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ABSTRACT 

 

NEW PROTOCOL FOR SCANNING MINOR AND MAJOR GROOVES 

ALONG DNA TO FIND BEST INTERACTION MODE WITH DRUG 

MOLECULES 

 

 

Gülkaya, Aybüke 

M.S., Chemistry Department 

Supervisor : Assist. Prof. Dr. Antoine Marion 

 

 

 

January 2022, 126 pages 

 

 

Major and minor groove binder drugs could function as  possible treatment agents in 

genetic disorders or cancer. DNA is recognized by different proteins during 

replication, translation, and transcription. Basically, by binding to the grooves of 

DNA, small drug molecules can change the helical structure of DNA, interfere with 

protein binding and prevent replication, translation or transcription. To alter and 

inhibit DNA - protein interactions, especially sequence specific ligands should be 

designed. Accordingly, we investigated the interactions of different anticancer drugs 

binding to specific DNA sequences via minor or major grooves by a novel, 

automatizated protocol as a combination of docking and molecular mechanics 

refinement. With this methodology, we obtained best interaction modes of the drug 

molecules with given DNA sequences and most preferred sequences. 

Keywords: Molecular Docking, Molecular Mechanics, Binding Free Energy, 

Molecular Modelling, Drug Discovery 
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ÖZ 

 

DNA MOLEKÜLÜNÜN BÜYÜK VE KÜÇÜK OLUKLARININ TAMAMINI 

TARAYARAK EN İYI LİGAND VE DNA ETKİLEŞİMİNİ BULMAK 

ÜZERE METOT GELİŞTİRİLMESİ 

 

 

Gülkaya, Aybüke 

Yüksek Lisans, Kimya Bölümü 

Tez Yöneticisi: Dr. Öğretim Üyesi Antoine Marion  

 

 

 

Ocak 2022, 126 sayfa 

 

DNA’nın büyük ve küçük oluklarına bağlanan ilaçlar, kanser veya genetik 

hastalıkların tedavisinde kullanılmaktadır.  Replikasyon, translasyon ve 

transkripsiyon sırasında, DNA farklı proteinler tarafından tanınır. Temel olarak, ilaç 

molekülleri DNA'nın oluklarına bağlanarak DNA’nın sarmal yapısını değiştirir ve 

replikasyon mekanizmasını engeller. Farklı DNA ve protein etkileşimlerini inhibe 

edecek yeni ilaçlar ve yöntemler geliştirmek için, farklı sekanslarla etkileşim 

gösteren spesifik moleküller geliştirilmelidir. Bu nedenle yeni geliştirdiğimiz hızlı 

protokol ile DNA moleküllerine ilaç yerleştirme ve moleküler mekanik ile farklı 

dizilerin küçük ve büyük oluklarının, farklı ligandlarla etkileşimleri incelenmiştir. 

Bu method ile, seçilen ilaçların DNA ile en iyi etkileşime sahip olduğu bağlanma 

konformasyonları ve seçici oldukları DNA sekansları elde edilmiştir.  

 

Anahtar Kelimeler: Moleküler Kenetleme, Moleküler Mekanik, Bağlanma Serbest 

Enerjisi, Moleküler Modelleme , İlaç Keşfi
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CHAPTER 1  

1 INTRODUCTION  

Major and minor groove binder drugs could function as possible treatment agents in 

genetic disorders or cancer. DNA is recognized by different proteins during 

replication, translation, and transcription. Basically, by binding to the grooves of 

DNA, small drug molecules can change the helical structure of DNA, interfere with 

protein binding and prevent replication, translation or transcription(Khan et al., 

2012).  

In the current literature, it has been shown that anticancer drugs or antibiotics prefer 

specific sequences in different grooves of  DNA for binding(Rahman et al., 2019). 

However, the interaction patterns and mechanisms between drug molecules and 

DNA remain unclear for many of them. Understanding the mechanisms of 

interactions between DNA and drug molecules would provide significant help in 

designing novel drugs that would bind specifically to the target sites.  

To alter and inhibit DNA - protein interactions, especially sequence specific ligands 

should be designed.  Groove binder drugs bind to DNA by non-covalent interactions 

with different binding strengths depending on the sequence specificity of the drug, 

and thus might suppress different transcription factors or oncogenes. Within this 

thesis, we investigate the interactions of  different major and minor groove binders  

with the minor and major grooves of different DNA sequences by a new and 

automatized docking method as combination of docking, molecular mechanics 

refinement and molecular dynamics protocol that we developed. 

In this study, four major groove binder drugs, namely altromycin B, pluramycin A, 

hedamycin, nogalamycin and six minor groove binder drugs, berenil, DAPI, 

distamycin, hoechst33258, netropsin and pentamidine were selected as ligands to 

investigate the best interacting binding site by scanning along the whole major and 



 

 

2 

minor grooves of AAAAAAAAAA, GGGGGGGGGG, ATCGCGCGAT, 

CGTATATACG and GGCCAATTGG with this new automatization protocol.   

1.1 DNA Structure 

DNA (deoxyribonucleic acid) is the genetic code that carries molecular information 

and transferred throughout generations by translation, transcription, and replication. 

A DNA chain consists of nucleotides of four major bases: i.e., adenine (A), guanine 

(G), cytosine (C) and thymine (T) and a five-carbon deoxyribose sugar linked by 

phosphodiester bonds. The horizontally aligned base pairs are stacked in the interior 

and sugar-phosphate backbone surrounds the stacked base pairs. At physiological 

pH, each phosphate has a negative charge and, therefore, the genomic DNA is a 

highly negatively charged double stranded polymer built up by two intertwined 

single strandsthat are held together by hydrogen bonds among the bases of two 

opposite helices. Orientations of the nucleotides in a single strand are indicated by 

5’ and 3’ directions, which refer to 5th and 3rd carbon atom of the deoxyribose sugars, 

respectively. Phosphodiester bonds links the adjacent nucleotides in the backbone 

via the 5’ phosphate of one nucleotide to hydroxyl of 3’ end of the other nucleotide. 

There are three main known conformations of DNA: B-DNA, A-DNA and Z-

DNA(Travers & Muskhelishvili, 2015). B-DNA is right-handed and is the most 

common structure at physiological pH as shown in figure 1. 
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Figure 1. DNA Structure (A). There are three hydrogen bonds among the cytosine 

and guanine bases and two hydrogen bonds among the adenine and thymine bases. 

Backbone consists of covalently attached alternating phosphate and deoxyribose 

sugars. In (B), B-DNA is shown with major and minor grooves. (Northern Arizone 

University, n.d.) 

The negative charges on phosphate groups in the backbone of each opposite strand 

create repulsion among them. However, the hydrogen bonds of paired bases and 

hydrophobic interactions and π-π stacked bases in this specific stair wise structure 

help to balance this negatively charged backbone repulsion and stabilize the double 

stranded helix. Additionally, the solvation and ions around the ds-DNA is also 

crucial for the stability.  

 DNA is so important that it has been studied a lot over the past decades and a lot of 

mysteries have been resolved as shortly described above.  However, we still need to 

know more about the energetics, thermodynamics, behaviour, and machinery of 

DNA interactions. This would help us to rationally target DNA via drugs aiming 

specific groove and/or sequences. Moreover, solving out the specific interactions 
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between drugs and specific sites of DNA would open up new doors in design of 

better drugs with respect to their interaction patterns of either covalent interactions, 

intercalation, or weak interactions. 

1.2   Anticancer and Antibiotic Activity of Small Molecules 

Cancer and bacterial infections lead quite high death rates around the whole world. 

It has been stated (Soo et al., 2016)  that cancer cells/tumors and bacterial infections 

have similar features due to similar activity like spreading quickly in host, similar 

metabolic pathways, quick resistance promotion (chemotherapy resistance and 

antibiotic resistance) and aggressive proliferation during disease progression. 

Therefore some anticancer drugs are used also as antibacterial agents(Soo et al., 

2016). In clinical applications, new antibiotics and anticancer drugs are needed more 

and more due to increasing antibiotic and chemotherapy resistance. Furthermore, the 

pursuit of new cancer drug candidates aims at limiting toxicity and malignant side 

effects on host. On the other hand, pharmaceutical companies have not released a 

new brand of antibiotic in over a decade, which leads to a serious problem that is, 

clinical applications are ineffective due to drug resistance. In this regard, developing 

new methods to design new drugs by raveling out the interaction patterns and 

mechanism of those medicines without toxicity and side effects holds potential to 

speed up the discovery of new therapeutics (Soo et al., 2016). Also, small molecules 

have potential of therapeutic effect due to their higher cell permeability opposite of 

nucleic acid-based approaches (antisense, decoy and triple helix-forming 

oligonucleotides, ribozymes and RNAi), retroviral or adenovirus vectors, liposomes, 

and designed zinc finger peptides which cannot enter inside the cell easily due to low 

permeability (Melander et al., 2019). 

Cancer can be defined as uncontrolled and rapid cell proliferation and spreading. 

Anticancer drugs and antibiotics basically impair the cancer cell cycles in different 

phases and ways. There are three major anticancer drug interactions that are: 

interaction with DNA-binding protein, RNA-ssDNA hybridization along the 
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replication forks, and ligand-DNA binding (Hamad, F. D. , 2017). How the ligand 

and DNA interact changes upon the ligand structure, interaction energetics, patterns 

formed by hydrogen bond donor and acceptor groups, depending on the composition 

of bases, and compatibility of the size of the drug with size of the binding pockets 

on DNA. Since the way in which a ligand interacts with DNA depends on many 

parameters and patterns, it is crucial to resolve interaction mechanics in order to 

propose new treatments and modifications on drugs to decrease their cytotoxicity 

(Hamilton & Arya, 2012). In this study, the focus has been concentrated on the type 

of drugs that are directly interacting with DNA and that prevent either RNA 

transcription, DNA replication, or translation cycles, which should lead to apoptosis. 

1.3  Gene Expression Regulation 

Genes carry the required information to make proteins, and cell can function properly 

if proteins are synthesized at the correct time and in the right amount. Herein, gene 

expression can be defined as producing RNA and proteins by using genes. 

Transcription is the first step of gene expression where the DNA sequence is used to 

synthesize mRNA molecule, which will later be proccessed to synthesize the desired 

protein. Since transcription is the very initial point of gene expression, it is a relevant 

target to regulate the gene expression, to select which genes will be transcribed into 

the primary RNA transcript and hence proteins (Latchman, 1993). For every 

different cell type, the genes that are expressed to make proteins are different. These 

different genes transcribed in different cells are activated and regulated by proteins 

called transcription factors. This gene regulation allows to form different organ and 

tissue cells that have specific structure and function depending on the which genes 

are actively transcribed and translated (Hillenbrand et al., 2016). 
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1.4 Transcription Factors 

Transcription factors are DNA-binding proteins that control the activity of 

transcription by recognizing the regulatory region of DNA close to the initial point 

of transcription.  This DNA regulatory region recognition is extremely selective and 

is formed by non-covalent interactions and hydrogen bonding patterns of the surfaces 

of DNA bases in major and minor grooves and DNA binding domains (DBD) of the 

transcription factor. As the number of complementary contacts between transcription 

factor and DNA interface increases, specificity and strength of DNA-protein 

interlocking increases, and sequence is recognized distinguishably (Alberts B, 2002). 

