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ABSTRACT

LONG-TERM ENERGY YIELD ESTIMATION OF A SOLAR
PHOTOVOLTAIC POWER PLANT IN METU NCC

Goren, Deniz
Master of Science, Sustainable Environment and Energy Systems Program
Supervisor: Assoc. Prof. Dr. Murat Fahrioglu
Co-Supervisor: Assoc. Prof. Dr. Onur Taylan

January 2021, 99 pages

Installing large scales of solar energy introduces some financial risks for the
investors since the solar resource is variable. Thus, a long-term energy yield
estimation is needed to see the variability of the solar resource. This study aims to
see the relation between long-term trends of global horizontal irradiation (GHI) with
the energy yield and the levelized cost of electricity (LCOE). Probability of
exceedance (POE) values were found to assess the bankability of installing a solar
PV power plant. Different datasets, such as typical meteorological year (TMY),
satellite-based and ground-measured data, were used. Quality assessment was done
to check the accuracy of ground-measured data using quality control tests. Erroneous
GHI data was estimated using the Erbs model. Global tilted irradiation (GTI) was
also estimated using the isotropic sky-diffuse model, and it was compared with
measured GTI. The interannual variability of GHI was found as 5.94% and 2.21%
for ground-measured and satellite-based data, respectively. The comparison of TMY
and P50 values showed that TMY datasets underpredicted the annual GHI by about
5.15% and the energy yield by about 6.83% on average. When Normal distribution
was compared with the empirical method, the P50 value was underpredicted by
0.93% for energy vyield, whereas, Normal cumulative distribution function (CDF)
overpredicted P90 value than the empirical CDF 3.93%. Doing stochastic



simulations resulted in the highest POE values: P50 and P90 values increased by
3.30% and 6.10%, respectively, compared to the empirical method. Moreover, while
the range of energy yield increased to about 1500-2000 kWh/kWp, LCOE range
increased to 0.05-0.19 $/kWh in stochastic simulations. As the overall uncertainty of
energy Yyield was found as about 7.08%, it can be further reduced by searching for

other sources of error such as temperature and soiling.

Keywords: Energy Yield, Interannual Variability, Probability of Exceedance,
Uncertainty Analysis, Levelized Cost of Electricity
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0z

ODTU KKK'DEKiI GUNES FOTOVOLTAIK SANTRALININ UZUN
VADELI ENERJI VERIMI TAHMINI

Goren, Deniz
Yiiksek Lisans, Siirdiiriilebilir Cevre ve Enerji Sistemleri
Tez Yoneticisi: Dog. Dr. Murat Fahrioglu
Ortak Tez Yoneticisi: Dog. Dr. Onur Taylan

Ocak 2021, 99 sayfa

Glines kaynagi degisken oldugundan biiyiik 6l¢ekli giines enerjisi kurulumu
yatirnmcilar icin bazi finansal riskler ortaya cikarmaktadir. Bu nedenle, giines
kaynaginin degiskenligini gormek i¢in uzun vadeli bir enerji verimi tahminine
ihtiya¢g vardir. Bu c¢alismanin amaci, kiiresel yatay 1sinimin (GHI) uzun vadeli
egilimleri ile enerji verimi ve seviyelendirilmis elektrik maliyeti (LCOE) arasindaki
iliskiyi gormektir. Bu ¢alisma kapsaminda bir PV temelli enerji santrali kurmanin
giivenilirligini gérmek i¢in asilma olasiligi (POE) degerleri bulunmustur. Tipik
meteorolojik yi1l (TMY), uydu tabanli ve yerden oOl¢iilen veriler gibi farkli veri
kiimeleri kullanilmig ve kalite kontrol testleri kullanilarak zeminde 6l¢iilen verilerin
dogrulugunu kontrol etmek i¢in kalite degerlendirmesi yapilmistir. Hatali GHI
verileri, Erbs modeli kullanilarak ve kiiresel egimli 1sinim (GTI) da izotropik
gokylizii difiizor modeli kullanilarak tahmin edilmistir. Bu degerler, dlgiilen GTI ile
karsilagtirilmistir. GHI'nin yillar aras1 degiskenligi yer 6l¢iilii ve uydu tabanli veriler
icin sirastyla %5.94 ve %2.21 olarak bulunmustur. TMY ve P50 degerlerinin
karsilastirilmasina gore, TMY veri setlerinin yillik GHI'yi yaklasik %5.15, enerji
verimini ise ortalama %6.83 oraninda diisiik Ongdrdigi bulunmustur. Normal

dagilim ampirik yontemle karsilastirildiginda P50 degeri enerji verimi i¢in %0.93 ile

vii



diistik tahmin edilirken, Normal kiimiilatif dagilim fonksiyonu (CDF) P90 degerini
ampirik CDF'ye gore %3.93 oraninda fazla tahmin edilmistir. Stokastik
benzetimlerde bulunan P50 ve P90 degerleri, ampirik yonteme gore sirastyla %3.30
ve %6.10 fazla ¢cikmistir. Ayrica, stokastik benzetimlerde kurulu gii¢ basina tiretilen
enerji aralig1 yaklasik 1500-2000 kWh/kWp'ye yiikseldiginde LCOE araligi 0.05-
0.19 $/kWh'ye yiikselmistir. Enerji liretiminin genel belirsizligi yaklasik %7.08
olarak bulunmustur, fakat sicaklik ve kirlenme gibi diger hata kaynaklari

arastirilarak bu belirsizlik daha da azaltilabilecektir.

Anahtar Kelimeler: Enerji Verimi, Yillar-aras1 Degiskenlik, Asma Olasiligi,

Belirsizlik Analizi, Seviyelendirilmis Elektrik Maliyeti

viii



To My Lovely Nephews, Sarp and Kaya



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Assoc. Prof. Dr. Onur Taylan, who
has been my advisor throughout my thesis studies. His continuous guidance and
valuable knowledge served as the driving force behind this thesis. | would also like
to thank Assoc. Prof. Dr. Murat Fahrioglu for his supports and | was privileged to
take his courses during masters. Besides, | would like to express my sincere thanks
to Asst. Prof. Dr. Anna Prach and Asst. Prof. Dr. Ceren ince Derogar for giving me
the chance of becoming a teaching assistant at the Aerospace Engineering Program.
Furthermore, T would like to thank my counselor Nazan Tekgiig, for giving me the

psychological support during the pandemic at METU NCC.

Indeed, 1 would like to thank my family for their endless supports — my beloved sister
Giines, mom, dad, grandma and grandpa. They always had absolute confidence in
me and cared for me. | would also like to thank my love, Enes, who was always by
my side to get over the difficulties in life and for believing in me. My biggest thank
goes to my nephews — Sarp and Kaya — who gave me the biggest motivation to leave

a sustainable world to future generations, and this thesis is dedicated to them.

Finally, I would like to thank my special friends in METU NCC. | feel lucky to meet
and form a strong friendship with Sana Khan, Mahnoor Yaqoob and Gozde Taylan.
I would also like to thank my friends for sharing good times and having fun in
Cyprus: Arman, Aslihan, Ayga, Erfan, Haroon, Irmak, Melis, Nazlican, Nilay, Safa,
Shima and Yashfeen. A very special thanks goes to my old friends, who have
supported me unconditionally; Aybeniz, Ipek and Sila. This study would not have

been possible without them.



TABLE OF CONTENTS

ABSTRACT et ne e v
OZ oo vii
ACKNOWLEDGMENTS ...ttt e X
TABLE OF CONTENTS ...t Xi
LIST OF TABLES ...t Xiv
LIST OF FIGURES ...ttt XVi
LIST OF ABBREVIATIONS ... ..o XX
LIST OF SYMBOLS ...ttt XXiii
CHAPTERS
1 INTRODUCTION ..ottt 1
1.1 IMOTIVALION ..t 2
1.2 ReSearch ODJECHIVES ........ccoiiiiiiriecee e 3
1.3 Organization OF THESIS ....cc.oiiiiiiiieiecee e 4
2  LITERATURE REVIEW ... s 7
2.1  Variability of the Solar Radiation ............ccoceoiiiiiniiiniicees s 7
2.2 Probability of Exceedance of Energy Yield.........ccocovviiiiiiiiciciciien, 8
2.3 Uncertainty Components of Solar PV Energy Yield ..........cccccccovenrnenn. 12
2.3.1  Data UNnCertainty .........ccceeceeiieiieii e 12
2.3.2  Energy Modelling Uncertainty ...........cccoocvevieiiieiieiii e 13
2.3.3  Statistical UnCertainty .........cccceevveiiiiiiie e 15
2.4 Quality Assessment of Ground Measurements ..........ccccceeveveeiieesiesinnens 15
2.5 Economic Analysis of a Solar PV Power Plant............c.cccccoovviiiiiiennnnnns 16

Xi



3  THEORY AND METHODOLOGY ....ccoeiiiiiieiieeeere e 19
3.1 Data ANAlYSIS.....oieeiicieie s 20
311 DAASEIS....cviiiiiiieii e 20
3.1.2  Quality Assessment of Ground-Measured Data.............c.ccceeevrrrenenn 22

3.2 Solar PV Energy Yield EStImation ............ccocovviiniiniieienenenc e 30
3.3 P50/P0 ANAIYSIS ..ottt 35
3.4 StochastiC SIMUIALION .....cc.oiviiiiiiieieice e 38
3.5 UNncertainty ANAIYSIS.......ccooiiiiiiiiiei e 41
3.6 ECONOMIC ANAIYSIS ..o 42

4 RESULTS AND DISCUSSION.......ciiiiiiiiiieeniie et 47
4.1 Data Analysis and Quality ASSESSMENT ........ccoviiiriieiierierere e 47
4.1.1 Validation of Ground Measurements ...........ccccuvereierererineneseeennen, 55
4.1.2  Variability of Global Horizontal Irradiation.............cccccceeviiveivenenne. 61
4.1.3  Global Tilted Irradiation RESUILS..........cceieiiiireiiiiiee e, 63

4.2 Energy and Economic Yield EStimations ...........ccccoovvevveieeiecie e 67
4.2.1 TMY, Empirical and Normal Distribution .............c.ccceevevviiiernenenne. 69
4.2.2  Stochastic SIMUIALIONS...........coeiiiiiiieie e, 75
4.2.3  Effects of GHI and Temperature on Energy Yield..........cc.cccoevvenene. 80
424  Overall UNCErtainty .......ccooevieieiiieiiiesisieee e 83
425 Levelized Cost Of EIECIICITY ....cc.ovveieiiiiiiiiiicee e 84

5 CONCLUSIONS AND FUTURE WORK .......coiiiiiiriieeie e 87
5.1 CONCIUSIONS ..ottt ettt 87
5.2 FULUIE WOTK ..ottt 89
REFERENGCES ...ttt bbbt e e snee s 91

Xii



APPENDICES

A.  SAM simulation results of temperature, GHI, POA, AEP and LCOE using
different TMY and satellite-based datasets with different transposition models

used (Isotropic, HDKR, Perez). Statistical indices are also shown. ................... 97

B.  Computing sample example of stochastic simulation in SAM software. 98

Xiii



LIST OF TABLES

TABLES

Table 2.1 Selected studies from the literature about the POE estimation of solar PV

BNEIGY YVIBIG. .o 11
Table 3.1 Climatic conditions of the region and type of datasets used in the study. .21
Table 3.2 Measured data and equipment details. ............cccoovvievieeri i, 22
Table 3.3 Days with missing GHI and DNI measurements. Missing hours were

replaced Dy Satellite-data. ..........cccooiiiiiiiiec e 28
Table 3.4 Input parameters of the solar PV module [60]. ........cccoooeiiiiiiniiiiiicen, 34
Table 3.5 Solar PV system inputs used in SAM software. .........c.ccccceevveveciicieennnn, 37
Table 3.6 Solar PV system losses used in SAM software..........ccccceevvevvereciieieennnn, 38

Table 3.7 The input variables with their assumed distributions in the simulations with
no financial model. Mean and standard deviations are shown in percentage. ........... 40

Table 3.8 The input variables with their assumed distributions in the simulations with

the financial model, PV LCOE CalCUlator............ccccovevieiieiieieceese e 41
Table 3.9 Financial assumptions and parameters used in the LCOE formula of solar
Y SR PRRSPPSR 43

Table 4.1 Relative root mean square error (rRMSE) of measured GHI, measured
DNI, estimated GHI and constructed GHI with respect to satellite-based GHI and
DNI data, obtained from daily total & monthly mean daily total DNI and GHI
(kwWh/m~2/day) for each year. DNI is available after June 2013..............ccocvevenennne. 54
Table 4.2 Relative RMSE values of estimated, constructed and satellite-based GHI
with respect to measured GHI, for selected time periods in 2013 and 2015.............. 57
Table 4.3 Constructed ground-measured data results of monthly and annual mean
daily total GHI (KWh/M2/dAY)........ccoeeiiiiiiiiieiee et 62
Table 4.4 Satellite-based data results of monthly and annual mean daily total GHI
(KWHO/M2/AAY). ..ottt ae e 63
Table 4.5 RMSE (%) with respect to measured GTI in 2016, excluding January and
FEOIUAIY. ..ot e e s e e e et e re e 64

Xiv



Table 4.6 Energy yield (kWh/kWp) estimations using different datasets with
isotropic sky-diffuse model. System Advisor Model (SAM) results were also shown
for satellite-Dased data...........coveiiiiiieii e 68
Table 4.7 Simulation results of three different TMY data sets and satellite-based data
for the 1 MW solar PV plant in METU NCC. POA, AEP and LCOE values were
averaged according to different transposition models used in SAM software
(Isotropic, HDKR and Perez). Detailed results are available in Appendix A............ 71
Table 4.8 Probability of exceedance values of annual GHI and energy vyield
according to Normal and Empirical CDFs. Deviation of Normal CDF from empirical
CDF values are shown in the last column as percentages. .........c.ccooevererenesienieennenn 74
Table 4.9 Empirical cumulative distribution results of stochastic simulation for

satellite-based and TMY datasets. Deviation of the mean TMY results from mean

satellite-based data are also given in PErCENtagES. ........ccvvreeieriereriese e, 76
Table 4.10 P50, P90 and P90/P50 comparisons of energy yield using different
METNOUS. .ttt bbbttt ettt e s 80

Table 4.11 Sources of uncertainties in percentages and the overall uncertainty of the

BNEIGY YVIBIA. ..ot 83

XV



LIST OF FIGURES
FIGURES

Figure 2.1. The interannual variability of global horizontal irradiation between the
years 1985 and 2004, shown in percentages (%) [20].....ccccceverieeieniniiencnie e 8
Figure 3.1. Flowchart of the thesis. ..o 19
Figure 3.2. Default solar radiation database for different regions of the world,
available IN PVGIS [53]. ..ooveiiie it 20
Figure 3.3. Time series of uncorrected ground-measured data with 10-minute time
steps and extra-terrestrial irradiation between 2010 and 2017. ........ccccccevevevviinnnnnn 23
Figure 3.4. Heat map of 10-minute measured GHI for time period 2010-2016......23
Figure 3.5. Heat map of 10-minute measured DNI from the second half of 2013 to
2006, ottt bt e e a et aer et et ne bt e rere s 24
Figure 3.6. A flowchart of detecting erroneous GHI, filling missing data, and
estimating GHI When it iS Needed. .........ccovevviiiiiieii e 29
Figure 3.7. Time series of 10-minute measured ambient temperature between 2013
AN 2007, ettt et e e re e re e reenreaneenres 30
Figure 3.8. Summary of the procedure to find energy yield estimations using
ground-measured data. .........cccecvveiieieeieciese e 34
Figure 3.9. Stochastic simulation tools in SAM software. ...........ccccceeveveiievrenenne. 40
Figure 3.10. Historical and projection data trends for the overnight capital cost of
solar photovoltaics. Adapted from [64]........cccoveiiiiiiiiiee e, 44
Figure 3.11. Historical and projection data trends for the fixed operating cost of
solar photovoltaics. Adapted from [64].......cccciiieiieii e 44
Figure 4.1. kn-kt quality envelopes for measured and estimated data with upper
and lower boundary layers in 2013, ........coovoiiiiiiie e 47
Figure 4.2. kn-kt quality envelopes for measured and estimated data with upper
and lower boundary 1ayers in 2014, .......ccoviieiiiiieee e 48
Figure 4.3. kn-kt quality envelopes for measured and estimated data with upper

and lower boundary layers in 2015, .......ccoiiiiiiiie e 48

XVi



Figure 4.4. kn-kt quality envelopes for measured and estimated data with upper
and lower boundary 1ayers in 2016. .........ccceiveieiieeiieeie e 49
Figure 4.5. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in

rectangle, IN 2011, .....coiiiiicec e e 50
Figure 4.6. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2011. .......... 50

Figure 4.7. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in

rectangle, IN 2014, ... ..o 51
Figure 4.8. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2014. .......... 51

Figure 4.9. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in
rectangle, IN 2005, .. ..o e 52
Figure 4.10. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2015. .......... 52
Figure 4.11. A comparison of daily total E.T., satellite-based GHI (SARAH) and

ground-measured GHI before the adjustment done to selected time period shown in

L=Tot T aTo | (TR0 2 0 SR 53
Figure 4.12. A comparison of daily total E.T., satellite-based GHI (SARAH),

constructed GHI and ground-measured GHI after the adjustment, in 2016. .......... 53
Figure 4.13. Heat map of hourly measured GHI between 2010 and 2016. ............ 56
Figure 4.14. Heat map of hourly constructed GHI between 2010 and 2016. ......... 56

