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ABSTRACT

OBJECTIVE MEASUREMENT OF FABRIC SOFTNESS AND PILLING
USING HAND CRAFTED FEATURES AND DEEP LEARNING

Mammadli, Seymur

M.S., Department of Modelling and Simulation

Supervisor: Prof. Dr. Ahmet Oğuz Akyüz

December 2021, 77 pages

Fabric softness is a complex tactile sensation perceived by the user even before the

fabrics are worn. Softness is usually the property of surface perceived by touching or

pressing a finger on the fabric surface. Fabric friction properties significantly affect

the tactile sensation of the garments. The yarn used, the finishing works, and the fab-

ric structure (weaving, knitting, etc.) affect the softness. In addition, the hardness of

the water used during washing, washing movements, the amount and content of the

detergent and softener used also have permanent effects on the fabric softness. Soft-

ness can be evaluated by the jury members with proven effectiveness according to the

predetermined scale. Our achievement within the scope of the thesis is to eliminate

the differences that may occur as a result of the subjective evaluation, which may arise

from qualitative observations by basing the degree of softness evaluated qualitatively

on numerical data and to obtain clearer and more precise results by adding quanti-

tative features to the evaluation process. The methodology developed for softness

assessment is also applied for another textile deterioration parameter, namely pilling,

and its results are also reported.
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ÖZ

MANÜEL ÖZNİTELİK ÇIKARIMI VE DERİN ÖĞRENME
KULLANILARAK KUMAŞ YUMUŞAKLIĞI VE BONCUKLANMA

DEĞERLERİNİN OBJEKTİF BİR ŞEKİLDE ÖLÇÜLMESİ VE
SINIFLANDIRILMASI

Mammadli, Seymur

Yüksek Lisans, Modelleme ve Simulasyon Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Oğuz Akyüz

Aralık 2021 , 77 sayfa

Kumaş yumuşaklığı kumaşların giyilmesinden bile önce kullanıcı tarafından algıla-

nan karmaşık bir dokunma hissidir. Yumuşaklık genellikle kumaşın parmaklarla sı-

kılması veya preslenmesi ile algılanan yüzey özelliğidir. Kumaş sürtünme özellikleri,

giysilerin dokunma duyumlarını büyük ölçüde etkiler. Kullanılan iplik, bitim işleri ve

kumaş yapısı (dokuma, örme vb.) yumuşaklığı etkilemektedir. Bunun yanında yıkama

sırasında işlem gördüğü su sertliği, yıkama hareketleri, kullanılan deterjan ve yumu-

şatıcının miktarı ve içeriğinden de etkilenmektedir. Görsel olarak test edilen bir diğer

tekstil özelliklerinden olan yumuşaklık, etkinliği kanıtlanmış jüri üyeleri tarafından

aşağıdaki skalaya göre değerlendirilebilmektedir. Tez kapsamındaki kazanımımız ni-

tel olarak değerlendirilen yumuşaklık derecesinin, sayısal verilere dayandırılarak, ni-

tel gözlemlerden doğabilecek görsel değerlendirme sonucu oluşacak farklılıkların gi-

derilmesi ve değerlendirme prosesine nicel özellik kazandırarak daha net ve kesin so-

nuçların elde edilmesidir. Yumuşaklık için geliştirilen metodoloji değerlendirme aynı

zamanda başka bir tekstil bozulma parametresi, boncuklanma için de uygulanmış ve
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sonuçları raporlanmıştır.

Anahtar Kelimeler: Derin öğrenme, Makine öğrenmesi, manuel öznitelik çıkarımı,

tekstil özellikleri
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Fabric softness is usually the surface property perceived by finger pressing or touch-

ing the surface of the fabric. It is a complex tactile sensation perceived by the human

perception system even before the materials are contacted. Fabric friction properties

significantly affect the tactile feel of the garments. The quality of the textile used, the

finishing works, and the fabric structure (weaving, knitting, etc.) affect the softness

characteristic of the fabric. In addition, the hardness of the water used during wash-

ing, the washing movements, the amount and content of the detergent and softener

used also have permanent effects on the fabric softness. It is not easy to quantitatively

measure the value of the softness of the fabric. It is one of the textile properties that

could be tested visually. The jury members can evaluate the value of the softness

with proven effectiveness according to the predetermined scale. This is one of the

mainly used traditional methods in textile properties analysis. The problem with this

method is that the vision ability of the jury members could be different from each

other. Furthermore, the jury members have not been able to perfectly measure the

value of softness of the fabric by only relying on the human visual system (HVS).

It is not easy to precisely define the physical difference between the fabrics displayed

in the Figure 1.1, without physically interacting with the samples. It is harder for the

value of the softness of the fabric. Close inspection of textile samples indicates there

could be computable variables that may predict a sample’s softness.
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Figure 1.1: Average expert scores according to softness values display on the bottom

of each image. Score 1 means the softest fabric in the value. As the value of the score

increases, the value of the softness decreases.

It is not very hard for the pilling samples to differentiate two different samples through

the pilling value. As shown in Figure 1.2, it is easy to determine low pilled and severe

pilled pieces directly through HVS. It is easy because we have an exact definition of

the pilling in our minds. Furthermore, the pilling effect on the fabric’s surface is more

noticeable than the softness effect on the fabric elements because of the final looking

of the surface fractions. The pilling on the surface leads to surface changes even in a

low amount of pilling.

Figure 1.2: Very severe pilled and low pilled fabric samples.

In Figure 1.3, it is noticeable that even the color of the sample may change when there

is a substantial amount of pilling on the surface.
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Figure 1.3: Sock example with different amounts of the piling on the surface. We

received this example from the Arcelik team as a reference at the beginning of the

study.

Our aim within the scope of the study is to eliminate the differences that may occur

as a result of visual evaluation. Furthermore, the measurement process of the soft-

ness and pilling has been automated by reducing the amount of work and resources

needed for the procedure. The research aims to get more precise results by adding

quantitative features to the evaluation process. As the output of the thesis, we aimed

to create an image processing and machine learning (ML) methodology that provides

measurement on a scale of 1-5 for both automated softness and pilling assessment.

Our motivation in this work is to understand how effectively these textile parameters
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can be found by quantitative evaluation alone. This may lead to future applications

such as automatically controlling the detergent and softener use within a washing

machine by automatically analyzing the fabric features before starting the washing

procedure.

1.2 Proposed Methods and Models

In this thesis work, two mainstream methods have been proposed to define softness

and pilling of the textile by examining simple images. The main intention of the

research is to implement both strategies and analyze the results.

The first method is evaluating the efficacy of the fabric using hand-crafted features

(HCF), which is traditionally used in the field. In this part, four different feature sets

have been used as the basis to analyze the features of the textile. The first feature set

is the set of features that have been proposed by Tamura et al. [1]. The second set of

features are the GLCM [4] features. Accordingly, the fourth and final feature sets are

basic features and wavelet features (energy).

Furthermore, some standard and well-known computer vision (CV) based image anal-

ysis methods and mathematical methods have been tested to get a consistent measure

method for the softness and pilling value of the fabric. The correlation analysis has

been used to analyze the correlation between HCF analysis output and the jury eval-

uation output. Linear regression, Logistic regression, and Support Vector machines

have been utilized to predict the class labels using a combination of the most promis-

ing features.

The second method is to use the deep learning (DL) methods to evaluate the textiles’

softness and pilling. The main aim of using this method is to develop DL based clas-

sification model to classify the fabric input images based on the value of the softness

and pilling. The input of the models is the input images that have been provided by

the Arcelik team, which were scored by subjective scoring of jury members.
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1.3 Contributions

The contribution of this thesis work is to automate the evaluation procedure of mea-

suring the value of fabric softness and pilling which requires manual labor while using

traditional methods. Through this work, the evaluation process can be done without

any human interaction. Our contributions involve testing both HCF and DL features

for solving this problem, comparing their effectiveness, and advancing the state-of-

the-art for automatic assessment of textile parameters using only photographic im-

ages.

1.4 Novelties

The main novelty of this study is that it is one of the first work in the field that

quantitatively and qualitatively evaluates fabric softness and pilling degree by apply-

ing traditional computer vision methods and DL. Some other works measure other

features such as the pilling amount, wrinkle degree of the fabric. Still, none of the

previous works quantitatively measures the softness value of the materials as a para-

metric value. Another novelty is the amount of data that we have used to fine-tune

pre-trained DL models. We have used a minimum amount of data to generate our

datasets and train deep-learning models. Furthermore, quantitatively measuring the

fabric softness value in this research has been implemented without using any unique

setup or environment. We have only used input images that have been taken by the

standard camera or camera of a mobile device.

1.5 The Outline of the Thesis

Chapter 1 includes motivation and problem definition, which is followed by proposed

methods and models in this research. At the end of the chapter, the contributions

derived in this research and novelties of the study are presented.

Detailed literature surveys of related works are presented and explained in Chapter

2. Similar academic studies on textile feature analysis, such as research on pilling
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detection, wrinkle assessment, and defect analysis using CV and ML methods, are

reviewed. In Chapter 3, the theory of the methodology that we adopted and the pro-

posed solution to the problem are explained. The details of the algorithms are also

presented in this chapter.

In Chapter 4, the details of the implementation procedure and the technical details of

the algorithms are explained. The details of the data collection and processing are

also presented in Chapter 4. In Chapter 5, the results derived from this research are

presented, and the details are explained.