Major classes of DNA binding domains that recognize the major groove are helix-

turn-helix domains (THT), basic leucine zipper domains (bZIP) and zinc finger 

domains (Struhl, 1989). Major classes of DNA binding domains that recognize the 

minor groove are TATA-box binding proteins (TBP), integration host factors (IHF), 

and HMG-Box domains (Bewley et al., 1998). TATA-box is one of the most 

important core promoters recognized by TBP from minor groove to initiate 

transcription that contains TATA sequences (Tora & Timmers, 2010). 
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1.5 Cancer Cell Behavior 

 

Figure 2. Cell cycle checkpoints(Chin & Yeong, 2015) 

The cell cycle is critical to comprehend the behavior of cancer cells. It is a continuous 

process that is shown in figure 2. Normal cell is at rest at quiescence phase (G0) and 

enters the cell cycle. Growth phase (G1) is the first phase of the cell cycle where 

organelles of the cell, such as mitochondria, are duplicated. The cell enters the 

synthesis phase (S) when the DNA is replicated. Afterward, it enters the growth 

phase (G2) where the cell grows again and prepares itself for the mitosis (M phase). 

In mitosis, cell divides itself to two identical cells. Those new cells either can enter 

the cell cycle or go back to the G0 phase. In the cell cycle there are checkpoints to 

verify the problems occurred during the cell cycle. The first checkpoint (G1 

checkpoint) is at the G1 phase. It  assures the lack of any abnormality in the cell and 

in the DNA. The second checkpoint is G2 checkpoint at the G2 phase that checks 

whether there is no problem before the mitosis or not. The next checkpoint is found 

at the mitosis phase. When the cell enters the cell cycle, cyclins and CDKs (cyclin 

dependent kinases) start to be produced to allow the cell to enter and progress into 

G0 
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this continuous cell cycle. Those proteins can be regarded as the drivers of the cell 

cycle. For example, when the cell enters the cell cycle, it produces CDK4/6 and 

cyclin D in the early G1 phase. When the cyclin D binds to CDK4/6, E2F detaches 

from the retinoblastoma protein and when E2F is released, it acts like a transcription 

factor which is allowing this cell to synthesis (S) phase. However, at the end of the 

G1 phase, there is another CDK and cyclin which are CDK2 and cyclin E. Once at 

the S phase, the cell will produce another CDK and cyclin which are CDK1/2 and 

cyclin A. At the G2 phase, CDK1 and cyclin B are produced that allow the cell to go 

through the cell cycle. So, the CDK’s and cyclins are the drivers of the cell cycle. 

These proteins can hold cells in G0 (resting) or even kill the cell if there is an 

abnormality to prevent tumor development.  Alteration in one of the cyclin regulation 

pathways or mutations may hamper the control of the cell division.  For example, if 

the amounts of those proteins are low, the cell does not progress in the cell cycle and 

if the amount of those proteins is too high, these cells continuously enter the cell 

cycle. As a result, cell growth becomes uncontrolled which is one of the mechanisms 

of cancer development (Hydbring et al., 2016).  

A point mutation is a type of mutation where a single change of nucleotide occurs in 

a gene coding for a specific protein. An oncogenic mutation of one of the genes 

involved in checkpoints may cause increase in CDK and cyclin proteins within the 

cell which leads to propagation of the cell to S phase without the detection of 

appropriate extracellular growth factor. DNA amplification is another reason for the 

overexpression of cyclin in cancer cells that occurs when a certain gene gets 

amplified so many times such that the overexpressed cyclins function as 

oncoproteins. The other factor leading to overexpression of cyclins is called 

chromosomal rearrangement where the chromosome basically attached to one 

another where it should not. Another factor is epigenetic modifications such as 

methylation and acetylation of genes. Methylation and acetylation of genes provide 

silencing or activation of certain genes. With one of these alterations, a cell becomes 

a cancer cell in which the checkpoints of the cell cycle have been bypassed and grows 

in uncontrolled way. This uncontrolled cell growing is essentially caused by two 
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major changes occurring in the cancer cell which are activation of oncogenes like 

RAS and MYC genes and inactivation of tumor suppressor genes like p53, APC and 

BRCA1/2. When these genetic changes that are inactivation of tumor suppressor 

gene and activation of oncogene occur, the abnormal cell can enter the cell cycle and 

bypass the checkpoints and can continuously grow (Kastan & Bartek, 2004). 

1.5.1 Oncogene Activation 

Overexpression or mutation of oncogenes may result in dysregulated cell signaling, 

proliferation and tumorigenesis. For instance,  RAS gene switches signaling 

pathways to control the differentiation or proliferation of cells and conveys signals 

from cell membrane to the nucleus. RAS gene produces RAS proteins that are mainly 

found below the plasma membrane. RAS proteins are activated once the growth 

factor receptor is stimulated by the cell growth. Activated RAS proteins cause a 

cascade of intracellular phosphorylation of specific tyrosine residues, which 

eventually activate transcription factors. Activated transcription factors bind to DNA 

and read the genes to produce CDK’s and cyclin proteins particularly to allow this 

cell to go from G1 phase to S phase for cell growth. When mutations occur in the 

RAS-coding gene, RAS proteins remain in the active state. Therefore, the cascade of 

phosphorylation and activation of transcription factors take place continuously. It 

leads to overproduction of proteins that allow cell growth like cyclins and CDKs 

(Adjei, 2001; Simanshu, D. K., Nissley, D. V. , McCormick, 2017). 

 MYC gene normally produce proteins that are responsible for cell growth, survival 

and activity. When a mutation occurs in the MYC-coding gene, cell growth and 

activity increases (Dang, 1999). Thus, activation of these oncogenes will allow the 

cell to bypass the checkpoints of the cell cycle, resulting in the uncontrolled cell 

growth.  
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1.5.2 Tumor Suppressor Gene Deactivation 

Normally, healthy cells are able to stop any problematic cell to enter the cell cycle. 

For example, when a cell gets held up at G2 phase due to an abnormal or damaged 

DNA, the cell will not progress in the cell cycle. When the cell has damaged DNA, 

it produces p53 proteins via the tumor suppressor gene p53 which can act like a 

transcription factor. Those p53 proteins will interact with DNA to produce cell arrest 

proteins such as p21. P21 protein inhibits the drivers of the cell cycle which are CDK 

and cyclin proteins and halt the progression of the cell cycle. P53 gene also produces 

proteins which are required for cell repair. So, when the cell is arrested, it can repair 

itself and its DNA. P53 protein also makes the proteins important for the apoptosis 

of the abnormal cell. If a mutation leads to inactivation of the tumor suppressor gene 

p53, cell arrest proteins, cell repair proteins, and proteins for apoptosis cannot be 

produced. Therefore, the abnormal cell can continue to the cell cycle and bypasses 

the checkpoints. This will lead to continuous growth and proliferation (Chen, 2016).  

1.5.3 DNA Methylation 

Even though every cell in the body contains the same DNA sequence, different cells 

express different genes. This process is regulated also partly by chemical 

modifications of nucleotides, which, without altering the DNA sequence, are 

responsible for gene silencing or activation. Such modifications form a second level 

of our genomes which are considered as one of the main epigenetic modifications. 

DNA methylation resulting in the modification of a cytosine to 5-methylcytosine 

(5mC) is one of those epigenetic modifications that is responsible for gene silencing 

or activation. DNA methylation is effective on cellular differentiation, X-

chromosome inactivation, gene imprinting, physiological conditions, and repression 

of retrotransposons. Cytosine methylation is highly prone to mutation where 

occurrence of spontaneous deamination of 5-methylcytosine to thymine leads 

approximately 20% decrease in the methylation of CpG islands.  
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DNA methylation is important for maintaining cell types and it is carried out by 

DNA methyltransferases (DNMT), e.g., DNMT1, DNMT3a and DNMT3b. DNA is 

wrapped around histone octamers and forms structures known as nucleosomes. 

DNMT3a and DNMT3b are responsible for de novo methylation allowing 

embryonic cells to differentiate into a cell type such as skin cells. DNA methylation 

profiles of corresponding cell types are conserved and inherited during cell division. 

DNMT1 is responsible for the maintenance of DNA methylation following 

differentiation and it is active during cell division. Thereafter, the methylation 

patterns of each cell type are different, and this reflects the gene expression pattern 

of the different cell types. Methylated cytosines are found primarily in CpG-poor 

regions at repetitive elements. On the other hand, the expected CpG content is found 

in CpG-dense regions (CpG islands) where cytosines are non-methylated state. 

Cytosine guanine sites (CPG islands) are mostly methylated in adult cells except that 

the promoter CpG-rich regions are typically nonmethylated. Promoter regions 

contain regulatory elements that control transcription of genes. DNA methylation 

blocks the interaction of some transcriptional activator or enables binding of 

repressive factors to prevent transcription. DNMT3A and DNMT3B are responsible 

for DNA methylation in early development. DNMT obtains the methyl group from 

a molecule called SAM. Then, methyl group is added to cytosine to form 5-methyl 

cytosine. Another important enzyme is TET that has an important role in regulating 

DNA methylation patterns which adds a hydroxyl group initially to 5-methylcytosine 

to form 5-hydroxymethyl cytosine (5-hmC) or form cytosine back from 5-

hydroxymethyl cytosine through several pathways. Therefore, TET enzyme is 

considered as  responsible for DNA demethylation. In a normal cell, the two counter 

processes methylation and demethylation are strictly regulated during cell 

development. In cancer cells, the methylation pattern of DNA is altered, where the 

balance between the methylation and demethylation processes and balance between 

the TET and DNMT proteins are disturbed. Normally, TET proteins have higher 

concentrations where transcription starts in CpG island promoter regions. However, 

in tumors TET mutations cause loss of function, low 5-hmC levels and abnormal 
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DNA methylation levels. Additionally, decreased levels of DNMT leads to genome-

wide hypomethylation. Consequently, DNA methylation patterns change because of 

the mutations of DNMTD and TET proteins. Typically, in cancer cells, promoter 

CpG regions are hypermethylated which is associated with tumor suppressor gene 

inactivation. In contrast to the focal regions of hyper methylation, DNA in cancer 

cells also undergoes widespread hypo methylation across the entire genome. This 

deregulation of epigenetic landscape is found in every type of human tumors (Gujar 

et al., 2019).  

1.6  Drug-DNA Binding Types 

Drug molecules can be designed to bind to the transcription regulation regions. The 

direct interaction between ligand and DNA can be classified into two main groups 

that are covalent and non-covalent interactions (B.R., 1958). Covalent interactions 

occur, when ligands are attached  to DNA by covalent  bonds and irreversibly  halt 

DNA action by causing permanent damage (Sechi et al., 2009). Alkylation is one of 

the covalent interactions, where alkylating agents can attach the methyl or other alkyl 

groups they have in their initial structure to DNA with three different mechanism 

that are cross-bridging, base alkylation and mispairing (Silvestri & Brodbelt, 2013). 

Cross-bridging is a type of covalent interaction, where bifunctional alkylating agents 

of cross-link DNA by forming inter-strand cross linking or intra-strand bridge as 

shown in figure 3. Since  cross-linking changes the normal DNA structure, DNA 

cannot be used anymore as a template for replication, transcription or translation. As 

a result, cell goes to apoptosis (Mishra et al., 2017; Silvestri & Brodbelt, 2013). 
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Figure 3. (A) Structure of Aflotoxin B1. (B) Crosslinked complex of DNA backbone 

which is colored purple and Aflotoxin B1 which is colored orange (M. Wang et al., 

2016) 

Base alkylation is also classified as covalent interaction since the pairing of the bases 

are impaired by alkylation of mainly the N-7 position of guanine and N-3 of adenine. 

