms, whereas the landing impact typically lasts

only for 100 ms.
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Han has recently revisited the available active shock absorption methods using an
MR fluid in 2019 [20]. In his study, an optimization is performed by using an MR
fluid in the shock absorber with the Skyhook damper concept (see Figure 2.7, left)
for the fully active control. Increased landing gear efficiency has been obtained with
the use of this active suspension (see Figure 2.7, right). However, experimental
validation of the study has not been realized. Previously, in his study, Mikulowski
[19] stated that realization of this application was not possible due to response time
of the controller. Thus an experimental study is required in order to validate Han’s

study.
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2.2.2 Passive Damper Design

Most oleo-pneumatic shock absorbers utilize passive dampers. The system works in
the open-loop philosophy; thus, it is optimized for a specific condition or condition
spectrum. Since aircraft landings occur within a predictable range of conditions,

passive shock absorbers are suitable for such applications.

In 2017, Li approached the shock absorber design from a new perspective by
utilizing an inerter. Inerter is a mechanical element similar to a spring or a damper
(see Figure 2.8). It has also been referred to be the “missing mechanical element of
the dynamic systems” [21]. In his study, Li focused on the optimization of the shock
absorber by adding an inerter to the system [14]. The inerter, however, poses some
challenges since the elongation of the strut will be limited during landing. This
limitation may lead to a rebound in the shock strut, which will pose a significant risk

of unexpected loads on the landing gear and the aircraft.

Rack Pinions

4

. e

Terminal 2 Gear  Flywheel Terminal 1

(a)

Terminal 2 Nut Flywheel  Screw Terminal 1

(b)

Figure 2.8. Schematics of two types of inerter; rack and pinion (a), ball screw (b)
[21]
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Shi has focused on the optimization of the metering pin design with different profiles
(see Figure 2.9) in 2019 [22]. The results have shown that optimum solutions can be
achieved for specific landing conditions (regarding the mass of the aircraft, vertical
speed during landing etc.). This may be a good approach because, usually, an aircraft
performs its landing operation within specific mass range [12]. However, the
production of these complex metering pin configurations needs to be further
investigated.
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Figure 2.9. Metering pin profiles investigated in Shi’s study [22]
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CHAPTER 3

MECHANICAL FORCE GENERATOR

In the beginning of this chapter, the position, velocity, and acceleration of the MFG
are mathematically defined. Then, two different uses of the MFG are investigated:
one is using a spring inside the MFG to create a non-linear spring, Mechanical Force
Generator Spring (MFGS), the other is using a damper inside the MFG to create a
non-linear damper, Mechanical Force Generator Damper (MFGD). Mathematical
derivations are performed for the MFGS and the MFGD separately to find a general
solution for MFGS or MFGD for a given force characteristic. The general properties
of the MFG are explained in Section 3.1. The notation of the MFG defined in Figure
3.1 is kept as a general notation and is applicable for both MFGS and MFGD. After
derivation of the slot shape solution, realizability checks are defined to evaluate the
feasibility of the solution against the design constraints. During derivation of
methodology for MFGS, the design of an equivalent spring which can create
compression and tension force is defined. Since MFGS is a mechanism that can be
designed for non-linear force characteristics, special cases for springs with quadratic
stiffness are investigated to observe the possible use area of MFGS. lllustrative
examples for the design of MFGS and MFGD are performed at the end of the chapter
to explain the design steps clearly and evaluate the validity of the mathematical
derivations performed at the beginning of the chapter.

3.1 General MFG Properties

Overconstrained mechanisms [23] are mechanisms where the actual degree of
freedom (DoF) is strictly greater than the DoF predicted by the Kutzbach Criterion.
Mechanical Force Generator is an overconstrained mechanism with 1 DoF [1]. If the

MFG is designed properly and if the weights of the links are neglected, the reaction
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forces and reaction moments, acting on the four prismatic joints, that connect the
MFG to the ground are identically zero (at all times and for all possible motions of
the MFG) (see Figure 3.1). Therefore, frictional losses and wear at these four joints
are minimized. Furthermore, the shaking forces and shaking moments transmitted to

the ground are identically zero (at all times and for all possible motions).

MFG consists of 9 links. The names and the descriptions of the links are listed below
(see Figure 3.1).

1 — Ground: This link is the case that encloses the whole MFG mechanism and
is treated to be the fixed link. It is connected to Link 2, Link 4, Link 3 and Link

5 with four prismatic joints.

Links 2 and 4 — Input Links: These links translate along the Z(*) direction. There
is a prismatic joint between each input link and the ground link. There are four

revolute joints between the two input links and the four rollers (Links 6-9).

Links 3 and 5 — Chamber Links: These links translate along the ¥¥ direction.
Each chamber link is connected to the ground with a prismatic joint. The two
chamber links are connected to the four rollers with four cam joints (single point

contact).

Links 6, 7, 8, and 9 — Roller Links: There is a revolute joint between each roller
link and an input link. The rollers are connected to the chamber links with four

cam joints.

Every link in the MFG has its own body-fixed reference frame denoted by F; with
an origin at 0;. F; is a right-handed reference frame the axes of which are labeled as
¥® y® and Z®, All reference frames are oriented such that they are parallel to F,
which is the earth fixed reference frame. 7, j and k denote unit vectors parallel to

¥ @) and 2| respectively.
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Figure 3.1. Mechanical Force Generator

Referring to Figure 3.1, by, b, and b; denote strictly positive scalar dimensions
measured parallel to the (V) axis. c;, on the other hand, is a strictly positive scalar
dimension measured parallel to the Z(1 axis. Referring to Figure 3.1 again, s,, ss,
s, and s are signed scalars which yield the position of Links 2, 3, 4 and 5 (relative
to Link 1), respectively. s.,, and sy, are also signed scalars which are presented

in Figure 3.1.

Sy, S3, S4 and s5 may be rigorously defined via the following equations.

s, =00,k (3.1)
S3=—0,03 1 (3.2)
s, =—0,0, k (3.3)
ss = 0,051 (3.4)

The x and z coordinates, in F5, of the center of roller 6, i.e., A, are denoted by x,

and z,, respectively, where
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xr = _0306 ) ? (3.5)

—

ZT = 0306 ) k (36)

The path of point A on Link 3 is the curve P; (see Figure 3.1), the defining equation
of which is given by

xr = f(zr) (3.7)
where f is a known function.

It should be noted that MFG is symmetrical with respect to the #(1 and Z(*) axes.
Hence, the equations of the paths P,, P; and P, (on which roller centers B, C and D
are restricted to move) may be obtained by using equation (3.7) and the symmetricity

of the mechanism.

In this study, the volume between Link 3 and Link 1 (in which a spring and/or a
damper may exist) is called to be “chamber” (see Figure 3.1). Similarly, the volume
between Link 5 and Link 1 is also called to be “chamber”. The stroke of the chamber,

Scha 1S defined with the following equation.
Scha = by — b3 — 53 (3.8)

There may be physical realizability constraints on s, Which can be represented in

the form

lcha,min = Scha = lcha,max (3-9)
where I pgq min aNd Lepg max are specified numbers.

The minimum and maximum allowable dimensions of the chamber (i.e., l.pq min and
lenamax) Change according to the design case. If a spring is used inside the chamber,
then leng min @Nd Lpg max Will be the minimum and maximum allowable lengths of
the spring, respectively. If a damper is employed inside the chamber, then I ;4 min
and l.pg max Will be the minimum and maximum allowable lengths of the damper,

respectively.
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The stroke of the MFG, sy,r¢, is defined via the equation

(3.10)

SMFG = S2 = S4
There may be physical realizability constraints on s,z Which can be represented in

the following form

(3.11)

lmremin < Smre < lure,max

where Ly rg min @Nd lyre max are specified numbers (see Figure 3.2)

[MFG,max

zMFG.:rnin

Figure 3.2. The minimum and maximum allowable MFG stroke lengths
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Region R

Figure 3.3. Definition of the clearance parameter d ;.

Referring to Figure 3.3, let the allowable region in which the path P; may lie be the
region R (the hatched region). As can be observed from Figure 3.3, the region R is
defined via the clearance parameter d ., which, later in this study, will be treated as

a user specified input. Clearly, one can express lyrg min aNd lyrg max iN terms of

d1e, yielding
lMFG,min = dge (3-12)
lMFG,max =¢; —dgie (3.13)

Hence, equation (3.11) yields

dcle < SMFG < C1 — dcle (3-14)

28



It should be noted that concept of the allowable region R is introduced so that the
mechanical construction of the MFG is simpler (in the sense that Links 3 and 5, as

well as Links 2 and 4 can, physically, lie in the same ¥ - Z( plane). If such a
simplification regarding the mechanical construction of the MFG is not sought for,
then the constraints introduced due to the allowable region R will not exist (i.e., the

allowable region R can be as large as required).

Another user specified input that will be used in this study is Asyg¢, Which is defined

via the equation

(3.15)

ASyre = lMFG,max - lMFG,min

311 Loop Closure Equations

A
Y
'y

Scha b3 S3
b
1

A

Figure 3.4. Sketch for writing down the loop closure equations
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As can be observed from Figure 3.1, the mechanism is symmetrical with respect to
¥ axis and Z(M axis. Hence, the Loop Closure Equation obtained by considering

0,0, will be identical with the remaining three loop closure equations that will be

obtained considering 0,0, 0,0g and 0, O,.

Loop Closure Equation (LCE) obtained via 0, O¢:

Referring to Figure 3.4,
0,0, = Syk — byl = —s3T + 2,k — x,1 (3.16)
By equating the k and 7 components in equation (3.16), one obtains
Sy = Z, (3.17)
S3 = b, — x, (3.18)
Here, it should be recalled that x,- and z,. are related to each other via the equation
xr = f(z) 3.7)

where f is a known function. Since b, is a known constant (i.e., a dimension of the
mechanism), there are three unknowns (namely s,, s3, z,-) in equations (3.17) and
(3.18) (when one considers equation (3.7) as well). Hence, when one of the three
unknowns is specified, the remaining two unknowns can be solved from equations
(3.17), (3.18) and (3.7). Therefore, if there is no slippage between Roller 6 and the
slot, the mechanism consisting of Links 1, 2, 6, and 3 in Figure 3.4 is a 1 degree of

freedom mechanism.

Solving s3, interms of s, from (3.8), and solving s,, in terms of sz, from (3.10)

and substituting the results into (3.18) and (3.17), one obtains
Scha = Xr + by — b3 — by (3.19)

SMFG = ZT (320)
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which involve the 3 unknowns s, Sy and z,. (when one considers equation (3.7)

as well).

Velocity Loop Equation (VLE) obtained via 0,0¢:

By taking derivative of equation (3.16) with respect to time, the VLE can be obtained

as follows
Sk = =S50+ 2,k — %0 (3.21)
where

_ds o _dss L, _dx o, dz
2T ST M T T g
Since x, is a function of z,., using the chain rule, x,. can be written as a function of

z,- and z,. as follows.
. dx, . , .
Xy = d_;Zr =f (Zr)zr (3.22)

where the prime denotes derivative with respect to z,.. Using the k and 7 components
of the VLE given by equation (3.21) and utilizing equation (3.22), the following

equations are obtained.

$p =2y (3.23)

§3= —%, = — 2y (3.24)

az,

It should be noted that, when the position of the mechanism is known, there will be
three generalized velocities (S5, $3, Z,-) in the two equations (3.23) and (3.24). Hence,
when one of the generalized velocities is specified, the remaining two generalized

velocities may be solved, linearly, from equations (3.23) and (3.24).

Note that, by taking time derivatives of equations (3.19) and (3.20), the following
relations may also be obtained.

) . dx, .
Scha = Xp = d—;zr (3.25)
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SMFG = Zr (3-26)

Acceleration Loop Equation (ALE) obtained via 0,0;:

By taking derivative of equation (3.21) with respect to time, the ALE may be

obtained as follows.

-

S,k = —8;0+ 7,k — %0 (3.27)

The time derivative of equation (3.22), on the other hand, yields

22+, (3.28)

Thus, equations (3.27) and (3.28) yield the following two scalar equations
§, = Z, (3.29)

oy yo _dxry (3.30)

dz? dz,

:5:3:_5(:1-:_

which involve the generalized accelerations, §,, §; and Z,..

Note that time derivatives of equations (3.25) and (3.26) yield the following two

equations.
. .. d%x, . dx, ..
Sepg = X%, = erZT Z2 + d—Z:Zr (3.31)
S'MFG = Z‘r (332)

Normally, LCE and VLE are sufficient for the purposes of determining the slot shape
(which is the objective in this study). However, ALE (which would be needed for a

dynamic force analysis) is also derived in this study for the sake of completion.

32  MFG Spring (MFGS)

In this study, MFG Spring (MFGS) denotes the mechanism that is obtained from

MFG, such that it converts two real, linear, identical springs (with a constant
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stiffness) into two equivalent, virtual non-linear springs. The two linear springs are
attached between Links 1 and 3; and Links 1 and 5 (see Figure 3.1). The forces

applied on Links 3 and 5, by the two linear springs, are designated by ﬁcha,spm and

-

Fepa,spr s respectively (see Figure 3.5), where

Fcha,spr,S = _Fcha,spr? (3-33)
Fcha,spr,s = Fcha,sprl (3.34)
In equations (3.33) and (3.34):
Fcha,spr = kcha(scha - lf,cha) (335)
where
lfcna : Free length of the two linear, identical springs
k.na :Spring constant of the two linear, identical springs
< H- |
@/z@ ®
,\ A
v (2)
c z ~)\ K Oz — = -
(1 s
s FrrrG spr 2/4
Xy 53 2 SuFc MFG,spr,2
(1)
4 P 2
Fcha,spr,a Sa SMFG m F Fcha,sp?',S
MFG,spr,4
Scha Scha
T 0,4 D,
53 B : S5
bs | |
by

Figure 3.5. Spring forces acting on MFGS

The real spring inside the chamber works as a
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e Compression spring if lf cha = Scha

e Tension spring if lf cha < Scha

Practically, it is necessary to keep the spring always in compression or tension due
to differences in the nature of the compression and tension springs. Physically, it is
not possible to use a tension spring as a compression spring due to the hook-like

attachment at the end of the tension spring (see Figure 3.6).

A Tension Spring

A Compression Spring

Figure 3.6. Physical differences between tension and compression springs

Using the definition of s.,, given by equation (3.19), the spring force inside the

chamber, given by equation (3.35), can be written as follows.

Fcha,spr = k¢na ((xr + by — bs — by) — lf, cha) (3.36)
Alternatively, Fepq sy Can be expressed as

Fenaspr = kena(cr — Ueng) (3.37)
where

cha = b2 + b3 — by + lf cpg

Referring to Figure 3.5, let the force ﬁMFG,Spr,Z, applied on Link 2, be the force which

IS equivalent to the spring force ﬁcha,spr,} In other words, for rigid body mechanics
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purposes, one can replace the spring force ﬁcha’spr,g with the equivalent force
ﬁMFG,Spr,Z. Here it should be noted that although the spring force ﬁcha,spm is an
actual force, equivalent force ﬁMFG,SW’Z is fictitious. Similarly, let the force
ﬁMFG,SpM be a fictitious force which is equivalent to the actual spring force

- -

Fepa,spr,s- IN this study, the equivalent fictitious forces Fyrg spr 2 and Fypg spr,a Will

be represented as follows.
FMFG,Spr,Z = FMFG,sprk (3.38)

ﬁMFG,sprA = _FMFG,sprk (3.39)

In equations (3.38) and (3.39), let Fyyr¢ s be defined via the equation

Fypespr = kurg [SMFG](SMFG - lO,MFG) (3.40)
where

lomré . Fictitious free length (a constant parameter) of the two
fictitious, identical equivalent springs, which are assumed to be attached
between the ¥ axis and Link 2; and the ¥(*) axis and Link 4 (see Figure
3.5)

kurclsure] : Spring coefficient of the two fictitious, identical equivalent
springs (which is a function of the variable sy;) which are assumed to be
attached between the ¥V axis and Link 2; and the (¥ axis and Link 4 (see

Figure 3.5)

Here, it should be noted that, k¢ [Syrc] 1S @ user-defined function and Iy y ¢ iS @
user-defined parameter which are utilized to define the desired variation of Fyrg spr
given by equation (3.40). It should also be noted that from equation (3.40), the value

of Fyrg,spr at Smrg = 0, Fyrg,spr[0], IS given by

FMFG,SpT [0] = — kyre [O] lO,MFG (3.41)
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Hence, after selecting the user-defined function kyr¢ [Surcl, the value Fyrg spr[0]
can be set to any desired value by selecting the user-defined parameter Iy prg In

accordance with equation (3.41) (see Figure 3.7).

FMFG,S;UT
r'y

» SMFG

FMFG,spr[U] = —knrcl0] X 1y mFe

Figure 3.7. Graphical representation of Fyrg sy [0]

Since the MFG spring is a fictitious non-linear spring, its compression and tension
characteristics do not resemble to a real spring. While the real spring inside the
chamber is in compression or tension only, the MFG spring may have the ability to

work in both “compression” and “tension”.

Note that, since sy r; = z, from equation (3.20), equation (3.40) yields

Fyrg spr = kure [Zr](Zr - lO,MFG) (3.42)

It should be noted that the equivalent spring coefficient of the fictitious spring, kyz¢
(see equation (3.40)), and the force developed in the fictitious spring, Fyrg spr (S€€

equation (3.40)), have been specified in terms of sy,z;. On the other hand, sz; can

be expressed in terms of s, ,, (see Figure 3.5) via the equation

SMFG = 52/4/2 (3.43)

In equation (3.43), s, , is defined, rigorously, via the equation
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52/4 = 0102 - E (3.44)

where k is a unit vector parallel to the Z(V axis. It should be noted that Sz/4 Yields

the relative position (parallel to the Z(!) direction) of Link 2 with respect to Link 4.
Hence, s/, may be considered to be the fictitious “length” of a fictitious, nonlinear
spring that is connected between Links 2 and 4. Hence, by replacing sy g that
appears in equation (3.40) with the right hand side of equation (3.43), one may

conveniently obtain expressions that yield kg and Fypg spr in terms of s, 4.

3.2.1 MFG Spring Slot Shape Determination

Suppose that, it is desired to design an MFGS such that the desired variation of the
equivalent forces ﬁMFG,spr,Z and ﬁMFG,SpM (with respect to syr¢) are specified via
the user-defined function kpyrglsyrg] and the user-defined parameter Iy pc.
Furthermore, suppose that the two identical linear springs to be used in the MFGS
have also been selected. Hence, the spring constant and the free length of these
springs (i.e., kcpq and lf ) are also known. Now, by designing the shapes of the
four symmetrical slots suitably; and by selecting the remaining kinematic

dimensions of the MFGS appropriately, it is possible to design an MFGS which will
generate the desired equivalent forces ﬁMFG,Spr,z and ﬁMFG,SpM. In this section, an

algorithm that yields the shapes of slots and kinematic dimensions of the MFGS is

presented.