Chapter 6 concludes the thesis by presenting a general overview of the research. Lim-

itations and future works are also identified in Chapter 6, followed by several use

cases.

6



CHAPTER 2

LITERATURE REVIEW

Measuring the fabric features’ value and analyzing a characteristic of the textiles is

not a new concept. The early methods are mostly based on subjective evaluation,

which has drawbacks that we have stated in different paragraphs. The algorithm-

based fabric analysis has been interested in many studies by the agency of improving

the CV and ML field. There is a large body of research, especially on fabric de-

fect detection, quality analysis, pilling grade analysis and pilling assessment, wrinkle

analysis, and much more. Most of the study aims to improve fabric quality and better

analyze fabric before production. Before CV and automated computer-based meth-

ods, all these procedures and analyses were held by experts working in the field by

relying on the human perception system. Nevertheless, the human perception system

is very different on different subjects. The GUI is given to the Arcelik team to be

used in their facility.

2.1 Computer Vision and Machine Learning Based Fabric Feature Analysis

With the improvements of the computers’ computing power and the development of

new algorithms and methods in computer vision and ML, the fabric features’ analysis

process is shifting from traditional physical methods to digital computer-based meth-

ods. Many academic works focused on fabric feature analyses on different aspects by

applying computer-based methods.

Stojanovic et. al [11] presents an automated vision-based system to check the quality

of fabric textile. The system consists of special hardware and software that checks

fabric quality by applying image processing techniques on the live data.
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The authors of the [9] have developed a method to evaluate the yarn’s quality in fabric

using Image Processing Techniques. They proposed derivation of the parameters that

define the yarn’s quality along with the length and the diameter of the yarn. Further-

more, they suggest the mathematical model defines the fabric’s quality based on the

quality determined for the yarn and quantitative evaluation index for the yarn quality.

The method applies traditional CV algorithms such as threshold, segmentation, and

feature extraction on the yarn image to determine the yarn’s quality.

2.1.1 Wrinkle Assessment

A wrinkle is the shape deformation on the fabric’s surface after washing or during

frequent usage. It directly depends on the characteristics of the fabric that the gar-

ment is made out of. Like other fabric-based phenomenons, there is much scientific

research on wrinkle analysis too. Most of these studies focused on the fabric’s qual-

ity—wrinkle assessment in the traditional methods made using the human perception

system. Experts decide on the wrinkle score of the fabric by using subjective opinion

by relying on these judges’ vision abilities. The final result of this experiment de-

pends on the personal vision ability [49, 50] of the subjects with different perception

qualities. As of today, some CV and ML-based methods have focused on an objective

scoring of fabric’s wrinkle-like-hood [51, 52, 53]. The techniques that these methods

use are very different from each other. The assessment environment is also different

from simple image analysis to the special environment and special tools. Some meth-

ods use light sources from a specific angle to reflect the light on the fabric’s surface,

making it easy to analyze the wrinkle lines or shapes. However, this method is not

suitable for textured fabrics with very sharp color changes. In their study [51] Mir-

jalili and Ekthiyari have suggested a special environment based on image processing

to derive wrinkle assessment using known image processing algorithms objectively.

The method also uses a light source to easily get the fabric’s surface shape from the

other side, making it possible to analyze the wrinkle easily. The fabric moves under

the light source to analyze the whole patch. After that, several CV algorithms such as

filtering and quantization were done to get the textile’s wrinkle degree.
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2.1.2 Defect Analysis

Defect detection of the fabric is the main step of the quality check of the fabric. The

defect on the fabric in the industrial process leads to losing an important business

profit and time. 85% of the defects that occur in the production process are related

to fabric defects [40]. Defect detection is one of the main focuses of fabric inspec-

tion during manufacturing. It needed many resources and hard work to inspect fabric

defects using traditional methods such as using an HVS to detect defects during the

manufacturing process. As stated in the above section, the subjective inspection’s

success rate is based on the subjects’ visual ability quality and is not the same for all

subjects. Thus it is important to evaluate defect detection by using objective analysis

such as computer-based automated methods [43, 44, 45, 46, 47, 48]. These methods

also reduce an important amount of time and resources to inspect fabric defects in the

production process. Like other fabric-based phenomena, there are many types of re-

search on automated fabric defect detection using different computer-based methods.

These methods and studies are mainly based on CV and ML-based algorithms. There

is no doubt that this is because of the growth of these methods in the field.

Figure 2.1: There are many types of fabric defects. As it is a research topic of many

studies, it has advanced terminology and special methodology. At ’Standard Fabric

Defect Glossary ’ [42] there is a brief classification of many types of fabric defects

and terminology used for these defects. Figure taken from [41].
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2.1.3 Pilling Analysis

The pilling is textile deformation or textile defect that occurs on the fabric’s surface

even before the delivery of the textile to the consumer. Pilling occurs as spherical yarn

pellets of different sizes and without any pattern. The main reason for the pilling oc-

currence is the abrasion that the fabric’s surface is exposed to. It causes an unpleasant

appearance on some parts or the whole surface of the garment. Besides the unpleasant

looking of it, it also weakens the yarn quality in the fabric. It is also not possible to

completely solve the problem after it occurs. An example of typical pilling has been

displayed in Figure 2.2.

Figure 2.2: The typical pilling on the surface of the fabric. Figure taken from [19].

There are many scientific and academic studies on pilling to understand its cause and

nature to increase fabric quality. It was demanding to test fabric pilling responses

for the textile industry. Some unique methods physically measure the fabrics’ pilling

grades by doing specialized tests in a laboratory environment [20, 21].
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2.1.3.1 The Martindale Abrassion and Pilling Tester Machine

It is essential to get better quality on fabrics by analyzing them before fabric produc-

tion. The are many industrial methods to test fabric quality and characterizations. One

of the most known traditional fabric pilling feature analysis methods is the analysis

held utilizing the device named Martindale [36, 37]. Today, the Martindale equipment

is also widely used in textile production companies to do experiments on textiles. The

device’s main purpose is to measure the durability of the fabric. It is used primarily to

test textile abrasion and pilling state under special conditions. This test, also known

as a rub test, aims to test the fabric’s suitability for different use.

The fabric stretched on the circular lover plates in the bottom part of the device.

There are small movable discs with special material such as worsted wool or some

hard material covered on them. These discs continuously moved on the big plates

on which the fabric stretched. The test ends when there is a noticeable change on

the surface of the fabrics on the plates—the result of the experiment scoring of the

multiples of 1000. The higher the value is, the fabric is more suitable to the harsh

environment or harsh usage. The test conditions and parametric values make it easy

to categorize the fabric tested in the experiment: The typical Martindale abrasion and

pilling tester machine have been displayed at Figure 2.3.

Figure 2.3: The Martindale Abrassion and Pilling tester machine. The machine has

movable small discs on different sizes which are also optimizable in size and charac-

teristics. Figure taken from [38].

There are many CV and ML methods implemented to evaluate pilling characteristics
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of the fabrics [22, 23, 24, 25, 26].

2.1.4 Softness Definition and Evaluation

Softness is one of the textile’s main features, defined as the key to a comfortable expe-

rience. The standard use of the garment experience effect of this feature continuously

while wearing it. Sensing and judging the softness value of fabric is a subjective pro-

cess that results from textile and skin interactions. Since subjective evaluation has its

problems, the focus has changed towards an objective evaluation of the fabric soft-

ness as like other characteristics. Many fabric evaluation systems and special devices

have been developed to study and evaluate the softness and other characteristics of

the fabric [16, 17, 18] .

Kawabata Evaluation System is a series of instruments used to measure those tex-

tile material properties that enable predictions of the aesthetic qualities perceived by

human touch [39].

Another device that is one of the most used to evaluate fabric softness is the Textile

Softness Analyzer (TSA) machine displayed in Figure 2.4.

Figure 2.4: The textile softness analyzer machine. Figure taken from [12].

The TSA machine calculates three basic parameters: the softness, roughness, and

stiffness of textiles and nonwovens [13]. These parameters together determine the

human feeling on the fabric. It is possible to measure hand feel value by using these
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parameters. Furthermore, it is also possible to measure viscoelastic, elastic, and plas-

tic properties.

There are also other early method [14], which uses a sound sensor and detector that

detects and indicates sound level frequencies directly related to the fabric’s softness.

However, most of the systems have some drawbacks of its application universally

either from the intricacy and complexity point of view or cost parameters of the in-

strument or some preferences to its application.

2.1.5 Fabric Texture and Pattern Analysis

Involvement of the computer vision in textile feature analysis is also highly applied to

fabric texture analysis. There are many studies on automated fabric texture analysis

based on both CV and ML. Some use the texture features to measure the quality

parameters and detect the quality issues on production. In [32] the author uses a

simple image segmentation method to analyze the textures of the fabric to detect fault

and defects.

In [33] the authors propose a new method to measure the texture characteristics of the

woven fabrics. The technique is a computer vision-based inexpensive implementation

that measures weave repeat and yarn counts and the surface roughness characteristics

of the texture. The authors purpose the indicator for the surface roughness, which is

calculated from 2D fast Fourier transform of a 3D surface scan. The method proposed

to validate by using real woven examples and synthetically simulated by computer.

The authors claim an accurate result of the technique and high-speed and reliable

roughness calculation from the 3D surface data.

The authors of the [34] use a white-black co-occurrence matrix to extract the texture

features of the fabric. Extracted features using on BP neural network to complete the

learning process.

