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ABSTRACT Model-predictive-controller (MPC), one of the optimal control policies, has gained more
attention in servo drive and other industrial applications in recent years due to evident control performance
benefits compared to more classical control methods. However, an MPC algorithm solves a constrained
optimization problem at each step that brings a substantial computational burden over classical control
policies. This study focuses on improving the computational efficiency of an online MPC algorithm and
then demonstrates its practical feasibility on the field weakening operation in high-speed PMSM control
applications where the sampling frequency is in the order of µs. We implement the existing dual active set
solver by replacing two standard methods in the matrix update step to reduce the overall computational
cost of the algorithm. We also rearrange the linear approximation for the constraints on voltage and
current by taking the tradeoff between accuracy and speed into account. We finally verify the efficiency
and effectiveness of the proposed structure via processor-in-the-loop simulations and physical platform
experiments.

INDEX TERMS Field weakening, online model predictive control (MPC), quadratic programming (QP),
synchronous machine

I. INTRODUCTION

MODEL predictive control (MPC) is the name of a mod-
ern family of model-based constrained optimization-

based controllers. Its relatively simple objective, ability to
satisfy the constraints on both input and state trajectories,
and explicitly handling multi-input-multi-output systems are
the core features of the model predictive control [2], [3].
Due to its high computational complexity compared to the
classical approaches, the initial practical implementations of
MPC concentrated on systems with slow plant dynamics and
relatively mild control performance specifications. However,
as the computational power of embedded platforms evolved,
the adoption of MPC in a wide range of control applications,
including but not limited to high-bandwidth plants and chal-
lenging performance specifications, has also increased in the
past two decades [4]. Nowadays, it is even possible to see
MPC implementations in the control of power electronics

and electrical drives where sampling frequency requirements
are several orders of magnitude higher than ones used in the
initial deployments of MPC [5], [6].

Permanent magnet synchronous motor (PMSM) is one of
the most common electric machines used in various indus-
tries due to its torque-speed characteristic and reliability for
long-term use. One of the most common techniques to con-
trol the PMSM is vector control, also known as field-oriented
control (FOC). Increased demand for high-performance op-
erations in electrical drive systems has led engineers to adopt
MPC and similar advanced model-based optimal algorithms
for the control PMSM machines.

Even though MPC provides a solid framework for ad-
vanced and high-performance control system design, it
brings some undeniable disadvantages, precisely extra com-
putational burden and increased implementation complex-
ity, over dominantly adopted classical approaches. In that
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respect, researchers in the MPC domain mainly focus on
solving computational and implementation complexity prob-
lems. Bemporad et al. [7], [8] proposed the explicit quadratic
regulator for constrained systems which technically pushes
the majority of the computations of the MPC algorithm to an
offline pre-processing phase that increased the applicability
and popularity of the MPC in experimental and industrial
platforms. Specifically, this method generates a lookup table
of Piece-wise Affine (PWA) functions that can radically
reduce the execution time compared to online MPCs with
a trade-off that now demands a boost in memory size can
grow dramatically with the dimension of the system and
constraints.

In the literature, there exist studies that integrated MPC-
type algorithms for the control of electrical drive systems.
Several studies adopted online optimization-based MPC al-
gorithms for regulating torque output of PMSMs (MP-TC)
[9], [10]. In addition to these, some researchers also in-
tegrated field weakening operation with predictive control
for some applications that require over-speed capabilities
of the motors [11]–[15]. Like our motivation in this paper,
Mynar et al. [12] implemented explicit MPC in a “high-
performance” dual-core i7 processor and consuming a large
amount of memory space. The authors also intended to
improve their methodology to make it implementable with
a low-cost embedded platform with far less CPU power and
memory space in the future work section of their paper. Most
of the other studies [11], [14], [15] adapted Finite Control Set
(FCS) which basically finds the optimal switching position
instead of producing the duty cycle as in Continuous Control
Set(CCS) [12]. This approach couples the sample and switch-
ing frequency that causes to operate the inverter at variable
frequency.

