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ABSTRACT

MPC-GRAPH: NONLINEAR FEEDBACK MOTION PLANNING USING
SPARSE SAMPLING BASED NEIGHBORHOOD GRAPH

Atasoy, Simay

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Mustafa Mert Ankaralı

January 2022, 65 pages

Robust and safe feedback motion planning and navigation is a critical task for au-

tonomous mobile robotic systems considering the highly dynamic and uncertain na-

ture scenarios of modern applications. For these reasons motion planning and nav-

igation algorithms that have deep roots in feedback control theory has been at the

center stage of this domain recently. However, the vast majority of such policies still

rely on the idea that a motion planner first generates a set of open-loop possibly time-

dependent trajectories, and then a set of feedback control policies track these trajec-

tories in closed-loop while providing some error bounds and guarantees around these

trajectories. In contrast to trajectory-based approaches, some researchers developed

feedback motion planning strategies based on connected obstacle-free regions, where

the task of the local control policies is to drive the robot(s) in between these particular

connected regions. In this work, we propose a feedback motion planning algorithm

based on sparse random neighborhood graphs and constrained nonlinear Model Pre-

dictive Control (MPC). The algorithm first generates a sparse neighborhood graph as

a set of connected simple rectangular regions. After that, during navigation, an MPC

based online feedback control policy funnels the robot with nonlinear dynamics from

v



one rectangle to the other in the network, ensuring no constraint violation on state and

input variables occurs with guaranteed stability. In this framework, we can drive the

robot to any goal location provided that the connected region network covers both the

initial condition and the goal position.

In this thesis, we demonstrate the effectiveness and validity of the algorithm on sim-

ulation studies which include four different robot motion models. Our work mainly

focuses on motion planning applications implemented on Unmanned Surface Vehi-

cles (USV). In order to show the robustness of the proposed algorithm, we applied

process noise to the system and report the results. We compare the sampling perfor-

mance of the proposed algorithm with sampling-based neighborhood graph method.

The results show that MPC-Graph algorithm generates a more sparse graph structure

and can drive the robot to the goal location in the presence of process noise.

Keywords: Model Predictive Control, Optimal Control, Sampling-based Motion Plan-

ning, Unmanned Surface Vehicles
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ÖZ

MPC-GRAPH: SEYREK ÖRNEKLEME BAZLI KOMŞU GRAFİĞİ
KULLANARAK DOĞRUSAL OLMAYAN GERİ BESLEMELİ HAREKET

PLANLAMA

Atasoy, Simay

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Mert Ankaralı

Ocak 2022 , 65 sayfa

Modern uygulamaların son derece dinamik ve belirsiz doğa senaryoları göz önüne

alındığında, sağlam ve güvenli geri bildirim hareket planlaması ve navigasyonu, oto-

nom mobil robot sistemleri için kritik bir görevdir. Bu nedenlerden dolayı, geri besle-

meli kontrol teorisinde derin kökleri olan hareket planlama ve navigasyon algoritma-

ları, son zamanlarda bu alanın merkezinde yer almaktadır. Ancak bu tür poliçelerin

çoğunluğu hala hareket planlayıcısının öncelikle zamana bağlı yörüngelerden oluşan

açık döngü seti oluşturduğunu kabul etmektedir. Sonrasında geri bildirimli kontrol

poliçesi seti oluşturulan bu yörüngeleri belli hata sınırları çerçevesinde takip eder.

Yörünge bazlı yaklaşımların aksine, bazı araştırmacılar birbirine bağlı engelsiz alan-

lar yaklaşımını kullanarak geri beslemeli hareket planlaması yöntemi geliştirdiler. Bu

yaklaşımda lokal kontrol poliçesinin amacı robotun özel olarak belirlenmiş bağlı en-

gelsiz bölgeler arasında hareket planlamasını gerçekleştirmektir. Bu çalışmada seyrek

rastgele komşuluk grafiklerini ve kısıtlı doğrusal olmayan Model Öngörülü Kontrolcü

(MPC) kullanarak, bir hareket planlama algoritması öneriyoruz. Algoritma ilk olarak
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birbirine bağlı dikdötgenlerden oluşan seyrek bir komşuluk grafiği oluşturur. Sonra-

sında, robotun hareket kontrolü için MPC bazlı geri beslemeli kontrol poliçesi doğru-

sal dinamikleri olmayan robotu bir dikdörtgensel bölgeden diğerine hareket ettirir. Bu

hareket esnasında da sistemin durum ve girdi kısıtlarının ihlal edilmediğinden siste-

min kararlılığını da garanti ederek emin olur. Bu çerçevede, birbirine bağlı bölgelerin

başlangıç ve bitiş noktalarını kapsadığını varsayarsak, robotu herhangi bir hedef nok-

tasına sürebiliriz.

Bu tez çalışmasında, algoritmanın geçerliliğini ve uygulanabilirliğini farklı robot ha-

reket modellerini içeren simülasyon ortamında test ettik. Çalışmamız başlıca Suüstü

İnsansız Araçlar üzerinde hareket planlama algoritması geliştirilmesi üzerinde yo-

ğunlaşmaktadır. Algoritmamızın gürültü varlığında gürbüzlüğünü gösterebilmek için

sisteme gürültü uyguladık. Algoritmamızın örnekleme performansını literatürde kar-

şılatığımız benzer yöntemlerle karşılaştırdık. Sonuçlar MPC-Graph algoritmasının

seyrek bir grafik oluşturduğunu ve gürültü varlığında bile sistemi hedef noktasına

ulaştırabildiğini göstermektedir.

Anahtar Kelimeler: Model Öngörülü Kontrol, Optimal Kontrol, Örnekleme Tabanlı

Hareket Planlama, İnsansız Suüstü Araçları
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I would like to thank Ulaş Süreyya Bingöl, for his endless love and support. I am

thankful that I have the chance to grasp his way of approaching to problems both in

my engineering and daily life.

I would like to thank Turkish Scientific and Technological Research Council(TÜBİTAK)
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

Advancements in hardware and software technology pave the way for the common

usage of autonomous mobile robots in every aspect of daily life. Today, autonomous

robot platforms operate in numerous areas ranging from space and underwater explo-

ration to agriculture, disinfection, mining, search and rescue, warehouse automation,

military and many more. In the last decade, autonomous systems started to replace

human operators for applications in which precision is required, the working environ-

ment is hazardous or threatens human life. In order to use autonomous systems for

the aforementioned applications, human factor in the process should be eliminated or

at least minimized. Configurations and algorithms implemented on these systems are

tailored towards their specific utilization. In this work, we mainly focus on develop-

ing a path and motion planning algorithm which is a crucial aspect for mobile robotic

systems.

The main concern of autonomous motion planning is to drive the agent from the start

configuration to the goal configuration while obeying the constraints coming from the

environment and agent itself. In motion planning applications the success of the algo-

rithm mainly depends on its capability of handling obstacles. Today, safe and robust

collision-free motion planning is still an active research area open to improvements.

In general, motion planning algorithms first generate a set of open loop piecewise-

smooth trajectories and then follow these trajectories with feedback control policies.

For the first phase, rather than using a trajectory-based approach some researchers im-

plemented a trajectory-free motion planning concept. In this approach, the given map
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of the environment is sampled with connected sub-regions and the aim of the planner

is to drive the robot to the goal region while respecting the constraints coming from

these sampled regions [4–8]. Instead of directly following a pre-defined trajectory,

this approach relaxes the constraints by increasing the possible movement area for

the robot.

For the second phase, feedback control, in order to effectively force the constraints

we implemented Model Predictive Control (MPC). In the last decade Model Predic-

tive Control (MPC) have attracted much attention for motion planning tasks ranging

from applications in aerial vehicles [9,10], legged robots [11,12], spacecrafts [13,14],

underwater vehicles [15, 16] etc. MPC offers a framework that can handle multiple-

input multiple-output (MIMO) systems and force constraints for states and inputs,

making it an effective instrument in collision-free motion planning applications. In

this work in order to show the capabilities of MPC, we implemented it on four dif-

ferent robot motion models; fully-actuated holonomic linear model, fully-actuated

holonomic model with damping, fully-actuated USV model with four thrusters, dif-

ferential USV model with two thrusters.

In recent years there is an increasing trend in using autonomous systems in mar-

itime industry. According to Annual Overview of Marine Casualties and Incidents

(2020) between years 2014 and 2019 [17], 43% of the casualties with ships are due to

navigational casualties which include accidents resulting from contact, collision and

grounding/stranding. From 1499 accident events occurred between 2014 and 2019,

60.6% of them were attributed to human erroneous action. In order to decrease the

accident rates that are attributed to human errors, studies regarding automation of sur-

face vehicles is a currently attractive research area. This is one of the main reasons

why this thesis work focuses on motion planning problem for surface vehicles.