Khan et. al [35] proposed a deep learning model based on data augmentation and

transfer learning to automate the classification and recognition of woven fabrics. The

authors use the ResNet [72] network to extract the fabric features automatically.
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2.1.6 Softeners and Anti-pilling Treatment Result Analysis

Besides fabric feature analyses, there are many studies on the effects of softeners

and detergents on the fabric through every washing procedure. Some of the results

from some of these studies prove that it is possible to control the fabric’s softness

value by using the proper amount of softeners depending on the structure and current

characteristics of the fabric. In [28] the authors study the effects of chemical finishing

on the pilling characteristic of the cotton knitted fabrics. Three different pretreated

100% cotton fabric tested, and it found out the tendency of the material decreases as

it is oppositely correlated to the amount of the chemical finishing treatment.
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CHAPTER 3

PROPOSED METHOD

As stated in previous sections, our goal is to classify five different softness and pilling

values through the class values, numeric values ranging from 1 to 5. The class names

and descriptions for the softness and pilling degrees are listed in Table 3.1. As for

the softness, the first class is the softest, and the fifth class is the firmest or hardest

considering the fabric softness. An opposite coding scheme was used for pilling

where the class with label 1 means the fabric has a severe amount of pilling on the

surface. The fabric with label 5 means there is no noticeable pilling on the surface.

3.1 Fabric Samples

Some examples from all classes of the softness dataset are presented in Figure 3.1.

All examples are from the same dataset. As seen from the samples, even for the

HVS, it is not easy to differentiate classes through softness. It is almost impossible to

compare examples that are next to each other on the list, but some observations can

Table 3.1: The definition of softness and pilling values.

Class Softness Definition Pilling Definition

1 Very soft Very severe pilling

2 Soft Severe pilling

3 Medium Moderate pilling

4 Hard Low pilling

5 Very hard No pilling
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(a) Score 1 - Very Soft (b) Score 2 - Soft

(c) Score 3 - Medium (d) Score 4 - Hard

(e) Score 5 - Very Hard

Figure 3.1: Example input images from every class of the softness dataset. Score 1

means the softest fabric in the value. As the value of the score increases, the value of

the softness decreases.
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be made.

It is possible to notice from the above examples that the textile elements on the softest

fabric seem smaller, and the gray values appeared because these elements’ shadows

are smaller in size compared to the ones which have a lower value of softness. In

some examples, this is not even noticeable through the HVS. In Figure 3.1, the fourth

example does not seem distinctive from the second example.

For the pilling examples (Figure 3.2), it is somewhat easier to differentiate the sam-

ples, especially for those that are at different extremes of the value range (e.g. 1 vs.

5). However, it is still not easy to differentiate the neighboring samples in the value

range (e.g. 2 vs. 3). It is possible to see that on the severely-pilled sample, the pilling

elements ruin the visible pattern on fabric weaving. The particles of the pilling ap-

pear to spread on the surface of the fabric. On the other hand, the weaving marks are

visible for the samples with less pilling, and the yarn patterns seem tidier.

3.2 Handcrafted Features

The first idea that comes to mind in image analysis is using traditional methods to

analyze images’ features. At the first step, we analyzed our inputs through hand-

crafted features (HCF) to get a robust classification algorithm. Our research made

us use three different HCF-based methods to analyze the characteristics of input im-

ages. The first class of features is basic features, which are widely used in the field.

Standard deviation and the mean of the images were chosen from these sets to check

any correlation between these features and softness values in our patches. The sec-

ond feature set is from the Tamura feature set [1] as we have mentioned above. The

third feature set is GLCM [3] feature set. The details of each feature set have been

explained in the below paragraphs. Furthermore, the minimum, maximum, median,

and mean values of all features have been calculated and analyzed for each feature

set.

17



(a) Score 1 - Very severe pilling (b) Score 2 - Severe pilling

(c) Score 3 - Moderate pilling (d) Score 4 - Low pilling

(e) Score 5 - No pilling

Figure 3.2: Example input images from every class of the pilling dataset. Score 1

means the fabric has severe pilling. As the value of the score increases, the amount

of the pilling decreases.
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3.2.1 Basic Features

Some simple mathematical methods calculate some basic features that sometimes tell

more about image features using parametric values. Standard deviation and Mean are

two basic methods that should be given helpful information about image features on

image analysis. Our feature set has been included to test if there is any correlation

between these features and softness values.

3.2.1.1 Standard Deviation

Standard deviation is the statistic value that measures the amount of spread on data

relative to its Mean. The standard deviation σ of an image is defined as

σ =

√∑N
i=1(xi − µ)2

N
(3.2.1)

where N denotes the size of the data, xi denotes the value of each data, and the µ is

the mean value of the data.

3.2.1.2 Mean

The arithmetic mean is the sum of the elements along the axis, divided by the number

of elements. The procedure can be formulated as

µ =

∑N
i=1(xi)

N
(3.2.2)

where N denotes the size of the data, and xi denotes the value of each data.

3.2.2 Tamura Features

The features categorized based on psychological studies on human perception sug-

gested by Tamura et al. [2] called Tamura’s features. There are six main features
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based on characterizing elements of the texture based on the perception system. These

are

• Contrast

• Directionality

• Coarseness

• Linelikeness

• Regularity

• Roughness

The details of each Tamura feature explain in the following sections. We have imple-

mented and used all of them, and based on the results that we have derived, we have

focused mainly on some of them.

3.2.2.1 Coarseness

Coarseness is one of the most important of Tamura’s features. It is a fundamental

textural feature that defines the amount of magnification of the pattern on texture. The

coarser texture means, the bigger the elements of the patterns or the less repetition of

the patterns on the texture’s unit area. It has a direct relationship with the repetition

of the elements of the image. The reverse of the coarse is fine, which means more

pattern distribution with a smaller size. In short, on the same unit of window smaller

count of the texture patterns means a coarser texture.

Using Tamura et al. approach, the six averages of the pixels with windows sizes

0,1,2,3,4,5 have to be evaluated around every pixel pi in the image to evaluate the

material’s coarseness.

It is possible to describe the above operation in a mathematical equation as follow [2]

fcrs =
1

n2

n∑
i

m∑
j

2kp(i, j) (3.2.3)
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where n × m denotes the size of the image, and the sum computed for every pixel

p(i, j). k is the value that maximizes the difference between moving averages taken

over 2k × 2k neighborhood along with horizontal and vertical directions.

3.2.2.2 Contrast

The contrast feature of the image measures the variance of the grey level values in

the image. It refers to the intensity difference between neighboring pixel values [2].

High contrast means the image has large differences in the intensity values of the

neighboring pixels. According to [1] there are some factors other than gray-level

distribution that have effects on contrast. These are

• Dynamic range of gray levels

• Polarization of the distribution of black and white on the gray-level histogram

or ratio of black and white areas

• Sharpness of edges

• Period of repeating patterns

It is possible to describe the above operation in a mathematical equation as follow [2]

fcon =
σ

(µ4
σ4 )

1
4

(3.2.4)

where σ is the standard deviation, and µ4 is the fourth momentum of the image.

3.2.2.3 Directionality

Directionality is the property that defines the placement rule of the texture primi-

tives. Int directional texture, the texture primitives, are placed somehow ordered in

a specific direction. The orientation of the primitives is mostly directed in the same

direction [2].

fdir = 1− r · np
np∑
p

∑
φεwp

(φ− φp)2 ·HD(φ) (3.2.5)
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In Equation 3.2.5, the HD is the histogram of the local direction, φ is the quantized

direction code, φp is the p-th peak position of the HD histogram, r is the normilizing

factor, np is the number of the peak values in HD and wp is the range between valleys

of the p-th peak.

3.2.2.4 Linelikeness

Linelikeness defines the shape of the texture primitives. Linelike texture primitive

means that it has shape something like a straight line or wave. Overall, the orientation

and distribution of the primitives do not matter. Directional textures are often linelike

textures. Linelikeness of the texture can be computed as follow [2].

flin =

∑n
i

∑m
j PDd(i, j)cos((i− j)

2π
n
)∑n

i

∑m
j PDd(i, j)

(3.2.6)

where PDd(i, j) is the direction co-occurrence matrix with a size of n×m and every

point is in the region with a max distance of d.

3.2.3 Regularity

The regularity of the texture defines placement variations of the primitives on the tex-

ture. Regular texture means the identical (regular) placement of the same or similar

primitives. It is a measure of how regular the primitives are placed. The irregular tex-

ture is the texture on which primitives place irregularly or with a random arrangement.

The regularity feature of the texture can be computed as follow [2].

freg = 1− r(σcrs + σcon + σdir + σlin) (3.2.7)

where r is normalizing factor and σcrs, σcon, σdir, σlin are standard deviation values of

fcrs, fcon, fdir, flin
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3.2.3.1 Roughness

The roughness of the texture refers to a geometric variation on the surface of the

texture. Rough texture means more variation on the surface smoothness. On the other

hand, the texture’s smoothness means texture with a smooth surface without angled

primitives on the surface. The roughness can be computed by adding the coarseness

and the contrast [2].

frgh = fcrs + fcon (3.2.8)

where fcrs is value of the coarseness and fcon is the value of contrast.

3.2.4 GLCM Features

One of the most straightforward image analyses is texture analysis using GLCM fea-

tures, which Haralick [4] defined. GLCM texture analysis is proven to be related to

the mechanism that the human perception(visual) system perceives the textures [4].

