
SEMI-SUPERVISED GENERATIVE GUIDANCE FOR ZERO-SHOT SEMANTIC
SEGMENTATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ABDULLAH CEM ÖNEM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2022





Approval of the thesis:

SEMI-SUPERVISED GENERATIVE GUIDANCE FOR ZERO-SHOT
SEMANTIC SEGMENTATION

submitted by ABDULLAH CEM ÖNEM in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

SEMI-SUPERVISED GENERATIVE GUIDANCE FOR ZERO-SHOT
SEMANTIC SEGMENTATION

Önem, Abdullah Cem
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Ramazan Gökberk Cinbiş

January 2022, 41 pages

Collecting fully-annotated data to train deep networks for semantic image segmenta-

tion can be prohibitively costly due to difficulty of making pixel-by-pixel annotations.

In this context, zero-shot learning based formulations relax the labelled data require-

ments by enabling the recognition of classes without training examples. Recent stud-

ies on zero-shot learning of semantic segmentation models, however, highlight the

difficulty of the problem. This thesis proposes techniques towards improving zero-

shot generalization to unseen classes by exploiting unlabelled images. The main goal

is to train a generative image model conditioned on zero-shot segmentation predic-

tions in a semi-supervised manner, and use the feedback from the generative model

to the segmentation based conditioning inputs as a guidance. In this manner, the

zero-shot segmentation model is encouraged to make more accurate predictions so

that it provides more informative conditional inputs to the generative model. To fur-

ther improve the training dynamics of the generative model, the generative model is

trained in the feature space provided by the early convolutional layer(s) of the seg-

mentation architecture, overall forming a high-level to low-level generative feedback

loop. Following the state-of-the-art, the approach is experimentally evaluated using
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the COCO-Stuff dataset.

Keywords: zero-shot semantic segmentation, zero-shot learning, computer vision,

semantic segmentation, semi-supervised semantic segmentation, generative networks
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ÖZ

SIFIR-ÖRNEK ANLAMSAL GÖRÜNTÜ BÖLÜTLEMEYE YÖNELİK
YARI-DENETİMLİ ÜRETİCİ YÖNLENDİRME

Önem, Abdullah Cem
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ramazan Gökberk Cinbiş

Ocak 2022 , 41 sayfa

Anlamsal görüntü bölütlemeye yönelik derin ağlar için veri etiketleme süreci piksel

başına işaretlemenin zorluğundan ötürü engelleyici ölçüde maliyetli olabilmektedir.

Bu bağlamda, sıfır-örnekli öğrenme tabanlı yöntemler, yeni sınıfların eğitim örneği

gerektirmeden tanınmasını sağlayarak etiketli veri ihtiyacını azaltmaktadır. Fakat an-

lamsal bölütlemede sıfır-örnekli öğrenme üzerine olan son dönem çalışmaları proble-

min zorluğunun altını çizmektedir. Bu tezde, görülmeyen sınıflara yönelik sıfır-örnek

genelleştirmenin etiketlenmemiş görüntülerden yararlanılarak iyileştirilmesine yöne-

lik bir yaklaşım önerilmektedir. Ana amaç, sıfır-örnekli bölütleme tahminleri ile ko-

şullu bir üretici görüntü modelini yarı-denetimli bir biçimde öğrenmek ve üretici mo-

delden bölütleme tabanlı koşul girdilerine doğru olan geri beslemeyi yönlendirici ola-

rak kullanmaktır. Bu yöntemle, sıfır-örnek bölütleme modelinin, üretici modele daha

bilgilendirici koşul girdileri sunabilecek şekilde daha doğru tahminler yapmaya yön-

lendirilmesi hedeflenmektedir. Ek olarak üretici model, modelin eğitim dinamiklerini

geliştirmek için bölütleme mimarisinin öncül evrişimsel katmanlarından elde edilen

öznitelik uzayında tanımlanmakta, sonuç olarak yüksek seviyeden düşük seviyeye
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üretici geri besleme döngüsü oluşturulmaktadır. Yaklaşım yakın dönem çalışmalarla

uyumlu olarak COCO-Stuff veri kümesinde deneysel olarak incelenmektedir.

Anahtar Kelimeler: sıfır-örnekli anlamsal bölütleme, sıfır-örnekli öğrenme, bilgisa-

yarlı görü, anlamsal bölütleme, yarı-denetimli anlamsal bölütleme, üretici ağlar
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CHAPTER 1

INTRODUCTION

Recognition problems in computer vision comprises querying certain areas, objects,

actions and other aspects within image, a task that humans can accomplish easily with

little or even no prior information [1]. In the 21st century, video and image content

generated worldwide has soared to a point it makes automation of this task not a

convenience but a requirement for the industry [2].

Owing to parallel processor units becoming fast and affordable in the last decade,

deep neural networks have been the dominant approach for tackling computer vi-

sion problems. Following the success of AlexNet in surpassing well-established

computer vision techniques in ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [3] by ~11% less Top-5 error rate [4], the field has flourished: year by year

networks are further optimized, new machine learning formulations are invented and

more data is available to train the models. For example, in the image classification

task, the recently proposed semi-supervised classification approach Meta Pseudo La-

bels [5] achieves 98.8% ImageNet Top-5 accuracy, greatly outperforming the average

human performance of 94.9%.

Semantic segmentation is another task benefited from deep learning approaches. In

semantic segmentation, the goal is to classify each pixel in the image into a class out

of a predefined set or a background [6]. Predicting exactly which part of the image

belongs to a particular class beyond localization or identification is especially desired

in robotics [7], medical applications [8] or generating content [9]. Example input -

output pairs from the COCO-Stuff segmentation dataset [10] is shown in Figure 1.1.