1.2 Literature Review

The early applications of MPC emerged as a need for optimizing the multi-constraint

processes in chemical industry, which mainly includes refining and petrochemical

sectors [18, 19]. In order to meet the requirements and extend the usage area of
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MPC, researchers implemented several improvements. Garcia et al. [19] formulated

a constraint MPC framework for linear stable systems focusing on the applications of

chemical engineering processes. Several researches [20–23] concentrated on develop-

ing a theoretical formulation for guaranteeing the closed loop stability for constrained

linear systems.

Since real world problems are highly nonlinear, a considerable amount of research

has been carried out to extend the usage of MPC to constrained nonlinear systems

[24–28]. As opposed to linear case, the infinite horizon problem for nonlinear systems

cannot be solved numerically and reducing the horizon may cause undesired system

behaviors. In order to address this issue, Michalska and Mayne [26] proposed a hybrid

MPC that replaces the terminal constraint with a terminal region. When the nonlinear

system reaches this region, another controller is employed and as a result the system

is asymptotically stabilized. However, to guarantee the stability of the system, a

global optimization problem is required to be solved. Chen and Allgöwer [28] on the

other hand, use an infinite horizon approach and calculate a penalty term for the final

state to bound the infinite horizon cost. They establish the bound by controlling the

nonlinear system with a fictitious linear state feedback in the predetermined terminal

region. The work of Nicolao et al. [27] implements a similar approach.

With the extension of MPC to nonlinear systems, several robotics applications im-

plemented this framework for path and motion planning operations. In recent years,

numerous works have been published using nonlinear MPC for control of unmanned

ground vehicles (UGV) [29–34] and unmanned aerial vehicles (UAV) [35–40]. In

[29], time varying weights are implemented for trajectory tracking of a two-wheeled

mobile robot with constraints. In works [30] and [33], stability of NMPC is guar-

anteed by inclusion of terminal state penalty cost and terminal region. In [35, 36],

for the path planning of UAV platforms an NMPC framework is implemented in the

presence of state and input constraints. Shimada et al. [39] and Tanveer et al. [40]

used NMPC for disturbance rejection in UAV applications.

With an increasing demand towards the utilization of autonomous surface vehicles in

the military, search and rescue, transportation and exploration, the literature regarding

control of USVs started to flourish in the last few decades [41]. Several works in lit-
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erature employ MPC for USV control [42–46]. Zhao et al. [42] propose an improved

MPC framework with the inclusion of global course constraint and event-triggered

mechanism. In [43], researchers propose a finite control set model predictive control

for collision avoidance problem.

1.3 Contributions

A preliminary version of this work reporting early results was presented by Karagöz

et al. [7]. This thesis work presents a significantly improved version with the fol-

lowing qualities: (i) performance of the algorithm in the presence of process noise is

evaluated, (ii) algorithm is modified in order to recover from failures caused by noise

(iii) motion models are generalized to include orientation and angular rate of the sys-

tem , (iv) MPC and graph search costs are modified to increase the performance of

the proposed algorithm.

The main contribution of our work is fusion of sampling-based motion planning with

model predictive control. This thesis work proposes a new trajectory-free, sampling-

based feedback motion planning algorithm that can handle arbitrary obstacle config-

urations for autonomous robots in 2D environments. In the proposed algorithm the

obstacle free region is sampled with rectangular regions. In order to increase the spar-

sity of the of the obtained graph structure, the nodes are expanded. One of the similar

approaches that Yang et al. [3] proposed, samples the obstacle free region with spher-

ical balls. Compared to SNG algorithm, MPC-Graph generates a more sparse graph

regarding the results presented in Chapter 4. Furthermore, the proposed algorithm

returns a sequence of nodes rather than a predefined trajectory which makes the robot

move in a smoother route. As long as it is guaranteed that the robot stays inside the

sampled regions, collision with static obstacles is prevented. For that purpose, MPC

forces the state and input constraints to the system.

One of the advantages MPC provides is that, it makes possible to use both linear

and nonlinear system models, which highly increases the application areas of the

proposed algorithm. In this thesis work, we implement the algorithm on both linear

and nonlinear system models and obtained satisfactory results. In order to show the
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robustness of the algorithm, we added process noise and report the behavior of the

system in Chapter 4.

We implemented MPC-Graph algorithm using Matlab simulations and tested it with

four different system models. To show the sampling performance of the algorithm,

we generated maps with both polygonal and circular obstacles.

1.4 The Outline of the Thesis

The organization of the thesis is as follows. In Chapter 2, we give a brief intro-

duction to sampling-based motion planning and MPC concepts. We also explain the

dynamics of the unmanned surface vehicle model and mention some of the important

parameters that have significant effect on its motion. After providing the fundamen-

tal background for the proposed algorithm, in Chapter 3 we thoroughly explain our

novel MPC-Graph algorithm which fundamentally consists of three major phases.

Chapter 4 reports the implementation and simulation results. We tested our algorithm

on four different motion models and in the beginning of the chapter these models

are briefly explained. In order to show the effectiveness and validity of the proposed

algorithm we performed Monte Carlo experiments. Finally Chapter 5, outlines our

work and discusses the future directions of the proposed study.

5



6



CHAPTER 2

PRELIMINARIES AND BACKGROUND

MPC-Graph algorithm uses a sampling-based motion planning method combined

with the Model Predictive Control to impose state and input constraints. This chapter

mainly focuses on giving a brief introduction to these concepts.

2.1 Sampling-based Motion Planning

The core idea behind sampling-based motion planning is randomly sampling the

available configurations in a given map and returning these available configurations

in a tree or a graph like structure. Representation of the configuration space with

the aforementioned structures reduces the computational complexity coming from

explicitly modeling the entire free space.

Probabilistic Roadmaps (PRM) and Rapidly-exploring Random Trees (RRT) are fun-

damental algorithms that provide a bedrock for sampling-based motion planning.

PRM algorithm consists of two consecutive phases which are learning phase and

query phase. Learning phase, randomly samples the collision-free configurations and

connects these available configurations to obtain a graph structure. Then, the query

phase connects the start and goal configurations to the obtained roadmap [47]. Al-

though PRM is a widely used powerful algorithm in motion planning applications, it

is unable to handle nonholonomic constraints. In order to address this flaw of PRM,

RRT algorithm is proposed [6]. As opposed to PRM algorithm, RRT constructs a tree

structure that is spawned from its root which is the start configuration. Then, contin-

ues sampling the free space until a connection between start and goal configurations

is obtained. In literature, several works are available that compare the aspects of using
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an RRT or PRM based algorithm and their variants [48, 49].

The aforementioned algorithms and their variants generally tend to sample the free

space with ’point-based’ nodes. In [3], a different approach is implemented by us-

ing spherical regions to indicate the collision-free areas that are safe for the robot to

travel. The proposed algorithm, first samples the obstacle-free space with connected

spherical regions until a predefined termination condition is satisfied. These regions

construct a neighborhood graph for the navigation of the robot. Then, a global nav-

igation function drives the robot from one node to another until it reaches the goal

point. One of the advantages this kind of a framework provides is that compared to

RRT and PRM algorithms fewer nodes are obtained and thus a sparse graph struc-

ture is attained. Fig.2.1 is an illustration based on the work [3], that visualizes the

sampling of collision-free space with circular regions.

In literature, several works implemented sparse neighborhood trees for path planning

applications. These works include different types of representation structures for the

nodes such as ellipse, circle or square [4, 5, 50].

START

GOAL

Figure 2.1: Sampling the obstacle-free space with circular regions as in [3]

2.2 Model Predictive Control

Model Predictive Control is a feedback control algorithm that generates an input se-

quence at each sampling instant for the indicated horizon to minimize the related
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cost function while respecting the specified constraints. After the input sequence is

obtained first element of this sequence is applied to the plant and the horizon is pro-

ceeded towards the future [51]. In this thesis work, we implement MPC on both linear

and nonlinear systems.

2.2.1 Linear Model Predictive Control

For the implementation of MPC on linear systems, we used a so called dual mode ap-

proach which combines the finite horizon and infinite horizon control. The first mode

computes the optimal inputs by applying finite horizon Linear Quadratic Regulator

(LQR), whereas the second mode uses infinite horizon LQR to obtain the inputs. The

problem formulation is as follows:

J =
N−1∑
j=0

(qTj|kQqj|k + uTj|kRuj|k) + qTN |jPqN |j (2.1)

subject to

qj+1|k = Aqj|k +Buj|k, j = 0, 1, ..., N − 1 (2.2a)

qmin ≤ qj|k ≤ qmax, j = 0, 1, ..., N (2.2b)

umin ≤ uj|k ≤ umax, j = 0, 1, ..., N (2.2c)

In equation (2.1), N is the prediction horizon, Q is the state cost matrix, R is the

input cost matrix and P is the final state cost matrix. Equation (2.2b) indicates the

state constraints. Likewise, equation (2.2c) indicates the input constraints.