While designing an MFGS, gravitational, inertial and frictional effects are neglected
in this study. Similarly, gravitational, inertial and frictional effects are also neglected
while designing an MFGD (see Section 3.3). In the preceding two paragraphs, for a
specific MFG (with a specific motion and loading), the effects of inertial and
frictional loads on the power losses are discussed. For the specific cases under
consideration, it is shown that the inertial and frictional effects are negligible (as

assumed in this study). In cases where gravitational, inertial and frictional effects are
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not negligible, they should also be taken into account while designing an MFGS, or
MFGD.

Effect of Inertial Loads for an MFG

One of the comprehensive studies, performed by Mencek in 2015 [4], investigated
the effect of inertial loads on the power consumption of the actuators that drive an
MFG. For a specific MFG (with a specific motion and loading), the input and output
powers are compared for Case A, where the inertial and frictional effects are
neglected, and Case B, where the inertial effects are taken into account, but the
frictional effects are neglected (see Figure 3.8). The efficiency of the system is
evaluated, via simulation, for these cases. The comparison shows that, by taking
power consumption of Case A as reference (100%), the efficiency of the system is
obtained as 98.98%. It is proved that, for this specific case, neglecting the inertial

loads is an acceptable assumption.

Effect of Frictional Losses for an MFG

The effect of frictional losses has been investigated by Mencek [4] and Erding [3]
separately. Similar to inertial loads, Mencek performed a comparison between Case
A, where the inertial and frictional effects are neglected, and Case C, where the
frictional losses are considered, but the inertial effects are neglected (see Figure 3.8).
The comparison shows that, by taking power consumption of Case A as reference
(100%), the efficiency of the system is obtained as 88.4%. Besides, in his study,
Erding stated that the friction losses in different case studies were 6.2% and 8.9% of

the total power consumption.
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Figure 3.8. Results for different cases in Mencek’s study [4]

Referring to Figure 3.5, neglecting gravitational, frictional and inertial effects, in
order for the fictitious force ﬁMFG,Spr,Z to be equivalent to the spring force ﬁcha,spm,

the instantaneous powers due to these two forces must be equal to each other at all

times, i.e.,

-

E cha,spr,3 "’ 1_7)3 = ﬁ MFG,spr,2 " 1_7)2 (3.45)
where ¥; and v, are the velocities of Links 3 and 2, respectively, given by
U3 = Schal (3.46)
U, = SMFGE (3.47)

Substituting equations (3.33), (3.46), (3.38), and (3.47) into equation (3.45), one

obtains
_Fcha,sprgcha = FMFG,sprS‘MFG (3.48)

where Fepg opr aNd Fyypg spr are given by equations (3.35) and (3.40), respectively.
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Similarly, in order for the fictitious force ﬁMFG'SpTA to be equivalent to the spring

force Fepq spr,s, the instantaneous powers due to these two forces must be equal to

each other at all times, i.e.

-

Fcha,spr,S ’ 175 = ﬁMFG,sprA ) 174 (3.49)
where v and v, are the velocities of Links 5 and 4, given by
Us = —Schal (3.50)
By = —Syrck (3.51)

Substituting equations (3.34), (3.50), (3.39), and (3.51) into equation (3.49), one

obtains, once more, equation (3.48). Hence, equation (3.48) is, simultaneously, the

condition for the fictitious force ﬁMFG,Spr,Z to be equivalent to the spring force
ﬁcha,spm; and the condition for the fictitious force ﬁMFG,SpM to be equivalent to the
spring force ﬁcha_spr,s.

Using equations (3.37) and (3.42) with equations (3.25) and (3.26), equation (3.48)

becomes

. dxy .
_kcha(xr lcha) ) - kMFG [Zr (Zr lO,MFG)Zr

which yields
_kcha(xr - l*cha) dx, = kyrg [Zr] (Zr - lO,MFG)er (3-52)

The differential equation above is already in separate form and, thus, can be solved

with direct integration using separation of variables ([ f[x]dx = [ g[y]dy) yielding

f(x )i (xr - lzha)dxr f( i Zr er (3-53)
where
_k T
hlzy) = =ML (7, — 1y 1) (354)
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In equation (3.53), (x,); and (z,); are the x and z coordinates (in F3) of a user
selected point Q; that is required to lie on the path P, (see Figure 3.2). Recall that P,

is the path, on Link 3, on which the center of Roller 6 is restricted to move.

Clearly, the lower limits of the integrals, (x,); and (z,.);, affect the solution for the
slot shape center line. So, selecting the limits is important in finding a feasible
solution for a particular problem. The realizability checks (see Section 3.2.2) are
always performed after the solution is obtained. However, a convenient selection of
the lower limits reduces the amount of work spent on these realizability checks. For
example, it is convenient to select the lower corners of the region R in Figure 3.3
(ie. (xr); =dge and (z,); = dee OF (x); = by —dge and (z,); = ¢; — dege).-
With this selection, satisfaction of the criterion in given Section 3.2.2 may become

easier.

Integrating equation (3.53), one obtains

x2 Xr o
7T - Xr Zha = p[ZT]
(%) (zr);

which yields

x? (xr)? *

P [xr - (xr)i] cha = p[zr] - p[(zr)i] (355)
where

p[zr] = fh.[Zr]er (3-56)

Now, for simplicity, define the constants K;, K, and K5 via the following equations
Ky = ()}
K, = (6)ilina
K3 = pl(z,):]

Hence, equation (3.55) yields

x-r% - ZXT :'ha - Zp[Zr] - K]_ + 2K2 + 2K3 = 0 (3.57)
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Now, introduce a new function q[z,], via the equation
qlz;] = —2plz,] — K; + 2K, + 2K;

Now, using the definition of q[z,], equation (3.57) can be written in the following

form
x? - zxr Zha + q[Zr] =0 (358)

Equation (3.58) is a quadratic equation in x,.. Using this equation, one may obtain
two solutions for x,. (in terms of z,). These two solutions yield two different P;
curves (see Figure 3.2), on which the center of Roller 6 is restricted to lie. The two

solutions of equation (3.58) for x,., i.e., (x;), and (x;.),, are given below.

(xr)p,n =lopg vV Alz,] (3.59)

where

A[Zr] = l:ha2 - q[Zr]

and (x,), and (x,.), are the solutions obtained by using the (+) and (—) signs in
equation (3.59), respectively. Note that, (x,),, and (x,), need to be real numbers,

which would be true if
Alz] = Line” — qlz,] = 0

for all z, in the working range of MFGS. Recalling that z, = sy (See equation
(3.20)), note that the working range of MFGS is given by lyrgmin < Smre <

lvrc max (S€€ equation (3.11)).

(xr)p and (x,.),, given by equation (3.59) yield two different P, paths (see Figure
3.2) on which the center of Roller 6 is restricted to lie. As can be observed from
equation (3.59), these two paths are symmetrical with respect to the line x, = [;;,.
In order to determine whether these P; paths lie in the allowable region R presented
in Figure 3.3, it is necessary to determine the minimum and maximum values of x,

which are denoted as (x,)min and (X;)max, respectively. In order to determine
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(%) min @and (X, )max, ON the other hand, one needs to determine the critical points

of (x;.), and (x;),. These critical points are obtained from the equation

de_O

azy
which is equivalent to

hlz,] =0 (3.60)
where h|z,] is given by equation (3.54).
Now, let the roots of equation (3.60) be denoted by (z,),, (z,),, ..., (z,),. Clearly,
(X )min and (x;);mqy Can be obtained by evaluating (x,.), (or, (x,),) at the critical
points obtained from equation (3.60) and at the lower and upper bounds of z, (which
are lMFG,min and lMFG,max)-

It should be noted that the number of P, paths that lie in the allowable region R may

be zero, or infinitely many.

Note that the design procedure presented in this section is applicable to the case
where Link 4 (rather than Link 1) is the ground (see Appendix A). The design
procedure is also applicable when none of the links in the MFGS, including Link 1,

is grounded (see Appendix B).

3.2.2 MFG Spring Slot Shape Realizability Checks

The MFGS is a non-linear spring that can be designed with respect to user needs and
design constraints. The solution found in equation (3.59) is only a mathematical
solution. This mathematical solution shall be checked against the physical
dimensions and design constraints of the MFGS. Thus, the following checks shall be

made on the MFGS dimensions.

Spring working range check
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The working range defined here is applicable for the use of a compression spring
only or a tension spring only. The working range for the use of an equivalent special
spring (which can work as a tension and compression spring simultaneously) is
defined in Section 3.2.3.

The working range of a spring is limited by its shape or mechanical properties. For
a compression spring, the operating range is limited by the spring shape. Let the

minimum allowable length of a compression spring be defined as I, m, and the
maximum allowable Iength of a compression spring be defined as I¢ -, which is the

free length of the spring, then the following criterion shall be satisfied.
®  Schamax = Scha = Scha,min which yiEIdS

lf,spr = Scha = lspr,min (361)

For a tension spring, the operating range is limited by the strength properties of the

spring. If the maximum allowable length of the tension spring is defined as lgp; max
and the minimum allowable length of a tension spring is defined as I s,,, which is

the free length of the spring, then the following criterion shall be satisfied.

®  Schamin = Scha = Schamax which yields

lf,spr < Scha < lspr,max (362)

3.2.3 Design of an Equivalent Spring, the Generated Spring Force of
which can Change Direction

The force generated by a tension spring, F;.,, iS given by

Fien = kten(xten - lf,ten) (3-63)
where

kien, : Spring constant of linear tension spring
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Xten, . Length of the tension spring

lten : Free length of the tension spring
Equation (3.63) is only valid if

Xten = lf ten (3.64)
yielding

Fien >0

which implies that the direction of the force provided by a tension spring cannot

change.
The force generated by a compression spring is given by

Feom = kcom(Xcom = lf.com) (3.65)
where

keom :Spring constant of linear compression spring

X.om - Length of the compression spring

lg com - Free length of the compression spring
Equation (3.65) is only valid if

Xcom < lf com (3.66)
yielding

Feom <0

which implies that the direction of the force provided by a compression spring cannot

change.

Now, suppose that it is necessary to design a linear spring that generates a spring

force, the direction of which can change. This can be realized by using a tension
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spring and compression spring in parallel (see Figure 3.9), such that the lengths of

the two springs, which are equal, are given by
Xie = Xten = Xcom (3.67)
and the free lengths of the two springs satisfy the following two constraints
U ten < lf.com (3.68)
lrten < Xte < lfcom (3.69)

In Figure 3.9, the dashed lines represent the relaxed positions of the springs, while

the solid lines represent the extended/compressed positions of the springs.
The net force developed by the two springs in Figure 3.9, F;, is clearly given by

Fie = Fien + Feoom (3.70)

Working Range
of Springs

Tension Spring

Compression Spring

o » Xtc — Xten = Xcom

lf,ten lf,com

Figure 3.9. Combined use of a tension spring and a compression spring connected
parallel to each other
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If equations (3.63), (3.65) and (3.67) are inserted into equation (3.70), the following
equation is obtained.

Ftc = kten(xtc - lf,ten) + kcom(xtc - lf,com) (3-71)

which can be arranged in the form

ktenlf,ten+kcomlf,com
Fee = (kten + kcom) [xtc - PR (3.72)
ten com

which can be expressed as

Fe = ktc(xtc - lf,tc) (373)
where
kic = kien + Kcom (3-74)
k enl ) en+kCOml ,com
Iy e = =i =t (3.75)
and

k.. :Spring constant of the equivalent tension/compression spring
lrec < Fictitious free length of the equivalent tension/compression spring

Assuming that k.. and [, are specified in the desired manner, equations (3.74) and
(3.75) constitute two equations with four unknowns (namely kien, lften, kcom,
l¢ com). Hence, it should always be possible to select these four unknowns, from the
spring catalogs, such that equations (3.74) and (3.75) yield the desired k. and I; ;.

values (exactly, or very closely).

As an illustrative numerical example, the force developed in tension, compression
and tension/compression spring (i.e., Fip,, F.om and Fy., respectively) are presented
in Figure 3.10.
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Figure 3.10. Comparison of the force characteristics between tension, compression,

and tension/compression springs

The properties of the tension and compression springs used in Figure 3.10 are listed

in Table 3.1.

Table 3.1. Spring parameters used in the numerical example

Spring Parameter Value
Kien [N/mm] 5
lf ten [mm] 2
kcom [N/mm] 3
lf com [mm] 7

3.3  MFG Damper (MFGD)

In this study, MFG Damper (MFGD) denotes the mechanism that is obtained from

MFG, such that it converts two linear, identical dampers (with constant damping

coefficients) into two equivalent, virtual non-linear dampers. The two linear dampers
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are attached between Links 1 and 3; and Links 1 and 5 (see Figure 3.1). The forces

applied on Links 3 and 5, by the 2 linear dampers, are designated by ﬁcha,dmp,3 and

-

Fena,amp,s respectively (see Figure 3.11), where;

-

Fcha,dmp,3 = _Fcha,dmpi) (3.76)
ﬁcha,dmp,s = Fcha,dmp? (3.77)
In equations (3.76) and (3.77)
Fcha,dmp = bchaScha (3.78)
where

b.ne : Damping coefficient of the two linear, identical dampers

b, Teml
| !
ar ol :
t | SmrFG
[S51
a @ S2/4
S2 SMFG Frrg,amp,2] 25
| . F 25
R Iy ) f >
05 Os
Fcha,dmp,S @ sS4 SMFG Fcha,dmp,s
MFMFG‘,dmpA
Scha Scha
S A Om.,,,,,,
Scha ”
( i > i X .
~ ! SMFG Scha
S3 : Ssg
i
bs ILL
by

Figure 3.11. Damper forces acting on MFG

It should be noted that due to the physical nature of a damper, the damping

coefficient cannot be smaller than zero, i.e.,

bipa >0
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Using the definition of s, given by equation (3.25) and equation (3.78), the damper

force inside the chamber can be written as follows.
Fena,amp = bchaXr (3.79)

Referring to Figure 3.11, let the force ﬁMFG,dmp,z, applied on Link 2, be the force
which is equivalent to the damper force ﬁcha,dmn} In other words, for rigid body
mechanics purposes, one can replace the damper force ﬁcha,dmp,3 with the equivalent
force ﬁMFG,dmp_z. Here, it should be noted that although the damper force ﬁcha,dmp,g
is an actual force, the equivalent force ﬁMFG,dmp,Z is fictitious. Similarly, let the force
ﬁMFG,dmpA, applied on Link 4, be a fictitious force which is equivalent to the actual
damper force ﬁcha,dmp,s. In this study, the equivalent fictitious forces ﬁMFG,dmp,z and

Fyrg,amp,a Will be represented as follows.

ﬁMFG,dmp,Z = FMFG,dmpk (3.80)
ﬁMFG,dmpA = _FMFG,dmpk (3.81)

In equations (3.80) and (3.81):
Fyre,amp = —byrclSurelSmre (3.82)
where

byrclsurc] : The damping coefficient of the two fictitious, identical
equivalent dampers (which is a function of the variable sy ;) which are
assumed to be attached between the X axis and Link 2; and the ¥V axis
and Link 4 (see Figure 3.11)

Note that b[syr¢] > 0 for all possible values of s,z in the domain of its definition.

Substituting equations (3.20) and (3.26) into equation (3.82), the fictitious non-linear

damper force can be written as follows.

FMFG,dmp = —byrclz ]2, (3.83)
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where
byrclz;] >0

Here, it should be noted that the damping coefficient of the MFGD is defined as a

function of position.

It should also be noted that the equivalent damping coefficient of the fictitious

damper, byrg, and the force developed in the fictitious damper, Fyrg amp (S€€
equation (3.82)) have been specified in terms of syp; and syg;. Using equation

(3.43) (smpg = S2/4/2), on the other hand, sy is given by

Smrc = 52/4/2 (3.84)

where $,,,/2 is the relative velocity (parallel to the ZW direction) of Link 2 with

respect to Link 4 (see Figure 3.11). Now, by replacing sy ¢ and $yr¢ that appear in
equation (3.82) with the right hand sides of equation (3.43) and equation (3.84), one

may conveniently obtain expressions that yield by and Fypgamp in terms of

Sysa/2 and $3,4/2.

331 MFG Damper Slot Shape Determination

Suppose that it is desired to design an MFGD such that the desired variation of the
equivalent forces ﬁMFG,dmp’z and ﬁMFG’dmpA (with respect to sype and Syr¢) are

specified via the user-defined function by, z¢[syre]. Furthermore, suppose that the
two identical linear dampers that are to be used in the MFGD have also been selected.
Hence, the damping coefficient of these dampers (i.e., b.p,) are also known. Now,
by designing the shapes of the four symmetrical slots suitably; and by selecting the

remaining kinematic dimensions of the MFGD appropriately, it is possible to design
an MFGD which will generate the desired equivalent damping forces ﬁMFG_dmp,Z and

ﬁMFG,dmpA. An algorithm that yields the shapes of slots and kinematic dimensions

of the MFGD is presented in this section.
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Neglecting gravitational, frictional and inertial effects, in order for the fictitious force
ﬁMFG,dmp,Z to be equivalent to the damper force ﬁcha,dmm, the instantaneous powers

due to these two forces must be equal to each other at all times, i.e.

-

Fenaamp3 V3 = Fure,amp2 " V2 (3.85)

where 75 and v, are the velocities of Links 3 and 2, respectively, which have been

given previously as follows.
1_7)3 = Schai) (346)
172 = SMsz (347)

Substituting equations (3.76), (3.46), (3.80), and (3.47) into equation (3.85), one
obtains

_Fcha,dmpscha = FMFG,dmpSMFG (3.86)

where Fepg amp and Fyre amp are given by equations (3.78) and (3.82), respectively.

Similarly, in order for the fictitious force ﬁMFG,dmpA to be equivalent to the damper

force Fepg,amp,s, the instantaneous powers due to these two forces must be equal to

each other at all times, i.e.

-

- = -
Fcha,dmp,s "VUs = FMFG,dmp,4 "V (3.87)

where U and v, are the velocities of Links 5 and 4, respectively, which have been

given previously as follows.
Us = —Scnal (3.50)

Substituting equations (3.77), (3.50), (3.81), and (3.51) into equation (3.87), one

obtains, once more, equation (3.86). Hence, equation (3.86) is, simultaneously, the

condition for the fictitious force ﬁMFG,dmp,Z to be equivalent to the damper force
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ﬁcha,dmp,g; and the condition for the fictitious force ﬁMFG,dmpA to be equivalent to

the damper force Fepg amp,s-

Using equations (3.79), (3.83), (3.25), (3.26) and (3.22), equation (3.86) becomes

dx,\2 . .
bcha (d_JZCr) Zrz = bumre [Zr]Zr2
which, upon simplification, yields

(%)2 _ burglzr] (3.89)

dzy bcha

Taking the square root of both sides, one obtains

ﬁ__l_ bMFG[Zr] (389)

dzy - bcha

Recall that by r; > 0 for all possible values of z,. in the domain of its definition.