Figure 4.15. Comparison of constructed and measured GHI with satellite-based
data in selected periods of 2013, for the validation of the method. ........................ 58
Figure 4.16. Comparison of constructed and measured GHI with satellite-based
data in selected periods of 2015, for the validation of the method. ........................ 58
Figure 4.17. Comparison of ground-measured and satellite-based daily total DNI
With IRMSE ValUE, IN 2014 ...ttt st 59

Xvii



Figure 4.18. Comparison of ground-measured and satellite-based daily total DNI

With IRMSE value, IN 2015. .......ooiiiiiiiiieieee s 60
Figure 4.19. Comparison of ground-measured and satellite-based daily total DNI
WIth TRMSE ValUE, 1N 2016. .....coieiiiiiii ettt 60
Figure 4.20. Monthly average daily total GHI at METU NCC, between 2005 and
2016 (PVGIS-SARAH), in comparison with PVGIS-TMY. .......cccocvivviveiciiiennn, 61
Figure 4.21. Monthly and annual COV values of ground-measured (constructed)
and satellite-based GHI data. ...........cccooeeiiiiiiie e 63

Figure 4.22. A comparison of daily total global tilted irradiation (GTI) of satellite-
based, measured and estimated data in 2016...........c.ccocvrvirienrnrene s 65
Figure 4.23. Comparison of GTI, GHI, beam and diffuse irradiation in 2014........ 65
Figure 4.24. Comparison of GTI, GHI, beam and diffuse irradiation in 2015........ 66
Figure 4.25. Comparison of GTI, GHI, beam and diffuse irradiation in 2016........ 66
Figure 4.26. A comparison of satellite-based, ground-measured, TMY and actual
energy Yyield results obtained from calculations and SAM simulations using
1S0tropicC sKy-diffuse MOdel. ..........ocooiiiiiii e 68
Figure 4.27. Empirical cumulative distribution function of annual GHI according to
satellite-based data between time period 2005-2016...........cccceevveiieieeiieseeniesie e 69
Figure 4.28. Empirical cumulative distribution functions of the energy yield
(kWh/kWp) using Isotropic, HDKR and Perez models. Double arrows show the
difference between the average TMY and P50 valUues. .........cccccovveveiieiecieiiennnn 72

Figure 4.29. Comparison of empirical and normal CDFs with average TMY result

of the annual GHI, for time period 2005-2016. ..........ccccoververrriieriere e 73
Figure 4.30. Comparison of empirical and normal CDFs with TMY results of the
energy yield, for time period 2005-2016. ...........ccceiieiiiieieeie e 74

Figure 4.31. CDF of energy yields generated by stochastic simulation, using all
uncertainty distributions given in Table 3.7. ... 76
Figure 4.32. A comparison of empirical and stochastic CDF results, when only sky-

diffuse model IS Changed. ..........cooiiiii e 78

XViil



Figure 4.33. A comparison of scenarios of different input variables used in
StOCNASTIC SIMUIALION. ... 78
Figure 4.34. Comparison of stochastic simulations. Black lines were obtained by
only changing sky-diffuse model, colored lines were obtained using the input
Variables in TaDIE 3.7, ..o 79
Figure 4.35. Correlation between the energy yield and annual GHI for time period
2005-2016. ....veverierieieitee et ettt b et reere e 81
Figure 4.36. Correlation between the energy yield and annual average daily mean
temperature for time period 2005-2016. ..........ccccieiiieieiie i 82
Figure 4.37. Correlation between annual GHI and annual average daily mean
temperature between 2005-2016. ........ccooeiiiiiininieiee e 82
Figure 4.38. Exceedance and non-exceedance probabilities of AEP and LCOE with
error bands, respectively. Actual energy yield data of 2016 and 2017 are shown at
closest points to the mean energy yield line. Average results for different TMY
datasets are represented in filled pointers, upper and lower bounds are obtained
from specific TMY datasets (PVGIS-TMY, TMYx.2004-2018, TMY 2-
Ve T 010 1) SO OSRSPRSN 85
Figure 4.39. Probability of exceedance values of energy yield and LCOE, obtained

Trom StOCNASTIC SIMUIATIONS. ... .ttt enneeeeeenennes 86

XiX



LIST OF ABBREVIATIONS

ABBREVIATIONS

AC

AEP

BSRN

CDF

Cov

CSP

DC

DHI

DNI

DSCR

ECDF

ET

FCR

FOC

GHI

GTI

HDKR

IEA

IRENA

Alternating Current

Annual Energy Production

Baseline Surface Radiation Network
Cumulative Distribution Function
Coefficient of Vvariation
Concentrating Solar Power

Direct Current

Diffuse Horizontal Irradiation
Direct Normal Irradiation

Debt-Size Coverage Ratio
Empirical Cumulative Distribution Function
Extra Terrestrial

Fixed Charge Rate

Fixed Operating Cost

Global Horizontal Irradiation
Global Tilted Irradiation

Hay, Davies, Klucher, Reindl
International Energy Agency

International Renewable Energy Agency

XX



kw Kilowatts

LCOE Levelized Cost of Electricity

LHS Latin Hypercube Sampling

MATLAB Matrix Laboratory

MCP Measure-Correlate-Predict

MCS Monte Carlo Simulation

MPPT Maximum Power Point Tracking

MWp Mega Watt peak

NOCT Nominal Operating Cell Temperature
NREL National Renewable Energy Laboratory

O&M Operation & Maintenance

PDF Probability Density Function
POA Plane-of-Array Irradiance
POE Probability of Exceedance
PV Photovoltaics

PVGIS  Photovoltaic Geographical Information System
RMSE Root Mean Square Error

rRMSE  Relative Root Mean Square Error

SAM System Advisor Model

SARAH  Surface Solar Radiation Data Set Heliosat
SDR System Degradation Rate

STC Standard Test Conditions

XXi



TCC Total Capital Cost

T™MY Typical Meteorological Year
TZ Time Zone
VOC Variable Operating Cost

xXii



SYMBOLS

x|

R2

Gcs,daily

GHIdaily

GHImeasured

GHIestimated

n

N

LIST OF SYMBOLS

Standard deviation

Standard deviation of a sample

Mean

Individual value of a sample

Mean value of a sample

Coefficient of determination

Zenith angle

Solar elevation angle

Surface tilt angle

Surface albedo

Extra-terrestrial radiation on a horizontal surface
Daily total extra-terrestrial radiation
Solar constant

Daily total clear-sky radiation

Daily total global horizontal irradiation
Measured global horizontal irradiation
Estimated global horizontal irradiation
Day number of a year

Number of years in a time period

XXiii



Tre f

Gre f
Tambient

TN OCT
Opverall
Odata

OpoA
Ointerannual

Odirt

Clearness index
Beam transmittance
Mean of clearness index during a day
Standard deviation of clearness index during a day
Annual energy production from solar PV power plant
PV module efficiency at i** hour
Reference PV module efficiency under standard test conditions
Reference PV module temperature under standard test conditions
PV module area
Number of PV modules in a solar PV power plant
PV module temperature
Temperature coefficient
Reference temperature under normal operating conditions
Reference irradiation under normal operating conditions
Ambient air temperature
Nominal operating cell temperature
Overall uncertainty of annual energy production
Data uncertainty
Transposition model uncertainty
Interannual variability of global horizontal irradiation

Dirt and soiling uncertainty

XXiV



Other sources of uncertainty

Initial investment cost

Annual total operation and maintenance cost

Annual discount rate
Project lifetime
Solar time

Local time

Standard meridian
Longitude of location
Equation of time
Hour angle

Surface azimuth angle
Solar azimuth angle
Declination angle

Latitude

XXV






CHAPTER 1

INTRODUCTION

Transformation to carbon-neutral energy systems is needed to limit the global
temperature rise below 2°C above pre-industrial levels, therefore, the share of
renewable energy systems should increase to 86% globally by 2050, according to the
International Renewable Energy Agency (IRENA) [1]. However, penetration of
renewables into electricity grids faces some challenges such as technical and
financial risks since their energy production is variable and nonsynchronous [2].
Moreover, while project developers can overpredict the expected energy yield of a
renewable energy project to attract investors and ensure financing, investors are more
interested in whether the project will meet the energy production and financial targets
[3]. Thus, investors and financial institutions require the probability of exceedance
(POE) values of the predicted energy yields of solar and wind energy systems
throughout their operational lifetime to ensure the bankability of projects [4], [5]. A
long-term dataset of the solar resource is needed to calculate POE values of the
energy Yield of a solar energy project since the variability of solar radiation primarily
affects the amount of solar energy production, which in turn, the economic risk
associated with the level of energy output and revenues can be determined [6].
Additionally, knowing POE values gives information about “stress cases” of the
solar resource and the energy output of a project, which is important for debt
providers to see whether a project is feasible in debt repayment and cash flow [7].
Specifically, the P90 value refers to the annual energy generation that will be met or
exceeded in 90% of any given year during a power plant’s operational life.

Therefore, a P50 value is used for a median or representative year, whereas P10 and



P90 values are used for high and low resource years, respectively [8]. P95 and P99
values can also be requested to see the worst-case energy yield values.

Generally, a typical meteorological year (TMY) data is used for the preliminary
design of renewable energy projects, representing the most typical weather
conditions of a site, and it is a statistically constructed 1-year data set [9]. However,
TMY data sets do not include outlier weather events and the interannual variability
of the solar resource such as sunspot cycles, global dimming and brightening, change
of aerosol particles, cloud cover due to volcanic eruptions and wildfires, also,
possible effects of climate change that can affect the atmospheric turbidity, water
vapor content and precipitation [10]. The incoming solar radiation changes because
of the outliers; thus, TMY data is not recommended to be used in resource risk
assessments, although it enables faster energy simulations, requires much less
computational memory and is suitable for rough modeling [11]-[14]. Long-term
ground measurements are recommended to predict the solar irradiation best;
however, they are not available in every part of the world for long periods. Thus,
satellite-based data sets can provide historical time series data in most of the regions
[4], [11], [15]. Site-adaptation techniques such as measure-correlate-predict are
recommended to remove the bias from satellite-based data if short-term ground-
measured data also exist [3], [16].

By virtue of this study, it aims to enable more solar PV projects by showing that
there is a huge potential of solar energy in this region and prove that solar PV

electricity is feasible.

1.1 Motivation

Lower-than-expected solar resource leads to lower energy yields in an energy project
which can cause financial risks in power-purchase agreements (PPAs) and in off-
take agreements when the time-of-day pricing is important [15]. Thus, investors
require to simulate a power plant’s energy performance during its operational life to

ensure whether it is a bankable project [5]. Moreover, debt providers require to know



the quality of data, long-term estimate of the energy output and POE values of the

expected energy output [8], [15].

If POE values do not exist, uncertainties of input parameters can be assumed by a
sensitivity analysis for a more reliable energy performance estimate [5]. A sensitivity
analysis was done previously in METU NCC for a PV-wind-battery hybrid system
using both TMY and short-term measured data for GHI and wind speed, and wind
resource was found to have higher uncertainties compared to solar radiation [17].
However, solar PV energy has not been studied in terms of uncertainty, and POE
values have not been found for a renewable energy system. Thus, a more detailed
analysis of solar PV’s long-term energy yield is needed for this region to make new
solar PV plant installations with improved confidence levels in terms of energy and

economic yields.

Knowing that the current electricity grid in Northern Cyprus is heavily dependent on
fossil fuel-burning power plants, it is urgent to decarbonize the electricity supply
system and increase the share of renewable energy to reduce the effects of global
warming and climate crisis. In this way, we can contribute to sustainability by having
access to “affordable, reliable, sustainable and modern energy,” which is the seventh
goal of the Sustainable Development Goals of the United Nations [18]. The results
of this study aims to reduce the uncertainties related to solar PV energy output, show
the bankability of installing large-scale solar PV power plants, as a result, to fasten
the clean energy transition by using solar energy in the current electricity system.
Therefore, we can pave the way for a sustainable energy supply.

1.2 Research Objectives

The objective of this study is to find the long-term energy yield estimations for 1
MWp solar PV plant in METU NCC as a case study, which in turn, energy
exceedance probabilities such as P50 and P90 values can be found. Thus, the

uncertainty related to solar PV energy output can be obtained and reduced, which



can help to make better investment decisions of commercial-scale solar PV plants in
the studied region with improved confidence levels. Also, both intra-annual and
inter-annual variabilities of the solar resource are to be found to see the variations of
seasonal and annual energy yields. Research objectives can be summarized as

follows:

e Checking the quality of ground measurements

e Comparing different weather datasets such as TMY, satellite-based and
ground-measured data to see their effects on energy yield

e Obtaining long-term trends of the solar resource

e Analyzing the uncertainty components of solar PV energy vyield, and
estimating the overall uncertainty

e Estimating the energy yield and its POE values using different methods such
as empirical method, Normal distribution assumption and stochastic
simulations

e Obtaining a range for the levelized cost of electricity (LCOE)

1.3 Organization of Thesis

This thesis is organized as follows: Chapter 1 introduces the problem statement and
research objectives. In Chapter 2, literature review of the variability of the solar
radiation, the probability of exceedance of energy yield, the uncertainty components
of solar PV energy yield (data, energy modeling and statistical uncertainty), the
quality assessment of ground measurements and the economic assessment of a solar
PV power plant were done. In Chapter 3, the theory and methodology are described
for data analysis, solar PV energy yield estimation, P50/P90 analysis, stochastic
simulation, uncertainty analysis and calculating the LCOE. Chapter 4 presents the
results and discussions of data analysis, energy and economic yield estimations.
Under the energy and economic yield estimation results, probability of exceedance,
effects of GHI and temperature, overall uncertainty and the LCOE are discussed.

Conclusions and future work are given in Chapter 5.









CHAPTER 2

LITERATURE REVIEW

In this chapter, previous studies about the variability of the solar resource, the POE
of energy yield, uncertainty components of solar PV energy yield, quality assessment
of ground measurements, and the economic assessment of a solar PV power plant

are presented.

2.1  Variability of the Solar Radiation

The Sun emits radiation continuously, and it is called the extra-terrestrial (ET)
radiation above the atmosphere of Earth [19]. Due to the variations in the sunspot
activities, solar cycles are observed every 11 years; however, it has a negligible effect
on the solar constant, which is estimated as 1367 W /m? by the World Radiation
Center [19]. On the other hand, the distance between Earth and Sun changes during
a year because of the eccentricity of the Earth’s orbit, which introduces about 3.3%
variation on ET radiation [19]. In addition, the tilt of the Earth’s axis and its rotation
cause seasonal and daily variations in the amount of solar radiation. These variations
are well known, and the solar geometry is predicted using angles, such as solar
elevation, zenith, azimuth and declination [19]. However, solar radiation reaches the
surface by passing through the Earth’s atmosphere, and three components of solar
radiation on a horizontal surface are formed: direct, diffuse and reflected irradiation.
While diffuse irradiation results from the scattering of clouds, aerosols and other
particles, the direct (beam) component reaches the surface without scattering, and
reflected irradiation reaches the surface with the reflectivity of the ground [19]. The
variability introduced by weather events such as cloud cover is less predictable; thus,
the nature of the solar resource becomes stochastic [4]. There are both temporal and

spatial variabilities: temporal variability can vary from seconds to years, decreasing



as the time period increases [4]. Spatial variability also smoothes as the considered
site or region expands [4].

In this study, the long-term solar radiation trends are analyzed since the interannual
variability of GHI is important to determine whether the solar energy potential of a
site is feasible and bankable for a solar energy project throughout its operational
lifetime. In Figure 2.1, the interannual variability of GHI in the Mediterranean area
for the time period 1985-2004 is shown, according to a previous study done in 2007
[20].
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Figure 2.1. The interannual variability of global horizontal irradiation between the

years 1985 and 2004, shown in percentages (%) [20].

2.2  Probability of Exceedance of Energy Yield

Energy exceedance probability values such as P50 and P90 are needed when the level
of confidence of energy yield estimates is required by debt providers for making
decisions on new renewable energy investments, and POE values are generally
obtained using statistical methods [6]. Since renewable energy sources such as solar
radiation and wind speed have stochastic nature, a specific statistical probability
density function (PDF) does not always fit the data set. However, an assumption can
be made by fitting data to a PDF, and its representativeness can be checked by

statistical tests, such as goodness of fit and Normality tests [4], [21], [22].