In dual mode MPC, P matrix is calculated by solving the discrete-time Lyapunov

equation,

(A−BK∞)TP (A−BK∞)− P +K∞RK∞ = 0 (2.3)

and K∞ is the constant state feedback gain of the infinite horizon LQR problem.

2.2.2 Nonlinear Model Predictive Control

For the control of the nonlinear systems, we used the approach presented in [28]. The

work of Chen and Allgöwer is applicable to both stable and unstable systems and with
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the inclusion of terminal region and terminal cost matrix the algorithm guarantees

asymptotic closed-loop stability. The objective cost function comprises of mainly

two parts: an integral square error calculated over a finite horizon and a quadratic

terminal cost term as in the linear case.

The optimization problem of MPC can be formalized as follows:

J(q(t),u(·)) =
∫ t+Tp

t

(
q(τ)TQq(τ) + u(τ)TRu(τ)

)
dτ + q(t+ Tp)

TPq(t+ Tp)

(2.4)

subject to

q̇ = f(q,u) (2.5a)

u(τ) ∈ U, τ ∈ [t, t+ Tp] (2.5b)

q(t+ Tp) ∈ Ω. (2.5c)

q(·) is the system state vector, u(·) is the input, the system is defined by a set of non-

linear differential equations, f(q(·),u(·)) and Tp is a finite prediction horizon. Q and

R are positive-definite and symmetric cost matrices for states and inputs, respectively.

We obtained terminal state penalty matrix P and terminal region Ω by applying the

procedure presented in [28]. First, the Jacobian linearization of the system at the

origin is calculated,

q̇ = Aq+Bu (2.6)

where A = (∂f/∂q)(0, 0) and B = (∂f/∂u)(0, 0). Provided that eqn. (2.6) is sta-

bilizable, a linear state feedback u = Kq can be obtained and by substituting u in

eqn. 2.6,

q̇ = (A+BK)q (2.7)

the obtained matrix AK = A+ BK is asymptotically stable. Provided that the Jaco-

bian linearization (2.6) at the origin is stabilizable, the Lyapunov equation,

(AK + κI)TP + P (AK + κI) = −Q⋆ (2.8)

where,

Q⋆ = Q+KTRK ∈ Rn×n (2.9)
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admits a unique positive-definite and symmetric solution P . In eqn. (2.8), κ is chosen

such that it satisfies the following condition,

κ < −λmax(AK) κ ∈ [0,∞). (2.10)

After determining the terminal state penalty matrix P , the procedure continues with

determination of the terminal region. Provided that, there exists a constant α ∈
(0,∞), a region Ωα in the neighborhood of α is defined as follows,

Ωα = {q ∈ Rn|qTPq ≤ α}. (2.11)

such that ∀x1 ∈ Ωα, infinite horizon cost J∞,

J∞(q1,u) =

∫ ∞

t1

(
q(t)TQq(t) + u(t)TRu(t)

)
dt (2.12)

starting from q(t1) = q1 and controlled by u = Kq is bounded from above as

follows,

J∞(q1,u) ≤ qT
1 Pq1. (2.13)

With the inclusion of an upper bound to the infinite horizon cost, the asymptotic

stability of the system is guaranteed.

2.2.3 USV Dynamics

Compared to unmanned ground vehicles (UGV), unmanned surface vehicles (USV)

are exposed to different environment dynamics due to their application medium.

Since USVs operate in sea environment, on top of rigid body dynamics also added

mass and damping terms should be considered in a USV model.

Let η = [x y ψ]T ∈ R3 denote the pose vector, where x and y are the earth-fixed

reference frame coordinates and ψ is the heading angle, let ν = [u v r]T ∈ R3 denote

the velocity vector of the dynamic model where u and v are linear velocities, called

surge and sway, and r is the angular velocity. Fig. 2.2 shows a schematic for the USV

model.

In our simulations, we use the 3 DOF horizontal plane model presented in [52]. The

formulation is as follows,

η̇ = J(ψ)ν (2.14a)
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X

Y

Figure 2.2: Schematic for the USV model. X-Y and u-v denote the earth-fixed and

body fixed reference frames, respectively.

M ν̇ + C(ν)ν +D(ν)ν = τ (2.14b)

where

M =MA +MRB (2.14c)

C(ν) = CA(ν) + CRB(ν) (2.14d)

D(ν) = Dl +Dn(ν). (2.14e)

In (2.14a), J(ψ) represents the rotation matrix from body reference frame to earth

fixed reference frame. In (2.14b) the general formulation for the USV dynamics

is given where M , C(ν), D(ν) are inertia, Coriolis/centripetal, damping matrices

and τ is the thruster force vector, respectively. A body moving in a liquid medium,

transports some of the surrounding liquid by its motion. As a result, it is observed

that the body weighs more compared to its original weight. In order to compensate

this effect, added mass terms MA and CA(ν) are included in (2.14c) and (2.14d).

The damping effect is given in (2.14e) where Dl and Dn(ν) denote the linear and

nonlinear damping matrices, respectively. The subscript RB in (2.14c) and (2.14d)

stands for rigid body terms. The matrices in (2.14a)-(2.14e) is represented as follows,
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J =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 ,MRB =


m 0 0

0 m 0

0 0 Iz

 ,MA =


Xu̇ 0 0

0 Yv̇ Yṙ

0 Yṙ Nṙ



CA =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 , CRB =


0 0 −mv
0 0 mu

mv −mu 0



Dl =


Xu 0 0

0 Yv Yr

0 Nv Nr

 , Dn =


X|u|u|u| 0 0

0 Y|v|v|v| 0

0 0 N|r|r|r|


(2.15)

where m is the mass and Iz is the moment of inertia of the vessel perpendicular to the

horizontal plane, {Xu̇, Yv̇, Yṙ, Nṙ}, {Xu, Yv, Yr, Nv, Nr} and {X|u|u, Y|v|v, N|r|r} are

added mass, linear damping and nonlinear damping parameters, respectively. These

predefined parameters are scalar constants that do not change over time.
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CHAPTER 3

MPC-GRAPH: FEEDBACK MOTION PLANNING USING SPARSE

SAMPLING BASED NEIGHBORHOOD GRAPH

Proposed MPC-Graph algorithm executes three successive phases to sample the arena

and navigate the robot: graph generation, graph search and motion control. Graph

generation phase takes the map as input and than samples the obstacle-free areas with

overlapping rectangular regions until the predefined termination condition is satisfied.

After the completion of the graph generation phase, Dijkstra’s algorithm is executed

to search the obtained neighborhood graph for the shortest available path from any

node to the goal node. With the execution of the graph generation phase, the order

of the nodes that robot should pass is determined. Motion control phase takes the

determined nodes as input and navigates the robot to the goal configuration while

respecting the constraints coming from the states and system inputs. In Fig. 3.1 block

diagram representation of the proposed algorithm is presented.

Model Predictive
Control

MPC-Graph Plant

qgoal

map

r
u(t)

q(t)

y(t)

Figure 3.1: Block diagram of the algorithm. MPC-Graph generates a reference signal,

r, to reach from current state, q(t), to the goal location, qgoal considering the obstacles,

goal and map limits. Model Predictive Control computes the optimal input, u(t), to

get r(t) in accordance with the constraints on q(t), C.
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3.1 Graph Generation

Graph generation phase starts with randomly sampling the obstacle-free space and

then, nodes are generated around those samples until the defined termination condi-

tion is satisfied. As a similar approach in the work of Yang and Lavalle [3], they

sampled the obstacle-free space with circular regions. Karagoz et al. [7] reports that

using rectangular regions compared to circular ones highly reduces the number of

nodes in the graph which results in a more sparse graph structure. In the work of Gol-

bol et al. [5], they use square regions to cover the obstacle-free space for controller

reusability. First, they create a tree-like structure and then use a reference governor

based controller to navigate the robot. In this thesis work, due to implementation of

MPC, we can directly reuse all convex constraint sets, so we construct a graph con-

sisting of rectangular nodes with arbitrary aspect ratios which results in a more sparse

graph structure.