Mainstream studies on semantic segmentation embrace a supervised training sce-
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Figure 1.1: Example input - output pairs for the semantic segmentation problem.

nario. However, curating datasets for training supervised segmentation architectures

is arduous and costly. Assuming an image contains 4-5 instances of various objects

on average, annotating a single image by hand can take more than 5 minutes [11].

In this thesis, our goal is to improve performance with semi-supervised training

schemes in the generalized zero-shot segmentation (GZSSS) objective, a scenario

that ultimately aims to reduce dependence on large datasets. Our model is able

to achieve better performance compared to the discriminative state-of-the-art in the

COCO-stuff segmentation dataset. This chapter introduces the GZSSS problem, pro-

vides an overview of the issues that arise in recent discriminative implementations,

summarizes the contributions of this work, and presents the outline of the rest of the

text.

1.1 Problem definition

Relaxing the requirement for annotation has been the focus of some of the segmen-

tation settings. Unlabeled data is vast and easily accessible compared to images with

ground truth segmentations; within this frame of reference, semi-supervised semantic

segmentation where the model has to learn over a mixture of unlabeled and labeled

examples [12] is proposed.
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GZSSS
Network

... ...

train with 
seen class

segmentation data
inference made over
seen+unseen classes

Figure 1.2: Generalized zero-shot semantic segmentation problem.

A more extreme task that aims to reduce the annotation effort is generalized zero-

shot semantic segmentation (GZSSS). In this scenario, the model has access to the

pixels and the ground truth labels of some of the classes in the training split of the

dataset (seen classes), only the attributes of the other classes are provided (unseen

classes) [13]. After training, the model is expected to make inference on both seen and

unseen classes. A generic example of a GZSSS network is shown in Figure 1.2. Here,

the model has no ground truth data regarding the unseen class grass (shown purple),

but it is able to infer it through the information given with seen classes broccoli,

sheep, bush and their semantic relationship to grass.

Adjusting segmentation datasets to the GZSSS objective results in thin training splits

as most of the images contain unseen classes if proper class splits are sought [14].

To that end, generalized zero-label semantic segmentation (GZLSS) protocol is pro-

posed, where the model has access to the pixels belonging to unseen classes in the

training splits in addition to the information in GZSSS. Most recent work on GZSSS

employ the GZLSS protocol and classify it under GZSSS [13, 15, 16]. We adopt this

nomenclature and use the term GZSSS for both zero-label and zero-shot segmenta-

tion.
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1.2 Proposed methods and models

GZSSS methods with discriminative backbones such as SPNet [14] can be heavily

biased towards seen classes as only the seen class pixels with ground truth labels are

available during training. Discriminative GZSSS approaches usually handle this issue

by ad-hoc modification of classification scores after inference, for instance SPNet

deducts a calibration factor from softmax classification scores. These parameters are

brittle [17] and necessitate careful tuning with a validation set for each particular

domain.

To aid this problem, we propose parallel generative models (PGM) attached to the

early and middle layers of the discriminative backbone, conditioned on model clas-

sification scores of pixels. Assuming unseen and seen class features in the layers are

distribution-wise distinct, the gradient signals in the conditional generative models

are expected to direct the conditional inputs towards correct classes, since it is likely

to be easier for the generative model to fit features to a relatively simple distribution

for each class (seen+unseen) rather than fitting them into a complex distribution of

features incorrectly marginalized to seen classes.

The PGM also makes it possible to train the GZSSS network in a semi-supervised

setting where unlabeled data within the dataset can be utilized to regularize the gener-

ative models, which in turn directs the classification scores of the pixels coming from

the GZSSS model. We use this setting to further exploit the additional information

coming from unlabeled pixels to increase the segmentation quality of the network.

1.3 Contributions and novelties

The contributions of this thesis are listed as follows:

• We propose a way to reduce bias towards seen classes and improve unseen class

classification performance in GZSSS networks as parallel generative models

attached to the early and middle layers.

• Our method makes it possible for GZSSS networks to train in a semi-supervised
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setting.

• Our method obtains competitive scores in COCO-Stuff dataset with GZSSS

network SPNet.

1.4 Outline of the thesis

The rest of the thesis is organized as follows: Chapter 2 surveys the relevant litera-

ture and provides a summary of previous zero-label and semi-supervised segmenta-

tion methods. Chapter 3 lays out the formulation of semi-supervised zero-label seg-

mentation setting and elaborates our approach. Chapter 4 presents our experimental

settings, baselines, hyper-parameter tuning methods and results with respect to state-

of-the-art discriminative GZSSS network, SPNet [14]. Chapter 5 concludes the thesis

with future work regarding enhanced discriminative GZSSS models with PGM.
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CHAPTER 2

RELATED WORK

In this chapter, we provide a literature review of the previous studies relevant to our

work. We first discuss developments in supervised semantic segmentation before and

after deep learning is incorporated into the area. We then present an overview of the

recent semi-supervised semantic segmentation and zero-shot classification methods.

Finally, we lay out an in-depth summary of the few generalized zero-shot segmenta-

tion approaches and point out the differences and contributions made in this thesis in

comparison to these studies.

2.1 Semantic segmentation

Early semantic segmentation works employ a combination of hand-crafted features

with traditional classifiers. Shotton et al. [18] utilize random decision forests [19]

with textons at each node to classify pixels within an image, in [20] this idea is

extended to other hand-crafted features such as histogram of gradients (HoG) [21].

Plath et al. [22] calculate scale invariant feature transforms (SIFT) [23] of the patches

within the image extracted with a graph-cut and classify the patches with support

vector machines (SVM) [24]. Post-processing methods in segmentation such as the

application of conditional random fields (CRF) [22, 25] from this era are also adopted

in recent works [26].