Different methods were developed to calculate POE values; however, there is not an
industry-standard methodology in the research field for doing resource risk
assessments and estimating POE values [5], [12], [22]. The simplest method is the
SolarGIS approach [12], in which an average solar resource year is represented by
“TMY P50 data set, assuming that P50 value of the annual energy production (AEP)
can be calculated with TMY data. Normal distribution was assumed for the annual
solar irradiation; also, a combined uncertainty was used to account for the modeling
estimate and interannual variability; thus, “TMY P90” was created to represent a low
solar resource year. However, it is not recommended to use TMY data sets for risk
analyses and multi-year time series data to see the effects of solar radiation variations
on the AEP. Similarly, representative TMY data sets of DNI were created for
concentrated solar power plants in the EVA method [15]. POE values were created
from the annual energy outputs of the 34-year ground measurement data set, and the
distribution of annual DNI values was fitted to Weibull PDF. However, a minimum
of 15 years of DNI data is required for this method, and information is lost when
generating TMY data sets. On the other hand, Dobos and Kasberg [23] assumed
Normal distribution for the solar irradiation, but they also used the empirical
cumulative distribution function (CDF) to calculate POE values. They found 2%
lower estimates with the empirical method than the normally distributed value for
the P90. On the other hand, Tadesse et al. [13] used a synthetic year generation
approach to increase the length of the data set, which works by dividing each year
into 4-month periods, taking the average of each period and creating all possible
years from these periods. They also compared the POE values of their method with
the Normal distribution assumption, and a 3% lower result was found for the P95
value with the Normal distribution assumption. Another study aimed to find the POE
values using 19-year weather data and TMY datasets of 18 different PV plants
worldwide [10]. They used the Kernel density function to find the PDF of long-term
data, and Normal distribution was assumed for TMY datasets. They assumed the
standard deviation of annual GHI as the interannual variability in TMY case. Then,

they compared POE values of both cases and the interannual variability was found



to be dominant among other uncertainties, which causes about 3-5% difference in
POE values. However, this study is not site-specific. Besides, a recently published
study in Korea [24] compared three different distributions by calculating POE values
of monthly and annual mean PV power potential, which are the Normal, Skew-
Normal and empirical distributions. They used 27-year ground measurements, and it
was found that skew-normal distribution was closer to the empirical CDF than
normal distribution, which was concluded to be a more realistic modelling

assumption.

Up to now, POE methods have found single values based on the first-year energy
yield of a solar project. To predict the lifetime average energy yield values, Monte
Carlo simulation (MCS) and Latin hypercube sampling (LHS) methods are
suggested to generate hundreds of possible results from a limited number of data sets
to enable resource risk assessments with time-dependent POE values [4], [25].
According to the International Energy Agency’s (IEA) report under Task 13
published in 2018 [25], a general method was suggested to estimate the lifetime
energy Yield predictions and to include all sources of uncertainties that affect the
estimations, which enables time-dependent POE values rather than calculating a
single value for each exceedance probability. The method first chose a reference
period from the historical data time series. It calculated the predicted reference
energy yield to estimate the best mean annual yield by using a simulation tool, and
finally, calculated the predicted energy yields over the prediction period by applying
long-term changes of all parameters and models to the predicted reference energy
yield with the use of Monte Carlo approach [25]. Thevenard and Pelland [26]
followed this method in their study using the statistical modeling of System Advisor
Model (SAM) software, in which the LHS method is used. They found that the
lifetime average energy yield’s uncertainty is 7.9%, whereas 8.7% uncertainty was
found for the first year since solar radiation variability decreases as the time period
increases. Belluardo et al. [27] also used the Monte Carlo approach in PVsyst
software and the Normal distribution assumption to estimate the PV energy yield,

and they obtained a 5-10% uncertainty range according to different scenarios. While
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doing MCS with a more extended dataset of ground-measured data gave the lowest
uncertainty, the highest uncertainty was found in assuming Normal distribution with
a shorter dataset of satellite-based data [27]. A summary of the discussed studies can

be seen in Table 2.1.

Table 2.1 Selected studies from the literature about the POE estimation of solar PV

energy yield.

Type of Measured Temporal Calculated

Study Location Parameter Fitted PDF Data period  Resolution Metric Software
Ceb
e&icarliJer Almeri GHI Normal T™MY 20 year b-hourl TMY P50 SolarGIS
uri, eria DI orma years sub-hourly P90 ola
2015
Fernandez-  Burns, P10, P50 SAM
Peruchena  Oregon DNI Weibull  ground 1980-2013  hourly P90, PSQI R
etal., 2018 (USA) !
5 -
obos & Ph9en|x, GHI Normal ™Y
Kasberg, Arizona DNI .. . 1961-2005 hourly P50, P90 SAM
Empirical satellite
2012 (USA) DHI
Tadesse et USA GHI Synthetic ™Y 1998-2016  hourl POE PVsyst
al., 2017 Normal satellite ¥ ¥
Pelland et Ygrli‘)’:’]':j GHI Kernel ™Y 1997-2016 sub-hourl POE PVsyst
al., 2016 & . Normal satellite v ¥
stations
Kimetal,  4citi Skew-
etal,  aches, GHI  Normal ground 1991-2017 hourly P50, P90 -
2020 Korea .
Empirical
year-1&
Thevenard Ontario, T™MY lifetime
& Pelland, GHI Normal 1960-1989  hourly SAM
Canada ground average
2013 .
yield
Belluardo  Bolzano, GHI Normal P50, P90
. ground 22 years hourly PVsyst
etal., 2017 Italy GTI Empirical P90/P50
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2.3 Uncertainty Components of Solar PV Energy Yield

Uncertainty quantification of all inputs, parameters and modeling steps is required
to predict the long-term energy yields with high confidence levels, and an overall
uncertainty should be obtained by combining individual uncertainty sources [25].
Reducing the overall uncertainty means higher energy estimates, thus, reduced

financial risks, increased potential revenues and lower electricity costs [28].

2.3.1 Data Uncertainty

Measuring devices should be well maintained and calibrated for an accurate data set;
therefore, measurement uncertainties should be considered if ground measurements
are used. If satellite data is used, data should be validated, and modeling data
uncertainties should be considered. Site adaptation techniques are applied to the
long-term satellite-derived data by using short-term on-site ground-measured data to
correct systematic errors and bias, since satellite data may differ from ground data
because of atmospheric effects such as aerosols, water vapor and cloudiness, also,
albedo and topography of the region [16]. At least 1-year ground measured data is
required to include seasonal effects for site adaptation [16].

Temporal representativeness is another important factor that should include
interannual variability. According to a study done by Miiller et al. [29], global
dimming and brightening effects, which is a multi-decadal trend for solar irradiance,
were observed between years 1951-2010 in Germany, and they found that a 3%
uncertainty is added to predictions if an average GHI obtained from historical data
will be used for the future average GHI. This uncertainty level can increase up to 4-
5% for 30°-tilted, south-facing panels for GTI and to 15% for DNI [29]. To best
predict the future GHI trend throughout a PV plant’s operational life, the most recent
10-year data is suggested to calculate the energy yield predictions in IEA’s report
[29]. When the on-site ground measurements have short periods of record, they can
be adjusted by long-term satellite data using the measure-correlate-predict (MCP)
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method so that the uncertainty related to the length of the historical period can be
reduced [30]. The temporal resolution of data also affects the energy performance
estimates. For example, sub-hourly direct normal irradiance (DNI) measurements
are required for concentrating solar power (CSP) energy yield estimates [4]. The
spatial resolution of data also has uncertainties, especially if near-site measured data

is used and if the analysis is done for spatially dispersed power plants [31].

2.3.2 Energy Modelling Uncertainty

When estimating the annual energy output in energy simulation programs, many
input parameters are required, such as PV system design characteristics, system
losses, reference weather data and long-term energy yield simulation assumptions
[5]. For solar energy and its PV application, the sources of uncertainties can be

summarized as follows.

a. Converting GHI to POA Irradiance
Transposition models, which are applied to GHI time series to calculate the plane-

of-array (POA) irradiance, introduce a level of uncertainty, and the accuracy of the
models should be known [25]. To obtain POA irradiance, GHI is first decomposed
into DNI, DHI and ground-reflected irradiance by using one of the decomposition
models, such as Erbs, Ruiz and Skarveit [25]. The three components are then
recombined to obtain POA by using algorithms such as isotropic, Hay & Davies,
Muneer and Perez [25]. A study done in France showed that the highest accuracy is
obtained by combining Skarveit and Hay & Davies models, compared to measured
inclined irradiation values [26]. Another study was done across ten stations in the
U.S., and they evaluated the performance of several decomposition and transposition
models to obtain POA irradiance from measured GHI/DHI [33]. It was found that
simple decomposition models generally underpredict DHI during cloudy periods and
overpredict during clear periods, whereas the isotropic model estimates the lowest
POA among transposition models [33]. Also, Hay & Davies and Perez models have

the smallest errors in transposition models; however, the Perez model was not
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recommended if the measured DHI is not available since the model is highly
sensitive to the quality of the measurements [33]. The combination of Erbs and Hay
& Davies models gave the smallest errors compared to measured POA when
obtaining POA from measured only GHI. Nevertheless, it was concluded that

measuring POA irradiance will reduce the biases in PV energy estimations [33].

b. Operating PV Cell Temperature

The incident solar radiation, ambient air temperature and wind speed are the primary
drivers that affect the module temperature of PV, thus, the PV module efficiency
[32]. As aresult, the PV power output is affected by the variability of air temperature,
and a proper correlation for the operating temperature of a PV module should be
chosen [33]. In addition, the temperature coefficient of module efficiency adds
another uncertainty, which was assumed as 10% for all technologies [25]. It was also
mentioned that temperature is the largest influencer on the PV energy yield in hotter
locations, whereas irradiance is the most important one with disregard of location
[25].

c. PV Module Efficiency
PV module efficiency changes as a function of weather conditions, although initially,

it is constant under standard test conditions (STC), and the module performance ratio
(MPR) is used to account for the factors that affect it and to compare different PV
modules at different locations [25]. Losses due to module reflection characteristics
are approximated to account for 1% uncertainty for all locations and modules;
however, detailed analysis or information from PV specifications is required [25].
The spectral shape of the incident solar irradiance also creates uncertainties;
however, this effect is lower than the temperature and irradiance effects, about 2%

for monocrystalline and polycrystalline silicon PV technologies [25].

d. Soiling, Shading, Reflection and Snow Cover
The soiling rate of solar PV panels significantly affects the energy losses, and a

physical model of PV soiling mechanisms does not exist. In addition, local weather
characteristics (wind, rain) and the operation and maintenance (O&M) of PV surface
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cleaning schedules can estimate soiling rates more complicated [25]. Therefore,
Fraunhofer Institute of Solar Energy (ISE) [25] developed a simplified approach to
predict the uncertainty related to yearly averaged soiling loss as 2% for tilt angles
above 15°. Shading and snow cover also cause a decrease in PV energy generation,
and sometimes satellites may not recognize the difference between snow cover and

the clouds.

e. Energy Modelling and Simulation Tools

Energy simulation tools and chosen models to calculate the actual energy production
based on historical time-series data also have uncertainties related to the
assumptions, chosen parameters and assumed losses [25]. On the other hand, PV
system design characteristics such as orientation and tilt angle of PV modules affect
energy generation. They should be optimized if they are fixed, or a tracking system

is available (1-axis or 2-axis).

2.3.3 Statistical Uncertainty

To find the exceedance probabilities of annual energy yields, the solar resource’s
probability density function can be plotted over a specific time period and are
generally fitted to specific statistical PDFs. For example, Weibull distribution is
commonly fitted to predict DNI, whereas, Normal and Beta distributions are
considered to fit GHI best [15], [21], [22], [34]-[37]. Thus, fitting PDFs also creates
uncertainties, such as determining the shape and scale parameters of specific
functions [15].

2.4 Quality Assessment of Ground Measurements

Financial institutions require bankable datasets to guarantee investments on large-
scale solar energy projects, reducing the overall uncertainty of energy yield estimates
[38]. Long-term modeled data such as satellite-derived data is mostly available

globally; however, their systematic errors and bias should be removed by integrating
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quality-checked ground measurements called “site adaptation” [39]. However,
quality control of ground-measured data plays an important role in preventing
erroneous results; otherwise, modeled data bias can increase [39]. Systematic errors
of satellite-based data arise from low spatial resolution, assumptions on atmospheric
data such as aerosols and water vapor, and irradiance models used, whereas ground
measurements have erroneous data because of the inaccuracy of sensors, lack of
calibration or error, and error due to insufficient maintenance to prevent soiling and
shading [40]. Most erroneous data is recorded at sunrise and sunset times when the
solar elevation angle is below 7°, which is called the cosine error, and these
measurements are generally excluded [41], [42]. Reflection from the clouds and
refraction of the atmosphere can cause positive measurements before sunrise and
after sunset, which creates problems for the hours that contain sunrise and sunset

times; thus, these measurements can be neglected [19].

Several quality check tests were developed by institutions and researchers for
measured solar radiation data using physical limits and the relations between
radiation components [41]-[43]. For example, Journee and Bertrand [43] applied
several quality tests to sub-hourly solar radiation data such as physical threshold,
step, persistence, quality envelope, sunshine and spatial consistency tests. Physical
threshold and quality envelope tests were applied to the ground measurements used

in this thesis.

2.5  Economic Analysis of a Solar PV Power Plant

Levelized cost of electricity (LCOE) is a useful economic metric to compare the
viability of different energy generation technologies, which is the ratio of the total
life cycle cost and energy production, in USD/KWh [44], [45]. There are several key
parameters to calculate the LCOE of a renewable energy project, which are the
capital expenditures, annual operation and maintenance expenditures, discount rate,

annual energy production (AEP) and the project’s operational lifetime [45].
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Previous case studies were done for METU NCC, and different assumptions were
made for the economic assessments. For instance, solar PV investment cost varied
from 1388 to 3200 USD/kW, whereas the annual total operation and maintenance
(O&M) cost was between 14 and 25 USD/KW [17], [46]-[49]. The annual discount
rate was assumed as 9% in [17], [47], while 10% was suggested in [49]. A sensitivity
analysis was conducted to see the effects of solar and wind resources on the LCOE,
and it was found that a 20% change in weather parameters of the TMY data set would
deviate the LCOE by 8% [17]. However, further research is needed to see the long-
term variability of renewable resources and their impacts when calculating LCOE

throughout the operational lifetime of a plant.
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CHAPTER 3

THEORY AND METHODOLOGY

In this chapter, different methods used throughout the study were explained, which
can be applied to different sites and solar PV energy projects; thus, the methodology
is widely applicable. In this study, the methodology was applied to the 1 MWp solar
PV plant at METU NCC as a case study. First, data analysis was conducted, and
different types of datasets were downloaded from different sources. Then, a quality
assessment was done to the ground measurements, which has some erroneous data
points. Using these datasets, energy yield was estimated, P50/P90 analysis was
conducted to find the POE values, and a stochastic simulation was also done. Both
SAM software and custom codes in MATLAB were used to do the calculations.
Finally, the overall uncertainty of the energy yield was estimated, and the LCOE
range was obtained. Figure 3.1 shows the flowchart of this thesis.

61'01111(]1:;131;12515111'8(1 ‘, Satellite-based Data ] TMY Datasets
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Distribution . .
Assessment Method . Simulation
Assumption
| P50/P90 ANALYSIS |
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L J Comparison with P50

A

Levelized Cost of
Electricity

Uncertainty
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Figure 3.1. Flowchart of the thesis.
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3.1  Data Analysis

3.1.1 Datasets

Long-term solar radiation data is required to find the POE values of energy yield
estimations. In this study, both ground measurements and satellite-based data were
used, whereas TMY data was used to compare P50 values. The satellite-based data
was downloaded from the PVGIS web interface, and three different TMY data sets
were used to obtain a general TMY result, which are TMY2-Meteonorm [50],
TMYx.2004-2018 [51] and PVGIS-TMY [52]. Using different TMY datasets is to
obtain an average TMY result, and the number of datasets can be increased if there
are more data sources. For the long-term satellite-based data, the SARAH database
was recommended for Europe, Africa, Asia, and South America regions, covering
12 years from 2005 to 2016 [53]. In Figure 3.2, default satellite databases for
different parts of the world from the PVGIS interface are shown. In Table 3.1, site-
specific climatic conditions of METU NCC and the type of datasets used in the study

can be seen.

Default solar radiation DB
BN PVGIS-SARAH PVGIS-NSRDB B PVGIS-ERAS No coverage

{
|
90°S : i 1 | I | i
180° 150°wW 120°W 90°W 60°W 30°wW 0° 30°E 60°E 90°E 120°E 150°E 180°

Figure 3.2. Default solar radiation database for different regions of the world,
available in PVGIS [53].
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Table 3.1 Climatic conditions of the region and type of datasets used in the study.

Location METU NCC, Cyprus

Latitude 35.25°N

Longitude 33.02°E

Elevation [m] 118

GHI [KWh/m"2/day] 5.36

DNI [kWh/m"2/day] 6.05

DHI [kWh/m”~2/day] 1.62

Average Temperature [°C] 19.7

Average wind speed [m/s] 3.2

K&ppen-Geiger Climate Csa

Database Satellite-based Ground-measured ™Y
Time resolution hourly 10-min hourly
Time period 2005-2016 (12 years) 2010-2016 (7 years) 1 year

The PVGIS-SARAH data sets were validated by comparing them with the ground
measurements provided by the Baseline Surface Radiation Network (BSRN) [54].
Although there is no validation study for Cyprus, the nearest BSRN stations are in
Israel and Greece, where the relative mean bias deviations are +3.4% and +3.6%,
respectively [54]. In addition, considering that Cyprus is in the middle of the two
stations in Israel and Greece, it can be assumed that SARAH data overpredicts GHI

up to 3.6% on average for the Cyprus region.

