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Abstract

Secure key distribution between communicating parties is important in encryption using

symmetric keys. The advance of quantum computers is expected to make some key distri-

bution schemes obsolete. Quantum key distribution is one of the main approaches taken in

order to achieve security against quantum computers. This term project examines the BB84

Protocol, which is the first quantum key distribution protocol, and the recent developments

in quantum key distribution.

Öz

Güvenli anahtar değişiminin sağlanması simetrik anahtar ile şifrelemede önemli bir konudur.

Kuantum bilgisayarların geliştirilmesiyle günümüzde kullanımda olan sistemlerin güvenlik

ihtiyacını karşılamayacağı değerlendirilmektedir. Bu doğrultuda öne çıkan önemli bir araştırma

konusu kuantum anahtar değişimidir. Bu bitirme projesi, ilk kuantum anahtar değişimi pro-

tokolü olan BB84 Protokolünü ve kuantum anahtar paylaşımında son dönemde meydana

gelen gelişmeleri ele almaktadır.
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Chapter 1

INTRODUCTION

Encryption has been an important part of security in message transfer for ages. The most

well known early ciphers are the Cesarean Cipher and the Vernam Cipher.

In the modern day, there have two kinds of encryption.

• Symmetric key encryption

• Asymmetric key (public key) encryption

The differences, as can be derived from the names, lies in how the keys are used.

In symmetric encryption, the sender and receiver (from now on they may be called Alice and

Bob) share a common key to encrypt and decrypt a message. This can be shown as:

Ek(M) = C, Dk(C) =M

in which M represents the message being sent, or in other words, the Plaintext, and C

symbolizes the encrypted text, which is known as the Ciphertext. The symbol k is used for

the key.

In asymmetric cryptography on the other hand, Alice and Bob have a set of two keys.

One of the keys is public, the other one is private. They communicate through the use

of mathematics, mostly depending on the hardness of factorization or discrete logarithm

problems.

This paper deals with symmetric key cryptography. It’s crucial that the keys are kept secret.

Hence, an important aspect in this kind of encryption is how the common keys are shared

between Alice and Bob. There are various protocols to achieve this in public networks, in

which either symmetric keys or public keys are used. [1][6]
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These protocols usually involve a trusted server. Another solution is quantum key distribu-

tion. The transfer of symmetric keys between two communicating parties depends on the

hardness of mathematical problems. Therefore, they are only computationally secure. This

means that if a better algorithm was developed to solve that problem or if an adversary had

access to faster computation powers, such as quantum computers, then the cipher would be

broken. Quantum Key Distribution (QKD) on the other hand, relies not on the hardness

of problems, but the properties of quantum mechanics. The security of classical key sharing

schemes cannot be proven, while QKD is information theoretical security.

Shor’s algorithm is well known in the cryptography community and it is believed that its fast

method in factoring large numbers may be used to break RSA with a quantum computer.

It would take 8 hours to brake a 2048-bit RSA with a quantum computer that has 20

million qubits. Currently, Google’s Sycamore computer has 53 qubits. In October 2019,

Google announced that they achieved ’quantum supremacy’ in which Sycamore computed a

calculation in 300 seconds, which would have taken 10.000 years in a classical computer. IBM

later rebuted these claims by stating that the same task could be achieved with a classical

computer with more disk storage in 2.5 days. [34] It is expected to take about a decade or

two to reach a level of computation to break RSA in life-time. [33]

In order to achieve security against quantum computers two approaches may be taken: to

develop algorithms that are quantum-resistant or to use quantum key distribution. This

report examines the latter method.

There are various protocols regarding quantum key distribution. This report will focus on

the BB84 Protocol.

BB84 is the first quantum key distribution protocol, and it is still in use today. The BB84

Protocol was founded by Charles Bennett and Gilles Brassard in 1984.

The structure of the report is as follows. After the introduction, the second section will

introduce the concepts of quantum mechanics and familiarise the reader with the principles

of quantum mechanics that are important to understand the BB84 Protocol. It details the

concepts of the superposition principle, the Heisenberg uncertainty principle, the no-cloning

theorem and entanglement. The third section will detail the implementation of the BB84

protocol and elaborate on its security and real life implementation. The fourth section will

summarise the recent experiments regarding QKD, focusing primarily on the trials that use

the BB84 protocol. The fifth section will close with a conclusion regarding QKD.
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Chapter 2

QUANTUM MECHANICS FOR

CRYPTOGRAPHY

2.1 Some Preliminaries

Quantum Mechanics uses linear algebraic operations.

A set with operations addition and multiplication by a scalar R is called a vector space V .

Its elements are vectors v⃗, represented by a column

v⃗ =

v1...
vR

 (2.1)

Dirac’s notation is used to show elements of a vector space. Any vector is denoted by a ket,

as

|v⟩ =

v1...
vn

 , vi ∈ C (2.2)

A bra on the other hand, is defined as:

⟨v| = (v∗1, v
∗
2, . . . , v

∗
n), v∗i ∈ C (2.3)

Quantum Mechanics deals with complex vector spaces.
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The set of n linearly independent kets |vi⟩, spanning V , is called the basis of V .

B = {|vi⟩ , i = 1, ..., n} (2.4)

The number n is called the dimension of V . It might be infinite, such as the Hilbert

space.

Let V be a complex, finite dimensional vector space on C. If Â is a linear operator, and

Â |v⟩ = λ |v⟩ , v ∈ V (2.5)

then the complex number λ is called the eigenvalue of Â corresponding to the eigenket |v⟩.
Equation 2.5 is called the eigenvalue equation. It is a straightforward procedure to determine

eigenkets and eigenvalues of Â, using the characteristic equation.

det(Â− λI) = 0

where Â is an nxn matrix and λ ∈ C.

Solutions of the characteristic equation determine eigenvalues λi. Eigenkets are deter-

mined using Equation 2.5. Theoretically, characteristic equation has at least one complex

root.

If some of the eigenvalues repeat, then they are called degenerate.

We will mostly deal with Hermitian operators (Â = Â†). If an observable is Hermitian,

its eigenvectors are orthonormal and they are basis vectors that span the vector space.

Hermitian operators have real eigenvalues.

We will also use the expectation values for operators. The expectation value is the expected

value of a measurement with their probabilities taken in to account. In order to find the

average value, we first find the eigenvalues and eigenvectors of the given operator since the

average value of A is given by:

⟨A⟩ψ = ⟨ψ|A|ψ⟩ =
∑
j

aj|⟨ψ|φj⟩|2

in which φj’s are the eigenvectors and ai’s are the eigenvalues of A.

In quantum mechanics, Pauli’s spin matrices, which are three 2x2 matrices, σ̂x, σ̂y, σ̂z, are

extensively used. The matrices σ̂x and σ̂z will be used in the BB84 Protocol.