Later studies infer segmentation masks and region level labels over CNN features ex-

tracted from regions within the image. R-CNN [27] employs region proposal methods

to collect these regions. This technique is improved with Faster R-CNN [28] where

the region proposal method is replaced with a neural network, and Mask R-CNN [29]
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where an object mask prediction branch is attached alongside the bounding-box pre-

diction branch. Other approaches gather regions through image pyramids [30] and

zoom out from superpixels [31].

State-of-the-art architectures for semantic segmentation are mostly end-to-end net-

works that strive to collect contextual information for each pixel in different scales.

PSPNet [32] has pooling kernels of varying spatial size, Deeplabv3+ [33] incorpo-

rates atrous spatial pyramid pooling (ASPP) module with dilated convolutions, low-

ering parameter count. Recent Gated Shape CNN [34] adds a shape stream to the

encoder before the ASPP module with gated convolutions, emphasizing activations

regarding shape during training to improve quality around segmentation boundaries.

Another way of enforcing contextual information is the approach taken in U-Net [35],

where residual connections are added to the spatially matching layers of encoder-

decoder architectures.

Our work and other GZSSS approaches [14, 13, 16, 17] utilize pre-trained supervised

semantic architectures as backbones, since contextual feature similarities of a partic-

ular seen class pixel and an unseen class pixel would be high provided that the class

labels are semantically adjacent (both "cow" and "giraffe" would appear in pastures).

2.2 Semi-supervised semantic segmentation

Semi-supervised semantic segmentation, where part of the training samples have no

ground-truth segmentation data is a sought-out objective in medical imaging area due

to high cost of annotation of training sets requiring area expertise [36]. Some of

the works use self-training methods: Bai et al. [37] iteratively switch between train-

ing the network with ground-truth labels and pseudo-labels coming from unlabeled

samples, [38] employs mean teacher approach [39] with transformation consistency

regularization in pseudo-labels. Architectures utilizing unlabeled data with genera-

tive losses are available as well, [40] learns a variational auto-encoder (VAE) [41]

over features of labeled and unlabeled images.

Few studies on non-medical domains for semi-supervised semantic segmentation also

incorporate generative networks. Following [42], Souly et al. [43] use a similar setting
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with generative adversarial networks (GAN) [44] with the discriminator on double

duty as the classifier. Hung et al. [45] attempt to fit a distribution onto the segmen-

tation labels instead of images and eliminates pseudo-labels with low discriminator

scores. s4GAN+MLMT [46] builds upon this work and adds a second branch with

mean teacher framework inferring the set of labels that exist in the image. In [47]

self-training nature of the networks are further improved with consistency losses on

features of dual student architectures.

Two works where generative networks are fit on the joint distribution of images x and

segmentation labels y have recently appeared. The main goal of these approaches is

to model p(x, y) instead of the usual classification scheme p(y|x). DatasetGAN [48]

trains an ensemble of shallow classifiers from StyleGAN [49] features, however the

annotations have to be made on GAN outputs. [50] does not exhibit this problem.

In this model, the image is transformed and fed as noise vectors in the style layers

in addition to the original latent noise input of the generator. The generator outputs

segmentation results and images in two branches that share some parameters. The

branches are trained with reconstruction loss of the image, cross-entropy loss of the

segmentation labels, and the loss coming from the discriminator for image-label pair.

2.3 Generalized zero-shot image classification

In generalized zero-shot image classification task, the classifier has no access to any

image that belong to some of the classification labels (unseen classes), however se-

mantic relationships are present between seen and unseen classes for the model to

exploit [51]. Early approaches map image features and label attributes in a common

space, then calculate the similarity of mapped image/label features for inference: De-

ViSE [52] projects image features from a CNN and word embeddings of class labels

into the same space and trains the model on hinge loss over the similarity of the map-

pings, in ALE and SJE [53, 54] this loss is weighted with ranking terms. Kodirov

et al. [55] design the projection of image features onto class embeddings as an auto-

encoder with a regularizing reconstruction loss.

Many of the recent studies make use of generative networks to create synthetic fea-
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tures of images of unseen classes to alleviate bias towards seen classes in the previ-

ous works. Xian et al. [56] employ GANs conditioned on class attributes, [57, 58]

utilize the same approach with VAEs and generative moment matching networks

(GMMN) [59] respectively. Sarıyıldız et. al [60] propose a regularizer loss that

pushes the model to generate synthetic image features such that the gradient signals

coming from the classifier match with the real features.

Some of the GZSSS approaches also follow this trend of exploiting generative mod-

els to produce artificial unseen feature samples in zero-shot classification and semi-

supervised segmentation [15, 13, 16]. In contrast, we aim to leverage generative

losses to guide and regularize the representation, rather than explicitly sampling syn-

thetic features for training purposes.

2.4 Generalized zero-shot semantic segmentation

To the best of our knowledge, three works jump-started this area approximately in the

same timeline [14, 13, 15]. Two significant precursor works that attack problems very

adjacent to GZSSS are worth mentioning. In the first one, Nata et al. [61] attempt

figure-ground ZSSS by devising a confidence score of the unseen figure class as a

weighted sum of the seen class confidences of a supervised semantic segmentation

network in terms of word embedding proximities to the unseen class. Then a binary

mask of pixels is generated based on confidence scores over a threshold. A logistic

regression classifier is then trained to output this binary mask over the final layers of

the supervised semantic segmentation network. The second is the study of Zhao et.

al [32], in which semantic hierarchy of labels are leveraged to make predictions on

unseen classes by fitting word embeddings and pixels into a joint space, preserving the

hypernym/hyponym relationship of words through enforcing a partial order of vector

magnitudes of mappings. This way, the model falls back to a hypernym of an unseen

class during inference if there is no exact match in terms of mapping similarity.

The architecture of [15] features an encoder-decoder setup where synthetic features

conditioned on supplied class embeddings (to be segmented into foreground during

inference) are concatenated pixelwise with the image encodings obtained from the
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encoder. The result is then converted to a binary classification map by the decoder.

