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Complex problem solving is a high level cognitive task of the human brain, which has

been studied over the last decade. Tower of London (TOL) is a game that has been

widely used to study complex problem solving. In this paper, we aim to explore the

underlying cognitive network structure among anatomical regions of complex problem

solving and its subtasks, namely planning and execution. A new computational model

for estimating a brain network at each time instant of fMRI recordings is proposed. The

suggested method models the brain network as an Artificial Neural Network, where the

weights correspond to the relationships among the brain anatomic regions. The first

step of the model is preprocessing that manages to decrease the spatial redundancy

while increasing the temporal resolution of the fMRI recordings. Then, dynamic brain

networks are estimated using the preprocessed fMRI signal to train the Artificial Neural

Network. The properties of the estimated brain networks are studied in order to identify

regions of interest, such as hubs and subgroups of densely connected brain regions. The

representation power of the suggested brain network is shown by decoding the planning

and execution subtasks of complex problem solving. Our findings are consistent with the

previous results of experimental psychology. Furthermore, it is observed that there are

more hubs during the planning phase compared to the execution phase, and the clusters

are more strongly connected during planning compared to execution.
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1. INTRODUCTION

Complex problem solving is a very crucial ability of the human brain, which covers a large number
of high-level cognitive processes, including strategy formation, coordination, sequencing of mental
functions, and holding information online. These complex high-level cognitive processes make the
inner workings of problem solving a challenging task.

The standard method for neuro-analysis of complex problem solving in the literature is to study
the fMRI data recorded while the subjects play the Tower of London (TOL) game, designed by
Shallice (1982). TOL game consists of three bins having different capacities with colored balls placed
in the bins; the aim is to rearrange the balls from their initial state to a predetermined goal state
while moving one ball at a time and taking into consideration the limited capacity of each bin (as
shown in Figure 1).

TOL game has been primarily employed to study the effect of various properties of complex
problem solving performance in healthy subjects. The predictive power of working memory,
inhibition, and fluid intelligence on TOL performance has been investigated with consideration
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FIGURE 10 | Anatomical regions with higher node betweenness during planning (Top) and during execution (Bottom). (A) Anatomical regions with higher node

betweenness during planning. (B) Anatomical regions with higher node betweenness during exection.
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FIGURE 11 | Anatomical regions with higher local efficiency and clustering coefficient (Top) and higher transitivity (Bottom) during planning. (A) Anatomical regions

with higher local efficiency and clustering coefficient during planning. (B) Anatomical regions with higher transitivity during planning.
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and inferior occipito-temporal regions (fusiform and lingual
gyri). The left angular gyrus and bilateral medial superior
frontal cortex showed greater out-strength for execution.
As for node betweenness, Figures 10A,B visualize the brain
regions with higher betweenness during planning and during
execution, respectively. The following brain regions had higher
node betweenness during planning than execution: occipital
regions (calcarine, cuneus, right middle, right superior);
inferior occipito-temporal (fusiform, lingual); parietal (bilateral
superior parietal, left postcentral, precuneus). Bilateral medial
superior frontal had higher node betweenness during execution
than planning.

These results suggest that there is greater information flow
during planning than execution. This matches our expectations.
Planning is more computationally demanding than execution.
Again, during planning, participants must explore the problem
space, which requires generating and manipulating a mental
representation of the problem. The regions that show greater
information flow during planning are all regions involved in
that generation and manipulation, particularly parietal, occipital
and inferior occipito-temporal. On the other hand, execution
requires recall of the plan generated and stored and therefore,
greater information flow from frontal regions related to memory
retrieval is observed.

Clustering coefficient, local efficiency and transitivity are
measures of segregation that aim to identify sub-networks.
Figure 11A visualizes the brain regions with higher local
efficiency and higher clustering coefficient during planning phase
compared to execution phase. While Figure 11B visualizes the
brain regions with higher transitivity during planning than
during execution phase. Each of these measures was larger
for planning than execution, with no regions showing larger
measures for execution.