DNA becomes miscoded and hence it is started to being fragmented to be repaired 

to replace the alkylated bases by enzymes (Mishra et al., 2017). Mispairing is another 

covalent interaction type, where this type alkylating agents cause mutations due to 

mispairing (Bauer & Povirk, 1997).  

1.6.1 Non-Covalent Interaction 

Non-covalent binders interact with the DNA molecule temporarily by weak 

interactions and therefore do not damage the DNA molecule even though they cause 

temporary deformation in DNA conformation and backbone torsions (Sirajuddin et 

al., 2013). 
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1.6.1.1 Intercalation 

 

 

Figure 4. Doxorubicin-DNA intercalation complex (Yang et al., 2013). 

Polycyclic planar aromatic ring structures can stack themselves between subsequent 

base-pairs of  DNA by compensating the energy cost arising from the deformation 

of the DNA for unwinding and elongation of DNA by established π-π stacking 

interactions between the sandwiched base pairs and dipole-dipole interactions (fig. 

4). Steps are opening of the DNA sequence where intercalation will occur, insertion 

horizontally to the created space and establishing interaction modes with the 

intercalation environment (Chaires, 2006; Lei et al., 2012). However, average to poor 

selectivity toward a specific binding site can be shown as a disadvantage of 

intercalator type binders (Ren & Chaires, 1999). It is difficult to select specifically 

the pathogenic genes or transcription starter genes since the deformation energy of 

interaction is mostly compensated by hydrophobic interactions of aromatic rings 

(Chaires, 1998). Due to low to average selectivity of intercalator drugs, intercalator 

type ligands would be intercalated at many sites in the very long genome, it would 
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block whole DNA instead of only targeted sites and consequently, they damage the 

whole DNA which may be identified as toxic (Sheng et al., 2013). 

1.6.1.2 Minor Groove Binding 

Minor groove is shallower and narrower than the major groove. Therefore, it is a 

good binding pocket for smaller molecules. In comparison with the intercalation, 

minor groove binding does not require large deformation energy cost (Neidle, 2001). 

Therefore, the binding site is determined by specific hydrogen bonds and van der 

Waals interactions between the ligand and minor groove sequence. These specific 

non-covalent interactions allow the binding of ligand to specific sites and therefore 

are more advantageous with respect to the non-selective intercalation. 

 

 

Figure 5. Space filling model of a minor groove binder (a cyclopropyl substituted 

diamidine) bound to DNA shown with tube model. (Nanjunda & Wilson, 2012). 

Minor groove binders have common typical characteristics that are: high flexibility, 

torsional freedom of the sigma bonds among the curvature of the ring system and 
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possession of neutral or positive charge to easily interact with the negatively charged 

phosphate backbone. The flexibility enables the ligand to interact with the minor 

groove without any unfavorable free energy barrier and deformation of the minor 

groove (Chaires, 1998) as shown in figure 5. 

1.6.1.3  Major Groove Binding 

 

 

Figure 6. Major groove binding ligand complexed with DNA (Hamilton & Arya, 

2012). 

Most of the proteins that are playing a role in DNA processing are quite large and 

their size is compatible with interactions in the major groove of DNA (fig. 6). In 

addition to this size compatibility, those proteins bind according to molecular 

interactions sequence specifically and read the corresponding information. Even 

though the number of known major groove binders is rather small, it has been found 
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that bulky and large carbohydrate compounds prefer to bind to major grooves of 

DNA (Hamilton & Arya, 2012). 

1.7  Sequence Specificity Based on Electrostatic Potentials and Functional 

Groups of Base Pairs 

Sequence selective groove binders with high affinity to DNA and so with high 

therapeutic potential can be designed to prevent cancer and bacterial infections based 

on sequence specific electrostatic interactions. The working principle behind this can 

be explained by the modulation of the gene expression through binding of the ligand 

to specific genes sequence selectively. To understand those interactions, a closer 

look to the topology of DNA, helix conformation, electrostatic potentials and 

hydrogen bonding groups of bases directing to major and minor grooves is insightful. 

1.7.1 Electrostatic Potential Patterns 

 

 

Figure 7. Surface electrostatic potentials of isolated G.C, G.U and A.U base pairs. 

The color scheme is as follows:  yellow is the most negative, red is negative, white 

is neutral, blue is positive, and green is the most positive electrostatic potential, 

respectively (Xu et al., 2007). 
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In figure 7, it can be seen that in the major groove, the G.C base pair is significantly 

more electronegative than the A.U base pair. On the other hand, the A.U base pair 

has higher electronegativity in minor grove than the G.C base pair. The total 

electronegativity of sequences along major and minor groove can be adjusted, and 

different electrostatic patterns can form depending on the sequence. For example, 

GGGGGGGGGG has the most negative electrostatic value whereas 

AAAAAAAAAA has the most positive electrostatic value in the major groove. On 

the other hand, ds(CACACACACA) has an overall electrostatic potential value close 

to neutral since the neighbor alternating positive and negative potentials neutralize 

each other. By using this information, we can make a rough interpretation about the 

electrostatic potentials of AAAAAAAAAA, GGGGGGGGGG, ATCGCGCGAT, 

CGTATATACG and GGCCAATTGG  of minor and major grooves. The 

electronegativity of major grooves of the studied sequences can be ordered as 

follows: GGGGGGGGGG (most electronegative major groove) > ATCGCGCGAT 

> GGCCAATTGG > CGTATATACG > AAAAAAAAAA (least electronegative 

major groove). Similarly, the electronegativity of minor grooves of studied 

sequences can be ordered as: AAAAAAAAAA (most electronegative minor groove) 

>  CGTATATACG > GGCCAATTGG > ATCGCGCGAT > GGGGGGGGGG. 

Beside the total electronegativity on grooves, ordering and location of base pairs 

change the electroactivity and electrostatic wall pattern. Herein, electronegativity is 

a global descriptor. For example, even though the CACACACACA is neutral 

overall, it has a very specific electrostatic pattern, where positive and negative 

potentials are present locally.  
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1.7.2 Functional Group Patterns 

 

 

 

 

 

Figure 8. Functional groups on the edges of cytosine (C)-guanine(G) and adenine 

(A)-thymine(T) base pairs directing both minor and major grooves. The colors 

assigned for the given functional groups are shown in the table  (Harteis & Schneider, 

2014). 

In figure 8, hydrogen bond donor and acceptor groups, methyl groups and a ring 

hydrogen are shown. In this study, AAAAAAAAAA, GGGGGGGGGG, 

ATCGCGCGAT, CGTATATACG  and GGCCAATTGG  sequences were used as 

H-bond acceptor  

H-bond donor  

Methyl group  

Ring Hydrogen  



 

 

20 

receptors. Docking studies were performed along both major and minor grooves of 

those sequences for all ligands. Functional group pattern representations along each 

groove of each sequence were shown in this section to emphasize the receptor 

characteristics. This information is used to create functional group patters of major 

and minor grooves of studied sequences in figure 10 and 11. 

1.7.3 Minor Groove 

In current literature, it has been stated that minor groove binder drugs show high 

affinity to bind A-T rich sequences which are narrow and deep. Since minor groove 

of A-T rich sequences is narrower whereas G-C rich sequences are wider, van der 

Waals interactions and contacts between the binding pocket of  A-T rich minor 

groove and ligand increase (Nanjunda & Wilson, 2012). 

 

Figure 9. Hydrogen bond donor and acceptor groups on the edges of cytosine (C)-

guanine(G) and adenine (A)-thymine(T) base pairs directing minor groove 

(Melander et al., 2019). 

Even though the binding pattern information in the minor groove is less rich than 

that of the major groove, it can be understood from figure 8 that the direction of the 

exocyclic (2)-amino group provides discrimination of G-C from C-G base pair. 

Additionally, thymine O(2) and H(2) are placed asymmetrically which create extra 

discrimination pattern to increase the information in minor groove for better 

selectivity. Figure 9 shows the lone pairs of C-G and T-A base pairs in minor groove, 
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where the effect of direction of hydrogens and lone pairs enhances topological 

information in minor groove to discriminate G-C from C-G and T-A from A-T.  

Discrimination between A-T and T-A base pairs is that is O (2) of thymine has two 

lone pair (two hydrogen bond acceptor in very close distance) whereas the N(3) of 

adenine only has one (Melander et al., 2019). Therefore, binding patterns of minor 

grooves of studied sequences given in figure 10 might be a rough picture of bonding 

patterns. However, the binding patterns might be useful as qualitative descriptors to 

see the bonding pattern characteristics of the sequences used. 

 

Figure 10. Functional group bonding patterns of minor groove of AAAAAAAAAA, 

GGGGGGGGGG, ATCGCGCGAT, CGTATATACG and GGCCAATTGG 

sequences respectively. Colors are assigned based on figure 8. 

1.7.4 Major Groove 

Previously, we have stated that larger molecules which cannot fit into minor groove, 

may bind to the major grooves. From figure 7, we noticed that the number of 

accessible functional groups in the major groove is greater than the minor groove. 

Moreover, bidentate hydrogen bonds also increase the information for selectivity. 

Therefore, the encoded pattern is greater and the information in major groove is 

richer (Harteis & Schneider, 2014). Figure 11 shows the interaction patterns of 

selected sequences of major grooves used within  this thesis. AAAAAAAAAA, 

GGGGGGGGGG, ATCGCGCGAT, CGTATATACG and GGCCAATTGG 
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sequences were selected to be able to see the effect of various sequence and 

neighbors on binding interactions. 

 

Figure 11. Functional group bonding patterns of major groove of AAAAAAAAAA, 

GGGGGGGGGG, ATCGCGCGAT, CGTATATACG and GGCCAATTGG 

sequences, respectively. Colors are assigned based on figure 8. 

1.8 Aim 

Discovery of a drug starts with the definition of the target and binding free energy. 

Then, drug is subjected to pre-clinical in vitro and in vivo assays for optimization 

until it reaches clinical trials and, ultimately, the market. Computational methods in 

drug development shorten time and cost of drug development. Computer-Aided 

Drug Design (CADD) is the name of the field defined for biomolecular modelling of 

drug-target binding which can be divided into two subgroups that are ligand-based 

drug discovery (LBDD) and structure-based drug discovery (SBDD). When 

identification of the target structure is hard or target structure is not known 

experimentally, ligand-based drug discovery methods are used. Some LBDD 

approaches are molecular similarity approaches, quantitative structure-activity 

relationship (QSAR) and pharmacophore modelling. As a disadvantage, ligand-

based approaches are either based on similarity between structural features of known 

drugs and developed drug, or relation between the known drug and its corresponding 

biological activity on the target site. When the 3D structure of the target is known 
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and solved either by NMR or X-ray crystallography, structure-based drug 

development methods such as structure-based virtual screening and direct docking 

can be employed. Large molecular structure datasets can be scanned to estimate the 

best binding probability and conformation of each molecule candidate via a scoring 

function to bind to the target by docking in SBDD approach. Different binding 

pockets (binding sites) might be available in the target (receptor). In this case, 

geometry-based binding site identification algorithms can be utilized to predict 

possible locations that ligand can bind. Moreover, new drugs can be developed by 

de novo ligand design by adding/changing the functional groups on the main 

structure without scanning large molecule libraries. Affinity of the possible drug 

molecules are correlated with the experimental results. As a result of this correlation, 

drug molecules are optimized, examined and eliminated until best drug molecules 

are obtained. 