The scarce resources in online CCS-MPC with the field
weakening operation and its implementation in low-cost
platform boost us to investigate this application. The chal-
lenge of reducing the computational complexity in the online
optimization problem with sample time in order of µs is
another motivation source. In this context, we first focus on
increasing the computational capability of the MPC algo-
rithm and then demonstrate its practical feasibility on the
field weakening operation in a high-speed PMSM control
application, which are the core contributions of the paper. We
adopt the existing dual active set solver with the combination
of the two standard matrix update methods to increase the
algorithm’s efficiency. We also compare our implementation
with Active Set Solver inside MPC Toolbox provided by
Matlab to showcase a true advantage. As a further con-
tribution, we address hints and some suggestions for the
ease of practical implementation. In this paper, we employ
an efficient implementation of MPC with field weakening
operation for PMSM and perform the MPC in both PIL
simulations and experimental setup by using different type
processors.

This paper is organized as to give the mathematical
modeling and field weakening operations in section-II. The

quadratic programming that depends on the dual active set
solver is expressed in section-III. PIL simulation and ex-
perimental results are given in section-IV. In section–V, we
conclude this paper via a discussion of the paper.

II. MODELING & ANALYSIS OF PERMANENT MAGNET
SYNCHRONOUS MOTORS
MPC is a state-space domain model-based control policy;
thus, we need to derive a state-space representation for
the PMSM system. We utilize synchronous reference frame
model (d-q model) because it makes the electrical variables
stationary in the steady-state [16] and enables the regula-
tion of torque and flux content separately (vector control)
to achieve the maximum efficiency and perform the field-
weakening operation. Following equations models the dy-
namics for a PMSM based on d − q reference frame model
[17].
did(t)

dt
=

1

Ld
(Vd(t)−Rsid(t) + ωe(t)Lqiq(t)) (1a)

diq(t)

dt
=

1

Lq
(Vq(t)−Rsiq(t)− ωe(t)(Ldid(t) + λm))

(1b)

Te(t) =
3

2
pp(λmiq(t) + (Ld − Lq)id(t)iq(t)) (1c)

where
λm magnetic flux of the PM Wb

id − iq d axis, q axis current A
Vd − Vq d axis, q axis voltage V

Rs stator phase resistance Ω
Ld − Lq d axis, q axis inductance H

ωe rotor electrical speed rad/s
Te electromechanical torque output Nm
pp number of pole-pairs −

Finding a linear state-space approximation that can accu-
rately capture the PMSM dynamics is critical for implement-
ing (linear) MPC algorithms. In this study, we follow the
approximation by Bolognani et al. [16] and treat the bi-linear
terms, ωe(t)id(t) and ωe(t)iq(t), as new state variables and
further assume that they are constant over prediction horizon.
We also integrate the measured rotor speed as an exogenous
input and again assume that it is constant over the prediction
horizon. As a result, the state- and input-vectors of the linear
state-space PMSM model takes the form [id iq ω̂eid ω̂eiq]

T

and [Vd Vq]
T respectively. We finally discretize the CT state-

space model via the forward-Euler method with sample time
Ts to obtain the discrete-time state-space model structure as

xk+1 = Axk +Buuk +Gwk , yk = Cxk (2a)

A =

 1− TsRs

Ld
0 0

TsLq

Ld

0 1− TsRs

Ld
−TsLq

Ld
0

02×2 I2×2

 (2b)

B =


Ts

Ld
0

0 Ts

Lq

02×2

 , G =

 0

−Ts
λm

Lq

02×1

 , C =

[
I2×2

02×2

]T
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FIGURE 1. Current and voltage circles for different speed values of the
PMSM.

Even if all state variables in the model are measurable in
real-time, the experimental system unavoidably suffers from
some measurement noise and process model uncertainty. For
this reason, instead of using potentially noisy measurements
directly, which causes undesirable characteristics both during
transients and steady-state, we pass the real-time measure-
ments from a steady-state Kalman filter in the experimental
setup to obtain a smoother state and input trajectories. In this
context, MPC uses the output of the filter at each step in
the computation of control actions, which is very a common
practice in practical MPC applications [9], [18].