It is one of the most widely used texture analysis methods in image analysis, espe-

cially segmentation. Many research proved that the features suggested by Haralick

are advantageous in texture analysis over others. GLCM is the matrix that defines

the co-occurrence of the given matrix entries in a predefined direction. The direc-

tion should be any direction inside of the matrix. Figure 3.3 illustrates an example of

GLCM matrix.

Twenty-two features could be calculated from the GLCM matrix: five are more useful

and mainly used than others. These are:

• GLCM contrast

• GLCM dissimilarity

• GLCM homogeneity

• GLCM energy

• GLCM entropy
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Figure 3.3: Example calculation of the GLCM matrix. G1 is a horizontal calculation

of the GLCM matrix. G2 is a diagonal up calculation of the GLCM matrix. G3 is a

vertical calculation of the GLCM matrix, and G4 is the diagonal down calculation of

the GLCM matrix [8].

• GLCM correlation

3.2.4.1 GLCM Contrast

Contrast is the local variation of the gray level value in the co-occurrence matrix.

Contrast is like linear dependency between neighboring pixels in grey level co-occurrence
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matrix [4].

fcntrs =
∑
i,j

(i− j)2p(i, j) (3.2.9)

In Equation 3.2.9, i and j are pixel coordinates or cell coordinates, and p(i, j) is the

value of the pixel or the cell in the matrix.

3.2.4.2 GLCM Dissimiliarity

Dissimilarity defines the amount or measure of the grey-level pairs’ variation in the

GLCM matrix. It is something like GLCM contrast. Unlike contrast, the GLCM

dissimilarity grows quadratically [5].

fdsml =
∑
i,j

(i− j)p(i, j) (3.2.10)

The contrast and the dissimilarity measure the same parameter using different weights.

The value of the dissimilarity ranges between 0 and 1. It gets the maximum value

when the neighboring pixels get the maximum values of the grey levels. In Equation

3.2.10, i and j are pixel coordinates or cell coordinates, and p(i, j) is the value of the

pixel or the cell in the matrix.

3.2.4.3 GLCM Homogenity

The GLCM homogeneity measures how uniforms are the pixel values or matrix en-

tries are spread in the GLCM matrix [3]. The value of the image’s homogeneity gets

high when the pixels’ values are the same or similar. When the pixel values changes

in the GLCM direction are big, the GLCM homogeneity is getting low. Like dissimi-

larity, GLCM homogeneity takes values between 0 and 1. When there are no changes

in the image or the ideal repetitive structural texture, it gets a value 1. If there is no

repetitive texture or similarity in the image regions, it refers to an ’inhomogeneous

image.’

fhmg =
∑
i,j

1

1− (i− j)2
p(i, j) (3.2.11)
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In Equation 3.2.11, i and j are pixel coordinates or cell coordinates, and p(i, j) is the

value of the pixel or the cell in the matrix.

3.2.4.4 GLCM Energy

GLCM energy is the measure of the local homogeneity in the image. The parameter

measures the value of the uniformity of the texture [3, 5]. The value of the energy is

related to the value with the homogeneity. It ranges between 0 and 1. The value of

the energy of the solid image is 1.

fenrg =
∑
i,j

p(i, j)2 (3.2.12)

In Equation 3.2.12, i and j are pixel coordinates or cell coordinates, and p(i, j) is the

value of the pixel or the cell in the matrix.

3.2.4.5 GLCM Entropy

The GLCM entropy defines the spatial disorder in the texture [3]. As it represents

the disorder representation in the image, it is the opposite of the GLCM energy. The

entropy’s value gets high when the rate of the disorder in the texture is high, or there

is no ordered pattern on the texture. If the image has a pattern or ordered texture, the

entropy’s value becomes a low value. It becomes zero on the single color image.

fentrpy = −
∑
i,j

p(i, j) log p(i, j) (3.2.13)

In Equation 3.2.13, i and j are pixel coordinates or cell coordinates, and p(i, j) is the

value of the pixel or the cell in the matrix.
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3.2.4.6 GLCM Correlation

GLCM Correlation is the measure of the linear dependency of the grey levels of the

neighboring pixels [7].

fcrlt =

∑
i,j(ij)p(i, j)− µxµy

σxσy
(3.2.14)

where 3.2.14 i and j are pixel coordinates or cell coordinates and p(i, j) is the value of

the pixel or the cell in the matrix. µx, µy, σx and σy are the values of the means and

the standard deviations of the pixels px and py.

3.2.5 Correlation Analysis

Correlation is the analysis of two sets of data to determine the degree of the linear or

non-linear relationship between these data. There are different methods to do correla-

tion analysis in data science. With this research’s scope, we have used Spearman and

Pearson Correlation analysis to get the correlation between the outputs of the feature

analysis and class values. The correlation coefficient is the value that describes the

correlation between the two sets. It ranges between -1 and 1. -1 value means a per-

fect negative correlation between two sets, and one means a positive correlation. The

value 0 means there is no correlation or relationship between the distribution of the

two datasets.

3.2.5.1 Pearson Correlation

Pearson correlation, also called Pearson’s r correlation, measures the linear correla-

tion between two datasets. Its value ranges between -1 and 1. The one means there

is a linear correlation between the two sets. The -1 means there is a negative linear

correlation. The value 0 indicates that there is no linear relationship or correlation
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between the two sets. It is calculated as in Equation 3.2.15.

rxy =
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

(3.2.15)

where n is number of observations, xi is the value of x (for ith observation) and yi is

value of y (for ith observation) [54].

3.2.5.2 Spearman Correlation

The Spearman correlation, which is also called Spearman’s ρ[56] correlation, is un-

like Pearson’s correlation, does not measure the value of the correlation between two

datasets. It measures the strength and the direction of the monotonic association be-

tween two sets. It is a non-parametric measure of the rank correlation between these

two parameters [57]. It is measured on a scale ranging from -1 to +1 as Pearson’s

correlation. The Spearman’s rank correlation is calculated as in Equation 3.2.16.

ρ = 1− 6
∑
d2i

n(n2 − 1)
(3.2.16)

where di is difference between the two ranks of each observation, n is number of

observations [55].

3.2.5.3 Logistic Regression

Regression analysis is a predictive analysis technique to analyze a relationship be-

tween one of the dependent variables and one or a series of independent variables. It

is one of the most widely used tools to analyze multi-factor data [58]. The method is

called multiple regression when there are multiple independent variables. There are

two types of regression analysis: linear regression and logistic regression. Logistic

regression is the regression analysis that is mainly used in data analysis. It calculates

the probability of the event occurrence, which is a binary value.
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3.3 Classification Using Deep Learning

Because DL is getting popular on classification and other tasks due to its outstanding

performance, it improves and is easy to use through open-source tools. Most of the

SOTA object classifiers are based on deep convolutional neural networks (DCNNs).

Due to DL’s performance on similar tasks, we have tested their performance for soft-

ness analysis and pilling assessment as a second method. Many network architectures

exist in the literature. They require fine-tuning and transfer learning. DCNNs have

many learnable parameters. They need large datasets on which to be trained and

tested. Dataset generation is one of the most critical tasks in using DCNNs. In Chap-

ter 4, details of the algorithms that we have used for the dataset generation have been

described.

3.3.1 Development Environment

We have used PyTorch [59], and PyQt [60] as the main components of our develop-

ment environment. PyTorch is a computing framework that enables a flexible envi-

ronment for developers to develop and test deep learning-based computations. It is a

Python [62] based framework that also includes many valuable packages to speed up

the development procedure. The PyQt is the combination of Python and Qt, which

makes it possible to develop GUI applications on supported platforms such as Win-

dows, Linux, Mac OS [61].

We have used pre-trained networks, which have been included in the PyTorch library.

There are many pre-trained models ready to use as a pre-trained or without using the

pre-training feature. We mainly used pre-trained models applied fine-tuning using our

dataset. We experimented with several models such as mobilenetV2 [70], resnet18

[72], densenet121 [64], and densenet161 [64].
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CHAPTER 4

METHODOLOGY

4.1 Dataset Collection

Over the course of this study, various fabric images have been collected to serve as

datasets for automated softness and pilling assessment. Initially, some sample fabrics

were sent by Arcelik to our side, and we captured their images using a Canon EOS

550D DSLR camera. These images were captured under near fluorescent illumina-

tion. A sample result is shown on the left part of Figure 4.1. As can be seen in this

figure, the camera viewed the sample at an angle to prevent casting a shadow on the

sample with respect to the illuminant, which was placed over the sample. This, how-

ever, caused some problems as the details on the top part of the fabric were blurred

due to being more distant and having been captured from a narrower angle. It was

also difficult to control the positioning of the camera and the samples and there were

some variations between the images despite a tripod was used.

We also received several batches of the digital images captured by the Arcelik team

for softness assessment. An example is shown on the right of Figure 4.1. The first set

of examples was not very useful because of the lower resolution of the examples. The

sample identifier label in the top-left and the capture date in the bottom-right corners

further reduced the usable sample area.

Despite these problems, the initial datasets were useful for our first analyses. We then

decided to capture a new set of images under more controlled conditions. To this end,

the Arcelik team prepared a controlled capture environment as shown in Figure 4.2.

After further discussions with the Arcelik team, we decided to generate our final data

by using a new setup in which a higher resolution smartphone replaced the camera.
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Figure 4.1: Example fabric samples. The left image was captured by a Canon EOS

550D DSLR camera on our side. The right image was sent by the Arcelik team.