σ̂x =

[
0 1

1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0

0 −1

]
(2.6)

6



2.2 The Superposition Principle

Measurement of an observable Â on the ket |ψ⟩ (State), gives one of the eigenvalues of Â

and leaves the state in the eigenket corresponding to the specific eigenvalue of Â, i.e., the

ket |a⟩. So,

Before After

|ψ⟩ |a⟩ (2.7)

This is called the collapse of the state |ψ⟩ into a definite eigenstate |a⟩. In other words,

measurement disturbs the system. This type of measurement is called the projective mea-

surement.

The quantum mechanical ”state” of a physical system at any instant of time may be rep-

resented by a ket |ψ(r⃗, t)⟩ or wave function, which is continuous and differentiable. To

determine it, we use the Hilbert space of eigenkets of maximum number of commuting op-

erators. The state |ψ(r⃗, t)⟩ is a complex function and does not have a physical meaning,

but

∥|ψ(r⃗, t)⟩∥2 (2.8)

has a physical meaning. It gives the probability density of finding the system at r⃗, at time

t.[4]

Quantum mechanics is a probabilistic theory. Measurements do not always give definite

results. The measurement procedure is completely different than classical mechanics. To

make a quantum mechanical measurement one should prepare many identical states to be

observed, then make measurements on each state, obtain eigenvalues and then calculate the

probability. This is called the Born interpretation. [4]

The superposition principle states that if |ψ⟩ and |φ⟩ are two states of a quantum system,

then any superposition α |ψ⟩ + β |φ⟩ should also be an allowed state of a quantum system,

in which |α|2 + |β|2 = 1.

Assume that we have the common eigenstates of maximum number of commuting operators.

Then one can construct an orthonormal basis

B = {|φi, i = 1, ...⟩}
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for these states, and any ket |ψ(r⃗, t)⟩ can be expressed as

|ψ(r⃗, t)⟩ =
∑
i

ci |φi⟩ , ci ∈ C (2.9)

Notice that, 2.9 is a solution for all ci. [4]

In addition, we can say:

⟨ψ, ψ⟩ = ∥|ψ⟩∥2 =
∑
i

c∗i
〈
φi|

∑
j

cj|φj
〉

(2.10)

⟨ψ, ψ⟩ =
∑
i,j

c∗i cj ⟨φi, φj⟩ =
∑
i

c∗i ci =
∑
i

|ci|2 (2.11)

where ⟨φi, φj⟩ = δij.

Thus, if the state ket |ψ⟩ is normalized, i.e,

⟨ψ, ψ⟩ = 1 =
∑
i

|ci|2 (2.12)

The expansion coefficients absolute square |ci|2 is interpreted as the probability to measure

the eigenvalue corresponding to the eigenket |φi⟩.

Notice that the total probability is 1.

In other words, it is possible to measure any of the eigenvalues after measurement.

For a general ket:

ci = ⟨φi, ψ⟩ (2.13)

We can also use another formula to compute the probability of making a certain measure-

ment. First, we define the projection operator. The projection operator P̂k is defined as the

outer product of the state |vk⟩:
P̂k = |vk⟩ ⟨vk| (2.14)

The properties of the projection operator are:[4]

1. P̂k
2
= P̂k

2. P̂kP̂j = 0 if k ̸= j
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3.
∑n

k=1 P̂k = I

From these properties, projection operators are Hermitian, therefore P †
k = Pk.

If we have eigenstates |φi⟩, then the projective measurement can be defined as:

P̂i = |φi⟩ ⟨φi|

It is easy to see that since ci = ⟨φi, ψ⟩, c∗i = ⟨ψ, φi⟩. This means |ci|2 = ⟨ψ|Pi|ψ⟩. From

the first property of the projection operators and the fact that they are Hermitian, we can

write:

|ci|2 = ⟨ψ|Pi|ψ⟩ = ⟨ψ|P 2
i |ψ⟩ = ⟨ψ|P †

i Pi|ψ⟩ (2.15)

Therefore, we can write the probability to measure an outcome i (an eigenvalue) as:

p(i) = ⟨ψ|P †
i Pi|ψ⟩ (2.16)

To any self-consistently and well defined observable (position, energy, momentum) A, there

exists a linear, Hermitian operator Â acting on a Hilbert space such that the measurement

of that specific observable gives one of the eigenvalues of Â. The main problem of quantum

mechanics is to determine a Hilbert space such that it is the eigenspace of maximum number

of commuting operators (matrices) used in quantum computing.[4]

Another important concept in quantum mechanics is phase. Phase can refer to different

things depending on context. If we consider the state eiθ |ψ⟩, this is actually equivalent

to the state |ψ⟩ and eiθ is the global phase factor. We can show that the global factor

does not change the measurement of the state. Using 2.16, we can show that for state

|ψ⟩ , p(i) = ⟨ψ|P †
i Pi|ψ⟩. If we calculate the probability for the state eiθ |ψ⟩, we have

p(i) = ⟨ψ|e−iθP †
i e

iθPi|ψ⟩. Due to e−iθeiθ = 1, the probabilities are equal. This means the

measurement was not affected by the global phase factor. [2]

Another phase definition is the relative phase. Consider the states 1√
2
(|0⟩+ |1⟩) and 1√

2
(|0⟩−

|1⟩). The amplitudes are different in this case, differing only in sign. A relative phase is

defined as when the amplitudes α and β can be written as α = eiθβ, in which θ is a real

number. The difference between relative phase and global phase is that relative phase is

base-dependent, while global phase is not. This means that two states with differing relative

phase cannot be accepted as physically having the same properties and they have different

measurement statistics. [2] This can be used in variations of BB84 that uses entangle-

ment.

9



2.3 The Heisenberg Uncertainty Principle

Theorem 1. If two operators Â and B̂ commute, i.e., [Â, B̂] = ÂB̂ − B̂Â = 0, then they

have a set of non-trivial common eigenstates.

If they do not commute, i.e [Â, B̂] = Ĉ, then

∆Â∆B̂ ≥ 1

2

∣∣∣⟨ψ|Ĉ|ψ⟩∣∣∣ (2.17)

with respect to any state |ψ⟩. Here,

∆Â ≡ Standard deviation in measuring Â

∆B̂ ≡ Standard deviation in measuring B̂

∆Â is defined as

[∆Â]2 = ⟨Â2⟩ − (⟨Â⟩)2 (2.18)

The equation 2.17 is the Heisenberg inequality.

Proof: Suppose we have two Hermitian operators Â and B̂. Their expectation values are

⟨Â⟩ = ⟨ψ|Â|ψ⟩ and ⟨B̂⟩ = ⟨ψ|B̂|ψ⟩. Since both Â and B̂ are Hermitian operators, their

expectation values are real numbers.

We also have two values, the commutator [A,B] and the anti-commutator {A,B} of Â and

B̂ defined as ÂB̂ − B̂Â and ÂB̂ + B̂Â respectively.