A. FIELD WEAKENING OPERATION

The torque generated by the PMSM given by (1c) has
two sources: permanent magnet flux and rotor saliency. In
a surface-mount PMSM, d-q axis inductances are almost
equal to each other (Ld≈Lq=L), and the torque is generated
dominantly by the magnet flux and q axis current. Therefore,
in the normal operation of PMSM, i.e., below-rated speed,
d axis current is set to 0 (id = 0) to produce maximum
torque per amperes (MTPA). In order to exceed the rated
speed, negative id values are used to limit the back EMF
(ωeLdid+ωeλm) by creating an opposite magnetic flux to the
permanent magnet in the field-weakening region. A given i∗q
reference can only be achieved if a certain amount of negative
i∗d current is applied. Applying negative id current to reduce
the back EMF so that the PMSM gives more torque output
beyond the rated speed is called a field-weakening operation.
It technically modifies the current references (i∗d, i

∗
q) at the

operating speed to get maximum torque output. A common
way of vector control of the PMSM is realized by a voltage
source inverter, which includes 6 transistors fed by a DC
voltage source. Therefore, electrical sources are limited to
DC value of the voltage source (Vmax) and the maximum
current capability of the transistors (Imax). These limits are

State 
Observer

PMSM

abc

dq

αβ 

dq

MPC
FW

Operation

SVM

s

PI

ia

ib

θm 

ωm

ωr

VD C

id

iq

ic

VqVd

îd 
îq 

τre f

FIGURE 2. The schematic of the proposed structure for field weakening
operation.

related to d− q axis variables as

V 2
max ≥ V 2

d + V 2
q , I2max ≥ I2d + I2q (3)

In the steady-state, derivative terms are equal to zero in (1a)
and (1b). Rewriting (3) by substituting steady-state forms of
(1a) and (1b) yields

V 2
max

R2
s + L2ω2

e

≥ (id +
Lω2

eλm

R2
s + L2ω2

e

)2 + (iq +
Rsωeλm

R2
s + L2ω2

e

)2

(4)

The current equation in (3) represents the inner region of a
circle whose center is at the origin and radius is equal to
(Imax). This circle is called the current circle. On the other
hand, the voltage equation represents the inner region of the
voltage circle, for which the center and radius are equal to

center =

(
− Lω2

eλm

R2
s + L2ω2

e

,− Rsωeλm

R2
s + L2ω2

e

)
, (5)

radius =
V 2
max√

R2
s + L2ω2

e

, (6)

respectively. The VSI cannot operate outside the current and
voltage circles, physically. Therefore, the operating point
(id, iq) should be inside the circles at any time. Note that the
current circle is stationary while voltage circle parameters are
functions of the rotor electrical speed. To set a proper refer-
ence operating point (i∗d, i

∗
q) voltage circle equation should

be dynamically calculated and the limit values should be
updated. Fig. 1 illustrates the voltage and current circles
for a PMSM with Imax = 20A for different speed values.
As shown in the figures, voltage circle shrinks as the speed
increases and separates from the current circle after a critical
speed value. 240 rad/s rotor speed value approximately
separates constant torque and constant power region. Voltage
limit circle crosses the origin approximately at 310 rad/s
rotor speed, which is the theoretical no-load speed. It is
inevitable to have id < 0 for higher speed demand than
310 rad/s, even if no load applies to the rotor shaft. Operat-
ing point for the PMSM should be inside the intersection of
the two circles. Therefore, as the speed increases, maximum
achievable iq is limited below Imax value.
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III. MPC DESIGN FOR PMSM
The standard structure of FOC utilizes a cascaded loop,
which closes the inner-loop with current feedback, whereas
the outer-loop with angular velocity feedback. In this paper,
we preserve the higher level cascaded topology in the stan-
dard architecture but replace the controller of the inner loop
with the MPC algorithm. In this context, the task of the MPC
block is to track the torque reference that is provided by the
velocity loop (or any other high-level control policy) for the
q axis. The algorithm is also responsible for dynamically
generating the required d axis reference by monitoring q
axis current and motor velocity to perform field weakening
operation, which enables to produce MTPA at beyond rated
speed. Fig. 2 illustrates the overall proposed structure that we
implement for the CCS-MPC field weakening operation.