Unlike our proposed method, which outputs multi-way classification scores for each

class in a single pass, the approach essentially results in a method of one-way zero-

shot segmentation, requiring a separate inference step for each class. The model also

offers no way of exploiting unlabeled images without pseudo-label training, since

the synthetic feature generator depends on a conditional hard class label input com-

pared to soft GZSSS classification scores in our model that enables semi-supervised

settings.

In ZS3Net [13], pixel features obtained from a discriminative segmentation network

are synthesized with a GMMN conditioned on class labels. After the generative net-

work learns this conditional feature generation task, a classifier is trained over genuine

features that belong to seen pixel classes and synthesized features conditionally gen-

erated with unseen class word-embeddings. The study also includes extensions of the

generative network with graph convolutional layers[62] for better encoding of context

in the synthesized features. The approach in ZS3Net differs from our approach in the

way that only hard class labels are accepted as conditional input.

SPNet [14] is the only fully discriminative GZSSS pipeline to the best of our knowl-

edge. The architecture is comprised of a backbone semantic segmentation network

and a set of fixed word embeddings. The backbone network is trained to map the

pixels to a feature space in which features of pixels should have high similarity scores

with the corresponding word embedding of the correct class. To adhere the GZSSS

scheme, only seen class labels are present in the word embedding set during train-

ing. This set is then replaced by the unseen+seen class embeddings at inference to

allow the model to classify pixels as unseen classes. SPNet offers much more stable

training owing to it containing no generative counterpart. It is also the only study

other than [14, 15] to report GZSSS results with COCO-Stuff [10] dataset, which

is more suitable as a testbed for real life scenarios due to wide range of annotated

classes. However, the approach suffers a heavy bias towards seen classes at infer-

ence due to the discriminative nature and the training scheme of the model. Due to

it being a state-of-the-art method in terms of results in COCO-Stuff with relatively

stable training, we choose SPNet in the instantiation of our approach for the experi-

ments. A basic theoretical overview of SPNet is provided in Chapter 3 with further

11



hyper-parameter selections in Chapter 4.

Lastly, two works recently appeared in the scene of GZSSS. Pastore et al. [17] study

pseudo-label training of SPNet and proposes ways of eliminating pseudo-labels with

low confidence through checking consistencies of pseudo-label outputs of the data

augmented versions of the same unlabeled image. CaGNet [16] builds on the idea of

[13] but spatial context is encoded into synthetic features with dilated convolutions

instead of object context. We leave comparison of our model with these architectures

for future work due to time constraints and no immediate relation to the methods we

propose.
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CHAPTER 3

PROPOSED METHOD

In this chapter, we present the formulations regarding our approach. We first provide a

definition of the GZSSS task and a theoretical summary of the discriminatory GZSSS

network SPNet [14] that we employ as a baseline. Then, we formally define the

generic PGM architecture and the training algorithm. Finally, we supply the details

regarding an example instantiation of our generic definition, which is experimentally

evaluated in Chapter 4.

3.1 GZSSS training and evaluation protocol

The training and evaluation protocol for GZSSS is defined as follows: let S be the

set of seen class labels and U be the set of unseen class labels with S ∩ U = ∅. Let

the training set be Dtrain containing image label pairs (xtrain, ytrain) with xtrain ∈
R3×H×W , ytrain ∈ (S ∪ U ∪ {u})H×W for width W and height H , u standing for

unlabeled pixels. In GZSSS [14], each pixel level label lij at location i, j of ytrain is

replaced with

l
′

ij =

 lij if lij ∈ S

u otherwise
(3.1)

to obtain y
′
train, comprising D

′
train of pairs (xtrain, y

′
train). The information access is

restricted to D
′
train during training of a particular GZSSS model.

For metrics on the test set Dtest composed of (xtest, ytest), ground truth test labels

may belong to either of the seen or unseen classes. However, unlabeled pixels (l = u)

are ignored.
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Figure 3.1: GZSSS training and evaluation protocol.

Figure 3.1 visualizes the GZSSS task. During training, ground truth regarding unseen

classes is masked as unlabeled before it is incorporated into supervised training, how-

ever the visual information regarding unseen classes is still available through image

pixels. During evaluation, both unseen and seen classes are evaluated with respect to

the ground truth in the test split.

In transductive GZSSS, the model also has access to unlabeled test images xtest.

We employ the transductive scheme in our experiments as a substitute for semi-

supervised GZSSS where we have images with no segmentation data. Most of the

current GZSSS works already incorporate unlabeled visual data of the unseen classes

within the boundaries of the GZSSS task definition [14, 13, 15, 16, 17]. We believe

this data leakage improves the model quality as the backbone segmentation networks

most of these approaches possess collect visual spatial information through convo-

lutional filters. In our implementation, we further exploit this notion by utilizing all

unlabeled data to form a healthier distribution of features.

3.2 Theoretical overview of SPNet

We employ SPNet as a baseline in our experiments and use it as a component in

the instantiation of our approach. SPNet consists of a visual-semantic embedding
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backbone ϕ that maps pixels into the same space with word embeddings of class

labels. The inner product of the pixel features and the fixed word embeddings of the

classes determine classification scores of the pixels.

Formally, let wc ∈ Rd be the word embedding of class c ∈ C, normalized to a unit

vector. Let ϕ(x)ij ∈ Rd be the pixel feature for spatial location i, j for an image

x. The classification score ypij[c0] for class c0 is the estimated probability of yij as a

softmax score:

ypij[c0] =
exp(w⊤

c0
ϕ(x)ij)∑

c∈C exp(w⊤
c ϕ(x)ij)

(3.2)

with ypij ∈ [0, 1]|C|.