The MPC-Graph framework starts its execution by sampling the free space. Let B be

the collection of points encompassed by a node:

B =
⋃
k

Nodek (3.1)

After guaranteeing the sampled point qrand is in the obstacle-free region, then a rect-

angular node Nodek is generated and expanded around qrand. Then, Nodek is added

to the graph and edges are created between this node and the neighboring nodes over-

lapping with it. Node generation and expansion process continues until the defined

termination condition is satisfied. In the algorithm, we implemented the condition

presented in [53] which mainly estimates the quality of the coverage of the sam-

pled space. Let Cfree denote the set of configurations in the obstacle free region

and µ be de Lebesgue measure in Cfree, the implemented termination condition in

(3.2), implicitly determines estimates for the expression µ(B)/µ(Cfree). For that pur-

pose, statistics collected from randomly taking samples to find a new configuration in

µ(Cfree) \ µ(B) is analyzed. The implemented termination condition is formalized as

follows,

m ≥ ln(1− Pc)

lnα
− 1 (3.2)

where m is the number of successive failures followed by the first success, Pc and α
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Algorithm 1 Graph Generation
1: for k = 1 to K do

2: do

3: qrand ← UniformRandConf()

4: while qrand ∈ WO and qrand ∈ B
5: Nodek ← GenerateRectRegion(qrand)

6: Nodek ← Expand(Nodek)

7: G.InsertNode(Nodek)

8: B ← B ∪Nodek
9: if TerminationSatisfied(G,α, Pc) then

10: Po = DijkstraAlgorithm(G)

11: return Po

12: end if

13: end for

are user determined parameters that effect the density of the coverage of the map. A

more detailed information about the derivation of (3.2) is presented in [53]. After sat-

isfying the termination condition, algorithm continues with graph search phase to find

the optimal route. Algorithm 1 gives a detailed explanation of the graph generation

phase.

3.1.1 Node Generation

In order to generate a node, first a random point qrand is sampled in the obstacle free

region. Then, from the given obstacle set the shortest distance between qrand and the

obstacles is calculated. Formally, let WO denote the obstacle set, WOi be the ith

obstacle in the given map, qobs be the point on the obstacle which is closest to the

sampled point qrand,

WO =
⋃
i

WOi (3.3a)

qobs = argmin
q∈WO

∥q − qrand∥. (3.3b)

Let dmin denote the Euclidean distance between points qrand and qobs, dmin = ∥qrand−
qobs∥. By taking the calculated dmin value as the radius and qrand as the center a
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x
qrand

x1
2

x

(a) (b)

(c)

x

x

qobs

Figure 3.2: Generation of a node: (a) initial map of the arena, (b) a square node is

generated, (c) square node is expanded in discrete steps along directions indicated as

1 and 2.

hypothetical circle is constructed. This procedure ensures that the generated circle is

in the obstacle-free region, Ccircle(qrand, dmin) ⊂ Cfree. After obtaining the circle, the

largest square that can fit inside Ccircle(qrand, dmin) with one edge perpendicular to the

line segment connecting qrand and qobs is generated. Fig. 3.2a and 3.2b illustrates the

whole node generation process.

3.1.2 Node Expansion

In order to cover larger areas and have a more sparse graph, we extend the previously

generated square regions in directions 1 and 2 until they hit an obstacle or the limits

of the arena as indicated in Fig. 3.2c. Another advantage provided by the larger nodes

is that robot moves faster in larger regions. Since region boundaries are given as

state constraints for the MPC, controller ensures that robot strictly stays inside the

boundaries of the active node. In order to enforce this constraint, MPC slows down

the robot as it approaches a region boundary. Therefore, in the presence of larger

nodes robot stays longer in the same region; hence it moves at high speed for longer

time.
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In node expansion step, first the obtained square node extends in direction 1 in discrete

time steps until it hits an obstacle or the limits of the arena as illustrated in Fig. 3.2c.

If a collision occurs, the last expansion process is reverted. The same process is

also repeated for direction 2. For the expansion process, the current edge length is

multiplied with a constant factor γ which is set as γ =1.2 for this work.

3.2 Graph Search

Nodei

Nodei+1

ref
i

center
i

center
i+1

A
i

Figure 3.3: Visualization of edge cost parameters

After the termination condition given in eqn. (3.2) is satisfied, the algorithm continues

with searching the obtained graph, G, with Dijkstra’s search algorithm to find the

optimal discrete planner. For each node, the policy returns the next node that robot

should go.

The constructed graph has an edge between two nodes if they have an overlapping

area. We calculate the edge cost as follows,

costedge = ∥centeri − refi∥2 + ∥centeri+1 − refi∥2 +
α

Ai

(3.4)

where center is the intersection point of the diagonals of the corresponding node, ref

is the center and A is the area of the intersection region. We include the reciprocal

of the intersection area as a parameter for the edge cost since larger areas provide

smoother behavior for the robot. In our simulations we used weight α for the recip-

rocal of the intersection area which is set as α = 1. Thus, Dijkstra’s search algorithm
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chooses a route in favor of larger intersection areas. Fig. 3.3 visualizes the parameters

given in 3.4.

3.3 Motion Control

The last phase of the proposed MPC-Graph algorithm is motion control. At this stage

of the algorithm, with the previously determined policy Po, MPC navigates the robot

from an arbitrary node to the GoalNode in discrete time steps. The aim of the motion

control phase is to safely and smoothly navigating the robot from its CurrentNode to

the NextNode with the established policy Po while forcing the state and input con-

straints. It is important to note that, as long as robot stays inside the sampled rectan-

gular regions, it is guaranteed that collisions with obstacles are avoided. In order to

simulate the physical limits for the robot, we implemented velocity and acceleration

constraints. We adopted the quasi infinite MPC [28] approach to guarantee stability

for systems whose Jacobian linearization is stabilizable.

The node that robot currently in is denoted as the CurrentNode and the target

node that robot is travelling to is called the NextNode. The reference point, ref,

robot aiming to reach is chosen to be the centroid of intersection for that region,

[xref yref ]
T = Centroid(CurrentNode ∩ NextNode). After determining the cen-

troid, by taking that point as the origin a target reference frame T is placed. In order

to determine the orientation of that frame, a hypothetical vector ,−→v ,starting from the

previous reference point refi−1 and ending at the target reference point refi is con-

structed. The angle, θ, between the world frame,W , and−→v is taken as the orientation

for the target frame. Fig. 3.4 illustrates worldW , target T and robot framesR.

After defining the necessary frames for the algorithm, the following transformation

matrices are constructed,

T w
t =


cosθ −sinθ 0 xref

sinθ cosθ 0 yref

0 0 1 0

0 0 0 1

 , T w
r =


cosψ −sinψ 0 x

sinψ cosψ 0 y

0 0 1 0

0 0 0 1

 (3.5)

where, T w
t ∈ SE(3) is the pose of the target frame with respect to world frame and
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Figure 3.4: Representation of worldW , target T and robot framesR

T w
r ∈ SE(3) is the pose of the robot frame with respect to world frame. By using the

matrices given in (3.5), we calculate the pose of the robot frame with respect to target

frame T t
r ∈ SE(3), as follows,

T t
r =

(
T w

t

)−1
T w

r . (3.6)

By using the transformation matrix T t
r , we calculate the position vector of the robot

with respect to the target frame qtr = [xtr ytr ψtr]
T . In cost function (2.4), we use

qtr for robot states. This approach aims to overlap the target frame with body fixed

robot frame. By using MPC, we calculate the optimal finite-horizon input sequence

that satisfies the constraints and navigates the robot towards the origin of the target

frame. The first element of this input sequence is applied to the robot.

When robot enters the intersection area, theNextNode becomes the newCurrentNode

and the newNextNode is determined by checking the next element in policy Po. It is

important to note that for every new region robot enters, the state constraints coming

from the boundaries of the rectangular nodes are re-calculated. This process executes

recursively until the robot arrives at the node which includes the goal point qgoal. In

the goal region, qgoal becomes the reference point and NextNode is no longer appli-

cable.

Due to unpredictable effects such as process noise, robot may end up in an unsampled

region or in another node different than its CurrentNode. For the former case, the
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last position of the robot is treated as the sampled random point, qrand, and fed to

the node generation function. This newly generated node is inserted to the previously

obtained graph,G, and taken as the newCurrentNode for the robot. Then, Dijsktra’s

search algorithm is executed in order to generate a new policy. These steps are given

in lines 11-19 of Algorithm 2. Illustration of this resampling procedure is presented

in Fig. 3.5.

For the latter case, the obtained graph is searched in order to determine the possible

CurrentNodewhich ensures the minimum cost route according to the equation (3.4).

After determining the CurrentNode, by using the previously generated policy, Po,

a new route is obtained. These steps are given in lines 21-23 of Algorithm 2. A

complete procedure of the motion control phase is summarized in Algorithm 2.