A. MPC BASICS
MPC computes the sequence of control actions over a pre-
diction horizon by using the state-space model of the system
given in (2) by predicting the future responses of the system
dynamics. The cost function fundamentally determines the
desired performance land space of the system, i.e., mini-
mizing a weighted sum of tracking error and control effort,
which is dominantly formulated as a quadratic cost func-
tion. In addition to reducing the quadratic cost function to
achieve the desired level of control performance, MPC must
also ensure that state, output, and input trajectories satisfy
some constraints, generally formulated as linear equalities
and inequalities. In that respect, the sub-problem of MPC
at each step turns into a quadratic programming problem. In
this context, the quadratic programming problem of the MPC
action takes the following form

min
∆u

Np∑
i=1

||Q 1
2 (yk+i − rk)||22 +

Nu−1∑
j=0

||R 1
2∆uk+j ||22 (7a)

subject to: xk+i+1 = Axk+i +Buuk+i +Gwk (7b)
yk+i+1 = Cxk+i+1 (7c)

uk+i = uk+i−1 +∆uk+iu
min
i ≤ uk+i ≤ umax

i (7d)

ymin
i ≤ yk+i+1 ≤ ymax

i (7e)
∆uk+j+Nu = 0 (7f)

j = 0, . . . , Np −Nu − 1, i = 0, . . . , Np − 1 (7g)

where Q and R are the positive definite weight matrices
associated with tracking error and input effort respectively.
Feasible values are selected for Np and Nu so as to keep the
balance between capturing the dynamics of the system and
reducing the complexity of the resulted QP problem [16].

B. CONSTRAINTS
Unlike the classical linear controllers, MPC does not require
add-on implicit structures to handle the system’s constraints.
Under the MPC umbrella, the controllers explicitly address
linear convex constraints (equalities and inequalities) on state
variables, system outputs, and control/input signals in the

Vmax

Vq

Vd

Imax

Id

Iq

FIGURE 3. The schematic of voltage and current constraint which depends
on the liner approximations

system representation. In PMSM drive applications, upper
and lower limits on voltage and current variables are the most
dominant type of adopted constraints. The supply voltage on
DC-link enforces a maximum value on the voltage supply
to the drive, and it is Vmax = VDC/

√
3 for space vector

modulation [19]. The peak stator current determines an upper
bound constraint on the stator current variable.

We can transform the voltage and current constraints to
2-norm condition in (d, q) axis plane, such that;

x ∈ R2 s.t. ||x||2 < Imax

u ∈ R2 s.t. ||u||2 < Vmax

(8)

We apply two polygonal approximations to transform of
these two quadratic constraints into linear form to adapt them
into the MPC framework as well as reduce the implementa-
tion complexity [16]. As for the voltage limit, we adopt an
octagonal shape that combines the two constraint lines into
one in the d axis direction. Since the q axis is responsible
for generating torque to meet the load torque in the motor
shaft, it is undesirable to give all DC-link voltage only for
the d axis.This approximation has an acceptable level of
underestimation, 70% of the maximum voltage value for the
d axis. We can formally define the voltage constraint using
the following equation by taking m = (

√
2 + 1);[

− 1
m 0 − 1

m
1
m 0 1

m
1 −m+1

m −1 −1 m+1
m 1

]T [
Vd

Vq

]
=

[
Vmax

]
(9)

We modify the constraint adaption above for the current
implementation by cropping out the polygon’s right half-
plane since the only negative current of the d axis is used for
field weakening operation. Fig. 3 illustrates the schema for
these two constraints. The constraint on current according to
the figure is given by the following equation;[
− 1√

2+1
0 − 1√

2+1

1 −
√
2+2√
2+1

−1

]T [
Id
Iq

]
=

[
Imax

]
3x1

(10)

In practical application, it is highly suggested setting the
voltage limit to DC-link voltage measurement, if available,
in every step for the case of any change in voltage that may
be different from its constant value.
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C. COMPUTING CONTROL ACTION
Solving the optimization problem in each sample plays a
key role in the constraint MPC. It is possible to transform
MPC formulation into a convex quadratic optimization prob-
lem with linear constraints for linear-dynamical-systems.
Thus, researchers and engineers have long been focused
on adapting quadratic programming(QP) techniques in the
MPC domain. The transformation of the MPC problem into
a formulation of parametric quadratic programming is as
follows:

min
z

1

2
zTHz + zT gk (11a)

s.t. Wz ≤ bk (11b)