Satellite-based data includes in-plane beam and diffuse irradiance, sun elevation, air
temperature at 2 meters and the wind speed at 10 meters above the ground. In the
web interface, hourly time series data was downloaded for the location of the
installed solar photovoltaic (PV) power plant at METU NCC, where the latitude is
35.253°N and longitude is 33.016°E. Fixed mounting type with zero slope and south-
facing azimuth angle was given as inputs. Direct normal irradiance (DNI) values
were calculated according to the zenith angle since SAM uses weather data inputs as
GHI, DNI and DHI. In addition, individual weather files with 8760 hours were
created for each year from the 12-year time series data because SAM is designed to
run simulations for annual weather datasets. For this reason, leap days were removed
from the years 2008, 2012 and 2016.
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Apart from satellite-based and TMY datasets, ground-measured data has been
recorded with 10-minute time steps. GHI has been measured with a pyranometer
since January 1, 2010, while DNI has been measured with a pyrheliometer since June
1, 2013, at the solar PV power plant in METU NCC. After 2017, the quality of
measurements reduced significantly; therefore, data between 2010 and 2016 were
used. In addition, global tilted irradiation (GTI) has been recorded with a 30°-tilted
pyranometer since February 13, 2016. In Table 3.2, details of measured data and

sensor equipment at the solar PV plant are provided.

Table 3.2 Measured data and equipment details.

Measured parameter Symbol  Type of instrument Manufacturer Model Measured since
Global horizontal irradiance  GHI pyranometer Kipp & Zonen CMP-22 2010
Direct normal irradiance DNI pyrheliometer Kipp & Zonen CHP-1 2013
Global tilted irradiance GTl  30°-tilted pyranometer  Kipp & Zonen CMP-10 2016
Temperature T thermometer Kintech Galtech ~ KPC 1/5 2013
Recorded data - data logger Campbell Scientific  CR800 -

3.1.2 Quality Assessment of Ground-Measured Data

Missing and suspicious data were found both for GHI and DNI. Thus, quality
assessment was done to detect erroneous data points using quality control tests. For
GHlI, physically impossible values were found using ET radiation on a horizontal
surface. Figure 3.3 shows the time series of the ground-measured data with 10-
minute time steps and ET irradiation. Figures 3.4 and 3.5 also show the heat map of

ground-measured GHI and DNI data, respectively.
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Figure 3.3. Time series of uncorrected ground-measured data with 10-minute time

steps and extra-terrestrial irradiation between 2010 and 2017.
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Figure 3.4. Heat map of 10-minute measured GHI for time period 2010-2016.
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Figure 3.5. Heat map of 10-minute measured DNI from the second half of 2013 to
2016.

The following adjustments were made to the ground measurements:

e Leap days were removed from the years 2012 and 2016.

e All GHI and DNI data before sunrise and after sunset were converted to zero
to correct any missing and positive values, as suggested by [54].

e To exclude any possible error due to sunrise and sunset times, GHI and DNI
data were converted to zero when the solar elevation angle (h) is below 7°.

e For the upper limit, data were changed to missing if GHI exceeds the extra-

terrestrial radiation on a horizontal surface (G,) during daylight.

GHI < G, if h > 0° (1)

Go = Gsc (1+0.033 cos*=2) cos 6, )
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where G, is the solar constant that is assumed as 1367 W /m?, n is the day

number in a year, and 6, is the zenith angle [19].

For the lower limit, data were changed to missing if GHI is lower than
expected. Heavily overcast conditions determine the minimum GHI, and the

following condition was adapted for sub-hourly data from [43]:
GHI > 10~* x (h — 10) x G, if h > 10° (3)

A persistence test was applied to all GHI data during daylight to find any
sensor failure due to intermittent and/or constant recordings. Equation (4)

was used from [43]:
“ulky) < o(k,) < 035 if h>10° ()

where k; represents the clearness index at each time step, u(k;) and o(k;)
are the mean and standard deviation of clearness index values at each day,
respectively. However, this test did not work for the Cyprus region, and it
found clear-sky days rather than constant and intermittent measurements
because of sensor failure. This test was studied over Belgium; thus,
parameters may change due to site-specific conditions as indicated by the
authors [43].

For daily total GHI values, lower and upper limits were suggested by [55] :

0.03 X Goqaity < GHlgaiy < 1.1 X Ges gaity ©)

where G, gqi1y IS daily total E.T. radiation, GHlg,;,, is daily total GHI
measurement, and G qq:1, IS daily total clear-sky radiation. In this study,

clear-sky radiation was not found since it would introduce complex
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parameters such as relative air mass, Linke turbidity factor and Rayleigh
optical depth [42], [43], [55]. In addition, lower-than-expected GHI values
were observed in the last years when compared to DNI measurements and
satellite-based data. Thus, a lower limit was tested as a priority.

10-min data points were averaged to hourly values, omitting missing values.
However, hourly data were kept as missing if a whole hour of data points
were missing.

An estimation was then done for GHI using the Erbs model [43], [56]. Since
DNI measurements were available from June 2013, estimated GHI values
were calculated based on beam transmittance, k,, (B/G,) and the following

conditions in equation (6):

( k, = kn_

= 2% if 0<k,<0.004356
f(ky) —k, = 0 where f(k,) = 0.0489k, + 0.1604k,* — 4.388k,>

< +16.638k,* — 12.336k,° 6

if 0.004356 < k,, < 0.668

\ ke=—2 if 0.668 <k, <0.835

Quality envelope test was also applied to k,, — k; spaces between the years
2013 and 2016 because both DNI and GHI measurements exist in that period.
Since DHI was not measured, k; — k; envelopes were not created. It is a
statistical outlier analysis and defining the boundary layers of envelopes
depend on site-specific conditions [42]. Boundary layers are constructed
using high quality and reliable ground measured data, and the nearest study
was done in Cyprus by Pashiardis and Kalogirou [42]. They chose two sites
which are Larnaca and Athalassa, and since Larnaca is a coastal region with
similar solar radiation characteristics like at METU NCC, the following

boundary layer equations created for Larnaca were used [42]:

Fiower (k) = 0.0441 — 0.752k, + 1.480k,> )
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fupper (ke) = —0.0705 + 0.6568k, + 0.3814k,” (8)

Gap filling can be done by estimations using the most correlated reference
data from neighboring stations [57]. However, since measurements from a
nearby alternative station are not available in our region, a spatial consistency
test could not be done for our GHI & DNI measurements to estimate missing
and erroneous data. Also, estimating solar radiation from nearby stations may
not work on partly-cloudy days since weather conditions can change rapidly
for each station [58]. As suggested by [59], up to 2 hours of missing data can
be filled by linear interpolation.

Before applying linear interpolation to missing hours, a replacement was
done for the underestimated GHI measurements for 2014, 2015 and 2016.
Both heat maps and daily total GHI graphs showed that GHI values are lower
than or equal to DNI measurements in some periods; thus, the following
criteria in equation (9) was applied to replace measured GHI with estimated
GHI:

use GHIestimated

if GHIestimated > GHImeasured (9)
and if DNI x cos 8, > 0.95 * GHI;,cqsured

The second criterion was obtained from [43], and it comes from the relationship

between the global, beam and diffuse radiation components, where DHI will always

be greater than zero during daylight. Also, DHI will be minimum during clear-sky

conditions so that the upper limit for beam component cannot exceed GHI multiplied
by 0.95.

Missing GHI data was also estimated if DNI measurements were available. For

example, 20 days of missing GHI data in October 2015 were estimated using DNI

measurements and the Erbs model. The estimation procedure was applied for years

2014, 2015 and 2016. The remaining missing hours of GHI were then filled by linear

interpolation if one or two hours are missing. As a result, the number of missing
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hours was reduced from 269 to 51 between 2010 and 2016. In total, five days had
both missing GHI and DNI values, and satellite-based data replaced them since it
better tells us whether that day was clear-sky, partly cloudy or fully cloudy, rather

than interpolating the whole day in between times.

Table 3.3 Days with missing GHI and DNI measurements. Missing hours were

replaced by satellite-data.

Year Month Day
2013 JUly 30th
2013 July 31th
2014 May 31t
2015 March 31th
2016 September ~ 30%"

Apart from these, lower-than-expected measurements were found in July 2011, and
neither linear interpolation nor estimating GHI worked since there were no DNI
records. Thus, lower-than-expected GHI measurements were replaced by satellite-
based hourly GHI data between 188-220. days in 2011. According to the average
daily total GHI values of measured and satellite-based data, average measured-to-
satellite ratios were found as 0.9014, 0.8694 and 0.9576 throughout the whole year
for 2010, 2012 and 2013, respectively. The mean measured-to-satellite daily GHI
ratio was found as 0.933 with respect to 2010, 2012 and 2013, then a replacement
was done for lower-than-expected GHI data in 2011 by multiplying satellite-based
GHI with 0.933 for that time period only.

A summary of the detection of erroneous GHI, filling missing GHI and DNI data,
and using estimated GHI at specific time periods can be seen at Figure 3.6. Applying
this methodology to the measured GHI changed erroneous time periods; therefore,
the term “constructed GHI” will be used, referring to the GHI after the quality

assessment is done.
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GHI and DNI are missing > 2 hours

J] Yes

Replace with hourly satellite-based

10-min

measured data [>{_ measured

GHI
GHI < G, if h > 0° No
<G if ——3 change to missing ]
convert to hourly data
‘L Yes — > (omit missing data)
No
GHI = 107*+ (h — 10) + G, if h > 10°

| Yes

Linear < missing data > 2 hours

interpolation No
Yes
use GHlgstimated Estimate GHI
if GHlgstimateda > GHlyeasured <t using Erbs model
and if DNI # cos 0, > 0.95 + GHI, . qsured and DNI

Figure 3.6. A flowchart of detecting erroneous GHI, filling missing data, and

estimating GHI when it is needed.

e Ambient temperature measurements were recorded every 10 minutes from
February 19, 2013, until March 25, 2018, as can be seen in Figure 3.7. Leap
day in 2016 was removed, and only data recorded in 2014, 2015 and 2016
were taken to be used in solar PV energy production calculations since GTI
estimation is available for that time period. Hourly missing data were filled

by linear interpolation.
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Figure 3.7. Time series of 10-minute measured ambient temperature between 2013
and 2017.

After all these adjustments, comparisons were made between measured, estimated,
constructed and satellite-based data, using the relative root-mean-square error
(rRMSE) formula in equation (10):

2
n
iz 1(xestimated,i_xmeasured,i)

rRMSE = j = (10)

Xmeasured

3.2  Solar PV Energy Yield Estimation

The amount of energy output of a solar PV module is dependent on the geometrical
relations between Sun, Earth and the module’s surface where solar radiation reaches.
Also, time is important in solar energy calculations, and solar time should be
calculated, which is different from local time [19]. The following equation is used to

calculate solar time [19]:
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ts = tsgg +4 X (Lst - Lloc) +E (11)

where tg.4 is local time, L, is standard meridian, L;,. is the longitude of location,

and E is the equation of time. These terms are calculated in equations 12-14 [19]:

L {—(TZ) X 15 ifTZ <0 12)
St 360 —(TZ) x 15 if TZ >0
_ (Lioc if West

Lioe = { 360 — L,  if East (13)
E =229.2 x (0.000075 + 0.001868 x cos B — 0.032077 X sin B

—0.014615 X cos 2B — 0.04089 X sin 2B) (14)
where B is a constant and calculated as follows [19]:

360
B—(n—l)x% (15)

Solar time should be converted to angular form, which makes the hour angle [19]:
w = (t; —12) x 15 (16)

Apart from solar time, the position of the sun should also be found. Zenith angle is

calculated as follows [19]:
cos 8, = cos@cosd cosw + sin@Psind @an

where @ is latitude, and & is the declination angle which is calculated as follows [19]:
§ = 2345 x sin (22 x (284 +n)) (18)

The solar azimuth angle is also needed and calculated as follows [19]:

cos 0, sin @—sin 5) |
sin 8, cos @

¥ = sign(w) X |cos‘1 ( (19)

The PV module orientation should also be determined to optimize the energy output;
thus, tilt (B) and surface azimuth angles (y) should be optimized. Finally, the angle

of incidence can be calculated as follows [19]:
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cos 8 = cos 8, cos § + sin G, sin § cos(ys — y) (20)

In this study, global tilted irradiation (GTI) was estimated using the isotropic sky-
diffuse model proposed by Liu and Jordan, since it allows a simple calculation by

not considering the circumsolar and horizon-brightening effects of DHI [19]:
GTI = DNI x cos 6 + DHI (Z5°F) + GHI x p x (=2°£) (1)

where 0 is the angle of incidence, f is the surface tilt angle, and p is the surface
albedo. Thus, GTI consists of beam, diffuse and reflected radiation components
incoming to tilted solar panels. Surface albedo was assumed as 0.2, constant during
a year. Apart from the isotropic sky-diffuse model, more detailed transposition
models consider the circumsolar and horizon-brightening components of diffuse
irradiation, such as Hay, Davies, Klucher, Reindl (HDKR) and Perez models [19].
HDKR model estimates GTI as follows [19]:

Ir = Uy + LADRy + (1 = A) (F5=F) [1+ £sin® (B)] + 10 (F525) ()

where I, I,, 1; and I are tilted, beam, diffuse and global horizontal irradiation,

respectively. A; is the anisotropy index and is calculated as follows [19]:

A= (23)

Io

where I, is the extra-terrestrial radiation on a horizontal surface. R;, is the geometric

factor and is calculated as follows [19]:

Rb _ cos @ (24)

cos 6y,

where 0 is the angle of incidence. Finally, f is the modulating factor which takes into

account cloudiness, and is calculated as follows [19]:

F= @9

The most detailed estimation of GTI is found using the Perez model [19]:
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14+cosf
2

Ir = IRy + 141 = F) ( )+ laFy 5 + IgF, sin B + 1p (F22F) (26)

2
where F; and F, are circumsolar and horizon-brightness coefficients, respectively.

The terms a and b account for the circumsolar radiation, and detailed information

about these terms can be found in [19].
DHI can be calculated from the relationship between DNI and GHI [19]:
GHI = DNI x cos 8, + DHI (27)

Annual energy production was calculated on an hourly basis, using the following
equation [19]:

Epy = 2?:7?0 Npv,i X GTI; X Apy X Npy (28)

where 1y ; is the PV module efficiency at i hour, Apy is the PV module area and

Npy is the number of PV modules in the solar PV plant. PV module efficiency at it"

hour can be calculated from the following equation [19]:

Npy = UPV,ref[l - ,Bt(TPV - Tref,STC)] (29)

where npy ¢ is the reference PV module efficiency under standard test conditions
(STC), B; is the temperature coefficient, Tpy is the PV module temperature, and
Tref src IS the reference PV module temperature under STC. PV module temperature

at i hour can be calculated from the following equation [19]:

GTI

Grer (30)

Tpy = Tampient + (TNOCT - Tref)

where T,mpien: 1S the ambient air temperature, Tyocr IS the nominal operating cell

temperature, T, is the reference temperature under normal operating conditions,
and G, is the reference irradiation under normal operating conditions. The input

parameters used to calculate the solar PV energy yield can be found in Table 3.4.

After calculating the annual energy production, the final energy yield of a solar PV

plant can be found as follows [19]:
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_ AEP
f= Installed capacity

(31)

where Yz is the final energy yield in kWh/kWp, AEP is the annual energy production

in KWh, and installed capacity of a solar PV plant is in kWp, which is 1000 kWp for
the installed solar PV plant in METU NCC.

Table 3.4 Input parameters of the solar PV module [60].

Parameter Symbol  Value Unit
PV module area Apy 1.63 m?
Number of PV modules Npy 4000 -
Reference PV module efficiency under STC NMpvref  15.37 %
Temperature coefficient Bt 0.0042 K™t
Reference PV module temperature under STC TretsTc 25 °C
Nominal operating cell temperature TnocT 45 °C
Reference irradiation under normal operating conditions Gref 800 W/m?
Reference temperature under normal operating conditions Tref 20 °C

Both ground-measured and estimated data, which were obtained by doing the quality
assessment, were used to calculate the energy yield, and a summary of the

methodology followed can be seen in Figure 3.8.
Measured PV cell PV module
temperature temperature efficiency
Measured Constructed
GHI, DNI GHI

Estimated

Estimated GTI )
energy yield

Measured
GTI

Figure 3.8. Summary of the procedure to find energy yield estimations using ground-

measured data.
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3.3  P50/P90 Analysis

An exceedance probability is the complementary value of a percentile, thus, 10"
percentile is the P90 value. In this study, the term “P” is used to denote P50 and P90
exceedance probabilities. Any POE value can be found from the inverse of a CDF,

F(x), using the following equation:
POE = F~(x) (32)

The empirical method is said to be the most direct application since it is based on
concatenating data points with equal probability of occurrence without assuming a
PDF [13], [23]. In this study, the empirical method was applied to find the POE
values of GHI and AEP, considering that there may be outlier weather events that
cause skewness in the data sets. Therefore, statistical uncertainties due to assuming
a specific PDF are not included in the empirical results. SAM version 2020.2.29 was
used to do a P50/P90 analysis, and a TMY simulation was done to compare the
energy yield with the P50 value. SAM calculates the energy exceedance probability
values using both the empirical method and the Normal (Gaussian) distribution
assumption [23]. According to the Normal distribution, independent samples are
normally distributed, and the following equations describe its PDF and CDF [22],
[23]:

F) = e i) @)
F(x) = %[1 +erf (%)] (34)

where erf is error function, o is the standard deviation, and p is the mean of a sample.
Assuming a Normal distribution for the long-term solar radiation dataset and the
energy yield makes the P50 value mean, and P90 value can be calculated from the
CDF of Normal distribution [22]:

P90 =pu—1282%go (35)
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At least ten years of weather data are required for the P50/P90 analysis in SAM to
include the interannual variability of solar irradiation and obtain a representative
CDF of the AEP. In addition, the most recent 10-year data is suggested to best predict
the future GHI trend throughout the operational life of a PV plant [25]. Since the
satellite-based data is available for the time period 2005-2016, 12 years of data were
used in the simulation. However, including the recent years’ data is of interest since
the interannual variability of GHI directly depends on the length of the time period
[32]. The interannual variability can be calculated with the coefficient of variation

(COV) using the following equations, which are suggested by [4]:

cov = (36)

Rilw

s = \/(% NG — f)z) (37)

where s is the standard deviation, x; is the individual value and x is the mean value
of a sample. Here, N is the number of years for the time period of 2005-2016.
Throughout the simulations, DNI and GHI datasets were used as the irradiance data
from the weather files. Surface albedo was assumed to be constant which is 0.2. To
convert irradiation components into POA irradiation on an inclined surface, SAM
uses three different transposition models: the isotropic, HDKR, and Perez models.
Therefore, results were obtained for each model to see the effects of transposition
models on the POE values. In Table 3.5, SAM input parameters of the installed solar
PV plant in METU NCC are shown, in which both specifications of the installed
solar PV module and inverter are provided. Since SAM does not allow multiple
maximum power point tracking (MPPT) inputs for inverters if it is a large-scale PV
system, single MPPT input was assigned, although the number of MPPT input is 2
for the inverter model in the PV plant at METU NCC.