This setup is shown in Figure 4.3. The smartphone that was used was a Mi8-Lite,

which has a 12MP camera with a sensor of 1/2.55 inch. The light source in the setup

environment was controlled by using an artificial lightbox (artificial daylight / 6500K,

20W). The properties of the samples were pre-defined, which are listed in Table 4.1.

Each sample was 20x20 cm in dimension and was an optic white-colored piece of

towel. As can be seen in the top-left corner of the towel in Figure 4.2, each sample

was marked with an expert jury score.

Table 4.1: Properties of samples (towels).

Ground warp yarn number (Ne) 20/2

Pile warp yarn number (Ne) 16/1

Weft warp yarn number (Ne) 16/1

Weight of a towel (gsm) 450

Color Optic white

Sample dimension (cm) 20x20

To capture sample images for the pilling analysis, we have used the same setup with

the Mi8-Lite smartphone as the imager. In Figure 4.4, the final environment of the

pilling sample capture is visualized. The light was provided from the top of the sam-

ples, which made the visualization of the pilling artifacts more distinguishable. The

samples were white socks with different amounts of pilling on the surface for the

pilling analysis. The socks were pilled under a special environment in which ISO
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Figure 4.2: Initial camera setup of the Arcelik data.

Figure 4.3: The final setup to capture sample images that are ready to use in softness

analysis.

12945-2:2000 test standard for the textiles was considered. All the samples were

pilled in a laboratory environment using a Martindale test machine [36, 37]. The
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Figure 4.4: Pilling sample capture final setup.

definitions of the pilling scores are listed in Table 4.2.

To summarize, the final datasets that were used in this study were captured by the

Arcelik team using the methodology described above. Originally the datasets con-

tained expert scores ranging from 1 to 5 in 0.5 increments giving rise to a total of 9

classes. However, the preliminary analysis showed that a 9 class classification prob-

lem with relatively small training data and minute differences between adjacent class

samples is extremely difficult. As a result, we decided to reduce the class size to 5 for

both datasets. We achieved this using the techniques described below.

The original softness assessment dataset contained 154 sample images distributed

over 9 classes (from 1 to 5 in half-integer increments). In reality, there were 77

fabrics, but they were captured from two faces yielding 154 images. If a fabric was

given an integer score, we placed both the fabric’s front and back face images in the

corresponding class. On the other hand, if a fabric was given a half-integer score, its

front face and back face were placed in separate integer classes that are nearest to the

actual score. The resolution of each image was 3024× 4032.

The pilling dataset contained 291 images again scored between 1 to 5 in half-integer
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Table 4.2: Definition of the pilling degrees according to ISO 12945-2:2000 [31].

Pilling de-

gree

Description Detail according to ISO-12945-

2:2000[66]

1 Very severe pilling Severe pilling covering whole of the fab-

ric surface.

2 Severe pilling Distinct surface pilling. Pills of various

size and density covering a large propor-

tion of the surface.

3 Moderate pilling Moderate surface pilling. Pills of vary-

ing size and density partially covering the

surface.

4 Low pilling Slight surface fuzzing.

5 No pilling No change in fabric aspect.

Class Softness Dataset Pilling Dataset

1 33 14

2 29 63

3 31 60

4 22 104

5 39 50

Table 4.3: Distribution of samples across classes for the softness and pilling datasets.
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units. Different from the softness assessment dataset, the same fabric was not cap-

tured from the two faces. Therefore, to reduce the class count to 5 we used a different

approach. For each fabric marked with a half-integer score, we assigned it to ei-

ther the lower or upper integer class. This way 50% of such fabrics marked with an

in-between score were assigned to the lower group and the other 50% to the higher

group. The resolution of the images was the same as for the softness images. Ta-

ble 4.3 shows the number of images in each class. As can be seen from the table, the

number of samples in each class was not equal. This difference was especially more

pronounced for the pilling dataset. Precautions were taken to address this problem,

as explained in the next section.

4.2 Analysis

In this section, we describe the analysis methodology adopted in this thesis. The same

techniques are used for the softness and pilling assessment tasks due to the similarity

between the tasks. During the analysis, we created 224× 224 sized patches from the

original photographs. These patches are created by using a sliding window technique

without overlaps. The reason for selecting this resolution was that all of the deep

learning models we used expected this resolution. It also allowed us to create multiple

samples from a single photograph, thus extending our sample size for hand-crafted

feature analysis as well.

4.2.1 Handcrafted Feature Analysis

Our analysis began with the handcrafted features. To this end, we first computed all of

the handcrafted feature values for the patches extracted from the samples. The results

were collected in a CSV file for further analysis. In the analysis, we first computed

the Spearman correlations with the individual features. This helped identify the most

promising correlations for further analysis and leave out those that do not appear to

have a significant positive or negative correlation1. We decided to use the Spearman

correlation instead of Pearson correlation as the former is directly related to ranking
1 Negative correlations were equally useful as the positive correlations as for them the negated feature value

would be positive.
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while the latter is more suitable for rating judgments. But overall, there was a high

degree of correlation between both measures.

Based on this initial analysis, we selected the features whose absolute value of the

correlations was at least 0.6. These features are used in the following classification

analysis. For this purpose, we experimented with various classifiers that were readily

available in the scikit-learn machine learning library for Python [75]. In particular,

we used linear regression, multinomial logistic regression, ordinal logistic regression,

and support vector machines. For reporting the results, we used the mean absolute

error, overall accuracy scores, and per-class recall, precision, and F1 scores as the

success measure of the classifiers.

4.2.2 Deep Learning Based Analysis

For DL analysis, we used the deep learning models that are implemented in the Py-

Torch library [76]. There are various models in this library such as the AlexNet

[65], ResNet [72], DenseNet [64], VGG [67], SqueezeNet [68], ShuffleNet [69], Mo-

bileNet [70], GoogleNet [71], and Inception [66]. Each model also comes with sev-

eral variants such as DensetNet121 [64], DenseNet161 [64], and DenseNet169 [64].

These variations correspond to the same underlying base model’s configurations (i.e.

the number of filters in different layers). As a result, there were about 20 candi-

date models with which we could experiment. We conducted a preliminary analysis

to choose the most suitable models based on the model’s success and whether they

could run on our test computer. Some models required more GPU memory than was

available. Based on this preliminary analysis, we found the DenseNet models to be

the most suitable. Among the DenseNet models, the DenseNet121 model, which is

the simplest among them, appeared to work well. We, therefore, focused on this

model in our experiments. The architecture of this model is shown in Figure 4.5. The

121 in the naming of this model is computed by 121 = 5+2(6+12+24+16) where 5

indicates the total number of convolution-pooling (1), transition (3), and classification

(1) layers. Each dense block successively contains 6, 12, 24, and 16 filters. Because

dense blocks are made up of two convolutional layers, their sum is multiplied by two.
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Figure 4.5: Architecture overview of DenseNet121.

4.2.3 Cross Validation

In order to test the success of both HCF and DL approaches, we used K-fold cross-

validation. In this type of validation, the dataset is divided into K non-overlapping

subsets. The models are developed from the K − 1 parts, and they are tested on the

part that is left out. This process is repeated K times, and the results are averaged

to compute the final scores. Because there was an imbalance in the class sizes, we

used stratified K-fold cross-validation, which performs the partition according to the

number of elements in each class. For HCF analysis, each fold was divided into two

38



parts, one for model building (80%)and the other for testing (10%)2. For DL analysis,

each fold was subdivided into three parts that correspond to training (80%), validation

(10%), and testing (10%) subsets. It was ensured that training, testing, and validation

images were always selected from different source photographs to represent a more

realistic real-world evaluation scenario. While the initial tests were performed on our

own computers, the final results reported in this paper were performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

4.2.4 Data Augmentation

In order to increase the training sample size, we used data augmentation for deep

learning approaches. During the training each patch was given as:

• Original

• Randomly flipped vertically

• Randomly flipped horizontally

• Randomly color jittered to alter brightness, contrast, saturation, and hue

The transformations are applied independently of each other. This means that a train-

ing patch could undergo vertical flipping, horizontal flipping, as well as color jittering.

We experimented with 10% to 20% color jittering amounts. The flipping probability

in each direction was 50%. As explained in the following subsection, we observed

the data augmentation process to help improve accuracy and recall scores.

2 10% of the data, which corresponds to validation samples for DL, was not used for a fair comparison
between HCF and DL based classification approaches.
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CHAPTER 5

RESULTS AND EVALUATION

5.1 Hand Crafted Features

5.1.1 Feature Correlations

5.1.1.1 Softness Assessment Task

As our first set of results, we share the correlations of the individual hand crafted

features with the expert scores for the softness assessment task. Figure 5.1 shows the

correlation scores using both Spearman and Pearson correlation coefficients. In both

graphs, the x axis represents the feature types and the y axis represents the value of

the correlation coefficients. Some immediate conclusions can be drawn from these

graphs. In the following we use the Spearman correlation scores but because both

graphs are mostly similar, the following comments can be made for both of them.

Firstly, some feature types have very low correlation scores. These are standard devi-

ation (0.01), Tamura directionality (0.11), Tamura line-likeness (0.06), Tamura regu-

larity (−0.14) and GLCM correlation (0.13). It can be said that these features are not

very useful for assessing the softness of a fabric. On the opposite side of the scale,

some features have relatively high correlation. The features with ≥ 0.6 Spearman

correlation are wavelet energy (0.68), GLCM contrasts (0.69), GLCM homogeneity

(0.69), and GLCM energy (0.62). These features are promising and it can be expected

that their combination can lead to a good classifier for softness assessment.