where gk and bk are dynamically changing vectors depending
on the information of the system at kth step. The idea of the
active set method is to impose all constraints as equalities
when they are active at the current iteration. The problem is
reduced to the sub-problem of QP with equality constraints
i.e. WAz = bA where A denotes active set. The solution is
found iteratively starting from a feasible point by adding the
violated constraint into or dropping the blocking constraint
from the active set in each iteration. The active set method has
different variations: primal, dual, and primal-dual [20]. The
primal method starts from the primal feasible initial point z0

and iterates by maintaining primal feasibility in each iteration
until dual feasibility is reached [20], [21]. On the other hand,
the dual method starts from dual feasible initial points z0,λ0.
It aims for primal feasibility, and maintains dual feasibility
in each iteration until no violated constraints exist [22], [23].
In this work, we use a dual-active set solver that is based
on the works of Goldfarb and Idnani [22]. The pair (z,λ) is
the solution of problem (11), if they satisfy the first-order
necessary condition by solving the following linear equation:[

H WT
A

WA 0

]
︸ ︷︷ ︸

KKT

[
z
λ

]
=

[
−gk
bk

]
(12)

The solution of (12) exists if the KKT matrix is not singular.
MPC formulation enables that the Hessian matrix H is pos-
itive definite i.e. nonsingular, and if WA is full row-rank in
the current iteration, the inverse of the matrix exists. Several
direct methods can be applied to explicitly take inversion of
the KKT matrix, such as Schur complement, null-space, and
range-space approach [21]. The range-space approach is used
to express explicit inversion of the KKT matrix.[
H WT

A
WA 0

] [
H−1(I −WT

A ZWAH
−1) H−1WT

A Z
ZWAH

−1 −Z

]
= I

(13)

where Z = (WAH
−1WT

A )−1. To calculate the pair
(∆z,∆λ), two operators are defined as;

K = ZWAH
−1 (14)

G = H−1(I −WT
A K) (15)

where WA ∈ Rnaxn and na denotes the number of the con-
straints in the active set. Goldfarb and Idnani [22] suggest that
the dual-method can use the unconstrained optimum point of
the objective function as their initial value. In contrast, the
primal method needs an auxiliary algorithm that provides a
feasible starting point and active set. Thus, the dual-method,
except for some basic matrix operations, does not require
a preliminary calculation phase as in the primal method.
Also, the dual-method finds the optimal solution with fewer
iterations compared to the primal method that makes the dual
method more efficient than primal method [22]. Algorithm 1
summarizes the processes in the dual active set solver.

Algorithm 1 Dual Active Set Solver [22]

Input: (H, g,W, b)
Step-1. Initialization of the algorithm:
set i←0, (z,λ)←(−H−1g, 0), A←∅, J←Z−1, n0

a ← 0
Step-2. Constraint violation check:

set q ←
{

k ∈ (I\A|(Wkz
i
k − bk) > 0)

0, otherwise
Step-3. Termination condition check:
if q = 0 then, stop and return optimal active set: i.e.
(z∗, λ∗) and corresponding active set Ai(z∗)
end if
Step-4. Calculate step directions:
∆zi = GWT

A (primal direction)
if ni

a > 0 then, calculate the dual direction
∆λi = KWT

A (dual direction)
end if
Step-5. Calculate step lengths:

αi
primal ←

{
∞, if ∥∆zi∥ = 0
WT

q zi−bq

WT
q ∆zi

, o/w

αi
dual ←

{
∞, if ∄k
− λi

k

∆λi
k

, o/w s.t. argmin
k∈A

(− λi

∆λi |∆λi
k < 0)

αi ← min(αi
primal, α

i
dual)

Step-6. Check infeasibility, take partial step in dual space:
if αi

primal =∞ then
if αi

dual =∞ then,stop and return QP is infeasible
else Drop blocking constraint i.e.
Ai+1 ←Ai\k: k calculated in Step-5
λi+1
p ← λi

p + αi, λi+1 ← λi + αi∆λi

ni+1
a ← ni

a − 1, and i← i+ 1
Update R and J matrices and go to Step-4

end if
end if
Step-7. Take a full step in primal and dual space
zi+1 ← zi+αi∆zi, λi+1 ← λi+αi∆λi, λi+1

p ← λi
p+αi

if αi = αi
primal then,Add current violated constraint

Ai+1 ←Ai ∪ q, ni+1
a ← ni

a + 1, i← i+ 1
Update R and J matrices and go to Step-2

else Drop blocking constraint i.e.
Ai+1 ←Ai\k: k calculated in Step-5
ni+1
a ← ni

a − 1, and i← i+ 1
Update R and J matrices and go to Step-4

end if
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Output: (z∗, λ∗) and A(z∗) and return flag

