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ABSTRACT 

 

LONG-TERM ENERGY YIELD ESTIMATION OF A SOLAR 

PHOTOVOLTAIC POWER PLANT IN METU NCC 

 

 

Gören, Deniz 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Assoc. Prof. Dr. Murat Fahrioğlu 

Co-Supervisor: Assoc. Prof. Dr. Onur Taylan 

 

 

January 2021, 99 pages 

 

Installing large scales of solar energy introduces some financial risks for the 

investors since the solar resource is variable. Thus, a long-term energy yield 

estimation is needed to see the variability of the solar resource. This study aims to 

see the relation between long-term trends of global horizontal irradiation (GHI) with 

the energy yield and the levelized cost of electricity (LCOE). Probability of 

exceedance (POE) values were found to assess the bankability of installing a solar 

PV power plant. Different datasets, such as typical meteorological year (TMY), 

satellite-based and ground-measured data, were used. Quality assessment was done 

to check the accuracy of ground-measured data using quality control tests. Erroneous 

GHI data was estimated using the Erbs model. Global tilted irradiation (GTI) was 

also estimated using the isotropic sky-diffuse model, and it was compared with 

measured GTI. The interannual variability of GHI was found as 5.94% and 2.21% 

for ground-measured and satellite-based data, respectively. The comparison of TMY 

and P50 values showed that TMY datasets underpredicted the annual GHI by about 

5.15% and the energy yield by about 6.83% on average. When Normal distribution 

was compared with the empirical method, the P50 value was underpredicted by 

0.93% for energy yield, whereas, Normal cumulative distribution function (CDF) 

overpredicted P90 value than the empirical CDF 3.93%. Doing stochastic 



 

 

 

vi 

 

simulations resulted in the highest POE values: P50 and P90 values increased by 

3.30% and 6.10%, respectively, compared to the empirical method. Moreover, while 

the range of energy yield increased to about 1500-2000 kWh/kWp, LCOE range 

increased to 0.05-0.19 $/kWh in stochastic simulations. As the overall uncertainty of 

energy yield was found as about 7.08%, it can be further reduced by searching for 

other sources of error such as temperature and soiling. 

 

Keywords: Energy Yield, Interannual Variability, Probability of Exceedance, 

Uncertainty Analysis, Levelized Cost of Electricity 
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ÖZ 

 

ODTÜ KKK'DEKİ GÜNEŞ FOTOVOLTAİK SANTRALİNİN UZUN 

VADELİ ENERJİ VERİMİ TAHMİNİ 

 

 

Gören, Deniz 

Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri 

Tez Yöneticisi: Doç. Dr. Murat Fahrioğlu 

Ortak Tez Yöneticisi: Doç. Dr. Onur Taylan 

 

Ocak 2021, 99 sayfa 

 

Güneş kaynağı değişken olduğundan büyük ölçekli güneş enerjisi kurulumu 

yatırımcılar için bazı finansal riskler ortaya çıkarmaktadır. Bu nedenle, güneş 

kaynağının değişkenliğini görmek için uzun vadeli bir enerji verimi tahminine 

ihtiyaç vardır. Bu çalışmanın amacı, küresel yatay ışınımın (GHI) uzun vadeli 

eğilimleri ile enerji verimi ve seviyelendirilmiş elektrik maliyeti (LCOE) arasındaki 

ilişkiyi görmektir. Bu çalışma kapsamında bir PV temelli enerji santrali kurmanın 

güvenilirliğini görmek için aşılma olasılığı (POE) değerleri bulunmuştur. Tipik 

meteorolojik yıl (TMY), uydu tabanlı ve yerden ölçülen veriler gibi farklı veri 

kümeleri kullanılmış ve kalite kontrol testleri kullanılarak zeminde ölçülen verilerin 

doğruluğunu kontrol etmek için kalite değerlendirmesi yapılmıştır. Hatalı GHI 

verileri, Erbs modeli kullanılarak ve küresel eğimli ışınım (GTI) da izotropik 

gökyüzü difüzör modeli kullanılarak tahmin edilmiştir. Bu değerler, ölçülen GTI ile 

karşılaştırılmıştır. GHI'nin yıllar arası değişkenliği yer ölçülü ve uydu tabanlı veriler 

için sırasıyla %5.94 ve %2.21 olarak bulunmuştur. TMY ve P50 değerlerinin 

karşılaştırılmasına göre, TMY veri setlerinin yıllık GHI'yi yaklaşık %5.15, enerji 

verimini ise ortalama %6.83 oranında düşük öngördüğü bulunmuştur. Normal 

dağılım ampirik yöntemle karşılaştırıldığında P50 değeri enerji verimi için %0.93 ile 
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düşük tahmin edilirken, Normal kümülatif dağılım fonksiyonu (CDF) P90 değerini 

ampirik CDF'ye göre %3.93 oranında fazla tahmin edilmiştir. Stokastik 

benzetimlerde bulunan P50 ve P90 değerleri, ampirik yönteme göre sırasıyla %3.30 

ve %6.10 fazla çıkmıştır. Ayrıca, stokastik benzetimlerde kurulu güç başına üretilen 

enerji aralığı yaklaşık 1500-2000 kWh/kWp'ye yükseldiğinde LCOE aralığı 0.05-

0.19 $/kWh'ye yükselmiştir. Enerji üretiminin genel belirsizliği yaklaşık %7.08 

olarak bulunmuştur, fakat sıcaklık ve kirlenme gibi diğer hata kaynakları 

araştırılarak bu belirsizlik daha da azaltılabilecektir. 

 

Anahtar Kelimeler: Enerji Verimi, Yıllar-arası Değişkenlik, Aşma Olasılığı, 

Belirsizlik Analizi, Seviyelendirilmiş Elektrik Maliyeti 
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CHAPTER 1  

1 INTRODUCTION  

Transformation to carbon-neutral energy systems is needed to limit the global 

temperature rise below 2⁰C above pre-industrial levels, therefore, the share of 

renewable energy systems should increase to 86% globally by 2050, according to the 

International Renewable Energy Agency (IRENA) [1]. However, penetration of 

renewables into electricity grids faces some challenges such as technical and 

financial risks since their energy production is variable and nonsynchronous [2]. 

Moreover, while project developers can overpredict the expected energy yield of a 

renewable energy project to attract investors and ensure financing, investors are more 

interested in whether the project will meet the energy production and financial targets 

[3]. Thus, investors and financial institutions require the probability of exceedance 

(POE) values of the predicted energy yields of solar and wind energy systems 

throughout their operational lifetime to ensure the bankability of projects [4], [5]. A 

long-term dataset of the solar resource is needed to calculate POE values of the 

energy yield of a solar energy project since the variability of solar radiation primarily 

affects the amount of solar energy production, which in turn, the economic risk 

associated with the level of energy output and revenues can be determined [6]. 

Additionally, knowing POE values gives information about “stress cases” of the 

solar resource and the energy output of a project, which is important for debt 

providers to see whether a project is feasible in debt repayment and cash flow [7]. 

Specifically, the P90 value refers to the annual energy generation that will be met or 

exceeded in 90% of any given year during a power plant’s operational life. 

Therefore, a P50 value is used for a median or representative year, whereas P10 and 
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P90 values are used for high and low resource years, respectively [8]. P95 and P99 

values can also be requested to see the worst-case energy yield values. 

Generally, a typical meteorological year (TMY) data is used for the preliminary 

design of renewable energy projects, representing the most typical weather 

conditions of a site, and it is a statistically constructed 1-year data set [9]. However, 

TMY data sets do not include outlier weather events and the interannual variability 

of the solar resource such as sunspot cycles, global dimming and brightening, change 

of aerosol particles, cloud cover due to volcanic eruptions and wildfires, also, 

possible effects of climate change that can affect the atmospheric turbidity, water 

vapor content and precipitation [10]. The incoming solar radiation changes because 

of the outliers; thus, TMY data is not recommended to be used in resource risk 

assessments, although it enables faster energy simulations, requires much less 

computational memory and is suitable for rough modeling [11]–[14]. Long-term 

ground measurements are recommended to predict the solar irradiation best; 

however, they are not available in every part of the world for long periods. Thus, 

satellite-based data sets can provide historical time series data in most of the regions 

[4], [11], [15]. Site-adaptation techniques such as measure-correlate-predict are 

recommended to remove the bias from satellite-based data if short-term ground-

measured data also exist [3], [16]. 

By virtue of this study, it aims to enable more solar PV projects by showing that 

there is a huge potential of solar energy in this region and prove that solar PV 

electricity is feasible. 

1.1 Motivation 

Lower-than-expected solar resource leads to lower energy yields in an energy project 

which can cause financial risks in power-purchase agreements (PPAs) and in off-

take agreements when the time-of-day pricing is important [15]. Thus, investors 

require to simulate a power plant’s energy performance during its operational life to 

ensure whether it is a bankable project [5]. Moreover, debt providers require to know 
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the quality of data, long-term estimate of the energy output and POE values of the 

expected energy output [8], [15].  

If POE values do not exist, uncertainties of input parameters can be assumed by a 

sensitivity analysis for a more reliable energy performance estimate [5]. A sensitivity 

analysis was done previously in METU NCC for a PV-wind-battery hybrid system 

using both TMY and short-term measured data for GHI and wind speed, and wind 

resource was found to have higher uncertainties compared to solar radiation [17]. 

However, solar PV energy has not been studied in terms of uncertainty, and POE 

values have not been found for a renewable energy system. Thus, a more detailed 

analysis of solar PV’s long-term energy yield is needed for this region to make new 

solar PV plant installations with improved confidence levels in terms of energy and 

economic yields. 

Knowing that the current electricity grid in Northern Cyprus is heavily dependent on 

fossil fuel-burning power plants, it is urgent to decarbonize the electricity supply 

system and increase the share of renewable energy to reduce the effects of global 

warming and climate crisis. In this way, we can contribute to sustainability by having 

access to “affordable, reliable, sustainable and modern energy,” which is the seventh 

goal of the Sustainable Development Goals of the United Nations [18]. The results 

of this study aims to reduce the uncertainties related to solar PV energy output, show 

the bankability of installing large-scale solar PV power plants, as a result, to fasten 

the clean energy transition by using solar energy in the current electricity system. 

Therefore, we can pave the way for a sustainable energy supply. 

1.2 Research Objectives 

The objective of this study is to find the long-term energy yield estimations for 1 

MWp solar PV plant in METU NCC as a case study, which in turn, energy 

exceedance probabilities such as P50 and P90 values can be found. Thus, the 

uncertainty related to solar PV energy output can be obtained and reduced, which 
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can help to make better investment decisions of commercial-scale solar PV plants in 

the studied region with improved confidence levels. Also, both intra-annual and 

inter-annual variabilities of the solar resource are to be found to see the variations of 

seasonal and annual energy yields. Research objectives can be summarized as 

follows: 

• Checking the quality of ground measurements 

• Comparing different weather datasets such as TMY, satellite-based and 

ground-measured data to see their effects on energy yield  

• Obtaining long-term trends of the solar resource 

• Analyzing the uncertainty components of solar PV energy yield, and 

estimating the overall uncertainty 

• Estimating the energy yield and its POE values using different methods such 

as empirical method, Normal distribution assumption and stochastic 

simulations 

• Obtaining a range for the levelized cost of electricity (LCOE) 

1.3 Organization of Thesis 

This thesis is organized as follows: Chapter 1 introduces the problem statement and 

research objectives. In Chapter 2, literature review of the variability of the solar 

radiation, the probability of exceedance of energy yield, the uncertainty components 

of solar PV energy yield (data, energy modeling and statistical uncertainty), the 

quality assessment of ground measurements and the economic assessment of a solar 

PV power plant were done. In Chapter 3, the theory and methodology are described 

for data analysis, solar PV energy yield estimation, P50/P90 analysis, stochastic 

simulation, uncertainty analysis and calculating the LCOE. Chapter 4 presents the 

results and discussions of data analysis, energy and economic yield estimations. 

Under the energy and economic yield estimation results, probability of exceedance, 

effects of GHI and temperature, overall uncertainty and the LCOE are discussed. 

Conclusions and future work are given in Chapter 5.  
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CHAPTER 2  

2 LITERATURE REVIEW 

In this chapter, previous studies about the variability of the solar resource, the POE 

of energy yield, uncertainty components of solar PV energy yield, quality assessment 

of ground measurements, and the economic assessment of a solar PV power plant 

are presented.  

2.1 Variability of the Solar Radiation 

The Sun emits radiation continuously, and it is called the extra-terrestrial (ET) 

radiation above the atmosphere of Earth [19]. Due to the variations in the sunspot 

activities, solar cycles are observed every 11 years; however, it has a negligible effect 

on the solar constant, which is estimated as 1367 𝑊/𝑚2 by the World Radiation 

Center [19]. On the other hand, the distance between Earth and Sun changes during 

a year because of the eccentricity of the Earth’s orbit, which introduces about 3.3% 

variation on ET radiation [19]. In addition, the tilt of the Earth’s axis and its rotation 

cause seasonal and daily variations in the amount of solar radiation. These variations 

are well known, and the solar geometry is predicted using angles, such as solar 

elevation, zenith, azimuth and declination [19]. However, solar radiation reaches the 

surface by passing through the Earth’s atmosphere, and three components of solar 

radiation on a horizontal surface are formed: direct, diffuse and reflected irradiation. 

While diffuse irradiation results from the scattering of clouds, aerosols and other 

particles, the direct (beam) component reaches the surface without scattering, and 

reflected irradiation reaches the surface with the reflectivity of the ground [19]. The 

variability introduced by weather events such as cloud cover is less predictable; thus, 

the nature of the solar resource becomes stochastic [4]. There are both temporal and 

spatial variabilities: temporal variability can vary from seconds to years, decreasing 
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as the time period increases [4]. Spatial variability also smoothes as the considered 

site or region expands [4].  

In this study, the long-term solar radiation trends are analyzed since the interannual 

variability of GHI is important to determine whether the solar energy potential of a 

site is feasible and bankable for a solar energy project throughout its operational 

lifetime. In Figure 2.1, the interannual variability of GHI in the Mediterranean area 

for the time period 1985-2004 is shown, according to a previous study done in 2007 

[20]. 

 

 

Figure 2.1. The interannual variability of global horizontal irradiation between the 

years 1985 and 2004, shown in percentages (%) [20]. 

2.2 Probability of Exceedance of Energy Yield 

Energy exceedance probability values such as P50 and P90 are needed when the level 

of confidence of energy yield estimates is required by debt providers for making 

decisions on new renewable energy investments,  and POE values are generally 

obtained using statistical methods [6]. Since renewable energy sources such as solar 

radiation and wind speed have stochastic nature, a specific statistical probability 

density function (PDF) does not always fit the data set. However, an assumption can 

be made by fitting data to a PDF, and its representativeness can be checked by 

statistical tests, such as goodness of fit and Normality tests [4], [21], [22].  
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Different methods were developed to calculate POE values; however, there is not an 

industry-standard methodology in the research field for doing resource risk 

assessments and estimating POE values [5], [12], [22]. The simplest method is the 

SolarGIS approach [12], in which an average solar resource year is represented by 

“TMY P50” data set, assuming that P50 value of the annual energy production (AEP) 

can be calculated with TMY data. Normal distribution was assumed for the annual 

solar irradiation; also, a combined uncertainty was used to account for the modeling 

estimate and interannual variability; thus, “TMY P90” was created to represent a low 

solar resource year. However, it is not recommended to use TMY data sets for risk 

analyses and multi-year time series data to see the effects of solar radiation variations 

on the AEP. Similarly, representative TMY data sets of DNI were created for 

concentrated solar power plants in the EVA method [15]. POE values were created 

from the annual energy outputs of the 34-year ground measurement data set, and the 

distribution of annual DNI values was fitted to Weibull PDF. However, a minimum 

of 15 years of DNI data is required for this method, and information is lost when 

generating TMY data sets. On the other hand, Dobos and Kasberg [23] assumed 

Normal distribution for the solar irradiation, but they also used the empirical 

cumulative distribution function (CDF) to calculate POE values. They found 2% 

lower estimates with the empirical method than the normally distributed value for 

the P90. On the other hand, Tadesse et al. [13] used a synthetic year generation 

approach to increase the length of the data set, which works by dividing each year 

into 4-month periods, taking the average of each period and creating all possible 

years from these periods. They also compared the POE values of their method with 

the Normal distribution assumption, and a 3% lower result was found for the P95 

value with the Normal distribution assumption. Another study aimed to find the POE 

values using 19-year weather data and TMY datasets of 18 different PV plants 

worldwide [10]. They used the Kernel density function to find the PDF of long-term 

data, and Normal distribution was assumed for TMY datasets. They assumed the 

standard deviation of annual GHI as the interannual variability in TMY case. Then, 

they compared POE values of both cases and the interannual variability was found 
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to be dominant among other uncertainties, which causes about 3-5% difference in 

POE values. However, this study is not site-specific. Besides, a recently published 

study in Korea [24] compared three different distributions by calculating POE values 

of monthly and annual mean PV power potential, which are the Normal, Skew-

Normal and empirical distributions. They used 27-year ground measurements, and it 

was found that skew-normal distribution was closer to the empirical CDF than 

normal distribution, which was concluded to be a more realistic modelling 

assumption. 