(a) (b)

(c)

Figure 3.5: (a) Robot arrives to an unsampled region. (b) A new node is generated in

the unsampled region which is indicated with dark grey color. (c) Robot follows the

red route by using the newly created region.
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Algorithm 2 Motion Control

1: CurrentNode← StartNode()

2: NextNode← Po.Next(CurrentNode)

3: ref ← Centroid(CurrentNode ∩NextNode)
4: while qgoal not reached do

5: if qt ∈ GoalNode then

6: ref ← qgoal

7: else if qt ∈ NextNode then

8: CurrentNode← NextNode

9: NextNode← Po.Next(CurrentNode)

10: ref ← Centroid(CurrentNode ∩NextNode)
11: else if qt ∈ UnsampledRegion then

12: qt ← UniformRandConf()

13: Nodei ← GenerateRectRegion(qt)

14: Nodei ← Expand(Nodei)

15: G.InsertNode(Nodei)

16: Po = DijkstraAlgorithm(G)

17: CurrentNode← Nodei

18: NextNode← Po.Next(CurrentNode)

19: ref ← Centroid(CurrentNode ∩NextNode)
20: else

21: CurrentNode← SearchNodes(G, qt)

22: NextNode← Po.Next(CurrentNode)

23: ref ← Centroid(CurrentNode ∩NextNode)
24: end if

25: ut ← MPC(qt, ref, CurrentNode)

26: end while
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CHAPTER 4

IMPLEMENTATION

This section reports the simulation results obtained from the implementation of MPC-

Graph algorithm. We implemented our algorithm on MATLAB and performed simu-

lations on a laptop with Intel i7 2.4 GHz processor running Windows OS.

4.1 Robot Motion Models

We implemented MPC-Graph algorithm on four different robot motion models which

include both linear and nonlinear systems: linear fully-actuated robot model, non-

linear fully-actuated robot model, fully actuated USV model and two thruster USV

model.

4.1.1 Linear Fully-Actuated Robot Model

As a first approach, we implemented MPC-Graph algorithm to a fully actuated point

model with double integrator plant dynamics for each axis. State vector of the robot

is q = [x vx y vy]
T and the input vector is u = [ux uy]

T . We assume that full

state measurements are available in real-time. We discretize the continuous state-

space dynamics under zero-older-hold operation and uniform synchronous sampling

of measurements with a sampling frequency of fs = 20Hz (or Ts = 0.05s).

In our control policy, we used constrained MPC with dual mode approach. The finite

horizon length is N = 10, which gives us enough degrees of freedom in enforcing

the constraints while also satisfying the asymptotic stability.
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The discrete time state-space model of the system has the following form:

qt+1 = Aqt +But (4.1)

where A and B matrices are as follows :

A =


1 0.05 0 0

0 1 0 0

0 0 1 0.05

0 0 0 1

 , B =


0.0013 0

0.05 0

0 0.0013

0 0.05

 (4.2)

f(x, y) ≤ c (4.3a)

−1 ≤ vx, vy ≤ 1 (4.3b)

−1 ≤ ux, uy ≤ 1 (4.3c)

The constraints are given in equation (4.3). Note that equation (4.3a) is calculated for

each node on the path.

4.1.2 Non-linear Fully-Actuated Robot Model

We model the robot as a fully actuated acceleration driven holonomic model in the

presence of non-linear quadratic friction force acting on each axis. The state vector

and the input vector of the model takes the form q = [x y vx vy]
T , and u = [ux uy]

T

respectively. In this context, the equations of motion for the robot model is ẍ

ÿ

 =

 −λ v2x + ux

−λ v2y + uy

 (4.4)

where λ = 0.7. We assume that full state measurements are available in real-time. We

discretize the continuous nonlinear dynamics of the system and uniform synchronous

sampling of measurements with a sampling frequency of fs = 10Hz (or Ts = 0.1s).

In our control policy, we used quasi-infinite horizon MPC. The finite horizon length

is Tp = 1.5s, which gives us enough degrees of freedom in enforcing the state and

input constraints. We choose the weighting matrices for the objective cost function
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in (2.4) as an identity matrix, Q = I4 and R = I2. Then, by using the procedure

presented in [28], Jacobian linearization given in (2.6) is calculated,

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , B =


0 0

0 0

1 0

0 1

 . (4.5)

Then we obtain the following state feedback gain K, by using the Jacobian lineariza-

tion and the cost matrices,

K =

1.00 0 1.73 0

0 1.00 0 1.73

 . (4.6)

Then by using the obtained matrices, AK = A−BK is calculated as follows,

AK =


0 0 1 0

0 0 0 1

−1 0 −1.7321 0

0 −1 0 −1.7321

 . (4.7)

We choose κ as 0.816 by investigating the eigenvalues of AK . After that we calculate

Q⋆ by using (2.9),

Q⋆ =


2 0 1.7321 0

0 2 0 1.7321

1.7321 0 4 0

0 1.7321 0 4

 . (4.8)

Lastly, we obtain the following terminal penalty matrix P ,

P =


185.28 0 −152.19 0

0 185.28 0 −152.19
−152.19 0 168.32 0

0 −152.19 0 168.32

 . (4.9)

f(x, y) ≤ c (4.10a)

−1 ≤ vx, vy ≤ 1 (4.10b)

−3 ≤ ux, uy ≤ 3 (4.10c)
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The constraints are given in equation (4.10). Note that equation (4.10a) is calculated

for each node on the path.

4.1.3 Fully Actuated USV Model

For the fully actuated USV model, we implement the outlined model illustrated in

Fig. 4.1 that consists of four thrusters which generate the indicated force vectors, F1,

F2, F3 and F4. With this outlined model, the force vector τ fa takes the following

form,

τ fa =


(F1 + F2 − F3 − F4)sinα

(F2 + F4 − F1 − F3)cosα

(F2 + F3 − F1 − F4)(sinα + cosα)b/2

 . (4.11)

With the oriented placement of the thrusters with respect to the body, vessel can

generate a force vector in direction v as opposed to the differential USV model. In

the implementation, we adopted the parameters given in [1] for inertia, damping and

added mass terms. The state vector and the input vector for the model takes the form

q = [x y θ u v r]T and u = [F1 F2 F3 F4]
T , respectively.

F3

F2

T1 T2

T3 T4

F1

F4

Figure 4.1: Placement of thrusters T1, T2, T3 and T4 for fully actuated USV model

In the simulations we discretize the continuous nonlinear dynamics of the system

and uniform synchronous sampling of measurements with a sampling frequency of

fs = 10 Hz (or Ts = 0.1s). We navigate the vessel throughout the map with quasi-

infinite horizon MPC. The finite horizon length is Tp = 1.5s, which gives us enough

degrees of freedom in enforcing the state and input constraints. We choose the state
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and input matrices, Q and R, for the objective cost function (2.4) as follows,

Q =



5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 2.5 0 0

0 0 0 0 2.5 0

0 0 0 0 0 0.2


, R =


0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

 . (4.12)

After determining the cost matrices, by following the procedure presented in [28],

Jacobian linearization given in (2.6) is calculated,

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −0.0776 0 0

0 0 0 0 −0.1064 0.1274

0 0 0 0 0.2192 −0.9809


, (4.13)

B =



0 0 0 0

0 0 0 0

0 0 0 0

0.0637 0.0637 −0.0637 −0.0637
−0.0405 0.0405 −0.1342 0.1342

−0.1805 0.1805 0.5408 −0.5408


. (4.14)

Then we obtain the following state feedback gain K, by using the Jacobian lineariza-

tion and the cost matrices,

K =


11.1803 −13.1061 −8.8448 11.9553 −15.2518 −4.4919
11.1803 13.1061 8.8448 11.9553 15.2518 4.4919

−11.1803 −8.8448 13.1061 −11.9553 −8.1447 3.9470

−11.1803 8.8448 −13.1061 −11.9553 8.1447 −3.9470

 .
(4.15)
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Then by using the obtained matrices, AK = A−BK is calculated as follows,

AK =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−2.8503 0 0 −3.1255 0 0

0 −3.4361 2.8006 0 −3.5285 0.8226

0 4.8341 −17.3696 0 3.5213 −6.8720


. (4.16)

We choose κ as 3.2529 by investigating the eigenvalues ofAK . After that we calculate

Q⋆ by using 2.9,

Q⋆ =



10 0 0 5.3466 0 0

0 10 0 0 5.4386 0.4792

0 0 10. 0 0.5631 1.8292

5.3466 0 0 8.2172 0 0

0 5.4386 0.5631 0 8.4791 0.7272

0 0.4792 1.8292 0 0.7272 0.9151


. (4.17)

Lastly, we obtain the following terminal penalty matrix P ,

P =



−1.80 0 0 0.85 0 0

0 −1.57 −3.89 0 0.09 10.92

0 −3.89 33.45 0 14.37 −113.82
0.85 0 0 −13.33 0 0

0 0.09 14.37 0 −9.19 −56.78
0 10.92 −113.82 0 −56.78 505.74


. (4.18)