However, there are some serious problems in structure based virtual screening 

processes. One of them is, most of the time flexibility of the receptor (target) is 

ignored (Aminpour et al., 2019). To overcome this issue, we generated multiple 

receptor conformations by extracting 10 snapshots from a molecular dynamics 

simulation of each to account receptor flexibility. Additionally, Autodock Vina 

(docking program used in this research) results do not always lead reliable binding 

scores. Therefore, we merged additional MM/GBSA (Molecular Mechanics/ 

Generalized Born Surface Area) methods after docking to calculate binding free 

energies. The ligand and receptor complex conformation found by Autodock Vina is 

usually not the most ideal complex structure from a molecular mechanics point of 

view. This is mostly due to the fact that hydrogen atoms are ignored during the 

docking process and placed arbitrarily at the end (Oleg, T., Olson, 2010). Torsions 

should also be adjusted to match the MM potential. Therefore, we minimized all 

complex structures after docking to relax the torsions. Another limitation of docking 

is incomplete sampling.  To draw a conclusion from a docking study, many docking 

confirmations and results are required. Therefore, in this study we performed 

multiple docking runs, where we accounted for all docking poses of each docking 
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site of each ligand conformation. We extracted binding probability distribution plots 

of studied ligand-binding pocket interactions versus corresponding binding free 

energy values of investigated ligand-receptor pairs.  

Computational binding free energy prediction would be a very cost and time efficient 

tool for drug design and discovery. A quick and trustable binding free energy 

approach would yield results faster than expensive experimental studies to test 

possible interaction modes of novel drugs with the target site. Herein, we created a 

fairly time-efficient computational binding free energy method, which is 

automatization of combined docking, molecular mechanics (MM), molecular 

dynamics (MD) by bash/python programming. We selected set of the ligands whose 

binding site preferences were already known and DNA sequences as receptor 

molecules. We compared the obtained results with the literature data to check the 

correlation and we identified best binding sites for each drug-DNA pair. After this 

point, selectivity of any possible drug candidate toward any sequence can be 

predicted and these automatization codes can be used for drug discovery. 
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CHAPTER 2  

2 METHODOLOGY 

In this study, sequence specificity of a series of major and minor groove binder 

molecules toward 5 different DNA sequences was investigated via computational 

chemistry methods involving docking, molecular mechanics (MM), molecular 

dynamics (MD) and bash/python programming for automatization. 

2.1. Molecular Docking 

Docking can be defined as a computational study that tries to predict possible binding 

modes and conformations of a small molecule to a cavity of macromolecule. Relative 

binding free energies are calculated by using scoring functions. Docking has a 

significant importance in drug discovery and design. In this work, Autodock Vina 

was used as a docking program. It searches the binding mode of the ligand in given 

central coordinates and dimension sizes of the grid box starting with a random 

orientation without visual interface. Therefore, it enables automatization with its 

high speed. Also, Autodock Vina enables to sample various bound ligand 

conformations. However, it makes a lot of approximations to work fast and this leads 

to a decrease in the accuracy and requires improvement (Cosconati et al., 2011). 

Autodock Vina scoring function works based on van der Waals-like potential 

including non-directional hydrogen bond term, a hydrophobic term and a 

conformational entropy penalty where electrostatics and solvation are not taken into 

consideration (Eberhardt et al., 2021). 

The next step after input structures required for docking (pdbqt files for both ligands 

(drugs) and receptors (DNAs)) was to decide the grid box sizes that encapsulates 
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each of the drugs. Smallest cubic box sizes were selected as big as to contain all 

atoms of the ligands. Another step for docking was to decide the docking sites where 

the grid box containing the ligands are placed. Since the purpose of this study is to 

scan binding energy along whole major and minor grooves of selected DNA 

molecules sequentially, a specific strategy was applied to place those grid boxes to 

the center of masses of phosphate atoms (Pi) of opposite strands. Basically, center of 

mass of each Pi of 5’ strand and Pi+3 of 3’ strand was calculated for minor groove. 

For major groove, center of mass of each Pi of 3’ strand and Pi+4 of 5’ strand was 

calculated. Mainly, 8 binding sites are presented for major groove and 9 binding sites 

are presented for minor groove of 10 base pair long DNA. 5 DNA sequences were 

selected as receptors which are AAAAAAAAAA, GGGGGGGGGG, 

ATCGCGCGAT, CGTATATACG  and GGCCAATTGG  with same length. For 

each DNA, 10 different conformations extracted from different nanoseconds of 

production were used in the docking studies to get unbiased docking results. 

Autodock Vina has been set to generate 9 docking poses for each docking. For one 

DNA conformation, there are in total 17 docking centers as sum of docking centers 

in minor and major grooves. Since 10 conformations of each sequence were used, 

170 docking studies were performed to scan one sequence and one drug interaction. 

Since we have scanned 5 different DNA sequences, we needed to perform 850 

docking studies. We investigated interactions of 10 ligands, therefore we needed to 

perform 8500 docking studies and MM-refinement of those dockings to calculate 

interaction energies of each drug to find sequence specificity. Unfortunately, 

calculation of center of mass for each docking study was impossible by hand. 

Therefore, we wrote an automatized python script to create Autodock Vina inputs. 

Then box size was set according to the ligand size mentioned in the code as 26 Å for 

altromycin B, 21 Å for pluramycin A, 21 Å for hedamycin, 21 Å for nogalamycin, 

18 Å for berenil, 17 Å for DAPI, 21 Å for distamycin, 23 Å for hoechst33258, 20 Å 

for netropsin and 23 Å for pentamidine, respectively. Auto Vina then calculated the 

center of mass of each docking pose with respect to corresponding conformation of 

DNA. All codes of automatization are available upon reasonable request. 
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2.1  Molecular Mechanics (MM) 

With molecular mechanics, reliable binding free energies can be obtained. That 

requires parametrization based on quantum mechanics (QM). Descriptors such as 

atomic charges, electronic structure, dipole moments, orbital energies, molecular 

electrostatic potentials, conformational and thermodynamic parameters of a ligand 

molecule can be obtained by quantum chemical calculations. Those descriptors are 

critical for ligand receptor interactions since non-bonded interactions are directly 

calculated by using derived atomic charges (Sizochenko et al., 2017). Electronic 

structure of a polyelectronic molecular or atomic system could be obtained if time-

dependent Schrödinger equation could be solved analytically. Therefore, 

approximations are essential to solve Schrödinger equation. Hartree-Fock (HF) is 

one of those approximations which ignores correlation of electrons which results 

wave function of a system turns out product of independent one particle wave 

functions. In HF theory, each electron experiences the Coulombic repulsion with 

averaged electrostatic field of rest of the electrons instead of experiencing each 

Coulombic repulsion of one-to-one electron interaction. Because of this reason, the 

Schrödinger equation of HF approximation contains the kinetic energy of each 

individual electron, each electron-nuclei interaction and sum of the Coulombic 

interaction of each electron with the mean electrostatic field created by rest of the 

electrons. HF approximation is relatively cheap and used for ligand ground state 

geometry optimization in this work (Veryazov, 2016).  

In molecular mechanics, bonds are treated as classical springs with a force constant 

and atoms are treated as the masses on the opposite edges of this spring. Energy is 

calculated by simple harmonic potential and similar approximations are used for 

bond angles and dihedral angles. Parameters used in the force field are derived from 

quantum mechanical calculations such as partial charges of atoms or experiments 

such as van der Waals radii, atomic mass, bond lengths, angles, force constants 

(Marion, 2014). In this research, AMBER (Assisted Model Building with Energy 

Refinement) force field has been used for MM-refinement as shown below, in which 
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the first three terms stand for bonding interactions and last term stands for non-

bonding interactions that are van der Waals and Coulomb interactions: 

𝐸 = ∑ 𝐾𝑏(𝑏 − 𝑏0)2 +  ∑ 𝐾𝜃(𝜃 − 𝜃0)2 +  ∑
𝑉𝑛

2𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠 [1 + cos(𝑛∅ −𝑏𝑜𝑛𝑑𝑠

𝛾)] + ∑ ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜖𝑅𝑖𝑗
]𝑗>𝑖𝑖                                                                                                                                                 

(1) 

where Kb is a force constant of covalent bonds, b0 is the center of the harmonic 

potential of covalent bonds, 𝐾𝜃  is the force constant for angles, 𝜃0 is the center of 

the harmonic potential of angles, Vn is the force constant of dihedral angle ∅ and 

phase angle 𝛾, 𝜖 is the dielectric constant, qi is the atomic charge of the ith atom 

(Cornell et al., 1995; Marion, 2014). In this study, energy of each complex structure 

produced by docking was minimized with AMBER force field by using bsc1, ff14SB 

and GAFF parameters. 

2.1.1 Binding Free Energy (∆𝑮𝒃𝒊𝒏𝒅) and Solvation Free Energy (∆𝑮𝒔𝒐𝒍𝒗 ) 

Binding free energy is a measure which describes the binding strength of potential 

drug candidate to the target, in this case to a macromolecular biomolecule (Genheden 

& Ryde, 2015). To create a medium similar to physiological conditions, water has 

been used as the solvent in calculations. Hydrophilic parts of the solvated molecules 

in water are able to form hydrogen bonds with the solvent molecule and so might be 

stabilized by these hydrogen bonds. In the process of forming the complex, there is 

a cost for separating  polar groups from water molecules where the drug molecule is 

transferred from water to the binding pocket. On the other hand, hydrophobic parts 

of the solvated molecules would interact easily with the hydrophobic parts of the 

receptor in the process of formation of complex structure.  If the new electrostatic 

interactions in the formed complex overcome the loss by matching of hydrophobic 

residues in the binding pocket, binding affinity increases. Therefore, solvation free 

energy is a key point for the calculation of binding energy (Decherchi, S., Masetti, 
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M., Vyalov, I., Rocchia, 2015). Binding free energy is calculated as in the following 

equation: 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆                                                                                                                                                 

(2)                                                                                                                                              

where ∆𝐻 is the enthalpy change, T is the absolute temperature (K), and ∆𝑆 is the 

entropy change of the system (Forouzesh, N., Mishra, 2021). In this work, implicit 

solvent model was used to represent water, which has dielectric properties of water 

due to low computational cost. However, in this research entropy contribution is 

neglected.         

2.1.2 Molecular Mechanics Generalized Born Surface Area (MM/GBSA) 

Method 

In MM/GBSA method to calculate binding free energies, classical force fields are 

employed with implicit solvation models. Electrostatic contribution was obtained by 

Generalized Born (GB) model. For the binding of ligand (L) to receptor (R) to form 

complex (LR) in a solution where L+R↔LR: 

∆𝐺𝑏𝑖𝑛𝑑 = 𝐺𝐿𝑅 − 𝐺𝐿 − 𝐺𝑅  

 (3)                                                                                             

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆                                                                                                                               

(4) 

∆𝐸𝑀𝑀 =  ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑊                                                                                                                            

(5) 

∆𝐺𝑏𝑖𝑛𝑑 =  ∆𝐺𝐺𝐵 + ∆𝐺𝑆𝐴                                                                                                                                             

(6) 

∆𝐺𝑆𝐴 = 𝛾. 𝑆𝐴𝑆𝐴 + 𝑏                                                                                                                                                   

(7) 
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where ∆𝐺𝑠𝑜𝑙 is the solvation free energy that is the sum of electrostatic solvation 

energy of polar contribution (∆𝐺𝐺𝐵) and nonpolar contribution (∆𝐺𝑆𝐴) calculated by 

solvent-accessible surface area (SASA) between  the solute and continuum solvent, 

−𝑇∆𝑆  is the conformational entropy upon ligand binding mostly neglected due to 

high computational cost,  ∆𝐸𝑀𝑀 is the change in the gas phase molecular mechanics 

(MM) energy containing the internal energy changes (∆𝐸𝑖𝑛𝑡) that are bond, angle and 

dihedral energies, electrostatic energies (∆𝐸𝑒𝑙𝑒), and the van der Waals energies 

(∆𝐸𝑣𝑑𝑊) (E. Wang et al., 2019).    