Furthermore, b.,, > 0 as well. Hence, it follows that equation (3.89) always yields

.. . d
two distinct and real solutions for d—Xr.

Zr
Now, let
o=+=1

and define g[z,] via the equation

glz,] = [Pure] (3.90)

bcha
Using the above two definitions and solving dx, from equation (3.89), one obtains
dx, = oglz,]dz, (3.91)

The differential equation above is already in separated form and can be solved with

direct integration using separation of variables ([ f[x]dx = [ g[y]dy) yielding

Jiey, d2%r = [, 0glz,1dz, (3.92)
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In equation (3.92), (x,); and (z,); are the x and z coordinates (in F;) of a user
selected point Q; that it is required to lie on the path P, (see Figure 3.2). Recall that

P; is the path, on Link 3, on which the center of Roller 6 is restricted to move.

Clearly, the lower limits of the integrals, (x,.); and (z,.);, affect the solution for the
slot shape centerline. So, selecting the limits accurately is essential in finding a
feasible solution for a particular problem. The realizability checks (see Section 3.3.2)
are always performed after the solution is obtained; however, a convenient selection
of this point may reduce the amount of work spent on these realizability checks. For
example, it is convenient to select the lower corners of the region R in Figure 3.3
(ile. ()i =dge and (z;); =dge OF (x); = bg —dge and (z,); = ¢ — die)

which leads to a 3-step algorithm presented at the end of this section.

Integrating equation (3.92), one obtains

X, Z,
X, = oplz,]
(xr)i (Zr)l
which yields
xr = o(plz,] — pl(z):D) + (), (3.93)
where

p[zr] = fg[Zr]er

Since 0 = +1, equation (3.93) can be rewritten as follows.
(xr)p,n = (x); £ (plzr] — p[(z):D (3.94)

where (x,.), and (x,), denote the two solutions (in terms of z,) of the differential
equation given by equation (3.89). Note that (x;.),, denotes the solution with the (+)

sign in equation (3.94). (x,),, on the other hand, denotes the solution with the (—)
sign. These two solutions for x, yield two different P, paths (see Figure 3.2), on

which the center of Roller 6 is restricted to lie.
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From equation (3.94), it follows that the two P; paths thus obtained are symmetrical
with respect to the line x,. = (x,.);. Furthermore, since g[z,.] > 0 for all z,., the P,
curve corresponding to (x,.),, will always lie “above” the line x, = (x;.); for z, >
(z,);. The P; curve corresponding to (x,),, on the other hand, will always lie
“below” the line x, = (x,.);. These observations lead to a 3-step algorithm which

may be used to determine P; paths that lie in the allowable region R (see Figure 3.3).

(1) Let
(%) = dege (3.95)
(zr)i = lmrGmin (3.96)
If
(xr)p < (b3 - dcle) (3-97)

Zy = lMFG,max
then the path corresponding to (x,.),, lies in the region R. Note that there may also

be other P; paths that lie in R corresponding to the selection

(xr)i > dcle (398)
(z;); = lMFG,min (3.99)
(2) Let
(x); = b3 — dgge (3.100)
(zp)i = lMFG,min (3.101)
If
(xr)n > dcle (3-102)

Zy = SMFG,max

then the path corresponding (x,.),, lies in the region R. Note that there may also be

other P; paths that lie in R corresponding to the selection

(%) < bz —dee (3.103)
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(zr)i = luremin (3.104)

(3) If steps (1) and (2) of the algorithm yield no allowable paths that lie fully in

R, then there exists no allowable paths, P;, that lie in R.

3.3.2 MFG Damper Slot Shape Realizability Check

The working range of a damper is limited by its shape in terms of displacement. In
this study, the allowable minimum and maximum working strokes of a damper are
defined as lympmin AN lgmpmax, respectively. Hence, in order to prevent a

clash/contact at the damper, the following criterion should be satisfied.

ldmp,max = Scha = ldmp,min (3-105)

Since sy, is defined as s.,, = b; — b3 — s3 in equation (3.8) and s5 is defined as

s3 = b, — x,. in equation (3.18), equation (3.105) can be written as follows.

lampmax — b1 + by + b3 = X = lgmp min — b1 + by + b3 (3.106)

3.4  Quadratic Equivalent Springs

The solutions obtained in Section 3.2 are general solutions and applicable for any
spring case. An example of slot shape determination and spring properties evaluation
is performed for a quadratic spring characteristic of MFGS in Section 3.4.1.
Examples of different spring characteristics are investigated in this section to

evaluate the possible benefits of using MFGS for different purposes.

Let the MFGS have a quadratic fictitious spring coefficient given by
kurclsmrcl = k2Siire + kiSure + ko (3.107)

and let the fictitious free length of the MFGS be [ yr¢.

Referring to Figure 3.5, recall that ﬁMFG,SpT,Z =FMFG,SWE and ﬁMFG,sprA:

—FMFG,SWE are the forces applied by the fictitious spring on Links 2 and 4,
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respectively. Hence, the forces applied by Links 2 and 4 on the fictitious spring will

have the same magnitude (i.e., Fyy g spr) in the opposite direction. Hence, the energy

stored in the MFGS is defined with the following equation.

Eyvrespr = 2 fl?\:;i —Fure sprdsmrc (3.108)

In equation (3.108), the coefficient 2 is due to the fact that both of the forces
ﬁMFG,spr,Z and ﬁMFG,SpM do contribute to the work done. The minus sign in equation

(3.108), on the other hand, is because of the fact that the directions of the two forces
applied on the spring and the directions of the displacements (i.e., dsyr¢ and

—dsy i) are opposite.

Referring to equations (3.40) and (3.108), note that

_Z(FMFG,spr) = 2EMFGspr (3109)

dsmFG

Now, let syre = (Syrc)cr denote a critical point of Eyg¢ s, Which is obtained by

solving the equation

—2(Fup spr) = MEGspT _ () (3.110)

dsMFG

for sype. Note that sy e = (Syrg)er WIill correspond to an equilibrium point.
Furthermore, let kyrclsurc] (namely, the equivalent stiffness corresponding to

kyrelsurc]) be defined via the equation below.

— 05 dzEMFG,spr — d(_FMFG,SpT) (3111)

K [‘S F ] 2
dSMFG dSMFG

Note that by differentiating —Fy g s (given by equation (3.40)) with respect to

SyFg, One obtains

i dk spr
kmrelsurcl = —#(;Gp (SMFG - lo,MFg) — kyre (3.112)

Wthh yIE|dS IEMFG [SMFG] When kMFG [SMFG] and lO,MFG are gIVEI’l
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Whether the equilibrium point given by equation (3.110) is stable or not, on the other
hand, will depend upon whether Eygg p has a minimum, a maximum, or an
inflection point at sy re = (Syre)er- IN Order to determine the nature of the critical
point sy re = (Syre)er, ONE May use the higher order derivative test, which yields

the following results.

(i If kyrrel(Sprc)er] <0, then (syrg)er COrresponds to a maximum of
Ewmre,spr- Therefore, the equilibrium point corresponding to (Syrg)cr IS
unstable.

(i) If kprcl(Smurc)er] > 0, then (Sype)er COrresponds to a minimum of
Eyre spr- Therefore, the equilibrium point corresponding to (Syrg)cr iS

stable.

(i) If 'IEMFG[(SMFG)cr] =0 and

corresponds to an inflection point of Ey g s, Therefore, the equilibrium

dk
SMFG [(SmrG)er]l # 0, then  (Sypg)er
MFG

point corresponding to (syrg)er IS marginally-stable (which is

considered to be unstable).

34.1 Special Cases of a Quadratic, Non-Linear Spring

The MFGS was previously introduced as a fictitious non-linear spring. If one defines
the force characteristic required from a spring, then the MFGS can be designed to
satisfy that requirement. The flexibility of this definition may enable further ideas
about the use of MFGS. Thus, some special spring characteristics are investigated in
this section. The force created at MFGS was previously defined in equation (3.40)

as follows.

Fyrpe spr = kurg [SMFG](SMFG - lO,MFG) (3.40)

Again, it shall be noted that, ky ¢ is fictitious spring coefficient of that fictitious
spring. However, some important properties of a spring are solely defined with the

stiffness of that spring which is defined as
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kure = Awrpr) (3.113)

dsMFG

Thus, five special spring cases are defined and investigated for their special

properties.
The following set of parameters have been used to find a solution.

Table 3.2. Coefficients of the spring coefficient given by equation (3.107)

Spring Case  k, [N/mm3] ky [N/mm?] ky[N/mm] lomre [mm]

1 1 1 200 10
2 1 20 -100 10
3 0 2 -50 10

3411  Spring Case 1l

The spring coefficient corresponding to the first spring is

kyrc1 = Shpe + Smrg + 200 N/mm (3.114)
Accordingly, the spring force in Case 1 is

Fur,spra = (Siirg + Surc + 200)(Sypg — 10) N (3.115)

Taking derivative of —Fypgspr1 W.IL. syre (as explained in equation (3.111)),

equation (3.115) yields
IEMFG,I = _351%/1FG + 185MFG - 190 N/mm (3116)
As presented in Figure 3.12, spring stiffness is less than zero for all syz¢, i.€.,

kyrc1lsmrcl <0 forany sypg (3.117)
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Figure 3.12. Spring stiffness for Spring Case 1

Taking the integral of —Fyr¢ 5,1, ONE Can obtain the energy stored in the spring

such that Eypg spr = 2 fl?;,;:; —Fure sprdSure, defined in equation (3.108), as

EMFG,spr,l -

_ (smF6—10) (SZ)I;G()+85MFG+44O) Joule (3.118)

. dE
Now, solving ——r<=er

— = 0 given by equation (3.110), one obtains only one critical
MFG

point for case 1 as

(SMFGJ)CT =10 mm (3.119)
Using the higher order derivative test, one can determine

kuroa |(smroa) | = =310 N/mm < 0 (3.120)

Thus, (SMFG'I)cr = 10 mm is an unstable equilibrium point which can be observed

from Eyrg spr1 Plotin Figure 3.18.
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3.4.1.2  Spring Case 2

The spring coefficient corresponding to the second spring is

kyrc2 = Shre + 20Sypg — 100 N/mm (3.121)
Accordingly, the spring force in Case 2 is

Fure,sprz2 = (Sirg + 20Sypg — 100)(sypg — 10) N (3.122)
Taking the derivative w.r.t. syz¢, equation (3.122) yields

kurc2 = —354pg — 20Sypg + 300 N/mm (3.123)

As presented in Figure 3.13, spring stiffness may acquire negative or positive values.

dc00b /S N

N{mm,
e

500 F /

k

-2000 [

-2500 T Y

-3000 ! ! ;
-30 -20 -10 0 10 20 30

Sprpg (MM

Figure 3.13. Spring stiffness for Spring Case 2

Taking the integral of —Fyr¢ spr 2, ONE can obtain the energy stored in the spring

such that Eypg spr = 2 fl?;,;;i; —Fyre sprdSure, defined in equation (3.108), as
_10)2(2c2 _
Emré,spr2 = — Curg=10) (351;135;10051”” 100) Joule (3.124)
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. dE
Now, solving —=£eser

= 0 given by equation (3.110), one obtains three critical
dsmre

points for case 2 as

(Smre2) .y 05 = —24.14, 414, 10 mm (3.125)

Using the higher order derivative test, one can determine

]EMFG,Z _(SMFG’Z)CT‘,I_ = _9654‘ N/mm <0 (3126)
IEMFG,Z _(SMFG'Z)CT,Z_ = 165.8 N/mm > O (3.127)
I’{\MFG,Z _(SMFG’Z)CT,3_ = _200 N/mm < 0 (3128)

Thus, (SMFG,Z)CT1 = —24.14mm and (SMFG'Z)CTS =10mm are unstable
equilibrium points which can be observed from Ey ¢ s, plot in Figure 3.18, where

(sMFG,Z)m2 = 4.14 mm is a stable equilibrium point.

3.4.1.3  Spring Case 3
The third case represents linear spring characteristics, since k., is zero. Hence, the
spring coefficient corresponding to the third spring is

kyrcs = 2sype — 50 N/mm (3.129)
Accordingly, the spring force in Case 3 is

Fyre,spr3z = (2smrg — 50)(Sype — 10) N (3.130)
Taking derivative w.r.t. syz¢, equation (3.130) yields

kurcs = —4Sypg + 70 N/mm (3.131)

As presented in Figure 3.14, spring stiffness is a linear curve that may acquire

negative or positive values.
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Figure 3.14. Spring stiffness for Spring Case 3

Taking the integral of —Fyr¢ 5,3, ONE can obtain the energy stored in the spring

such that Eypg spr = 2 flz"l”wiac —Fyr sprdSurc. defined in equation (3.108), as

_ (sMFG—=10)*(25MFG—65)

Evre sprs = o Joule (3.132)
Now, solving % = 0 given by equation (3.110), one obtains two critical points
MFG
for case 3 as
(SMFG,3)Cr,1’2 =10, 25mm (3.133)

Using the higher order derivative test, one can determine
kure,3 [(SMFG,3)CT‘1] =30N/mm>0 (3.134)

I’{\MFGS [(SMFG,3) ] = —-30 N/mm <0 (3135)

cr,2

Thus, (s,v,mg,)cr’1 = 10 mm is a stable and (SMFGB)cr,z = 25 mm is an unstable

equilibrium point which can be observed from Ej ¢ s, 3 plot in Figure 3.18.
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3.4.1.4  Spring Case 4

In this case study, an MFGS-4-gr (see Figure A.1 in Appendix A) which can act as
a high-static-low-dynamic-stiffness (HSLDS) spring [24], [25] will be designed.
Referring to Figure A.1, m; denotes the mass of a load that is placed on Link 2
(which is assumed to be a vibration isolation table), and g denotes the gravitational

acceleration. L is the vertical distance between O, and m,; and sy .4 is the value

of sy r¢ Such that Link 2 in Figure A.1 is in static equilibrium. H, on the other hand,
denotes horizontal line, attached rigidly to the ground, which is the reference line for

gravitational potential energy (due to the mass m;).

In the previous 3 cases, Fyr¢ s Nas been defined via equation (3.40) by specifying
the user defined function ks [Syrc] and the user defined parameter [ yrq. Note
that, in order to define Fy g s,y it is NOt Necessary to use equation (3.40). In other
words, one could define Fyp¢ o, directly as a function of sy ¢ which is the method
that will be adapted in this case study. Now, considering equations (A.1) and (A.11)

in Appendix A, let the desired Fy g s, b€ given via the equation

FMFG,Spr,ZA——gr = Fyrespr = C(SMFG - SMFG,eq)n +mpg (3.136)
In equation (3.136), c is a constant such that

c<0 (3.137)
and n is an odd, positive integer such that

n=3 (3.138)

i.e., n=3,5,7,...etc. Recall that Fyr spr2.4-gr = Fure,spr 1S the force applied on
Link 2 by the fictitious spring. Hence, the force applied on the fictitious spring by
Link 2 is —Fyrg,spr2,4—gr = —Furc,spr- HeNCe, the energy stored in the spring is

given by

Eyre.spr = 2 fSMFG (_FMFG,spr)dSMFG (3.139)

SMFG,eq
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which, upon substituting equation (3.136), yields

c n+1

n+1

- ng(SMFG - SMFG,eq)] (3.140)

EMFG,spr =2 [— (SMFG - SMFG,eq)

The multiplier 2 in front of the integral on the right hand side of equation (3.139) is

due to the fact that when s,z increases by an amount of dsyr, the displacement
(in the k direction) of the application point of Fy g« (i.€., point 0,) will be

2dsyrc. kure[Surc], on the other hand, is given by

N d(—-F Spr
kmrelSmurel = % (3.141)

which, upon substituting equation (3.136), yields

7 n—1
knrc[sure] = —cn(sure — SMFG,eq) (3.142)

Note that, considering equations (3.139) and (3.141), one obtains

~ 2
RurclSupe] = 0.5 Lokrcsr (3.143)

2
dswyrg

Now, differentiating equation (3.142) with respect to s,z twice, one obtains

T d% n—2

kurclSmrel = —ds,IZ:z = —c(n— 1)n(SMFG - SMFG.eq) (3.144)
o dZRMF(; n—3
kyrelsmrcl = m =—c(n-2)(n- 1)n(SMFG - SMFG,eq) (3.145)

where, ki zc[Surc] denotes the first, kjyrc[syrc] denotes the second derivative of

kyrc With respect to sy pg.

Let, now, the horizontal, stationary line H (see Figure A.1) be the reference line for
gravitational potential energy. Hence, the gravitational potential energy due to the

mass m,,, Eg, will be given by

E, = szg(SMFG - SMFG,eq) (3.146)
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Hence, the total potential energy of the system (due to fictitious spring and the

gravitational potential energy due to the mass m,), PE, will be
PE = EMFG,SpT + Eg (3147)

which, upon substituting equations (3.140) and (3.146), yields

c n+1
PE = _2_(SMFG - SMFG,eq) (3148)

n+1

Now, consider the following numerical values for m,,, g, n, ¢ and sy g ¢q-

m; =1kg

g = 9.807 m/s?

n=3 (3.149)
c=-3N/cm3

SMFGeq = 8cm

Using the above randomly selected numerical values, equations (3.136), (3.140),
(3.142), (3.144), (3.145), (3.146) and (3.148) yield

Fyrg,spr = 10 = 3(Sypg — 8)3 N (3.150)
Eyrespr = —20(Sypg — 8) + 1.5(syre — 8)* Nem (3.151)
]EMFG [smrc] = 9(surg — 8)* N/cm (3.152)
kirc[Surc] = 18(syrg — 8) N/cm? (3.153)
ke [Surc] = 18 N/em® (3.154)
E; = 20(sypc —8) N/cm (3.155)
PE = 1.5(syp¢ —8)* N/cm (3.156)

respectively, where sy IS measured in centimeters.
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. ~ dk d%k
In Figure 3.15, Eypgsprs PE, Fyrcsprr kmre, ———= and —"< are plotted as a
’ 4 dSMFG dSMFG

function of sy (for the data set given in equation (3.149)). As can be observed
from the plot of PE in part b, potential energy is minimum at the equilibrium position
given by Syrg = Smrgeq = 8 cm. HeNCe, Syrg = Syrgeq = 8cm is a stable
equilibrium point. As can be observed from the plot of k¢ in part d, kyre = 0 at
this stable equilibrium position. Furthermore, in the vicinity of the equilibrium

position k¢ is positive, but “close” to zero.
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a function of sy;p¢
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Note that, the kr¢ curve will be more “flat” around the equilibrium position as n
gets larger. In Figure 3.16, plots of k. are compared for cases of n = 3 and n =
5. Other than n, the numerical data used to obtain these plots are identical with the
numerical data given by equation (3.149), except the unit of c is “N/cm>” for n =
5.