We define σA = Â − Î⟨Â⟩. This is defined such that ⟨σ2
A⟩ is defined as the mean square

deviation in statistics and (∆Â)2 = ⟨σ2
A⟩ = ⟨Â2⟩ − ⟨Â⟩2. Therefore, standard deviation in

measuring Â is defined as ∆Â =
√

⟨σ2
A⟩. [25]

Now we will introduce the Cauchy-Schwarz inequality. [25]

Let |Φ⟩ = |ψ⟩+ α |φ⟩
⇒ ⟨Φ,Φ⟩ = (⟨ψ|+ α∗ ⟨φ|)(|ψ⟩+ α |φ⟩)

= ⟨ψ, ψ⟩+ α⟨ψ, φ⟩+ α∗⟨φ, ψ⟩+ |α|2⟨φ, φ⟩ ≥ 0

This inequality holds for any α, so we can choose α = − ⟨φ,ψ⟩
⟨φ,φ⟩ ∈ C

= ⟨ψ, ψ⟩ − ⟨φ, ψ⟩
⟨φ, φ⟩

+

(
− ⟨φ, ψ⟩

⟨φ, φ⟩

)∗

⟨φ, ψ⟩+
∣∣∣∣⟨φ, ψ⟩⟨φ, φ⟩

∣∣∣∣2⟨φ, φ⟩ ≥ 0
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We have ⟨φ, ψ⟩∗ = ⟨ψ, φ⟩ and |⟨φ, ψ⟩|2 = ⟨φ, ψ⟩⟨ψ, φ⟩

⇒ ⟨ψ, ψ⟩ − |⟨φ, ψ⟩|2

⟨φ, φ⟩
− |⟨φ, ψ⟩|2

⟨φ, φ⟩
+

|⟨φ, ψ⟩|2

⟨φ, φ⟩
≥ 0

⟨ψ, ψ⟩⟨φ, φ⟩ − |⟨φ, ψ⟩|2 ≥ 0

⟨ψ, ψ⟩⟨φ, φ⟩ ≥ |⟨φ, ψ⟩|2 (2.19)

Let’s define |ψA⟩ = σA |ψ⟩ and |ψB⟩ = σB |ψ⟩ From (2.19) we have:

⟨ψA, ψA⟩⟨ψB, ψB⟩ ≥ |⟨ψA, ψB⟩|2 (2.20)

⟨ψA, ψA⟩ = ⟨ψ|σ†
AσA|ψ⟩ = ⟨ψ|σ2

A|ψ⟩ = ⟨σ2
A⟩

⟨ψB, ψB⟩ = ⟨ψ|σ†
BσB|ψ⟩ = ⟨ψ|σ2

B|ψ⟩ = ⟨σ2
B⟩

⟨ψA, ψB⟩ = ⟨ψ|σAσB|ψ⟩ = ⟨σAσB⟩

From (2.20) we have:

⟨σ2
A⟩⟨σ2

B⟩ ≥ ⟨σAσB⟩

From the definition of the commutator and the anti-commutator we have:

σAσB =
1

2
[σA, σB] +

1

2
{σA, σB} (2.21)

[σA, σB] = (Â− ⟨Â⟩)(B̂ − ⟨B̂⟩)− (B̂ − ⟨B̂⟩)(Â− ⟨Â⟩) = ÂB̂ − B̂Â = [Â, B̂] (2.22)

Next, we try to find ⟨σAσB⟩.

Using (2.22) in (2.21), we have:

σAσB =
1

2
[Â, B̂] +

1

2
{σA, σB}
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⟨σ2
A⟩⟨σ2

B⟩ ≥ |⟨σAσB⟩|2 =
∣∣∣∣12⟨[Â, B̂]⟩+ 1

2
⟨{σA, σB}⟩

∣∣∣∣2 (2.23)

Now we will show that∣∣∣∣12⟨[Â, B̂]⟩+ 1

2
⟨{σA, σB}⟩

∣∣∣∣2 = ∣∣∣∣12⟨[Â, B̂]⟩
∣∣∣∣2 + ∣∣∣∣12⟨{σA, σB}⟩

∣∣∣∣2 (2.24)

This is due to the fact that the commutator of Hermitian operators is anti-Hermitian and

hence the expectation value is an imaginary number, while the anti-commutator of Hermitian

operators are Hermitian, hence the expectation value is a real number. We will show this

below.

For any Hermitian Â and B̂, we have

[A,B]† = (ÂB̂ − B̂Â)† = B̂†Â† − Â†B̂† = B̂Â− ÂB̂ = −[A,B] (2.25)

{A,B}† = (ÂB̂ + B̂Â)† = B̂†Â† + Â†B̂† = B̂Â+ ÂB̂ = {A,B} (2.26)

Let Â† = −Â, then ⟨Â⟩∗ = ⟨ψ|Â|ψ⟩∗ = ⟨ψ|Â†|ψ⟩

= −⟨ψ|Â|ψ⟩ = −⟨Â⟩

This means from (2.25) that ⟨[A,B]⟩∗ = −⟨[A,B]⟩, which means it’s an imaginary value.

From (2.26) ⟨{A,B}⟩∗ = ⟨{A,B}⟩, meaning it’s a real value.

Hence, as stated 2.23 can be written as:

⟨σ2
A⟩⟨σ2

B⟩ ≥
∣∣∣∣12⟨[Â, B̂]⟩

∣∣∣∣2 + ∣∣∣∣12⟨{σA, σB}⟩
∣∣∣∣2

⟨σ2
A⟩⟨σ2

B⟩ ≥
∣∣∣∣12⟨[Â, B̂]⟩

∣∣∣∣2

∆Â∆B̂ ≥ 1

2
|⟨[A,B]⟩|

This completes our proof.
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Heisenberg’s Uncertainty Principle tells us that simultaneous measurement of two non-

commuting observables is impossible as there is a lower limit given by the principle. If

one makes two projective measurements of non-commuting observables at the same time,

one cannot measure both of them with certainty. This is only valid in quantum mechanics.

Classical physics does not have such a restriction.

If observables commute, then they have common eigenstates with different eigenvalues. Then

simultaneous measurement is possible.

The importance of the Heisenberg principle tells us that one cannot simultaneously measure

a state with two non-commuting observables. We know that when a state |ψ⟩ is measured,

it collapses into one of the observer’s eigenstates. Two non-commuting observables will have

different eigenstates, while commuting observables have the same eigensates for different

eigenvalues. If the state |ψ⟩ is measured simultaneously by two non-commuting states A

and B, it will collapse to an eigenstate of A with a probability given in 2.9. When the

measurement with B is performed, it collapses in to an eigenstate of B. When measured by

A again, we get different outcomes, with the given probabilities. Therefore, we can say that

the measurement of a state by non-commuting observables disturbs one another.

We can give an example to this as follows. Suppose we have two observables and they have

the following eigenstates: |0⟩ and |1⟩ for one observable (σ̂z) and

[
1

1

]
and

[
1

−1

]
for the

other observable σ̂x. We suppose we first measure the state |0⟩ with σ̂z, then σ̂x and then

σ̂z again.