In this work, solvation free energy was obtained by Generalized Born (GB) model 

as shown in equation 8 below: 

  ∆𝐺𝐺𝐵 =  −
1

2
(

1

𝜀𝑖𝑛
−

1

𝜀𝑜𝑢𝑡
) ∑

𝑞𝑖.𝑞𝑗

𝑓𝑖𝑗
𝐺𝐵(𝑟𝑖𝑗)𝑖,𝑗                                                                                                                          

(8) 

 𝑓𝑖𝑗
𝐺𝐵 = [𝑟𝑖𝑗

2 + 𝑅𝑖𝑗𝑅𝑖𝑗 exp (
−𝑟𝑖𝑗

2

4𝑅𝑖𝑅𝑗
)]1/2                                                                                                                         

(9) 

Where 𝜀 is the dielectric constant of bulk solvent (dielectric constant of water for our 

study), qi is the partial atomic charge of atom i, rij is the inter-particle distance and 

Ri is the effective Born radius of atom I (Nguyen et al., 2013).  

2.2 Minimization 

The docking poses created by Autodock Vina are not optimized where the scoring 

function is based on distances between atoms only instead of actual energy 

calculation(Oleg, T., Olson, A. J., 2010). But in MM, it is crucial to optimize the 

structure prior to evaluating the binding energy because all pairwise interactions are 

associated with a potential. Also, this is a technicality, but it is important to mention 

it: since Vina does not use the hydrogen atoms explicitly, it orients them randomly 

in groups such as -OH. This can cause issues in MM if not optimized. Complex 
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structures that are docked ligand to the binding pockets and receptor should be 

refined, and their energy values should be minimized with molecular mechanics to 

be able to be more realistic where the complex  is stable without any clashes. Atomic 

charges, electronic structure, dipole moments, orbital energies, molecular 

electrostatic potentials, conformational and thermodynamic parameters of a ligand 

molecule can be used in energy minimization to have better atomic descriptions and 

parameters to calculate the interaction energies more realistically.  

2.3 Molecular Dynamics (MD) 

Molecular dynamics simulation study has significant importance on drug discovery 

by helping to understand the dynamical behaviors of biomolecules of interest like in 

ligand binding, conformational change, motion over a simulation duration. Working 

principle of MD simulation is that Newton’s law of motion is used to predict the 

spatial position of each atom as a function of time by calculating the forces exerted 

on each atom and then, calculating and updating the new positions and velocities of 

atoms in every timestep to create a trajectory. Resultant trajectory is a movie that is 

formed by a visualization of three-dimensional motions and velocities over the time 

steps (Hollingsworth & Dror, 2018). In this study, MD was used to equilibrate the 

DNA sequences and we obtained different conformations of these DNA sequences 

from MD. The reason of this is to consider receptor flexibility in docking to prevent 

any bias or possible errors. Additionally, MD would be useful even after molecular 

mechanics study since it enables us to see whether the formed complex structures 

are stable over time in periodic conditions or not. 

2.4 Pipeline 

Mainly, 8 binding sites were assigned for major groove and 9 binding sites were 

assigned for minor groove for 10 base pair long DNA structures. 5 DNA sequences 

were selected as receptor which are AAAAAAAAAA, GGGGGGGGGG, 
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ATCGCGCGAT, CGTATATACG and GGCCAATTGG with the same length from 

5’ to 3’ direction. For each DNA structure, 10 different conformations extracted from 

different nanoseconds of production were used in the docking studies to get unbiased 

docking results. Autodock Vina was set to generate 9 docking poses for each 

docking. For one DNA conformation, there are totally 17 docking centers as sum of 

docking centers in minor and major grooves. For each docking center, Autodock 

Vina produced 9 docked poses. Therefore, for only one conformation of DNA 

sequence, there were 153 docking and MM-refinement studies to be performed. 

Since 10 conformations of each sequence were used, 1530 docking and MM-

refinement studies were performed to scan one sequence and one drug interaction. 

Since we scanned 5 different DNA sequences, we needed to perform 7650 docking 

and MM-refinement studies to see sequence selectivity of only one drug. We 

investigated interactions of 10 ligands, therefore we performed 76500 docking and 

MM-refinement of those dockings to calculate interaction energies of each drug to 

find sequence specificity. Such process should be automatized because, it is not 

possible to calculate one by one. All steps of this research were performed by the 

combination of python codes and bash/shell scripting. 

2.4.1 Ligand Preparation 

Selected major and minor groove binder drugs were optimized with Hartree-Fock 

method (HF) by using 6-31G* basis set by using Orca 4.2.1 in their protonation states 

at 7.4 pH, and the corresponding electrostatic potentials (ESP) were calculated. 

Atomic point charges were calculated by restrained electrostatic potential atomic 

charges (RESP) by combination of Merz-Kollman grid points resulted from the 

orientation of molecules. General Amber Force Field (GAFF) was used to set ligand 

parameters (mol2 files) by antechamber program of AMBER. To check the missing 

bond parameters and produce frcmod files containing all parameters required, 

parmchck2 of Ambertools19 was used. Parameter and coordinates files were 

prepared by tleap program of AMBER. After that, short minimization was performed 
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to relax the molecule with 1000 cycles with 999999.99 Angstroms cutoff. Resultant 

rst files were converted to pdb format by ambpdb tool of AMBER for further use. 

Then, pdbqt files required for docking were generated from pdb files by running the 

prepare_ligand4.py code obtained from MGLTools/Utilizes/24. Autodock Vina was 

used as docking tool to perform all docking studies. 

2.4.2 DNA Preparation 

5 different B-DNA sequences containing 10 base pairs were selected which are 

AAAAAAAAAA, GGGGGGGGGG, ATCGCGCGAT, CGTATATACG  and 

GGCCAATTGG  Those sequences were prepared with AMBER NAB (nucleic acid 

builder) to create initial DNA structures in the pdb format. By using tleap facility of 

AMBER and pdb files obtained from AMBER NAB tool, parameter (prmtop) and 

coordinate (inpcrd) files of each DNA sequences were prepared and ff14SB and bsc1 

force fields were used for this process. To relax the system prior to MD (molecular 

dynamics), two step minimization algorithm was applied to all DNA sequences by 

AMBER. In the first step of minimization, constant volume 10000 steps of gas phase 

minimization without pressure control were performed with 12 Å non-bonded cut-

off distance. Atoms in DNA residues were restrained with 3.0 kcal/mol force 

constant. In the second step of minimization, same periodic boundary conditions, 

method and same number of cycles of minimizations were applied but restraint was 

removed. Then, all DNA systems were heated up gradually in 7 steps and allowed to 

equilibrate to prevent any possible blow up and trap in any local minima. In the first 

step of heat-up, all DNA systems were heated up from 0 K to 10 K by constant 

volume (NVT) ensemble. 500 number of MD steps were used for MD runs of 10 

picosecons (ps) with 0.002 picosecons (ps) timestep. The seed for the pseudo-

random number generator to assign initial velocities was set as to get velocities 

differently in each start with reproducibility (ig = -1) and Langevin Thermostat was 

used (ntt=3). Cut-off distance was set to 12 Å. Coordinates were read from the 

minimization outputs (rst files). Shake algorithm was set only to restrain the bonds 
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involving the hydrogens (ntc = 2, ntf = 2). In the second step, DNA molecules were 

heated from 10 K to 50 K with same periodic boundary conditions. In the third step, 

restrains were removed and systems were heated from 50 K to 100 K with same 

conditions. In the fourth step of heatup, ensemble was switched from NVT to NPT 

ensemble at 100 K. In the fifth step, systems were heated from 100 K to 200 K with 

NPT ensemble. In the sixth step, systems were heated from 200 K to 300 K with 

NPT ensemble. In the seventh step, systems were equilibrated at 300 K with NPT 

ensemble. 

3000 ns long production of 5 selected DNA sequences were performed by 

pmemd.cuda implementation of AMBER19. Isothermic-isobaric (NPT) ensemble 

was applied at 300 K with isotropic position scaling (ntb=2, ntp = 1), with 12 Å 

cutoff distance. Langevin thermostat was used. The seed for the pseudo-random 

number generator to assign initial velocities was set as to get velocities differently in 

each start with reproducibility (ig = -1) and Langevin Thermostat was used (ntt=3). 

Cut-off distance was set to 12 Å and timestep was 0.002 ps. Shake algorithm was set 

only to restrain the bonds involving the hydrogens (ntc=2, ntf=2).  

By using cpptraj of AMBER, each rst file of each nanosecond which were generated 

by 3000 ns production were converted to pdb files. Then, pdbqt files required for 

docking were generated from pdb files by running the prepare_receptor4.py code 

obtained from MGLTools/Utilizes/24. 10 pdb file for each DNA sequence have been 

used for docking studies as receptor. 

2.4.3 Automatization 

Automatization consists of three major codes after drug and DNA molecules were 

optimized and parametrized. Inputs for Autodock Vina were created with the python 

script that basically calculates the center of mass of the distance of each phosphate 

(Pi) in 5’ direction starting from the 1st base and (Pi+4)th phosphate in the opposite 

strand for major groove as shown in the figure 12 below and calculates the center of 
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mass of the distance of each phosphate (Pi) of 3’ strand starting from 20th base and 

(Pi+3)th phosphate in the opposite strand for minor groove as shown in the figure 13 

below.  For each DNA, docking was performed 10 times at each of the docking 

centers shown in figure 12. 

   

Figure 12. (A) Calculation of the center of mass of the distance of each phosphate 

(Pi) in 5’ direction starting from the 1st base and (Pi+4)th phosphate in the opposite 

strand for major groove. (B) Major groove docking centers along AAAAAAAAAA 

represented with red dots. 

A B 
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Figure 13. (A) Calculation of the center of mass of the distance of each phosphate 

(Pi) of 3’ strand starting from 20th base and (Pi+3)th phosphate in the opposite strand 

for minor groove. (B) Minor groove docking centers along AAAAAAAAAA 

represented with red dots 

Specific atom names and residue numbers that are going to be used for center of 

mass calculation is written in the code as regular expressions with respect to each 

DNA sequence. Each regular expression is searched in corresponding nanosecond of 

every DNA pdb files to find the x, y and z coordinates and calculate the center of 

mass to define box center coordinates to be written in each Autodock Vina input. 