40

(9 W]

Figure 3.16. Comparison of kr¢ plotsforn =3 andn =5

Figure 3.17, on the other hand, shows the effect of the parameter ¢ on the k¢ curve.
In this figure, plots of k. are compared for the cases of c = =3 N/cm? and ¢ =
—0.5 N /cm3. Other than ¢, the numerical data used to obtain these plots are identical

with the numerical data given by equation (3.149).
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Figure 3.17. Comparison of k¢ plots for c = =3 and ¢ = —0.5
3.4.2 Comparison of Spring Cases

In Figure 3.18, the properties of different fictitious springs are plotted as a function
of displacement, syr¢. The first row of plots is the spring stiffness curves, kyr¢. At
the second row, the force characteristic of the corresponding MFGS is plotted. These
force characteristics are obtained according to the equation (3.40) and are dependent
on the fictitious free length of the MFGS. The energy stored in MFGS is calculated
and plotted in the third row of Figure 3.18, which is defined in equation (3.108).

69



Spring Case 1

Spring Case 2

op S 1000 |
o 1000 | = 0f
2000 | ~ 1000 [
RN
= sooo} = oo0o N\
) h N
\.
4000 f : : : ; ; 3000 f f i f : \
30 20 -10 0 10 20 30 30 20 10 0 10 20 30
Syrg [mm 8)rFg (MM
«10° 5210
2t ;
1 /
" " 2r S
=, 01 /
T
a2 ~ 1F
L —_— p
ol
al
-4 . ‘ ‘ ‘ ‘ ‘ ; . . : . ‘ ‘
30 20 -10 0 10 20 30 30 20 10 0 10 20 30
Sppg [mm) S)pg [mm
or [—
200 | .

Spre [mm|

200

karrea N/,

Spring Case 3

8y Fi (MM

Figure 3.18. Properties of MFGS for Special Spring Cases
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3.5  Design Examples of MFG

Theoretical solution for the design of an MFG for a spring and a damper is
mathematically performed in Sections 3.2 and 3.3 previously. Examples of MFGS
and MFGD design for given dimensions and properties of damper and spring are

explained in this section.

35.1 Illustrative Example for MFGS

A step-by-step example of slot shape determination of MFGS for given parameters
has been presented in this section. Note that all dimensions and spring properties in
this section are arbitrarily selected. The units are used for the sake of convenience.

Assume that a spring with non-linear characteristics, so called an equivalent spring,
is desired. Let that spring have the desired force characteristics, F;.5, Same with the

Spring Case 2 defined in Section 3.4.1 as follows.

kges[Saes] = SZes + 20540 — 100 N/mm (3.157)

lo,ges = 10 mm (3.158)
where

lo,des : Fictitious free length of the desired equivalent spring

kaes[Sqes] : Spring coefficient of the desired equivalent spring

Sdes : Length of the desired spring

Referring to equation (3.40), force characteristic of such spring, F;.., can be defined

as

Fdes [Sdes] = (Sczies + 2OSdes - 100)(5des - 10) N (3-159)

which is presented in Figure 3.19.
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Figure 3.19. Desired force characteristics of equivalent spring (Spring Case 2)

It is assumed that the spring defined in equation (3.159), has a working envelope

between s;.s = —40 mm t0 s4,3 = 40 mm.

Let this equivalent spring defined in equation (3.159), be designed using an MFG

with the following dimensions,
b; = 100 mm
b, = 65 mm
b; = 50 mm
c; = 100 mm

dee = 10mm

and a spring with the following characteristics.

kcna = 4000 N/mm

lf,cha =25 mm
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Referring to Figure 3.3, an MFG with dimension defined in equations (3.160),
(3.161), (3.162) and (3.163) would have the allowable region presented in Figure
3.20.
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Figure 3.20. Allowable region R for MFGS

Referring to equation (3.14) (d.e < Surg < €1 — dcie), the stroke of the MFG,

sure, shall be in accordance with the following equation.

10 mm < sypg < 90 mm (3.167)

The force characteristics defined in Spring Case 2 is not suitable to design an MFGS
directly because sy r; has a working envelope starting from 10 mm as defined in
equation (3.167). However, the working envelope defined in the Spring Case 2 starts
from s, = —40 mm (see Figure 3.19). Thus, the working envelope defined in s,
domain needs to be shifted to be assumed as sy to design the MFGS. Thus, the
non-linear force characteristics of MFGS is defined by making the following change
in F;,, (see equation (3.159)).

Sges = Syrg — 50 mm (3.168)
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If equation (3.168) is plugged in equation (3.159), one obtains
Fyrg sprSurcl = (siyrc — 80Syrg + 1400)(Sype — 60) N (3.169)
where the spring coefficient and fictitious free length of the spring would be as
kyrclsurel = Sire — 80sy e + 1400 N/mm (3.170)
lomrg = 60 mm (3.171)

The spring coefficient of the MFGS, i.e., kyre[Surcl, is presented in Figure 3.21.

2500
2000 t
1500 + /

1000 /

kMFG [N/mim]

500 1 \

-500

0 10 20 30 40 50 &0 70 80 920 100
mm]

Syeg [

Figure 3.21. Spring coefficient of the MFGS

Thus, the MFGS that is wanted to be designed would have a force characteristic as
presented in Figure 3.22.
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Figure 3.22. Force characteristics of MFGS

Referring to equation (3.111), one could determine the spring stiffness of the MFGS

as
kura[Surc) = —3Sire + 2808ypc — 6200 (3.172)

plotted in Figure 3.23.
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Figure 3.23. Spring stiffness of MFGS, kyrc[Surc]
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The equilibrium points of this MFGS can be found using equation (3.110), in which

Fyre,spr = 0 at these points, can be found as follows.
(SmrG)ern = 25.858 mm
(SmrG)er2 = 54.142 mm (3.173)
(SmFc)ers = 60 mm

Using the spring stiffness found in equation (3.172), the equilibrium points found in
equation (3.173) can be tested for stability by plugging the points defined by equation
(3.173) into equation (3.172) as

]EMFG[(SMFG)CT‘J] E _965.7 N/mm < 0
kmre|(Smupg)erz] = 165.7 N/mm > 0 (3.174)
]EMFG[(SMFG)CTB] =—-200N/mm <0

Thus, (Smrg)er,2 1S @ stable equilibrium point where (sypg)cr1 and (Sypg)er s are

unstable equilibrium points.

Furthermore, the energy stored in MFGS, Ejyr¢ s, is found by using equation

(3.108) and plotted with in Figure 3.24 with the equilibrium points indicated as
follows.
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Figure 3.24. Energy stored in MFGS

So, as the dimensions of the MFGS and properties of the spring installed inside the
chamber are given, slot shape can be determined for the equivalent spring in equation
(3.169). Referring to equation (3.52), the equilibrium of instantaneous power is
obtained as follows.

—4000(x, — 40) dx, = z? — 80z, + 1400(z, — 60)dz, (3.175)
Rearranging the terms, the integral of equation (3.175) can be obtained as follows

fo0 G — 40)dx, = [, h[z,]dz, (3.176)
where

2zZ2-802z,+1400 (
4000

hlz,] = z, — 60) (3.177)

The limits of the integrals in equation (3.176) are selected as (x,.); = 20 and (z,.); =
20 in a sensible manner with respect to the allowable region R defined in Figure
3.20.

With taking the integral, equation (3.176) yields
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x2 —40x, +qlz.] =0 (3.178)
where

qlz,] = —2plz,] — K; + 2K, + 2K;

¢ 77 3122
plz;] = - 162000 % - 43 + 21z,
Kl - 4‘00
K, =800
580
K3 —_ T

Referring to equation (3.59), two solutions are obtained as follows

(X)pn = 40 £ /Alz,] (3.179)
where

Alz,] = 1600 — g[z,]

The two solutions for the slot shapes obtained in equation (3.179), are presented in
Figure 3.25. Since the selected limits of the integral in equation (3.176), i.e., (x,); =

20 and (z,); = 20 are on (x;),, (x;-), is not the solution to this problem.
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Figure 3.25. Solutions for (x,.), and (x,), (for (x,.); = 20, (z,); = 20)

If one applies the solutions found in equation (3.179), to the allowable region R of
MFGS defined in Figure 3.20, one can observe that the slot shape center line sits

inside the allowable region.

(xr)p b3 = 50 mm
100 5 (xr)n
80 A
60 = l "/ K/ Region R
8 | i.’/ / // N
T = | A
E 40 I | (" /A 7
™ / 4

1
Ny
£
o)

.‘ AN L
| %3
ol NS A S 05

-20

-100 -80 60 -40 =20 0 20 40
X [mm]

Figure 3.26. (x,), and (x,.),, on MFGS with selection of (x,.); = 20, (z,.); = 20
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Since the solution for the slot shape is found in equation (3.179) as x,. as function of

z,, if one takes derivative of (x,.), and (x,),, one can obtain the velocity influence

coefficient of the MFGS, i.e., % which relates z, with x,. as in equation (3.22),
. dxy dxy L . .
respectively as (—) and (—) . The velocity influence coefficients for (x,.),, and
dzy n Zr p

(x,), are presented in Figure 3.27.

3r

(%}
25} re
(x)

rn

2+
151
1t

- 051 .

dx /dz

0 T —TT T e T -
05} & e
A Y

15} \!

0 10 20 30 40 50 60 70 80 80
z, [mm]

Figure 3.27. Velocity influence coefficient, %, for (x,), and (x;.),

Note that, (x,), is the feasible solution for an MFGS with the given dimensions.
Thus, the position and velocity properties of the mechanism are investigated with

respect to (x;-),,.

Position and velocity analysis of the MFGS is performed referring to position LCES
and VLEs defined in (3.19), (3.20), (3.25) and (3.26). Using (x,.),, as the kinematic

dimension of the system, solutions for those LCEs and VLEs are obtained as follows.
Scha = (X )n + by — b3 — b, (3.180)

SMFG = Zy (3181)
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17 12, (3.182)

Scha = Xy = dz,

SMFG = Zr (3.183)

Scha @nd sy p¢ are determined with respect to z, for sypg min < Smre < SmrGmax N
Figure 3.28. $.n, and sy p¢ evaluated with respect to z, with taking $yr¢ as unit

velocity (Syr¢ = 1 mm/s) in Figure 3.29.

90 r

Displacement [mm]
[} i cn [=7] =
=] == = = =]

[
=]
T

=
b

0 10 20 30 40 50 60 70 80 90
Z, = Sypg [Mm]

Figure 3.28. Position analysis of the example MFGS
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Figure 3.29. Velocity analysis of the example MFGS for $y;p¢ = 1 mm/s

The power input due to F,p, spr is defined as

Pcha,spr = _Fcha,sprscha

while the power input due to Fypg s, is defined as

Puyrc,spr = Fmrc,sprSmre

(3.184)

(3.185)

As a final check, the power inputted due to spring inside the chamber, Pgpq s, and

power inputted due to MFGS, Py spr, are compared. Fypg opr aNd —Fpq opr are

presented in Figure 3.30 with respect to sy p¢. Sqnq Was also presented in Figure 3.29

with respect to syr; (note that Sy pe = 1 mm/s).
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Figure 3.30. Fypg,spr aNd —Fepg spr W.IL Syrg

Referring to equation (3.184) and equation (3.185), if “—Fp4 s,y in Figure 3.30” is
multiplied with “S.p, in Figure 3.29”, “Fyrg opr In Figure 3.30” will be obtained

(remember that $yr; = 1 mm/s).

3.5.2 Illustrative Example for MFGD
Note that all dimensions and damper properties in this section are arbitrarily selected.
The units are used for the sake of convenience.

Assume that an equivalent damper with non-linear characteristics is desired. Let the

damper have the force characteristics, F,,, defined as follows.
Fges = _bdes[sdes]sdes (3-186)
where

bies[Sges] : Damping coefficient of the desired equivalent damper

(function of variable s )

Sdes : Length of the desired damper
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Sdes

and

: Velocity of the desired damper

baes[Saes] = Sczles — 120s4e5 + 4000 N/mm/s

The damping coefficient of the desired damper, i.e., byrg[Sqes], iS presented in

Figure 3.31.
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(3.187)

Figure 3.31. Damping coefficient of the desired equivalent damper

The force generated at this damper is a function of both the displacement and the

velocity of the equivalent damper, as can be seen in Figure 3.32.
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Figure 3.32. Desired force characteristics of the equivalent damper

Suppose that the equivalent damper with the force characteristics given by equation

(3.186), is to be designed by using an MFG with the following dimensions.

b; = 100 mm
b, = 55mm
b; = 50 mm
c; = 100 mm

dee =10mm

(3.188)
(3.189)
(3.190)
(3.191)

(3.192)

Furthermore, let the damping coefficients of the “real” dampers be given by

b.pa = 8000 N/mm/s

Referring to Figure 3.3, an MFG with the dimensions defined by equations (3.188),
(3.189), (3.190) and (3.191) would have the allowable region presented in Figure

3.33.
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Figure 3.33. Allowable region R for MFGD

Clearly, the desired force characteristic, Fy.,, can be taken to be equal to Fyrg amp

without any modifications. In the MFGS example, the desired force characteristic is
re-defined inside the MFGS working envelope. For the MFGD example, the desired
force characteristics are defined as general and applicable for use in the design of

MFGD directly. Thus, Fyrg,amp and syre can be defined as follows.

Sdes = SMFG (3.194)
where equations (3.186) and (3.187) yield

Furc.amp = —(Siire — 1208yr¢ + 4000 )Syrg (3.195)

The work done by the MFGD (from sy z¢ = 0 10 Syr¢ = Syrg) Can be calculated

via the following equation.

Wwurc,amp = 2 fos e Fyrc,ampdSure (3.196)
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If one assumes $),r; t0 be constant and using equation (3.195), equation (3.196)
yields
WyreamplSurel = 28ure fOSMFG ~(strg — 1205y 56 + 4000 )dsyre (3.197)

For instance, for $),r; = 1 mm/s = constant, by using equation (3.197), the work

done (energy absorbed) by the MFGD is obtained as presented in Figure 3.34.
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Figure 3.34. Energy absorbed by MFGD for $yr; = 1 mm/s

When the dimensions of the MFGD and the properties of the damper installed inside
the chamber are given, the slot shape of the equivalent damper generating the force
defined by equation (3.195) may be obtained. Using equation (3.193) and (3.195),

equation (3.86), yields
—80005%,, = —(s&rc — 120Sypg + 4000 )$%rc (3.198)

which, upon substituting sy z; = z, (see equation (3.20)), and using equations (3.25)

and (3.26), yields

2 2_
(&) _ (z#-1202,+4000 ) (3.199)
dz, 8000

Taking square root of both sides, equation (3.199) yields
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dxr _ o (z2-1202,+4000)
dz, = 8000

Now, let
o==1

and

_ |(z2-1202,+4000)

glz,] = J 2000

Therefore, equation (3.200) yields
dx, = aglz ]dz,

In accordance with equation (3.92), equation (3.202) yields

fxr dx, = f(ZZ:)i o9 [Zr]dzr

xr)i
which, in accordance with equation (3.94) yields
(xr)p,n = (xr)i i_ (p[Zr] - p[(zr)i])

where

2-1202,+4000
p[zr] = fg[Zr]er = f\/(z 8020(: )er

(1) Now, using equations (3.95) and (3.96), let
(xr)i = dge = 10mm

(Zr)i = SMFGmin = dee =10 mm

therefore, equation (3.204) gives the following two solutions.

(xr)p =10+ (p[zr] - p[lO])

(xr)n =10 - (p[zr] - p[lO])
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The two solutions given by equations (3.207) and (3.208) are presented in Figure
3.35.
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Figure 3.35. Solutions for (x,.), and (x;),, (for (x,); = 10, (z,); = 10)

Note that the condition defined by equation (3.97) yields

X = 37.454 < 40 3.209
@l g, (3.200)

and therefore, (x,),, is a solution that lies in the allowable region R as presented in
Figure 3.36.

89



<b3 =50 mm= Region R
100 [ 7y - \j
80 | v/ S ,
eol--& A j
(e}
7 = : \
£ a0t ‘ (xr)n
~ I X
S 79
20
>(3)
\ x
1] R EA SRR £ S e 03‘—;
(b
20 . : : .
80 60 40 -20 0 20 40

X [mm]

Figure 3.36. (x;.), and (x,-),, on MFGD with selection of (x,.); = 10, (z,); = 10
(2) Now, using equations (3.100) and (3.101) let
(xr); = b — d¢je = 40 mm (3.210)
(Zr)i = SmrGmin = dcie = 10 mm (3.211)
Therefore, equation (3.204) gives the following two solutions.
(xr)p =40 + (plz,] — p[10]) (3.212)

(% )n = 40 = (plz,] - p[10]) (3.213)

The two solutions given by equations (3.212) and (3.213) are presented in Figure
3.37.
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Figure 3.37. Solutions for (x,), and (x,), (for (x,.); = 40, (z,.); = 10)

Note that the condition defined by equation (3.102) yields

(X )n =12.546 > 10 (3.214)
Z, = 90

r

and therefore, (x,), is a solution that lies in the allowable region R as presented in
Figure 3.38.
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Figure 3.38. (x;), and (x,),, on MFGD with selection of (x;.); = 40, (z,); = 10

Note that two different solution sets have been found corresponding to two different
selections for (x,); and (z,);. The solution for (x,.); = 10, (z,.); = 10, given by

equations (3.207) and (3.208), will be utilized in the rest of the calculations.

The velocity influence coefficient of the MFGD, ? (which relates z, with x,. as in

Zy

__dxy

- azy

equation (3.22) (x, Z,)), has been obtained in equation (3.200) and plotted for

(xr)p and (x,),, in Figure 3.39.
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Figure 3.39. Velocity influence coefficient, %, for (x,),, and (x,),,

Note that in the calculations the position and velocity analysis of the mechanism will

be performed using (x,),, in accordance with equations (3.19), (3.20), (3.25) and

(3.26). Hence, using (x,.),, as the kinematic dimension of the system, one obtains

Secna = (t)p + by = by — by (3.215)
SMFG = Zr (3.216)
Sena = (ir)p = “oe2 (2,12, (3.217)
Smrc = Zr (3.218)

Scha @nd sype that have been thus obtained are plotted with respect to z, for
SMFGmin < Smrc < Smrcmax N Figure 3.40. Variations of $.,, and $ype with
respect to z,. (by with taking sy, as unit velocity (s, = 1 mm/s)) are plotted in
Figure 3.41.
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Figure 3.40. Position analysis of the example MFGD
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Figure 3.41. Velocity analysis of the example MFGD for $yzc = 1 mm/s

The power input due to Fpq qm, is defined as

Pcha,dmp = —Fcha,dmpScha

while the power input due to Fypg amy i defined as
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P MFG,dmp = FMFG,dmp SMFG (3.220)

Fyrg,amp and —Fcpq amp are presented in Figure 3.42 with respect to sy pg.
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Figure 3.42. Fyrg,amp aNd —Fepg,amp WL Syre

As afinal check, Pcpg amp and Pyrg amp are compared. Referring to equation (3.219)
and equation (3.220), if “—F¢pq amp In Figure 3.42” is multiplied with s, in Figure
3.41”, “Fypg,amp In Figure 3.42” will be obtained (remember that Sy = 1 mm/s).