We utilize matrix factorization to calculate primal- and dual-
step directions in Step 4 instead of updating operators, G and
K, explicitly in each iteration for computational efficiency.
Let Cholesky decomposition of H be

H = ZZT (16)

where Z is the lower triangular matrix, and QR decomposi-
tion of L:

L =
[
Q1 Q2

] [R
0

]
, such that L = Z−1WT

A (17)

Rewriting the operators in (14) and (15) by replacing
Cholesky and QR decompositions, we can obtain

G = J2J
T
2 , K = R−1J1 , (18)

where J =
[
J1 J2

]
= Z−T

[
Q1 Q2

]
(19)

Givens Rotations and House-Holder Reflection are two com-
mon approaches to compute the QR factorization [24]. In the
active set method, there is only single constraint addition
to or deletion from active set in each iteration. Therefore,
it is more costly to utilize QR decomposition of L in each
iteration than updating J and R matrices via numerically
stable methods [22]. The algorithm starts with the J = Z−T

and R = ∅ as their initial point and then, continuing to update
them whenever WA matrix changes until the algorithm gives
the optimum points. Our implementation uses the House-
Holder Reflection method to update J and R matrices in the
constraint addition step. When the new constraint is added
into active set the relations in (17) becomes;

Z−1
[
WT

A WT
i

]
= Q

[
R rn1

i

0(n−na)x(na−1) rn2
i

]
(20)

There is only one rotation matrix applied to the every new
constraint to make the R matrix upper triangular due to they
enter into the active set from the end. Applying the rotation
matrix to each side;

QnZ
−1

[
WT

A WT
i

]
= QnQ

[
R rn1

i

0(n−na)x(na−1) rn2
i

]
(21)

= Q̃

 R rn1
i

0(1)x(na−1) r
0(n−na−1)x(na−1) 0(n−na−1)x(1)


(22)

Since the rotation matrix Qn is orthogonal, it does not hinder
to hold the property (16) after multiplication with Z−1 [18].
Our implementation uses Givens Rotation method to update
matrices in the constraint deletion from active set. Unlike
the constraint addition step, there might be more rotations in
the deletion step depending on the constraint place since the
deletion can be anywhere inside the active set. We combine
two different methods for updating the matrices to increase
the algorithm’s computational efficiency. We compare the

TABLE 1. The comparison of House-Holder and Givens Rotation Methods
about their counts of operations

House-Holder Givens Rotation
Constraint Addition
(+,−, ∗)|(÷,

√
) 93|2 84|9

Constraint Deletion
(+,−, ∗)|(÷,

√
) 147|6 102|9

two algorithms in both addition and deletion step over their
total floating-point operations (flops) inside the algorithms,
enabling us to assess the overall computational cost in the
updating process independent of the adopted hardware.

MASS DASS

50

100

150

200

250

300

FIGURE 4. Comparison of PIL simulation results of the Active Set Solver
provided as standard packages to the MPC toolbox by Matlab(MASS) and our
efficient dual active set solver(DASS) implementation under the same
conditions.

The number of flops in our measurements also includes
√

operation in addition to 4 basic mathematical operations i.e.
(±, ∗,÷). We divide the operations into 2 subgroups; (±, ∗)
and (÷,

√
) since the number of the cycles to execute the ÷

and
√

operations costs more than the (±, ∗) in almost all
types of computing units. To be more precise, suppose that
the active set is empty and let n be the dimension of solution
space. In the worst-case scenario, when the first constraint is
added into the active set, the methods shall perform n − 1
calculations to transform R into upper triangular form if the
Givens Rotation method is adopted. In contrast, there is a
single column operation which enables less number of calcu-
lations in the House-Holder Reflection method. Suppose now
that the active set has n constraints and the first column i.e.
first-in constraint is removed from the set. Both methods now
shall perform n − 1 step to complete updating the process.
The number of flops needed to be executed in House-Holder
method is almost 50% less than the Givens Rotation in QR
decomposition [25]. However, using the fact that the R is
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in upper Hessenberg form in constraint deletion that brings
more flexibility in executing fewer flops.