Also, box size is written by python code to the created Autodock Vina input with 

respect to smallest cubic dimensions to contain each drug molecule separately that 

are 26 Å for altromycin B, 21 Å for pluramycin A, 21 Å for hedamycin, 21 Å for 

nogalamycin, 18 Å for berenil, 17 Å for DAPI, 21 Å for distamycin, 23 Å for 

hoechst33258, 20 Å for netropsin and 23 Å for pentamidine respectively. Number of 

binding modes was selected as 9 and exhaustiveness was set as 25 for all inputs. 

A B 
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Figure 14. First binding mode of altromycin B at each docking center of along 

AAAAAAAAAA/minor groove. 

In figure 14, the first binding mode of altromycin B at each docking center along 

AAAAAAAAAA/minor groove is shown.  Both major and minor grooves of all 

DNA for all drug molecules were scanned by this systematic docking method. 

MM-refinement is MM-minimization and calculation of binding free energies. 

Docking and MM-refinement are automatized in this step together with bash 

scripting. There are 3 main scripts for major and minor grooves separately. With 

given regular expressions describing the docking site naming, all the created 

Autodock Vina inputs created in the previous step were used for docking. Formed 

pdbqt files contain all 9 docked poses together. Therefore, those binding poses of 
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drugs were turned into pdb files and then, splitted into sperate pdb files in the next 

step. Next, all vina output txt fileswere moved to another folder to use the Vina 

docking scores during the binding energy calculation step. After that, corresponding 

DNA and drug binding pose were combined to create parameter and coordinate files 

of the complex structure (docked drug pose + DNA). To prepare Amber files of 

complex structure with tleap program of AMBER19, implicit solvation model with 

mbondi3 was used. For DNA, bsc1 force field was employed. For ligands, GAFF 

force field was utilized. Next, complex structures were minimized in two steps. In 

first step, all hydrogen atoms were minimized while others were constrained with a 

3.0 kcal/mol force constant for 1000 cycles without cutoff and igb=8 Generalized 

Born (GB) solvation model was utilized. In the second step, the minimization of the 

complex structure was performed for 5000 steps, with restraints set only on 

phosphorus atoms. 

After minimization of complex structure, DNA structure and ligand structure were 

extracted by cpptraj utility of AMBER19 separately. Parameter and coordinate files 

for only drug, only DNA and complex together were created via cpptraj of AMBER. 

Then, all energy values were calculated for complex structure (ligand+receptor), 

ligand and receptor separately by using ig=8 GB solvation model and ntslim=-1 

sander facility of AMBER19. 

Then, corresponding Autodock Vina outputs were copied to every subfolder where 

energies were calculated. The purpose of this step is to include Vina scores in the 

output files for better comparison with MM results. All these processes were 

performed via bash scripts in created subdirectories automatically. For each DNA 

sequence, bash codes were written separately with respect to corresponding name of 

the DNA sequence, regular expressions and nanoseconds of the DNA sequences. 

After MM-Refinement completed, binding free energy of each docked pose was 

automatically calculated by another python code and outputs were written in 

corresponding csv files. Basically, the code finds total energy of the complex, drug 

and DNA sequence of each docked conformation from the corresponding MM-
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refinement outputs in corresponding subdirectory. The binding energy of each 

structure was calculated by subtracting the total energy of ligand and total energy of 

DNA from the total energy of complex structure, including solvation energy. Then, 

calculated binding free energy values for major and minor grooves were written to 2 

csv files respectively for each drug and DNA interactions. The same calculation for 

the solvation energy was applied and and the results are written in  next column. Last 

column contains corresponding Autodock Vina scores. Codes and obtained data are 

available upon a reasonable request. 

2.5 Studied Drug Molecules  

For this study, we selected a series of major and minor groove binder drugs that are 

experimentally confirmed in the literature. The selection was based on binding 

specificity toward either major or minor groove of the drugs and extent of the 

availability of the information in the literature for comparison with the results 

obtained in this study. In this section, we describe these molecules and review the 

binding characteristics with respect to literature information. 

2.5.1 Major Groove Binders 

We selected 4 major groove binder molecules that are pluramycin A, altromycin B, 

hedamycin and nogalamycin. 
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2.5.1.1 Pluramycin A ([4-(dimethylamino)-6-[8-[4-(dimethylamino)-5-

hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-2-[2-methyl-3-

[(E)-prop-1-enyl]oxiran-2-yl]-4,7,12-trioxonaphtho[2,3-h]chromen-

10-yl]-2,4-dimethyloxan-3-yl] acetate) 

 

Figure 15. (A) Lewis structure of pluramycin A (PubChem CID: 5906990) (NIH, 

n.d.). (B) Three-dimensional (3D) conformation of pluramycin A. Color 

representations are as follows: cyan stands for carbon, grey stands for hydrogen, red 

stands for oxygen, blue stands for nitrogen. 

It has been proposed that pluramycin A selectively binds to TATA sequence by 

intercalation.  Its flanking carbohydrate groups are in major groove and epoxy group 

located towards minor groove when it intercalates. TATA sequence is called as 

TATA box where TATA-binding protein (TBP) binds to DNA from minor groove 

side in RNA transcription. When pluramycin A intercalates to TATA sequence as 

described, it alkylates N7s of guanines (Sun & Hurley, 1995). In one article, it has 

been stated pluramycin A shows higher selectivity towards 5’(C/T)G sequence 

(Hansen & Hurley, 1995). In another study, selectivity pluramycin A and hedamycin 

were ordered as 5' -CG* > 5'-TG* >> 5' -AG* = 5' -GG* (Okamato, 1998). On the 

other hand, pluramycins are grouped as major groove binders by Mishra et. al. 

(Mishra et al., 2017). Compared to small intercalating agents, opposite sided bulky 

flanking groups around the planar ring system might make the intercalation process 

(B) (A) 
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more difficult. The results of the present work in combination with intercalation and 

dynamics could help determining the mode of action of pluramycin A.  

2.5.1.2 Altromycin B (Methyl2-(3,5-dihydroxy-4-methoxy-6-methyloxan-2-

yl)-2-[10-[4-(dimethylamino)-5-(5-hydroxy-4-methoxy-6-

methyloxan-2-yl)oxy-4,6-dimethyloxan-2-yl]-2-(2,3-dimethyloxiran-

2-yl)-11-hydroxy-4,7,12-trioxonaphtho[2,3-h]chromen-5-yl]-2-

hydroxyacetate) 

 

Figure 16. (A) Lewis structure of altromycin B (PubChem CID:148125) (NIH, n.d.). 

(B) Three-dimensional (3D) conformation of altromycin B. Color representations are 

as follows: cyan stands for carbon, grey stands for hydrogen, red stands for oxygen, 

blue stands for nitrogen. 

Altromycin B is a DNA alkylating antitumor antibiotics that works in a manner that 

the epoxy group of altromycin B performs nucleophilic attack to N7 of guanine and 

prefers to bind to 5' -AG* (Hansen & Hurley, 1995; Okamato, 1998). It intercalates 

by stacking to the 5’ side of guanine by placing the disaccharide into minor groove 

and monosaccharide into the major groove. Glycosidic attachments at the C5, C8 

and C10 chromophore positions can adjust the selectivity and reactivity in both major 

and minor grooves as much as attachments of electrophilic groups to the C2 position 

(Hansen & Hurley, 1995). In NMR studies, it has been detected that altromycin B 

interacts with major grooves (Hamilton & Arya, 2012). On the other hand, 

altromycin B is reported as a major groove binder by Mishra et. al.(Mishra et al., 

2017). However, since there was no crystal structure reported in the literature, this 

study could help to understand how altromycin B interacts with DNA.  

(B) (A) 
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2.5.1.3 Hedamycin (10-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-

yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-

hydroxy-5-methyl-2-[2-methyl-3-(3-methyloxiran-2-yl)oxiran-2-

yl]naphtho[2,3-h]chromene-4,7,12-trione) 

 

Figure 17. (A) Lewis structure of hedamycin (PubChem CID: 98033) (NIH, n.d.). 

(B) Three-dimensional (3D) conformation of hedamycin. Color representations are 

as follows:  cyan stands for carbon, grey stands for hydrogen, red stands for oxygen, 

blue stands for nitrogen. 

Hedamycin is a member of pluramycin family which are antitumor and 

antrimicrobial agents and it is more selective for 5’(C/T)G sequence (Hansen & 

Hurley, 1995). Another study shows that hedamycin binds to GC rich sequences and 

inhibits the transcription of survivin protein which is an apoptosis inhibitor protein 

leading to cancer cell death (Wu et al., 2005). It has been found that hedamycin 

shows higher preference for 5’-CGT-3’ over 5’-CGC-3’ based on location of N,N-

dimethylglucosamine saccharide group facing the minor groove (Owen et al., 2002). 

Hedamycin has two different sequential binding modes that are; intercalation to first 

5’ C*G of d(CGTACG)2 that is identified as reversible binding mode, and  alkylation 

of N7 of guanine from 3’ GC that is identified as irreversible covalent binding. Also, 

they observed that second hedamycin binds symmetrically to second 5’C*G 

(Pavlopoulos et al., 1999). On the other hand, hedamycin is grouped as major groove 

binder (Hamilton & Arya, 2012; Mishra et al., 2017). 

(B) (A) 



 

 

43 

2.5.1.4 Nogalamycin (methyl(1R,10S,12S,13R,21R,22S,23R,24R)-23-

(dimethylamino)-4,8,12,22,24-pentahydroxy-1,12-dimethyl-6,17-

dioxo-10-[(2R,3R,4R,5S,6S)-3,4,5-trimethoxy-4,6-dimethyloxan-2-

yl]oxy-20,25-dioxahexacyclo[19.3.1.02,19.05,18.07,16.09,14]pentacosa-

2,4,7(16),8,14,18-hexaene-13-carboxylate) 

 

Figure 18. (A) Lewis structure of nogalamycin (PubChem CID: 5289019) (NIH, 

n.d.). (B) Three-dimensional (3D) conformation of nogalamycin. Color 

representations are as follows:  green stands for carbon, grey stands for hydrogen, 

red stands for oxygen, blue stands for nitrogen. 

Nogalamycin is classified as a major groove targeting binder antibiotic/antitumor 

due to large size of carbohydrates interacting with the major groove (M. Wang et al., 

2016). Controversially, it has been suggested that nogalamycin is an intercalator 

which shows sequence selectivity towards 3’ guanine residue where alternating 

pyrimidine-purine sequences are present via hydrogen boding between N2 and N7 

atoms of guanine (Smith et al., 1996). Orientation of threaded intercalation is 

suggested as where nogalose sugar placed in minor groove and hydrogen bond 

formed between carbonyl oxygen of methyl ester and 2-NH2 of guanine at 

intercalated site and positively charged bicyclic amino group placed in major groove 

of 5’-CpG of the center of d(GACGTC)2 via interactions of 2’-OH and 4’-OH of 

bicyclo sugar (Seakle & Bicknell, 1992). It has been suggested in another study that 

nogalamycin intercalates to GC sequences sandwiched with AT pairs when DNA 

opened up for penetration of bulky groups (Liaw et al., 1989). 

(B) 

(A) 
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2.5.2 Minor Groove Binders 

We selected 6 minor groove binders that are netropsin, distamycin, DAPI, berenil, 

pentamidine and hoechst33258. 

2.5.2.1 Netropsin (N-[5-[(3-amino-3-iminopropyl)carbamoyl]-1-

methylpyrrol-3-yl]-4-[[2-(diaminomethylideneamino)acetyl]amino]-

1-methylpyrrole-2-carboxamide) 

 

Figure 19. (A) Lewis structure of netropsin (PubChem CID: 4461) (NIH, n.d.). (B) 

Three-dimensional (3D) conformation of netropsin. Color representations are as 

follows:  green stands for carbon, grey stands for hydrogen, red stands for oxygen, 

blue stands for nitrogen. 