In Table 3.6, PV system losses, which are applied as default values, are given.
Shading, reflection, soiling and snow cover correspond to irradiance losses that
reduce the POA irradiance on PV modules, and the annual average values are

presented. Here, the nameplate loss refers to the degradation of PV modules after
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being exposed to sunlight, and the value was obtained from the manufacturer’s
datasheet [60]. However, P50/P90 analysis does not allow to consider the annual
degradation rate of the PV system throughout its operational life since calculations
are done only for the first year; thus, -0.48% degradation rate per year that is provided
in the datasheet is not included in the calculation of AEP. On the other hand, the PV
module efficiency deviates from the standard test condition (STC) since it depends
on the solar irradiation, ambient temperature and the wind speed [33], the average
deviation from STC was obtained for the PV modules. Other losses such as diodes
and connections, AC/DC wiring, inverter power consumption and inverter efficiency
loss are for AC and DC losses. Grid limits such as interconnection to the grid and

curtailments were not considered in this study.

Table 3.5 Solar PV system inputs used in SAM software.

Parameter Value

Rated power 1 MWp

Tilt angle 30°

Surface azimuth angle 0°

Tracking Fixed

PV module AC-250P/156-60S
PV technology multi-c-Si
NOCT 45.8°C
Temperature correction NOCT method
PV module conversion efficiency 15.41%

DC to AC ratio 1

Mounting standoff
PV module area

ground/rack mounted
1.623 m?

Total module area 6492 m?

Ground coverage ratio 0.4

Number of modules 4000

Inverter STP 25000TL-30
Inverter size 25 kW
Manufacturer's inverter efficiency 98.30%

Number of MPPT inputs 2

Number of inverters 40
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Table 3.6 Solar PV system losses used in SAM software.

L osses (%)
Shading -2.2
Soiling -2
Reflection -2.5
Snow 0
Module mismatch -2
Nameplate -3
PV module deviation from STC -5
Diodes and connections -0.5
DC wiring -2
AC wiring -1
Inverter power consumption -1
Inverter efficiency loss -1.75
Inverter power clipping 0
Transformer & transmission 0
Availability & curtailment 0

34 Stochastic Simulation

Since estimating the long-term energy yield of solar PV includes many assumptions,
such as modeling equations and losses, the effect of the uncertainty of each input on
the energy output should be investigated. In addition, there can be correlations
between the inputs. Generally, stochastic modeling is done by defining a probability
distribution for each source of uncertainty, and many samples are created with
respect to the defined distributions of inputs, then, many possible outputs are
calculated according to the samples. This method allows us to obtain a range of the
expected output, for example, energy yield and the LCOE. Furthermore, a short-term
dataset with less than ten years can be used to obtain P50 and P90 values because
creating the samples enables new possible inputs for the weather dataset. Using
longer datasets will make the results more realistic in the long term since the

interannual variability of GHI changes according to the selected time period.
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As a part of this study, the exceedance probabilities of the energy yield and the LCOE
are found using the empirical method and the Normal distribution assumption. The
results are also compared with TMY results. For the energy yield, a photovoltaic
model without financial analysis is used in SAM; also, energy yield is estimated
using the basic equations and the same weather datasets in custom codes. By doing
so, the deviation of results can be quantified between using a simple model and
modeling software. Besides, the LCOE is calculated using an equation and the
energy Yyield results obtained from SAM calculations. Other inputs are assumed
according to the literature and best practices. Thus, the LCOE variations can be
determined according to different energy yield estimations.

In addition to these, a stochastic simulation is done in SAM software (version
2020.2.29), which uses the Latin Hypercube Sampling (LHS) method in order to
create many samples, which is like Monte Carlo Simulation (MCS) [61]. Basically,
the difference is that the LHS method generates near-random samples, whereas MCS
generates random samples. The procedure of doing a stochastic simulation in SAM
follows these steps:

- Defining input variables and their probability distributions

- Defining correlations between inputs, if there is any

- Choosing the output(s)

- Enabling weather file analysis for either GHI or DNI, if there are multiple
weather files

- Defining the number of samples

- Computing the samples that will be used in the simulations

- Running simulations

Enabling weather file analysis is important because the interannual variability of
GHI can also be considered by this way. In this study, satellite-based data (PVGIS-
SARAH) was used with 12-year weather data for the time period of 2005-2016.
Besides, the number of samples can be chosen by the user; however, there should be

an optimum point at which the run-time will not take a long time, and the confidence
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level of the outputs will be adequate. Thevenard and Pelland [26] showed in their
study that computing 100 samples could give reliable results in less than 10 minutes.
In Figure 3.9, a screenshot of the stochastic simulation tools which are used in this
study can be seen. The input variables and assumed distributions can also be found
in Table 3.7. UserCDF is defined by SAM for the sky diffuse model, temperature
correction method and self-shading loss, which does not allow to choose another
distribution. Other variables are assumed to be normally distributed, and their
standard deviations are created by SAM, whereas the mean values have been
assumed by the user previously. Here, it is important to note that SAM does not allow
to choose and specify an uncertainty distribution for the soiling loss, which is
assumed as 2% for the average annual soiling loss in the losses. Thus, the uncertainty

related to dirt and soiling is not analyzed in detail in this study.

Run simulations > Number of samples: [ Seed value (O for random): i Compute samples

Configure
Input variables: Add.. = Edit. Remove Correlations: Add...  Edit. Remove QOutputs:  Add. Remove

Sky diffuse model { UserCDF [3]) A Energy yield
AC wiring ( Normal [1,0.15] )

DC wiring loss 1 ( Normal [2,0.3])

Diodes and connections loss 1 ( Normal [0.5,0.075] )

Module mismatch loss 1 ( Normal [2,0.3] )

Nameplate loss 1 { Normal [3,0.451 ) hd

[“lEnable weather file analysis  GHI ~ Select folder: | C:\Users\Asus\Desktop\gahsilacak datasetler\Satellite Data\sarah with DNI .. Show CDF

Figure 3.9. Stochastic simulation tools in SAM software.

Table 3.7 The input variables with their assumed distributions in the simulations with

no financial model. Mean and standard deviations are shown in percentage.

Input variable Assumed distribution Mean (%) Standard deviation (%)
Sky diffuse model userCDF (Isotropic, HDKR, Perez) - -
Temperature correction method userCDF (NOCT, heat transfer) - -
Self-shading loss userCDF (None, standard, thin film) - -

AC wiring loss Normal 1 0.15

DC wiring loss Normal 2 0.3

Diodes & connection loss Normal 0.5 0.075
Module missmatch loss Normal 2 0.3
Nameplate loss Normal 3 0.45

The stochastic simulation was then done for a financial model, which is chosen as

PV LCOE Calculator to simplify the financial parameters used in SAM. By doing
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so, both energy yield and LCOE can be chosen as output in the simulation. Other
input variables are also added to previously mentioned inputs, which can be seen in
Table 3.8.

Table 3.8 The input variables with their assumed distributions in the simulations with
the financial model, PV LCOE Calculator.

Input variable Assumed distribution Mean  Standard deviation
Sky diffuse model userCDF (Isotropic, HDKR, Perez) - -
Temperature correction method userCDF (NOCT, heat transfer) - -
Self-shading loss userCDF (None, standard, thin film) - -

AC wiring loss Normal 1% 0.15%
DC wiring loss Normal 2% 0.30%
Diodes & connection loss Normal 0.5% 0.08%
Module missmatch loss Normal 2% 0.30%
Nameplate loss Normal 3% 0.45%
Capital Cost Normal 1880 S/kwW 282 S/kW
Annual fixed operating cost Normal 15 S/kW 5S/kW
Fixed charge rate Normal 0.098 0.0147

3.5  Uncertainty Analysis

There are several sources of uncertainties when calculating a solar PV plant's annual
energy production, such as data accuracy, energy modeling assumptions, and other
sources of error [25]. In this study, uncertainty components can be classified as data
uncertainty (accuracy of the satellite-based data used), converting GHI to POA
irradiance (transposition models), the interannual variability of solar irradiation,
uncertainties due to dirt, soiling, shading, reflection and other sources of error.

According to the propagation of error, a function f (x4, ..., x,,) has an uncertainty as,

dq = J(a_qul)2+...+(;71dxn)2 (38)

6x1

Thus, considering that the function is the annual energy production,

GTI;
ABP = S8 Npy rog ApyNow GT1; [1 = B (Tos = Trep + (NOCT = Ty ) 21 )|

(39)
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where npy ref, Apv, Npy, Be, Trer, NOCT and G, are constant parameters. Then, the

AEP can be written as,
AEP = f (G, T,) (40)

which is a function of GTI and ambient air temperature. The uncertainty of AEP can

be written as,

dAEP = J (22 dc;TI)2 + (a;g" dTa)z (41)

where GTI includes the interannual variability of GHI, uncertainty coming from
converting GHI to POA (transposition model), and the accuracy of a chosen dataset
for a specific site. In addition, losses due to dirt, soiling, shading and reflection put
additional uncertainty to global tilted irradiation (GTI). On the other hand, ambient
temperature variability can be considered in other sources of error. If all uncertainty
components are independent, the overall uncertainty of AEP can be found by the rule
of squares method [26]:

Ooverall = \/(Gdata)z + (0p0a)? + Ginterannuar)?® + (Ogire)?* + (Oother)? (42)

3.6  Economic Analysis

In this study, the effects of the interannual variability of GHI, hence, the AEP impact
on the LCOE was investigated using the empirical method of the P50/P90 analysis.
Thus, it is aimed to find the non-exceedance probabilities of LCOE according to the
exceedance probabilities of AEP since LCOE decreases as the AEP increases. All
the parameters, except AEP, are kept constant to investigate the effect of AEP on
LCOE. Also, any incentives, subsidies and taxes are assumed as zero. The solar PV
system's residual value is not also considered since the operational lifetime is

expected to be 25 years.

Since the LCOE is calculated for an energy project's whole operational lifetime, total

electricity produced should be found considering the system degradation rate (SDR),
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which is mainly affected by the solar PV module performance [62]. In the
manufacturer’s datasheet for solar PV modules, the performance linearly decreases
from 97 to 85 percent in 25 years; thus, the annual SDR is guaranteed as 0.48% per
year [60]. Hence, the LCOE formula was modified to account for the PV system

degradation rate over the project’s lifetime [62], [63]:

M;

t
Cotbimay (43)

¢ (AEP;).(1-SDR)!
i=1 (+n)i

LCOE =

where C, is the initial investment cost, M; is the annual total O&M cost, r is the
annual discount rate, t is the project lifetime, AEP is the first-year electricity

generation and SDR is the PV system annual degradation rate.

Financial assumptions of the 1 MW solar PV plant in METU NCC can be seen in
Table 3.9. Specifically, the initial investment and O&M costs are assumed from the
Transparent Cost Database [64] for 2016, when the solar PV plant is installed.
Further information about the historical and future trends of these costs can be found
in Figures 3.10 and 3.11.

Table 3.9 Financial assumptions and parameters used in the LCOE formula of solar
PV.

Parameter Value Unit Ref.
Initial investment cost 1880 USD/KW [64]
Annual total O&M cost 15 USD/kKW [64]
Annual discount rate 9 % [17], [47]
Project lifetime 25 years [60]
PV system annual degradation rate 0.48 % [60]
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Figure 3.10. Historical and projection data trends for the overnight capital cost of

solar photovoltaics. Adapted from [64].
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Figure 3.11. Historical and projection data trends for the fixed operating cost of solar

photovoltaics. Adapted from [64].
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In addition to this, SAM software is also used to calculate LCOE. The simple PV
LCOE Calculator is chosen to keep the financial parameters simple, and the

following equation is used in SAM:

(FCR)(TCC)+FOC

LCOE = +Vvoc (44)

where FCR is the fixed charge rate, TCC is total capital cost in $/kW, FOC is fixed
annual operating cost in $/kW/yr, VOC is the variable operating cost (zero for solar
PV), and AEP is the annual energy production in kWh/yr. The fixed charge rate was
chosen as 0.098 by SAM, and it is affected by many parameters such as the inflation
rate, project term debt, tax rate, interest rate and analysis period of the project. To
obtain similar results, VOC is kept zero, TCC is assumed as 1880 $/kW, and FOC is
assumed as 15 $/kW/yr. This method is said to be suitable for preliminary analyses

and to see the market trends of solar PV.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1  Data Analysis and Quality Assessment

Figures 4.1-4.4 show both measured and estimated hourly data points, in addition to
the boundary layers of quality control envelopes, where the lower curve is made by
fiower (k¢) and upper curve is made by f,,,er (k). There might be a calibration error
for measured GHI since most data is out of the quality envelope limits; in addition,
estimated data do not represent measured values. It is understood that GHI
measurements were underestimated in the last three years by a factor of 1.75 on
average. Although the second half of 2013 was tested, the measured data is almost

consistent with the limits.

—_— 2013 (second half of the year)

measured
0.7 F ¢ estimated

U lower curve
upper curve

0.6

051

~S 04+

0.3r

0.2r

0.1r

Figure 4.1. k,, — k; quality envelopes for measured and estimated data with upper
and lower boundary layers in 2013.
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Figure 4.2. k, — k. quality envelopes for measured and estimated data with upper

and lower boundary layers in 2014.
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Figure 4.3. k, — k; quality envelopes for measured and estimated data with upper

and lower boundary layers in 2015.
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Figure 4.4. k,, — k; quality envelopes for measured and estimated data with upper

and lower boundary layers in 2016.

After doing the quality assessment, GHI data were estimated and constructed
according to the methodology explained in Section 3.1.2. The methodology was
applied to the specific parts of data, which are shown in boxes in Figures 4.5, 4.7,
4.9 and 4.11. The aim of choosing specific parts of data is to construct hourly GHI
only when a significant difference with the daily total GHI of satellite-based data
exists. Therefore, the boxes are specified manually, and only those periods in the
boxes are constructed for the years of 2011, 2014, 2015 and 2016. No significant
difference is found according to RMSE results of GHI for the years 2010, 2012 and
2013. By doing so, it is also aimed not to change ground-measured data unless it is
suspicious since it is known from the validation studies that satellite-based GHI can
be overestimated by about 3.6% compared to ground measurements. In Figures 4.5-
4.12, the changes done to the ground-measured GHI data can be seen, compared with
E.T. radiation and satellite-based GHI.
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Figure 4.5. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in
rectangle, in 2011.
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Figure 4.6. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2011.
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2014, daily total
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Figure 4.7. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in

rectangle, in 2014.
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Figure 4.8. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2014.
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2015, daily total
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Figure 4.9. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in

rectangle, in 2015.
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Figure 4.10. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2015.
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s S

-
N

E.T.
GHI(SARAH)
GHI(measured) | -

-
o
T

co
T

N

solar irradiation on horizontal surface (kWh/m2/day)

i
‘,lyﬂ | M |

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 4.11. A comparison of daily total E.T., satellite-based GHI (SARAH) and
ground-measured GHI before the adjustment done to selected time period shown in
rectangle, in 2016.
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Figure 4.12. A comparison of daily total E.T., satellite-based GHI (SARAH),
constructed GHI and ground-measured GHI after the adjustment, in 2016.
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Relative root-mean-square error (rRMSE) is calculated to compare ground-measured
and satellite-based data. In Table 4.1, RMSE results of GHI and DNI data can be
seen. First, the results are found for the measured GHI values, and the rRMSE
significantly increased after the year 2013. Then, the estimated GHI are calculated
using the available DNI data and Erbs model. It is found that rRMSE values were
reduced by a factor of 4 on average. Finally, new GHI values are constructed using
both measured and estimated GHI, and the average RMSE for the time period 2010-
2016 reduced from 34.63% to 14.02%. Monthly mean daily total GHI values are also
found from the newly constructed GHI data and comparing them with monthly mean
satellite-based GHI data resulted in 11.22% RMSE on average. Comparing the
annual mean daily total GHI data of satellite-based and ground-measured data from
2010 to 2016 gave a relative RMSE of 8.78%.

Table 4.1 Relative root mean square error (rRMSE) of measured GHI, measured
DNI, estimated GHI and constructed GHI with respect to satellite-based GHI and
DNI data, obtained from daily total & monthly mean daily total DNI and GHI
(kWh/m~2/day) for each year. DNI is available after June 2013.