Up to now, POE methods have found single values based on the first-year energy 

yield of a solar project. To predict the lifetime average energy yield values, Monte 

Carlo simulation (MCS) and Latin hypercube sampling (LHS) methods are 

suggested to generate hundreds of possible results from a limited number of data sets 

to enable resource risk assessments with time-dependent POE values [4], [25]. 

According to the International Energy Agency’s (IEA) report under Task 13 

published in 2018 [25], a general method was suggested to estimate the lifetime 

energy yield predictions and to include all sources of uncertainties that affect the 

estimations, which enables time-dependent POE values rather than calculating a 

single value for each exceedance probability. The method first chose a reference 

period from the historical data time series. It calculated the predicted reference 

energy yield to estimate the best mean annual yield by using a simulation tool, and 

finally, calculated the predicted energy yields over the prediction period by applying 

long-term changes of all parameters and models to the predicted reference energy 

yield with the use of Monte Carlo approach [25]. Thevenard and Pelland [26] 

followed this method in their study using the statistical modeling of System Advisor 

Model (SAM) software, in which the LHS method is used. They found that the 

lifetime average energy yield’s uncertainty is 7.9%, whereas 8.7% uncertainty was 

found for the first year since solar radiation variability decreases as the time period 

increases. Belluardo et al. [27] also used the Monte Carlo approach in PVsyst 

software and the Normal distribution assumption to estimate the PV energy yield, 

and they obtained a 5-10% uncertainty range according to different scenarios. While 
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doing MCS with a more extended dataset of ground-measured data gave the lowest 

uncertainty, the highest uncertainty was found in assuming Normal distribution with 

a shorter dataset of satellite-based data [27]. A summary of the discussed studies can 

be seen in Table 2.1. 

 

Table 2.1 Selected studies from the literature about the POE estimation of solar PV 

energy yield. 

 

Study Location Parameter Fitted PDF
Type of 

Data

Measured 

Period

Temporal 

Resolution

Calculated 

Metric
Software

GHI              

GTI

Bolzano, 

Italy

Belluardo 

et al., 2017
ground 22 years

GHI                 

DNI
Normal

Pelland et 

al., 2016

worldwide 

18 ground 

stations

GHI

Almeria

Normal          

Empirical

Phoenix, 

Arizona 

(USA)

USA

GHI                 

DNI            

DHI

Fernández-

Peruchena 

et al., 2018

Burns, 

Oregon 

(USA)

DNI Weibull

GHI
Synthetic             

Normal

Kernel                  

Normal

TMY       

satellite
1997-2016      sub-hourly POE PVsyst

1991-2017

Skew-

Normal      

Empirical

−

P50, P90    

P90/P50
PVsyst

hourly
TMY        

ground

year-1 & 

lifetime 

average 

yield

SAM1960-1989

hourly

hourly

Normal          

Empirical

Thevenard 

& Pelland, 

2013

TMY P50          

TMY P90

hourly
TMY       

satellite

TMY

1961-2005

NormalGHI

20 years

Cebecauer 

& Suri, 

2015

Dobos & 

Kasberg, 

2012

Tadesse et 

al., 2017

P50, P90

sub-hourly

Ontario, 

Canada

hourly POE

P50, P90

groundGHI
4 cities,   

Korea

Kim et al., 

2020

ground

TMY       

satellite

SolarGIS

SAM

PVsyst1998-2016     

1980-2013     hourly
P10, P50,          

P90, P99

SAM                

R 
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2.3 Uncertainty Components of Solar PV Energy Yield 

Uncertainty quantification of all inputs, parameters and modeling steps is required 

to predict the long-term energy yields with high confidence levels, and an overall 

uncertainty should be obtained by combining individual uncertainty sources [25]. 

Reducing the overall uncertainty means higher energy estimates, thus, reduced 

financial risks, increased potential revenues and lower electricity costs [28]. 

2.3.1 Data Uncertainty 

Measuring devices should be well maintained and calibrated for an accurate data set; 

therefore, measurement uncertainties should be considered if ground measurements 

are used. If satellite data is used, data should be validated, and modeling data 

uncertainties should be considered. Site adaptation techniques are applied to the 

long-term satellite-derived data by using short-term on-site ground-measured data to 

correct systematic errors and bias, since satellite data may differ from ground data 

because of atmospheric effects such as aerosols, water vapor and cloudiness, also, 

albedo and topography of the region [16]. At least 1-year ground measured data is 

required to include seasonal effects for site adaptation [16].  

Temporal representativeness is another important factor that should include 

interannual variability. According to a study done by Müller et al. [29], global 

dimming and brightening effects, which is a multi-decadal trend for solar irradiance, 

were observed between years 1951-2010 in Germany, and they found that a 3% 

uncertainty is added to predictions if an average GHI obtained from historical data 

will be used for the future average GHI. This uncertainty level can increase up to 4-

5% for 30⁰-tilted, south-facing panels for GTI and to 15% for DNI [29]. To best 

predict the future GHI trend throughout a PV plant’s operational life, the most recent 

10-year data is suggested to calculate the energy yield predictions in IEA’s report 

[29]. When the on-site ground measurements have short periods of record, they can 

be adjusted by long-term satellite data using the measure-correlate-predict (MCP) 
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method so that the uncertainty related to the length of the historical period can be 

reduced [30]. The temporal resolution of data also affects the energy performance 

estimates. For example, sub-hourly direct normal irradiance (DNI) measurements 

are required for concentrating solar power (CSP) energy yield estimates [4]. The 

spatial resolution of data also has uncertainties, especially if near-site measured data 

is used and if the analysis is done for spatially dispersed power plants [31]. 

2.3.2 Energy Modelling Uncertainty 

When estimating the annual energy output in energy simulation programs, many 

input parameters are required, such as PV system design characteristics, system 

losses, reference weather data and long-term energy yield simulation assumptions 

[5]. For solar energy and its PV application, the sources of uncertainties can be 

summarized as follows.  

a. Converting GHI to POA Irradiance 

Transposition models, which are applied to GHI time series to calculate the plane-

of-array (POA) irradiance, introduce a level of uncertainty, and the accuracy of the 

models should be known [25]. To obtain POA irradiance, GHI is first decomposed 

into DNI, DHI and ground-reflected irradiance by using one of the decomposition 

models, such as Erbs, Ruiz and Skarveit [25]. The three components are then 

recombined to obtain POA by using algorithms such as isotropic, Hay & Davies, 

Muneer and Perez [25]. A study done in France showed that the highest accuracy is 

obtained by combining Skarveit and Hay & Davies models, compared to measured 

inclined irradiation values [26]. Another study was done across ten stations in the 

U.S., and they evaluated the performance of several decomposition and transposition 

models to obtain POA irradiance from measured GHI/DHI [33]. It was found that 

simple decomposition models generally underpredict DHI during cloudy periods and 

overpredict during clear periods, whereas the isotropic model estimates the lowest 

POA among transposition models [33]. Also, Hay & Davies and Perez models have 

the smallest errors in transposition models; however, the Perez model was not 
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recommended if the measured DHI is not available since the model is highly 

sensitive to the quality of the measurements [33]. The combination of Erbs and Hay 

& Davies models gave the smallest errors compared to measured POA when 

obtaining POA from measured only GHI. Nevertheless, it was concluded that 

measuring POA irradiance will reduce the biases in PV energy estimations [33]. 

b. Operating PV Cell Temperature 

The incident solar radiation, ambient air temperature and wind speed are the primary 

drivers that affect the module temperature of PV, thus, the PV module efficiency 

[32]. As a result, the PV power output is affected by the variability of air temperature, 

and a proper correlation for the operating temperature of a PV module should be 

chosen [33]. In addition, the temperature coefficient of module efficiency adds 

another uncertainty, which was assumed as 10% for all technologies [25]. It was also 

mentioned that temperature is the largest influencer on the PV energy yield in hotter 

locations, whereas irradiance is the most important one with disregard of location 

[25]. 

c. PV Module Efficiency 

PV module efficiency changes as a function of weather conditions, although initially, 

it is constant under standard test conditions (STC), and the module performance ratio 

(MPR) is used to account for the factors that affect it and to compare different PV 

modules at different locations [25]. Losses due to module reflection characteristics 

are approximated to account for 1% uncertainty for all locations and modules; 

however, detailed analysis or information from PV specifications is required [25]. 

The spectral shape of the incident solar irradiance also creates uncertainties; 

however, this effect is lower than the temperature and irradiance effects, about 2% 

for monocrystalline and polycrystalline silicon PV technologies [25].   

d. Soiling, Shading, Reflection and Snow Cover 

The soiling rate of solar PV panels significantly affects the energy losses, and a 

physical model of PV soiling mechanisms does not exist. In addition, local weather 

characteristics (wind, rain) and the operation and maintenance (O&M) of PV surface 
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cleaning schedules can estimate soiling rates more complicated [25]. Therefore, 

Fraunhofer Institute of Solar Energy (ISE) [25] developed a simplified approach to 

predict the uncertainty related to yearly averaged soiling loss as 2% for tilt angles 

above 15⁰. Shading and snow cover also cause a decrease in PV energy generation, 

and sometimes satellites may not recognize the difference between snow cover and 

the clouds. 

e. Energy Modelling and Simulation Tools 

Energy simulation tools and chosen models to calculate the actual energy production 

based on historical time-series data also have uncertainties related to the 

assumptions, chosen parameters and assumed losses [25]. On the other hand, PV 

system design characteristics such as orientation and tilt angle of PV modules affect 

energy generation. They should be optimized if they are fixed, or a tracking system 

is available (1-axis or 2-axis). 

2.3.3 Statistical Uncertainty 

To find the exceedance probabilities of annual energy yields, the solar resource’s 

probability density function can be plotted over a specific time period and are 

generally fitted to specific statistical PDFs. For example, Weibull distribution is 

commonly fitted to predict DNI, whereas, Normal and Beta distributions are 

considered to fit GHI best [15], [21], [22], [34]–[37]. Thus, fitting PDFs also creates 

uncertainties, such as determining the shape and scale parameters of specific 

functions [15]. 

2.4 Quality Assessment of Ground Measurements 

Financial institutions require bankable datasets to guarantee investments on large-

scale solar energy projects, reducing the overall uncertainty of energy yield estimates 

[38]. Long-term modeled data such as satellite-derived data is mostly available 

globally; however, their systematic errors and bias should be removed by integrating 
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quality-checked ground measurements called “site adaptation” [39]. However, 

quality control of ground-measured data plays an important role in preventing 

erroneous results; otherwise, modeled data bias can increase [39]. Systematic errors 

of satellite-based data arise from low spatial resolution, assumptions on atmospheric 

data such as aerosols and water vapor, and irradiance models used, whereas ground 

measurements have erroneous data because of the inaccuracy of sensors, lack of 

calibration or error, and error due to insufficient maintenance to prevent soiling and 

shading [40]. Most erroneous data is recorded at sunrise and sunset times when the 

solar elevation angle is below 7⁰, which is called the cosine error, and these 

measurements are generally excluded [41], [42]. Reflection from the clouds and 

refraction of the atmosphere can cause positive measurements before sunrise and 

after sunset, which creates problems for the hours that contain sunrise and sunset 

times; thus, these measurements can be neglected [19].  

Several quality check tests were developed by institutions and researchers for 

measured solar radiation data using physical limits and the relations between 

radiation components [41]–[43]. For example, Journee and Bertrand [43] applied 

several quality tests to sub-hourly solar radiation data such as physical threshold, 

step, persistence, quality envelope, sunshine and spatial consistency tests. Physical 

threshold and quality envelope tests were applied to the ground measurements used 

in this thesis. 

2.5 Economic Analysis of a Solar PV Power Plant 

Levelized cost of electricity (LCOE) is a useful economic metric to compare the 

viability of different energy generation technologies, which is the ratio of the total 

life cycle cost and energy production, in USD/kWh [44], [45]. There are several key 

parameters to calculate the LCOE of a renewable energy project, which are the 

capital expenditures, annual operation and maintenance expenditures, discount rate, 

annual energy production (AEP) and the project’s operational lifetime [45].  
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Previous case studies were done for METU NCC, and different assumptions were 

made for the economic assessments. For instance, solar PV investment cost varied 

from 1388 to 3200 USD/kW, whereas the annual total operation and maintenance 

(O&M) cost was between 14 and 25 USD/kW [17], [46]–[49]. The annual discount 

rate was assumed as 9% in [17], [47], while 10% was suggested in [49]. A sensitivity 

analysis was conducted to see the effects of solar and wind resources on the LCOE, 

and it was found that a 20% change in weather parameters of the TMY data set would 

deviate the LCOE by 8% [17]. However, further research is needed to see the long-

term variability of renewable resources and their impacts when calculating LCOE 

throughout the operational lifetime of a plant.  
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CHAPTER 3  

3 THEORY AND METHODOLOGY 

In this chapter, different methods used throughout the study were explained, which 

can be applied to different sites and solar PV energy projects; thus, the methodology 

is widely applicable. In this study, the methodology was applied to the 1 MWp solar 

PV plant at METU NCC as a case study. First, data analysis was conducted, and 

different types of datasets were downloaded from different sources. Then, a quality 

assessment was done to the ground measurements, which has some erroneous data 

points. Using these datasets, energy yield was estimated, P50/P90 analysis was 

conducted to find the POE values, and a stochastic simulation was also done. Both 

SAM software and custom codes in MATLAB were used to do the calculations. 

Finally, the overall uncertainty of the energy yield was estimated, and the LCOE 

range was obtained. Figure 3.1 shows the flowchart of this thesis. 

 

Figure 3.1. Flowchart of the thesis. 
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3.1 Data Analysis 

3.1.1 Datasets 

Long-term solar radiation data is required to find the POE values of energy yield 

estimations. In this study, both ground measurements and satellite-based data were 

used, whereas TMY data was used to compare P50 values. The satellite-based data 

was downloaded from the PVGIS web interface, and three different TMY data sets 

were used to obtain a general TMY result, which are TMY2-Meteonorm [50], 

TMYx.2004-2018 [51] and PVGIS-TMY [52]. Using different TMY datasets is to 

obtain an average TMY result, and the number of datasets can be increased if there 

are more data sources. For the long-term satellite-based data, the SARAH database 

was recommended for Europe, Africa, Asia, and South America regions, covering 

12 years from 2005 to 2016 [53]. In Figure 3.2, default satellite databases for 

different parts of the world from the PVGIS interface are shown. In Table 3.1, site-

specific climatic conditions of METU NCC and the type of datasets used in the study 

can be seen. 

 

Figure 3.2. Default solar radiation database for different regions of the world, 

available in PVGIS [53]. 
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Table 3.1 Climatic conditions of the region and type of datasets used in the study. 

 

 

The PVGIS-SARAH data sets were validated by comparing them with the ground 

measurements provided by the Baseline Surface Radiation Network (BSRN) [54]. 

Although there is no validation study for Cyprus, the nearest BSRN stations are in 

Israel and Greece, where the relative mean bias deviations are +3.4% and +3.6%, 

respectively [54]. In addition, considering that Cyprus is in the middle of the two 

stations in Israel and Greece, it can be assumed that SARAH data overpredicts GHI 

up to 3.6% on average for the Cyprus region. 

Satellite-based data includes in-plane beam and diffuse irradiance, sun elevation, air 

temperature at 2 meters and the wind speed at 10 meters above the ground. In the 

web interface, hourly time series data was downloaded for the location of the 

installed solar photovoltaic (PV) power plant at METU NCC, where the latitude is 

35.253⁰N and longitude is 33.016⁰E. Fixed mounting type with zero slope and south-

facing azimuth angle was given as inputs. Direct normal irradiance (DNI) values 

were calculated according to the zenith angle since SAM uses weather data inputs as 

GHI, DNI and DHI. In addition, individual weather files with 8760 hours were 

created for each year from the 12-year time series data because SAM is designed to 

run simulations for annual weather datasets. For this reason, leap days were removed 

from the years 2008, 2012 and 2016. 