The regions that showed a higher clustering coefficient in
planning included: the cuneus, left middle occipital cortex,
and right precuneus. Local efficiency was higher in a similar
set of regions (the cuneus, left middle occipital cortex,
and right precuneus). The clustering coefficient and local
efficiency identified a visual-spatial sub-network that is more
strongly connected during planning. Transitivity identified an
overlapping but more extensive set of regions that included:
bilateral angular gyrus, calcarine sulcus, cuneus, bilateral middle
frontal cortex, bilaterial superior frontal cortex, bilateral fusiform
and lingual gyri, bilateral occipital cortex, bilatral superior
parietal cortex, postcentral and precentral cortex, precuneus,
supplementary motor area, right supramarginal gyrus, and right
inferior and middle temporal cortex.

5.3. Global Efficiency
Since global efficiency is measured over the entire brain network,
not for a given node in the network, we measured the global
efficiency for all planning and execution networks within all runs
across subjects. Then, global efficiency of planning is compared
against that of execution. Results show that the majority of
runs had higher global efficiency scores during planning than
execution; 43 out of 72 runs had higher global efficiency
during planning than execution. Furthermore, Table 6 shows

TABLE 6 | Global efficiency.

Run number Planning Execution

1 15 3

2 9 9

3 10 8

4 9 9

the number of runs where global efficiency was higher during
planning and during execution across all subjects for all 4 runs of
each subject. The first column shows the number of subjects that
had a higher global efficiency score during planning than during
execution. The second column shows the number of subjects
that had a higher global efficiency score during execution than
during planning.

Although there was no significant difference in global
efficiency between planning and execution, from the table, it is
clear that the majority of subjects had a higher global efficiency
for planning for the first runs. Some subjects switched from
having higher global efficiency during planning to having higher
global efficiency during execution. A potential explanation for
this change across runs is switching from pre-planning to online
planning or planning intermixed with execution. Although there
is a dedicated planning phase in the current study, that does
not mean that planning is not taking place during execution. In
fact, it has been debated as to whether efficient pre-planning is
possible in the TOL or whether TOL performance is controlled
by online planning (Kafer and Hunter, 1997; Phillips, 1999,
2001; Unterrainer et al., 2004). According to Phillips (1999,
2001), pre-planning the entire sequence is not natural, but that
people instead plan the beginning sequence of moves and then
intersperse planning and execution. If this is the case, then it may
be expected that some participants will switch to online planning.
This intermixing of planning and execution is also likely to
impact the performance of the machine learning algorithms to
detect planning and execution phases.

The relationship between global efficiency and behavioral
performance was examined. Global efficiency was found to be
positively correlated with the mean number of extra moves
(a measure of error) during problem-solving (for execution
r = 0.73, p = 0.0006). Previous studies have shown a
relationship between global efficiency and task performance
(Stanley et al., 2015).

This suggests that the variance in global efficiency is indicative
of individual differences in neural processing and further suggests
that the changes in global efficiency across runs are also likely
indicative of changes in neural processing related to changing
strategy. Further research using a larger sample is necessary to
explore this hypothesis.

6. CONCLUSION

In this paper, we propose a new computational method to
estimate dynamic functional brain networks from the fMRI
signal recorded during a complex problem solving task. Our
model recognizes the two phases of complex problem solving
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with more than 80% accuracy, indicating the representation
power of the suggested dynamic brain network model. We study
the properties of the constructed brain networks during planning
and execution phases in order to identify essential anatomic
regions in the brain networks related to problem solving. We
investigate the potential hubs and densely connected clusters.
Furthermore, we compare the network structure of the estimated
dynamic brain networks for planning and execution tasks.

There are some limitations to the study. Although the
primary aim of this study was to demonstrate the feasibility
of the methods, the sample size is somewhat small, making
the interpretation of the results difficult. Second, a goal of this
method is to identify brain states that are interspersed with each
other. In the current study, planning was expected to occur
both prior to execution as well as during execution; therefore,
planning states are interspersed within the execution phase. The
temporal sampling rate of the fMRI data may be a limiting factor.
Alternatively, the sluggish and blurred underlying hemodynamic
response may be the factor preventing the ability to detect brain
states. We plan to explore this factor in future work.
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