The model is trained with cross-entropy loss with the ground truth labels from the

masked dataset in accordance with GZSSS task specification. Only the seen class

word embeddings are available in training, C is substituted with seen classes S for the

calculation in equation 3.2. The background class u is ignored during the calculation

of the loss. For an image x and masked label y′ the masked cross-entropy loss is

defined as: ∑
i,j

−I[y′ij ̸= u] log(ypij[y
′
ij]) (3.3)

where I is 1 if the expression in the brackets is true and otherwise 0.

At the inference step, C is switched out with S∪U for the model to be able to classify

pixels as unseen classes. However due to the exclusion of unseen class labels and

word embeddings from training SPNet suffers a heavy classification bias towards seen

classes. As an ad-hoc solution, a calibration factor γ is deducted from classification

scores before the class with largest classification score is selected:

argmax
c∈S∪U

ypij[c]− γI[c ∈ S] (3.4)

The calibration factor γ is a hyper-parameter of the model.

3.3 Parallel generative models

Discriminative GZSSS networks suffer from heavy bias towards seen classes unless

ad-hoc modifications are made to unseen/seen class likelihoods after inference [14].
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Figure 3.2: Model agnostic diagram of parallel generative networks.

We propose parallel generative models (PGM) to alleviate this bias in a more princi-

pled and less brittle way.

We formally define PGM as follows: Let N be a GZSSS network with parameters θ,

layers h0, h1 · · ·hn−1, hn taking images x as input with multiway class prediction

scores for each pixel yp = N(x; θ), θ differentiable with respect to yp. An array

of generative networks Gq(hq|yp; θq) for some hq are trained in this scheme to fit

conditional distribution hq ∼ Hq|yp implied by N and the dataset D containing

images x. The scheme does not require Gq to represent or sample the estimated

distribution H̃q|yp explicitly, the only criteria for the loss metric L is that it should be

differentiable with respect to yp. Other than that, the metric decision to fit Hq|yp is

made according to the nature of Gq.

Figure 3.2 showcases the model agnostic architecture. Here, an arbitrary GZSSS net-

work makes inference on a certain image x. The output yp is supplied as a conditional

input to certain generative networks Gi, Gj, Gk. These networks in turn model hid-

den layer distributions hi, hj, hk respectively.

Algorithm 1 displays the generic training scheme for PGM. The Gq are first pre-

trained with fully trained N with fixed θ. After H̃q|yp is appropriately close to Hq|yp,
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Algorithm 1 Training with parallel generative models
Given: dataset D, fully trained GZSSS network N with parameters θ, array of gen-

erative models Gq with parameters θq, training iteration aN(D) for N , loss function

L for Gq.

1: repeat

2: sample images x from D

3: yp← N(x; θ)

4: for each Gq do

5: extract hq from N(x; θ)

6: θq ← θq −∇θqL(Gq(hq|yp; θq))
7: end for

8: until all θq converge

9: repeat

10: θ ← aN(D)

11: sample images x from D

12: yp← N(x; θ)

13: for each Gq do

14: extract hq from N(x; θ)

15: θq ← θq −∇θqL(Gq(hq|yp; θq))
16: θ ← θ − ∂L

∂yp
∂yp

∂θ
L(Gq(hq|yp; θq))

17: end for

18: until all θ, θq converge

gradient signals from yp are allowed to perturb N while supervision from the default

training anchors the model. This should eventually result in lowered bias towards

seen classes in yp so that Gq can easily model a simpler posterior Hq|yp of seen and

unseen classes instead of complex distributions marginalized to seen classes. Note

that ∂L
∂hq

∂hq

∂θ
does not contribute in the gradient descent of θ. This is because if we

allow direct gradients from L to hq the loss could easily deteriorate Hq. Limiting the

gradient descent to ∂L
∂yp

∂yp

∂θ
instead would result in weak gradient signals at early layers

hq that can be safely deemed negligible. That way we can modify Hq|yp without

affecting Hq.
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Figure 3.3: Instantiation of PGM with SPNet and the autoregressive gaussian models.

3.4 Instantiation of PGM with SPNet and autoregressive gaussian models

We instantiate the PGM architecture with the discriminative GZSSS network SP-

Net [14] and our simple custom generative model, autoregressive gaussian models

(AGM). A summary of the instantiation can be viewed in Figure 3.3. In this instan-

tiation, SPNet takes the role of N from Figure 3.2. It has two output branches with

the word embedding matrices WS , WS+U for seen and seen+unseen classes respec-

tively. The upper branch is a means of training SPNet in a supervised manner with

the ground truth of the seen classes and substitutes training iteration aN in Algorithm

1. The lower branch produces classification scores for all classes which are fed into

the generative models as conditional input yp. Finally, the AGM fit to the distribution

of hidden layers as Gq(hq|yp) from Figure 3.3.

The AGM formulation provides us a simple generative model that is easy to debug.

Formally, let hq[M ] indicate the vector obtained by eliminating channel indices of a

hidden layer hq except the ones specified in set M . An autoregressive gaussian model
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AGM(hq) is defined as follows:

AGM(hq) = N (µ(hq[Mprior]), σ(hq[Mprior])) ∼ hq[Mpost] (3.5)

with randomly chosen fixed indices Mprior∩Mpost = ∅ and µ(.), σ(.) arbitrary neural

networks with output dimension size |Mpost|.

We employ a mixture of AGMs with random Mprior,Mpost values to create the con-

ditional model Gq(hq|yp). The mixture model is defined as:

Gq(hq|yp) = [AGM0(hq), AGM1(hq) · · ·AGMnagm(hq)]Byp (3.6)

with B as a learnable weight matrix B ∈ Rnagm×(|U |+|S|) softmax normalized at its

columns. We substitute class inference outputs of SPNet containing both unseen and

seen class classification scores (without the ad-hoc calibration factor γ) for yp. Since

yp is also softmax normalized in the architecture of SPNet in Equation 3.2, Gq(hq|yp)
is a proper mixture model.