Daily total Monthly mean
Measured GHI Measured DNI  Estimated Constructed Constructed
Year (%) (%) GHI (%) GHI (%) GHI (%)
2010 14.28 - - 14.28 10.39
2011 21.36 - - 9.34 7.82
2012 8.75 - - 8.75 6.62
2013* 18.32 - 9.04 2.80 5.91
2014 53.09 32.11 15.51 20.61 18.01
2015 61.97 23.15 11.95 16.40 13.71
2016 64.66 43.00 22.05 25.98 16.10
average 34.63 32.75 14.64 14.02 11.22

*Estimated and constructed GHI in 2013 are calculated starting from June.
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41.1 Validation of Ground Measurements

RMSE results show that ground-measured GHI has some inaccuracies since the error
increased from 18.32% in 2013 to 64.66% in 2016. In fact, it was aimed to find any
biases or systematic errors in satellite-based data; however, this was not possible due
to the lack of high-quality ground-measured data. Thus, the satellite-based data was
used to compare with ground measurements between 2010 and 2016. Applying the
quality control tests also consolidated the lower-than-expected GHI values in some
periods. An estimation was then done using the inversion of the Erbs model [56] and
measured DNI data. Instead of replacing the lower-than-expected GHI data with
estimated GHI directly, a method was followed which has two conditions. If the
estimated GHI is higher than the measured GHI, and if the measured beam
component is higher than the measured GHI, it is multiplied by 0.95, as explained in
Section 3.1.2. Therefore, the estimated GHI data was only used if these two
conditions are valid, and the constructed GHI was obtained. Indeed, this method can
only estimate the actual GHI data, and it also has some sources of error, such as using
the measured DNI data and Erbs model. Still, DNI measurements helped us
understand how reliable are GHI measurements; also, we were able to estimate GHI
by using the relationship between clearness index and beam transmittance in the Erbs
model. In Figures 4.13 and 4.14, heat maps of the measured and constructed GHI

can be seen. Changes were made in some periods of 2011, 2014, 2015 and 2016.
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Figure 4.13. Heat map of hourly measured GHI between 2010 and 2016.
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Figure 4.14. Heat map of hourly constructed GHI between 2010 and 2016.
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To validate the method used to construct GHI data, different time periods were
selected from 2013 and 2015. In 2013, DNI was available starting from June; thus,
the remaining last 214 days of 2013 were used to estimate and construct GHI.
Previously, it was found that GHI measurements of 2013 were in the range of quality
envelope, and the RMSE of measured GHI with respect to satellite-based GHI was
18.32%. Thus, it can be said that GHI data is reliable in 2013 compared to years
2014, 2015 and 2016, so a comparison of constructed and measured GHI data can be
done to validate the method. In Table 4.2, the RMSE values are given in percentage
for daily total GHI data. It can be understood from the results that the method
replaced a very small amount of data to construct GHI since RMSE was found as
0.06%. On the other hand, the first 130 days of 2015 was selected to apply the
method, which was found to be close to satellite-based GHI, and the method had not
been applied to that period previously. Similarly, an RMSE of 5.20% was found for
constructed GHI data, and the changes can be seen in Figures 4.15 and 4.16.
However, the period of October was not considered when calculating RMSE values
since there were no GHI measurements during that time as the pyranometer was sent
out for calibration. It can be said that the estimation method gave smaller errors when
compared to the results of satellite-based data, and the range is about 5% with respect
to measured data. Therefore, it can be assumed that this method is validated against
reliable measured GHI data, chosen from 2013 and 2015. It should also be noted that
344 days were used to apply the method, and only 21 days in May are unknown in

terms of the validity of the construction of GHI data.

Table 4.2 Relative RMSE values of estimated, constructed and satellite-based GHI

with respect to measured GHI, for selected time periods in 2013 and 2015.

RMSE with respect to daily total 2013 2015
measured GHI data (last 214 days) (first 130 days)
estimated GHI (%) 6.37 1.98
constructed GHI (%) 0.06 5.20
satellite-based GHI (%) 2.94 9.53
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Figure 4.15. Comparison of constructed and measured GHI with satellite-based data

in selected periods of 2013, for the validation of the method.
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Figure 4.16. Comparison of constructed and measured GHI with satellite-based data
in selected periods of 2015, for the validation of the method.
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Comparing daily total DNI measurements with satellite-based DNI gave 33% RMSE
on average for the last three years. This error might come from the fact that satellite-
based data covers up to 5 km area as spatial resolution; also, hourly data is calculated
based on one satellite image per hour, as time resolution [54]. Therefore, DNI
measurements from the ground can reflect the actual changes in cloud cover and
solar radiation. Comparisons of ground-measured and satellite-based DNI data for
2014, 2015 and 2016 can be seen in Figure 4.17, 4.18 and 4.19, respectively.
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Figure 4.17. Comparison of ground-measured and satellite-based daily total DNI

with rRMSE value, in 2014.
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Figure 4.19. Comparison of ground-measured and satellite-based daily total DNI
with rRMSE value, in 2016.
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4.1.2 Variability of Global Horizontal Irradiation

In this study, the long-term solar radiation trend is investigated to see its effect on
the energy yield estimations. As mentioned above, a multi-year weather dataset
enables the calculation of the interannual variability, and more reliable results are
obtained as the time period of the dataset increases. On the other hand, a TMY dataset
is useful when doing preliminary calculations of a solar PV energy project. In this
study, both TMY and multi-year datasets are used to estimate the energy yield, and
the differences between TMY and individual weather datasets obtained from PVGIS
are shown in the box plot of monthly GHI in Figure 4.20. This shows us that although
TMY gives an average of the individual years, we can see that year 2016 was an

outlier and that year can be considered a low-resource year in terms of solar radiation.
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Figure 4.20. Monthly average daily total GHI at METU NCC, between 2005 and
2016 (PVGIS-SARAH), in comparison with PVGIS-TMY .

The coefficient of variation (COV) is found to estimate both intra-annual and
interannual variability of GHI between 2010 and 2016. In Tables 4.3 and 4.4, the
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results of monthly and annual mean daily total GHI for ground-measured and
satellite-based data are represented, respectively. Both ground-measured and
satellite-based data results show that the intra-annual variability of GHI is higher in
winter months, whereas, the summer season has the lowest variability. On the other
hand, the interannual variability of GHI is found as 5.94% and 2.21% for ground-
measured and satellite-based data, respectively. This is expected since the solar
resource variability decreases as the time period increases [65]. Similarly, another
study was done to observe the long-term solar radiation trends in the Black Sea and
Mediterranean region using satellite-based data between 1985 and 2004 [20]. They
also found that the lowest and highest variability of GHI was observed in summer
and winter, respectively. Also, they reported low interannual variability, which is
lower than 4%, for Northern Africa, Middle East, and the Mediterranean islands.
Therefore, our COV results match with this study. Other statistical indices and the
COV results can also be seen. A comparison of the intra-annual and interannual
variabilities of ground-measured and satellite-based GHI was provided in Figure
4.21.

Table 4.3 Constructed ground-measured data results of monthly and annual mean
daily total GHI (kWh/m?/day).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
2010 2.16 299 474 6.23 6.86 7.43 7.23 6.61 569 3.84 314 227 4.94
2011 2.49 346 5.01 5.39 6.56 7.73 7.60 6.93 565 427 281 247 5.04
2012 2.28 339 492 6.05 6.68 7.65 7.49 6.98 594 402 2838 216 5.04
2013 2.44 2.65 4.92 6.21 6.68 8.21 8.07 730 6.06 486 282 236 5.23
2014 2.65 3.98 5.10 5.77 5.66 6.64 6.45 580 503 350 271 225 4.63
2015 2.23 3.08 4.48 6.10 6.04 7.35 7.53 6.56 499 3.64 238 218 4.72
2016 1.45 2.62 4.27 5.56 6.22 6.70 6.22 630 539 394 272 124 439

min 1.45 2,62 4.27 5.39 5.66 6.64 6.22 5.80 499 3.50 238 1.24 4.39
max 2.65 3.98 5.10 6.23 6.86 8.21 8.07 730 6.06 4.86 3.14  2.47 5.23
std. 0.39 0.48 0.30 0.33 0.43 0.56 0.66 0.50 0.42 0.45 0.23 041 0.29

mean 2.24 3.17 477 5.90 6.39 7.39 7.23 6.64 554 4.01 278 2.13 4.86
COV(%) 17.21 1525 6.31 5.61 6.69 7.59 9.15 7.47 7.52 11.25 819 19.19 594
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Table 4.4 Satellite-based data results of monthly and annual mean daily total GHI
(KWh/m?/day).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
2005 2.45 351 5.24 6.20 7.68 8.31 8.24 744 631 469 320 2.55 5.50
2006 2.55 3.19 4.73 6.27 7.75 8.40 8.03 7.46 6.27 4.17 3.29 2.70 5.41
2007 2.93 3.47 5.08 6.36 6.47 8.37 8.01 741 646 476 338 261 5.45
2008 2.87 3.78 5.24 6.65 7.76 8.42 8.24 7.19 580 4.53 342 2.57 5.55
2009 2.59 3.22 4.87 6.50 7.51 8.44 8.21 7.46 587 458 324 218 5.40
2010 2.44 3.37 5.19 6.68 7.59 8.06 8.18 7.31 6.31 4.31 3.60 2.63 5.48
2011 2.77 3.60 5.26 5.77 6.96 8.20 8.25 7.51 6.18 4.66 3.27 2.73 5.44
2012 2.42 3.66 5.10 6.35 7.00 8.34 7.90 742 636 428 313 235 5.37
2013 2.63 3.54 4.89 6.53 6.99 8.29 8.23 7.53 623 496 3.13 2.49 5.46
2014 2.83 4.06 5.24 6.58 6.83 8.08 8.15 737 607 431 319 249 5.44
2015 2.55 3.38 4.87 6.54 7.07 8.20 8.18 7.41 6.13 4.16 3.46 2.77 5.40
2016 1.48 3.22 4.79 6.41 6.25 7.84 7.96 7.30 5.74 4.69 3.29 1.76 5.07

min 1.48 319 473 5.77 6.25 7.84 7.90 719 574 416 313 1.76 5.07
max 2.93 4.06 5.26 6.68 7.76 8.44 8.25 7.53 646 496 3.60 277 5.55
std. 0.38 0.25 0.20 0.25 0.51 0.18 0.12 0.10 023 0.26 0.14 0.28 0.12

mean 2.54 3.50 5.04 6.40 7.15 8.25 8.13 7.40 6.14 451 3.30 2.49 5.41
COV(%) 14.81 7.28 3.93 3.88 7.07 2.18 1.50 1.29 3.78 5.72 429 1140 221
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Figure 4.21. Monthly and annual COV values of ground-measured (constructed) and
satellite-based GHI data.

4.1.3 Global Tilted Irradiation Results

Estimated GTI is compared with tilted pyranometer measurements in 2016, which is
recorded since February 13, 2016. Thus, a comparison is made for ten months in
2016, excluding January and February. According to Table 4.5, similar results are

found for estimated GTI and satellite-based GTI, except monthly mean RMSE
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results. In Figure 4.22, a comparison of the measured, estimated and satellite-based
GTIin 2016 is shown. It can be understood that estimated GTI has the lowest results
when compared to measured and satellite-based GTI data. On the other hand, using
satellite-based data predicts similar GT1 with measured GTI. Thus, it can be said that
choosing the type of dataset affects the GTI data directly, which is used to predict
the energy yield of a solar PV plant. For example, using a tilted pyranometer to
measure GTI will give more reliable data rather than measuring GHI and then
estimating GTI with a transposition model since there will be fewer sources of error,
such as the accuracy of the transposition model used. In addition, DNI should also
be measured with a pyrheliometer if GHI is measured, which helps to eliminate the
need for estimating beam and diffuse components by using a decomposition model.
However, this study also showed that the accuracy of the measurements, calibration
of the sensors and cleaning them regularly are very important to obtain highly
accurate and quality-checked ground-measured data, which was not the case for the
ground-measured data according to the quality assessment. Besides, considering that
long-term ground measurements with the quality check are not available in every
region of the world, using satellite-based data can be an option to make reliable and
long-term energy yield prediction, which is also valid for this study. Finally,
estimated GTI was superimposed to the graphs of the constructed GHI, beam and
diffuse horizontal irradiation (DHI) data for the years 2014, 2015 and 2016, which
can be seen in Figures 4.23, 4.24 and 4.25.

Table 4.5 RMSE (%) with respect to measured GTI in 2016, excluding January and

February.

hourly daily total monthly mean
estimated GTI 48.23 22.41 20.78
satellite-based GTI 54.92 20.81 10.34
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4.2  Energy and Economic Yield Estimations

In Table 4.6, all energy yield results can be seen, and Figure 4.26 gives a comparison
of these results. It can be seen that year 2016 has the most information in terms of
the availability of datasets. In 2016, the energy yield was 1693 kWh/kWp; however,
measurements started from February 13, since the solar PV plant became operational
from that day. Thus, energy yield in 2016 should be slightly higher than that
measured value. In 2017, the solar PV plant produced 1807 kWh/kWp. There is a
clear difference in the energy produced between 2016 and 2017, and 2016 reflects
the low solar resource, whereas 2017 is one of the high resource years according to
the energy yield calculations. However, using satellite-based data underpredicted the
actual energy yield value of 2016 by about 8.67% in SAM, although it was assumed
that GHI is overestimated by 3.5% for the Cyprus region by the PVGIS-SARAH
dataset. Still, the difference between the results of satellite-based and actual AEP
data might be because of the modeling assumptions used in SAM, such as the PV

system losses.

After calculating the energy yield in MATLAB codes, energy yield values were
found for 1 MWop solar PV plant using satellite-based, ground-measured and TMY
datasets. For satellite-based data results, calculations were done both in SAM and
MATLAB, and it was found that using SAM resulted in 14.74% lower estimations
on average compared to the calculations in MATLAB codes. This is due to the
modeling assumptions like PV system losses used in SAM as mentioned previously.
On the other hand, ground measurements gave different estimations according to the
type of GTI used. For example, using estimated GTI from constructed GHI and
measured DNI underestimated the energy yield in 2016 by 10.6%. However, using
measured GTI was overestimated by 9.4% compared to the actual energy yield in
2016. It should be noted that actual and estimated energy yields were obtained after
February 13, 2016. Similarly, using measured GTI in 2017 overestimated the energy
yield by 11.4%. Besides, three different TMY datasets were used to compare their
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estimations with other results, and the Meteonorm dataset gave the closest energy

yield compared to actual values.

Table 4.6 Energy yield (kwWh/kWp) estimations using different datasets with

isotropic sky-diffuse model. System Advisor Model (SAM) results were also shown

for satellite-based data.

Ground using  Ground using

Satellite  Satellite . TMY_Meteonorm TMYx.2004-2018 TMY_PVGIS
Year (SAM)  (MATLAB) estimated GTI measured GTI  Actual (MATLAB) (MATLAB) (MATLAB)
(MATLAB) (MATLAB)
2005 1735.6  2,030.50 - - - 1,799.88 1,816.98 1,854.46
2006 1703.2  1,989.65 - - - 1,799.88 1,816.98 1,854.46
2007 1740.19  2,032.37 - - - 1,799.88 1,816.98 1,854.46
2008 1760.59  2,056.50 - - - 1,799.88 1,816.98 1,854.46
2009 1687.79  1,978.65 - - - 1,799.88 1,816.98 1,854.46
2010 1725.82  2,024.00 - - - 1,799.88 1,816.98 1,854.46
2011 1730.98  2,032.30 - - - 1,799.88 1,816.98 1,854.46
2012 1680.78 1,972.35 - - - 1,799.88 1,816.98 1,854.46
2013 1720.12  2,013.76 - - - 1,799.88 1,816.98 1,854.46
2014 1721.01 2,017.39 1,705.72 - - 1,799.88 1,816.98 1,854.46
2015 1697.74  1,999.26 1,710.96 - - 1,799.88 1,816.98 1,854.46
2016 1546.37  1,838.30 1,513.88 1851.57 1,693.11 1,799.88 1,816.98 1,854.46
2017 - - - 2,014.08 1,807.75 1,799.88 1,816.98 1,854.46
average 1704.18 1,998.75 1,643.52 1,932.82 1,750.43 1,799.88 1,816.98 1,854.46
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Figure 4.26. A comparison of satellite-based, ground-measured, TMY and actual

energy yield results obtained from calculations and SAM simulations using isotropic

sky-diffuse model.
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4.2.1 TMY, Empirical and Normal Distribution

The empirical CDF of annual mean GHI was obtained using the 12-year satellite-
based data of PVGIS-SARAH, which can be seen in Figure 4.27. This graph shows
the POE values of GHI, and each GHI value was sorted in ascending order with an
equal probability of occurrence. Therefore, each year is paired with a specific POE
value. For example, the lowest annual mean GHI belongs to the year 2016, and since
that data point is very close to P90, the year 2016 can be considered the P90 of GHI.
Also, there are only 12 years of GHI data, the year 2016 also represents the minimum
GHI, which can be assumed as the worst case. On the other hand, the year 2014
stands for P50, and P10 can be represented by the year 2005. This graph was obtained
empirically; thus, different shapes can be obtained if the time period of satellite-
based data decreases or increases. However, a better representation of the long-term

GHI of a site is obtained if the available time period of the dataset increases [4].
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Figure 4.27. Empirical cumulative distribution function of annual GHI according to
satellite-based data between time period 2005-2016.
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A base case scenario was obtained using three different TMY datasets, and the results
are presented in Table 4.7. POE values cannot be calculated with TMY simulation
since outlier weather events are not included in 1-year TMY data; thus, the most
typical results of GHI, POA and AEP are found for each TMY dataset. On the other
hand, the same simulations were done using the satellite-based data, and results were
obtained for each year during the time period 2005-2016. In addition, P50/P90
analysis was done using the multi-year data set, and energy exceedance probabilities
were found for GHI and AEP values. It is worth mentioning that SAM enables a
much faster analysis with P50/P90 option rather than calculating individual AEPs
for each year and finding the empirical CDF according to the AEP values. One can

also find the same POE values using AEP results shown for each year in Table 4.7.