41



Figure 5.1: Feature correlation results for softness assessment.

5.1.1.2 Pilling Assessment Task

We used the same methodology as we used above for the pilling assessment task as

well: we computed the Spearman and Pearson correlations for all of the 13 textural

features. The results are shown in Figure 5.2. However, different from the softness

assessment, none of the features appeared to correlate well with the expert scores.

Note that negative correlations are not important; their negation could be used to

convert them to positive correlations. However, the absolute value of all features

were below 0.5 indicating low correlation. This led us to conclude that the low level

textural features that we used in this study are not suitable for assessing the pilling

degree of fabrics. As a result, we did not try to train hand crafted feature based

classifiers as their performance can also be expected to be low.

5.1.2 Classification

5.1.2.1 Softness Assessment Task

The problem of classification is to determine a class label from a number of feature

representations. As discussed in the previous section, we experimented with several
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Figure 5.2: Feature correlation results for pilling assessment.

classifiers namely linear regression, multinomial logistic regression, ordinal logistic

regression, and support vector machines. All of these classifiers are trained using

stratified cross validation by splitting the data into 10 folds according to the distribu-

tion of samples in each class. For each fold, mean absolute error (MAE) is computed

which is defined as:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|, (5.1.1)

where n is the number of test samples for that fold. As the overall error result, per-

fold MAEs are averaged to obtain a single error score for each of the classifiers. The

results are reported in Table 5.1. According to this table, it can be seen that the ordinal

logistic regression introduces the least amount of error. Furthermore, the error rate of

the classifiers are all around 1, which indicates that while the models are introducing

errors, the average error rate is not very high. In other words, while the models may

frequently mispredict a class whose original label is 2 as 1 or 3, mispredicting it as 5

is much rarer.

This issue can be better understood by inspecting the confusion matrix for each clas-

sifier. A confusion matrix is a compact representation of the results of a classification

experiment. The ith row and the j th column of this matrix contains the number of sam-

ples whose true label is i and the predicted label is j. The more diagonally dominant
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Classifier Mean Absolute Error (averaged over folds)

Linear regression 1.02

Multinomial logistic regression 1.10

Ordinal logistic regression 0.98

Support vector machine 1.08

Table 5.1: The mean absolute error results for different classifiers on the softness

assessment task.

a confusion matrix is, the more accurate is the corresponding classifier. In this study,

we accumulated the confusion matrices of each fold to obtain an overall confusion

matrix that represents the results of the entire experiment. For display purposes, the

entries of the confusion matrix are normalized. This is achieved by dividing every

row by the sum of the elements in that row. The resulting confusion matrices for each

model are depicted in Figure 5.3. It can be seen that most classifiers are diagonally

dominant: larger misclassification errors are rarer compared to smaller misclassifica-

tion errors.

Several error metrics can directly be computed from the elements of the confusion

matrix such as accuracy, precision, recall, and F1 score. The overall accuracy is

defined as:

acc(y, ŷ) =
1

n

n∑
i=1

1(yi == ŷi), (5.1.2)

where 1(x) is the indicator function. This accuracy value can be computed by divid-

ing the sum of the diagonal elements to the sum of the all elements of the confusion

matrix. The resulting accuracy values for each classifier are given in Table 5.2. Ac-

cording to this, the multinomial logistic regression and SVM classifiers perform better

than the ordinal logistic regression and linear classifiers. It is also interesting to note

that the multinomial and SVM classifiers have higher accuracy than the ordinal one

despite the latter having a smaller mean absolute error. We suspect that this is because

of the nature of the accuracy metric; smaller and larger errors contribute equally to

the result.

Finally, we report the precision, recall, and F1 scores for each classifier. These are
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Figure 5.3: The aggregated (over folds) confusion matrix for each classifier for the

softness assessment task. The confusion matrix is normalized in each row.

Classifier Accuracy

Linear regression 0.26

Multinomial logistic regression 0.37

Ordinal logistic regression 0.33

Support vector machine 0.37

Table 5.2: Overall accuracy of classifiers for the softness assessment task.
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arguably more revealing measures than the overall accuracy as they give us a chance

to observe the performance of a classifier for each class. Precision is defined as the

ratio of true positives to sum of true and false positives. It is defined as:

pre =
TP

TP + FP
, (5.1.3)

where TP and FP represent the number of true positive and false positive predictions.

Recall is defined as the ratio of true positives to all relevant items of a given class. It

is defined as:

rec =
TP

TP + FN
(5.1.4)

where FN represents the number of false negative predictions. Both precision and

recall can be computed from the confusion matrix. The precision value for each class

can be computed by dividing the diagonal element in each row (TP) to the sum of the

all elements in that column (TP + FP). The recall value for each class can be computed

by dividing the diagonal element in each row (TP) to sum of all elements in that row

(TP + FN). Finally, the F1 score represents the harmonic mean of precision and recall.

It is defined as:

F1 = 2
pre× rec

pre + rec
(5.1.5)

These metric values of each classifier are listed in Tables 5.3, 5.4, and 5.5. According

to these tables and the confusion matrices shown in Figure 5.3 it can be said that

multinomial and SVM classifiers do a good job in classifying the first and the fifth

classes. However, they do not perform well for classifying the medium class values.

The second class is best classified by the ordinal and the third class is best classified

by the linear regressors. In general, the fourth class appears to present a challenge for

all classifiers.

5.2 Deep Learning

5.2.1 Softness Assessment Task

As explained in the previous section, we used the DensetNet121 model for classifi-

cation of fabric samples into softness classes. Deep learning models can be trained

from scratch but experiments have shown that models whose weights have already
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Classifier Precision (1, 2, 3, 4, 5)

Linear regression 0.84, 0.25, 0.24, 0.15, 0.78

Multinomial logistic regression 0.39, 0.27, 0.24, 0.15, 0.59

Ordinal logistic regression 0.67, 0.27, 0.24, 0.17, 0.69

Support vector machine 0.40, 0.25, 0.23, 0.14, 0.60

Table 5.3: Per-class precision rates of the HCF classifiers for the softness assessment

task.

Classifier Recall (1, 2, 3, 4, 5)

Linear regression 0.00, 0.36, 0.55, 0.22, 0.19

Multinomial logistic regression 0.57, 0.20, 0.13, 0.17, 0.62

Ordinal logistic regression 0.12, 0.47, 0.39, 0.18, 0.43

Support vector machine 0.54, 0.30, 0.16, 0.10, 0.60

Table 5.4: Per-class recall rates of the HCF classifiers for the softness assessment

task.

Classifier F1 Score (1, 2, 3, 4, 5)

Linear regression 0.01, 0.29, 0.34, 0.18, 0.31

Multinomial logistic regression 0.47, 0.23, 0.17, 0.16, 0.60

Ordinal logistic regression 0.20, 0.34, 0.30, 0.17, 0.53

Support vector machine 0.46, 0.27, 0.19, 0.12, 0.60

Table 5.5: Per-class F1 scores of the HCF classifiers for the softness assessment task.
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been computed over a large scale dataset can provide better performance for new

classification tasks. To this end, we used the DenseNet121 architecture pretrained on

ImageNet [73] and finetuned it using the dataset of the current study. We also exper-

imented with training the entire network from scratch, but starting from a pretrained

architecture noticeably improved the classification scores.

By default, the pretrained DenseNet121 architecture outputs 1000 classes correspond-

ing to the number of object categories in the ImageNet dataset. For finetuning, we

replaced this last layer to output 5 classes. Furthermore, we wanted to design our

loss function in an ordinal sense. In other words, we wanted to create a loss function

which penalizes larger class errors more (e.g. 1 is classified as 5) compared to smaller

class errors (1 is classified as 2). We therefore applied a sigmoid activation function

on the outputs of the final 5 neurons. This serves the purpose of converting negative

and positive absolute values into belief values in range [0, 1]. The sigmoid activation

function is defined as follows:

f(x) =
1

1 + exp(−x)
. (5.2.1)

To perform ordinal regression, we also converted the target labels into one-hot-like

encodings. This conversion was defined by the following mappings:

• Class 1: [1, 0, 0, 0, 0]

• Class 2: [1, 1, 0, 0, 0]

• Class 3: [1, 1, 1, 0, 0]

• Class 4: [1, 1, 1, 1, 0]

• Class 5: [1, 1, 1, 1, 1]

The loss function was then defined as the weighted mean squared error between the

network outputs and the class representations using the above mappings:

loss(y, ŷ) =
1

n

n∑
i=1

wi(yi − ŷi)2, (5.2.2)

where n is the number of classes, wi is the weight of each class, y is correct label

encoded as above, and ŷ are the sigmoid applied network outputs. The weights were
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chosen as inversely proportional to the number of samples we had for each class.

This allows undersampled classes to also have more influence on the loss function. In

particular, the weight vector was defined as:

w = [
100

33
,
100

29
,
100

31
,
100

22
,
100

39
] (5.2.3)

Note that this loss function pushes the network outputs to resemble the one-hot-like

encodings described above. For instance for a sample that belongs to the 3rd class,

after a sufficient amount of training, the network starts to output values like ŷ =

[0.99, 0.98, 0.97, 0, 0]. We can then convert these encodings back to class labels by

counting the number of elements from left-to-right whose value is above 0.5 (we stop

counting as soon as we find an element whose value is less than 0.5). In the above

example, we can deduce that the predicted label of ŷ is 3 because there are three

values with > 0.5 value from left-to-right. For the updates of network parameters, we

used Adam optimizer with a learning rate of 0.0005.