We implemented the following state and input constraints to the system,

f(x, y) ≤ c (4.19a)

−1 rad/s ≤ r ≤ 1 rad/s (4.19b)

−1.5m/s ≤ u ≤ 1.5m/s (4.19c)

−20 N ≤ F1, F2, F3, F4 ≤ 20 N (4.19d)

Equation (4.19a) is calculated for each node on the path. Table 4.1 presents the pa-

rameters used for the fully actuated USV model.
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Table 4.1: Fully Actuated USV Parameters [1]

m 10 kg Yv −3.5059 Xu̇ −1.0946 N|r|r −0.2605
Iz 0.6487 Y|v|v −3.9310 Yv̇ −1.0536 α 45◦

Xu −5.6128 Yr −0.0001 Yṙ −1.4353 b 0.26m

X|u|u −2.3136 Nv −0.0001 Nv̇ −1.4353 Nṙ −0.1039

4.1.4 Under Actuated USV Model

For the differential USV model with two thrusters, we implement the outlined model

illustrated in Fig. 4.2. With this outlined model, the force vector τ ua takes the fol-

lowing form,

τ ua =


F1 + F2

0

b(F2 − F1)

 . (4.20)

It is important to note that the placement of thrusters prevents the generation of a force

vector in v direction. In the implementation, we adopted the parameters given in [2]

for inertia, damping and added mass terms. The state vector and the input vector for

the model takes the form q = [x y θ u v r]T and u = [F1 F2]
T , respectively.

T1 T2

F1 F2

Figure 4.2: Placement of thrusters T1 and T2 for underactuated USV model

In the simulations we discretize the continuous nonlinear dynamics of the system

and uniform synchronous sampling of measurements with a sampling frequency of
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Table 4.2: Differential USV Parameters [2]

m 23.8 kg Yv −0.8612 Xu̇ −2.0 N|r|r 0.2605

Iz 1.76 Y|v|v −36.2810 Yv̇ −10 Nṙ −1.0
Xu −0.7225 Yr 0.1079 Yṙ 0

X|u|u −1.3274 Nv 0.1052 Nv̇ 0

fs = 10Hz (or Ts = 0.1s). For this system it is important to note that the linearized

system at the origin is not stabilizable so terminal region and terminal cost matrix

cannot be calculated. In order to control the system and predict its future behavior,

we selected the finite horizon length as Tp = 9s. Note that it is 6 times larger than

the horizon length used for fully actuated USV model. We choose the state and input

matrices, Q and R, for the objective cost function 2.4 as follows,

Q =



5 0 0 0 0 0

0 5 0 0 0 0

0 0 10 0 0 0

0 0 0 2.5 0 0

0 0 0 0 2.5 0

0 0 0 0 0 0.2


, R =

0.01 0

0 0.01

 . (4.21)

We implemented the following state and input constraints to the system,

f(x, y) ≤ c (4.22a)

−2 rad/s ≤ r ≤ 2 rad/s (4.22b)

−0.5m/s ≤ u ≤ 3m/s (4.22c)

−10 N ≤ F1, F2 ≤ 20 N (4.22d)

Equation 4.22a is calculated for each node on the path. Table 4.2 presents the param-

eters used for the differential USV model.
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4.2 CASE 1: Sampling-based Neighborhood Graph and MPC-Graph Compar-

ison

We performed a comparative analysis for the node generation stage of SNG and MPC-

Graph algorithms. We implemented the SNG algorithm with the enhancement pre-

sented in [53].To provide a fair comparison, we performed Monte-Carlo experiments

on 4 different maps (# simulations = 1000, for each map), as illustrated in Fig. 4.3. We

compared the algorithms in terms of sparsity and computational efficiency. Table 4.3

reports the Monte-Carlo simulation results.

In our simulations, we used the termination condition given in (3.2) and conducted

the experiments with α = 0.95 and Pc = 0.95. These values give satisfactory results

in terms of map coverage and computational time. We adopted Map 1 from Yang

and LaValle [53], which is a simple map composed of three polygonal obstacles. In

this map MPC-Graph algorithm generates a more sparse graph compared to SNG al-

gorithm (∼ %55 reduction in # nodes), whereas the SNG creates its random map

faster than the MPC-Graph algorithm (∼ %25 faster). In addition, we tested both

approaches on a more complicated map, Map 2 Fig. 4.3, composed of four polygo-

nal obstacles with a relatively narrow path. In this scenario, while computation times

are comparable to each other (SNG is %10 faster than the MPC-Grapha), MPC-Graph

illustrates a remarkable sparsity performance (∼ %63 reduction in # nodes). Further-

more, in the sampling of the narrow path, MPC-Graph algorithm obtains connected

samples, whereas with the same α and Pc values SNG algorithm is unable to obtain a

connected structure.

In order to provide a fair comparison, we also tested two other maps, Map 3 and Map

4, that are composed of curved (circular, elliptic etc.) obstacles and boundary (in Map

4). Qualitatively, the results are similar to the Maps 1 & 2, in the sense that the MPC-

Graph algorithm generates more sparse graphs with the added cost of computational

efficiency. We believe that offline computational performances of both methods are

comparable, and both techniques provide possible times for real applications. Thus,

due to the sparsity performance of our approach, the MPC-Graph method could be

beneficial and powerful in different robotic applications.
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Table 4.3: Comparative Results of Node Generation

Map Algorithm # Nodes CPU Time

Map 1 SNG 90.85 0.14

MPC-Graph 41.70 0.19

Map 2 SNG 125.60 0.17

MPC-Graph 46.56 0.19

Map 3 SNG 199.51 0.82

MPC-Graph 133.53 1.05

Map 4 SNG 138.63 1.12

MPC-Graph 117.35 1.35
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(a) (b)

(c) (d)

MAP 1

MAP 2

(e) (f)

(g) (h)

MAP 3

MAP 4

Figure 4.3: On the different maps two different sampling based algorithms are tested.

The proposed MPC-Graph algorithm generates 49, 51, 129 and 102 rectangular nodes

in (a), (c), (e) and (g) respectively. SNG algorithm resulted in generating 78, 155, 192

and 148 circular nodes in (b), (d), (f) and (h) respectively.
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4.3 CASE 2: Simulation Results for Linear Fully-Actuated Robot Model

(a)

GOAL

START

(b)

Figure 4.4: (a) Representation of how rectangular regions are connected. Blue arrow

indicates the node in the policy. (b) Execution of the algorithm. Blue line shows the

trajectory that followed by the robot. Note that figure shows only the nodes that are

in the path.

The results presented in this section uses the linear fully actuated robot motion model

given in Section 4.1.1. For illustration, we used a map which has a rectangular shape

with 16m×8m dimensions and U-shaped obstacles. The graph structure and optimal

policy generated by graph search stage can be seen on Fig 4.4(a). Trajectory followed

by the robot is given in Fig. 4.4(b). Velocity and acceleration plots of the robot during

motion control stage are given in Fig 4.5. These figures show that MPC successfully

enforces the constraints on states, q and inputs, u. CPU time of MPC for each iter-

ation for this model is at average tCPU = 0.01s. Fig. 4.5 also illustrates that if the

intersection of two consecutive regions is small, the robot gets close to ref , and hence

slows down before entering the next region. This case is illustrated in Fig. 4.4(b) as

a green region on top-right corner, and correspondingly in Fig. 4.5(a) just before the
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green dotted line.
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Figure 4.5: Velocity (a) and acceleration (b) of the robot for the simulation repre-

sented in Fig. 4.4. Grey vertical dotted lines show where reference, ref , is changed.

Green vertical dotted line corresponds to green region in the upper right corner in

Fig. 4.4(b)

Since MPC-Graph algorithm calculates the policy from all nodes to the goal, if the

robot finds itself in another node other than it is supposed to be in, instead of re-

planning, it can continue by following the policy of this new node. To illustrate this
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situation while robot is passing through the green dot in Fig. 4.6, we instantaneously

moved it to the purple dot. As seen from the figure, the robot could reach the goal

configuration using the same policy but following another path.

GOAL

START

Figure 4.6: Instantaneous disturbance is applied when robot arrives the location rep-

resented by a green dot. As a result new robot location becomes the purple dot. New

trajectory followed by the robot is indicated with the yellow curve.

4.4 CASE 3: Simulation Results for Nonlinear Fully Actuated Robot Model

The results presented in this section uses the robot motion model given in Section 4.1.2.