The previous statement is true for all allowable s,z values.

95






CHAPTER 4

LANDING GEAR SHOCK ABSORBER MODELLING AND OPTIMIZATION

At the beginning of this chapter, a 2 DoF model of landing gear drop test is presented.
Test results and model results available on the commercial research “NACA TN
2755 — Analysis of landing-gear behavior”, which was released by the National
Advisory Committee for Aeronautics (NACA), have been used as a reference to
validate the model used in this thesis. The mathematical model in NACA TN 2755
is referred to as the “NACA Model”. On the other hand, 2 DoF mathematical model,
referred to as the “Thesis Model”, is also prepared for use in the thesis. The model
used in the thesis is compared to the NACA model, and the differences are discussed.

The assumptions and simplifications of the drop test model are described.

In the second part of this chapter, using the Thesis Model, optimization of shock
absorber characteristics has been presented. The optimization is performed for the
same test parameters (i.e., mass properties, vertical speed during initial contact) used
in NACA TN 2755 and compared to the results. Different optimization methods are
evaluated in terms of their effectiveness in achieving the optimum solution and

optimization time.

4.1 Modeling Landing Gear Drop Test

The landing gear drop test and its purpose were explained in Section 1.3. The landing
gear drop test modeling is a primary means to analyze the achievability for the design
goal of high efficiency and low force before manufacturing and testing an actual

aircraft landing gear.

Firstly, the 2 DoF Thesis Model used in the optimization is introduced. Then, the
validity of this model is presented with respect to test results in NACA TN 2755.
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41.1 2 DoF Model

The drop test, by its name, is performed by dropping the landing gear from a height
with a mass at the top of the gear, which represents the aircraft mass. The scope of
the analysis and the optimization is limited from the initial touchdown to the settling
of the dynamic system. In a normal drop test procedure, the tire is rotated to simulate
the approach of the aircraft to the runway in a longitudinal direction [26]. However,
for research purposes, the landing gear is installed vertically, and the tire rotation is

not included to isolate the research on shock absorber characteristics [15].

Assumptions in the Thesis Model:

e The internal friction of the shock absorber is neglected because it was proven
in NACA TN 2755 that a simplified model (friction is neglected) gives nearly

the same result with a model with friction (see Figure 4.1).
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Figure 4.1. Response time history of simplified NACA model [15]

e There are two assumptions for the tire. First, the tire spring characteristic is

assumed as linear, where the effect of the assumption is negligible [15]. Also,
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the damping of the tire, so called hysteresis, is neglected because of its
negligible effect on the results. The effects of both assumptions on the results
are presented in Figure 4.2.
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Figure 4.2. Time history of NACA Model for different tire assumptions [15]

e The flexibility of the landing gear is neglected. Since the landing gear is
placed vertically in the test setup, the flexibility of the landing gear does not
affect the load on the shock absorber spring and damper [15].

e The wing lift force acting on the aircraft body is assumed to be equal to
aircraft weight [9], [15], because aircraft landings occur at a steady approach
to the landing area. Thus, the aircraft descends at a constant velocity where
the forces on the aircraft are balanced. This requires the wing lift during
landing to be equal to aircraft weight.

e Asitis practiced in other landing gears, there is not any shock loading on the

landing gear during the initial contact of the tire to the ground.

With the assumptions above, a drop test can be modeled as a 2 DoF simplified spring-

mass-damper system without impairing the validity of the shock absorber (see
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Section 4.1.3. Validation of 2 DoF Model w.r.t Test Results), as presented in Figure
4.3.
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Figure 4.3. Simplified 2 DoF representation of landing gear drop test

The elements of the mass-spring-damper system above are explained as follows.

my  : The upper mass that represents the aircraft load on the landing gear

and mass of upper assembly of the shock absorber

m, . The lower mass that represents the unsprung mass of the landing

gear
kga  : The spring coefficient of the shock absorber
bs,  : The damping coefficient of the shock absorber
k.- : The spring coefficient of the tire
b:ire : The damping coefficient of the tire

LIFT : Force acting on the upper mass due to wing lift
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There are 4 points taken as reference on the shock absorber, as presented in Figure
4.3. Shock absorber upper end, 0,, is the point where one end of the SA spring and
damper is attached. On the other hand, shock absorber lower end, P,, is the other end
of the SA spring, and the damper is attached. The third reference point is attached at
the tire center as O0,. Earth fixed reference frame, F,, is attached to the ground
surface with an origin at 0,. Dimensions measured from these reference points are

explained as follows.

7, = 0,0, - k (4.1)
z, = 0,0, k (4.2)
h, = 0,P, - k (4.3)
Sgq = 0,0, k (4.4)

It shall be noted that the damping properties of the tire are neglected during the
evaluation of shock absorber characteristics because the damping forces of aircraft
tires are in the order of 0.1% of the spring forces. A typical damping coefficient of

a tire can be assumed as follows [27].
btire = ktire/(1000/s) (4.5)

Thus, taking equation (4.5) into account, the effect of tire damping is negligible. The
equations of motion for the system in Figure 4.3 are derived in Section 4.1.2 as

follows.

4.1.2 Equations of Motion for 2 DoF Mass Spring Damper Model
The equation of motion that is specific to the scope of the thesis is defined in this
section.

The free-body diagram of the upper mass is presented in Figure 4.4. The total force
acting on the upper mass due to shock absorber is defined as

Fsa = Fspspr + Fsaamp (4.6)
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where

Fsp,spr : Spring force of the shock absorber
Fsp,amp : Damper force of the shock absorber
myz
Frirr 1
T A
1
1
1
1
my Z_)(O)
T
m,g X (0)
FSA,spr FSA,dmp

Figure 4.4. Free-body diagram of the upper mass

With respect to the assumption, the force exerted on the upper mass due to wing lift

is defined as
Fppr = (my + my)g (4.7)
The spring and damper forces exerted by the shock absorber are defined as
Fspspr = kSA(lo,SA - SSA) (4.8)
FSA,dmp = —bgsSsa (4.9)
where
losa :Length of the shock absorber at the initial contact
sga - Stroke length of the shock absorber

Sga - Stroke velocity of the shock absorber
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The initial length of the shock absorber is length related to the arrangement of the
shock absorber assembly and is measured as the length at the initial contact. The
stroke length and the velocity of the shock absorber are defined as follows.

Ssa =21 — 23 — hy (4.10)

Ssa =721~ 2 (4.11)
Thus, the equation of motion for the upper mass can be written as

mqZy = Fupr + Fsaspr + Fsaamp — M1g (4.12)
which yields

myZy = Fupr + ksa(losa + ho + 25 — 21) — bsa (1 — 2,) —myg  (4.13)

The free-body diagram of the lower mass is presented in Figure 4.5. The forces acting
on the lower mass come from the inertial load of the mass and the forces exerted by

the shock absorber and the tire to the mass. The description of these forces is as

follows.
Fiire,spr : Spring force of the tire
m-Z
FSA,spr 22 FSA,dmp

A
1
1
1

m,;
Ioz 7(0)

myg

2(0)
Ftire,spr

Figure 4.5. Free-body diagram of the lower mass
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The force exerted on the lower mass by the tire is defined as;

Fiire spr = KtireSaer (4.14)
where

Sqer - Deflection of the tire from the initial contact

The deflection of the tire is a measure defined with the outer radius of the tire and is

defined as follows.

Sdef = Ttire — Z2 (4.15)
where

Tiire . Outer radius of the tire
Thus, the equation of motion for the lower mass can be written as

MyZy; = —Fspspr — Fsaamp — M2g + Frire,spr (4.16)
which yields

myzy = —ksa(losa + R + 2, — 21) + bsa (21 — 2,) — My g + ke Teire — 2,)  (4.17)

Using the equations of motion in (4.13) and (4.17), a Simulink model is prepared,
and the results of the 2 DoF Model are compared to test results given in NACA TN
2755,

41.3 Validation of 2 DoF Model w.r.t Test Results

In NACA TN 2755, a landing gear drop test has been performed and mathematically
modeled. As presented in Figure 4.6, the landing gear in the test is vertically

mounted, and several measurements have been taken from the test setup.
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Figure 4.6. Landing gear drop test setup used for validation [15]

The type and accuracy of these test measurements are defined in Table 4.1 [15].

Table 4.1. Accuracy of test measurements

Measurement Type Unit  Accuracy
Upper mass acceleration (Z,) g +0.2
Force on upper mass (Fg,) N +2224
Lower mass acceleration (Z,) g +0.3
Vertical velocity at ground contact (V) m/s +0.03048
Upper mass velocity during impact (z,) m/s +0.1524
Upper mass displacement (z,) m +0.01524
Lower mass displacement (z,) m +0.00914
Shock absorber stroke (ss,4) m 4+0.00914
Shock absorber velocity (Sg4) m/s +0.01524
Time after contact S +0.003
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The test setup properties are defined in Table 4.2.

Table 4.2. Test setup parameters

Parameter Value Unit
Upper mass (m,) 1093.61 kg
Lower mass (m,) 59.42 kg

Vertical velocity at ground contact (V) 2.7 m/s
The outer radius of tire (4j¢) 0.3429 m

Sign and conventions in NACA TN 2755 landing gear model are different from their

use in this thesis study. Signs and conventions of mass spring damper model used in

NACA TN 2755 can be seen in Figure 4.7.
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Figure 4.7. NACA TN 2755 mass spring damper model [15]

The sign and conventions used in NACA Model are related with the signs and

conventions used in Thesis Model as follows.
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zZ1=(Z1)o— 71 (4.18)

Z, = (Zz)o —Z (4-19)
7= —2, (4.20)
7y = —7, (4.21)

Since the variables of the system are defined differently from the definitions used in
the thesis study, the initial conditions of NACA model are defined independently
from dimensions of the system as z; = 0 and z, = 0 such that only the change in the
parameters has been taken into consideration. Also, there is not any additional

information on the dimensions of the test setup as well.
The initial conditions of the NACA Model are defined in Table 4.3.

Table 4.3. Initial conditions NACA Model

Parameter Initial Condition ~ Unit
Z 0 m
Z, 0 m
7 2.7 m/s
7 2.7 m/s

Thus, by taking the initial conditions defined in Table 4.3, and by using equations
(4.18), (4.19), (4.20) and (4.21), the initial conditions of the Thesis Model simulation
are presented in Table 4.4,
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Table 4.4. Initial conditions of Thesis Models

Parameter Initial Condition  Unit
Z (z1)0 m
Z (z2)0 m
Z -2.7 m/s
Zy -2.7 m/s

The initial conditions used for z, and z, in Thesis Model are defined as arbitrary
constants, i.e., (z;), and (z,),. This definition does not have any effect on the results
because the evaluation of the results is performed with respect to change in the

parameters.

To perform an adequate assessment with respect to the analysis and test results
presented in NACA TN 2755, evaluation parameters are defined with respect to signs
and conventions used in Figure 4.3 and initial conditions defined in Table 4.4. In
general, the negative of a change in a parameter after initial contact (t,) is defined
with designation with a hat (") on top of the parameter. The reason for taking the
negative of the change is to correlate the results from the Thesis Model with NACA

Model on the same domain.

21 =(21)0— 21 (4.22)

Z; = (22)0 — 22 (4.23)

$sa = (21)0 — (Z2)0 — hy — Ssa (4.24)
where

A : Upper mass displacement

Z, : Lower mass displacement

Sga - Shock absorber stroke displacement
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Sign and conventions used for velocity and acceleration of the system are based on

the same initial conditions. Thus, a further definition is not required.

A drop test analysis has been performed with 2 DoF Model using the same
parameters defined in NACA TN 2755 (see Table 4.2) with respect to initial
conditions defined in Table 4.4. The results of the test are in the time domain, in
which the time of the test and simulation is from t, = 0s to t = 0.16 s. For the
analysis, the shock absorber characteristics of the NACA shock absorber are defined
used. Since the shock absorber forces used in NACA are not defined same as the
spring and damper forces defined in equations (4.8) and (4.9), equations of motion
in (4.12) and (4.16) have been used, instead of equations (4.13) and (4.17). Thus, the
spring force and damper force of NACA shock absorber are defined as

n
— Vo p
Fsasprvaca = PagAa (Vo—Aa§SA) (4.25)
F, = foa ol o7 (4.26)
SA,dmp,NACA |$SA| Z(CdAn)z SA .

where the definition and values of the parameters are listed in Table 4.5.

Table 4.5. NACA shock absorber parameters [15]

Parameter Value Unit
Air pressure in strut when Sg4 = 0 (pg,) 299922 N/m?
Air volume in strut when 35, = 0 (v,) 0.001 m?3
Pneumatic area (4,) 0.0054 m?
Polytropic constant (n,) 1.12
Damper fluid density (p) 869.15 kg/m?®
Hydraulic area (4,) 0.0044 m?
Coefficient of discharge (C,) 0.9
Net orifice area (4,,) 5.187 x 107> m?
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The shock absorber spring and damper characteristics of NACA test setup defined
with equations (4.25) and (4.26) is calculated with the parameters listed in Table 4.5
and presented in Figure 4.8.
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Figure 4.8. NACA test setup shock absorber characteristics

Furthermore, the tire spring stiffness used in the NACA Model and the Thesis Model
is defined as follows.

ke = 283380 N/m (4.27)

Test results, NACA Model analysis results, and Thesis Model analysis results are
compared to check the validity of the thesis model in Figure 4.9, Figure 4.10, Figure
4.11, and Figure 4.12. Results of the test are defined as discrete point data (not
continuous) in the reference documentation [15]. The test results are presented as
scattered data in figures. Since the reference documentation consists of mathematical
modeling of the drop test and analysis results of this mathematical model (NACA
Model), the analysis result is included in figures with a dashed-dotted line ( —-).
Furthermore, the results of the analysis performed with the 2 DoF Model (Thesis

Model), which is used in this thesis, are presented in figures with a continuous line.
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Figure 4.10. Comparison of Z, between Test Results, NACA Model and Thesis
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Figure 4.12. Comparison of 35,4, Z; and Z, between Test Results, NACA Model
and Thesis Model

The comparison of NACA test results, NACA Model results, and Thesis Model

results show that the model used in the thesis qualitatively yields the same result.
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The data presented above are not processed as criteria in this thesis. Thus, an error
calculation is not performed for those parameters one by one. However, the error of
the model is evaluated with respect to the scope of the optimization.

As it will be explained further in Section 4.2.1, Fs, vs. 854 between t, to t; is the
scope of the optimization in this thesis. The test results are only available for the time
from t, = 0 s to t; = 0.16 5. However, the scope of optimization in 4.2.1 requires
tr to be higher than 0.16 s. Thus, comparison of NACA Model and Thesis Model is

performed with respect to the scope of optimization.

NACA Model and Thesis Model have been run from t, = 0 s to t = 0.25 s. Thus,
using the NACA Model results and Thesis Model results which have been presented
in Figure 4.13, the error between NACA Model and Thesis Model has been

calculated. The error calculation is performed by taking NACA Model results as the

reference.
4
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Figure 4.13. NACA Model and Thesis Model results of Fg, vs. 35, int = [0,0.25]

and test result of Fg, vs. 854 int = [0,0.16]
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As it is explained later in Section 4.2.1, efficiency calculated from the results is the
scope of this thesis study. Thus, efficiencies calculated both in NACA Model and
Thesis Model are compared as follows.

Nnaca = %78.26 (4.28)
Nrhesis = %80.92 (4.29)

Taking the NACA Model as the reference, the relative error can be calculated as

follows.

_180.92-78.26|
ERelative = 78.26

x 100 = %3.4 (4.30)

4.2 2 DoF Model Response Optimization

A landing gear drop test is modeled using test results from NACA TN 2755 in
Section 4.1. So, using the same test conditions, optimization has been performed to
find the optimum shock absorber spring, Fsscp, and damper, Fsggmp,
characteristics. The methods of approach to the optimization are described, and the
selection of optimization algorithm is explained. The optimum spring and damper

characteristics are presented at the end of the section.

The optimization study is performed using the “Thesis Model” in Section 4.1. The
equations of motion were determined for the system previously. The dynamic
behavior of the mass-spring-damper system is implicitly dependent on the position,
velocity, and acceleration of the system. Also, the objective is purely dependent on
the dynamic response of the system. Thus, the optimization of this problem is called

as response optimization.

The optimization is based on the parameters defined in Table 4.6. Since the problem
is non-linear and the response of the system defines the objectives, search-type
optimization methods are used as means for this problem, which is later explained in

Section 4.2.2.2. Search type optimization requires the search region to be bounded;
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otherwise, there are infinite parameters to evaluate for the optimization. The
previously designed shock absorber characteristics, which were used in the test, are
also known. The boundaries of the parameter search pool are defined using the
known parameters of the legacy shock absorber in NACA TN 2755 for the initial
determination. Different optimization methods require different ways to determine
the boundaries. Thus, the determination of boundaries is explained for each method
for the selection of parameters in 4.2.2.1.

Table 4.6. Optimization reference parameters

Parameter Value Unit
my 1093.61 kg
m, 59.42 kg
Trire 0.3429 m

Kiire 283380 N/m
Fyier 11307 N
(z1)o (z1)o m
(z2)0 (z2)0 m
(Z1)o —2.7 m/s
(Z2)0 -2.7 m/s

421 The objective of the optimization

There is a single objective within the scope of this thesis study.
e Maximize the shock absorber efficiency (ns4)

A typical drop test result is explained under Section 1.3. Introduction to Landing
Gear Drop Test. The shock absorber force evaluated during the optimization is

defined, previously in equation (4.6), as follows.

Fsy = Fsaspr + Fsaamp (4.6)
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The total change in the shock absorber stroke is another parameter to evaluate the
shock absorber efficiency. Displacement of the shock absorber stroke is previously
defined in equation (4.24) as follows.

Ssa = (22)9 + hy — Ssa (4.24)

The efficiency of the shock absorber is dependent on the parameters of Fg, and Sg,.
The maximum value of Fs, and $g4 are limited by constraints independent from the
efficiency. Shock absorber efficiency is generally a requirement on the design and is
defined with the following equation [9].