In Table 4.7, the interannual variability of annual GHI was found as about 2.21%.
For the AEP, the variability is about 3.26%, which is the average value of the
coefficient of variation (COV) of three different transposition models, while the
LCOE varies by 3.50% as a function of AEP. Thus, the variability increases from
solar irradiation to AEP, and the most increase is found in the LCOE results. This
shows us the sensitivity of an economic index to solar resource and the importance

of doing P50/P90 analysis to make investment decisions.
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Table 4.7 Simulation results of three different TMY data sets and satellite-based data
for the 1 MW solar PV plant in METU NCC. POA, AEP and LCOE values were
averaged according to different transposition models used in SAM software
(Isotropic, HDKR and Perez). Detailed results are available in Appendix A.

Database Temperature GHI POA AEP LCOE
(°C/yr) (kwh/m?/yr)  (kWh/m%yr) (MWh/yr)  ($/kWh)
TMY2-Meteonorm 19.70 1811.89 2001.48 1555.70 0.138
deviation of TMY from P50 (%) -1.01 -8.70 -9.74 -11.43 12.91
TMYx.2004-2018 17.90 1880.1 2076.80 1620.80 0.132
deviation of TMY from P50 (%) -10.05 -5.26 -6.35 -7.72 8.37
PVGIS-TMY (2007-2016) 19.70 1954.73 2182.26 1733.59 0.124
deviation of TMY from P50 (%) -1.01 -1.50 -1.59 -1.30 1.32
average TMY 19.10 1882.24 2086.85 1636.69 0.131
deviation of TMY from P50 (%) -4.02 -5.15 -5.89 -6.82 7.53
PVGIS-SARAH
2005 19.30 2005.80 2225.54 1771.73 0.121
2006 19.50 1974.91 2186.58 1739.35 0.123
2007 19.70 1989.99 2235.39 1777.76 0.121
2008 19.90 2024.99 2263.02 1798.62 0.119
2009 19.90 1971.29 2173.60 1722.82 0.124
2010 20.60 2000.47 2228.37 1762.48 0.122
2011 19.50 1985.66 2227.19 1767.85 0.121
2012 19.80 1958.54 2171.41 1715.56 0.125
2013 20.00 1993.22 2217.56 1756.48 0.122
2014 20.00 1984.52 2219.18 1757.66 0.122
2015 20.10 1972.33 2199.40 1733.44 0.124
2016 20.30 1849.40 2015.32 1576.36 0.136
min 19.30 1849.40 2015.32 1576.36 0.119
max 20.60 2024.99 2263.02 1798.62 0.136
st.dev. 0.36 43.60 63.09 56.77 0.0043
mean 19.88 1975.93 2196.88 1740.01 0.123
COV (%) 1.82 2.21 2.87 3.26 3.50
P90 19.34 1871.23 2046.54 1604.20 0.134
P75 19.50 1971.29 2173.60 1722.82 0.124
P50 19.90 1984.52 2217.56 1756.48 0.122
P25 20.00 1993.22 2227.24 1767.85 0.121
P10 20.26 2004.74 2233.99 1776.55 0.121

In Figure 4.28, empirical CDFs with TMY results are shown for three different
transposition models. According to the comparison of TMY and P50 values, it was
found that TMY datasets underpredicted the annual GHI by about 5.15%, and the
AEP values by 6.77%, 6.86% and 6.83%, for isotropic, HDKR and Perez models,
respectively. As a result, TMY simulations underpredicted the AEP in all cases and

it can be concluded that the P50 assumption for TMY is not valid for the location in
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Cyprus. Moreover, the TMY dataset with the isotropic sky diffuse model predicted
the lowest P50 assumption, whereas the anisotropic models estimated a higher
probability of exceedance values. The reason is that anisotropic models are more
sensitive to the DHI component; thus, more accurate GTI estimations result in higher
energy yield estimations [19]. However, the Perez model is not recommended if the
measured DHI is not available since the model is highly sensitive to the
measurements [66]. Thus, the average of the three model results are obtained in
Table 4.7 so that a more general discussion can be made for the POE values,
irrespective of transposition models used. A detailed version of Table 4.7, which

includes the transposition models, can be seen in Appendix A.
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Figure 4.28. Empirical cumulative distribution functions of the energy yield
(KWh/kWp) using Isotropic, HDKR and Perez models. Double arrows show the
difference between the average TMY and P50 values.
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SAM software also calculates POE values assuming a Normal CDF which is
obtained by using the mean and standard deviation of data, and normal CDFs are
superimposed in Figures 4.29 and 4.30 to compare with the results of the study. In
Table 4.8, a comparison was made according to the results of Normal and empirical
CDFs. It was found that the P50 value was underpredicted by the Normal CDF
assumption for all cases, which means that using the empirical method gives more
realistic P50 results. On the other hand, Normal CDF significantly overpredicted P90
values than the empirical CDF both for annual GHI and the energy yield. Therefore,
empirical P90 values should be used since conservative results are the focus of
obtaining P90. Overall, Normal CDF did not represent the actual results, and the
empirical method is a reliable approach to find POE values if there exist at least ten
years of a dataset. It should be kept in mind that including recent years’ data (2017,
2018, 2019) will change the empirical CDF and the POE values; thus, the results of
this study depend on the historical time period between 2005 and 2016.
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Figure 4.29. Comparison of empirical and normal CDFs with average TMY result of
the annual GHI, for time period 2005-2016.
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Table 4.8 Probability of exceedance values of annual GHI and energy yield
according to Normal and Empirical CDFs. Deviation of Normal CDF from empirical

CDF values are shown in the last column as percentages.

GHI (kWh/m?/yr) POE Normal CDF Empirical COF  A(%)
P50 1975.93 1984.52 -0.43
P90 1920.03 1871.23 2.61

Energy Yield (kWh/kWp)
P50 1740.15 1756.48 -0.93
P90 1667.23 1604.20 3.93
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4.2.2 Stochastic Simulations

Apart from the empirical and Normal distribution assumptions, a stochastic
simulation was carried out to find the POE values of energy yield. By doing so,
modeling assumptions and other uncertainty components also had a distribution
which is given in Table 3.7. In Appendix B, an example of 100 computing samples
created by the stochastic simulation in SAM, using the input variables in Table 3.7

can be seen.

In Figure 4.31, CDFs were obtained both for TMY and satellite-based datasets using
all uncertainty distributions. First, it can be noted that TMY results also had a
distribution unlike previous results, because stochastic simulation computed many
samples using possible uncertainty assumptions. Thus, other POE values such as P90
and P10 can also be found using a TMY dataset, if stochastic simulation is done.
However, it should be kept in mind that TMY distributions still do not include the
interannual variability of solar radiation, which is one of the main factors when
estimating POE values [27]. In Table 4.9, POE values of energy yield are compared
between TMY and satellite results. P99 and P95 values were also found and
compared to see the worst-case estimates. Using a TMY dataset underpredicted the
POE values except for P99, and for P50, the deviation of TMY from satellite
increased to about 9%, which was about 7% in empirical CDF results.
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Table 4.9 Empirical cumulative distribution results of stochastic simulation for

satellite-based and TMY datasets. Deviation of the mean TMY results from mean

satellite-based data are also given in percentages.

PVGIS-SARAH P99 P95 P90 P50 P10
mean (kWh/kWp) 1555.20 1641.00 1702.11 1814.52 1937.41
st.dev. (kWh/kWp) 21.70 24.61 9.17 8.51 6.98
range (%) 4.70 431 1.68 1.56 1.29
T™MY

mean (kWh/kWp) 1582.67 1595.60 1606.30 1650.89 1692.73
deviation of mean (%) 1.77 -2.77 -5.63 -9.02 -12.63
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On the other hand, some differences were observed between stochastic simulation
and empirical CDF graphs. To see the effect of each variable on the CDF, following

scenarios were simulated for input variables:

e Only sky-diffuse model

e Sky-diffuse & temperature correction model

e Sky-diffuse & self-shading model

e Sky-diffuse & temperature correction & self-shading model

e All input variables in Table 3.7

The first difference is that, the shape of CDF was linearized, and the reason was
understood when only sky-diffuse model was chosen as input variable, ignoring
other uncertainty distributions. Stochastic simulation computed random samples
using Isotropic, HDKR and Perez models, and sorting them in ascending order
created the following CDF in Figure 4.32. These results match with the previous

empirical results obtained from Isotropic, HDKR and Perez models.

Secondly, the minimum and maximum energy yield values scaled down and up,
respectively, because of assigning other uncertainty components as input variables.
However, it was also observed that changing temperature correction model made
CDF right skewed, which caused higher energy yield values that can be seen in
Figure 4.33. In temperature correction model, NOCT method was chosen as input in
empirical results. In stochastic simulation, heat transfer method was also randomly
selected in the samples, and this may explain the reason behind increased energy

yields.

Finally, changing only sky-diffuse model and all input variables were compared in
Figure 4.34. According to the energy yields, changing all input variables increased
the mean P90, P50 and P10 by 1.25%, 3.69% and 7.50%, respectively, when
compared to changing only sky-diffuse model. Therefore, these results clearly show
the importance of choosing modelling assumptions and losses when doing energy

calculations.
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Figure 4.34. Comparison of stochastic simulations. Black lines were obtained by
only changing sky-diffuse model, colored lines were obtained using the input
variables in Table 3.7.

To sum up, different methods were applied to estimate the long-term energy yield of
a 1 MWp solar PV plant, and to find POE values. First, TMY datasets were used to
see an average energy yield and the P50 assumption was made. Then, empirical and
Normal CDFs were obtained using satellite-based data, and these graphs represent
the 12-year period between 2005 and 2016. Finally, a stochastic simulation was done
to see the effect of uncertainty distributions on possible energy yield values.
Although TMY datasets were again used to obtain a distribution by stochastic
simulation, those results are not included in Table 4.10. Because the interannual
variability of GHI does not exist in a TMY dataset, only P50 assumption of TMY is
given in Table 4.10, which was previously obtained in SAM. In Table 4.10, the
average results of energy yield that are found using TMY, Normal CDF, empirical
CDF and stochastic simulation are shown, specifically, P50, P90 and P90/P50 ratios.
Doing stochastic simulations resulted in the highest POE values in all methods. For
example, P50 and P90 values increased by 3.30% and 6.10% compared to empirical

method, respectively. Thus, a detailed uncertainty analysis in a stochastic simulation
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can increase the expected energy yield and the bankability of a project. On the other
hand, a high P90/P50 ratio means that P90 value converges to P50, which in turn,
reduces the risk of having lower energy yields [27]. In this study, all methods gave
P90/P50 ratios that are close to 100%. Although Normal distribution assumption has
the highest ratio, it does not represent a realistic result since higher P50 values were
obtained from empirical and stochastic simulation methods. Belluardo et al. [27] also
found similar results in which they compared P50 and P90 values from using Normal
distribution and using Monte Carlo approach. They found the P50 value as about
1445 kWh/kWp as a base case scenario for a solar PV plant in Bolzano, Italy, and
they found that Normal distribution assumption resulted in higher-than-expected P90
and P99 values compared to Monte Carlo approach [27]. They also found the
P90/P50 ratio as 94% for the best-case scenario with an overall uncertainty of 4.6%.

Table 4.10 P50, P90 and P90/P50 comparisons of energy yield using different

methods.
P50 P90 P90/P50
Method (KWh/kWp) (KWh/kWp) (%)
™Y 1636.69 - -
Normal CDF 1740.15 1667.23 95.81
Empirical CDF 1756.48 1604.2 91.33
Stochastic (all input variables)  1814.52 1702.11 93.80

4.2.3 Effects of GHI and Temperature on Energy Yield

The annual GHI and energy yield values were highly correlated according to the
scatter plot in Figure 4.35. This is expected since the amount of incident solar
radiation is the primary factor for solar PV energy output. However, the annual
average daily mean temperature is negatively correlated with the energy yield
according to Figure 4.36, and it is because of the relation between the PV cell
temperature and PV module efficiency. It is important to note that GHI and ambient

temperature affect the energy yield together; in other words, these are not
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independent variables. It was also mentioned that temperature is the largest
influencer on the PV energy yield in hotter locations, whereas irradiance is the most
important one at any location [25]. It can be seen from Figure 4.37 that the lowest
solar resource with a hot year was in 2016, which has the least energy yield
estimations in the previous results. Therefore, the effect of GHI and temperature
variability should be considered when estimating POE values of the energy yield.
Here, the interannual variability of temperature was found as 1.82%; however, it
does not consider the effect of climate change, and the projected values of the future
temperature may not follow this variability range. In addition, since there is no
energy production before sunrise and after sunset, obtaining the mean temperature
during sunshine duration hours may represent the correlation between energy yield

and ambient temperature better.
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4.2.4 Overall Uncertainty

The sources of uncertainties of energy yield can be seen in Table 4.11. While the
interannual variability of GHI is considered a random (stochastic) error, other
uncertainty components are assumed as systematic errors. For the transposition
model’s uncertainty, converting GHI into POA irradiance varies by 2% for Isotropic,
HDKR and Perez models. Also, using satellite-based data (PVGIS-SARAH) has an
uncertainty of about 3.5% on solar radiation for the Cyprus region, whereas the
interannual variability of GHI was found as 2.21% for the time period 2005-2016.
On the other hand, the uncertainty related to dirt, soiling, shading and reflection of

solar PV modules was assumed as 2%.

By using the rule of squares method, all uncertainty components were considered as
independent from each other. As the overall uncertainty of energy yield was found
as 7.08%, it can be further decreased by searching for other sources of error, which
is assumed as 5%. For instance, temperature effects on the energy yield were not
analyzed in detail in this study, and it can be considered other sources of error.

Table 4.11 Sources of uncertainties in percentages and the overall uncertainty of the

energy yield.
Uncertainty Components (%) Reference
Satellite-based data 3.50 [54]
Transposition model (isotropic, HDKR, Perez) 2.00 Appendix A
Interannual variability of GHI 2.21 Table 4.7
Dirt, soiling, shading, reflection 2.00 [25]
Other sources of error 5.00 [26]
Overall uncertainty 7.08
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4.2.5 Levelized Cost of Electricity

Figure 4.38 shows the relationship between energy yield and LCOE in terms of POE
values; in addition, TMY results are given at P50. As can be seen, the average of
different TMY datasets did not match with the P50 range. The lowest energy yield
with the highest LCOE belongs to the TMY 2-Meteonorm dataset among other TMY
results. The shaded bands were obtained by the standard deviation and mean values
of energy yield and LCOE of three different models used in the calculations
(isotropic, HDKR and Perez). Also, the inverse correlation between energy yield and
LCOE introduces the non-exceedance probability values of LCOE. For example, the
P90 value of the energy yield means that it will be met or exceeded with 90%
probability at any time, while the LCOE will be less than or equal to the P90 value
at nine-tenths of occurrence. On the other hand, the actual energy output data in 2016
and 2017 gives further information about the energy yield variations. The year 2016
is close to the P90 value, whereas 2017 passes the P10 value and stands maximum.
Although including more annual data points will increase POE values' reliability, 12-
year satellite-based data seem to represent the variabilities in the energy yield,
according to the actual results. However, LCOE results depend on many financial
assumptions, and this study only focused on the effects of energy yield on the LCOE.
Therefore, it is possible to obtain lower LCOE values with the same energy yield
data if the financial parameters in Table 3.9 are changed.
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closest points to the mean energy yield line. Average results for different TMY
datasets are represented in filled pointers, upper and lower bounds are obtained from
specific TMY datasets (PVGIS-TMY, TMYx.2004-2018, TMY 2-Meteonorm).

In Figure 4.39, stochastic simulation results of the energy yield and LCOE can be
seen. Simulations were done multiple times to obtain a possible range, and the input
variables in Table 3.8 were used in SAM. Main differences can be observed between
Figures 4.39 and 4.40. For example, the range of energy yield increased, with a
maximum value at about 2000 kWh/kWp and a minimum of about 1500 kWh/kWp.
Similarly, LCOE results also changed. However, there is a significant change in the
range, having values between 0.05 and 0.19 $/kWh. Since all financial parameters
were kept constant in previous results, choosing a distribution for capital cost, fixed

O&M cost and fixed charge rate affected the LCOE, as can be expected. The reason
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is that all possible results were found considering the interannual variability of GHI
by enabling weather file analysis for the time period 2005-2016. Therefore, it
reduced the uncertainty and increased the confidence level of the POE values of

energy yield and LCOE.
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Figure 4.39. Probability of exceedance values of energy yield and LCOE, obtained

from stochastic simulations.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

51 Conclusions

Penetration of large amounts of solar energy into the grid requires risk assessments
since the solar resource is variable. Thus, energy exceedance probabilities such as
P50 and P90 are calculated to statistically represent the energy yield in any year
throughout the operational life of a solar power plant. Different methods exist to find
the POE values, and there is no consensus in the research field. In this study, the
empirical method was chosen to perform P50/P90 analysis for the solar PV plant
located at METU NCC. Results were compared with the Normal distribution
assumption, and it was found that empirical CDF gave more realistic results for P50
and P90. Stochastic simulations were also done to see the effects of all uncertainty
components on energy yield by assuming probability distributions in SAM. It was
found that stochastic simulations resulted in the highest POE values than the
empirical method and Normal distribution assumption. For example, P50 and P90
values increased by 3.30% and 6.10% compared to the empirical method,
respectively. Thus, detailed uncertainty analysis in a stochastic simulation can

increase the expected energy yield and a project's bankability.