Netropsin is a natural oligopeptide antibiotic which is selective for (AT)4 (Hartley et 

al., 2009). In another study, it has been shown that netropsin shows highest affinity 

for AATT sequence with the binding order AAAA = AATT > ATTA/TAAT = 

TTAA = ATAT = TATA (Abu-daya et al., 1995). It has been shown by agreement 

of experimental and theoretical studies that minor groove width depends on the 

orientation of netropsin molecule where the guanidium terminus binds to narrower 

part and amidinium terminus binds to the wider part. Netropsin has four degrees of 

freedom before binding and degrees of freedoms of netropsin are limited by its 

(A) (B) 
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binding to DNA (Fang, Y., Morris V. R., Lingani, G. M., Long, E., Southrland, 

2010).  

2.5.2.2 Distamycin (N-[5-[[5-[[5-[[5-[(3-amino-3-iminopropyl)carbamoyl]-

1-methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]carbamoyl]-1-

methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]-4-formamido-

1-methylpyrrole-2-carboxamide) 

  

Figure 20. (A) Lewis structure of distamycin (Madkour, 2019) . (B) Three-

dimensional (3D) conformation of distamycin. Color representations are as follows:  

green stands for carbon, grey stands for hydrogen, red stands for oxygen, blue stands 

for nitrogen. 

Distamycin is a natural oligopeptide antibiotic which is selective for (AT)5 (Hartley 

et al., 2009). Distamycin shows similar affinity order with netropsin (AAAA = AATT 

> ATTA/TAAT > TTAA=TATA > ATAT) but the affinity for best and worst 

binding sites for distamycin is lower (Abu-daya et al., 1995). It has been stated that 

the sequence specificity of distamycin is a result of the hydrogen bonding between 

NHs of amide of distamycin and O(2) of thymine and N(3) of adenine of 5-base-pair 

binding site (Schultz & Dervan, 1984). 

(A) (B) 
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2.5.2.3 DAPI (2-(4-carbamimidoylphenyl)-1H-indole-6-carboximidamide) 

 

Figure 21. (A) Lewis structure of DAPI (PubChem CID: 2954 (NIH, n.d.)).  (B) 

Three-dimensional (3D) conformation of DAPI. Color representations are as 

follows:  green stands for carbon, grey stands for hydrogen, blue stands for nitrogen. 

DAPI is a fluorescent stain that is commonly used in fluorescence microscopy to 

quantify DNA. Its affinity is in order of AATT >>TAA ≈ATAT > TATA ≈TTAA. 

Minor contribution in stabilization of DAPI in the minor groove is coming from the 

hydrogen bonding of  two benzimidazole imino NHs to thymine O-2 and adenine N-

3 (Breusegem et al., 2002). In a study it has been shown that amino group of guanine 

base does not prevent sterically the minor groove binding as commonly believed, but 

it even allows the formation of strong hydrogen bonds with cytosine base. The reason 

of better binding toward A/T rich sequences is described as electrostatic repulsions 

of G/C rich sequences that prevents the penetration of DAPI to the center of the G/C 

rich minor groove (Mohan et al., 1994). DAPI has strong side effects when it is used 

as an anti-microbial (Cai et al., 2009). 

 

(B) (A) 
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2.5.2.4 Berenil (4-[2-(4-

carbamimidoylphenyl)iminohydrazinyl]benzenecarboximidamide) 

 

Figure 22. (A) Lewis structure of berenil (PubChem CID: 2354) (NIH, n.d.).  (B) 

Three-dimensional (3D) conformation of berenil. Color representations are as 

follows:  green stands for carbon, grey stands for hydrogen, blue stands for nitrogen. 

Binding affinity of berenil is ordered as:  

AAAA=ATAT=AATT=TTAA>ATTA/TAAT>TATA in minor groove (Abu-daya 

et al., 1995). Berenil shows also high affinity for three-base pair ATT sequence and 

is used as a medicine for trypanosomaisis in veterinary beside its anticancer activity 

(Cai et al., 2009). It has been suggested that berenil which can bind both DNA and 

RNA might also be an intercalator, as evidenced by unwinding of negative supercoils 

in the pBR322 plasmid (Pilch et al., 1995). By Circular Dichroism (CD) experiments 

and Molecular Mechanics (MM) calculations, it has been proven that berenil not only 

binds to A/T rich sequences of minor grooves, but it also intercalates through major 

groove of G-C rich sequences where one of its phenyl groups stacks in one strand, 

the half of the other aminophenyl group is not stacked and interacting with the minor 

groove via the hydrogen bonds provided by one of the amino groups and the O4’ of 

G6 which leads to the better distribution of charges (Barceló et al., 2001) . 

(B) (A) 
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2.5.2.5 Pentamidine (4-[5-(4-

carbamimidoylphenoxy)pentoxy]benzenecarboxim 

 

Figure 23. (A) Lewis structure of pentamidine (PubChem CID:4735) (NIH, n.d.). 

(B) Three-dimensional (3D) conformation of pentamidine. Color representations 

are as follows:  green stands for carbon, grey stands for hydrogen, red stands for 

oxygen, blue stands for nitrogen. 

Pentamidine is effectively used in AIDS treatment with an unknown mechanism and 

has A/T rich sequence specificity which bound to 5’-AATT sequence in 

d(CGCGAATTCGCG)2 (Montanari et al., 1998). Also, pentamidine is one of the 

well-known anti-microbial DNA groove binders used against protozoa Pneumocystis 

jirovecii pneumonia with known side effects like toxicity, nephrotoxicity, 

cardiotoxicity, and hepatotoxicity. Additionally, is known that pentamidine inhibits 

the oncogenic PRL phosphatases in treatment of pancreatic cancer (Cai et al., 2009) 

2.5.2.6 Hoechst 33258 (4-[6-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-

2-yl]-1H-benzimidazol-2-yl]phenol) 

 

Figure 24. (A) Lewis structure of hoechst 33258 (PubChem CID:2392) (NIH, n.d.). 

(B) Three-dimensional (3D) conformation of Hoechst 33258. Color representations 

(A) 

(B) 

(B) 

(A) 



 

 

49 

are as follows:  green stands for carbon, grey stands for hydrogen, red stands for 

oxygen, blue stands for nitrogen. 

Hoechst 33258 shows similar trend with netropsin in affinity order AATT > AAAA 

> ATTA/TAAT = TTAA = ATAT > TATA, but affinity for AATT of hoechst 33258  

is much higher than the affinity for AATT of netropsin and affinity for rest of the 

sequences(TAAT, TTAA, ATAT, TATA) of hoechst 33258 is significantly lower 

with respect to netropsin (Abu-daya et al., 1995). Hoechst 33258 shows same affinity 

order  with DAPI but with higher sensitivity due to its larger size providing higher 

number of contacts which is AATT >>TAAT ≈ATAT > TATA ≈TTAA (Breusegem 

et al., 2002). 
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CHAPTER 3  

3 RESULTS AND DISCUSSIONS 

3.1 Visualization of the Results 

Three-dimensional (3D) distribution graphs of Autodock Vina scores and MM-

refinement binding free energy values were plotted by using probability density 

function (PDF) of bound ligands along each DNA sequence. These distribution plots 

are shown in figure 26. PDFs were calculated by scipy kernel density estimation 

function using Gaussian kernels. Each plot represents the distribution of docking 

attempts. The x-axis indicates the score or MM-refinement free energy of the pose, 

while the y-axis represents the projection of the center of mass coordinate of each 

docked ligand pose to the DNA sequence onto the principal axis of the DNA 

sequence, i.e., the location of the drug in the sequence. The z-axis is the probability 

density with color scaling.  
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Figure 25. DNA alignment on z-axis and centered to origin 

DNA molecules in the complex structures were aligned on their principal axis (z-

axis in Figure 25) with same directionality. Then, center of mass coordinate of each 

docked ligand is projected onto the principal axis of DNA. A value of +15 on the y-

axis of the plots represents the upper-most base location of 3’ end, 0 represents the 

center of the sequence, and -15 represents the bottom-most base location of 5’ end. 

The color scale on the PDFs shows the probability density. Dark red represents 

highest probability density values and dark blue shows lowest density probability 

values. At this point it should be noted that probability density values indicate the 

amount of times a given pose with a given score was generated by AutoDock Vina. 

It is not the probability of occurrence for a given binding mode. The plots for berenil 

in interaction with GGCCAATTGG are presented in figure 26 and discussed below, 

while corresponding figures for all other complexes can be found in appendices A.  

 

5’ 

3’ 
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Autodock Vina Score Distribution MM-Refinement Distribution 

  

  

Figure 26. Three-dimensional (3D) distribution graphs of Autodock Vina scores 

(shown in first column) and MM-refinement binding free energy values (shown in 

second column) of berenil-5’-GGCCAATTGG -3’. 

In figure 26, 3D binding free energy distribution plots of Autodock Vina docking 

scores and MM-refinement binding energy distribution plots along the DNA were 

shown. Here each point belongs to one docked pose. More negative scores along x 
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axis represent more favorable and realistic poses. Assessed binding scores of 

Autodock Vina for corresponding binding poses only vary within 0.1 kcal/mol 

precision and are all confined in a rather narrow range (i.e., -4.0 to -8.0 kcal/mol; 

figures 26.A and 26.C). Such a narrow range and small difference in binding score 

makes it difficult to discriminate between good and bad poses. That is one issue of 

the scoring function of Autodock Vina that requires further refinement. The energy 

values obtained after MM-refinement range between -70.00 kcal/mol and -20.00 

kcal/mol (figures 26.B and 26.D), with one outlier at +30 kcal/mol. In comparison 

with the Autodock Vina score distribution plots, the new energy distribution plots 

obtained after MM-refinement show a much wider distribution of energy and a few 

points that move out of the distribution centers. The significant difference in free 

energy score in the latter case allows to better discriminate between good and bad 

poses, and to identify the most promising ones.  

When Autodock Vina binding free energy scores in major groove (fig. 26.A) and in 

minor groove (fig.26.C) are compared, one can see that binding scores in minor 

groove are more favorable rather than major groove. Autodock Vina is already 

capable of identify groove binding preference, as expected from experimental 

observations. However, Autodock Vina distribution plot in the minor groove (fig. 