§SA n
Jo 24X Fspd3sa

Nsa = (4.31)

§SA,maxF SAmax

The efficiency of the shock absorber is a means to determine how much of the total
energy is absorbed by the shock absorber at the first oscillation of the drop. This is

the energy under the load-deflection curve. The first oscillation is limited by [to, tf],

where
to : Time at the tire contacts to the ground (¢, = 0 for this study)
tr : Final time (the stroke displacement, Ss,, reaches its maximum)

Knowing the two properties Fs4 max, Ssamax @nd having the results as F,(t) and
Ss4(t), one can obtain the efficiency of a shock absorber by dividing the energy
absorbed by the shock absorber (blue hatch) with the theoretical total energy
absorption capability (yellow hatch) in Figure 4.14.
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Figure 4.14. Efficiency evaluation of a drop test result

The single objective function used in the thesis, which is designated with J, is defined

as follows.

J[Fsa,854] = Nsa (4.32)

The efficiency of the previous shock absorber used in NACA TN 2755 is calculated

using equation (4.31) as follows.
Nsanaca = 9%78.26 (433)

This value will be taken as the reference to evaluate the effectivity of optimization

in Section 4.3.

4.2.2 Methods used in the optimization

The selection of decision variables and optimization search methods are explained
in this section. Method for selection of decision variables affects the size of the

search pool for the variables. The optimization search method, on the other hand,
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does heavily influence the cost of the optimization (i.e., time, CPU power) and the
effectiveness of finding the optimum solution. Comparison and the selection of the
methods used in this thesis study are described in the following sections.

The optimization of the response is based on finding the optimum damper and spring
characteristics that give the best objective result. The optimum damper and spring
characteristics are found by fitting a damper and spring characteristics for every
optimization iteration and evaluating the system's response. The approach for the

determination of those characteristics is explained in the following section.

4221 Selection of Decision Variables

The selection of decision variables for this problem is investigated from two different
aspects: effect on optimization time and simplicity for determination of search
region. Three different approaches to select the decision variables have been
investigated. Method 1 and Method 2 are based on fitting a polynomial, P[x], to

determine the optimum spring and damper characteristics, where
Plx] = kgs[854] for spring as x = S,

and
P[x] = bgy[ss4] for damper as x = sg, for Optimization Approach 1 and
P[x] = bgu[Ss4] for damper as x = $, for Optimization Approach 2

Method 3 is based on defining a piecewise linear function, F[x], for optimum spring
and damper characteristics similar to Methods 1 and 2, except it is not a polynomial

but a piecewise linear curve.
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4.2.2.1.1 Method 1: Decision Variables of c;

In this method, coefficients of polynomials are selected as decision variables. The
procedure for an optimization using these variables is presented in Figure 4.15 as

follows.

Constraint search boundary
Legend

Input data for User

selection
Optimization Tool

Select parameters
from input data

Create polynomial using selected
data and define kg, and bgy

Feasible Region Polynomials

Fsamazx: Ssamazxs are inside
S54max feasible region

my, Mz, Run simulation with
Kiirer Ttire 2DoF Model

(z1)0: (2z2)0:
(Z1)o. (Z2)0

Results
Evaluate Results converged
to optimum

kSA_.ap tr
bsa0pe

Figure 4.15. Optimization procedure using c; as decision variables

In this method, the search pool is very large as
c;=—1x10%—1x10°
lc;l =1 x 10713 — 1 x 106

Using the search pool, a polynomial is constructed, such as
Plx] = c3x3 + c,x% + c1x + ¢

In this procedure, as presented in Figure 4.15, firstly “n+1” number of coefficients

are selected from the search pool, and an n order polynomial is defined using c;’s.
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Then, the polynomial is checked if it is inside the feasible region. The feasible region,
on the other hand, is defined based on the Fg4 4, and 854 m4, Values determined
with the test results. P[x],q, is manually defined in relation with Fg4 y4c4max and
Ssamax OF Ssamax- As presented in Figure 4.16, the optimization proceeds with a
polynomial inside the feasible region while a polynomial outside the feasible region

is eliminated, and a new polynomial is defined.

Px]
(S NXS L LSS

— Proceed

Plx]max

-- Eliminate

Feasible
Region

TR

xma.x

Figure 4.16. Polynomial feasibility check

The drawback of this procedure is the necessity of checking a very large number of
polynomials against the feasible region and the difference of the order of magnitude
between the polynomial coefficients. Thus, the method is inefficient in terms of

finding a feasible solution and the cost of time.

4.2.2.1.2 Method 2: Decision Variables of y; (using “polyfit” command)

In this method, y coordinates of points, which a polynomial will be fitted through,
are defined as decision variables. The “polynomial curve fitting” command of the
MATLAB tool is used for this method. The procedure for an optimization using these

variables is presented in Figure 4.17 as follows.
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Figure 4.17. Optimization procedure using y; as decision variables for “polyfit”

In this procedure, x coordinates for “n+1” points are defined by the user (x
coordinates are evenly distributed in this study). Then, y;’s are selected by
optimization algorithm from corresponding search pool of each. The search pool is
initially manually defined with the NACA shock absorber characteristics using the
results in the report. In the next step, the optimization will fit an n' order polynomial

using user selected x; and algorithm selected y; values as follows.

P[X] = pOlyfit([xlfoI "'!xn+1]' [ylf Y2, ""yn+1]rn)

Then, the polynomial is checked if it is inside the feasible region. The feasible region,
on the other hand, is defined based on the Fg4 4, and 854 .m0, Values determined
with the test results. P[x];,4, is manually defined in relation with Fs4 yacamax and

Ssamax OF Ssamax @S presented in Figure 4.18.

The optimization proceeds with a polynomial inside the feasible region while a
polynomial outside the feasible region is eliminated, and a new polynomial is
defined.
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Figure 4.18. Polynomial feasibility check

After the maximization of the efficiency, the search pool is checked against the
optimum y; parameters. If any of y; parameters coincide with the boundary of its
own search pool; then, the search pool is re-defined manually by user, as presented
in Figure 4.19.

y, of the optimum
solution is at search
Plx] pool boundary Plx] search pool for y, is
L re-defined
Plxliax
N iV
N L ;
. g
5 74
T Izl Z> '
V2 3; — ey ;
1 L > 1
N 2 x
x
\//{1/752//753//{4// X

Figure 4.19. Re-defining search pool for y;

There is only a minor drawback of this method compared to Method 3: the
polynomial sometimes goes out of the feasible region. However, the occurrence of
this instance is rare compared to Method 1. Method 2 is the most feasible approach

for selecting the parameters quickly and with an average cost of time.
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4.2.2.1.3 Method 3: Decision Variables of y; (using “piecewise” command)

In this method, y coordinates of points, which a piecewise linear function will be
created with, are defined as decision variables. The “piecewise function” command
of the MATLAB tool is used for this method. The procedure for an optimization

using these variables is presented in Figure 4.20 as follows.

NACA Test Legend
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Parameters are
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b
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piecewise([xy, Xz, ., Xnsa s (Y1 Y20 -0 Yraa])

m Run simulation with
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(z1)0, (22)0. VES
(Z)os (Z2)0 Results ,
Evaluate Results converged Optimum

parameters

1o optimum

Figure 4.20. Optimization procedure using y; as decision variables for “piecewise”

In this procedure, x coordinates for “n+1” points are defined by the user (x
coordinates are evenly distributed in this study). Then, y;’s are selected by
optimization algorithm from corresponding search pool of each. The search pool is
initially manually defined with the NACA shock absorber characteristics using the
results in the report. In the next step, the optimization code will create piecewise

linear function using user selected x; and algorithm selected y; values as follows.

F[X] = piecewise([xl,xz, ...,X4_], [yll Y2,Y3, Y4])

After the maximization of the efficiency, the search pool is checked against the

optimum y; parameters. If any of y; parameters coincide with the boundary of its
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own search pool; then, the search pool is re-defined manually by user, as presented
in Figure 4.21.

. Flx] search pool for y, is
L re-defined
Ya 3
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Figure 4.21. Re-defining search pool for y;

This method provides the advantage of a reduction in computation time; however,
the discontinuity of the curves defined in this method requires a polynomial to be
fitted at the end of the solution, which results in a deviation from the optimum

solution.

Comparing all methods, Method 2 is the most viable approach for this optimization
problem; because the time and CPU power required for Method 2 are better than
Method 1. Method 3 also processes the optimization in a short time, but since it is
not a proper way to define spring and damper characteristics, a polynomial fit after

the optimization is required, which deviates from the optimum solution.

4.2.2.2  Optimization search method

The optimization problem in this study is a single objective non-linear response
optimization. Before starting the optimization case, an evaluation is performed
against the effectiveness of different optimization methods on this type of problem
and objective function.

Using objective function defined in equation (4.32), and the Thesis Model with
parameters defined in Table 4.6. Optimization reference parameters, an optimization
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is performed. Method 2: Decision Variables of y; (using “polyfit” command) in
Section 4.2.2.1 used as a method for selection of parameters for the optimization.
The best pair of y; values were searched that, a first order polynomial (a linear curve)

is fit through.

The evaluation is performed using the Response Optimization tool in Simulink,
which is a part of the Global Optimization Toolbox of MATLAB/Simulink. The
result and time of different optimization search methods have been compared in
Table 4.7.

Table 4.7. Comparison of search methods and algorithms

Optimization Algorithm/ Search Objective
Method Method (Higher is better) Time
Active Set 0.8487 37 sec
) Interior Point 0.8479 15 min
Gradient-Descent )
Sequential Quad.
) 0.8487 43 sec
Programming
Positive Basis N+1 0.8686 16 min
Pattern Search Positive Basis 2N 0.8718 20 min
Genetic Algorithm 0.8869 1 hour
Simplex Search Simplex Search 0.8542 15 min

The comparison of three different optimization methods shows that Pattern Seach is
better than the other optimization methods in finding the best solution for the
problem defined in this thesis study. Pattern Search in MATLAB/Simulink has three
different search algorithm to achieve the solution. The first two methods are the
modified versions of the fundamental basis of the pattern search: Positive Basis N+1
and Positive Basis 2N [28]. The Genetic Algorithm (GA) is a deviation from
traditional pattern search methods as it is a metaheuristic inspired by the natural

selection which the selection of the parameters is performed by the method itself
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inside the search region [29]. However, the selection method for the parameters is

defined by the user, such as population, mutation, and crossover.

The evaluation of these optimization methods has been performed for a very large
search region. Thus, it is normal for the GA to perform a first-order polynomial
optimization in 1 hour. In previous studies on landing gear shock absorber response
optimization, the effectiveness of genetic algorithm optimization was also

acknowledged as the most efficient response optimization method [22].

In summary, the Genetic Algorithm is selected as the search method for this

optimization problem.

4.2.3 The constraints of the optimization

Any optimization problem has its own constraints in terms of finding a solution.
Those constraints can be the design limitations of the problem, physical limitations,

and boundary improvement to reduce the time required to achieve the best solution.

The constraints used for the optimization problem in this study are defined as

follows.

Physical Constraints:

e The change in the stroke of the shock absorber shall not have negative values
for all ¢ values. The intent of the constraint is to prevent the shock absorber

from going beyond the extended position, which physically is not possible.
$54(6) >0 for [t t]
where
tg - Settling time (the time which drop test system settles, i.e., sg4 = 0)

e The force at the damper shall have positive values for positive velocity

values, negative values for negative velocity values. The constraint intends
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to limit the design such that the solution is physically possible, that it does

not store energy, and does not do positive work against the environment.
Fspamp(t) >0  for 354(t) >0
Fspamp(t) <0 for 3$54(t) <0

Design Constraints:

e The total force at the shock absorber shall be smaller than 30 kN. The
constraint intends to limit the maximum force that can be exerted from the
shock absorber to the aircraft. The results in NACA Model have been used
as the reference [NACA TN 2755].

|Fs4(t)| < 30000 N for [to,t]

e The total change on the shock absorber stroke shall be smaller than 165 mm.
The constraint intends to limit the total landing gear length for installation
purposes during the gear retracts into the aircraft fuselage. The results in
NACA Model have been used as the reference [NACA TN 2755].

Ss4(t) <160 mm  for [t t]

e There shall be a preload at the shock absorber spring when the shock absorber
stroke is zero. This is a rule of thumb for a landing gear design to prevent the
stiction of the shock absorber surface during the initial rebound [9]. Previous

shock absorber design is used as a reference.
FSA,SpT(t) Z 1500 N fOT §SA(t) == 0

Search Improvement Constraints:

e The shock absorber stroke shall have an increasing value from the initial
contact to the maximum stroke. The dynamic response of the system shall be
single-valued for the time of interest of the objective. Any indeterminate

motion of the system between this time of interest is not considered to be
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acceptable. This constraint has been implemented to prevent the improper

solutions which have been encountered at the initial optimization runs.

$sa(6) >0 for [to tf]

4.3  Optimization Approaches and Results

The optimization is performed with the fitting of polynomials with different orders
using Method 2 described in Section 4.2.2.1. Two different approaches to the
optimization of the problem are explained. Results for different approaches and
different orders of polynomial fittings are compared. The order of the polynomial,
n, has been increased for both optimization approaches as long a better objective
result is obtained. The drop test simulation results of the Thesis Model, which was
presented in Section 4.1.3, are used as a reference to present the success of the

optimization. These results are designated as “Reference” in optimization results.

4.3.1 Optimization Approach 1: bg, as function of $g,

Shock absorbers are mechanical components which the coefficient of damping of
these components is generally a function of the velocity [30]. Thus, the first approach
to this optimization problem has assumed the damping coefficient of the damper to
be a function of the velocity, i.e., bgs(Ss4). Referring to Method 2: Decision
Variables of y; (using “polyfit” command) in Section 4.2.2.1, the optimum
polynomial that represents the spring and damper characteristics is tried to be found
by changing the coordinates that the polynomial passes through.

Decision variables of the optimization:

Y1, Y2, 0 Yn+1

used in

Plx] = polyfit([x1, Xz, .., Xns1), V1, ¥2, s Yl 1)
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where
P[] = kgsy[ ] and x = S5, for spring
P[] = bgs[ ] and x = s5, for damper
n=123
x; =i x 2L

where
Xn4+1 = 0.16 m for spring

Xn+1 = 3 m/s for damper

Obijective function:

J[Fsa,8sa]l = max(ns4) (4.34)

Optimization input parameters

my, My, Teirer Frirr, (Z1) o, (22)0, (Z21)0, (22), as defined in Table 4.6.

4.3.1.1  Optimization Approach 1: Results forn =1

Fitting a polynomial passing through 2 points results in, n =1, a 1% order
polynomial. Optimum damping coefficient, bs,s(Ss4), and optimum spring
coefficient, kg, (85,), obtained with the 1% order polynomial fitting are presented in
Figure 4.22.
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Figure 4.22. 1% order polynomial fitting of; bg,(S54) (left), kg4 (854) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in
Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,
as presented in Figure 4.23.
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Figure 4.23. Thesis Model drop test simulation with NACA SA characteristics, and
optimum SA characteristics forn = 1

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.
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Nsa04yn, = %86.9 (4.35)
where
0A; : Optimization Approach i

n; - i order polynomial

4.3.1.2  Optimization Approach 1: Results forn = 2

Fitting a polynomial passing through 3 points results in, n =2, a 2" order
polynomial. Optimum damping coefficient, bs,(Sg4), and optimum spring
coefficient, kg4 (35,4), Obtained with the 2" order polynomial fitting are presented in
Figure 4.24.
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Figure 4.24. 2" order polynomial fitting of; bg,($5,) (left), ksa(354) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in
Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figure 4.25.
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Figure 4.25. Thesis Model drop test simulation with NACA SA characteristics, and
optimum SA characteristics for n = 2

The efficiency of the shock absorber using the optimum spring/damper
characteristics is calculated using equation (4.31) as follows.

Nsa,04,n, = %90.44 (4.36)

4.3.1.3  Optimization Approach 1: Results forn = 3

Fitting a polynomial passing through 4 points results in, n =3, a 3 order
polynomial. Optimum damping coefficient, bs,(Sg4), and optimum spring
coefficient, kg4 (35,4), obtained with the 3™ order polynomial fitting are presented in
Figure 4.26.
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Figure 4.26. 3" order polynomial fitting of; bg, ($5,4) (left), ksa(3s4) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in

Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figure 4.27.
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Figure 4.27. Thesis Model drop test simulation with NACA SA characteristics, and

optimum SA characteristics forn = 3

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.
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Nsa04a,n; = %090.37 (4.37)

4.3.2 Optimization Approach 2: bg, as function of 5g,4

As mentioned in the previous section, the coefficient of damping is usually a function
of velocity. However, there are such dampers that their coefficient of damping are a
function of displacement and velocity at the same time or function of displacement
only [9]. Since MFG design is suitable to define the coefficient of damping as a
function of displacement, an optimization approach has been followed by taking both
kss and bg, as function of displacement, i.e. kgs(Ss4), bsa(8s4). Referring to
Method 2: Decision Variables of y; (using “polyfit” command) in Section 4.2.2.1,
the optimum polynomial that represents the spring and damper characteristics is tried

to be found by changing the coordinates that the polynomial passes through.

Decision variables of the optimization:

Yo Y25 0 Yn+1
used in

Plx] = polyfit([xy, x2, -, Xn41], [V, Y2, s Yngal )
where

P[] = kgul ] and x = S5, for spring

P[] = bgs[]and x = 85, for damper

n=123

x; =i x 2L
where

Xn+1 = 0.16 m for spring and damper

Obijective function:

134



J[Fsa, 8sa]l = max(ms,4) (4.38)

Optimization input parameters

my, My, Teirer FLirr, (Z1) 0, (22)0, (21)0, (22), as defined in Table 4.6.

4.3.21  Optimization Approach 2: Resultsforn =1

Fitting a polynomial passing through 2 points results in, n =1, a 1% order
polynomial. Optimum damping coefficient, bs,(3s4), and optimum spring
coefficient, kg, (854), obtained with the 1% order polynomial fitting are presented in
Figure 4.28.
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Figure 4.28. 2" order polynomial fitting of; bg,(85,) (left), ksa(354) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in
Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figure 4.29.
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Figure 4.29. Thesis Model drop test simulation with NACA SA characteristics, and
optimum SA characteristics forn = 1

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.

Nsa,04,m, = %86.33 (4.39)

4.3.2.2  Optimization Approach 2: Results for n = 2

Fitting a polynomial passing through 3 points results in, n =2, a 2" order
polynomial. Optimum damping coefficient, bg,(Ss4), and optimum spring
coefficient, kg4 (354), obtained with the 2" order polynomial fitting are presented in
Figure 4.30.
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Figure 4.30. 2" order polynomial fitting of; bg,(854) (left), kga(354) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in

Thesis Model with optimum spring/damper characteristics” with respect to a “drop

test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.