Table 1 provides the overall number of flops for constraint
addition and deletion steps of both algorithms. The numbers
in the table represent the total number in our efficient C-code
implementation by taking the dimension of the solution space
as 4. The count of (±, ∗) is slightly different in the constraint
addition, whereas there is a significant difference in the num-
ber of (÷,

√
) which is the main part of the execution speed.

On the other hand, the main difference comes from (±, ∗)
operations in constraint deletion procedure that dominates
the overall performance in terms of speed.

To clarify that our implementation is feasible according to
the execution speed, we made a computational comparison
of our solver with Active Set Solver QP provided as standard
packages to the MPC Toolbox by Matlab. In the first trial, we
spotted that the solver could not find the solution within the
allowed sample time, i.e., 200 µs. We increased the sample
time to identify the exact solution time encountered with no
overrun during the operations. We run the same PIL simula-
tions except for replacing our solver with Matlab’s. Figure 4
shows the solution time of the solver provided by Matlab. It
is clear that our solver finds the solution approximately 2.5x
faster than that of the solver provided by Matlab under the
same conditions. The result shows that our implementation
is feasible according to execution speed via comparing the
solver that finds the solutions with or without the same matrix
updating strategy.

IV. RESULTS
We tested and verified the MPC coupled with the developed
QP Solver algorithm first in a processor-in-the-loop(PIL)
simulation and then on an experimental platform with a
PMSM. We chose C2000 and C6000 processor families
provided by Texas Instruments for PIL simulation and ex-
periments since they are cost-effective embedded platforms
widely used in industrial motion control applications. We
optimized (for computational efficiency) and implemented
our MPC algorithm (with a custom QP solver) in the C pro-
gramming language. We also tested our codes in F28377S
and C6713B processors to ensure the consistency of our
implementation in different types of processors with different
specifications.

The MPC design parameters along with all the related
motor parameters are listed in Table 2. Since the algorithm
uses a cascaded structure, two different sample times are
scheduled; T fast

s = 200µs is for current controller, and
T slow
s = 1ms is for speed controller.

A. PIL SIMULATION RESULTS
To analyze the efficiency of the MPC implementation,
we performed PIL simulations and computed the execu-
tion speed and memory usage of the proposed algorithm.
PIL simulation environment enables effective debugging of
the algorithmic implementation and provides the execution
speed/time of selected blocks using the associated CPU

TABLE 2. PMSM and CONTROLLER Parameters

Parameter Value
(J,B) (6.10−3kgm2, 49.10−5Nm/(rad/s))
λm 0.0106 Wb
Rs 120 mΩ
Ld ≈ Lq 220 µH
Torque Constant 0.09 Nm/Arms

pp 4
Ts 200µs
(Np, Nu) (4, 2)

(Q,R) (I2×2,
1
20

I2×2)

(P, I) (2, 0.5)

Vmax 24/
√
3 V

Imax 20 A
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FIGURE 5. PIL simulation results of tracking performances for speed and
current references. The id current enters the scene after t = 2s to weaken the
flux that enables the motor tracks the desired speed value.

timer. Thus, it is possible to detect the part of the al-
gorithm where the primary computational lies. We chose
MATLAB/Simulink environment to perform PIL simulation
in the F28377S processor. Since the main reason for PIL
simulation is to test the feasibility of our implementation, we
only evaluated the tracking performances under constraints
and the results on the execution time presented in Fig. 6.

Fig. 5 illustrates the tracking performances of the proposed
algorithm for both speed and current loop. Since the maxi-
mum reachable speed of the PMSM at rated voltage level is
310 rad/s, the id current enters the scene at 2s to weak the
flux to achieve the desired speed setpoint, i.e., 320 rad/s.