For training loss L, we select the negative log-likelihood (NLL) of the feature layers:

L = −λ log(pGq(hq|yp)) (3.7)

where λ is a loss multiplier hyper-parameter. Figure 3.3 also visualizes the internals

of the AGM modules. Here, hq is split into two branches with channel masks Mpost

and Mprior. The branch on the right estimates a collection of gaussian distributions for

the branch on the left. This collection then forms a mixture distribution with weights

Byp.

We choose this custom model for two reasons. First, more complicated approaches

such as GANs and normalizing flow networks [63] fail to improve the classification

quality, since these advanced models can lower the loss L with respect to the complex

distribution Hq|yp without perturbing yp. This amounts to poor feedback to the clas-

sification backbone in terms of δL
δyp

δyp

δθ
. In contrast, AGM is a simple mixture model

with sufficient coupling capability for its channels with the autoregressive masks.

Second, AGM is easier to inspect with the learnable weight matrix B, offering intu-

ition regarding the complexity of the distributions for each class and the bias towards

seen classes. We discuss the state of B after training in Chapter 4.
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CHAPTER 4

EXPERIMENTS

In this chapter, we present the experimental results of our implementation. We first

discuss the evaluation setup and define metrics specific to zero-shot segmentation.

Then we provide the details of the baseline zero-shot segmentation network we em-

ploy in our experiments and elaborate our hyper-parameter selection process. Lastly,

we present our qualitative and quantitative results and compare it to the baseline.

4.1 Evaluation setup and metrics

We choose the COCO-Stuff segmentation dataset [10] to assess the performance of

our approach. Table 4.1 shows the image and class splits for validation and test sets.

We pick the same data and class splits without disturbing the evaluation protocol

in [14, 17, 16], however we utilize all of the images in the dataset during training as

our approach can function in a transductive setting. We only retrieve ground truth

labels if they belong to a seen class and the corresponding image is in the training

split.

Table 4.1: Evaluation splits on the COCO-Stuff dataset.

Setting # Seen Classes # Unseen Classes # Training Images # Test Images

Validation 155 12 116282 2000

Test 155+12 15 116282+2000 5000

Seen class pixels dominate in terms of number with respect to unseen classes in

GZSSS test splits. Following [14], we also employ mean harmonic intersection-over-
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union (IoU)

Harmonic IoU =
2 · Seen IoU · Unseen IoU
Seen IoU + Unseen IoU

(4.1)

and mean harmonic accuracy in our evaluations:

Harmonic Acc. =
2 · Seen Acc. · Unseen Acc.
Seen Acc. + Unseen Acc.

(4.2)

The harmonic evaluation metrics in equations 4.1 and 4.2 provide a clearer summary

in terms of performance given that 15 unseen classes in the test setting account for a

significantly smaller part of COCO-Stuff.

4.2 Baselines

To the best of our knowledge, only SPNet [14] as a discriminative GZSSS model

reports results for COCO-Stuff. Our reproduction compared with the original work

can be viewed in Table 4.2. Our only modification to match the numbers in the

original results is to alter the number of training iterations, all of the other hyper-

parameters are the same as listed in [14].

Table 4.2: Reproduction results for SPNet.

Iterations γ Seen IoU Unseen IoU Harmonic IoU

Reproduction 20000 0.4 34.66 8.12 13.16

Original 100000 0.4 34.52 8.33 13.42

Since the pre-trained architecture is not publicly available, we compare our results

with the reproduced model. The comparison of our approach with the unmodified

SPNet architecture might seem unfair as the additional AGM components increase the

total number of parameters. However, the models incorporate the same architecture

and the learning capacity during inference as these components are removed after

training, making this comparison sound.
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4.3 Implementation details and hyper-parameter selection

The models are implemented with PyTorch [64]. We utilize our reproduction of SP-

Net as the backbone GZSSS network N . The backbone is trained over a Deeplabv2 [26]

architecture initialized with the parameters of ResNet-101 [65] pre-trained with Ima-

geNet [3]. For the fixed word embedding matrix of the classes, we use the same word

embeddings as [14]. During the co-training of SPNet and the generative models, the

gradient-descent algorithm of SPNet and the algorithm parameters are kept the same

as in [14] except the learning rate lrSPNet.

For each AGM component in the generative models, we employ a shared triple stack

of 1x1 convolution layers (so that the distributions are spatially independent) inter-

leaved with ReLU function as µ(·). For σ(·), we employ a fixed diagonal matrix

with the same value σ0 for every element. Mprior, Mpost are randomly initialized and

fixed at the beginning of the training, however |Mprior|, |Mpost| are equal across the

components attached to the same layer.

We alternatively attach generative models Glyr3, Glyr4 with fixed number of AGM

components nAGM to layer3, layer4 in Deeplabv2 architecture during the hyper-

parameter selection process. We found later layers in the encoder part of the Deeplabv2

architecture to be incompatible with the AGM model due to the large channel-wise

dimensionality of these layers. The AGM mixture model fails to capture the cou-

pling between channels with its limited learning capacity as the number of channels

grow. In addition to the later layers, layers stacked below layer3, layer4 also

failed in our preliminary experiments, since these layers do not accumulate enough

visual/spatial information to form a healthy distribution conditioned on classification

scores.

Owing to the convolutional layers at the encoder of Deeplabv2, a hidden layer hq and

classification scores yp might spatially mismatch. In this case, yp is expanded to the

size of hq with bilinear interpolation to preserve normalized class scores.