26.C) cannot show the best binding site in the sequence since it predicts quite similar 

binding scores for any site along GGCCAATTGG  In comparison with Autodock 

Vina score distribution plot in minor groove (fig. 26.C), the energy distribution 

pattern is significantly different after MM-refinement (fig. 26.D). Minor groove 

MM-binding free energy distribution plot of berenil-GGCCAATTGG  complex 

shows a very distinctive binding trend, where the distribution is bent. Here, as the 

drug moves towards the edges of the GGCCAATTGG  sequence, the absolute value 

of binding energy decreases. It indicates that binding is less favorable toward the 

guanine or cytosine rich sequences in the minor groove. Reversely, the binding at 

AATT is predicted to be significantly greater by the MM-score. Therefore, MM-

energy distribution plot in minor groove (table 1.D) shows sequence selectivity of 

berenil toward AATT region. 
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3.2 Autodock Vina Score vs. MM Binding Free Energy 

 

Figure 27. Correlation between Autodock Vina score and MM-Refinement binding 

free energy 

Figure 27 shows the correlation between Autodock Vina score and MM-Refinement 

binding free energy.  Better Autodock Vina Scores can be found in the lower part of 

the y-axis and better MM-refinement binding free energy values can be found on the 

left-hand side of the x-axis. From this figure it can be understood that correlation 

between Autodock Vina results and MM-refinement results is very poor, where no 

linearity is present between two data sets. The problem is that Vina predicts some 

poses as very good, while they shouldn’t score that high. At the very bottom of this 

correlation plot, best Autodock Vina scores yielded various MM-refinement binding 

free energy values where most of them very bad. Only a few of the best Vina poses 

yielded good MM-refinement binding free energy values. Also, one can appreciate 

that for the same Autodock Vina score of -7.5 or -7.6, MM-binding free energy 

values vary roughly from -60.00 to -30.00 kcal/mol. This outlines that the scoring 

function is not sensitive enough to distinguish some poses from one another.  On the 
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other hand, most negative MM-refinement binding free energy values are not 

necessarily the poses with the best Autodock Vina scores. It indicates that using 

filtering only the best Autodock Vina poses and leaving out the others would result 

in missing of the best poses. Yet, Autodock Vina yields a very good sampling of 

relevant poses, which must be refined to yield reliable scoring.   

 

Figure 28. (A) Comparison of experimental crystal structure (2GVR) and best 

modelled pose (B) Overlap of experimental and modelled pose 

(B) 

(A) 
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Figure 26.D shows that best binding free energies are obtained at AATT region in 

the middle of the minor groove of the sequence where a lot of poses obtained with 

negative binding free energies. In the left-hand side of the figure 28, crystal structure 

of berenil-ds(CGCGAATTCGCG) complex (Brown et al., 1990) with PDB ID 

2GVR shows that berenil prefers to bind 5’-AATT sequence of minor groove. The 

most favorable MM-refined modelled pose is taken from figure 27 which is the red 

dot at the very left of the plot and illustrated in the right-hand side of figure 28. MM-

refinement yielded very accurate result where the best modelled pose is in a very 

good agreement with the experimental observations. 

3.3 Interesting Poses for Berenil 

Four points were selected from figure 27 to investigate what the Autodock Vina 

identifies correctly and what Autodock Vina cannot identify correctly during its 

scoring. At point A, Autodock Vina score is not so good, but MM-refinement energy 

is very good. Therefore, point A in figure 29 is a pose that could not be scored well 

by Autodock Vina. At point B, both of Autodock Vina score and MM-refinement 

energy is good and matching. Therefore, point B in figure 30 is a pose that could be 

scored well by Autodock Vina. At point C, Autodock Vina score is good, but MM-

refinement energy is not favorable. Therefore, point C in figure 31 is not a pose that 

could be scored well by Autodock Vina. At point D, neither Autodock Vina score 

nor MM-refinement energy is not good. At this point, result is matching. Therefore, 

point D in figure 32 is a pose that could be scored well by Autodock Vina. 
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Figure 29. Binding pose at point A where MM-energy is very good and Vina score 

is not so good. Orange: Vina docking pose & blue: MM-refinement pose 

In figure 29, Autodock Vina pose at point A and MM-Refinement pose at point A 

were shown respectively. At point A, Autodock Vina score is -6.4 which is not so 

good, whereas MM-score is good -60.42 kcal/mol. After MM-refinement, functional 

groups at the end, which are positively charged guanidiums, establish hydrogen 

bonds and stabilized better by electrostatic interactions.  
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Figure 30. Binding pose at point B where MM-energy is good and Vina score is 

good as well. Orange : Vina docking pose& blue :MM-refinement pose 

In figure 30, Autodock Vina pose at point B and MM-Refinement pose at point B 

were shown respectively. At point B, Autodock Vina score is -7.6 which can be 

counted good and MM-score shows that berenil binds to AATT region with 

favorable value -60.09 kcal/mol. In Autodock Vina pose, there no hydrogen bonds 

are observed. Here it can be seen that, the structure of the drug after MM-refinement 

did not change much  and therefore interactions are remained the same. 
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Figure 31. Binding pose at point C where MM-energy is bad and Vina score is 

quite good. Orange : Vina docking pose & blue: MM-refinement pose 

In figure 31, Autodock Vina pose at point C and MM-Refinement pose at point C 

were shown respectively. At point C, Autodock Vina score is -7.5 which can be 

counted good, whereas MM-score is quite bad with a value of  -39.167. In Autodock 

Vina pose, drug molecule is in the DNA’s groove. But after MM-refinement, the 

molecule has drifted away from the groove, indicating that the Vina pose was not 

well-stabilized.  
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Figure 32. Binding pose at point D where MM-energy is bad and Vina score is 

quite bad as well. Orange : Vina docking pose & blue :MM-refinement pose 

In figure 32, Autodock Vina pose at point D and MM-Refinement pose at point D 

were shown respectively. At point D, Autodock Vina score is -5 which can be 

counted very bad and MM-score is also quite bad with value -22.55 kcal/mol. The 

pose is predicted outside of the groove and is similar in both methods. Here both 

methods identified that neither electrostatic interactions nor hydrogen bonding 

stabilized the molecule at all. At this worst binding point, Autodock Vina predicted 

correct. By looking all of those figures, one can state that Autodock Vina yields 

mixed combination of good and bad accuracy. Therefore, to be able to better identify 

electrostatic and hydrogen bonding contributions of docked poses, MM-refinement 

seems mandatory. 
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3.4 The Importance of Choice of MM Parameters 

 

Figure 33. Wrong assignment of the atom types in the guanidinium group in berenil 

by ANTECHAMBER (red arrows) and corrected version of these atom types (green 

arrows).  

Figure 33 illustrates the geometry of amidinium ends in berenil molecule resulted by 

wrong atom type assignment by ANTECAMBER by red arrows and green arrows 

show the corrected geometry of amidinium by correct atom type assignment. 

Automatic assignment of the atom types of the amidinium groups by 

ANTECHAMBER made the C-C bond rotatable in the amidinium, although it 

should not be. This disturbed planarity of amidinium groups and deviation from the 

actual binding free energy values. This is one of the difficulties of MM that makes it 

harder to generalize compared to standard docking (e.g., Autodock Vina). This error 

was spotted for berenil and the results corrected accordingly. For other molecules in 

our set containing an amidinium gorup, molecular mechnics steps will be repeated 

to correct the results. 

CORRECT  

WRONG  

CORRECT  

WRONG  
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3.5 Other Complexes 

Table 1. Experimental and computed selectivity for selected drug molecules 

 

A detailed analysis of the other complexes in our set can be made similar to the case 

of berenil. Here we mention the most relevant findings from this analysis and all 

plots are presented in Appendix A. As shown in table 1, altromycin B prefers to bind 

CG parts of ds(CGTATATACG)/minor groove with -89.35 kcal/mol and 

ds(GGGGGGGGGG)/minor groove with -87.49 kcal/mol instead of major grooves 

of the sequences as expected from experiements. Hedamycin has the best binding 

free energy -92.08 kcal/mol in the CG region of ds(ATCGCGCGAT)/mojor groove, 

which is compatible with the literature given in the section 2.5. Hoechst 33258 binds 

to AATT region of ds(GGCCAATTGG)/minor groove with best -61.62 kcal/mol, 

which also fits to the literaure information in section 2.5, 

ds(AAAAAAAAAA)/minor with -59.91 kcal/mol. Nogalamycin binds best to 

ds(GGGGGGGGGG)/major groove with -67.73 kcal/mol, unexpectedly to the 

TATA region of ds(CGTATATACG)/minor groove with -66.77 kcal/mol, to the 

AATT region of ds(GGCCAATTGG)/minor groove with -66.54 kcal/mol and to 

ds(AAAAAAAAAA)/minor groove with -65.69 kcal/mol. Pluramycin A interacts 

best with ds(GGGGGGGGGG)/major groove with best energy value,that is -85.24 

kcal/mol compared to all sequneces. After that, best interaction energy -67.00 
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kcal/mol of pluramycin A is given by the interaction with GC region of 

ds(ATCGCGCGAT)/major groove as given in the literature section 2.5.  
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CHAPTER 4  

4 CONCLUSIONS AND FUTURE PLANS 

In this study, we devised new protocol for prediction of binding mode of any drug 

molecule and DNA complex. We applied molecular docking with Autodock Vina, 

and molecular mechanics based refinement. We trained our software with total of 50 

DNA/drug complexes. We plotted distribution of energies of each drug/DNA 

complex along both major and minor grooves. These distribution plots give hint for 

sequence selectivity of drug molecules which can be counted a very promising 

progression for DNA-binding drug discovery. New drug candidates can be tested to 

identify sequence selectivity with our software.  

With our current protocole, many pose in the ensemble generated by Autodock Vina 

are identical or nearly identical. Therefore, clustering should be added to the pipeline 

in order to eliminate identical binding poses in the future. 

Additionally, molecular dynamics should be applied after molecular mechanics 

based refinement. Molecular mechanics geometry optimization consider the 

complex at 0 K and ignores the temperature contribution to the dynamics of the 

system. Hovewer, the body temperature is 37 °C which contributes to kinetic energy 

and therefore motion of the molecules. Therefore, stability of the formed complex 

structures should be assesed at body temperature over time.  

In this study, we disregarded intercalation and focused only groove binding. To have 

complete non-covalent interaction scan over DNA molecule, intercalation type of 

interaction also be included. 
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APPENDICES 

A. Energy Score Distribution Plot of Each Drug/DNA Pair 

Table 2. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of altromycin B-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 3. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of altromycin B-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 4. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of altromycin B-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 5. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of altromycin B-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 6. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of altromycin B-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 7. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of berenil-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 8. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of berenil-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 9. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of berenil-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 10. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of berenil-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 11. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of berenil-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 12. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of DAPI-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 13. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of DAPI-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 14. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of DAPI-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 15. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of DAPI-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 16. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of DAPI-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 17. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of distamycin-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 18. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of distamycin-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 19. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of distamycin-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 20. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of distamycin-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 21. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of distamycin-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 22. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hedamycin-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 23. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hedamycin-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 24. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hedamycin-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 25. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hedamycin-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 26. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hedamycin-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 27. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hoechst33258-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 28. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hoechst33258-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 29. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hoechst33258-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 30. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hoechst33258-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 31. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of hoechst33258-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 32. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of netropsin-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 33. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of netropsin-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 34. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of netropsin-CGTATATACG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 35. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of netropsin-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 36. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of netropsin-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 37. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of nogalamycin-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 38. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of nogalamycin-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 39. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of nogalamycin-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 40. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of nogalamycin-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 41. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of nogalamycin-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 42. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pentamidine-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 43. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pentamidine-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 44. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pentamidine-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 45. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pentamidine-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 46. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pentamidine-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 47. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pluramycin A-AAAAAAAAAA. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 48. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pluramycin A-ATCGCGCGAT. 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 49. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pluramycin A-CGTATATACG  . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 50. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pluramycin A-GGCCAATTGG . 

Autodock Vina Score Distribution MM-Refinement Distribution 
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Table 51. Three-dimensional (3D) distribution graphs of Autodock Vina scores and 

MM-refinement binding free energy values of pluramycin A-GGGGGGGGGG. 

Autodock Vina Score Distribution MM-Refinement Distribution 

  

  