Location

Latitude

Longitude

Elevation [m]

GHI [kWh/m^2/day]

DNI [kWh/m^2/day]

DHI [kWh/m^2/day]

Average Temperature [⁰C]

Average wind speed [m/s]

Köppen-Geiger Climate 

Database Satellite-based Ground-measured TMY

Time resolution hourly 10-min hourly

Time period 2005-2016 (12 years) 2010-2016 (7 years) 1 year

METU NCC, Cyprus

35.25⁰ N

33.02⁰ E

118

5.36

6.05

1.62

19.7

3.2

Csa
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Apart from satellite-based and TMY datasets, ground-measured data has been 

recorded with 10-minute time steps. GHI has been measured with a pyranometer 

since January 1, 2010, while DNI has been measured with a pyrheliometer since June 

1, 2013, at the solar PV power plant in METU NCC. After 2017, the quality of 

measurements reduced significantly; therefore, data between 2010 and 2016 were 

used. In addition, global tilted irradiation (GTI) has been recorded with a 30⁰-tilted 

pyranometer since February 13, 2016. In Table 3.2, details of measured data and 

sensor equipment at the solar PV plant are provided. 

 

Table 3.2 Measured data and equipment details. 

 

3.1.2 Quality Assessment of Ground-Measured Data 

Missing and suspicious data were found both for GHI and DNI. Thus, quality 

assessment was done to detect erroneous data points using quality control tests. For 

GHI, physically impossible values were found using ET radiation on a horizontal 

surface. Figure 3.3 shows the time series of the ground-measured data with 10-

minute time steps and ET irradiation. Figures 3.4 and 3.5 also show the heat map of 

ground-measured GHI and DNI data, respectively. 

Measured parameter Symbol Type of instrument Manufacturer Model Measured since

Global horizontal irradiance GHI pyranometer Kipp & Zonen CMP-22 2010

Direct normal irradiance DNI pyrheliometer Kipp & Zonen CHP-1 2013

Global tilted irradiance GTI 30⁰-tilted pyranometer Kipp & Zonen CMP-10 2016

Temperature T thermometer Kintech Galtech KPC 1/5 2013

Recorded data − data logger Campbell Scientific CR800 −
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Figure 3.3. Time series of uncorrected ground-measured data with 10-minute time 

steps and extra-terrestrial irradiation between 2010 and 2017. 

 

Figure 3.4. Heat map of 10-minute measured GHI for time period 2010-2016. 
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Figure 3.5. Heat map of 10-minute measured DNI from the second half of 2013 to 

2016. 

The following adjustments were made to the ground measurements: 

• Leap days were removed from the years 2012 and 2016. 

• All GHI and DNI data before sunrise and after sunset were converted to zero 

to correct any missing and positive values, as suggested by [54]. 

• To exclude any possible error due to sunrise and sunset times, GHI and DNI 

data were converted to zero when the solar elevation angle (h) is below 7⁰. 

• For the upper limit, data were changed to missing if GHI exceeds the extra-

terrestrial radiation on a horizontal surface (𝐺𝑜) during daylight. 

 

𝐺𝐻𝐼 < 𝐺𝑜 𝑖𝑓 ℎ > 0°                                                                                          (1) 

𝐺𝑜 = 𝐺𝑠𝑐 (1 + 0.033 cos
360𝑛

365
) cos 𝜃𝑧                                                         (2) 
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where 𝐺𝑠𝑐 is the solar constant that is assumed as 1367 𝑊/𝑚2, 𝑛 is the day 

number in a year, and 𝜃𝑧 is the zenith angle [19].  

• For the lower limit, data were changed to missing if GHI is lower than 

expected. Heavily overcast conditions determine the minimum GHI, and the 

following condition was adapted for sub-hourly data from [43]: 

 

𝐺𝐻𝐼 ≥ 10−4 × (ℎ − 10)  × 𝐺𝑜 𝑖𝑓 ℎ > 10°                                                       (3) 

 

• A persistence test was applied to all GHI data during daylight to find any 

sensor failure due to intermittent and/or constant recordings. Equation (4) 

was used  from [43]: 

 

1

8
𝜇(𝑘𝑡) ≤ 𝜎(𝑘𝑡) ≤ 0.35  𝑖𝑓 ℎ > 10⁰                                                             (4) 

 

where 𝑘𝑡 represents the clearness index at each time step, 𝜇(𝑘𝑡) and 𝜎(𝑘𝑡) 

are the mean and standard deviation of clearness index values at each day, 

respectively. However, this test did not work for the Cyprus region, and it 

found clear-sky days rather than constant and intermittent measurements 

because of sensor failure. This test was studied over Belgium; thus, 

parameters may change due to site-specific conditions as indicated by the 

authors [43].  

• For daily total GHI values, lower and upper limits were suggested by [55] : 

 

0.03 × 𝐺𝑜,𝑑𝑎𝑖𝑙𝑦 < 𝐺𝐻𝐼𝑑𝑎𝑖𝑙𝑦 < 1.1 × 𝐺𝑐𝑠,𝑑𝑎𝑖𝑙𝑦                                                  (5) 

 

where 𝐺𝑜,𝑑𝑎𝑖𝑙𝑦 is daily total E.T. radiation, 𝐺𝐻𝐼𝑑𝑎𝑖𝑙𝑦 is daily total GHI 

measurement, and 𝐺𝑐𝑠,𝑑𝑎𝑖𝑙𝑦 is daily total clear-sky radiation. In this study, 

clear-sky radiation was not found since it would introduce complex 
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parameters such as relative air mass, Linke turbidity factor and Rayleigh 

optical depth [42], [43], [55]. In addition, lower-than-expected GHI values 

were observed in the last years when compared to DNI measurements and 

satellite-based data. Thus, a lower limit was tested as a priority.  

• 10-min data points were averaged to hourly values, omitting missing values. 

However, hourly data were kept as missing if a whole hour of data points 

were missing. 

• An estimation was then done for GHI using the Erbs model [43], [56]. Since 

DNI measurements were available from June 2013, estimated GHI values 

were calculated based on beam transmittance, 𝑘𝑛 (𝐵/𝐺𝑜) and the following 

conditions in equation (6): 

 

{
 
 
 

 
 
 𝑘𝑡 = √

𝑘𝑛

0.09
     𝑖𝑓    0 < 𝑘𝑛 ≤ 0.004356

𝑓(𝑘𝑡) − 𝑘𝑛 = 0  𝑤ℎ𝑒𝑟𝑒 𝑓(𝑘𝑡) = 0.0489𝑘𝑡 + 0.1604𝑘𝑡
2 − 4.388𝑘𝑡

3

+16.638𝑘𝑡
4 − 12.336𝑘𝑡

5    
𝑖𝑓      0.004356 < 𝑘𝑛 < 0.668

𝑘𝑡 =
𝑘𝑛

0.835
     𝑖𝑓     0.668 ≤ 𝑘𝑛 ≤ 0.835

   (6) 

 

• Quality envelope test was also applied to 𝑘𝑛 − 𝑘𝑡 spaces between the years 

2013 and 2016 because both DNI and GHI measurements exist in that period. 

Since DHI was not measured, 𝑘𝑑 − 𝑘𝑡 envelopes were not created. It is a 

statistical outlier analysis and defining the boundary layers of envelopes 

depend on site-specific conditions [42]. Boundary layers are constructed 

using high quality and reliable ground measured data, and the nearest study 

was done in Cyprus by Pashiardis and Kalogirou [42]. They chose two sites 

which are Larnaca and Athalassa, and since Larnaca is a coastal region with 

similar solar radiation characteristics like at METU NCC, the following 

boundary layer equations created for Larnaca were used [42]: 

 

𝑓𝑙𝑜𝑤𝑒𝑟(𝑘𝑡) = 0.0441 − 0.752𝑘𝑡 + 1.480𝑘𝑡
2
                                                (7) 
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𝑓𝑢𝑝𝑝𝑒𝑟(𝑘𝑡) = −0.0705 + 0.6568𝑘𝑡 + 0.3814𝑘𝑡
2
                                       (8) 

 

• Gap filling can be done by estimations using the most correlated reference 

data from neighboring stations [57]. However, since measurements from a 

nearby alternative station are not available in our region, a spatial consistency 

test could not be done for our GHI & DNI measurements to estimate missing 

and erroneous data. Also, estimating solar radiation from nearby stations may 

not work on partly-cloudy days since weather conditions can change rapidly 

for each station [58]. As suggested by [59], up to 2 hours of missing data can 

be filled by linear interpolation.  

• Before applying linear interpolation to missing hours, a replacement was 

done for the underestimated GHI measurements for 2014, 2015 and 2016. 

Both heat maps and daily total GHI graphs showed that GHI values are lower 

than or equal to DNI measurements in some periods; thus, the following 

criteria in equation (9) was applied to replace measured GHI with estimated 

GHI: 

{

𝑢𝑠𝑒  𝐺𝐻𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  
𝑖𝑓 𝐺𝐻𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 > 𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

  𝑎𝑛𝑑 𝑖𝑓 𝐷𝑁𝐼 ∗ cos 𝜃𝑧 > 0.95 ∗ 𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

                                                (9) 

 

The second criterion was obtained from [43], and it comes from the relationship 

between the global, beam and diffuse radiation components, where DHI will always 

be greater than zero during daylight. Also, DHI will be minimum during clear-sky 

conditions so that the upper limit for beam component cannot exceed GHI multiplied 

by 0.95.  

Missing GHI data was also estimated if DNI measurements were available. For 

example, 20 days of missing GHI data in October 2015 were estimated using DNI 

measurements and the Erbs model. The estimation procedure was applied for years 

2014, 2015 and 2016. The remaining missing hours of GHI were then filled by linear 

interpolation if one or two hours are missing. As a result, the number of missing 
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hours was reduced from 269 to 51 between 2010 and 2016. In total, five days had 

both missing GHI and DNI values, and satellite-based data replaced them since it 

better tells us whether that day was clear-sky, partly cloudy or fully cloudy, rather 

than interpolating the whole day in between times. 

Table 3.3 Days with missing GHI and DNI measurements. Missing hours were 

replaced by satellite-data. 

 

Apart from these, lower-than-expected measurements were found in July 2011, and 

neither linear interpolation nor estimating GHI worked since there were no DNI 

records. Thus, lower-than-expected GHI measurements were replaced by satellite-

based hourly GHI data between 188-220. days in 2011. According to the average 

daily total GHI values of measured and satellite-based data, average measured-to-

satellite ratios were found as 0.9014, 0.8694 and 0.9576 throughout the whole year 

for 2010, 2012 and 2013, respectively. The mean measured-to-satellite daily GHI 

ratio was found as 0.933 with respect to 2010, 2012 and 2013, then a replacement 

was done for lower-than-expected GHI data in 2011 by multiplying satellite-based 

GHI with 0.933 for that time period only.   

A summary of the detection of erroneous GHI, filling missing GHI and DNI data, 

and using estimated GHI at specific time periods can be seen at Figure 3.6. Applying 

this methodology to the measured GHI changed erroneous time periods; therefore, 

the term “constructed GHI” will be used, referring to the GHI after the quality 

assessment is done. 

Year Month Day

2013 July

2013 July

2014 May

2015 March

2016 September

30𝑡ℎ

30𝑡ℎ

31𝑡ℎ

31𝑡ℎ

31𝑡ℎ
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Figure 3.6. A flowchart of detecting erroneous GHI, filling missing data, and 

estimating GHI when it is needed. 

 

• Ambient temperature measurements were recorded every 10 minutes from 

February 19, 2013, until March 25, 2018, as can be seen in Figure 3.7. Leap 

day in 2016 was removed, and only data recorded in 2014, 2015 and 2016 

were taken to be used in solar PV energy production calculations since GTI 

estimation is available for that time period. Hourly missing data were filled 

by linear interpolation.  
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Figure 3.7. Time series of 10-minute measured ambient temperature between 2013 

and 2017. 

 

After all these adjustments, comparisons were made between measured, estimated, 

constructed and satellite-based data, using the relative root-mean-square error 

(rRMSE) formula in equation (10): 

𝑟𝑅𝑀𝑆𝐸 =

√∑ (𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)
2𝑛

𝑖=1
𝑛

�̅�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
                                                                     (10) 

 

3.2 Solar PV Energy Yield Estimation 

The amount of energy output of a solar PV module is dependent on the geometrical 

relations between Sun, Earth and the module’s surface where solar radiation reaches. 

Also, time is important in solar energy calculations, and solar time should be 

calculated, which is different from local time [19]. The following equation is used to 

calculate solar time [19]: 
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𝑡𝑠 = 𝑡𝑠𝑡𝑑 + 4 × (𝐿𝑠𝑡 − 𝐿𝑙𝑜𝑐) + 𝐸                                                                                 (11) 

where 𝑡𝑠𝑡𝑑 is local time, 𝐿𝑠𝑡 is standard meridian, 𝐿𝑙𝑜𝑐 is the longitude of location, 

and 𝐸 is the equation of time. These terms are calculated in equations 12-14 [19]: 

𝐿𝑠𝑡 = {
−(𝑇𝑍) × 15               𝑖𝑓 𝑇𝑍 ≤ 0

360 − (𝑇𝑍) × 15    𝑖𝑓 𝑇𝑍 > 0
                                                                       (12) 

𝐿𝑙𝑜𝑐 = {
𝐿𝑙𝑜𝑐                          𝑖𝑓 𝑊𝑒𝑠𝑡
360 − 𝐿𝑙𝑜𝑐           𝑖𝑓 𝐸𝑎𝑠𝑡

                                                                          (13) 

𝐸 = 229.2 × (0.000075 + 0.001868 × cos 𝐵 − 0.032077 × sin 𝐵 

−0.014615 × cos 2𝐵 − 0.04089 × sin 2𝐵)                                                             (14) 

where B is a constant and calculated as follows [19]: 

𝐵 = (𝑛 − 1) ×
360

365
                                                                                                     (15) 

Solar time should be converted to angular form, which makes the hour angle [19]: 

𝜔 = (𝑡𝑠 − 12) × 15                                                                                                 (16) 

Apart from solar time, the position of the sun should also be found. Zenith angle is 

calculated as follows [19]: 

cos 𝜃𝑧 = cos∅ cos 𝛿 cos𝜔 + sin∅ sin 𝛿                                                                (17) 

where ∅ is latitude, and 𝛿 is the declination angle which is calculated as follows [19]: 

𝛿 = 23.45 × sin (
360

365
× (284 + 𝑛))                                                                         (18) 

The solar azimuth angle is also needed and calculated as follows [19]: 

𝛾𝑠 = 𝑠𝑖𝑔𝑛(𝜔) × |cos−1 (
cos𝜃𝑧 sin∅−sin𝛿

sin𝜃𝑧 cos∅
)|                                                               (19) 

The PV module orientation should also be determined to optimize the energy output; 

thus, tilt (β) and surface azimuth angles (γ) should be optimized. Finally, the angle 

of incidence can be calculated as follows [19]: 
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cos 𝜃 = cos 𝜃𝑧 cos 𝛽 + sin 𝜃𝑧 sin 𝛽 cos(𝛾𝑠 − 𝛾)                                                     (20) 

In this study, global tilted irradiation (GTI) was estimated using the isotropic sky-

diffuse model proposed by Liu and Jordan, since it allows a simple calculation by 

not considering the circumsolar and horizon-brightening effects of DHI [19]: 

𝐺𝑇𝐼 = 𝐷𝑁𝐼 × cos 𝜃 + 𝐷𝐻𝐼 (
1+cos𝛽

2
) + 𝐺𝐻𝐼 × 𝜌 × (

1−cos𝛽

2
)                                 (21) 

where θ is the angle of incidence, 𝛽 is the surface tilt angle, and 𝜌 is the surface 

albedo. Thus, GTI consists of beam, diffuse and reflected radiation components 

incoming to tilted solar panels. Surface albedo was assumed as 0.2, constant during 

a year. Apart from the isotropic sky-diffuse model, more detailed transposition 

models consider the circumsolar and horizon-brightening components of diffuse 

irradiation, such as Hay, Davies, Klucher, Reindl (HDKR) and Perez models [19]. 