For the following results, we used MAP 4 provided in Fig. 4.3. First the obstacle-free

region is sampled with rectangular nodes until the termination condition is satisfied

as given in Fig. 4.7(a). As a result of the sampling phase, algorithm generates 99

nodes. Lines 1-8 in Algorithm 1 states this procedure. Then, Dijkstra’s search al-

gorithm executes with previously determined edge cost parameters and calculates an

‘optimal’ policy Po as illustrated in Fig. 4.7(b). Lines 9-13 in Algorithm 1 stands for

this procedure.

After the completion of graph generation phase, motion control phase executes. MPC

navigates the robot from the start location to the goal location while forcing the con-

straints given in equation (4.10). The trajectory followed by the robot and the cal-

culated reference points are visualized in Fig. 4.8. As can be seen from Fig. 4.8,

MPC successfully forces the constraints coming from the boundaries of the rect-

38



START

GOAL

START

GOAL

(a) (b)

Figure 4.7: (a) Node generation phase. As a result 114 nodes are generated. (b) Graph

search phase determines the shortest route consisting of 3 nodes.

angular nodes. CPU time of MPC for each iteration for this model is at average

tCPU = 0.08s.

Figure 4.8: Green curve indicates the trajectory followed by the robot. Pink points

represent the calculated reference points in Algorithm 2.

Fig. 4.9 shows the velocity and acceleration inputs of the robot throughout the sim-

ulation scenario presented in Fig. 4.8. As stated previously, the robot has velocity
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and input limits of 1m/s and 3m/s2, respectively which are indicated as dark dashed

lines in the figure. Plots presented in Fig.4.9 conclude that MPC can force state and

input constraints imposed on the system.
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Figure 4.9: Velocity (a) and acceleration input (b) of the robot for the simulation

presented in Fig. 4.8. Dark dashed lines represent the constraints implemented on

velocity and input values.
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4.5 CASE 4: Simulation Results for Fully Actuated USV Model

This section reports the results of the proposed MPC-Graph algorithm applied on the

robot motion model given in Section 4.1.3.

4.5.1 Performance Without Process Noise

START

GOAL

START

GOAL

(a)

(b)

Figure 4.10: (a) Node generation phase. As a result 114 nodes are generated. (b) The

calculated optimal route consists of 14 nodes.

In this simulation scenario, we used a map that consists of 4 obstacles. In the graph

generation phase a total of 114 nodes are generated. In order to show the ability

of the controller to force the constraints coming from boundaries of the rectangular

nodes, we replaced the goal node with a smaller square region. With this approach

we also aim to show the docking performance of the algorithm. After the execution

of Dijkstra’s search algorithm the optimal route consists of 14 nodes. Fig. 4.10(a)
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and (b) visualizes the obtained rectangular regions and the node set that constitutes

the followed route by the robot, respectively.

Figure 4.11: Green curve indicates the trajectory followed by the robot. Pink points

represent the calculated reference points. Red arrows show the calculated target frame

T orientations in positive xt direction.

Fig. 4.11 shows the route followed by the robot and the calculated reference points

with target orientations. Red arrows are the positive xt directions for the target frames

T . From the figure it can be concluded that robot obeys the constraints coming from

the boundaries of the sampled rectangular regions. Even in the smaller goal region (∼
24 times smaller with respect to the average size of the nodes in Po) robot approaches

to goal point smoothly by considering the dynamics and the imposed constraints on

the system.

Plot presented in Fig. 4.12(a) shows the forces F1, F2, F3, F4 calculated in the motion

control phase. In order to simulate a realistic system, we set upper and lower bounds

20N and −20N for the input forces, respectively. Dashed black lines in the figure

indicate these constraints. Furthermore, we also added velocity constraints on the

system. For the surge speed u, we set upper and lower constraints as 1.5m/s and

−1.5m/s, respectively. For the angular rate r, we set upper and lower constraints as

1rad/s and −1rad/s, respectively. In Fig. 4.12(b) the imposed constraints on surge

speed and angular rate are indicated with black and green dashed lines, respectively.

It can be inferred from the figures that MPC can force both state and input constraints

successfully.
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CPU time of MPC for each iteration for this model is at average tCPU = 0.32s.

In Fig. 4.11 it can be seen that start location is close to the first reference point,

thus initial cost value is approximately zero. Since robot starts its motion from the

intersection area of the first two nodes, the second reference point becomes the next

target and as a result cost value increases instantaneously at the start of the simulation.
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Figure 4.12: (a) Applied thruster input forces F1, F2, F3, F4 to the system. Dark

dashed lines indicate upper and lower constraints for the input. (b) Surge speed u

and angular rate r of the robot for the simulation presented in Fig. 4.11. Black and

green dashed lines correspond to the constraints for surge speed and angular rate,

respectively.
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4.5.2 Performance in the Presence of Process Noise

(a)

(b)

Figure 4.13: Obtained trajectories from Monte-Carlo experiments in the presence of

process noise. (a) Successful trajectories ended up in goal point. (b) Red trajectories

resulted in a collision with the obstacles or arrival to the outside the limits of the

arena. Blue trajectories resulted in arrival of the robot to unsampled regions.

In order to analyze the performance of MPC-Graph algorithm in the presence of

process noise, we added random noise (SNR=1) to the calculated thruster forces,

u = [F1 F2 F3 F4]
T . We performed Monte-Carlo experiments (# simulations = 1000)

on the same map with the same nodes and plot the trajectories followed by the robot.

We determine an input saturation limit of F = 25N for the thrusters. From 1000

Monte-Carlo experiments, in 20 of them (= % 2 of the simulations) robot failed to

reach goal location due to process noise. Failures include the cases in which robot

ends up in an unsampled region, outside the limits of the arena or inside the obsta-
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cles. From 1000 Monte-Carlo experiments in 12 of them (= % 1.2 of the simulations)

robot ended up in an unsampled region and in 8 of them (= % 0.8 of the simulations)

robot had a collision with an obstacle or ended up outside the limits of the arena.

Fig. 4.13(a) and (b) visualizes the successful and failed attempts for reaching the goal

point, respectively.

If robot ends up in a different node than the CurrentNode due to process noise, al-

gorithm generates another route taking into account the previously determined policy

Po. Note that policy Po includes all possible ‘optimal’ paths starting from any ar-

bitrary node to the goal node. To have a fair comparison with the case that does not

include process noise, we used the same map with the same rectangular nodes.

From 12 experiments in which robot ended up in an unsampled region, with the im-

plementation of resampling procedure robot can recover from 4 of the failure cases

and reach the goal location. In Fig. 4.14 red routes show the trajectories followed

by the robot and darker nodes represent the newly generated nodes after resampling

procedure.

In Fig. 4.15(a) red and dashed blue trajectories indicate the routes followed by the

robot in the presence of process noise and without noise, respectively. Fig. 4.15(b)

shows the thruster forces and process noise applied on each thruster. Even in the

presence of high level noise, in %98.4 of the experiments fully actuated USV model

reaches the goal location. Obtained results indicate that MPC is an effective controller

for handling the high noise scenarios.

Figure 4.14: Red curves indicate the routes followed by the robot and darker nodes

represent the newly generated nodes after resampling procedure.
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Figure 4.15: (a) Red trajectory indicates the followed route in the presence of process

noise. Dashed blue trajectory indicates the followed trajectory without the process

noise. (b) Plots show the calculated forces and applied forces on each thruster. Black

dashed lines indicate the saturation limits for the thrusters.
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4.6 CASE 5: Simulation Results for Differential USV Model

This section reports the results of the proposed MPC-Graph algorithm applied on the

robot motion model given in Section 4.1.4.

4.6.1 Performance Without Process Noise

In this simulation scenario, we used a map that resembles a parking area. In the

graph generation phase a total of 75 nodes are generated. After the execution of

Dijkstra’s search algorithm the ‘optimal’ route consists of 8 nodes. Fig. 4.16(a) and

(b) visualizes the obtained rectangular regions and the node set that robot navigates

in, respectively.

START

GOAL

START

GOAL

(a)

(b)

Figure 4.16: (a) Node generation phase. As a result 75 nodes are generated. (b) Graph

search phase determines the shortest route consisting of 8 nodes.
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Figure 4.17: Green curve indicates the trajectory followed by the robot. Pink points

represent the calculated reference points. Red arrows show the calculated target frame

T orientations in positive xt direction.

Fig. 4.17 illustrates the path followed by the robot and calculated reference points

with target orientations. Red arrows are the positive xt directions for the target frames

T . From the figure it can be inferred that robot obeys the constraints coming from the

boundaries of the rectangular areas.