The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figu
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Figure 4.31. Thesis Model drop test simulation with NACA SA characteristics, and

optimum SA characteristics for n = 2

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.
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nSA,OAznz = 0591.82 (440)

4.3.2.3  Optimization Approach 2: Results forn = 3

Fitting a polynomial passing through 4 points results in, n =3, a 3 order
polynomial. Optimum damping coefficient, bs,4(Ss4), and optimum spring
coefficient, kg, (35,4), obtained with the 3™ order polynomial fitting are presented in
Figure 4.32.
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Figure 4.32. 3" order polynomial fitting of; bg, (35,) (left), ksa(354) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in
Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figure 4.33.

138



x 10

T o] ’
: P )
251 : B
o Le]
s
O C
2t %
' o
;0 o
. 1.5 5
& Lo
= 1k A O Test Results =}

————— Thesis Model w/NACA Parameters
Thesis Model w'Optimum Farameters

0.5 do

05 i . . . I I I I |
-0.02 ] 0.02 0.04 0.06 0.08 0.1 0.12 014 016

Sgq ]

Figure 4.33. Thesis Model drop test simulation with NACA SA characteristics, and
optimum SA characteristics forn = 3

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.

7’]5,4'0,42113 = 94/94.05 (441)

4.3.24  Optimization Approach 2: Results for n = 4

Fitting a polynomial passing through 5 points results in, n =4, a 4" order
polynomial. Optimum damping coefficient, bs,(3s4), and optimum spring
coefficient, kg, (354), obtained with the 4™ order polynomial fitting are presented in
Figure 4.34
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Figure 4.34. 4" order polynomial fitting of; bg, (854) (left), kg (354) (right)

Effectivity of the optimization is evaluated with a comparison of a “drop test in

Thesis Model with optimum spring/damper characteristics” with respect to a “drop
test in Thesis Model with spring/damper characteristics defined in NACA TN 2755”.
The available test results of NACA TN 2755 are also presented in this comparison,

as presented in Figure 4.35.
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Figure 4.35. Thesis Model drop test simulation with NACA SA characteristics, and

optimum SA characteristics for n = 4

The efficiency of the shock absorber using the optimum spring/damper

characteristics is calculated using equation (4.31) as follows.

140



Nsa,04,n, = 9%94.45 (442)

4.3.3 Comparison of Optimization Approches

Two different optimization approaches are described in Sections 4.3.1 and 4.3.2. The
same objective is aimed at both approaches. Both approaches are performed under

the same optimization constraints.

The objective function, ng,, i.e., efficiency, is evaluated based on S, as defined

below.
§.S‘A,max &
s = f(; :SAdSSA (4.31)
SAmax!SAmax
The results of two optimization approaches are listed in Table 4.8.
Table 4.8. Optimization Approach comparison
Objective Function Increase w.r.t.
Approach
[15a4] Nsanaca(%78.26)
OAl,n=1 %86.9 %11.04
OAl,n=2 %90.44 %15.56
OAl,n=3 %90.37 %15.47
OA2,n=1 %86.33 %10.31
OA2,n=2 %91.82 %17.33
OA2,n=3 %94.05 %20.18
OA2,n =14 %94.45 %20.69

As seen in Table 4.8, OA 2 is better than OA 1 in terms of giving a better solution
for the objective. In OA 1, there is not any further increase in the efficiency after
n = 2, where the increase for the OA 2 stop at n = 3. In general one may expect the
efficiency to go %100 if the order of the polynomial goes infinity. However, this is

not applicable to the definition of this problem; because to achieve a %100
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efficiency, the F, is required to be equal to Fs4 14, fOr t > 0. Thus, it means Fs is
defined as step result in time domain, and this requires bg, or ks, to be defined as
step functions (or infinity at t = 0). Furthermore, it does not necessarily mean for
the efficiency to be increasing with the increasing order of the polynomial. Even with
the use of an active damping system, the efficiency of the shock absorber was
increased to %94.5 [20]. Thus, it is not expected from a passive design to have better

efficiency than an active design.

In summary, referring to Table 4.8, spring/damper characteristics for Optimization

Approach 2 for n = 4 is found as the optimum solution to the problem.
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CHAPTER 5

APPLICATION OF MFG ON LANDING GEAR SHOCK ABSORBER

The use of MFG on a landing gear shock absorber is investigated in this chapter. The
design of MFGS and MFGD for a given condition was previously described in
Section 3. Separately, an optimization is performed on existing landing gear design
inputs to obtain the optimum spring and damper characteristics. Thus, MFGs will be
designed to act as a non-linear spring and a non-linear damper with the optimum

characteristics.

The application of MFG on landing gear is evaluated from two aspects: theoretical
achievability of the solution and feasibility of the MFG installation on a landing gear.

5.1  Design Concept

MFG is a mechanism that consists of planar motion. The landing gear shock absorber
also performs planar displacement. The initial idea of the application of MFG on a
landing gear shock absorber is realized by allowing the MFG’s displacement in z-
direction inside the shock absorber, in which the shock absorber also performs

displacement in the same direction. The initial concept is depicted in Figure 5.1.
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Figure 5.1. Sketch of the installation of MFG on landing gear

A landing gear shock absorber has a cylindrical design for its easy production, low
friction, and better hydraulic fluid sealing properties. Thus, the initial application
concept causes inefficient use of a cross-sectional area of the shock absorber. To use
the circular cross-section of the shock absorber more efficiently, a new concept of
MFG installation is introduced, in which there are two MFGs using the same input

links. The application of two MFGs at the same time is illustrated in Figure 5.2.
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Figure 5.2. Installation of MFGS and MFGD at the same MFG

This application has the benefits of reducing the load on an MFG and using the MFGs

for different purposes at the same time, such as one is MFGS, and the other is MFGD.

With the design concepts introduced above, different options are evaluated in the

following sections.

An MFG system with optimum spring and damper characteristics determined in

Section 4.3 is designed in this section.

Let the optimum spring and damper characteristics be presented here as follows.
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The design of the MFGs will be handled separately for spring and damper.

5.2

Design of MFGS

The optimum spring characteristic of the shock absorber (see Figure 5.3) is defined

as follows.

kSA[§SA] == 243 X 10_6§§A - 445 X 10_4§S3A

+2.83 x 107282, + 0.1463,, + 39.21 N/mm

A

Fspspr = ksal35al3sa
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Firstly, the spring for the chamber of this MFGS shall be selected. Requirements of
this chamber spring shall be specified, so a correct selection can be performed. The
spring inside the chamber shall store the same amount of potential energy that will
be stored at the MFG, which means the potential energy stored at the SA spring. This

can be determined via the energy graph of the shock absorber spring, which obtained

via
A _ 3sa A A
Esaspr [854] = fo FSA,spr[SSA]dSSA (5.3)
685.47"%0
600
500 .;z'
__:\" 400 /
e P
53007 4 :
= /,./
200 o
A
100 | et
U — th L L L L 1 J
1] 20 40 60 80 100 120 140 160
Sgq [mm]

Figure 5.5. Energy stored at shock absorber spring
Evaluating equation (5.3) for §;, = 160mm, one will find that the energy stored at

the SA spring is equal to Egy4 s, [160] = 685.47 Joule as presented in Figure 5.5.

Since the MFG consists of two chambers that store energy, the energy needs to be

stored in one chamber is defined as follows.

_ Esasprl$sal _ Emrc,sprlsmrcl
EMFG,spr,cha - 2 - 2 (5-4)

Thus, the following condition shall be satisfied for the selected spring of

compression type as

1 2
EMFG,spr,cha [lspr,min] = Ekcha(lspr,min - lf,spr) > 342.75]0ule (55)
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and for a selected spring of tension type as

1 2
EMFG,spr,cha [lspr,max] = Ekcha (lspr,max - lf,spr) > 342.75 ]OUIe (56)

where
Lspr-min : Minimum length of a compression spring (catalog value)
Lspr max : Maximum length of a tension spring (catalog value)
le spr : Free length of the selected spring (catalog value)
Kcha : Spring constant of the chamber

Here, it should be noted that, k., may not be the spring constant of one spring. The

chamber may consist set of springs that work in parallel. Which yields

kcha = Ngpy kspr (5.7)
where

nepyr - Quantity of springs in a chamber

kgp  : Spring constant

2¢q
7(0)

3‘} (0)

FO)

Figure 5.6. Dimensions of a chamber volume
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As presented in Figure 5.6, a set of springs can be installed inside the chamber. The
installation of these spring in parallel is performed such that the maximum number
of springs are installed inside the chamber as presented in Figure 5.7.

Spring Quter
Diameter

Figure 5.7. Example of determination number of springs inside the chamber

The number of springs is taken into account during the selection of the spring w.r.t.
equation (5.5) or equation (5.6). For the application of the optimum SA design, some
of the dimensions for the MFGs, which have been identified in Figure 5.6 and Figure
3.5, are determined to start the design. According to the satisfaction of the design,

the dimensions are adjusted.
c; = 200 mm (5.8)
d; =50 mm (5.9

The compression type of spring is thought to be the initial preference due to the small
installation envelope requirement. A spring may be designed for given requirements;
however, springs in the market, which have been already produced, are searched
from the internet [31]. The stock numbers of these springs can be found in Appendix

C. The candidate springs and their properties are presented in Table 5.1.
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Table 5.1. Candidate spring properties

Sori Outer l " Max " g [l ]
rin -
Pring Diameter fspr *PT Deflection Nopr cha sprizsprmm
[mm] [N/mm] [N/mm] [Joule]
[mm] [mm]

Cs1 48.412 65.786 426.83 7.872 8 3414.64 105.8
CS2 31.344 508 373.13 7.059 12 4477.56 111.56
CS3 41.275 41402 526.61 6.403 9 4739.49 97.16
CS4 24994 62.738 414.21 6.078 32 13254.7 244.8
CS5 37.287 55.626 1385.57 4.28 10 13855.7 126.91
CS6 33.325 28.702 547 3.693 12 6564 44.76
CS7 45.237 36.576 338.22 4.143 8 2705.76 23.22

Considering the energy storage capabilities, CS4 stands out as a potential candidate
compared to the other springs, but it still does not satisfy the criterion given in
equation (5.5). Thus, an adjustment on the dimensions is required. Previously given

in equation (5.8) and equation (5.9), ¢; and d5 dimensions are defined as follows.
¢, =200 mm (5.10)
d; =75 mm (5.11)
Thus, equation (5.5) can be calculated for CS4 as follows
Egprcsallsprmin) = 5 (48 X 414.2)(56.66 — 62.738)% = 367.2 Joule (5.12)

Let an MFGS be designed using the spring selected above. It shall be noted that the
shock absorber and the MFG displacements shall be related to each other correctly
to design against the correct requirements. The total displacement of the shock
absorber is defined as 160 mm. Thus the total displacement between Link 2 and
Link 4 of the MFGs shall be 160 mm as

Sp/amax — 2dcie = 160 mm (5.13)

which yields
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SMFGmax — dere = 52/4,max/2 — d¢e = 80mm (5.14)

If one evaluates the dimensions of the MFGS, one can observe that the total
displacement of Link 2 and Link 4 would be small with respect to c; as presented in

Figure 5.8.
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Figure 5.8. Evaluation of total displacement of MFG w.r.t. SA

This is mainly due to requirement of storing high amount of energy inside small

installation envelope.

First, the spring coefficient and force defined in equation (5.1) and equation (5.2)
shall be re-defined in sy, domain, instead of 354, to allow a design inside the

allowable region. If one selects the clearance parameters as

dcie = 10 mm (5.15)
then

SMEGmin = dee = 10mm (5.16)

Thus, a change needs to be performed on S5, to design the MFG. The following

change will satisfy the requirement to stay inside the allowable region.
354 = 160 — (5274 — 2die) = 160 — (2Spypg — 2dcge) (5.17)

which yields
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§SA =180 — ZSMFG

(5.18)
If the equation (5.18) is plugged in equation (5.2), one obtains the spring force as

Fyre spr [smrcl = kmrclSmrcl(Sure — 90)

(5.19)
where

kMFG [SMFG] = _194 X 10_SSMFG4 + 481 X 10_3SMFG3

—0.4125y5¢% + 13.9525,5c — 174.856 N/mm

(5.20)
The spring force of the MFGS defined in equations (5.19) and (5.20) is presented in
Figure 5.9.
s «10*
271 IllI
i 15}
SN \
'.\.I
051 .\"\ R
0 0 10 2ID 30 40 ) 5E_i 60 70 80 90 100

Figure 5.9. MFGS force of optimum shock absorber spring
Furthermore, one needs to decide on the other dimensions of the MFGS. Knowing

the spring’s maximum deflection property, the width of Link 3 (b3) can be defined
as presented in Figure 5.10.

152



A
A 4

Region R

Max Travel
Deflection

= 6.078 mm

Figure 5.10. Determination of required b5

Taking the total travel deflection into consideration, since the clearance value is

selected as d ;. = 10 mm, one obtains b5 as

b; = 26.078 mm (5.21)
The free length of the spring is known from Table 5.1 as

I spr = 62.738 mm (5.22)

If minimum space allocation is desired from the MFGS, b; can be determined in
relation with I, ., as long as the selections of integral limits (see Page 40) are
performed to benefit the most out of the allowable region. Thus, referring to Page 40

and Figure 5.11 (scpg = lrspr), by May be defined as

b1 = lf,spr + b3 - dcle + b2 (523)
or

by = lfspr + die + by (5.24)
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Note that any selection of b, in accordance with equation (5.23) or equation (5.24)

restricts the selection of integral limits for equation (3.55).

adl

Cl _____ —_—————— b4

Region R

v

Scha lf,spr

Figure 5.11. Determination b, in relation with I ),
Referring to equation (5.23), b is defined as

b, = 62.738 + 26.078 — 10 + b, = 78.816 + b, (5.25)

Lastly, the length of the arm of Link 2 should be determined. If one takes the
movement of Link 3 into account, referring to Figure 5.11 and Figure 5.10, one can

define b, as follows

by, =bs —d.e + by/2 (5.26)
where

b, : Diameter of Link 2

Determination of b, diameter requires further strength analysis/calculation and
material information; however, this is out of the scope of this thesis study. Thus, b,

is assumed as

b, =10 mm (5.27)
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Referring to equation (5.26) and equation (5.27), one can define b, and effectively

b, (see equation (5.25)) as

b, = 26.078 — 10 + 10/2 = 21.078 mm (5.28)
b, = 78.816 + 21.078 = 99.894 mm (5.29)

With respect to dimensions given in equations (5.10), (5.15), (5.21), (5.28) and
(5.29), the MFGS is plotted in MATLAB environment as assembled. The layout of
the MFGS is presented in Figure 5.12.

1
by i
1
1
200 ry T
i
150 H
i
F |
100 Cl z_(ll)
50 | I
- | =(1
E 0 5. AN R e &
N FERRNR R O
50 l
f.cha
-100 [
-150
200 L i L H " . 1 |
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Figure 5.12. MFGS installation layout

Given the dimensions, the allowable region is defined as presented in Figure 5.13.
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b; = 26.078 mm
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Figure 5.13. Allowable region R on Link 3

Thus, given the dimensions and spring chamber properties referring to the solution
derived in Section 3.2.1, the solution is found for this MFGS design. As previously
described while using equation (5.23) for the dimensions of the MFGS, the point that
slot shape centerline passes through is selected as described on Page 40. As a
reminder, the selection of the point, as presented in Figure 5.13, yields

(x,); = 16.078 mm (5.30)

(z,); =10 mm (5.31)
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Figure 5.14. Solutions for (x,.), and (x,.), (for (x,); = 16.078, (z,.); = 10)

As presented in Figure 5.14, (x,), is the solution for this problem. Thus, taking

(x,)p as the solution, the position analysis is performed as presented in Figure 5.15.

SuEG [mm]

56.5 . . . . I . I . 0
0 10 20 30 40 50 60 70 80 90

Z, = Sy (mm]

Figure 5.15. Position analysis of MFGS design
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Scha @Nd Sy evaluated with respect to z,. with taking $,,z¢ as unit velocity (Syr¢ =
1 mm/s) in Figure 5.16.
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Figure 5.16. Velocity analysis of MFGS design

Finally, Fypg spr aNd —F pq spr are presented in Figure 5.17 with respect to sypg.

Scha Was also presented in Figure 5.16 with respect t0 sy, (note that Sype =

1 mm/s).

12 b \ -Fcha.spr

I'\\ F MFG spr

cha,spr (N]

0 10 20 3 40 50 60 70 80 90
Z,= S [mm]

Figure 5.17. Fyrg spr aNd —Fepg spr W.ILL Sypg
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Referring to equation (3.48), if “—Fcpq spr in Figure 5.17” is multiplied with “S.p,
in Figure 5.16”, “Fypg spr in Figure 5.17” will be obtained (remember that Sy =

1 mm/s).

53  Design of MFGD

The optimum damper characteristic of the shock absorber (see Figure 5.3) is defined

as follows.
bSA[§SA] = 935 X 10_83';':4 - 392 X 10_5§S3A
+7.35 x 107382, — 0.62735, + 26.34 N/mm/s (5.32)

FSA,dmp = —bgy [§SA]$"5A (5.33)

For the design of MFGD, some of the dimensions determined in Section 5.2 are used.
The dimensions that were determined previously and which will be used in MFGD

design are defined as follows.

¢, =200 mm (5.34)
b, = 99.894 mm (5.35)

Dampers are not standard elements such as springs. The design of a damper changes
according to its application [30]. Thus, the damping coefficient inside the chamber
will be determined as the outcome of the MFGD design. So, the remaining
dimensions of the MFGD are “carefully” determined by own choice to have a

sensible design, in which the links do not clash with each other.
Firstly, the clearance of the allowable region is selected the same with MFGS as

dee = 10 mm (5.36)

Similarly to MFGS, the damping constant and damper force shall be re-defined in
sure domain, instead of Sg,, to allow a design inside the allowable region. Thus,

referring to equation (3.32), the following condition shall be satisfied.
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SMrGmin = dee = 10 mm (5.37)

Thus, a change needs to be performed on S5, to design the MFG. The following

change will satisfy the requirement to stay inside the allowable region.

354 = 160 — (s, /4= 2d.e) = 160 — (2spypg — 2dcie) (5.38)
which yields
§SA = 180 - ZSMFG (539)

Since the damping force is function of velocity, the velocity of shock absorber
damper, ss4, must be related to the velocity of MFGD input link, $yrs. This

relationship is defined as follows.

Ssa = 2SyF¢ (5-40)

If equations (5.39) and (5.40) are plugged in equation (5.33), one obtains the
damping force as

Fyrpg.amp = —byrc[SurclSure (5.41)
where

burclsurel = 2.99 X 10705 56* — 4.5 X 1075563 ...