HDKR model estimates GTI as follows [19]: 

𝐼𝑇 = (𝐼𝑏 + 𝐼𝑑𝐴𝑖)𝑅𝑏 + 𝐼𝑑(1 − 𝐴𝑖) (
1+cos𝛽

2
) [1 + 𝑓𝑠in3 (

𝛽

2
)] + 𝐼𝜌 (

1−cos𝛽

2
)          (22) 

where 𝐼𝑇 , 𝐼𝑏, 𝐼𝑑 and 𝐼 are tilted, beam, diffuse and global horizontal irradiation, 

respectively. 𝐴𝑖 is the anisotropy index and is calculated as follows [19]: 

𝐴𝑖 =
𝐼𝑏

𝐼𝑜
                                                                                                                      (23) 

where 𝐼𝑜 is the extra-terrestrial radiation on a horizontal surface. 𝑅𝑏 is the geometric 

factor and is calculated as follows [19]: 

𝑅𝑏 =
cos𝜃

cos𝜃𝑧
                                                                                                               (24) 

where θ is the angle of incidence. Finally, 𝑓 is the modulating factor which takes into 

account cloudiness, and is calculated as follows [19]: 

𝑓 = √
𝐼𝑏

𝐼
                                                                                                                    (25) 

The most detailed estimation of GTI is found using the Perez model [19]: 
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𝐼𝑇 = 𝐼𝑏𝑅𝑏 + 𝐼𝑑(1 − 𝐹1) (
1+cos𝛽

2
) + 𝐼𝑑𝐹1

𝑎

𝑏
+ 𝐼𝑑𝐹2 sin 𝛽 + 𝐼𝜌 (

1−cos𝛽

2
)                (26) 

where 𝐹1 and 𝐹2 are circumsolar and horizon-brightness coefficients, respectively. 

The terms a and b account for the circumsolar radiation, and detailed information 

about these terms can be found in [19]. 

DHI can be calculated from the relationship between DNI and GHI [19]: 

𝐺𝐻𝐼 = 𝐷𝑁𝐼 × cos 𝜃𝑧 + 𝐷𝐻𝐼                                                                                   (27) 

Annual energy production was calculated on an hourly basis, using the following 

equation [19]: 

𝐸𝑃𝑉 = ∑ 𝜂𝑃𝑉,𝑖 × 𝐺𝑇𝐼𝑖 × 𝐴𝑃𝑉 × 𝑁𝑃𝑉
8760
𝑖=1                                                                (28) 

where 𝜂𝑃𝑉,𝑖 is the PV module efficiency at 𝑖𝑡ℎ hour, 𝐴𝑃𝑉 is the PV module area and 

𝑁𝑃𝑉 is the number of PV modules in the solar PV plant. PV module efficiency at 𝑖𝑡ℎ 

hour can be calculated from the following equation [19]: 

𝜂𝑃𝑉 = 𝜂𝑃𝑉,𝑟𝑒𝑓[1 − 𝛽𝑡(𝑇𝑃𝑉 − 𝑇𝑟𝑒𝑓,𝑆𝑇𝐶)]                                                                (29) 

where 𝜂𝑃𝑉,𝑟𝑒𝑓 is the reference PV module efficiency under standard test conditions 

(STC), 𝛽𝑡 is the temperature coefficient, 𝑇𝑃𝑉 is the PV module temperature, and 

𝑇𝑟𝑒𝑓,𝑆𝑇𝐶 is the reference PV module temperature under STC. PV module temperature 

at 𝑖𝑡ℎ hour can be calculated from the following equation [19]: 

𝑇𝑃𝑉 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑟𝑒𝑓)
𝐺𝑇𝐼

𝐺𝑟𝑒𝑓
                                                                     (30) 

where 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is the ambient air temperature, 𝑇𝑁𝑂𝐶𝑇 is the nominal operating cell 

temperature, 𝑇𝑟𝑒𝑓 is the reference temperature under normal operating conditions, 

and 𝐺𝑟𝑒𝑓 is the reference irradiation under normal operating conditions. The input 

parameters used to calculate the solar PV energy yield can be found in Table 3.4. 

After calculating the annual energy production, the final energy yield of a solar PV 

plant can be found as follows [19]: 
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𝑌𝑓 =
𝐴𝐸𝑃

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
                                                                                               (31) 

where 𝑌𝑓 is the final energy yield in kWh/kWp, AEP is the annual energy production 

in kWh, and installed capacity of a solar PV plant is in kWp, which is 1000 kWp for 

the installed solar PV plant in METU NCC. 

 

Table 3.4 Input parameters of the solar PV module [60]. 

 

 

Both ground-measured and estimated data, which were obtained by doing the quality 

assessment, were used to calculate the energy yield, and a summary of the 

methodology followed can be seen in Figure 3.8. 

 

Figure 3.8. Summary of the procedure to find energy yield estimations using ground-

measured data. 
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3.3 P50/P90 Analysis 

An exceedance probability is the complementary value of a percentile, thus, 10𝑡ℎ 

percentile is the P90 value. In this study, the term “P” is used to denote P50 and P90 

exceedance probabilities. Any POE value can be found from the inverse of a CDF, 

F(x), using the following equation: 

𝑃𝑂𝐸 = 𝐹−1(𝑥)                                                                                                      (32) 

The empirical method is said to be the most direct application since it is based on 

concatenating data points with equal probability of occurrence without assuming a 

PDF [13], [23]. In this study, the empirical method was applied to find the POE 

values of GHI and AEP, considering that there may be outlier weather events that 

cause skewness in the data sets. Therefore, statistical uncertainties due to assuming 

a specific PDF are not included in the empirical results. SAM version 2020.2.29 was 

used to do a P50/P90 analysis, and a TMY simulation was done to compare the 

energy yield with the P50 value. SAM calculates the energy exceedance probability 

values using both the empirical method and the Normal (Gaussian) distribution 

assumption [23]. According to the Normal distribution, independent samples are 

normally distributed, and the following equations describe its PDF and CDF [22], 

[23]: 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(
𝑥−𝜇

𝜎
)
2

                                                                                             (33) 

𝐹(𝑥) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥−𝜇

𝜎√2
)]                                                                                       (34) 

where erf is error function, σ is the standard deviation, and μ is the mean of a sample. 

Assuming a Normal distribution for the long-term solar radiation dataset and the 

energy yield makes the P50 value mean, and P90 value can be calculated from the 

CDF of Normal distribution [22]: 

𝑃90 = 𝜇 − 1.282 × 𝜎                                                                                              (35) 
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At least ten years of weather data are required for the P50/P90 analysis in SAM to 

include the interannual variability of solar irradiation and obtain a representative 

CDF of the AEP. In addition, the most recent 10-year data is suggested to best predict 

the future GHI trend throughout the operational life of a PV plant [25]. Since the 

satellite-based data is available for the time period 2005-2016, 12 years of data were 

used in the simulation. However, including the recent years’ data is of interest since 

the interannual variability of GHI directly depends on the length of the time period 

[32]. The interannual variability can be calculated with the coefficient of variation 

(COV) using the following equations, which are suggested by [4]: 

𝐶𝑂𝑉 =  
𝑠

�̅�
                                                                                                               (36) 

𝑠 =  √(
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1 )                                                                                      (37) 

where 𝑠 is the standard deviation, 𝑥𝑖 is the individual value and �̅� is the mean value 

of a sample. Here, 𝑁 is the number of years for the time period of 2005-2016. 

Throughout the simulations, DNI and GHI datasets were used as the irradiance data 

from the weather files. Surface albedo was assumed to be constant which is 0.2. To 

convert irradiation components into POA irradiation on an inclined surface, SAM 

uses three different transposition models: the isotropic, HDKR, and Perez models. 

Therefore, results were obtained for each model to see the effects of transposition 

models on the POE values. In Table 3.5, SAM input parameters of the installed solar 

PV plant in METU NCC are shown, in which both specifications of the installed 

solar PV module and inverter are provided. Since SAM does not allow multiple 

maximum power point tracking (MPPT) inputs for inverters if it is a large-scale PV 

system, single MPPT input was assigned, although the number of MPPT input is 2 

for the inverter model in the PV plant at METU NCC.  

In Table 3.6, PV system losses, which are applied as default values, are given. 

Shading, reflection, soiling and snow cover correspond to irradiance losses that 

reduce the POA irradiance on PV modules, and the annual average values are 

presented. Here, the nameplate loss refers to the degradation of PV modules after 
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being exposed to sunlight, and the value was obtained from the manufacturer’s 

datasheet [60]. However, P50/P90 analysis does not allow to consider the annual 

degradation rate of the PV system throughout its operational life since calculations 

are done only for the first year; thus, -0.48% degradation rate per year that is provided 

in the datasheet is not included in the calculation of AEP. On the other hand, the PV 

module efficiency deviates from the standard test condition (STC) since it depends 

on the solar irradiation, ambient temperature and the wind speed [33], the average 

deviation from STC was obtained for the PV modules. Other losses such as diodes 

and connections, AC/DC wiring, inverter power consumption and inverter efficiency 

loss are for AC and DC losses. Grid limits such as interconnection to the grid and 

curtailments were not considered in this study.  

 

Table 3.5 Solar PV system inputs used in SAM software. 

 

 

Value

1 MWp

30⁰

0⁰

Fixed

AC-250P/156-60S 

1.623

Total module area 6492

Ground coverage ratio 0.4

98.30%

Number of MPPT inputs 2

Number of inverters 40

4000

Inverter STP 25000TL-30

Inverter size 25 kW

multi-c-Si

Surface azimuth angle 

NOCT 45.8⁰C

Temperature correction NOCT method

15.41%

DC to AC ratio 1

Mounting standoff ground/rack mounted

Parameter

Rated power

Tilt angle

Tracking

PV module

PV technology

Number of modules

Manufacturer's inverter efficiency

PV module conversion efficiency

PV module area 𝑚2

𝑚2
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Table 3.6 Solar PV system losses used in SAM software. 

 

3.4 Stochastic Simulation 

Since estimating the long-term energy yield of solar PV includes many assumptions, 

such as modeling equations and losses, the effect of the uncertainty of each input on 

the energy output should be investigated. In addition, there can be correlations 

between the inputs. Generally, stochastic modeling is done by defining a probability 

distribution for each source of uncertainty, and many samples are created with 

respect to the defined distributions of inputs, then, many possible outputs are 

calculated according to the samples. This method allows us to obtain a range of the 

expected output, for example, energy yield and the LCOE. Furthermore, a short-term 

dataset with less than ten years can be used to obtain P50 and P90 values because 

creating the samples enables new possible inputs for the weather dataset. Using 

longer datasets will make the results more realistic in the long term since the 

interannual variability of GHI changes according to the selected time period.  

Losses (%)

Shading -2.2

Soiling -2

Reflection -2.5

Snow 0

Module mismatch -2

Nameplate -3

PV module deviation from STC -5

Diodes and connections -0.5

DC wiring -2

AC wiring -1

Inverter power consumption -1

Inverter efficiency loss -1.75

Inverter power clipping 0

Transformer & transmission 0

Availability & curtailment 0
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As a part of this study, the exceedance probabilities of the energy yield and the LCOE 

are found using the empirical method and the Normal distribution assumption. The 

results are also compared with TMY results. For the energy yield, a photovoltaic 

model without financial analysis is used in SAM; also, energy yield is estimated 

using the basic equations and the same weather datasets in custom codes. By doing 

so, the deviation of results can be quantified between using a simple model and 

modeling software. Besides, the LCOE is calculated using an equation and the 

energy yield results obtained from SAM calculations. Other inputs are assumed 

according to the literature and best practices. Thus, the LCOE variations can be 

determined according to different energy yield estimations.  

In addition to these, a stochastic simulation is done in SAM software (version 

2020.2.29), which uses the Latin Hypercube Sampling (LHS) method in order to 

create many samples, which is like Monte Carlo Simulation (MCS) [61]. Basically, 

the difference is that the LHS method generates near-random samples, whereas MCS 

generates random samples. The procedure of doing a stochastic simulation in SAM 

follows these steps: 

- Defining input variables and their probability distributions 

- Defining correlations between inputs, if there is any 

- Choosing the output(s) 

- Enabling weather file analysis for either GHI or DNI, if there are multiple 

weather files 

- Defining the number of samples 

- Computing the samples that will be used in the simulations 

- Running simulations 

Enabling weather file analysis is important because the interannual variability of 

GHI can also be considered by this way. In this study, satellite-based data (PVGIS-

SARAH) was used with 12-year weather data for the time period of 2005-2016. 

Besides, the number of samples can be chosen by the user; however, there should be 

an optimum point at which the run-time will not take a long time, and the confidence 
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level of the outputs will be adequate. Thevenard and Pelland [26] showed in their 

study that computing 100 samples could give reliable results in less than 10 minutes. 

In Figure 3.9, a screenshot of the stochastic simulation tools which are used in this 

study can be seen. The input variables and assumed distributions can also be found 

in Table 3.7. UserCDF is defined by SAM for the sky diffuse model, temperature 

correction method and self-shading loss, which does not allow to choose another 

distribution. Other variables are assumed to be normally distributed, and their 

standard deviations are created by SAM, whereas the mean values have been 

assumed by the user previously. Here, it is important to note that SAM does not allow 

to choose and specify an uncertainty distribution for the soiling loss, which is 

assumed as 2% for the average annual soiling loss in the losses. Thus, the uncertainty 

related to dirt and soiling is not analyzed in detail in this study.  

 

Figure 3.9. Stochastic simulation tools in SAM software. 

 

Table 3.7 The input variables with their assumed distributions in the simulations with 

no financial model. Mean and standard deviations are shown in percentage. 

 

 

The stochastic simulation was then done for a financial model, which is chosen as 

PV LCOE Calculator to simplify the financial parameters used in SAM. By doing 

Input variable Assumed distribution Mean (%) Standard deviation (%)

Sky diffuse model userCDF (Isotropic, HDKR, Perez) − −

Temperature correction method userCDF (NOCT, heat transfer) − −

Self-shading loss userCDF (None, standard, thin film) − −

AC wiring loss Normal 1 0.15

DC wiring loss Normal 2 0.3

Diodes & connection loss Normal 0.5 0.075

Module missmatch loss Normal 2 0.3

Nameplate loss Normal 3 0.45
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so, both energy yield and LCOE can be chosen as output in the simulation. Other 

input variables are also added to previously mentioned inputs, which can be seen in 

Table 3.8. 

 

Table 3.8 The input variables with their assumed distributions in the simulations with 

the financial model, PV LCOE Calculator. 

 

3.5 Uncertainty Analysis 

There are several sources of uncertainties when calculating a solar PV plant's annual 

energy production, such as data accuracy, energy modeling assumptions, and other 

sources of error [25]. In this study, uncertainty components can be classified as data 

uncertainty (accuracy of the satellite-based data used), converting GHI to POA 

irradiance (transposition models), the interannual variability of solar irradiation, 

uncertainties due to dirt, soiling, shading, reflection and other sources of error. 