On the other hand, it was aimed to reduce the overall uncertainty using ground
measurements, which have a shorter time period than satellite-based data. However,
the quality assessment showed that GHI measurements had some erroneous data;
thus, post-processing was done to reduce the RMSE of ground-measured GHI data.
Several quality tests were made, and GHI was estimated using measured DNI for
years of 2014, 2015 and 2016. While up to 2 hours of missing GHI data were filled
by linear interpolation, longer missing data were filled by estimated GHI. Both
measured and constructed GHI data were compared with satellite-based GHI data
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for the time period 2010-2016. The results indicated that the average rRMSE of daily
total GHI reduced from 34.63% to 17.77% after the data filing process. The rRMSE
decreased to 8.78% for the annual mean daily total GHI data. Additionally, GT1 was
estimated using the isotropic sky-diffuse model, and it was compared with measured
GTI. RMSE of daily total estimated GTI was 22.41%, whereas satellite-based GTI
had an RMSE of 20.81%. Energy yield estimations were also compared using all
datasets. For example, using SAM software reduced the energy yield by 14.74% on
average compared to the calculations without using software.

According to empirical CDF results, the interannual variability of annual
temperature, GHI, AEP and LCOE were found as about 1.82%, 2.21%, 3.26% and
3.50%, respectively. Although the LCOE is found through the operational lifetime
of a plant, this study aimed to see the variations of LCOE with respect to possible
AEP values. According to the comparison of TMY and P50 values, it was found that
an average TMY underpredicted the annual GHI and AEP by 5.15% and 6.82%,
respectively, while it overpredicted the LCOE by 7.53%. It was also found that AEP
is highly correlated with annual GHI, whereas, a negative correlation was found with
the annual average daily mean temperature. LCOE values were also found in
stochastic simulation by enabling uncertainty distributions for the capital cost,
annual operational cost and the fixed charge rate. The range of LCOE was found
between 0.05 and 0.19 $/kWh, while energy yield had a range between 1500 and
2000 KWh/kWp.

In conclusion, while using TMY datasets can give a fast prediction of the long-term
average energy yield, multi-year historical data sets are required to understand the
long-term trends of solar resources and to obtain POE values of energy yield. In
addition, the assumptions while doing calculations matter when the results are
compared with actual energy yield data. Using a quality-checked, high accurate
dataset also matters since it directly affects energy yield estimates. It is important to
mention that long-term ground measurements may not always be available and even
if it exists, regular calibration and maintenance of the ground station is necessary to

obtain accurate measurements. Therefore, satellite-based data can be used as long-
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term reference data when doing a detailed analysis. Besides, measuring GTI with a
tilted pyranometer can give a better value than estimating GTI from GHI and DNI;
however, its quality should also be checked. In this study, the interannual variability
of GHI was found as about 2.21% and 5.94% with satellite-based and ground-
measured data, respectively. Both results show that COV is below 6%, which is
considered low [20]. The P50 value of energy yield was also found as 1756.48 and
1814.52 kWh/kWp with the empirical method and stochastic simulations,
respectively, whereas 1604.2 and 1702.11 kWh/kWp were found for the P90 value
with the empirical method and stochastic simulations, respectively. This means that
higher P50 and P90 values can be estimated by doing more detailed uncertainty

analyses; as a result, the project’s bankability increases.

Considering these results, making new solar PV plant investments is suitable for this
region, and confidence levels such as P90 and P50 values were found, which can be
used by project developers and investors in the future. LCOE results also show that

installing a solar PV power plant is feasible in this region.

5.2 Future Work

In this study, historical weather datasets were used to see the interannual variability
of GHI, to estimate the energy yield with the POE values and the LCOE estimates.
Further study can include the effects of climate change on weather parameters, and
projected weather datasets can be used. Including recent years’ weather data and
extending the time period of the dataset will also make the long-term trend of solar
radiation more reliable, thus, the energy and economic yield results. Furthermore,
the lack of high-quality ground measurements showed the importance of collecting
solar radiation data from nearby ground stations for validation. It will also help to do

a spatial analysis if there are more ground-measured data from nearby stations.

Also, uncertainty components of the energy yield such as temperature, dirt and

soiling should be further investigated since reducing the overall uncertainty will
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increase the confidence level of energy yield estimates. The uncertainty components
may also have some correlations with each other, which was not considered in
stochastic simulations. On the other hand, different methods were applied to estimate
the POE values of energy yield. Further study may include obtaining a perfect
weighted linear combination of these methods. In addition, synthetic weather

datasets can be generated for different POE scenarios.

The methodology explained in this thesis was applied to the 1 MWp solar PV plant
in METU NCC as a case study; however, it can also be applied to a hypothetical
large-scale plant if a new renewable energy project will be planned to be installed.

This study can be expanded to analyze CSP and wind energy projects as well.

Finally, economic analysis can be further done; for example, project revenues, debt-
size coverage ratio (DSCR), and net present value can be calculated in addition to
the LCOE. Financial parameters can also be considered in detail, such as taxes,

subsidies, and incentives.
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APPENDICES

A. SAM simulation results of temperature, GHI, POA, AEP and LCOE using

different TMY and satellite-based datasets with different transposition

models used (Isotropic, HDKR, Perez). Statistical indices are also shown.
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B. Computing sample example of stochastic simulation in SAM software.
Sky Weather AC Wiring DC Wiring Connection  Module Nameplate Temperature Self-shading
#  Diffuse . & Diodes  Mismatch Correction
Model Files Loss (%)  Loss (%) Loss (%) Loss (%) Loss (%) Model model
1 HDKR 2005.csv  1.00677 1.76329 0.555047 2.27482 3.30452 NOCT Thin film
2 Perez 2009.csv 1.0336 2.25686 0.517775 1.95549 3.19197 Heattransfer Thin film
3 Isotropic 2014.csv  1.1346 1.21063 0.488541  2.20349 2.83668 Heattransfer Standard
4 HDKR  2005.csv 1.17583 1.99724  0.423304 2.09567 2.79037 Heattransfer Standard
5 HDKR 2005.csv 1.1163 2.04943 0.430098 2.01423 3.71634 NOCT None
6 Perez 2013.csv 0.98252 1.71942  0.579054 2.50639 3.28744 Heattransfer Standard
7 Perez  2010.csv 0.867895 2.21192  0.522913 2.32979 2.67337 Heattransfer  Thin film
8 HDKR  2012.csv  1.05007 2.06122  0.562842 2.12675 2.98828 Heat transfer None
9 Isotropic 2005.csv  0.935981 1.62907  0.552045 1.71181 3.38354 Heat transfer None
10 Perez 2008.csv 0.750419 2.32789  0.406574 2.31341 3.58773 NOCT None
11 Isotropic 2011.csv 0.848805 2.25078 0.44677 2.04614 3.01686 NOCT Thin film
12 Isotropic 2013.csv  0.86879  1.43576  0.481454 2.34398 2.54125 NOCT Thin film
13 Perez 2011.csv 0.876918 2.30207 0.497143 1.13595 3.18105 Heattransfer Standard
14 HDKR 2015.csv 1.08413 1.88648 0.485451 1.75994 2.48086 NOCT Thin film
15 HDKR 2008.csv  1.15647 2.5654 0.540458 1.81516 3.41922 NOCT None
16 HDKR 2011.csv  1.02653 2.10412 0.543414 1.88023 3.09078 Heat transfer  Thin film
17 HDKR 2012.csv  1.05846 1.91731 0.520772 2.07238 3.20312 NOCT None
18 HDKR  2010.csv  1.22811 1.96714  0.491545 1.51128 3.14855 Heattransfer Standard
19 HDKR  2015.csv  0.931554 2.31824  0.514792 2.08802 3.06497 NOCT None
20 Isotropic 2016.csv 0.697413 1.75257  0.525117 1.80014 3.23528 NOCT Standard
21 HDKR  201l.csv 0.856385 2.12451  0.464565 2.21365 3.5111 Heat transfer None
22 HDKR  2009.csv  1.12968 1.79616  0.414024 2.62409 2.12824 NOCT None
23 Perez  2014.csv.  0.98583  2.00296  0.609107 1.99205 3.33062 NOCT Standard
24 |sotropic 2007.csv.  1.03932  1.64847  0.408087 1.94141 2.80573 Heattransfer  Thin film
25 Isotropic 2010.csv 1.2817 2.34674 0.314831 2.25229 3.45837 NOCT Thin film
26 Perez 2012.csv 1.19409 1.94561 0.364741 1.7237 3.06918 NOCT None
27 lsotropic 2010.csv 0.859242  1.9036 0.532686 1.87243 2.89961 NOCT None
28 Perez  2006.csv  1.07975 1.97896  0.511608 2.36199 3.29097 NOCT None
29 lIsotropic 2015.csv  1.25129  1.87793  0.461309 2.14081 3.5694 Heattransfer  Thin film
30 HDKR 2012.csv 0.722297 1.9376 0.504659 2.06488 2.21293 NOCT None
31 HDKR 2006.csv 0.890822 1.57942 0.52887 1.69535 2.97619 NOCT Thin film
32 Perez 2014.csv 0.883931 2.16887  0.595937 2.19265 2.99461 NOCT Thin film
33 HDKR  2014.csv 0.947579 2.07844  0.559469 2.25297 3.48622 Heattransfer Standard
34 HDKR 2010.csv 0.921175 1.77441  0.396845 2.42457 2.88351 NOCT Standard
35 lIsotropic 201l.csv  1.06493 1.86438  0.509493 1.82239 2.40433 NOCT Standard
36 Perez 2006.csv  1.31067 2.54471 0.581494 1.68612 2.30576 NOCT Standard
37 Perez 2012.csv  1.05473 2.28567 0.498619 2.22632 2.58036 NOCT Standard
38 Perez 2007.csv  1.06717 2.26567  0.495313 2.37516 2.76097 Heat transfer None
39 Isotropic 2009.csv 0.954283 1.80387 0.478555 1.73768 3.25956 Heat transfer  Thin film
40  Perez 2008.csv  1.12406 2.23714 0.5093 2.176 3.66556 Heat transfer None
41  Perez 2015.csv  0.838074 2.03635  0.377995 1.97991 2.74662 Heattransfer Standard
42  HDKR  2005.csv 0.621051 1.81887  0.479652 1.89274 3.43718 NOCT Standard
43  Perez  2016.csv.  1.14123  1.94943  0.456277 1.64001 2.69105 NOCT None
44 HDKR  2005.csv  0.910512 2.01352 0.537461 2.16395 3.16016 Heattransfer  Thin film
45 |sotropic 2014.csv 0.988782 1.37443  0.393599 2.59138 2.77736 Heat transfer None
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Isotropic
HDKR
Isotropic
Perez
HDKR
Isotropic
HDKR
Isotropic
HDKR
Isotropic
Perez
HDKR
HDKR
HDKR
HDKR
Isotropic
Perez
Isotropic
Perez
HDKR
Isotropic
Isotropic
Isotropic
Isotropic
HDKR
Perez
Perez
Perez
Isotropic
Perez
HDKR
Perez
HDKR
Perez
Isotropic
Perez
Perez
Perez
Perez
Isotropic
Isotropic
HDKR
HDKR
HDKR
Isotropic
Isotropic
Perez
HDKR
Perez
Isotropic
Perez
Isotropic
Perez
Isotropic
Isotropic

2015.csv
2016.csv
2010.csv
2015.csv
2009.csv
2016.csv
2005.csv
2013.csv
2008.csv
2008.csv
2010.csv
2007.csv
2006.csv
2014.csv
2011.csv
2011.csv
2007.csv
2007.csv
2014.csv
2014.csv
2013.csv
2009.csv
2014.csv
2012.csv
2005.csv
2016.csv
2013.csv
2011.csv
2008.csv
2009.csv
2009.csv
2010.csv
2006.csv
2006.csv
2015.csv
2013.csv
2015.csv
2008.csv
2016.csv
2008.csv
2012.csv
2008.csv
2007.csv
2013.csv
2009.csv
2016.csv
2006.csv
2012.csv
2007.csv
2007.csv
2013.csv
2009.csv
2015.csv
2007.csv
2016.csv

1.09754
1.10153
1.10688
0.950244
1.09487
0.96134
0.944447
0.929752
1.38554
1.2148
1.14823
0.999041
1.07561
1.01247
0.993229
0.81498
0.899168
1.04364
0.81738
0.656679
1.00868
1.16407
1.09034
1.30018
0.916435
0.906831
1.01777
0.976487
0.96831
1.15004
0.922696
0.979978
0.941242
0.884325
1.04612
1.23332
0.807335
0.898033
1.07064
0.971783
1.02183
1.11094
1.20724
0.786011
0.962103
1.18794
1.0237
1.00126
1.17846
0.798621
0.757926
0.825653
0.776882
1.03595
0.832596

2.36984
1.69776
1.86997
2.05474
2.40056
2.15218
2.43848
1.49748
1.91136
2.11583
1.57086
1.67202
2.03003
2.45908
1.81323
1.74191
2.16338
2.6268
1.5465
2.52175
2.01554
1.8973
2.18994
1.95743
2.06951
2.08459
2.14751
1.4702
2.11012
1.98894
2.20657
1.51444
1.72607
1.71073
2.71393
1.85889
2.041
1.97449
1.82914
2.28991
2.22935
1.92593
1.78687
2.41605
1.60101
2.35605
1.84347
1.83896
2.13549
1.64301
2.09223
2.19597
2.18223
1.68243
2.48964

0.576235
0.450176
0.48326
0.388069
0.566563
0.50315
0.51575
0.535066
0.46786
0.590014
0.400653
0.641404
0.616442
0.546778
0.489328
0.784723
0.334488
0.493549
0.529444
0.58622
0.441513
0.443106
0.550409
0.452351
0.469523
0.436868
0.474712
0.43918
0.37396
0.459203
0.500129
0.629836
0.564781
0.605014
0.640516
0.506092
0.352652
0.569675
0.471973
0.422085
0.418764
0.521672
0.622117
0.425439
0.465051
0.545625
0.598629
0.572208
0.671208
0.556309
0.447563
0.457539
0.431367
0.536022
0.476941

2.38905
2.17441
1.78165
1.75035
1.96329
1.91574
1.83183
2.1565
1.88623
1.84336
1.35032
2.19672
1.59741
2.05752
2.29578
1.99275
1.76988
1.44012
1.60474
2.14012
2.08028
2.53536
1.93661
1.83519
1.906
1.97603
1.61733
2.02263
2.10199
2.8008
1.56621
1.73393
2.30583
1.92507
2.49099
2.00055
1.65197
2.44436
1.85812
1.9512
1.66355
2.11209
1.48847
2.26349
1.92158
2.40389
2.01581
2.11605
1.79166
1.55267
1.8597
1.40595
2.04279
2.03562
2.23722

2.96388
2.91649
3.78382
2.88912
2.73387
3.27179
3.48368
3.00398
2.55961
2.59759
2.61842
4.12102
2.7669
2.85938
3.3559
3.23703
3.13335
2.65949
1.94632
3.11776
2.63175
3.37814
2.63965
3.79333
2.38244
3.55146
2.95249
3.03043
2.44656
2.71788
3.40147
3.64448
3.16175
2.87028
1.99425
3.33545
4.00545
2.81878
2.50489
2.16833
3.6139
2.83871
2.93699
2.35745
3.05345
3.91502
2.28503
2.92719
3.04312
3.10889
3.09433
2.53177
3.21476
2.45849
2.69705

Heat transfer
NOCT
NOCT

Heat transfer
NOCT
NOCT
NOCT

Heat transfer
NOCT
NOCT
NOCT
NOCT

Heat transfer
NOCT
NOCT

Heat transfer

Heat transfer

Heat transfer
NOCT

Heat transfer

Heat transfer

Heat transfer

Heat transfer
NOCT
NOCT

Heat transfer
NOCT
NOCT
NOCT

Heat transfer
NOCT
NOCT

Heat transfer
NOCT

Heat transfer

Heat transfer

Heat transfer

Heat transfer

Heat transfer

Heat transfer

Heat transfer

Heat transfer

Heat transfer
NOCT

Heat transfer
NOCT

Heat transfer

Heat transfer
NOCT

Heat transfer
NOCT

Heat transfer

Heat transfer
NOCT

Heat transfer

99

Standard
Thin film
Thin film
Standard
None
Thin film
Standard
Thin film
Thin film
None
None
Thin film
Standard
Standard
Thin film
Standard
None
None
Standard
Standard
Standard
None
Standard
Standard
Thin film
Thin film
Standard
Thin film
None
Thin film
None
Thin film
None
Thin film
None
Thin film
None
Thin film
Standard
Thin film
Thin film
Standard
Standard
Standard
None
Standard
None
None
Thin film
None
Standard
None
Thin film
None
Standard