B. EXPERIMENTAL RESULTS
After successfully demonstrating the proposed algorithm via
PIL simulations, we embedded our MPC algorithm in the
C6713B platform and controlled a physical experimental
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FIGURE 6. Execution time strictly locates under the maximum allowed time
through the operation in PIL simulation. The execution time and the number of
iterations are consistent except at a point at which the maximum overshoot on
id current occurs.
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FIGURE 7. Tracking performances of speed and current loops and the
voltages which are generated from online MPC in experimental testing.

PMSM setup. Fig. 9 shows the test bench that is used
throughout the experimental testing. The setup includes a
dynamometer that is connected to the motor shaft and the
motor driver unit. We measure the motor’s position via a
resolver that is attached to the rotor shaft. A resolver to digital
converter (RDC) provides the angular velocity measurement.
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FIGURE 8. Execution time and the number of iteration in the real time
experiment to generate the suitable voltages for both axis while satisfying
constraints.

Fig. 7 presents the d − q axis voltages and overall track-
ing performances of the algorithm for speed and current
loops. Our experimental scenario split the reference angular
velocity signal into two regions to evaluate the “constant”-
torque and “constant”-power regions. We feed step-input
type reference signals in both zones to push the motor to
operate around its limits (torque and power) and stressing the
optimization solver. Specifically, at t = 0, the system starts
at initially at rest condition, and at t = 0.25s, we supply
the combined cascaded control algorithm a constant angular
velocity reference signal of ωref = 150rad/s until t = 1.5s,
where we jump the reference signal to ωref = 320rad/s.
In the first zone, i.e. t ∈ (0.25, 1.5)s, the motor dominantly
operates at the torque limit (where q axis current is constant)
until the motor velocity reaches to the desired value (at
t ≈ 1.0s), and thus angular velocity increases almost linearly
during this period.

In the second region, where the desired angular velocity is
ωref = 320rad/s, the behavior of the motor and controller
is similar to the first zone until around t ≈ 2s, where at
that point field weakening operation activates. During this
period, the algorithm introduces a negative d axis current that
reduces q axis current to respect the maximum torque per
ampere criteria. We observe the effect of the linear approx-
imation on the current constraint, especially in the q axis,
after t ≈ 2s since the algorithm puts extra effort to satisfy
the constraints that reduce tracking performance. Once the
motor angular velocity reaches its final desired value, the
algorithm applies consistent d − q axis currents to keep the
motor at the desired speed and compensate for the friction.
Fig. 8 illustrates the execution time in the experimental test
that demonstrates feasibility since computation time always
stays inside the sampling time during the operation. One
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FIGURE 9. Test bench used in experiment of field weakening operation. It
consists of PMSM connected to the dynamo and the custom-made driver unit.

should also note that the execution time also includes the
ADC readings, their parsing process, and the DAC phases.
In addition to execution time, our implementation is also
feasible in terms of using minimal memory. The memory
occupancy of both algorithm and necessary QP data is only
6kB out of 192kB in C6713B.

We also evaluate the state dependencies between d − q
axis current and voltage by picturing the actual motor data to
illustrate the performances based on our linear approximation
on the constraints. Fig. 10 presents the linear approximation
polygons on voltage and current constraints together with
real-time experiment data. Apart from the minor deviations
on the lines because of noisy measurements and process
uncertainty, the electrical state’s values always respect the
linear constraints.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

-20 -15 -10 -5 0

-20

-15

-10

-5

0

5

10

15

20

FIGURE 10. The real time experiment values of both voltages and currents lie
inside the linear approximation polygons that represents the circle. There is
small deviation on the edge of the linear approximations because of the noise
level in our measurements.

V. CONCLUSION
In this paper, we demonstrated the feasibility of online MPC
with field weakening operation in PMSM by applying the
beneficial properties of linear MPC over classical control
strategies. In addition to constant power region, we eval-
uate the performances of the algorithm in constant torque
region to demonstrate the feasibility of our implementation
under direct-torque control operation.We also successfully

carried out the dual active set solver with an efficient matrix
updating procedure to find the optimal control signals for
the system by satisfying the system constraints. We verified
the feasibility of the proposed controller structure via both
PIL simulation and physical experiment on the two different
processors to certify that our implementation is viable in
the low-cost motion control unit. The results demonstrated
the practical feasibility and effectiveness of the algorithm to
control the PMSM in the laboratory environment.
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