According to the propagation of error, a function 𝑓(𝑥1, … , 𝑥𝑛) has an uncertainty as, 

𝑑𝑞 = √(
𝜕𝑞

𝜕𝑥1
𝑑𝑥1)

2

+ ⋯+ (
𝜕𝑞

𝜕𝑥𝑛
𝑑𝑥𝑛)

2

                                                                  (38) 

Thus, considering that the function is the annual energy production, 

𝐴𝐸𝑃 = ∑ 𝜂𝑃𝑉,𝑟𝑒𝑓𝐴𝑃𝑉𝑁𝑃𝑉𝐺𝑇𝐼𝑖 [1 − 𝛽𝑡 (𝑇𝑎,𝑖 − 𝑇𝑟𝑒𝑓 + (𝑁𝑂𝐶𝑇 − 𝑇𝑟𝑒𝑓)
𝐺𝑇𝐼𝑖

𝐺𝑟𝑒𝑓
)]8760

𝑖=1  

(39) 

Input variable Assumed distribution Mean Standard deviation

Sky diffuse model userCDF (Isotropic, HDKR, Perez) − −

Temperature correction method userCDF (NOCT, heat transfer) − −

Self-shading loss userCDF (None, standard, thin film) − −

AC wiring loss Normal 1% 0.15%

DC wiring loss Normal 2% 0.30%

Diodes & connection loss Normal 0.5% 0.08%

Module missmatch loss Normal 2% 0.30%

Nameplate loss Normal 3% 0.45%

Capital Cost Normal 1880 $/kW 282 $/kW

Annual fixed operating cost Normal 15 $/kW 5 $/kW

Fixed charge rate Normal 0.098 0.0147
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where 𝜂𝑃𝑉,𝑟𝑒𝑓 , 𝐴𝑃𝑉 , 𝑁𝑃𝑉, 𝛽𝑡, 𝑇𝑟𝑒𝑓, 𝑁𝑂𝐶𝑇 and 𝐺𝑟𝑒𝑓 are constant parameters. Then, the 

AEP can be written as, 

𝐴𝐸𝑃 = 𝑓(𝐺𝑇 , 𝑇𝑎)                                                                                                   (40) 

which is a function of GTI and ambient air temperature. The uncertainty of AEP can 

be written as, 

𝑑𝐴𝐸𝑃 = √(
𝜕𝐴𝐸𝑃

𝜕𝐺𝑇𝐼
𝑑𝐺𝑇𝐼)

2

+ (
𝜕𝐴𝐸𝑃

𝜕𝑇𝑎
𝑑𝑇𝑎)

2

                                                                (41) 

where 𝐺𝑇𝐼 includes the interannual variability of GHI, uncertainty coming from 

converting GHI to POA (transposition model), and the accuracy of a chosen dataset 

for a specific site. In addition, losses due to dirt, soiling, shading and reflection put 

additional uncertainty to global tilted irradiation (GTI). On the other hand, ambient 

temperature variability can be considered in other sources of error. If all uncertainty 

components are independent, the overall uncertainty of AEP can be found by the rule 

of squares method [26]: 

𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = √(𝜎𝑑𝑎𝑡𝑎)2 + (𝜎𝑃𝑂𝐴)2 + (𝜎𝑖𝑛𝑡𝑒𝑟𝑎𝑛𝑛𝑢𝑎𝑙)2 + (𝜎𝑑𝑖𝑟𝑡)2 + (𝜎𝑜𝑡ℎ𝑒𝑟)2       (42) 

3.6 Economic Analysis 

In this study, the effects of the interannual variability of GHI, hence, the AEP impact 

on the LCOE was investigated using the empirical method of the P50/P90 analysis. 

Thus, it is aimed to find the non-exceedance probabilities of LCOE according to the 

exceedance probabilities of AEP since LCOE decreases as the AEP increases. All 

the parameters, except AEP, are kept constant to investigate the effect of AEP on 

LCOE. Also, any incentives, subsidies and taxes are assumed as zero. The solar PV 

system's residual value is not also considered since the operational lifetime is 

expected to be 25 years.  

Since the LCOE is calculated for an energy project's whole operational lifetime, total 

electricity produced should be found considering the system degradation rate (SDR), 
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which is mainly affected by the solar PV module performance [62]. In the 

manufacturer’s datasheet for solar PV modules, the performance linearly decreases 

from 97 to 85 percent in 25 years; thus, the annual SDR is guaranteed as 0.48% per 

year [60]. Hence, the LCOE formula was modified to account for the PV system 

degradation rate over the project’s lifetime [62], [63]: 

𝐿𝐶𝑂𝐸 = 
𝐶0+∑

𝑀𝑖

(1+𝑟)𝑖
𝑡
𝑖=1

∑
(𝐴𝐸𝑃𝑖).(1−𝑆𝐷𝑅)𝑖

(1+𝑟)𝑖
𝑡
𝑖=1

                                                                                         (43) 

where 𝐶0 is the initial investment cost, 𝑀𝑖 is the annual total O&M cost, 𝑟 is the 

annual discount rate, 𝑡 is the project lifetime, 𝐴𝐸𝑃 is the first-year electricity 

generation and 𝑆𝐷𝑅 is the PV system annual degradation rate.  

Financial assumptions of the 1 MW solar PV plant in METU NCC can be seen in 

Table 3.9. Specifically, the initial investment and O&M costs are assumed from the 

Transparent Cost Database [64] for 2016, when the solar PV plant is installed. 

Further information about the historical and future trends of these costs can be found 

in Figures 3.10 and 3.11. 

 

Table 3.9 Financial assumptions and parameters used in the LCOE formula of solar 

PV. 

Parameter Value Unit Ref. 

Initial investment cost 1880 USD/kW [64] 

Annual total O&M cost 15 USD/kW [64] 

Annual discount rate 9 % [17], [47] 

Project lifetime 25 years [60] 

PV system annual degradation rate 0.48 %  [60] 
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Figure 3.10. Historical and projection data trends for the overnight capital cost of 

solar photovoltaics. Adapted from [64]. 

 

Figure 3.11. Historical and projection data trends for the fixed operating cost of solar 

photovoltaics. Adapted from [64]. 
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In addition to this, SAM software is also used to calculate LCOE. The simple PV 

LCOE Calculator is chosen to keep the financial parameters simple, and the 

following equation is used in SAM: 

𝐿𝐶𝑂𝐸 =
(𝐹𝐶𝑅)(𝑇𝐶𝐶)+𝐹𝑂𝐶

𝐴𝐸𝑃
+ 𝑉𝑂𝐶                                                                            (44) 

where FCR is the fixed charge rate, TCC is total capital cost in $/kW, FOC is fixed 

annual operating cost in $/kW/yr, VOC is the variable operating cost (zero for solar 

PV), and AEP is the annual energy production in kWh/yr. The fixed charge rate was 

chosen as 0.098 by SAM, and it is affected by many parameters such as the inflation 

rate, project term debt, tax rate, interest rate and analysis period of the project. To 

obtain similar results, VOC is kept zero, TCC is assumed as 1880 $/kW, and FOC is 

assumed as 15 $/kW/yr. This method is said to be suitable for preliminary analyses 

and to see the market trends of solar PV.  
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

4.1 Data Analysis and Quality Assessment 

Figures 4.1-4.4 show both measured and estimated hourly data points, in addition to 

the boundary layers of quality control envelopes, where the lower curve is made by 

𝑓𝑙𝑜𝑤𝑒𝑟(𝑘𝑡) and upper curve is made by 𝑓𝑢𝑝𝑝𝑒𝑟(𝑘𝑡). There might be a calibration error 

for measured GHI since most data is out of the quality envelope limits; in addition, 

estimated data do not represent measured values. It is understood that GHI 

measurements were underestimated in the last three years by a factor of 1.75 on 

average. Although the second half of 2013 was tested, the measured data is almost 

consistent with the limits.  

 

Figure 4.1. kn − k  quality envelopes for measured and estimated data with upper 

and lower boundary layers in 2013. 
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Figure 4.2. kn − k  quality envelopes for measured and estimated data with upper 

and lower boundary layers in 2014. 

 

Figure 4.3. kn − k  quality envelopes for measured and estimated data with upper 

and lower boundary layers in 2015. 
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Figure 4.4. kn − k  quality envelopes for measured and estimated data with upper 

and lower boundary layers in 2016. 

 

After doing the quality assessment, GHI data were estimated and constructed 

according to the methodology explained in Section 3.1.2. The methodology was 

applied to the specific parts of data, which are shown in boxes in Figures 4.5, 4.7, 

4.9 and 4.11. The aim of choosing specific parts of data is to construct hourly GHI 

only when a significant difference with the daily total GHI of satellite-based data 

exists. Therefore, the boxes are specified manually, and only those periods in the 

boxes are constructed for the years of 2011, 2014, 2015 and 2016. No significant 

difference is found according to RMSE results of GHI for the years 2010, 2012 and 

2013. By doing so, it is also aimed not to change ground-measured data unless it is 

suspicious since it is known from the validation studies that satellite-based GHI can 

be overestimated by about 3.6% compared to ground measurements. In Figures 4.5-

4.12, the changes done to the ground-measured GHI data can be seen, compared with 

E.T. radiation and satellite-based GHI. 
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Figure 4.5. A comparison of daily total E.T., satellite-based GHI (SARAH) and 

ground-measured GHI before the adjustment done to selected time period shown in 

rectangle, in 2011. 

 

Figure 4.6. A comparison of daily total E.T., satellite-based GHI (SARAH), 

constructed GHI and ground-measured GHI after the adjustment, in 2011. 
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Figure 4.7. A comparison of daily total E.T., satellite-based GHI (SARAH) and 

ground-measured GHI before the adjustment done to selected time period shown in 

rectangle, in 2014. 

 

Figure 4.8. A comparison of daily total E.T., satellite-based GHI (SARAH), 

constructed GHI and ground-measured GHI after the adjustment, in 2014. 
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Figure 4.9. A comparison of daily total E.T., satellite-based GHI (SARAH) and 

ground-measured GHI before the adjustment done to selected time period shown in 

rectangle, in 2015. 

 

Figure 4.10. A comparison of daily total E.T., satellite-based GHI (SARAH), 

constructed GHI and ground-measured GHI after the adjustment, in 2015. 
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Figure 4.11. A comparison of daily total E.T., satellite-based GHI (SARAH) and 

ground-measured GHI before the adjustment done to selected time period shown in 

rectangle, in 2016. 

 

Figure 4.12. A comparison of daily total E.T., satellite-based GHI (SARAH), 

constructed GHI and ground-measured GHI after the adjustment, in 2016. 
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Relative root-mean-square error (rRMSE) is calculated to compare ground-measured 

and satellite-based data. In Table 4.1, RMSE results of GHI and DNI data can be 

seen. First, the results are found for the measured GHI values, and the rRMSE 

significantly increased after the year 2013. Then, the estimated GHI are calculated 

using the available DNI data and Erbs model. It is found that rRMSE values were 

reduced by a factor of 4 on average. Finally, new GHI values are constructed using 

both measured and estimated GHI, and the average RMSE for the time period 2010-

2016 reduced from 34.63% to 14.02%. Monthly mean daily total GHI values are also 

found from the newly constructed GHI data and comparing them with monthly mean 

satellite-based GHI data resulted in 11.22% RMSE on average. Comparing the 

annual mean daily total GHI data of satellite-based and ground-measured data from 

2010 to 2016 gave a relative RMSE of 8.78%.  

 

Table 4.1 Relative root mean square error (rRMSE) of measured GHI, measured 

DNI, estimated GHI and constructed GHI with respect to satellite-based GHI and 

DNI data, obtained from daily total & monthly mean daily total DNI and GHI 

(kWh/m^2/day) for each year. DNI is available after June 2013. 

 

Monthly mean

Year

Measured GHI 

(%)

Measured DNI 

(%)

Estimated 

GHI (%)

Constructed 

GHI (%)

Constructed 

GHI (%)

2010 14.28 − − 14.28 10.39

2011 21.36 − − 9.34 7.82

2012 8.75 − − 8.75 6.62

2013* 18.32 − 9.04 2.80 5.91

2014 53.09 32.11 15.51 20.61 18.01

2015 61.97 23.15 11.95 16.40 13.71

2016 64.66 43.00 22.05 25.98 16.10

average 34.63 32.75 14.64 14.02 11.22

*Estimated and constructed GHI in 2013 are calculated starting from June.

Daily total
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4.1.1 Validation of Ground Measurements 

RMSE results show that ground-measured GHI has some inaccuracies since the error 

increased from 18.32% in 2013 to 64.66% in 2016. In fact, it was aimed to find any 

biases or systematic errors in satellite-based data; however, this was not possible due 

to the lack of high-quality ground-measured data. Thus, the satellite-based data was 

used to compare with ground measurements between 2010 and 2016. Applying the 

quality control tests also consolidated the lower-than-expected GHI values in some 

periods. An estimation was then done using the inversion of the Erbs model [56] and 

measured DNI data. Instead of replacing the lower-than-expected GHI data with 

estimated GHI directly, a method was followed which has two conditions. If the 

estimated GHI is higher than the measured GHI, and if the measured beam 

component is higher than the measured GHI, it is multiplied by 0.95, as explained in 

Section 3.1.2. Therefore, the estimated GHI data was only used if these two 

conditions are valid, and the constructed GHI was obtained. Indeed, this method can 

only estimate the actual GHI data, and it also has some sources of error, such as using 

the measured DNI data and Erbs model. Still, DNI measurements helped us 

understand how reliable are GHI measurements; also, we were able to estimate GHI 

by using the relationship between clearness index and beam transmittance in the Erbs 

model. In Figures 4.13 and 4.14, heat maps of the measured and constructed GHI 

can be seen. Changes were made in some periods of 2011, 2014, 2015 and 2016. 
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Figure 4.13. Heat map of hourly measured GHI between 2010 and 2016. 

 

Figure 4.14. Heat map of hourly constructed GHI between 2010 and 2016. 
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To validate the method used to construct GHI data, different time periods were 

selected from 2013 and 2015. In 2013, DNI was available starting from June; thus, 

the remaining last 214 days of 2013 were used to estimate and construct GHI. 

Previously, it was found that GHI measurements of 2013 were in the range of quality 

envelope, and the RMSE of measured GHI with respect to satellite-based GHI was 

18.32%. Thus, it can be said that GHI data is reliable in 2013 compared to years 

2014, 2015 and 2016, so a comparison of constructed and measured GHI data can be 

done to validate the method. In Table 4.2, the RMSE values are given in percentage 

for daily total GHI data. It can be understood from the results that the method 

replaced a very small amount of data to construct GHI since RMSE was found as 

0.06%. On the other hand, the first 130 days of 2015 was selected to apply the 

method, which was found to be close to satellite-based GHI, and the method had not 

been applied to that period previously. Similarly, an RMSE of 5.20% was found for 

constructed GHI data, and the changes can be seen in Figures 4.15 and 4.16. 

However, the period of October was not considered when calculating RMSE values 

since there were no GHI measurements during that time as the pyranometer was sent 

out for calibration. It can be said that the estimation method gave smaller errors when 

compared to the results of satellite-based data, and the range is about 5% with respect 

to measured data. Therefore, it can be assumed that this method is validated against 

reliable measured GHI data, chosen from 2013 and 2015. It should also be noted that 

344 days were used to apply the method, and only 21 days in May are unknown in 

terms of the validity of the construction of GHI data.  

 

Table 4.2 Relative RMSE values of estimated, constructed and satellite-based GHI 

with respect to measured GHI, for selected time periods in 2013 and 2015. 

 

2013                    

(last 214 days)

2015                   

(first 130 days)

6.37 1.98

0.06 5.20

2.94 9.53

constructed GHI (%)

satellite-based GHI (%)

RMSE with respect to daily total 

measured GHI data

estimated GHI (%)
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Figure 4.15. Comparison of constructed and measured GHI with satellite-based data 

in selected periods of 2013, for the validation of the method. 

 

Figure 4.16. Comparison of constructed and measured GHI with satellite-based data 

in selected periods of 2015, for the validation of the method. 
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Comparing daily total DNI measurements with satellite-based DNI gave 33% RMSE 

on average for the last three years. This error might come from the fact that satellite-

based data covers up to 5 km area as spatial resolution; also, hourly data is calculated 

based on one satellite image per hour, as time resolution [54]. Therefore, DNI 

measurements from the ground can reflect the actual changes in cloud cover and 

solar radiation. Comparisons of ground-measured and satellite-based DNI data for 

2014, 2015 and 2016 can be seen in Figure 4.17, 4.18 and 4.19, respectively. 

 

Figure 4.17. Comparison of ground-measured and satellite-based daily total DNI 

with rRMSE value, in 2014. 
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Figure 4.18. Comparison of ground-measured and satellite-based daily total DNI 

with rRMSE value, in 2015. 

 

Figure 4.19. Comparison of ground-measured and satellite-based daily total DNI 

with rRMSE value, in 2016. 
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4.1.2 Variability of Global Horizontal Irradiation 

In this study, the long-term solar radiation trend is investigated to see its effect on 

the energy yield estimations. As mentioned above, a multi-year weather dataset 

enables the calculation of the interannual variability, and more reliable results are 

obtained as the time period of the dataset increases. On the other hand, a TMY dataset 

is useful when doing preliminary calculations of a solar PV energy project. In this 

study, both TMY and multi-year datasets are used to estimate the energy yield, and 

the differences between TMY and individual weather datasets obtained from PVGIS 

are shown in the box plot of monthly GHI in Figure 4.20. This shows us that although 

TMY gives an average of the individual years, we can see that year 2016 was an 

outlier and that year can be considered a low-resource year in terms of solar radiation. 

 

 

Figure 4.20. Monthly average daily total GHI at METU NCC, between 2005 and 

2016 (PVGIS-SARAH), in comparison with PVGIS-TMY. 