+3.5 X 10725y pc2 — 1.568sypc + 42.54 N/(mm/s) (5.42)

The spring used in MFGS limits the dimensions of the chamber. Since the damper is
not a standard component, the minimum and maximum dimensions of the damper
inside the chamber are defined by the author for MFGD design. Yet, the realization
of this damper design is out of scope in this thesis study. The minimum and

maximum dimensions of the damper are defined as

50 mm = s.p, = 25 mm (5.43)

If minimum space allocation is desired from the MFGD, b5 can be determined in

relation to the total length change of the chamber, as

AS.pg = 25 mm (5.44)
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Figure 5.18. Determination of required by

Taking the total damper travel into consideration and referring to Figure 5.18, since

the clearance value is selected as d.;, = 10 mm, one obtains b; as

b; = 45 mm (5.45)
A |
—3 29?')
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Figure 5.19. Determination b, in relation with s, i, POSition
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Lastly, the length of the arm of Link 2 should be determined. If one takes the
movement of Link 3 into account, referring to Figure 5.19 and Figure 5.18, one can

define b, as follows

by, = by — d e + by/2 (5.46)
where, same as MFGS,

b, =10 mm (5.47)
Referring to equation (5.46) and equation (5.47), one can define b, as

b, = 45— 10+ 10/2 = 40 mm (5.48)

With respect to dimensions given in equations (5.34), (5.35), (5.36), (5.45) and
(5.48), the MFGD is plotted in MATLAB environment as assembled. The layout of
the MFGD is presented in Figure 5.20.
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Figure 5.20. MFGD installation layout

Given the dimensions, the allowable region is defined as presented in Figure 5.21.
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Figure 5.21. Allowable region R on Link 3

The point that slot shape centerline passes through is selected as described on Page

55. As a reminder, the selection of the point, as presented in Figure 5.21, yields

(x,); =35mm (5.49)
(z,); =10mm (5.50)

Before starting to design a slot shape, the last necessary parameter is the damping
coefficient of the chamber. Since the energy absorption of the chamber damper is a
function of not only the position but also the velocity, the damper requirements inside
the chamber could not be determined, such as spring. Thus, using the selections in
equations (5.49) and (5.50), with trial and error, the damper coefficient inside the

chamber is determined as
b.pa = 108.9 N/(mm/s) (5.51)

The damper coefficient is determined such that all working envelope of the damper,

defined in equation (5.43), will be used.

Thus, given the dimensions and damper chamber properties referring to a solution
derived in Section 3.3.1, the solution is found for this MFGD design.
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Figure 5.22. Solutions for (x,), and (x,), (for (x,.); = 45, (z,); = 10)

Referring to equation (3.102) and as presented in Figure 5.22, (x,.),, is the solution

for this problem. Thus, taking (x,), as the solution, the position analysis is
performed as presented in Figure 5.23.
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Figure 5.23. Position analysis of MFGD design
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Scha @Nd Sy pe are evaluated with respect to z, with taking sy as unit velocity

(Syre = 1 mm/s) in Figure 5.24.
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Figure 5.24. Velocity analysis of MFGD design

Finally, Fyrg amp and —Fpq,amp are presented in Figure 5.25 with respect to sy gg.

Scha Was also presented in Figure 5.24 with respect to sy, (note that Sy pe =

1 mm/s).
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Figure 5.25. Fyrg amp and —Fepg amp W.I.L. Syre

165



Referring to equation (3.86), if “—F,pq amp In Figure 5.25” is multiplied with “S.p,
in Figure 5.24”, “Fypg spr in Figure 5.25” will be obtained (remember that Sy =

1 mm/s).

5.4  Comparison of Design with Previous Shock Absorber Design

The concept of using MFG for a shock absorber design is explained initially at the
beginning of this chapter. An MFGS and an MFGD have been designed using the
optimum shock absorber characteristics defined in section 4.3. Thus, taking the
dimensions of the previous shock absorber (the shock absorber in NACA TN 2755
tests) as a reference, the dimensions of the MFGS and MFGD design will be

evaluated compared.
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Figure 5.26. Shock absorber used in NACA tests [15]

Referring to Figure 5.26, the piston diameter of shock absorber assembly of NACA

SA is given as

DSA,p,NACA = 7558 mm

and outer diameter and length of the shock absorber assembly of NACA SA can be

measured as
Dspoutnaca = 112 mm

Lsanaca = 515 mm
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The installation of the MFGS and MFGD on the same link was previously explained
in Section 5.1. Referring to Figure 5.2, the top view for the installation of MFGs with

respect to dimensions determined previously is presented in Figure 5.27.
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Figure 5.27. Installation of MFGS and MFGD, top view

During the installation of the mechanisms, some dimensions are required to be
changed to prevent Link 3 of MFGS and Link 3 of MFGD from clashing. Thus, b,

is changed as
by = 160 mm (5.55)
and b, for MFGS and MFGD is changed accordingly.

The side view of the installation of MFGs is given in Figure 5.28.
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Figure 5.28. Installation of MFG, side view

Using the MFG assembly presented in Figure 5.27 and Figure 5.28, a landing gear
assembly is prepared to compare with the shock absorber used in NACA. This
assembly is presented in Figure 5.29.
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Figure 5.29. Shock absorber designed with MFG

Referring to Figure 5.29, the piston diameter of shock absorber assembly of shock
absorber with MFG is defined as

DSA,p,MFG = 75 mm (556)

and outer diameter and length of the shock absorber assembly with MFG is estimated

(by giving credit to the thickness of structural parts) as

Dsaout mre = 400 mm (5.57)
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Lsamrc = 740 mm (5.58)

5.5  Dicussion on Design Outcome

At the beginning of this chapter, optimum shock absorber characteristics are taken
as a reference to begin the design. Using a real spring, design of a real MFGS is
aimed to check the feasibility and applicability of MFG’s use on an aircraft landing

gear. On the other hand, the damper design is aimed to be kept feasible.

After the design of the MFGS and MFGD, it has been observed that the travel of the
MFG links (Link 3 and Link 5) are very small compared to the travel of the input
links (Link 2 and Link 4). The main cause of this difference is keeping the shock
absorber dimensions as small as possible to have a feasible shock absorber design
that may fit inside the aircraft. The big difference between link travels causes the
force transmission, from Links 3 and 5 to Links 2 and 4, to be very inefficient.
Furthermore, inefficient force transmission may cause oversizing of components of
MFG. On the other hand, even the smallest installation envelope is aimed, the shock

absorber dimensions are resulted to be very big to install inside an aircraft.
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CHAPTER 6

CONCLUSION

6.1 Summary

At the beginning of the thesis study, an introduction is performed to provide
information about the general properties that are referred throughout the study. The
Mechanical Force Generator and its particular properties are featured. Information
on shock absorber design and aircraft landing gear design is introduced to give an
understanding of the basis of the problem. The drop test procedure, which is widely
used during the verification and modeling of aircraft landing gear design processes,

is summarized. Guidance on the evaluation of the test results is performed.

Since shock absorber design of aircraft landing gear is a very specialized area, a
literature review on shock absorber design is performed in Chapter 2. Being the
commonly used design, the oleo-pneumatic type shock absorbers are described.
Research is performed related to the problem defined at the beginning of the thesis

study. Research studies on shock absorber efficiency are summarized and evaluated.

In Chapter 3, a design methodology for Mechanical Force Generator is developed.
General properties and the components of a Mechanical Force Generator are
described. Kinematic chains that will help the design of the slot shape of Mechanical
Force Generators are defined. Loop closure equations are determined using these
kinematic chains. Equations used in position and velocity analysis, which is
applicable to any Mechanical Force Generator design, are defined. The use of
Mechanical Force Generator as a non-linear spring and a non-linear damper are
investigated. Two methods are introduced, for non-linear spring and non-linear
damper, to determine the slot shape of the Mechanical Force Generator for any given

parameters and force characteristics as a requirement. The assumptions used in these
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methods are defined. The methods are mathematically presented step by step and
clearly explained. As side information, the construction of a special spring, which
may work both as a compression spring and a tension spring, is explained. Referring
to the non-linear property of a Mechanical Force Generator Spring, properties of
special spring cases with a quadratic coefficient are investigated. At the end of the
chapter, examples of the slot shape determination are performed for Mechanical
Force Generator Spring and Mechanical Force Generator Damper. For the given
dimensions and force characteristics, the slot shapes are mathematically determined,
the results and slot shapes are illustrated. With these examples, the mathematically

derived methods are proven to be valid before their use in Chapter 5.

In Chapter 4, optimization of landing gear shock absorber characteristics is aimed.
To perform this optimization, a spring mass damper model with 2 degrees of freedom
is introduced. The validity of this model is evaluated with respect to a more detailed
model prepared by the National Advisory Committee for Aeronautics which is
prepared with test data. After the model and its equations of motion are explained,
the objective of the optimization is defined. The optimization is sought to find the
optimum spring coefficient and damper coefficient that will perform the best
objective for the drop test conditions and parameters defined in the model used as a
reference for model validation. Different methods to represent the non-linear
characteristics of spring and damper are evaluated. As a result of this evaluation, “n™
order polynomial fitting passing through n+1 point” is chosen as the method. The
constraints of the optimization are defined to limit the optimization for real and
feasible solutions. At the end of the chapter, two different approaches to define the
damper coefficient are followed: a damper coefficient as a function of velocity and
a damper coefficient as a function of position. The results of different approaches are
presented and evaluated. The definition of damper coefficient as a function of
position gave better results and was taken as a reference for Mechanical Force
Generator design for landing gear shock absorber.

In the last chapter, the design concept to install a Mechanical Force Generator Spring
and a Mechanical Force Generator Damper on landing gear is introduced. Firstly,
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using real springs, the spring part of the shock absorber was designed. Then, using
the dimensions determined during spring design, the damper part of the shock
absorber is designed. At the end of the chapter, the design of the shock absorber is
compared with the shock absorber previously used in the reference documentation
of the optimization. Evaluating the design of Mechanical Force Generators in this
chapter and comparing the shock absorber design with the previous design, it is
observed that the use of Mechanical Force Generator is not feasible for aircraft
landing gear. Due to the very limited installation area of aircraft landing gear, the
design ended up in very small force transmission angles, which causes inefficient
use of space envelope. On the other hand, even the smallest installation envelope is
aimed, the dimensions of the shock absorber resulted in larger than the previous

shock absorber.

6.2 Conclusion and Recommendation

The Mechanical Force Generators are very flexible in terms of obtaining the desired
spring and damper characteristics. Throught the study, it has been observed that these
mechanisms are so flexible in design so that the system behaviour is not similar to
usual springs or usual dampers. It is recommended for the future studies that the
mechanical force generator itself does not require a fictitious property such as spring
constant. So, the system design can purely focus on the force input and output to the

mechanism.

On the other hand, when assembled, the mechanism required very large space
envelope to operate for the shock absorber application. Space envelope is one of the
major constraints of air vehicle design. Besides, a mechanical system with large
number of component is not preferred in aeropace application due to their reliability
and maintainability requirements. Thus, application of Mechanical Force Generator

on landing gear shock absorbers is not feasible.
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Referring to special spring cases described in Section 3.4.1, there may be different a
uses of Mechanical Force Generators istead of aerospace industry. Since the
mechanism requires large space envelope and large scaled systems such as
construction or heavy duty machines can be good application fields of Mechanical
Force Generators. Taking those application areas into consideration, evaluating
Mechanical Force Generator as vibration isolators is a recommended field of study

for future researches.
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APPENDICES

A. Spring Forces in MFGS when Link 4 is the Ground

Let MFG-4-gr denote the mechanism that is obtained from the MFG presented in
Figure 3.1 by letting Link 1 to be free to move; and by making Link 4 to be the
ground (i.e., Link 4 is not able to move). In other words, MFG-4-gr is obtained from
MFG by using the method of kinematic inversion. Similar to MFGS, let 2 linear
springs be attached between Links 1 and 3; and Links 1 and 5 of MFG-4-gr, yielding
the mechanism which will be called to be MFGS-4-gr in this study. Similar to MFGS,
MFGS-4-gr converts two real, linear, identical springs (with a constant stiffness) into
an equivalent, virtual, nonlinear spring that is assumed to be attached between Links
2 and 4. Note that the virtual spring connects Link 2 to the ground (since Link 4 is
fixed in MFGS-4-gr).

Furthermore, let the forces applied on Links 3 and 5 (by the 2 linear springs) be
designated as ﬁcha,spm and ﬁcha’spr,s which are given by equations (3.33) and (3.34),
respectively. Furthermore, let the force ﬁMFG,SpT,ZA—gT’ applied on Link 2, be the

force which is equivalent to the 2 spring forces ﬁcha’spm and ﬁcha,spr,s. In other

words, for rigid body mechanics purposes, one can delete the 2 spring forces

= -

Fena,spr,3s Fenasprs: and use the equivalent force Fypg spr 24— gr given by

- —
FMFG,spr,2,4—gr = FMFG,spr,2,4—grk (A1)

instead (see Figure A.1). Here it should be noted that although the spring forces
Fenasprs @nd Fepqoprs are actual forces, the equivalent force Fupg spraa—gr 1S

fictitious.

In Figure A.1, m; denotes the mass of a load that is placed on Link 2; and g denotes

gravitational acceleration. L is the vertical distance between 0, and m,,; and sy g eq

is constant. H denotes a horizontal line attached rigidly to the ground. Note that, m,,
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g, L, syrgeq and H are not referred to in this Appendix. These symbols will be

referred to in Section 3.4.1.4 while discussing spring case 4.

Neglecting gravitational, frictional and inertial effects, in order for the fictitious force
ﬁMFG,spr_M_ gr t0 be equivalent to the two spring forces ﬁcha'spr,g and ﬁcha,spr,Sv the
instantaneous power due to ﬁMFG,Spr,ZA_gr must be equal to the sum of the

instantaneous powers due to ﬁcha'sprs and Fepq spr s at all times, i.e.,

= -

= - = -
FMFG,spr,2,4—gr Uy = Fcha,spr,B "U3 + Fcha,spr,s *Us (A-Z)

where ¥,, U3 and Us are the absolute velocities of Links 2, 3 and 5, respectively,

given by
Uy = Uy + Uyyq (A3)
Uy = Uy + Us)q (A.4)
Us = Uy + Us)q (A.5)

In equations (A.3) — (A.5), 7; denotes the absolute velocity of Link 1. Furthermore,

U1, U3y1 and vy, are the relative velocities, with respect to Link 1, of Links 2, 3

and 5, respectively, where

By = Surck (A.6)
172/1 = SMFGE (A7)
Us/1 = Schal (A.8)
Us/1 = —Schal (A.9)

Substituting equations (A.1), (3.33), (3.34) and equation (A.3) — (A.8) into equation
(A.2), and simplifying, one obtains

—FenasprScha = Fmre spr2,4-grSmre (A.10)

Now, comparing equation (A.10) with equation (3.48), it follows that
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FMFG,spr,2,4—gr = FMFG,spr

(A.11)

Hence, the design procedure (for determination of the slot shape for MFGS)

presented in Section 3.2.1 is also applicable for the determination of the slot shape

for MFGS-4-gr. In order to apply the design procedure in Section 3.2.1 for MFGS-

4-gr, one needs to replace Fyrg spr in €quation (3.40) With Fyrg spr 24— gr- INdeed,

the user defined function kyr;[syrg] and the user defined parameter [y ype that

appear in equation (3.40) should be selected such that the equivalent spring force

Fyre spr2,a-gr[Surc] is generated in the desired manner.
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Figure A.1.

Spring forces acting on MFGS-4-gr
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B. Spring Forces in MFGS when there are no Grounded Links

Let MFG-no-gr denote the kinematic chain from which the MFG mechanism
presented in Figure 3.1 is obtained. In other words, none of the links, including Link
1, is grounded in MFG-no-gr. Similar to MFGS, let two linear springs be attached
between Links 1 and 3; and Links 1 and 5 of MFG-no-gr, yielding the kinematic
chain which will be called to be MFGS-no-gr in this study. Similar to MFGS, MFGS-
no-gr converts two real, linear, identical springs (with a constant stiffness) into an
equivalent, virtual, nonlinear spring that is assumed to be attached between Links 2

and 4. Let the spring forces acting on MFGS-no-gr be as presented in Figure 3.5
where the definition of the forces ﬁcha'spm, ﬁcha,spr,sa ﬁMFG,spr,Z and ﬁMFG,SpM are

identical with the definitions that are used in Section 3.2.

Neglecting gravitational, frictional and inertial effects, in order for the fictitious

forces ﬁMFG,spr,Z and ﬁMFG,SpM to be equivalent to the two spring forces ﬁcha'spm
and ﬁcha_spr,s, the sum of the instantaneous powers due to the fictitious forces
ﬁMFG,spr,Z and ﬁMFG,SpM must be equal to the sum of the instantaneous powers due
to the real forces ﬁcha,spm and ﬁcha'spr’s at all times, i.e.,

-

= - = - - = -
FMFG,spr,Z "V + FMFG,spr,4 "VUy = Fcha,spr,S %S Fcha,spr,s " Vs (B-l)

where v,, U3, ¥, and Us are the absolute velocities of Links 2, 3, 4 and 5, respectively,

given by
Uy = Uy + Uy)q (B.2)
Uy = Uy + U3y (B.3)
Uy = Uy + Vg (B.4)
Us = Uy + Us)q (B.5)

In equations (B.2) — (B.5), ¥, denotes the absolute velocity of Link 1 which is not

necessarily zero (as opposed to MFGS). Furthermore, ¥, /1, U3/1, U/ and vs, are
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the relative velocities with respect to Link 1, of Links 2, 3, 4 and 5, respectively,

where
172/1 = SMFGE (B.6)
173/1 = Scha? (B.7)
Vg1 = _$MFGE (B.8)
Us/1 = —Schal (B.9)

Substituting equations (B.2) — (B.9) into equation (B.1), and simplifying, one obtains

_Fcha,sprgcha = FMFG,sprS‘MFG (B.10)

which is identical with equation (3.48). Hence, the design procedure (for
determination of the slot shape for MFGS) presented in Section 3.2.1 is also
applicable for the determination of the slot shape for MFGS-no-gr.
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C. Spring Catalogue Detail Information

Spring Stock Part Numbers

Spring
ID

Stock Part Number

CS1
CS2
CS3
CS4
CS5
CS6
CS7

PC9195-48412-4750-0T-65786-CG-N-MM
PC6858-31344-6000-MW-50800-CG-N-MM
PC7925-41275-4000-MW-41402-CG-N-MM
PC6350-24994-8000-MW-62738-CG-N-MM
PC9525-37287-4750-MW-55626-CG-N-MM
PC6350-33325-3500-MW-28702-CG-N-MM
PC6655-45237-3000-HD-36576-CG-N-MM
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