In our first measurement we get |0⟩, with probability 1 as |0⟩ is an eigenstate of σ̂z and

|⟨(1, 0), (1, 0)⟩|2 = 1.

As can be seen, the state |0⟩ collapses in to one of the eigenstates of σ̂z, which is also |0⟩, so
we have an exact measurement.

Now, we measure this resulting state with σ̂x. Since the observable σx has eigenstates
1√
2

[
1

1

]

and 1√
2

[
1

−1

]
, the state collapses in to 1√

2

[
1

1

]
with a probability of

∣∣∣⟨(1, 0), 1√
2
(1, 1)⟩

∣∣∣2 = 1
2

and 1√
2

[
1

−1

]
with a probability of

∣∣∣⟨(1, 0), 1√
2
(1,−1)⟩

∣∣∣2 = 1
2
. Since they have equal proba-

bility, we can suppose that the resulting state was 1√
2

[
1

−1

]
. Now, we measure once more

with σ̂z.
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When measured by σ̂z, the state we have either collapses to |0⟩ or |1⟩. The probabilities of

each are as follows.
∣∣∣⟨ 1√

2
(1,−1), (1, 0)⟩

∣∣∣2 = 1
2
. This means there is a 1

2
probability of getting

|0⟩ and 1
2
probability of the result being |1⟩. This means the system was disturbed as in our

first measurement of |0⟩ with σ̂z we had a 100% chance of the state collapsing to |0⟩, while
after simultaneous measurements it is only 50%.

More succinctly, the Heisenberg uncertainty principle tells us that if Â and B̂ are non-

commuting observables, the accuracy of their simultaneous measurement is limited. ∆Â∆B̂

is the Heisenberg inequality. Accurate simultaneous measurement of Â and B̂ is impossible

with non-commuting observables and increasing accuracy in one observable results in the

diminishing accuracy of the other. This will be important in the security of the BB84

Protocol.

2.4 The No-Cloning Theorem

The no-cloning theorem was discovered in the early 1980s and is one of the earliest results

of quantum computation and quantum information. It is one of the differences between

classical and quantum information.

The no-cloning theorem tells us that it is not possible to clone a qubit in an unknown

state. To be more precise, it is not possible to build a device that copies two non-orthogonal

states.

We will present two proofs for no-cloning.

Theorem 2. Any general superposition state of a quantum system cannot be cloned (copied)

by any unitary transformation Û .

Proof: Let us assume that there is such a transformation as:[4]

Û [|φ⟩ ⊗ |0⟩] = |φ⟩ ⊗ |φ⟩ (2.27)

If |ψ⟩ and |φ⟩ are linearly independent,

Û |φ0⟩ = |φφ⟩ , Û |ϕ0⟩ = |ϕϕ⟩ (2.28)

Consider the superposition state,

|ψ⟩ = 1√
2
[|φ⟩+ |ϕ⟩] (2.29)
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Û [|ψ0⟩] = 1√
2
[|φφ⟩+ |ϕϕ⟩] (2.30)

But,

Û [|ψ0⟩] = |ψψ⟩

=
1√
2
[(|φ⟩+ |ϕ⟩)⊗ (|φ⟩+ |ϕ⟩)]

=
1√
2
[|φφ⟩+ |φϕ⟩+ |ϕφ⟩+ |ϕϕ⟩]

Obviously, these two results are not the same.

For the second proof we will use pure states and a unitary transformation for the cloning

device.

Theorem 3. Suppose there are is a machine with two slots A and B. The slot A receives

the qubit to be cloned and it will be cloned in slot B. So, we can say A has the unknown state

|ψ⟩ and B has the qubit |s⟩. Therefore, the state of the device can be shown as: [2]

|ψ⟩ ⊗ |s⟩

Using a unitary evolution U , we have:

|ψ⟩ ⊗ |s⟩ → U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ (2.30)

Now, we suppose this copying procedure works for two pure states |ψ⟩ and |ϕ⟩. Then we can

write:

U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩
U(|ϕ⟩ ⊗ |s⟩) = |ϕ⟩ ⊗ |ϕ⟩

Taking the inner product of the two equations gives us the below equation since unitary

operations preserve inner product and the inner product of tensor product translates to mul-

tiplication.

⟨ψ|ϕ⟩ · 1 = (⟨ψ|ϕ⟩)2 (2.31)
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This gives us either ⟨ψ|ϕ⟩ = 1 or ⟨ψ|ϕ⟩ = 0.

In the first case, we have |ψ⟩ = |ϕ⟩, which makes them the same state. If ⟨ψ|ϕ⟩ = 0 then |ψ⟩
and |ϕ⟩ must be orthogonal to each other.

Therefore, although a machine can clone the states |0⟩ and |1⟩ or 1√
2
(|0⟩+|1⟩) and 1√

2
(|0⟩−|1⟩)

as they are pairwise orthogonal, no device can clone all of them. This will be important in

the secure implementation of the BB84 protocol.

We will use pure states in quantum key distribution, hence these proofs are deemed suffi-

cient.

2.5 Entanglement

Entanglement is observed in composite quantum systems. It means there are correlations

between measurements performed on well separated particles. [3]

Suppose we have a bi-partite Hilbert Space

H = H1 ⊗H2

A basis of H can be construct from the basis of H1 and H2 such that

{|0⟩1 ⊗ |0⟩2 , |0⟩1 ⊗ |1⟩2 , |1⟩1 ⊗ |0⟩2 , |1⟩1 ⊗ |1⟩2}

From the superposition principle, the most general way to write a state in H is:

|ψ⟩ =
l∑

i,j=0

ci,j |i⟩1 ⊗ |j⟩2

If a state is entangled, it cannot be written as the tensor product of two states.

If it is separable, it is possible to write it as

|ψ⟩ = |α⟩1 ⊗ |β⟩2

For example

|ψ1⟩ =
1√
2
(|00⟩+ |11⟩)

is entangled.
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The state

|ψ2⟩ =
1√
2
(|01⟩+ |11⟩)

can be written as

|ψ2⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |1⟩

so it is separable.

If the take the entangled state

|ψ1⟩ =
1√
2
(|00⟩+ |11⟩)

and give one particle to Alice and the other to Bob, Alice’s measurements will affect Bob’s as

well. This means that even if there is a distance between the particles, Alice’s measurement

will have an effect on Bob’s measurement.

Entanglement is not a necessarily used in the implementation of the BB84 Protocol. However,

it can be used to increase the security of the protocol by overcoming weaknesses arising from

hardware.
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Chapter 3

The BB84 PROTOCOL

The BB84 Protocol was presented by Charles Bennett and Gilles Brassard in 1984. The first

demonstration was conducted in 1989. [7]

3.1 The Implementation

This protocol makes use of two alphabets (or axis) and four quantum states. The states

used are:

|0⟩ =

[
1

0

]

|1⟩ =

[
0

1

]

|+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1

1

]

|−⟩ = 1√
2
(|0⟩ − |1⟩) = 1√

2

[
1

−1

]

The states can be shown in the Bloch sphere.