For gradient-descent, all of the parameters outside of the SPNet architecture are

trained with Adam algorithm [66] with β1 = 0.9, β2 = 0.999 and learning rate

lrPGM . We set λ to 1.0 during the pre-training of generative networks for 15000 iter-
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Figure 4.1: Harmonic IoU scores in cross-validation set during training.

ations. After co-training with SPNet begins, λ is incremented from 0 to λ0 with linear

warmup for 5000 iterations. The training terminates at iteration 80000. We use the

same data augmentation and sampling protocol as [14] during the training of PGM

with each iteration consuming a batch of 10 samples.

Classification score outputs of training and test split samples differ greatly in terms

of hardness since SPNet is only exposed to training samples during training. Owing

to this issue, only the yp of test split samples are employed in training PGM.

Hyper-parameters lrSPNET , lrPGM , nAGM , σ0, λ0 are chosen over a grid via the

bayesian search algorithm of Weights and Biases platform [67] with Harmonic IoU as

the objective metric. Table 4.3 lists the validation set runs (layers to attach generative

networks are specified with tuples ([layer_name, |Mprior|, |Mpost|]).

Figure 4.1 displays the Harmonic IoU values as the training progresses for the vali-

dation runs. In almost all of the relatively successful models the performance suffers

after a certain number of iterations. We believe this happens when our assumption of

gradients being negligible at layers hq becomes invalid despite the detach process

due to too many gradient-descent steps.

The GZSSS task poses a special problem with the results from validation settings
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Table 4.3: Validation runs for hyper-parameter selection.

lrSPNet lrPGM AGM Details nAGM σ0 λ0 Harmonic IoU (%)

2.5e-04 2.5e-05 [[layer4,128,256]] 21 1.0 0.1 0.01

1.0e-04 2.5e-05 [[layer3,64,128],[layer4,128,256]] 7 0.5 0.2 0.03

1.0e-04 2.5e-05 [[layer4,128,256]] 14 1.0 0.2 0.03

2.5e-04 2.5e-05 [[layer3,64,128]] 7 1.0 0.2 0.06

2.5e-04 2.5e-05 [[layer3,64,128],[layer4,128,256]] 7 0.5 0.2 0.11

1.0e-04 5.0e-05 [[layer3,128,256],[layer4,128,256]] 21 2.0 0.2 0.12

2.5e-04 1.0e-05 [[layer3,128,256],[layer4,128,256]] 21 0.5 0.4 0.20

2.5e-04 5.0e-05 [[layer3,128,256],[layer4,128,256]] 21 0.5 0.1 0.23

5.0e-04 2.5e-05 [[layer3,64,128]] 7 2.0 0.4 0.25

5.0e-04 2.5e-05 [[layer3,64,128],[layer4,256,512]] 7 1.0 0.1 0.27

5.0e-04 2.5e-05 [[layer3,64,128],[layer4,128,256]] 21 2.0 0.1 0.27

1.0e-04 5.0e-05 [[layer3,64,128],[layer4,128,256]] 7 0.5 0.4 0.60

5.0e-04 5.0e-05 [[layer3,64,128],[layer4,256,512]] 7 1.0 0.1 0.84

2.5e-04 5.0e-05 [[layer3,64,128]] 21 0.5 0.4 1.35

2.5e-04 5.0e-05 [[layer3,64,128]] 21 0.5 0.4 1.37

1.0e-04 5.0e-05 [[layer3,128,256],[layer4,256,512]] 21 0.5 0.4 2.78

5.0e-04 5.0e-05 [[layer3,128,256],[layer4,256,512]] 21 1.0 0.4 3.57

2.5e-04 5.0e-05 [[layer3,128,256],[layer4,256,512]] 7 2.0 0.4 4.94

5.0e-04 2.5e-05 [[layer4,128,256]] 7 2.0 0.4 5.16

5.0e-04 5.0e-05 [[layer4,256,512]] 21 2.0 0.4 8.43

2.5e-04 5.0e-05 [[layer3,128,256],[layer4,256,512]] 21 0.5 0.4 10.67

5.0e-04 5.0e-05 [[layer3,128,256],[layer4,256,512]] 21 0.5 0.2 12.39

5.0e-04 2.5e-05 [[layer3,128,256],[layer4,256,512]] 21 0.5 0.4 13.69

translating to test settings as the addition of new unseen classes cannot be explained

away with simply sampling different examples from a similar distribution of images.

Combined with the overfitting problem, this results in the visual defects shown in

Figure 4.2 (unseen classes are marked with "*" in the legend, ground truth and un-

seen classes are shown in different rows for ease of viewing) when the same hyper-

parameters with the best validation run (marked blue in Table 4.3 and Figure 4.1) are

used for the model trained in the test setting. Due to this issue, we use the second best

hyper-parameter selection (marked red) as the performance seems to deteriorate the

latest. We halve lrSPNet, lrPGM to compensate for the higher ratio of unseen class

pixels in the test setting.
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Figure 4.2: Overfitting problems in PGM.

4.4 Quantitative results

Table 4.4 lists the comparison of our final model with SPNet [14] in the test setting

of COCO-Stuff. Although SPNet without the ad-hoc calibration factor dominates

in terms of seen class accuracy, it fails significantly in harmonic scores and scores

regarding the unseen classes. Our approach surpasses SPNet with ad-hoc calibration

factor in unseen class and harmonic IoU scores and is competitive with SPNet in

seen class IoU. It also surpasses SPNet in seen class accuracy, however it falls short

in other accuracy scores. We believe the discrepancy between unseen/harmonic IoU

and accuracy scores in both models is due to PGM slightly favoring some of the

unseen classes in overfitting scenarios for the seams and masked regions, whereas

SPNet classifies these regions as seen classes since the classification confidence is

low in these areas. We show further evidence of this phenomenon in Section 4.5.