Other than these details, we performed a standard network training process. The

dataset was divided into training, validation, and test sets as explained in Chapter 4.

We experimented with using techniques such as drop-out, weight regularization, and

data augmentation to improve the quality of training. Our observation, however, has

been that softness assessment is a challenge task for deep networks as we could not

obtain a set of hyper-parameters that consistently reduces validation loss over the

epochs of training. An example to illustrate this point is shown in Figure 5.4 for

one of folds during cross validation. Here, it can be seen that while the training loss

drops and training recall increases reliably (blue lines), validation loss and recall has

a more haphazard behavior (orange lines). They change as desired initially but start to

fluctuate starting with the fifth epoch. This is generally an indicator of memorization:

the network becomes tuned to the training data and does not perform well on unseen

validation data. Using the techniques such as drop-out, weight regularization, and

data augmentation, this problem was somewhat mitigated but could not be entirely

avoided.

The results of our experiments using different sets of hyper-parameters values are

summarized in Table 5.6. According to this table, the best overall image based ac-

curacy was obtained using the set of parameters shown in the third row of this table.
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Figure 5.4: Change of mean squared error and average recall rates during one fold of

the training.

Hyper-parameters Accuracy

Drop-rate = 0, weight-regularization = 0, color-jitter = 0 0.53

Drop-rate = 0, weight-regularization = 10−4, color-jitter = 0.1 0.52

Drop-rate = 0, weight-regularization = 10−4, color-jitter = 0.2 0.55

Drop-rate = 0.1, weight-regularization = 10−4, color-jitter = 0.2 0.49

Table 5.6: Image based accuracy (see text for details) results for a different combina-

tion of hyper-parameters. The best result is shown in the third row.

The definition of image based accuracy is given below.

Overall, we observed that the trained networks appeared to perform considerably well

compared to the HCF classifiers. In Table 5.7 we report the same precision, recall,

and F1 score metrics as was done for HCFs. For instance, if we compare the F1 score

row of this table with the corresponding best score for HCFs (multinomial regression

row in Table 5.5), we can see that the DL results are consistently better for each class.

As the performance of DL based classifier was higher, we decided to perform an

extra experiment in which we combined the results of all patches for a single test

fabric to produce a single score for that fabric. As the resolution of each test image

and patch were 3024× 4032 and 224× 224 respectively, we obtained 234 patches for

each test image. Each patch had a classification score and we combined them using

50



Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.59, 0.33, 0.35, 0.28, 0.74

Recall 0.58, 0.42, 0.35, 0.19, 0.74

F1 Score 0.58, 0.37, 0.35, 0.23, 0.74

Table 5.7: Precision, recall, and F1 score results for deep learning based classification

on the softness assessment task.

Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.67, 0.31, 0.40, 0.24, 0.78

Recall 0.48, 0.45, 0.45, 0.18, 0.72

F1 Score 0.56, 0.37, 0.42, 0.21, 0.75

Table 5.8: Precision, recall, and F1 score results for deep learning based classification

on the softness assessment task using the mean patch results for each image.

two different approaches. In the first approach, we used the rounded mean value of

the classification scores. In the second approach, we used the majority voting result

of the patches. The results of both image-based approaches are shown in Tables 5.8

and 5.9. As can be seen from these tables, the majority voting results appear to be

produce better metric scores compared to the mean approach. This can be expected

as majority voting is more robust against outlier predictions.

An interesting observation can be made by comparing the metric values in Table 5.9

with the number of fabric samples that we had in our dataset (see Table 4.3). The

Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.69, 0.37, 0.41, 0.38, 0.76

Recall 0.67, 0.45, 0.42, 0.23, 0.82

F1 Score 0.68, 0.41, 0.41, 0.29, 0.79

Table 5.9: Precision, recall, and F1 score results for deep learning based classification

on the softness assessment task using the majority voting of the patch results for each

image.
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Individual Patch Patch Mean Patch Majority Voting

Figure 5.5: Confusion matrices for individual patch, patch mean, and patch majority

voting results for the softness assessment task.

scores are almost perfectly correlated with the number of samples present in each

class. For instance, the best scores are obtained for the fifth class, which also contains

the highest number of samples (39). On the other end, the worst scores are obtained

for the fourth class, which also contains the fewest number of samples (22). This

is despite the fact that we weighted the loss function inversely proportionally to the

number of samples using Equation 5.2.3. This suggests that if we had more and equal

number of training samples for each class, the results could have been significantly

improved.

To give a visual summary of the results, we share the confusion matrices for individual

patch, patch mean, and patch majority voting confusion matrices in Figure 5.5. It can

be seen that the matrices are predominantly diagonal suggesting that the predictions

are generally accurate. Also the mispredictions are generally made into neighboring

classes suggesting low errors. For example, if we focus on the fourth row of the ma-

jority voting matrix on the right of this figure, we can see that class 4 is mispredicted

as class 3 23% of the time and as class 5 41% of the time. Mispredictions into more

distant classes such as 1 and 2 are much rarer.

Finally, we share the overall accuracy results for the patch-based, mean-based, and

majority-voting-based approaches. The overall accuracy, which was defined in Equa-

tion 5.1.2, can be intuitively understood as the sum of the diagonal elements in the

confusion matrix to the sum of all elements in the matrix. In other words, this num-
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Approach Accuracy

Individual patch 0.49

Mean patch per image 0.49

Majority vote patch per image 0.55

Table 5.10: Overall accuracy of different prediction approaches for softness assess-

ment using deep learning.

ber represents the ratio of exact matches to all predictions. The results are reported

in Table 5.10. Given that the chance value would be 0.20 (random guessing among 5

classes) and the best HCF classifier had an accuracy of 0.37 (see Table 5.2), we can

conclude that deep learning based classification has a plausible performance.

5.2.2 Pilling Assessment Task

To perform pilling degree classification using deep learning, we used the same net-

work architecture as we did for the softness assessment task. We also used the mean

squared error loss function given in Equation 5.2.2, but the weights were updated

in accordance with the number of samples in each class. Specifically, we used the

following weight vector:

w = [
100

14
,
100

63
,
100

60
,
100

104
,
100

50
] (5.2.4)

We used the best hyper-parameters that was obtained for the softness assessment task.

Accordingly, the drop-rate was set to 0, weight regularization coefficient was 10−4,

and the color-jitter rate was 0.2. A sample result corresponding to one of the folds of

the training run is shown in Figure 5.6. Similar to softness assessment, we could not

observe a consistently decreasing loss (or increasing recall). For the given example,

we selected the 5th fold as it produced the highest recall rate.

The overall results of the 10-fold cross validation are summarized in Tables 5.11,

5.12, and 5.13 respectively for individual patch, mean, and majority voting results.

The corresponding confusion matrices are shown in Figure 5.7. These matrices are

also predominantly diagonal indicating that even if prediction errors are made they are
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Figure 5.6: Change of mean squared error and average recall rates during one fold of

the training for the pilling assessment task.

Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.35, 0.55, 0.37, 0.56, 0.52

Recall 0.20, 0.63, 0.31, 0.64, 0.43

F1 Score 0.25, 0.59, 0.34, 0.60, 0.47

Table 5.11: Precision, recall, and F1 score results for deep learning based classifica-

tion on the pilling assessment task. Results of classifying each patch separately are

shown in this table.

made mostly to neighboring classes. Furthermore, similar to the softness assessment,

classes for which we had a higher number of samples received better classification

scores. The best classification scores were obtained for class 4 for which we had 104

samples. In contrast, the worst classification scores were obtained for class 1, for

which we had only 14 samples. As a result, almost all class 1 samples were predicted

to be class 2 as can be observed from the deep blue color in the first row of the

confusion matrices.

Finally, we share the overall accuracy results in Table 5.14 and compare them with

those of the softness assessment task (Table 5.10). It can be observed from both ta-

bles that the accuracy scores for pilling assessment are higher than the corresponding

scores for softness assessment. The best result was obtained for the mean approach

(0.60) where the mean class values of individual patches are averaged to obtain the
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Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.20, 0.60, 0.52, 0.64, 0.62

Recall 0.07, 0.65, 0.53, 0.77, 0.40

F1 Score 0.10, 0.62, 0.52, 0.70, 0.49

Table 5.12: Precision, recall, and F1 score results for deep learning based classifica-

tion on the pilling assessment task. Results based on averaging patch classes for each

image are shown.

Metric Per-class value (1, 2, 3, 4, 5)

Precision 0.20, 0.56, 0.40, 0.61, 0.62

Recall 0.07, 0.76, 0.20, 0.80, 0.42

F1 Score 0.10, 0.64, 0.27, 0.69, 0.50

Table 5.13: Precision, recall, and F1 score results for deep learning based classifica-

tion on the pilling assessment task. Results based on majority voting of patch classes

for each image are shown.