As can be seen, the states |0⟩ and |1⟩ are rectilinear, while the states |+⟩ or |−⟩ are diagonal.
Although, the Bloch sphere does not show this, it can be easily shown that |0⟩ and |1⟩ are
orthogonal with each other and the same is true between |+⟩ and |−⟩.
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Figure 3.1: The Bloch Sphere

As can be seen, these states are not mutually orthogonal. |0⟩ and |1⟩ are orthogonal as

⟨

[
1

0

]
,

[
0

1

]
⟩ = 0. |+⟩ and |−⟩ are orthogonal as well, since ⟨ 1√

2

[
1

1

]
, 1√

2

[
1

−1

]
⟩ = 0. However,

if we compare the inner products of |0⟩ and |+⟩, we have 1√
2
̸= 0, hence they are not

orthogonal. This property will be used later.

The alphabets used by the sender (Alice) and the receiver (Bob) are based on Paulis spin

matrices, σ̂x and σ̂z.

The protocol is pictured below. [5]

Figure 3.2: The BB84 Protocol

The steps are as follows:

1. Alice generates a random sequence of bits.
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2. She encodes the bits using the x-alphabet (σ̂x) or the z-alphabet (σ̂z). For each bit,

she chooses the alphabet she will use randomly.

If she has bit 0, she obtains the state/qubit |0⟩ using the z-alphabet and the state

|+⟩ = |0⟩x using the x-alphabet. When she encodes bit 1, she obtains |1⟩ using the

z-alphabet and the x-alphabet gives the state |−⟩ = |1⟩x.

3. Alice sends the sequence of qubits to Bob using a quantum channel. This is done

through the transmission of polarized photons.

4. Bob also randomly chooses the x-alphabet or the z-alphabet in order to measure the

sequence of qubits sent by Alice.

5. Neither Alice nor Bob have any information regarding the alphabet the other party

has chosen for any of the bits. Therefore, by the randomness in the selection of the

alphabets, it can be concurred that about half the time they will have chosen the same

alphabet.

6. In the cases that Alice and Bob chose the same alphabet, Bob will be able to measure

which bit was sent by Alice with a 100% certainty. In the case that they chose different

alphabets, Bob only has a 50% chance of correctly finding the qubit sent by Alice.

For instance, if Alice chooses the bit 1 and the alphabet x, then the qubit she sends is

in the state |−⟩ = 1√
2
(|0⟩− |1⟩). When Bob receives this state, if he chose the alphabet

x, then he obtains the result 1. If he uses the z alphabet, then he has a 50% chance of

measuring 0 (if the state collapses to |0⟩) and 50% chance of measuring 1 (if the state

collapses to |1⟩).

7. After Bob has completed the measurements, Alice and Bob share their alphabet

through a public channel. The important aspect is that this is done after the mea-

surement and neither Alice nor Bob share their results. They only share the alphabets

they used.

It should be noted that Bob does not know which of the results he obtained is correct

until the alphabets are shared, as he does not know which measurements were 100%

true.

8. After information sharing both Alice and Bob compare the sequence of alphabets and

discard the qubits for which they did not use the same alphabet. It can be said that

if they started with a sequence of 4n qubits, then they are left with approximately 2n

qubits after this procedure.
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9. For the next step they send a certain amount of the bits to each other through a public

channel and try to ascertain the error rate.

10. The error rate could be high due to noise or an adversary (Eve). If the error rate is too

high they discard everything and start the protocol again. If the error rate is acceptable

they continue with information reconciliation and privacy amplification. The latter

method reduces Eve’s information about the shared key. After these procedures, the

length of the key is reduced. However, for security, these are necessary steps.

3.2 The Security of The BB84 Protocol

The BB84 Protocol is considered information-theoretic secure with the one time pad (OTP).

This means that it cannot be broken despite the supposed computational power of an ad-

versary. However, since the OTP implementation is not efficient due to the long key size

required, AES implementation is also deemed secure if used with longer keys and it has true

randomness such as through the use of quantum random number generators. [32]

An important aspect regarding security is authentication. The BB84 Protocol should be

used with the Wegman Carter authentication during the sharing of the bases. Unless au-

thentication is ensured, Eve will be able to launch a man-in-the-middle attack in which she

communicates both with Alice and Bob, while both Alice and Bob assume that they are

talking to each other. This way Eve will be able to establish a secret key with Alice and

another secret key with Bob. She will intercept their communication and act like Alice to

Bob and Bob to Alice without any of them noticing. [19]

The security of the BB84 Protocol lies in quantum physics and principles already mentioned

in the report. They will be detailed below.

We already know states that are measured collapse to one of the eigenstates of the observable

operator. In addition, if two commuting observables are used, then they have common

eigenstates. If the observables do not commute, then this is not the case.

The Paulis spin matrices that are used for the alphabet are:

σx =

[
0 1

1 0

]
, σz =

[
1 0

0 −1

]
(3.1)

We check if they commute using the below formula:

21



[σ̂x, σ̂z] = σ̂xσ̂z − σ̂zσ̂x

[σ̂x, σ̂z] =

[
0 1

1 0

][
1 0

0 −1

]
−

[
1 0

0 −1

][
0 1

1 0

]

=

[
0 −1

1 0

]
−

[
0 1

−1 0

]
=

[
0 −2

2 0

]
= 2

[
0 −1

1 0

]
̸= 0

Therefore, we can say that σ̂x and σ̂z do not commute. Hence, we can say that they do not

share common eigenstates.

If we want to measure the Heisenberg inequality, we have:

∆σ̂x∆σ̂z ≥
|⟨ψ|[σ̂x, σ̂z]|ψ⟩|

2
(3.2)

We have as ψ for states:

|ψ⟩ = |0⟩ =

[
1

0

]

|ψ⟩ = |1⟩ =

[
0

1

]

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1

1

]

|ψ⟩ = 1√
2
(|0⟩ − |1⟩) = 1√

2

[
1

−1

]

The average value of A is given by:

⟨A⟩ψ = ⟨ψ|A|ψ⟩ =
∑
j

aj|⟨ψ|φj⟩|2

in which φj’s are the eigenvectors and ai’s are the eigenvalues of A.

In fact, the eigenvalue and the eigenvectors of these operators are given below:

for σ̂x:
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λ1 = 1 ⇒ |λ1⟩ =

[
1

1

]

λ2 = −1 ⇒ |λ2⟩ =

[
1

−1

]

If we normalize the eigenstates we get:

|λ1⟩ =
1√
2

[
1

1

]
=

1√
2
(|0⟩+ |1⟩) = |0⟩x (3.3)

|λ2⟩ =
1√
2

[
1

−1

]
=

1√
2
(|0⟩ − |1⟩) = |1⟩x (3.4)

for σ̂z:

λ1 = 1 ⇒ |λ1⟩ =

[
1

0

]

λ2 = 1 ⇒ |λ2⟩ =

[
0

1

]

|λ1⟩ =

[
1

0

]
= |0⟩ (3.5)

|λ2⟩ =

[
0

1

]
= |1⟩ (3.6)

It can be seen that σ̂x and σ̂z do not share any eigenkets. By the Heisenberg Uncertainty

Principle, it can be said that a state cannot be simultaneously measured by σ̂x and σ̂z.