4.5 Qualitative results

4.5.1 Promising cases

Figure 4.3 displays the promising cases compared to SPNet. In all of the images,

PGM successfully classifies most of the unseen classes. The segmentation outputs
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Table 4.4: PGM compared to SPNet on COCO-Stuff.

Unseen IoU (%) Seen IoU (%) Harmonic IoU (%) Unseen Acc. (%) Seen Acc. (%) Harmonic Acc. (%)

SPNet - γ = 0 0.64 34.14 1.26 0.64 50.02 1.28

SPNet 8.12 34.66 13.15 16.95 45.62 24.72

PGM 8.88 34.53 14.06 13.02 48.34 20.52

of SPNet in the images first, second and third from the right shows the problem that

arises with the ad-hoc calibration factor: only the seam areas of unseen parts are cor-

rectly classified as these parts have low confidence in seen class classification scores.

This clearly shows that ad-hoc modifications fail to mitigate the seen class bias in

SPNet. In contrast, our approach does not exhibit this issue.

4.5.2 Visualization of PGM parameters

In Figure 4.5.2 we visualize the weight matrices B of the mixture models Glyr3, Glyr4

for a deeper intuition on the hidden layer distributions conditioned on yp. Each hor-

izontal strip in the heatmaps represent an AGM component in the mixture model.

Most of the 182 classes seem to be evenly represented by each component given that

the weights have a more-or-less uniform distribution. Note that there are no visible

difference in component weights between unseen and seen classes. This is another

observation that supports our claim of PGM not displaying bias towards seen classes.

Some of the classes in COCO-Stuff have smooth textures in the images (metal, wall-

tile) and are relatively unimodal in terms of their hidden layer distributions. This is

also reflected in the weight matrices in terms of component weights. For the most of

the other classes, the weight distribution is close to uniform, however for the classes

marked with their label names in Figure 4.5.2, the weights are focused on one or

two AGM components. Since the hidden layer distributions of these classes are rela-

tively simple, the AGM mixture model is able approximate them with few number of

components.

As further evidence for this phenomenon, two heatmaps at the bottom-left of Figure

4.5.2 show the entropy of the categorical distribution induced by Byp for a sample

image (normalized within the image spatially, brighter parts have high entropy). The
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Figure 4.3: Promising outputs of PGM compared to SPNet in selected test images.

snow, which has a relatively smooth texture and color has the lowest entropy, imply-

ing that not many AGM components contribute to the distribution, whereas person

has the highest entropy within the image, as people have complex shapes, textures

and colors in the dataset. This outlook also implies that our model is able to some-

how capture the conditional multi-modal nature of the hidden layer distributions.

4.5.3 Failure cases

Figure 4.5 lists some of the failure cases and the estimated pixelwise probabilities

of the hidden layers by Glyr3 and Glyr4 of PGM (normalized within the image, low

probability regions are brighter). Images except the first image from the right seem

to be classified in mostly correct shapes but incorrect categories. Some of these cate-

gories are semantically very close or hierarchical, for example in the first image from

the left the wall is classified as wall-other although the correct label is wall-concrete.

Similarly in the fourth image from the left, the road is classified as pavement.

Some classification discrepancies may be due to human classification errors and other
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Figure 4.4: AGM mixture model weight matrices and mixture weight entropies.

classification ambiguity in COCO-Stuff. In the third image from right, the ground-

truth label for the blue region of the image is clouds but there are no actual clouds in

the image, in the fourth image from right, there is a fence in front of the trees but no

part of the image is classified as fence in the ground truth.

Low estimated probabilities by generative models suggest that some of the classifica-

tion errors are recoverable with further hyper-parameter engineering. This is promi-

nent in small objects or in cases where part of the object is incorrectly classified as a

class that is semantically distant from the ground truth. Part of the cow classified as

dog in the second image from the left, the skateboard in the third image from the left,

the flock of birds in the second image from the right have low estimated probabilities.

Lastly, it is difficult for the model to correctly segment shapes with unusual contexts.

The fourth image from the left has an unusual arrangement of shoes the model mis-

classifies as people, most likely heavily influenced by the assumption that people are

generally on top of the skateboards in the images. The first image from the right

exhibits a similar problem.

Most of the failed classifications coincide with the baseline SPNet. This suggests that

they are mostly inherited from the pre-trained SPNet model before the co-training

stage with AGM. Still, the PGM model performs better with respect to the baseline
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Figure 4.5: Failure cases.

in some of them: in the second, third, fourth and fifth images from the left, grass is

misclassified as straw, tree, plant-other and water-other with the baseline, whereas

it is mostly correctly classified with PGM. The baseline displays the setbacks of the

ad-hoc calibration factor γ here as well in the fourth image from left, in which only

the fringe regions of the grass segment is classified as unseen classes (tree and plant-

other), which are still incorrect in terms of category.
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CHAPTER 5

CONCLUSION

In this thesis we explored a principled way of reducing the classification bias towards

seen classes in GZSSS networks. The experiments we conducted show that attaching

parallel generative networks to GZSSS models leads to competitive performance with

ad-hoc approaches. The parallel generative networks also enable the model to train

in a semi-supervised setting.

In future work, we plan to adopt recent ideas for GZSSS problem in our approach.

Pastore et al. [17] filter out pseudo-labels with consistency constraints on data aug-

mentations. Gu et al. [16] condition synthetic unseen class feature generator with

contextual information. These methods are readily applicable to our PGM approach

in terms of consistency-constraints on the default conditional input of the PGMs and

additional conditional inputs to PGM as context.

Our model is the first semi-supervised GZSSS approach to the best of our knowledge.

We were only able to showcase this feature in a transductive scenario with COCO-

stuff due to time and data constraints. We plan to demonstrate further benefits of semi-

supervised nature of our approach with tests on out-of-domain scenarios in future

studies.
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