 

The coefficient of variation (COV) is found to estimate both intra-annual and 

interannual variability of GHI between 2010 and 2016. In Tables 4.3 and 4.4, the 
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results of monthly and annual mean daily total GHI for ground-measured and 

satellite-based data are represented, respectively. Both ground-measured and 

satellite-based data results show that the intra-annual variability of GHI is higher in 

winter months, whereas, the summer season has the lowest variability. On the other 

hand, the interannual variability of GHI is found as 5.94% and 2.21% for ground-

measured and satellite-based data, respectively. This is expected since the solar 

resource variability decreases as the time period increases [65]. Similarly, another 

study was done to observe the long-term solar radiation trends in the Black Sea and 

Mediterranean region using satellite-based data between 1985 and 2004 [20]. They 

also found that the lowest and highest variability of GHI was observed in summer 

and winter, respectively. Also, they reported low interannual variability, which is 

lower than 4%, for Northern Africa, Middle East, and the Mediterranean islands. 

Therefore, our COV results match with this study. Other statistical indices and the 

COV results can also be seen. A comparison of the intra-annual and interannual 

variabilities of ground-measured and satellite-based GHI was provided in Figure 

4.21. 

 

Table 4.3 Constructed ground-measured data results of monthly and annual mean 

daily total GHI (kWh/m2/day). 

 

 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

2010 2.16 2.99 4.74 6.23 6.86 7.43 7.23 6.61 5.69 3.84 3.14 2.27 4.94

2011 2.49 3.46 5.01 5.39 6.56 7.73 7.60 6.93 5.65 4.27 2.81 2.47 5.04

2012 2.28 3.39 4.92 6.05 6.68 7.65 7.49 6.98 5.94 4.02 2.88 2.16 5.04

2013 2.44 2.65 4.92 6.21 6.68 8.21 8.07 7.30 6.06 4.86 2.82 2.36 5.23

2014 2.65 3.98 5.10 5.77 5.66 6.64 6.45 5.80 5.03 3.50 2.71 2.25 4.63

2015 2.23 3.08 4.48 6.10 6.04 7.35 7.53 6.56 4.99 3.64 2.38 2.18 4.72

2016 1.45 2.62 4.27 5.56 6.22 6.70 6.22 6.30 5.39 3.94 2.72 1.24 4.39

min 1.45 2.62 4.27 5.39 5.66 6.64 6.22 5.80 4.99 3.50 2.38 1.24 4.39

max 2.65 3.98 5.10 6.23 6.86 8.21 8.07 7.30 6.06 4.86 3.14 2.47 5.23

std. 0.39 0.48 0.30 0.33 0.43 0.56 0.66 0.50 0.42 0.45 0.23 0.41 0.29

mean 2.24 3.17 4.77 5.90 6.39 7.39 7.23 6.64 5.54 4.01 2.78 2.13 4.86

COV(%) 17.21 15.25 6.31 5.61 6.69 7.59 9.15 7.47 7.52 11.25 8.19 19.19 5.94
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Table 4.4 Satellite-based data results of monthly and annual mean daily total GHI 

(kWh/m2/day). 

 

 

Figure 4.21. Monthly and annual COV values of ground-measured (constructed) and 

satellite-based GHI data. 

4.1.3 Global Tilted Irradiation Results 

Estimated GTI is compared with tilted pyranometer measurements in 2016, which is 

recorded since February 13, 2016. Thus, a comparison is made for ten months in 

2016, excluding January and February. According to Table 4.5, similar results are 

found for estimated GTI and satellite-based GTI, except monthly mean RMSE 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

2005 2.45 3.51 5.24 6.20 7.68 8.31 8.24 7.44 6.31 4.69 3.20 2.55 5.50

2006 2.55 3.19 4.73 6.27 7.75 8.40 8.03 7.46 6.27 4.17 3.29 2.70 5.41

2007 2.93 3.47 5.08 6.36 6.47 8.37 8.01 7.41 6.46 4.76 3.38 2.61 5.45

2008 2.87 3.78 5.24 6.65 7.76 8.42 8.24 7.19 5.80 4.53 3.42 2.57 5.55

2009 2.59 3.22 4.87 6.50 7.51 8.44 8.21 7.46 5.87 4.58 3.24 2.18 5.40

2010 2.44 3.37 5.19 6.68 7.59 8.06 8.18 7.31 6.31 4.31 3.60 2.63 5.48

2011 2.77 3.60 5.26 5.77 6.96 8.20 8.25 7.51 6.18 4.66 3.27 2.73 5.44

2012 2.42 3.66 5.10 6.35 7.00 8.34 7.90 7.42 6.36 4.28 3.13 2.35 5.37

2013 2.63 3.54 4.89 6.53 6.99 8.29 8.23 7.53 6.23 4.96 3.13 2.49 5.46

2014 2.83 4.06 5.24 6.58 6.83 8.08 8.15 7.37 6.07 4.31 3.19 2.49 5.44

2015 2.55 3.38 4.87 6.54 7.07 8.20 8.18 7.41 6.13 4.16 3.46 2.77 5.40

2016 1.48 3.22 4.79 6.41 6.25 7.84 7.96 7.30 5.74 4.69 3.29 1.76 5.07

min 1.48 3.19 4.73 5.77 6.25 7.84 7.90 7.19 5.74 4.16 3.13 1.76 5.07

max 2.93 4.06 5.26 6.68 7.76 8.44 8.25 7.53 6.46 4.96 3.60 2.77 5.55

std. 0.38 0.25 0.20 0.25 0.51 0.18 0.12 0.10 0.23 0.26 0.14 0.28 0.12

mean 2.54 3.50 5.04 6.40 7.15 8.25 8.13 7.40 6.14 4.51 3.30 2.49 5.41

COV(%) 14.81 7.28 3.93 3.88 7.07 2.18 1.50 1.29 3.78 5.72 4.29 11.40 2.21
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results. In Figure 4.22, a comparison of the measured, estimated and satellite-based 

GTI in 2016 is shown. It can be understood that estimated GTI has the lowest results 

when compared to measured and satellite-based GTI data. On the other hand, using 

satellite-based data predicts similar GTI with measured GTI. Thus, it can be said that 

choosing the type of dataset affects the GTI data directly, which is used to predict 

the energy yield of a solar PV plant. For example, using a tilted pyranometer to 

measure GTI will give more reliable data rather than measuring GHI and then 

estimating GTI with a transposition model since there will be fewer sources of error, 

such as the accuracy of the transposition model used. In addition, DNI should also 

be measured with a pyrheliometer if GHI is measured, which helps to eliminate the 

need for estimating beam and diffuse components by using a decomposition model. 

However, this study also showed that the accuracy of the measurements, calibration 

of the sensors and cleaning them regularly are very important to obtain highly 

accurate and quality-checked ground-measured data, which was not the case for the 

ground-measured data according to the quality assessment. Besides, considering that 

long-term ground measurements with the quality check are not available in every 

region of the world, using satellite-based data can be an option to make reliable and 

long-term energy yield prediction, which is also valid for this study. Finally, 

estimated GTI was superimposed to the graphs of the constructed GHI, beam and 

diffuse horizontal irradiation (DHI) data for the years 2014, 2015 and 2016, which 

can be seen in Figures 4.23, 4.24 and 4.25. 

 

Table 4.5 RMSE (%) with respect to measured GTI in 2016, excluding January and 

February. 

 

hourly daily total monthly mean

estimated GTI 48.23 22.41 20.78

satellite-based GTI 54.92 20.81 10.34
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Figure 4.22. A comparison of daily total global tilted irradiation (GTI) of satellite-

based, measured and estimated data in 2016. 

 

Figure 4.23. Comparison of GTI, GHI, beam and diffuse irradiation in 2014. 
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Figure 4.24. Comparison of GTI, GHI, beam and diffuse irradiation in 2015. 

 

Figure 4.25. Comparison of GTI, GHI, beam and diffuse irradiation in 2016. 
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4.2 Energy and Economic Yield Estimations  

In Table 4.6, all energy yield results can be seen, and Figure 4.26 gives a comparison 

of these results. It can be seen that year 2016 has the most information in terms of 

the availability of datasets. In 2016, the energy yield was 1693 kWh/kWp; however, 

measurements started from February 13, since the solar PV plant became operational 

from that day. Thus, energy yield in 2016 should be slightly higher than that 

measured value. In 2017, the solar PV plant produced 1807 kWh/kWp. There is a 

clear difference in the energy produced between 2016 and 2017, and 2016 reflects 

the low solar resource, whereas 2017 is one of the high resource years according to 

the energy yield calculations. However, using satellite-based data underpredicted the 

actual energy yield value of 2016 by about 8.67% in SAM, although it was assumed 

that GHI is overestimated by 3.5% for the Cyprus region by the PVGIS-SARAH 

dataset. Still, the difference between the results of satellite-based and actual AEP 

data might be because of the modeling assumptions used in SAM, such as the PV 

system losses.  

After calculating the energy yield in MATLAB codes, energy yield values were 

found for 1 MWp solar PV plant using satellite-based, ground-measured and TMY 

datasets. For satellite-based data results, calculations were done both in SAM and 

MATLAB, and it was found that using SAM resulted in 14.74% lower estimations 

on average compared to the calculations in MATLAB codes. This is due to the 

modeling assumptions like PV system losses used in SAM as mentioned previously. 

On the other hand, ground measurements gave different estimations according to the 

type of GTI used. For example, using estimated GTI from constructed GHI and 

measured DNI underestimated the energy yield in 2016 by 10.6%. However, using 

measured GTI was overestimated by 9.4% compared to the actual energy yield in 

2016. It should be noted that actual and estimated energy yields were obtained after 

February 13, 2016. Similarly, using measured GTI in 2017 overestimated the energy 

yield by 11.4%. Besides, three different TMY datasets were used to compare their 
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estimations with other results, and the Meteonorm dataset gave the closest energy 

yield compared to actual values.  

Table 4.6 Energy yield (kWh/kWp) estimations using different datasets with 

isotropic sky-diffuse model. System Advisor Model (SAM) results were also shown 

for satellite-based data. 

 

 

Figure 4.26. A comparison of satellite-based, ground-measured, TMY and actual 

energy yield results obtained from calculations and SAM simulations using isotropic 

sky-diffuse model. 

Year
Satellite 

(SAM)

Satellite 

(MATLAB)

Ground using 

estimated GTI 

(MATLAB)

Ground using 

measured GTI 

(MATLAB)

Actual
TMY_Meteonorm 

(MATLAB)

TMYx.2004-2018 

(MATLAB)

TMY_PVGIS 

(MATLAB)

2005 1735.6 2,030.50 − − − 1,799.88 1,816.98 1,854.46

2006 1703.2 1,989.65 − − − 1,799.88 1,816.98 1,854.46

2007 1740.19 2,032.37 − − − 1,799.88 1,816.98 1,854.46

2008 1760.59 2,056.50 − − − 1,799.88 1,816.98 1,854.46

2009 1687.79 1,978.65 − − − 1,799.88 1,816.98 1,854.46

2010 1725.82 2,024.00 − − − 1,799.88 1,816.98 1,854.46

2011 1730.98 2,032.30 − − − 1,799.88 1,816.98 1,854.46

2012 1680.78 1,972.35 − − − 1,799.88 1,816.98 1,854.46

2013 1720.12 2,013.76 − − − 1,799.88 1,816.98 1,854.46

2014 1721.01 2,017.39 1,705.72 − − 1,799.88 1,816.98 1,854.46

2015 1697.74 1,999.26 1,710.96 − − 1,799.88 1,816.98 1,854.46

2016 1546.37 1,838.30 1,513.88 1851.57 1,693.11 1,799.88 1,816.98 1,854.46

2017 − − − 2,014.08 1,807.75 1,799.88 1,816.98 1,854.46

average 1704.18 1,998.75 1,643.52 1,932.82 1,750.43 1,799.88 1,816.98 1,854.46
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4.2.1 TMY, Empirical and Normal Distribution  

The empirical CDF of annual mean GHI was obtained using the 12-year satellite-

based data of PVGIS-SARAH, which can be seen in Figure 4.27. This graph shows 

the POE values of GHI, and each GHI value was sorted in ascending order with an 

equal probability of occurrence. Therefore, each year is paired with a specific POE 

value. For example, the lowest annual mean GHI belongs to the year 2016, and since 

that data point is very close to P90, the year 2016 can be considered the P90 of GHI. 

Also, there are only 12 years of GHI data, the year 2016 also represents the minimum 

GHI, which can be assumed as the worst case. On the other hand, the year 2014 

stands for P50, and P10 can be represented by the year 2005. This graph was obtained 

empirically; thus, different shapes can be obtained if the time period of satellite-

based data decreases or increases. However, a better representation of the long-term 

GHI of a site is obtained if the available time period of the dataset increases [4]. 

 

Figure 4.27. Empirical cumulative distribution function of annual GHI according to 

satellite-based data between time period 2005-2016. 
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A base case scenario was obtained using three different TMY datasets, and the results 

are presented in Table 4.7. POE values cannot be calculated with TMY simulation 

since outlier weather events are not included in 1-year TMY data; thus, the most 

typical results of GHI, POA and AEP are found for each TMY dataset. On the other 

hand, the same simulations were done using the satellite-based data, and results were 

obtained for each year during the time period 2005-2016. In addition, P50/P90 

analysis was done using the multi-year data set, and energy exceedance probabilities 

were found for GHI and AEP values. It is worth mentioning that SAM enables a 

much faster analysis with P50/P90 option rather than calculating individual AEPs 

for each year and finding the empirical CDF according to the AEP values. One can 

also find the same POE values using AEP results shown for each year in Table 4.7.   

In Table 4.7, the interannual variability of annual GHI was found as about 2.21%. 

For the AEP, the variability is about 3.26%, which is the average value of the 

coefficient of variation (COV) of three different transposition models, while the 

LCOE varies by 3.50% as a function of AEP. Thus, the variability increases from 

solar irradiation to AEP, and the most increase is found in the LCOE results. This 

shows us the sensitivity of an economic index to solar resource and the importance 

of doing P50/P90 analysis to make investment decisions. 
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Table 4.7 Simulation results of three different TMY data sets and satellite-based data 

for the 1 MW solar PV plant in METU NCC. POA, AEP and LCOE values were 

averaged according to different transposition models used in SAM software 

(Isotropic, HDKR and Perez). Detailed results are available in Appendix A. 

 

 

In Figure 4.28, empirical CDFs with TMY results are shown for three different 

transposition models. According to the comparison of TMY and P50 values, it was 

found that TMY datasets underpredicted the annual GHI by about 5.15%, and the 

AEP values by 6.77%, 6.86% and 6.83%, for isotropic, HDKR and Perez models, 

respectively. As a result, TMY simulations underpredicted the AEP in all cases and 

it can be concluded that the P50 assumption for TMY is not valid for the location in 

Database
Temperature 

(⁰C/yr)

GHI          

(kWh/     /yr)

POA          

(kWh/     /yr)

AEP        

(MWh/yr)

LCOE 

($/kWh)

TMY2-Meteonorm 19.70 1811.89 2001.48 1555.70 0.138

deviation of TMY from P50 (%) -1.01 -8.70 -9.74 -11.43 12.91

TMYx.2004-2018 17.90 1880.1 2076.80 1620.80 0.132

deviation of TMY from P50 (%) -10.05 -5.26 -6.35 -7.72 8.37

PVGIS-TMY (2007-2016) 19.70 1954.73 2182.26 1733.59 0.124

deviation of TMY from P50 (%) -1.01 -1.50 -1.59 -1.30 1.32

average TMY 19.10 1882.24 2086.85 1636.69 0.131

deviation of TMY from P50 (%) -4.02 -5.15 -5.89 -6.82 7.53

PVGIS-SARAH

2005 19.30 2005.80 2225.54 1771.73 0.121

2006 19.50 1974.91 2186.58 1739.35 0.123

2007 19.70 1989.99 2235.39 1777.76 0.121

2008 19.90 2024.99 2263.02 1798.62 0.119

2009 19.90 1971.29 2173.60 1722.82 0.124

2010 20.60 2000.47 2228.37 1762.48 0.122

2011 19.50 1985.66 2227.19 1767.85 0.121

2012 19.80 1958.54 2171.41 1715.56 0.125

2013 20.00 1993.22 2217.56 1756.48 0.122

2014 20.00 1984.52 2219.18 1757.66 0.122

2015 20.10 1972.33 2199.40 1733.44 0.124

2016 20.30 1849.40 2015.32 1576.36 0.136

min 19.30 1849.40 2015.32 1576.36 0.119

max 20.60 2024.99 2263.02 1798.62 0.136

st.dev. 0.36 43.60 63.09 56.77 0.0043

mean 19.88 1975.93 2196.88 1740.01 0.123

COV (%) 1.82 2.21 2.87 3.26 3.50

P90 19.34 1871.23 2046.54 1604.20 0.134

P75 19.50 1971.29 2173.60 1722.82 0.124

P50 19.90 1984.52 2217.56 1756.48 0.122

P25 20.00 1993.22 2227.24 1767.85 0.121

P10 20.26 2004.74 2233.99 1776.55 0.121

m2 m2
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Cyprus. Moreover, the TMY dataset with the isotropic sky diffuse model predicted 

the lowest P50 assumption, whereas the anisotropic models estimated a higher 

probability of exceedance values. The reason is that anisotropic models are more 

sensitive to the DHI component; thus, more accurate GTI estimations result in higher 

energy yield estimations [19]. However, the Perez model is not recommended if the 

measured DHI is not available since the model is highly sensitive to the 

measurements [66]. Thus, the average of the three model results are obtained in 

Table 4.7 so that a more general discussion can be made for the POE values, 

irrespective of transposition models used. A detailed version of Table 4.7, which 

includes the transposition models, can be seen in Appendix A. 