Hence, when a bit is encoded as |0⟩x or |1⟩x and we measure the qubit with the x-alphabet,

we get the right state for certain. Similarly, when a bit is encoded using the z-alphabet, the

states |0⟩ and |1⟩ can be measured definitely. However, if we measure the state |0⟩x with

the z-alphabet, we have a 50% chance of measuring 0 and 50% chance of measuring 1. The

same condition holds when the states and alphabets are reversed.
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The Heisenberg inequality tells us that measurement disturbs the system as stated below

and shown in Section 2.3. It is interesting to compute the Heisenberg inequality. If we take

the right-hand side of the inequality in 3.2 and compute the average value of the commutator

operator [σ̂x, σ̂z] in measuring one of our states |0⟩, we obtain:

⟨|ψ⟩ |[σ̂x, σ̂z]| |ψ⟩⟩ = ⟨|0⟩ |2

[
0 −1

1 0

]
| |0⟩⟩ = 0

This is interesting, because we found the right side of the Heisenberg inequality as 0, when

we expected the standard deviation in measurements to be larger than 0. This is because

the states that we measure are eigenstates of the observable operators as can be seen above.

If we calculate the standard deviation in measuring |0⟩ with σ̂z (∆σ̂z), we obtain 0. This

means the left-hand side of the inequality in 3.2 is also 0. This is the general case when

measuring an eigenstate of an operator. The mathematics behind it are easy to see from the

formula 2.18. Hence, the Heisenberg inequality still holds as we obtained 0 ≥ 0.

There are other issues to be considered as well. What if an adversary Eve, wanted to get

in the way and measure the states before Bob? We know that measurement changes states.

Hence, if Eve intercepts and measures the states before Bob she will have disturbed the

qubits. This will result in too many errors in the secret key formed between Alice and

Bob. As a result, Eve’s interference will be exposed and Bob and Alice will abort the

protocol.

Eve has a 50% chance (probability 1
2
) of choosing the same basis as Alice and therefore

making correct measurements. When she sends all these disturbed states to Bob, she only

has 2n of the 4n qubits that are measured correctly. In order for Bob to measure them

correctly as well, Bob needs to choose the same alphabet as Eve for those 2n qubits. Bob

only has 1
2
probability of achieving this. Hence, in the overall communication between Alice

and Bob, due to Eve’s interference (assuming Eve intercepted all the (4n) qubits sent by

Alice), the error rate between Alice and Bob will be 1
2
· 1
2
= 1

4
, which is 25%. This error rate

is too high and the protocol needs to be aborted.

A way Eve can be able to interfere without being noticed is to clone the states. That way,

she can have multiple copies of the same state, measure one state and send the other non-

interfered state to Bob. Bob would have no idea that the state has been interfered with and

Eve can make multiple measurements and infer which qubit was sent.

Here, the security is provided by the No-cloning Theorem. By this theorem, it would be

impossible for Eve to clone the unknown states she receives, as it is impossible to build a

machine that clones non-orthogonal states as mentioned in section 2.4. Therefore, it can be
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concurred that if Eve wants to eavesdrop, she has to make her presence known through noise

and the high error rate will result in Alice and Bob in Step 9 to abort the protocol.

3.3 Implementation Issues

Quantum key distribution is advantageous in that it does not rely on the hardness of math-

ematical problems, but a disadvantage it has is that it is heavily reliant on hardware.

The protocol depends on the the emitting and detection of single photons. Photons are very

small particles of energy and it is very difficult to send them separately. For this reason, the

BB84 protocol is liable to Photon Number Splitting Attacks (PNS).

This is the most prominent weakness regarding the security of the protocol. In the PNS

attack, due to the fact that more than one photon is emitted at a time, it is possible for Eve

to eavesdrop and make use of the multi-photons to make her measurements without being

detected by Alice or Bob. She can make her measurements on one photon and send the

other to Bob as if she were able to clone the photons. In order to safely transfer photons

without being subject to PNS, using decoy photons has proven itself to be a good solution.

The decoy protocol was invented in 2005 independently by Lo et al. and Wang. [7]

In a decoy quantum key distribution (QKD) implementation, photons with differing intensi-

ties are sent. One set has high intensity, while another (or others) are of low intensity. The

difference in intensity means that their photon number distributions are different. They are

the same in all other aspects such as wavelength, timing information, etc, which makes them

indistinguishable to an adversary Eve. The original photons are used for key generation,

while the decoy photons are used to detect interference by an adversary. Eve only knows the

number of photons that are being transmitted in a signal. The yield is the amount of photons

absorbed at per unit time, and bit error rate can only depend on the number of photons and

not whether a state is real or decoy. Alice and Bob know the acceptable amount for both

the yield and the bit error rate. Hence, if Eve interferes, these values will be changed and

Alice and Bob will be aware that their communication is under attack. [15]

Entanglement can also be used to detect PNS attacks. The original BB84 Protocol does not

used entangled photons, however, the protocol can be implemented with entangled states

in order to detect Eve’s interference. Researchers have proposed various ways to use en-

tanglement as a variance in the BB84 Protocol and they all rely on not the avoidance of

the PNS attack, but the ability to detect it. Eve can use a measurement type called quan-

tum non-demolition to measure the number of photons emitted in a pulse. This lets her

detect when multiple photons are emitted at once, without disturbing the system. Sabottke
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et al. introduce an entangled state into the system to detect Eve when she uses quantum

non-demolition measurements. In this scheme, Alice and Bob use phase entangled states,

which actually serve as photons and are not used for key formation. Phase and the number

measurements require observables that do not commute. Hence, by performing a number

measurement Eve disturbs the phase entangled states, making her presence known. [8] There

are also other implementations, but they are they are too varying in method to elaborate all

of them. It should also be noted that entanglement is also a factor that causes challenges

regarding distance especially in optical fibers.

In the Trojan horse attack, Eve can send short pulses of light to either Alice’s or Bob’s

device and obtain information about the qubit state by the device’s polarization or phase

modulator settings, from the reflection of the light. There are counter measures such as

active monitoring of light, or Alice can use an optical isolator or a monitoring device. [19]

[20]

Another attack is the time-shift attack. Bob has different detectors to detect the bit 0 and 1

and these detectors are only active during the detection window. This detection window is

timed between Alice and Bob, depending on when they expect the photon to arrive. Eve uses

a possible detection efficiency mismatch between these detectors (for instance the detector

for 0 to be active, while the detector for 1 is not) for her attack. She measures the photons

sent by Alice and sends new photons to Bob. [9] She is able to control the arrival time of

each photon to Bob, which allows her to manipulate the probability of a certain detector

to detect the photons. In this scenario Eve is able to gather information about the key.