Individual Patch Patch Mean Patch Majority Voting

Figure 5.7: Confusion matrices for individual patch, patch mean, and patch majority

voting results for the pilling assessment task.
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Approach Accuracy

Individual patch 0.51

Mean patch per image 0.60

Majority vote patch per image 0.57

Table 5.14: Overall accuracy of different prediction approaches for pilling assessment

using deep learning.

class score for a high resolution sample.
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CHAPTER 6

GRAPHICAL USER INTERFACE

6.1 General Overview and Features

To make the feature analysis procedure easier for the users, we developed a graphical

user interface (GUI). The PyQt framework was used to implement the user inter-

face chosen because of the PyTorch environment. The main UI has four different

tabs, each for different major functionalities. The GUI has additional features such

as localization, personalization, training parameter controls, and help menus. In Fig-

ure 6.1 and Figure 6.2 two different theme options are demonstrated. There are seven

different themes to make usage easy depending on user preference. In Figure 6.3 the

example parameter setting is demonstrated. Furthermore, users are informed about

the ongoing process through the progress bar and details panel at the bottom of the

GUI. Moreover, the training and testing result is visualized as a graph in relevant tabs.

6.2 Data Preparation

The first screen of the GUI is the dataset generation tab. In this tab, the program

enables users to generate training data quickly. To create a training dataset, the user

must input the images’ directory path, the output path for the generated dataset, the

percentages of the test, and the validation data. The input data directory should con-

tain five different directories with the name of the class values (1,2,3,4,5). The output

dataset generates the output path under an automatically created train, test, and val-

idation data folder. Progress of the data creation process is visualized through the

progress bar in the center of the window and the more detailed outputs in the particu-

57



Figure 6.1: Example theme demonstration.

Figure 6.2: Another theme demonstration.
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Figure 6.3: Setting the random seed value for graphical user interface.

lar area of the bottom of the window.

6.3 Training Tab

To finetune PyTorch’s pre-trained models with the dataset created in the dataset gen-

erate tab, the user can quickly fill some parameters and start the training process. If

the user has already generated training data, the path of the created data is automat-

ically populated into the data path input field on the training tab. It is also possible

to choose pre-generated data from the file system. The user also needs to select the

network name from the drop-down menu where most of the pre-trained networks of

the PyTorch are included.

Furthermore, the user must input the epoch count and the output file name for the

trained model. If the output file name is not set, the program creates the output file in

the current directory with the default file name. To finish the training procedure, the

user needs to start the training after filling all the fields. The details of the training

process (training and validation losses, training progress) is visualized during the

training process. The final result is also visualized on the right side of the tab. The

procedure has been demonstrated in Figures 6.4, 6.5, and 6.6.
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Figure 6.4: Training tab.

Figure 6.5: Training tab.
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Figure 6.6: Training tab.

6.4 Test Unlabeled Data Tab

One of the main parts of the developed GUI is a tab to test the softness and pilling

measures of the unlabeled data using a pre-trained model file. The user must fill

the predefined input fields to start testing, namely the input images’ directory field,

trained model path field, the output file path, and the drop-down menu to select the

trained model name. There is a checkbox that is optional to decide whether to use

GPU utilization during the procedure or not.

There are two modes to test the unlabeled data. The first mode is to test a single

image, which is demonstrated in Figure 6.8. The second mode is to test multiple

unlabeled data in which it is also possible to export the result into a CSV file. In

Figure 6.9 six textile examples, which have a softness value of 4 were tested, and the

result are demonstrated as a chart on GUI.
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Figure 6.7: The initial view of the tab to test unlabeled data.
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Figure 6.8: The result of analyzing single unlabeled data.

Figure 6.9: The result of analyzing multiple unlabeled data.
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Figure 6.10: The initial view of the tab to test labeled data.

6.5 Test Labeled Data Tab

The last tab is to test the softness and pilling measure of the labeled data. To start

testing, the user must fill predefined input fields, including the input images direc-

tory field, trained model path field, and the drop-down menu to select the pre-trained

model name. The user is also needed to fill the input CSV file, which includes values

of the scores of the input images to compare with the test result. Furthermore, there

is a checkbox to enable or disable GPU utilization for the procedure. In Figure 6.10,

the general overview of the labeled data test tab is visualized.

In summary, the classification algorithms developed in this study are implemented

under an easy-to-use GUI to enable their use by end-users who are not familiar with

coding and deep learning. The GUI is given to the Arcelik team to be used in their

facility.
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CHAPTER 7

CONCLUSIONS

In this study, we proposed a new method to automatically classify fabric samples into

different softness and pilling classes. In our study, we first evaluated the effective-

ness of hand-crafted features for these tasks. To this end, we tested 13 HCFs that

that involve basic features, Tamura features, and GLCM features. We first tested the

correlation of these features with the expert scores. We used four different classifiers

namely linear regression, multinomial logistic regression, ordinal logistic regression,

and support vector machines. The classification test was done only for the softness

assessment. This is because the tested features did not show significant correlation

with the expert scores for the pilling task.

Our overall conclusion for this part of the study is that while HCFs show some

promise for the softness assessment task, their performance for pilling assessment

is dubious. Perhaps other features that were not tested in this study could be more

suitable for pilling assessment. As for the classifiers, we found the multinomial re-

gression to have the best performance although the ordinal regression and SVM scores

were not significantly different.

In the next phase of our study, we experimented with deep learning methods as they

are commonly used for classification tasks. However, it was not clear in the beginning

of this study how well they will perform for softness and pilling assessment. This

is because the images for these assessments are very different from standard object

classification, in which the objects much more different from each other. Note that

experts who judge make these judgements do not based their decisions only on the

visuals. They touch and feel the fabrics, which is something that cannot be done on

the computer environment. Therefore, we did not have a clear picture of how well
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deep learning models would perform just based on the images of the samples.

Our results yielded several interesting findings. First we found that deep learning

based methods outperform traditional classifiers that are based on hand-crafted fea-

tures. Secondly, we found that DL methods perform slightly better for pilling assess-

ment compared to softness assessment. Our best DL based classifier for pilling had an

accuracy of 0.60, which is significantly above the chance level of 0.20 for a five class

classification task. We also observed that the number of samples plays a key role for

the success of a DL-based classifier. We consistently observed that the classes with

higher number of samples received better classification accuracy compared to those

that had fewer number of samples. Indeed, DL-based methods are known to be data

hungry and we witnessed this problem in the context of this thesis as well.

We can perhaps argue that with the current amount of training data, aiming to perform

a five class classification is a too difficult task even for DL-based methods. However,

as evidenced by the visualized confusion matrices, the errors they make are not huge.

As such, with the current dataset (154 images for softness and 291 for pilling), a three

class classification problem can be more realistic. However, if a higher number of

training images are used, a five class classification appears to be achievable.

The domain knowledge as well as the dataset for this study was kindly provided by

Arcelik. In addition to several scientific findings, as a practical contribution of this

study, we developed a GUI that can be used in Arcelik laboratories for automated

softness assessment. Several training sessions have been conducted to teach the use

of this GUI to Arcelik engineers. We hope that the availability of such a program can

help motivate further work for automated fabric quality assessment.

7.1 Possible Use Cases

This study, in its current form, could be used in several different ways. The most

prominent one is integrating the algorithm in the fabric manufacture factory environ-

ment and measuring the pilling characteristics of the nearly identical fabric pieces

to decide on the fabric pilling durability before mass production. This would be es-

pecially appropriate for some of the fabric types, such as cotton knitted and woven
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fabrics.

As another use case, manufactactures of washing machines want to know after how

many washing cycles the qualities of a fabric start to change. This is also related to

detergent and softener use. So the algorithm developed in this study can be used by

both manufacturers like Arcelik or producers of detergents and softeners (i.e. chem-

ical companies) to assess the change a fabric undergoes during its life cycle. It can

help them make characterize their equipment and make more appropriate changes to

their customers. While some studies are already being performed, as they require

manual labor they are costly in terms of both time and man-power. Our study can

significantly simplify this process.

As an ultimate use case for this study, a camera placed in a water-tight compartment

within the washing machine can analyze the overall softness and pilling degrees of

the clothes that are placed in the machine. In a dry cycle that can take a few seconds,

several images of the clothes can be be captured and then analyzed. Based on the

results of this analysis, the amount of softener and detergent can automatically be

adjusted. Such as solution would have an essential environmental and marketing

value. While we think that this is not a simple problem, the ground work laid out in

this thesis can be considered as the first step in this direction.

7.2 Limitations

The lack of the features to measure the softness on different fabrics with different ma-

terials and textures can be considered as the current study’s chief limitation: we only

used images of towels and socks with a certain color. Therefore, it is tough to gener-

alize the results to thousands of other fabric types with different colors, materials, and

textures. The dataset is fundamental limiting factor to generalize our methodology to

the wide range of fabric sets. We need different fabric groups to classify each set sep-

arately. The distance that the input images have been captured is another limitation of

the work, which should be approximately the same for every image. These controlled

conditions may be difficult to achieve in out-of-laboratory environments.
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7.3 Future Work

The first idea that comes to mind as future work is to detect the softness and pilling of

the fabric in a natural environment. As a result of our research and experiments, we

have seen that it is possible to detect the softness and pilling of the material by apply-

ing our methods. The natural environment, such as the washing cabin of the washing

machine, should be considered the final destination or an integration environment of

the system.

Another future work should be improving the algorithms to work with different tex-

tured and different materialized fabrics. We need a massive amount of data in the

dataset for DL implementation to train our models to implement different kinds of

fabrics with different materials and textures.

Combining hand-crafted and deeply learned features to generate a hybrid method

of these two approaches for measuring the fabric’s softness and pilling value and

comparing the result with the results of the separated methods may be one of the

other possible future directions.
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