Plot presented in Fig. 4.18(a) shows the forces F1, F2 calculated in the motion control

phase. In order to simulate a realistic system, we set upper and lower bounds 20N and

−10N for the input forces, respectively. In order to restrict the backward motion of

the vehicle, we set the lower limit for the thruster forces to be −10N . Dashed black

lines in the figure indicate these constraints. Furthermore, we also added velocity

constraints on the system. For the surge speed u, we set upper and lower constraints

as 3m/s and −0.5m/s, respectively. For the angular rate r, we set upper and lower

constraints as 2rad/s and −2rad/s, respectively. In Fig. 4.18(b) the imposed con-

straints on surge speed and angular rate are indicated with black and green dashed

lines, respectively. It is important to note that, linearized differential USV model is

not stabilizable thus it is not possible to determine a terminal region and a terminal

cost matrix for this system. Although the stability is not guaranteed for differential

USV model, with the adjusted MPC parameters, controller can drive the system to

goal location while obeying the imposed constraints. CPU time of MPC for each

iteration for this model is at average tCPU = 2.04s.
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Figure 4.18: (a) Applied thruster input forces F1, F2 to the system. Dark dashed lines

indicate upper and lower constraints for the input. (b) Surge speed u and angular rate

r of the robot for the simulation presented in Fig. 4.17. Black and green dashed lines

correspond to the constraints for surge speed and angular rate, respectively.
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4.6.2 Performance in the Presence Process Noise

(a)

(b)

Figure 4.19: Obtained trajectories from Monte-Carlo experiments in the presence of

process noise. (a) Successful trajectories ended up in goal point. (b) Red trajectories

resulted in a collision with the obstacles or arrival to the outside the limits of the

arena. Blue trajectories resulted in arrival of the robot to unsampled regions.

In order to analyze the performance of MPC-Graph algorithm in the presence of

process noise, we added random noise (SNR=1) to the calculated thruster forces,

u = [F1 F2]
T . We performed Monte-Carlo experiments (# simulations = 1000) on the

same map with the same nodes and plot the trajectories followed by the robot. We

determine an input saturation limit of F = 25N for the thrusters. From 1000 Monte-

Carlo experiments, in 332 of them (= % 33.2 of the simulations) robot failed to reach

goal location due to process noise. Failures include the cases in which robot ends up

in an unsampled region, outside the limits of the arena or inside the obstacles. From
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1000 Monte-Carlo experiments in 108 of them (= % 10.8 of the simulations) robot

ended up in an unsampled region and in 224 of them (= % 22.4 of the simulations)

robot had a collision with an obstacle or ended up outside the limits of the arena.

Fig. 4.19(a) and (b) visualizes the successful and failed attempts for reaching the goal

point, respectively.

If robot ends up in a different node than the CurrentNode due to process noise, al-

gorithm generates another route taking into account the previously determined policy

Po. To have a fair comparison with the case that does not include process noise, we

used the same map with the same rectangular nodes.

From 108 experiments in which robot ended up in an unsampled region, with the im-

plementation of resampling procedure robot can recover from 44 of the failure cases

and reach the goal location. In Fig. 4.20 red routes show the trajectories followed

by the robot and darker nodes represent the newly generated nodes after resampling

procedure.

In Fig. 4.21(a) red and dashed blue trajectories indicate the routes followed by the

robot in the presence of process noise and without noise, respectively. Fig. 4.21(b)

shows the thruster forces and process noise applied on each thruster. Even in the

presence of high level noise, in %71.2 of the experiments differential USV model

reaches the goal location.

Figure 4.20: Red curves indicate the routes followed by the robot and darker nodes

represent the newly generated nodes after resampling procedure.
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Figure 4.21: (a) Red trajectory indicates the followed route in the presence of process

noise. Dashed blue trajectory indicates the followed trajectory without the process

noise. (b) Plots show the calculated forces and applied forces on each thruster. Black

dashed lines indicate the saturation limits.
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4.7 Time Complexity and Comparison of Results

We implemented MPC-Graph algorithm on four different motion models. Table 4.4

shows the CPU times for each iteration of MPC with respect to the implemented

motion models. The CPU time for the graph search phase is independent of the

motion model and is at average tCPU = 0.3s.

Table 4.4: Time Complexity of MPC-Graph Algorithm

Motion Models CPU Time

Linear Model 0.01s

Nonlinear Fully

Actuated
0.08s

Fully Actuated

USV
0.32s

Differential USV 2.04s

In our simulations we mainly focus on the capabilities of MPC-Graph algorithm ap-

plied on realistic robot motion models. For this reason we constructed simulation

scenarios concerning the behaviors of a fully actuated and differential USV motion

models. Results show that fully actuated USV has a failure rate of %1.6 whereas

differential USV has a failure rate of %28.8 if process noise is applied on the sys-

tem. One of the main reasons for this difference is that since differential USV cannot

generate a force vector in order to control its motion in v direction, it cannot recover

from its faulty behavior after a certain point. One of the solutions to decrease the

failure rates can be increasing the horizon length Tp. Also at certain times throughout

the simulation significant process noise is applied on the system as can be seen from

Fig. 4.21 and Fig. 4.15. In real world applications the noise level is not expected

to reach these values. In order to eliminate the failures coming from robots arrival

at unsampled regions, we added an improvement to the MPC-Graph algorithm. With

this improvement failures coming from robots ending up in an unsampled regions can
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be decreased. However, robot usually ends up in small unsampled regions close to

obstacles which makes it difficult to generate appropriate inputs to avoid collisions

with obstacles.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we proposed a new sampling-based trajectory free motion planning al-

gorithm, MPC-Graph, that can be applied to systems that have linear or nonlinear

dynamics with guaranteed asymptotic stability as long as it is provided that the Ja-

cobian linearization of the dynamic system at origin is stabilizable. The algorithm

first generates a sparse graph structure by randomly sampling the obstacle-free space

with overlapping rectangular nodes. The sampling process continues until the defined

termination condition is satisfied. Then, Dijkstra’s search algorithm executes to find

the ‘optimal’ route connecting start and goal locations. Dijkstra’s search algorithm

also returns policy Po that gives a route from any node in the graph to the goal node.

After determination of the optimal path, MPC guides the robot to the goal location.

In this work, we adopted quasi-infinite MPC framework of [28]. The implemented

MPC approach ensures that robot stays inside the boundaries of the sampled nodes

and satisfies the state and input constraints forced on the system.

During the implementation of the algorithm we observed that, if the intersection areas

of the two consecutive nodes drops below a certain value in order to guarantee that

robot stays inside the intersection area, MPC generates small inputs close to zero and

thus robot gets stuck in this area. To avoid this problem we generated the edge cost

given in (3.4). With this approach Dijkstra’s search algorithm determines a route not

only the shortest but has the largest intersection areas.

We implemented and tested our algorithm with Monte-Carlo experiments in Matlab.

We generated 2D maps with both convex and concave obstacles. As a first approach
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we compared the sampling performance our algorithm with the work of Yang et al. [3]

and observed that our method generates a more sparse graph with a comparable CPU

time. We tested our algorithm on robot motion models with gradually increasing

nonlinearity. As a first approach we used a linear system model and observed that

MPC satisfies the constraints forced on the system and drives the robot to the goal

location. As a second approach we used a simple nonlinear system model with drag

friction. In order to guarantee asymptotic stability we calculated terminal region and

terminal cost matrix. Finally, we implemented a fully actuated and differential USV

models which include rigid body dynamics, added mass effects, linear and nonlinear

damping by using the dynamic model presented in [52].

Towards showing the robustness of the algorithm, we run Monte-Carlo simulations

in the presence of process noise for USV models. Due to noise, in some cases robot

ended up in a different node than its current node. Since Po determines the connection

between any other node to the goal node, another route for the robot can be easily

established. This is one of the benefits that using a graph structure provides. Also, in

the presence of noise in several experiments robot ended up in unsampled region. For

those situations we generated new nodes and added them to the previously obtained

graph structure. Our results show that even in the presence of high level noise MPC

can drive the robot to the goal location in most of the simulations.

5.2 Future Work

In this work, we tested our algorithm on a differential USV model without guaran-

teed asymptotic stability. In the future, we are planning to extend our approach to

guarantee the stability of the under-actuated systems. Results presented in this work

is currently limited to simulation results. As a future direction, we want to test our

algorithm on real world applications.

MPC-Graph algorithm is currently implemented for 2D navigation but it can be gen-

eralized to include higher dimensional spaces. For example, in 3D environments,

prismatic zones can be generated to cover the obstacle-free space. With this improve-

ment algorithm can be used by robotic systems that operate in 3D spaces such as
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quadrotors.

One of the drawbacks of using MPC is the high computational cost. We should further

decrease the CPU time for the MPC-Graph algorithm to apply the algorithm in less

powerful embedded platforms. Several researchers [54,55] proposed different solvers

that can reduce the computation time for MPC based control policies. We are planning

to adopt a similar approach to reduce the CPU time of our algorithm, and hence

improve the applicability of the algorithm in a wide range of robotic applications.
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