Some solutions are proposed against the weakness of single photon detectors whether in the

protocol implemented or the hardware used. However, solutions regarding the time-shift

attack can make the system vulnerable to other attacks. [19]

One important aspect to consider is that despite the BB84 Protocol’s or QKD protocols’

weaknesses in implementation, their security relies on the technological advances that the

adversary has at the time of the key exchange. This is in contrast to classical key distribution

in which encoded messages can be stored and decoded later. Hence, this is a point that

enhances the security of the BB84 Protocol for messages that need to endure time. [19]
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Chapter 4

RECENT STUDIES IN QUANTUM

KEY DISTRIBUTION

The BB84 Protocol had been introduced in 1984, but the first trial was conducted in 1989

over a distance of 32 cm with a system clock rate of 200 Hz. The achievements have increased

significantly in which the distance has exceeded 100 km and the speed has gone over 1 GHz

in system clock rate. QKD is also being tested in network environments. [7] [11]

The BB84 protocol makes use of photon polarization. Hence, the quantum communication

channel used can be free space or an optical fibre. A challenge QKD is facing in general is the

medium which will be used in sending the photons and the distance that can be achieved. In

general, fibre optic cables are used for quantum key distribution. However, when photons are

sent through an optical fiber cable, there is a chance that some will be absorbed. Therefore,

the longer the distance of communication, the less of a chance a photon has at arriving to

its destination. This causes a reduction in the key exchange rates, making long distances of

communication problematic. [11]

The key exchange rate decreases as the distance is increased to the lower number of photons

reaching the destination. Another issue is that the signal-to-noise ratio decreases. The

increase in distance decreases the signal detection probability, while the noise probability

stays the same. This means that the error rate is increased, which results in a more costly

key distillation. [11]

Amplifiers or optical repeaters are considered to increase the signal strength, however, they

will not help as their use will be disturbing the system. Scientists have proven that repeaters

that do not disturb the system are within the realms of possibility, however, more research
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is needed for its development. [10]

Another solution is building a network from trusted nodes, in order to use QKD repeaters.

There are various trials of network QKD. Quantum repeaters, which are being advanced,

also present a possible solution. [11]

The above concerns make quantum key distribution over long distances a difficult ordeal.

However, there are trials and experiments in lengthening the distance of QKD, using fiber

lines or free space with the use of satellites. The longest distance of quantum communication

has been achieved using the latter method. However, it should be noted that satellite transfer

is more susceptible to noise. [10]

In previous work with decoy protons, we see that the secure key rate is 10 kbit/s for a

distance of 20 km and around 10 bit/s for 100 km. Unfortunately this performance does not

allow for practical use. [7]

The trial by Dixon et al. in 2008 with a decoy, funded under the FP6 Integrated Project

SECOQC, exceeds 1 Mbit/s over a fiber distance of 20 km. This is a first for a fiber distance

trial. At a distance of 100 km, the secure key rate is 10.1 kbit/s. This is a significant increase

by an order of 2 in comparison with previous work and this key rate is deemed sufficient to

allow secure encryption of broadband communication. [7]

There are experiments in which photons were sent a distance exceeding 100 km, and the

BB84 Protocol was implemented, however, the distance in which a PNS attack was averted

is lower than 100 km. Hickett et al. (2006) state that their experiment shows that a PNS-

secure QKD could be extended into a distance exceeding 100 km using TES (transition-edge

sensor) detectors with a decoy state protocol.[16]

It had been also shown before that QKD could be achieved using free space for a distance

of over 100 kilometers, using the BB84 Protocol. [10] New studies have taken this distance

much further.

Some free space endeavours are the satellite connections established between the ground and

an aircraft flying at 290 km/h in Los Alamos and Munich. China also has shown success

in satellite connection with “Micius,” which demonstrated a satellite-to-ground QKD over a

distance of 645 to 1200 kilometers. [14]

In 2017, using Micius key formation between China and Austria was established on multiple

locations, in which a maximal distance of 7600 km was reached. An intercontinental video

conference was held between the Academy of Sciences between China and Austria. Also,

using AES-128, a video conference, which lasted for 75 minutes was held. [13]
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Another interesting medium for quantum key distribution is the water channel. An experi-

ment conducted by Feng et al. in 2021 demonstrates that a decoy set up underwater reaches

a distance 19.2 m, and it can be increased to 237.1 m in seawater with a lower dark count

single photon detector. [18]

The no-cloning theorem mentioned before prevents an adversary from copying qubits, which

the BB84 Protocol partly owes its security to. However, it also prevents broadcasting the

identical quantum keys to more than one receiver. Therefore, BB84 Protocol is implemented

on a point-to-point (P2P) basis. Regardless, QKD can be implemented in networks as well.

[19]

In a QKD network, distant users A and B are able to share a secret key by each user being

connected to a node, NA and NB respectively in which these nodes are connected via a chain

of intermediate nodes as can be seen in the figure below. Trusted-node quantum networks

can make use of repeaters to allow for an increase in distance. [28] [11]

Figure 4.1: QKD Backbone Network [28]

The QKD network types can be categorized in two. In a switched QKD network a direct

optical P2P QKD connection is established between any two nodes within the network. This

limits the distance of the network to a regional scale. Another category is the trusted repeater

QKD network. In this network type, the security of each node is essential for the transfer of

information. P2P communication between nodes provides each with an identical key. This

type of network is not limited by distance as there are repeaters, although a drawback is

that all nodes in a communication path need to be secured. [14] Another category is full

quantum-enabled networks that do not require fully trusted nodes or are not restrained by

distance barriers, however the technology required is currently beyond our scope.[19]
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The previously deployed, prominent QKD networks are:

1. The DARPA QKD Network

2. SECOQC QKD Network

3. Tokyo UQCC QKD Network

4. QKD Network in China

5. OpenQKD

In the DARPA QKD Network, which used 10 nodes, the researchers implemented the BB84

protocol with a pair of senders and a pair of receivers. A trusted repeated network depending

on entanglement was used. It was implemented between 2002-2006 and it was the first QKD

network. The maximum key rate reached was 400 bps, while the maximum distance was of

29 km between Harvard University and Boston University. [14]

The SECOQC QKD Network was formed in 2004 under the European Union funded ”Frame-

work Programme 6” project. The team comprised of 41 research and industrial partners from

11 EU countries along with Russia and Switzerland. The objective was to firmly define the

practical application of QKD technologies and systematically treat the issue of QKD net-

works. The project was implemented between 2004-2008 and achieved a maximum key rate

of 3.1 kbps over 31 km. The maximum length reached in a single link is 82 km. [14]

The Tokyo UQCC QKD Network was established two years after the SECOQQ QKD Net-

work with participation from Japan and EU. The network consisted of parts of the National

Institute of Information and Communications Technology and nodes connected to commer-

cial optical fibers. Maximal key rate reached is 3.1 kbps, while the maximal distance of

a single link is 33 km. In 2010, a secure TV conference was demonstrated using QKD.