 

Figure 4.28. Empirical cumulative distribution functions of the energy yield 

(kWh/kWp) using Isotropic, HDKR and Perez models. Double arrows show the 

difference between the average TMY and P50 values. 
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SAM software also calculates POE values assuming a Normal CDF which is 

obtained by using the mean and standard deviation of data, and normal CDFs are 

superimposed in Figures 4.29 and 4.30 to compare with the results of the study. In 

Table 4.8, a comparison was made according to the results of Normal and empirical 

CDFs. It was found that the P50 value was underpredicted by the Normal CDF 

assumption for all cases, which means that using the empirical method gives more 

realistic P50 results. On the other hand, Normal CDF significantly overpredicted P90 

values than the empirical CDF both for annual GHI and the energy yield. Therefore, 

empirical P90 values should be used since conservative results are the focus of 

obtaining P90. Overall, Normal CDF did not represent the actual results, and the 

empirical method is a reliable approach to find POE values if there exist at least ten 

years of a dataset. It should be kept in mind that including recent years’ data (2017, 

2018, 2019) will change the empirical CDF and the POE values; thus, the results of 

this study depend on the historical time period between 2005 and 2016. 

 

Figure 4.29. Comparison of empirical and normal CDFs with average TMY result of 

the annual GHI, for time period 2005-2016. 
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Figure 4.30. Comparison of empirical and normal CDFs with TMY results of the 

energy yield, for time period 2005-2016. 

 

Table 4.8 Probability of exceedance values of annual GHI and energy yield 

according to Normal and Empirical CDFs. Deviation of Normal CDF from empirical 

CDF values are shown in the last column as percentages. 

 

 

 

GHI (kWh/     /yr) POE Normal CDF Empirical CDF Δ(%)

P50 1975.93 1984.52 -0.43

P90 1920.03 1871.23 2.61

Energy Yield (kWh/kWp)

P50 1740.15 1756.48 -0.93

P90 1667.23 1604.20 3.93

m2



 

 

 

75 

4.2.2 Stochastic Simulations 

Apart from the empirical and Normal distribution assumptions, a stochastic 

simulation was carried out to find the POE values of energy yield. By doing so, 

modeling assumptions and other uncertainty components also had a distribution 

which is given in Table 3.7. In Appendix B, an example of 100 computing samples 

created by the stochastic simulation in SAM, using the input variables in Table 3.7 

can be seen. 

In Figure 4.31, CDFs were obtained both for TMY and satellite-based datasets using 

all uncertainty distributions. First, it can be noted that TMY results also had a 

distribution unlike previous results, because stochastic simulation computed many 

samples using possible uncertainty assumptions. Thus, other POE values such as P90 

and P10 can also be found using a TMY dataset, if stochastic simulation is done. 

However, it should be kept in mind that TMY distributions still do not include the 

interannual variability of solar radiation, which is one of the main factors when 

estimating POE values [27]. In Table 4.9, POE values of energy yield are compared 

between TMY and satellite results. P99 and P95 values were also found and 

compared to see the worst-case estimates. Using a TMY dataset underpredicted the 

POE values except for P99, and for P50, the deviation of TMY from satellite 

increased to about 9%, which was about 7% in empirical CDF results. 
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Figure 4.31. CDF of energy yields generated by stochastic simulation, using all 

uncertainty distributions given in Table 3.7. 

 

Table 4.9 Empirical cumulative distribution results of stochastic simulation for 

satellite-based and TMY datasets. Deviation of the mean TMY results from mean 

satellite-based data are also given in percentages. 
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On the other hand, some differences were observed between stochastic simulation 

and empirical CDF graphs. To see the effect of each variable on the CDF, following 

scenarios were simulated for input variables: 

• Only sky-diffuse model 

• Sky-diffuse & temperature correction model 

• Sky-diffuse & self-shading model 

• Sky-diffuse & temperature correction & self-shading model 

• All input variables in Table 3.7 

The first difference is that, the shape of CDF was linearized, and the reason was 

understood when only sky-diffuse model was chosen as input variable, ignoring 

other uncertainty distributions. Stochastic simulation computed random samples 

using Isotropic, HDKR and Perez models, and sorting them in ascending order 

created the following CDF in Figure 4.32. These results match with the previous 

empirical results obtained from Isotropic, HDKR and Perez models. 

Secondly, the minimum and maximum energy yield values scaled down and up, 

respectively, because of assigning other uncertainty components as input variables. 

However, it was also observed that changing temperature correction model made 

CDF right skewed, which caused higher energy yield values that can be seen in 

Figure 4.33. In temperature correction model, NOCT method was chosen as input in 

empirical results. In stochastic simulation, heat transfer method was also randomly 

selected in the samples, and this may explain the reason behind increased energy 

yields.  

Finally, changing only sky-diffuse model and all input variables were compared in 

Figure 4.34. According to the energy yields, changing all input variables increased 

the mean P90, P50 and P10 by 1.25%, 3.69% and 7.50%, respectively, when 

compared to changing only sky-diffuse model. Therefore, these results clearly show 

the importance of choosing modelling assumptions and losses when doing energy 

calculations. 
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Figure 4.32. A comparison of empirical and stochastic CDF results, when only sky-

diffuse model is changed. 

 

Figure 4.33. A comparison of scenarios of different input variables used in stochastic 

simulation. 
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Figure 4.34. Comparison of stochastic simulations. Black lines were obtained by 

only changing sky-diffuse model, colored lines were obtained using the input 

variables in Table 3.7. 

 

To sum up, different methods were applied to estimate the long-term energy yield of 

a 1 MWp solar PV plant, and to find POE values. First, TMY datasets were used to 

see an average energy yield and the P50 assumption was made. Then, empirical and 

Normal CDFs were obtained using satellite-based data, and these graphs represent 

the 12-year period between 2005 and 2016. Finally, a stochastic simulation was done 

to see the effect of uncertainty distributions on possible energy yield values. 

Although TMY datasets were again used to obtain a distribution by stochastic 

simulation, those results are not included in Table 4.10. Because the interannual 

variability of GHI does not exist in a TMY dataset, only P50 assumption of TMY is 

given in Table 4.10, which was previously obtained in SAM. In Table 4.10, the 

average results of energy yield that are found using TMY, Normal CDF, empirical 

CDF and stochastic simulation are shown, specifically, P50, P90 and P90/P50 ratios. 

Doing stochastic simulations resulted in the highest POE values in all methods. For 

example, P50 and P90 values increased by 3.30% and 6.10% compared to empirical 

method, respectively. Thus, a detailed uncertainty analysis in a stochastic simulation 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

F(
x)

Energy Yield (kWh/kWp)



 

 

 

80 

can increase the expected energy yield and the bankability of a project. On the other 

hand, a high P90/P50 ratio means that P90 value converges to P50, which in turn, 

reduces the risk of having lower energy yields [27]. In this study, all methods gave 

P90/P50 ratios that are close to 100%. Although Normal distribution assumption has 

the highest ratio, it does not represent a realistic result since higher P50 values were 

obtained from empirical and stochastic simulation methods. Belluardo et al. [27] also 

found similar results in which they compared P50 and P90 values from using Normal 

distribution and using Monte Carlo approach. They found the P50 value as about 

1445 kWh/kWp as a base case scenario for a solar PV plant in Bolzano, Italy, and 

they found that Normal distribution assumption resulted in higher-than-expected P90 

and P99 values compared to Monte Carlo approach [27]. They also found the 

P90/P50 ratio as 94% for the best-case scenario with an overall uncertainty of 4.6%. 

 

Table 4.10 P50, P90 and P90/P50 comparisons of energy yield using different 

methods. 

 

4.2.3 Effects of GHI and Temperature on Energy Yield 

The annual GHI and energy yield values were highly correlated according to the 

scatter plot in Figure 4.35. This is expected since the amount of incident solar 

radiation is the primary factor for solar PV energy output. However, the annual 

average daily mean temperature is negatively correlated with the energy yield 

according to Figure 4.36, and it is because of the relation between the PV cell 

temperature and PV module efficiency. It is important to note that GHI and ambient 

temperature affect the energy yield together; in other words, these are not 

Method
P50 

(kWh/kWp)

P90 

(kWh/kWp)

P90/P50 

(%)

TMY 1636.69 − −

Normal CDF 1740.15 1667.23 95.81

Empirical CDF 1756.48 1604.2 91.33

Stochastic (all input variables) 1814.52 1702.11 93.80
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independent variables. It was also mentioned that temperature is the largest 

influencer on the PV energy yield in hotter locations, whereas irradiance is the most 

important one at any location [25]. It can be seen from Figure 4.37 that the lowest 

solar resource with a hot year was in 2016, which has the least energy yield 

estimations in the previous results. Therefore, the effect of GHI and temperature 

variability should be considered when estimating POE values of the energy yield. 

Here, the interannual variability of temperature was found as 1.82%; however, it 

does not consider the effect of climate change, and the projected values of the future 

temperature may not follow this variability range. In addition, since there is no 

energy production before sunrise and after sunset, obtaining the mean temperature 

during sunshine duration hours may represent the correlation between energy yield 

and ambient temperature better. 

 

Figure 4.35. Correlation between the energy yield and annual GHI for time period 

2005-2016. 
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Figure 4.36. Correlation between the energy yield and annual average daily mean 

temperature for time period 2005-2016. 

 

Figure 4.37. Correlation between annual GHI and annual average daily mean 

temperature between 2005-2016. 



 

 

 

83 

4.2.4 Overall Uncertainty 

The sources of uncertainties of energy yield can be seen in Table 4.11. While the 

interannual variability of GHI is considered a random (stochastic) error, other 

uncertainty components are assumed as systematic errors. For the transposition 

model’s uncertainty, converting GHI into POA irradiance varies by 2% for Isotropic, 

HDKR and Perez models. Also, using satellite-based data (PVGIS-SARAH) has an 

uncertainty of about 3.5% on solar radiation for the Cyprus region, whereas the 

interannual variability of GHI was found as 2.21% for the time period 2005-2016. 

On the other hand, the uncertainty related to dirt, soiling, shading and reflection of 

solar PV modules was assumed as 2%. 

By using the rule of squares method, all uncertainty components were considered as 

independent from each other. As the overall uncertainty of energy yield was found 

as 7.08%, it can be further decreased by searching for other sources of error, which 

is assumed as 5%. For instance, temperature effects on the energy yield were not 

analyzed in detail in this study, and it can be considered other sources of error. 

 

Table 4.11 Sources of uncertainties in percentages and the overall uncertainty of the 

energy yield. 

Uncertainty Components (%) Reference 

Satellite-based data  3.50 [54] 

Transposition model (isotropic, HDKR, Perez) 2.00 Appendix A 

Interannual variability of GHI 2.21 Table 4.7 

Dirt, soiling, shading, reflection 2.00 [25] 

Other sources of error 5.00 [26] 

Overall uncertainty 7.08 
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4.2.5 Levelized Cost of Electricity 

Figure 4.38 shows the relationship between energy yield and LCOE in terms of POE 

values; in addition, TMY results are given at P50. As can be seen, the average of 

different TMY datasets did not match with the P50 range. The lowest energy yield 

with the highest LCOE belongs to the TMY2-Meteonorm dataset among other TMY 

results. The shaded bands were obtained by the standard deviation and mean values 

of energy yield and LCOE of three different models used in the calculations 

(isotropic, HDKR and Perez). Also, the inverse correlation between energy yield and 

LCOE introduces the non-exceedance probability values of LCOE. For example, the 

P90 value of the energy yield means that it will be met or exceeded with 90% 

probability at any time, while the LCOE will be less than or equal to the P90 value 

at nine-tenths of occurrence. On the other hand, the actual energy output data in 2016 

and 2017 gives further information about the energy yield variations. The year 2016 

is close to the P90 value, whereas 2017 passes the P10 value and stands maximum. 

Although including more annual data points will increase POE values' reliability, 12-

year satellite-based data seem to represent the variabilities in the energy yield, 

according to the actual results. However, LCOE results depend on many financial 

assumptions, and this study only focused on the effects of energy yield on the LCOE. 

Therefore, it is possible to obtain lower LCOE values with the same energy yield 

data if the financial parameters in Table 3.9 are changed. 

 



 

 

 

85 

 

Figure 4.38. Exceedance and non-exceedance probabilities of AEP and LCOE with 

error bands, respectively. Actual energy yield data of 2016 and 2017 are shown at 

closest points to the mean energy yield line. Average results for different TMY 

datasets are represented in filled pointers, upper and lower bounds are obtained from 

specific TMY datasets (PVGIS-TMY, TMYx.2004-2018, TMY2-Meteonorm). 

 

In Figure 4.39, stochastic simulation results of the energy yield and LCOE can be 

seen. Simulations were done multiple times to obtain a possible range, and the input 

variables in Table 3.8 were used in SAM. Main differences can be observed between 

Figures 4.39 and 4.40. For example, the range of energy yield increased, with a 

maximum value at about 2000 kWh/kWp and a minimum of about 1500 kWh/kWp. 

Similarly, LCOE results also changed. However, there is a significant change in the 

range, having values between 0.05 and 0.19 $/kWh. Since all financial parameters 

were kept constant in previous results, choosing a distribution for capital cost, fixed 

O&M cost and fixed charge rate affected the LCOE, as can be expected. The reason 
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is that all possible results were found considering the interannual variability of GHI 

by enabling weather file analysis for the time period 2005-2016. Therefore, it 

reduced the uncertainty and increased the confidence level of the POE values of 

energy yield and LCOE. 

 

Figure 4.39. Probability of exceedance values of energy yield and LCOE, obtained 

from stochastic simulations. 
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CHAPTER 5  

5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Penetration of large amounts of solar energy into the grid requires risk assessments 

since the solar resource is variable. Thus, energy exceedance probabilities such as 

P50 and P90 are calculated to statistically represent the energy yield in any year 

throughout the operational life of a solar power plant. Different methods exist to find 

the POE values, and there is no consensus in the research field. In this study, the 

empirical method was chosen to perform P50/P90 analysis for the solar PV plant 

located at METU NCC. Results were compared with the Normal distribution 

assumption, and it was found that empirical CDF gave more realistic results for P50 

and P90. Stochastic simulations were also done to see the effects of all uncertainty 

components on energy yield by assuming probability distributions in SAM. It was 

found that stochastic simulations resulted in the highest POE values than the 

empirical method and Normal distribution assumption. For example, P50 and P90 

values increased by 3.30% and 6.10% compared to the empirical method, 

respectively. Thus, detailed uncertainty analysis in a stochastic simulation can 

increase the expected energy yield and a project's bankability.  

On the other hand, it was aimed to reduce the overall uncertainty using ground 

measurements, which have a shorter time period than satellite-based data. However, 

the quality assessment showed that GHI measurements had some erroneous data; 

thus, post-processing was done to reduce the RMSE of ground-measured GHI data. 