[14]

China is taking the lead in quantum key distribution and space-oriented quantum technology.

The Chinese endeavours are of a national scale. The 2,000 km Beijing-Shanghai backbone

QKD network, which is the longest optical fiber QKD in the world to date, commenced

operation in September 2017. All the implementations so far are decoy BB84 protocols. The

Beijing-Shanghai QKD network reached a maximum key rate of 250 kbps over 43 km. It

deployed 32 nodes and it achieved the highest key rate over a maximum distance compared

to other Chinese experiments. [14]

The OpenQKD is a project funded by the European Union under Horizon 2020. The project

has 38 partners from 13 EU countries and Israel. OpenQKD can be considered as an umbrella
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project with a budget of nearly 18 million Euro and a variety of work regarding QKD

is underway. The project, which started in September 2019 and is planned to finish in

September 2022, deploys open testbeds for quantum key distribution and is open to external

stakeholders to perform trials. The project establishes the first experimental QKD testbed

and 43 projects are funded under the 1st open call. The project aims to lay the foundations

for a Pan-European Quantum Network.

These endeavours include an international film festival in Berlin using QKD for film dis-

tribution, secure key distribution between governmental institutions in Greece and Austria,

processing of personal medical data in CERN, recognition of composite signals in genome

and protein in Portugal, interfacing satellite and terrestrial fiber connections in Italy, quan-

tum security of crypto assets in Geneva, long term encryption to be used in clouds to encrypt

only data that needs it, and securing banking institutions with QKD. [27]

Currently, in commercial endeavours with optical fibers, QKD links can be effectively applied

to to roughly 100-200 km, not surpassing a hundred kbp/s. [14] [29]

The Cambridge Research Laboratory of Toshiba Europe has been able to build a quantum

internet exceeding a distance of 600 km. In 2018, Toshiba had also proposed a new QKD

protocol named Twin Field QKD. The said protocol has been implemented over fibres and a

distance of 600 km in quantum key distribution has been reached. This technology will allow

cities and countries to be connected to each other without the need of trusted nodes. It will

also be possible to implement it with a Satellite QKD, making the distance covered span

globally. The work was partially funded by the EU through the H2020 project, OpenQKD.

[29]

There are other commercial companies working on QKD as well. These are Quintessence

with their qOptica CV-QKD, MagiQ’s 8505 and Q-box, AIT’s EPR SYS-405 System, ID

Quantique’s Clavis2, SeQureNet’s Cygnus and Toshiba QKD GHz system. [30] The below

table provides information on recent QKD experiments using the BB84 protocol and their

results regarding speed and distance. Regarding the network trials, numbers regarding the

maximum key rate are used.
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QKD Trials

Year Team Method Speed Distance

2007 Schmitt-

Manderbach

et al.

Free

space/Decoy

- 144 km

2008 Dixon et al. Decoy 1.02 Mbps 20 km

2008 Dixon et al. Decoy 10.1 kbps 100 km

2002-2006 DARPA Network 400 bps 10 km

2007 SECOQC Network 3.1 kbps 33 km

2009 Tokyo Network 304 kbps 45 km

2010 Liu et al. Decoy 15 Hz/3089s 200 km

2015 Korzh et al. Fiber 3.18 bps 307 km

2017 Beijing-

Shanghai

Network 250 kps 43 km

2016 Liao et al. Satellite (Mi-

cius)

100 bps 719 km

2021 Feng et al. Underwater - 19.2 → 237.1

m

There are already real life applications that have been performed with QKD. In 2004, a

bank transfer has been made in Vienna with QKD. [10] In 2008, the first live demonstration

of QKD took place, again in Vienna, in the framework of the SECOQC Demonstration

and International Conference. A network was established and different company sites from

SIEMENS Austria were connected. Secure telephone and video conferencing were among the

services achieved. [22] In 2007, one canton (state) of Switzerland participated in the national

election, in which the votes cast were transmitted to Geneva by QKD. The technology was

provided by Id Quantique and the photons were transferred through a distance of 62 miles.

[23] In 2013, a non-profit organisation, Battelle Memorial Institute, installed a QKD system

between their main campus and their manufacturing facilities within a distance of 20 miles.

The system was built by ID Quantique as well. [24]
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Chapter 5

CONCLUSION

The BB84 Protocol has information theoretic security due to the properties of quantum

mechanics when used with the OTP. The security relies on the Heisenberg’s uncertainty

principle and the no-cloning theorem, which show that an adversary’s interference does not

go undetected. The important issue here is that in using OTP, the key should be used only

once. It is also deemed secure with AES, which is more efficient compared to OTP.

There are however, attacks that can be successfully performed due to hardware deficiencies.

Some of these attacks are performed by an adversary that has access to encoding and decod-

ing devices of the communicating parties. Other attacks may be harder to avoid, however,

there are certain precautions that can be taken. Some of these precautions again rely on

hardware, such as producing single photon sources and detectors, while others require sev-

eral modifications to the implementation, such as using decoy states or entanglement. It can

also be the case that modifications that resolve a threat can leave the system weak to other

attacks. Research is still being developed in this area.

Other conditions that need to be in place for the security is that the parties must use

authentication during the exchange of the basis to prevent a man-in-the-middle attack.

Currently, the implementation of QKD is limited due to the challenges faced in increasing

the distance and the key exchange rate. There are instances of QKD being used in real life,

however, we are still far from achieving a large scale QKD in an efficient manner.

Scientists have proven that it is possible to build quantum repeaters, which unlike classical

repeaters, will not disturb the system while increasing the distance. However, so far this

remains in theory and the technological advances are expected to be far in the future. The

advancement of quantum networks will also break the distance barrier.
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Overall, QKD is an expensive method and some criticise it to be too costly to have any

value and real life use. As long as asymmetric algorithms continue to provide security,

QKD might be seen as unnecessary and advancements may be slow. However, scientists are

working on quantum computers and they are expected to be a part of our future. When

quantum computers are more mainstream, public key cryptography schemes we use today

will be obsolete. Although, some may see this as far in the future, it may not be such a

distant future.

For the moment, increasing the key sizes might be enough as breaking them would require

more quantum powers. There are two main ways to ensure that cryptography provides

enough security for our everyday transactions, such as using emails and conducting bank

transfers. One option is the development of quantum-resistant algorithms for key exchange.

The other option is employing quantum key distribution. The latter is too costly. Perfecting

quantum key distribution is a difficult ordeal. The requirements regarding hardware, along

with the new satellites ans optical fibers needed pose a problem. However, there is no way to

prove that a quantum-resistant algorithm will truly be secure against quantum computers.

There will always be the possibility that a better computer will be able to break the algo-

rithms. Therefore, research in many areas regarding the hardware and advancement of new

QKD protocols or variants of existing protocols need to be developed in order to continue

the existing level of security achieved by the use of cryptography.
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