Several quality tests were made, and GHI was estimated using measured DNI for 

years of 2014, 2015 and 2016. While up to 2 hours of missing GHI data were filled 

by linear interpolation, longer missing data were filled by estimated GHI. Both 

measured and constructed GHI data were compared with satellite-based GHI data 
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for the time period 2010-2016. The results indicated that the average rRMSE of daily 

total GHI reduced from 34.63% to 17.77% after the data filing process. The rRMSE 

decreased to 8.78% for the annual mean daily total GHI data. Additionally, GTI was 

estimated using the isotropic sky-diffuse model, and it was compared with measured 

GTI. RMSE of daily total estimated GTI was 22.41%, whereas satellite-based GTI 

had an RMSE of 20.81%. Energy yield estimations were also compared using all 

datasets. For example, using SAM software reduced the energy yield by 14.74% on 

average compared to the calculations without using software.  

According to empirical CDF results, the interannual variability of annual 

temperature, GHI, AEP and LCOE were found as about 1.82%, 2.21%, 3.26% and 

3.50%, respectively. Although the LCOE is found through the operational lifetime 

of a plant, this study aimed to see the variations of LCOE with respect to possible 

AEP values. According to the comparison of TMY and P50 values, it was found that 

an average TMY underpredicted the annual GHI and AEP by 5.15% and 6.82%, 

respectively, while it overpredicted the LCOE by 7.53%. It was also found that AEP 

is highly correlated with annual GHI, whereas, a negative correlation was found with 

the annual average daily mean temperature. LCOE values were also found in 

stochastic simulation by enabling uncertainty distributions for the capital cost, 

annual operational cost and the fixed charge rate. The range of LCOE was found 

between 0.05 and 0.19 $/kWh, while energy yield had a range between 1500 and 

2000 kWh/kWp.  

In conclusion, while using TMY datasets can give a fast prediction of the long-term 

average energy yield, multi-year historical data sets are required to understand the 

long-term trends of solar resources and to obtain POE values of energy yield. In 

addition, the assumptions while doing calculations matter when the results are 

compared with actual energy yield data. Using a quality-checked, high accurate 

dataset also matters since it directly affects energy yield estimates. It is important to 

mention that long-term ground measurements may not always be available and even 

if it exists, regular calibration and maintenance of the ground station is necessary to 

obtain accurate measurements. Therefore, satellite-based data can be used as long-
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term reference data when doing a detailed analysis. Besides, measuring GTI with a 

tilted pyranometer can give a better value than estimating GTI from GHI and DNI; 

however, its quality should also be checked. In this study, the interannual variability 

of GHI was found as about 2.21% and 5.94% with satellite-based and ground-

measured data, respectively. Both results show that COV is below 6%, which is 

considered low [20]. The P50 value of energy yield was also found as 1756.48 and 

1814.52 kWh/kWp with the empirical method and stochastic simulations, 

respectively, whereas 1604.2 and 1702.11 kWh/kWp were found for the P90 value 

with the empirical method and stochastic simulations, respectively. This means that 

higher P50 and P90 values can be estimated by doing more detailed uncertainty 

analyses; as a result, the project’s bankability increases. 

Considering these results, making new solar PV plant investments is suitable for this 

region, and confidence levels such as P90 and P50 values were found, which can be 

used by project developers and investors in the future. LCOE results also show that 

installing a solar PV power plant is feasible in this region. 

5.2 Future Work 

In this study, historical weather datasets were used to see the interannual variability 

of GHI, to estimate the energy yield with the POE values and the LCOE estimates. 

Further study can include the effects of climate change on weather parameters, and 

projected weather datasets can be used. Including recent years’ weather data and 

extending the time period of the dataset will also make the long-term trend of solar 

radiation more reliable, thus, the energy and economic yield results. Furthermore, 

the lack of high-quality ground measurements showed the importance of collecting 

solar radiation data from nearby ground stations for validation. It will also help to do 

a spatial analysis if there are more ground-measured data from nearby stations. 

Also, uncertainty components of the energy yield such as temperature, dirt and 

soiling should be further investigated since reducing the overall uncertainty will 
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increase the confidence level of energy yield estimates. The uncertainty components 

may also have some correlations with each other, which was not considered in 

stochastic simulations. On the other hand, different methods were applied to estimate 

the POE values of energy yield. Further study may include obtaining a perfect 

weighted linear combination of these methods. In addition, synthetic weather 

datasets can be generated for different POE scenarios. 

The methodology explained in this thesis was applied to the 1 MWp solar PV plant 

in METU NCC as a case study; however, it can also be applied to a hypothetical 

large-scale plant if a new renewable energy project will be planned to be installed. 

This study can be expanded to analyze CSP and wind energy projects as well. 

Finally, economic analysis can be further done; for example, project revenues, debt-

size coverage ratio (DSCR), and net present value can be calculated in addition to 

the LCOE. Financial parameters can also be considered in detail, such as taxes, 

subsidies, and incentives.  
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APPENDICES 

A. SAM simulation results of temperature, GHI, POA, AEP and LCOE using 

different TMY and satellite-based datasets with different transposition 

models used (Isotropic, HDKR, Perez). Statistical indices are also shown. 
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B. Computing sample example of stochastic simulation in SAM software. 

 

#

Sky 

Diffuse 

Model

Weather 

Files

AC Wiring 

Loss (%)

DC Wiring 

Loss (%)

Connection 

& Diodes 

Loss (%)

Module 

Mismatch 

Loss (%)

Nameplate 

Loss (%)

Temperature 

Correction 

Model

Self-shading 

model

1 HDKR 2005.csv 1.00677 1.76329 0.555047 2.27482 3.30452 NOCT Thin film

2 Perez 2009.csv 1.0336 2.25686 0.517775 1.95549 3.19197 Heat transfer Thin film

3 Isotropic 2014.csv 1.1346 1.21063 0.488541 2.20349 2.83668 Heat transfer Standard

4 HDKR 2005.csv 1.17583 1.99724 0.423304 2.09567 2.79037 Heat transfer Standard

5 HDKR 2005.csv 1.1163 2.04943 0.430098 2.01423 3.71634 NOCT None

6 Perez 2013.csv 0.98252 1.71942 0.579054 2.50639 3.28744 Heat transfer Standard

7 Perez 2010.csv 0.867895 2.21192 0.522913 2.32979 2.67337 Heat transfer Thin film

8 HDKR 2012.csv 1.05007 2.06122 0.562842 2.12675 2.98828 Heat transfer None

9 Isotropic 2005.csv 0.935981 1.62907 0.552045 1.71181 3.38354 Heat transfer None

10 Perez 2008.csv 0.750419 2.32789 0.406574 2.31341 3.58773 NOCT None

11 Isotropic 2011.csv 0.848805 2.25078 0.44677 2.04614 3.01686 NOCT Thin film

12 Isotropic 2013.csv 0.86879 1.43576 0.481454 2.34398 2.54125 NOCT Thin film

13 Perez 2011.csv 0.876918 2.30207 0.497143 1.13595 3.18105 Heat transfer Standard

14 HDKR 2015.csv 1.08413 1.88648 0.485451 1.75994 2.48086 NOCT Thin film

15 HDKR 2008.csv 1.15647 2.5654 0.540458 1.81516 3.41922 NOCT None

16 HDKR 2011.csv 1.02653 2.10412 0.543414 1.88023 3.09078 Heat transfer Thin film

17 HDKR 2012.csv 1.05846 1.91731 0.520772 2.07238 3.20312 NOCT None

18 HDKR 2010.csv 1.22811 1.96714 0.491545 1.51128 3.14855 Heat transfer Standard

19 HDKR 2015.csv 0.931554 2.31824 0.514792 2.08802 3.06497 NOCT None

20 Isotropic 2016.csv 0.697413 1.75257 0.525117 1.80014 3.23528 NOCT Standard

21 HDKR 2011.csv 0.856385 2.12451 0.464565 2.21365 3.5111 Heat transfer None

22 HDKR 2009.csv 1.12968 1.79616 0.414024 2.62409 2.12824 NOCT None

23 Perez 2014.csv 0.98583 2.00296 0.609107 1.99205 3.33062 NOCT Standard

24 Isotropic 2007.csv 1.03932 1.64847 0.408087 1.94141 2.80573 Heat transfer Thin film

25 Isotropic 2010.csv 1.2817 2.34674 0.314831 2.25229 3.45837 NOCT Thin film

26 Perez 2012.csv 1.19409 1.94561 0.364741 1.7237 3.06918 NOCT None

27 Isotropic 2010.csv 0.859242 1.9036 0.532686 1.87243 2.89961 NOCT None

28 Perez 2006.csv 1.07975 1.97896 0.511608 2.36199 3.29097 NOCT None

29 Isotropic 2015.csv 1.25129 1.87793 0.461309 2.14081 3.5694 Heat transfer Thin film

30 HDKR 2012.csv 0.722297 1.9376 0.504659 2.06488 2.21293 NOCT None

31 HDKR 2006.csv 0.890822 1.57942 0.52887 1.69535 2.97619 NOCT Thin film

32 Perez 2014.csv 0.883931 2.16887 0.595937 2.19265 2.99461 NOCT Thin film

33 HDKR 2014.csv 0.947579 2.07844 0.559469 2.25297 3.48622 Heat transfer Standard

34 HDKR 2010.csv 0.921175 1.77441 0.396845 2.42457 2.88351 NOCT Standard

35 Isotropic 2011.csv 1.06493 1.86438 0.509493 1.82239 2.40433 NOCT Standard

36 Perez 2006.csv 1.31067 2.54471 0.581494 1.68612 2.30576 NOCT Standard

37 Perez 2012.csv 1.05473 2.28567 0.498619 2.22632 2.58036 NOCT Standard

38 Perez 2007.csv 1.06717 2.26567 0.495313 2.37516 2.76097 Heat transfer None

39 Isotropic 2009.csv 0.954283 1.80387 0.478555 1.73768 3.25956 Heat transfer Thin film

40 Perez 2008.csv 1.12406 2.23714 0.5093 2.176 3.66556 Heat transfer None

41 Perez 2015.csv 0.838074 2.03635 0.377995 1.97991 2.74662 Heat transfer Standard

42 HDKR 2005.csv 0.621051 1.81887 0.479652 1.89274 3.43718 NOCT Standard

43 Perez 2016.csv 1.14123 1.94943 0.456277 1.64001 2.69105 NOCT None

44 HDKR 2005.csv 0.910512 2.01352 0.537461 2.16395 3.16016 Heat transfer Thin film

45 Isotropic 2014.csv 0.988782 1.37443 0.393599 2.59138 2.77736 Heat transfer None
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46 Isotropic 2015.csv 1.09754 2.36984 0.576235 2.38905 2.96388 Heat transfer Standard

47 HDKR 2016.csv 1.10153 1.69776 0.450176 2.17441 2.91649 NOCT Thin film

48 Isotropic 2010.csv 1.10688 1.86997 0.48326 1.78165 3.78382 NOCT Thin film

49 Perez 2015.csv 0.950244 2.05474 0.388069 1.75035 2.88912 Heat transfer Standard

50 HDKR 2009.csv 1.09487 2.40056 0.566563 1.96329 2.73387 NOCT None

51 Isotropic 2016.csv 0.96134 2.15218 0.50315 1.91574 3.27179 NOCT Thin film

52 HDKR 2005.csv 0.944447 2.43848 0.51575 1.83183 3.48368 NOCT Standard

53 Isotropic 2013.csv 0.929752 1.49748 0.535066 2.1565 3.00398 Heat transfer Thin film

54 HDKR 2008.csv 1.38554 1.91136 0.46786 1.88623 2.55961 NOCT Thin film

55 Isotropic 2008.csv 1.2148 2.11583 0.590014 1.84336 2.59759 NOCT None

56 Perez 2010.csv 1.14823 1.57086 0.400653 1.35032 2.61842 NOCT None

57 HDKR 2007.csv 0.999041 1.67202 0.641404 2.19672 4.12102 NOCT Thin film

58 HDKR 2006.csv 1.07561 2.03003 0.616442 1.59741 2.7669 Heat transfer Standard

59 HDKR 2014.csv 1.01247 2.45908 0.546778 2.05752 2.85938 NOCT Standard

60 HDKR 2011.csv 0.993229 1.81323 0.489328 2.29578 3.3559 NOCT Thin film

61 Isotropic 2011.csv 0.81498 1.74191 0.784723 1.99275 3.23703 Heat transfer Standard

62 Perez 2007.csv 0.899168 2.16338 0.334488 1.76988 3.13335 Heat transfer None

63 Isotropic 2007.csv 1.04364 2.6268 0.493549 1.44012 2.65949 Heat transfer None

64 Perez 2014.csv 0.81738 1.5465 0.529444 1.60474 1.94632 NOCT Standard

65 HDKR 2014.csv 0.656679 2.52175 0.58622 2.14012 3.11776 Heat transfer Standard

66 Isotropic 2013.csv 1.00868 2.01554 0.441513 2.08028 2.63175 Heat transfer Standard

67 Isotropic 2009.csv 1.16407 1.8973 0.443106 2.53536 3.37814 Heat transfer None

68 Isotropic 2014.csv 1.09034 2.18994 0.550409 1.93661 2.63965 Heat transfer Standard

69 Isotropic 2012.csv 1.30018 1.95743 0.452351 1.83519 3.79333 NOCT Standard

70 HDKR 2005.csv 0.916435 2.06951 0.469523 1.906 2.38244 NOCT Thin film

71 Perez 2016.csv 0.906831 2.08459 0.436868 1.97603 3.55146 Heat transfer Thin film

72 Perez 2013.csv 1.01777 2.14751 0.474712 1.61733 2.95249 NOCT Standard

73 Perez 2011.csv 0.976487 1.4702 0.43918 2.02263 3.03043 NOCT Thin film

74 Isotropic 2008.csv 0.96831 2.11012 0.37396 2.10199 2.44656 NOCT None

75 Perez 2009.csv 1.15004 1.98894 0.459203 2.8008 2.71788 Heat transfer Thin film

76 HDKR 2009.csv 0.922696 2.20657 0.500129 1.56621 3.40147 NOCT None

77 Perez 2010.csv 0.979978 1.51444 0.629836 1.73393 3.64448 NOCT Thin film

78 HDKR 2006.csv 0.941242 1.72607 0.564781 2.30583 3.16175 Heat transfer None

79 Perez 2006.csv 0.884325 1.71073 0.605014 1.92507 2.87028 NOCT Thin film

80 Isotropic 2015.csv 1.04612 2.71393 0.640516 2.49099 1.99425 Heat transfer None

81 Perez 2013.csv 1.23332 1.85889 0.506092 2.00055 3.33545 Heat transfer Thin film

82 Perez 2015.csv 0.807335 2.041 0.352652 1.65197 4.00545 Heat transfer None

83 Perez 2008.csv 0.898033 1.97449 0.569675 2.44436 2.81878 Heat transfer Thin film

84 Perez 2016.csv 1.07064 1.82914 0.471973 1.85812 2.50489 Heat transfer Standard

85 Isotropic 2008.csv 0.971783 2.28991 0.422085 1.9512 2.16833 Heat transfer Thin film

86 Isotropic 2012.csv 1.02183 2.22935 0.418764 1.66355 3.6139 Heat transfer Thin film

87 HDKR 2008.csv 1.11094 1.92593 0.521672 2.11209 2.83871 Heat transfer Standard

88 HDKR 2007.csv 1.20724 1.78687 0.622117 1.48847 2.93699 Heat transfer Standard

89 HDKR 2013.csv 0.786011 2.41605 0.425439 2.26349 2.35745 NOCT Standard

90 Isotropic 2009.csv 0.962103 1.60101 0.465051 1.92158 3.05345 Heat transfer None

91 Isotropic 2016.csv 1.18794 2.35605 0.545625 2.40389 3.91502 NOCT Standard

92 Perez 2006.csv 1.0237 1.84347 0.598629 2.01581 2.28503 Heat transfer None

93 HDKR 2012.csv 1.00126 1.83896 0.572208 2.11605 2.92719 Heat transfer None

94 Perez 2007.csv 1.17846 2.13549 0.671208 1.79166 3.04312 NOCT Thin film

95 Isotropic 2007.csv 0.798621 1.64301 0.556309 1.55267 3.10889 Heat transfer None

96 Perez 2013.csv 0.757926 2.09223 0.447563 1.8597 3.09433 NOCT Standard

97 Isotropic 2009.csv 0.825653 2.19597 0.457539 1.40595 2.53177 Heat transfer None

98 Perez 2015.csv 0.776882 2.18223 0.431367 2.04279 3.21476 Heat transfer Thin film

99 Isotropic 2007.csv 1.03595 1.68243 0.536022 2.03562 2.45849 NOCT None

100 Isotropic 2016.csv 0.832596 2.48964 0.476941 2.23722 2.69705 Heat transfer Standard


